| test_241102_ONE | | | | | | 89.48 17 | 56.89 29 | | 88.94 32 | 57.53 233 | 84.61 4 | 93.29 22 | 58.81 12 | 96.45 1 | | | |
|
| DVP-MVS |  | | 81.30 10 | 81.00 13 | 82.20 8 | 89.40 20 | 57.45 19 | 92.34 5 | 89.99 20 | 57.71 229 | 81.91 14 | 93.64 12 | 55.17 29 | 96.44 2 | 81.68 29 | 87.13 21 | 92.72 28 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 58.00 221 | 81.91 14 | 93.64 12 | 56.54 21 | 96.44 2 | 81.64 31 | 86.86 26 | 92.23 37 |
|
| DVP-MVS++ | | | 82.44 3 | 82.38 6 | 82.62 4 | 91.77 4 | 57.49 17 | 84.98 138 | 88.88 34 | 58.00 221 | 83.60 6 | 93.39 18 | 67.21 2 | 96.39 4 | 81.64 31 | 91.98 4 | 93.98 5 |
|
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 13 | 92.34 5 | 88.88 34 | | | | | 96.39 4 | 81.68 29 | 87.13 21 | 92.47 31 |
|
| SED-MVS | | | 81.92 8 | 81.75 9 | 82.44 7 | 89.48 17 | 56.89 29 | 92.48 3 | 88.94 32 | 57.50 235 | 84.61 4 | 94.09 3 | 58.81 12 | 96.37 6 | 82.28 26 | 87.60 18 | 94.06 3 |
|
| test_241102_TWO | | | | | | | | | 88.76 41 | 57.50 235 | 83.60 6 | 94.09 3 | 56.14 25 | 96.37 6 | 82.28 26 | 87.43 20 | 92.55 30 |
|
| MSC_two_6792asdad | | | | | 81.53 15 | 91.77 4 | 56.03 46 | | 91.10 11 | | | | | 96.22 8 | 81.46 33 | 86.80 28 | 92.34 35 |
|
| No_MVS | | | | | 81.53 15 | 91.77 4 | 56.03 46 | | 91.10 11 | | | | | 96.22 8 | 81.46 33 | 86.80 28 | 92.34 35 |
|
| CSCG | | | 80.41 15 | 79.72 16 | 82.49 5 | 89.12 25 | 57.67 15 | 89.29 41 | 91.54 5 | 59.19 197 | 71.82 82 | 90.05 97 | 59.72 10 | 96.04 10 | 78.37 50 | 88.40 14 | 93.75 7 |
|
| API-MVS | | | 74.17 92 | 72.07 114 | 80.49 25 | 90.02 11 | 58.55 9 | 87.30 75 | 84.27 145 | 57.51 234 | 65.77 143 | 87.77 146 | 41.61 168 | 95.97 11 | 51.71 256 | 82.63 61 | 86.94 178 |
|
| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 16 | 93.77 1 | 91.10 11 | 75.95 3 | 77.10 37 | 93.09 27 | 54.15 38 | 95.57 12 | 85.80 10 | 85.87 38 | 93.31 11 |
|
| QAPM | | | 71.88 134 | 69.33 160 | 79.52 40 | 82.20 143 | 54.30 93 | 86.30 97 | 88.77 40 | 56.61 253 | 59.72 215 | 87.48 150 | 33.90 269 | 95.36 13 | 47.48 284 | 81.49 72 | 88.90 132 |
|
| gm-plane-assit | | | | | | 83.24 112 | 54.21 96 | | | 70.91 21 | | 88.23 135 | | 95.25 14 | 66.37 131 | | |
|
| OPU-MVS | | | | | 81.71 13 | 92.05 3 | 55.97 48 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 3 | 92.55 3 | 94.06 3 |
|
| MVS | | | 76.91 49 | 75.48 63 | 81.23 19 | 84.56 82 | 55.21 65 | 80.23 266 | 91.64 4 | 58.65 211 | 65.37 146 | 91.48 62 | 45.72 106 | 95.05 16 | 72.11 98 | 89.52 10 | 93.44 9 |
|
| PC_three_1452 | | | | | | | | | | 66.58 61 | 87.27 2 | 93.70 10 | 66.82 4 | 94.95 17 | 89.74 4 | 91.98 4 | 93.98 5 |
|
| MAR-MVS | | | 76.76 54 | 75.60 60 | 80.21 31 | 90.87 7 | 54.68 85 | 89.14 42 | 89.11 29 | 62.95 127 | 70.54 103 | 92.33 39 | 41.05 172 | 94.95 17 | 57.90 210 | 86.55 32 | 91.00 79 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| DELS-MVS | | | 82.32 5 | 82.50 5 | 81.79 12 | 86.80 47 | 56.89 29 | 92.77 2 | 86.30 90 | 77.83 1 | 77.88 33 | 92.13 41 | 60.24 7 | 94.78 19 | 78.97 44 | 89.61 8 | 93.69 8 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| LFMVS | | | 78.52 25 | 77.14 43 | 82.67 3 | 89.58 13 | 58.90 8 | 91.27 19 | 88.05 56 | 63.22 123 | 74.63 48 | 90.83 75 | 41.38 171 | 94.40 20 | 75.42 72 | 79.90 91 | 94.72 2 |
|
| IB-MVS | | 68.87 2 | 74.01 94 | 72.03 117 | 79.94 38 | 83.04 119 | 55.50 53 | 90.24 25 | 88.65 43 | 67.14 55 | 61.38 200 | 81.74 237 | 53.21 42 | 94.28 21 | 60.45 184 | 62.41 257 | 90.03 105 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| DPE-MVS |  | | 79.82 19 | 79.66 17 | 80.29 30 | 89.27 24 | 55.08 72 | 88.70 47 | 87.92 58 | 55.55 265 | 81.21 19 | 93.69 11 | 56.51 22 | 94.27 22 | 78.36 51 | 85.70 40 | 91.51 63 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MM | | | 82.69 2 | 83.29 3 | 80.89 22 | 84.38 86 | 55.40 59 | 92.16 10 | 89.85 22 | 75.28 4 | 82.41 11 | 93.86 8 | 54.30 35 | 93.98 23 | 90.29 1 | 87.13 21 | 93.30 12 |
|
| 3Dnovator | | 64.70 6 | 74.46 87 | 72.48 102 | 80.41 29 | 82.84 130 | 55.40 59 | 83.08 199 | 88.61 47 | 67.61 51 | 59.85 213 | 88.66 123 | 34.57 262 | 93.97 24 | 58.42 199 | 88.70 12 | 91.85 52 |
|
| VDDNet | | | 74.37 89 | 72.13 112 | 81.09 20 | 79.58 204 | 56.52 37 | 90.02 26 | 86.70 81 | 52.61 292 | 71.23 90 | 87.20 155 | 31.75 291 | 93.96 25 | 74.30 82 | 75.77 134 | 92.79 27 |
|
| CNVR-MVS | | | 81.76 9 | 81.90 8 | 81.33 18 | 90.04 10 | 57.70 14 | 91.71 11 | 88.87 36 | 70.31 25 | 77.64 36 | 93.87 7 | 52.58 46 | 93.91 26 | 84.17 15 | 87.92 16 | 92.39 33 |
|
| PHI-MVS | | | 77.49 42 | 77.00 44 | 78.95 53 | 85.33 69 | 50.69 175 | 88.57 49 | 88.59 48 | 58.14 218 | 73.60 57 | 93.31 21 | 43.14 147 | 93.79 27 | 73.81 87 | 88.53 13 | 92.37 34 |
|
| MVS_0304 | | | 82.10 7 | 82.64 4 | 80.47 27 | 86.63 49 | 54.69 84 | 92.20 9 | 86.66 82 | 74.48 5 | 82.63 10 | 93.80 9 | 50.83 61 | 93.70 28 | 90.11 2 | 86.44 33 | 93.01 21 |
|
| CHOSEN 1792x2688 | | | 76.24 59 | 74.03 86 | 82.88 1 | 83.09 117 | 62.84 2 | 85.73 111 | 85.39 108 | 69.79 28 | 64.87 154 | 83.49 201 | 41.52 170 | 93.69 29 | 70.55 103 | 81.82 69 | 92.12 40 |
|
| NCCC | | | 79.57 20 | 79.23 20 | 80.59 24 | 89.50 15 | 56.99 26 | 91.38 16 | 88.17 54 | 67.71 48 | 73.81 56 | 92.75 32 | 46.88 91 | 93.28 30 | 78.79 47 | 84.07 55 | 91.50 64 |
|
| balanced_conf03 | | | 80.28 16 | 79.73 15 | 81.90 11 | 86.47 51 | 59.34 6 | 80.45 260 | 89.51 24 | 69.76 29 | 71.05 94 | 86.66 164 | 58.68 15 | 93.24 31 | 84.64 14 | 90.40 6 | 93.14 18 |
|
| DPM-MVS | | | 82.39 4 | 82.36 7 | 82.49 5 | 80.12 198 | 59.50 5 | 92.24 8 | 90.72 15 | 69.37 33 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 32 | 74.02 84 | 93.25 2 | 94.80 1 |
|
| CANet | | | 80.90 11 | 81.17 12 | 80.09 37 | 87.62 41 | 54.21 96 | 91.60 14 | 86.47 86 | 73.13 8 | 79.89 25 | 93.10 25 | 49.88 70 | 92.98 33 | 84.09 17 | 84.75 50 | 93.08 19 |
|
| FA-MVS(test-final) | | | 69.00 188 | 66.60 207 | 76.19 126 | 83.48 104 | 47.96 261 | 74.73 306 | 82.07 186 | 57.27 239 | 62.18 192 | 78.47 267 | 36.09 245 | 92.89 34 | 53.76 242 | 71.32 180 | 87.73 164 |
|
| MS-PatchMatch | | | 72.34 124 | 71.26 126 | 75.61 141 | 82.38 140 | 55.55 52 | 88.00 55 | 89.95 21 | 65.38 85 | 56.51 276 | 80.74 247 | 32.28 284 | 92.89 34 | 57.95 208 | 88.10 15 | 78.39 316 |
|
| MVSMamba_PlusPlus | | | 75.28 77 | 73.39 89 | 80.96 21 | 80.85 183 | 58.25 10 | 74.47 309 | 87.61 67 | 50.53 306 | 65.24 147 | 83.41 203 | 57.38 18 | 92.83 36 | 73.92 86 | 87.13 21 | 91.80 54 |
|
| OpenMVS |  | 61.00 11 | 69.99 169 | 67.55 189 | 77.30 97 | 78.37 234 | 54.07 101 | 84.36 158 | 85.76 101 | 57.22 240 | 56.71 272 | 87.67 148 | 30.79 297 | 92.83 36 | 43.04 309 | 84.06 56 | 85.01 216 |
|
| test_yl | | | 75.85 68 | 74.83 75 | 78.91 54 | 88.08 37 | 51.94 151 | 91.30 17 | 89.28 26 | 57.91 223 | 71.19 91 | 89.20 113 | 42.03 162 | 92.77 38 | 69.41 110 | 75.07 146 | 92.01 46 |
|
| DCV-MVSNet | | | 75.85 68 | 74.83 75 | 78.91 54 | 88.08 37 | 51.94 151 | 91.30 17 | 89.28 26 | 57.91 223 | 71.19 91 | 89.20 113 | 42.03 162 | 92.77 38 | 69.41 110 | 75.07 146 | 92.01 46 |
|
| VDD-MVS | | | 76.08 63 | 74.97 72 | 79.44 41 | 84.27 90 | 53.33 119 | 91.13 20 | 85.88 98 | 65.33 87 | 72.37 76 | 89.34 110 | 32.52 281 | 92.76 40 | 77.90 57 | 75.96 131 | 92.22 39 |
|
| 9.14 | | | | 78.19 28 | | 85.67 61 | | 88.32 51 | 88.84 38 | 59.89 180 | 74.58 50 | 92.62 35 | 46.80 92 | 92.66 41 | 81.40 35 | 85.62 41 | |
|
| testing91 | | | 78.30 32 | 77.54 37 | 80.61 23 | 88.16 35 | 57.12 25 | 87.94 60 | 91.07 14 | 71.43 17 | 70.75 97 | 88.04 141 | 55.82 26 | 92.65 42 | 69.61 109 | 75.00 148 | 92.05 44 |
|
| APDe-MVS |  | | 78.44 27 | 78.20 27 | 79.19 45 | 88.56 26 | 54.55 89 | 89.76 33 | 87.77 62 | 55.91 260 | 78.56 30 | 92.49 37 | 48.20 77 | 92.65 42 | 79.49 39 | 83.04 59 | 90.39 91 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| testing99 | | | 78.45 26 | 77.78 34 | 80.45 28 | 88.28 33 | 56.81 32 | 87.95 59 | 91.49 6 | 71.72 14 | 70.84 96 | 88.09 137 | 57.29 19 | 92.63 44 | 69.24 113 | 75.13 144 | 91.91 49 |
|
| SteuartSystems-ACMMP | | | 77.08 47 | 76.33 52 | 79.34 43 | 80.98 176 | 55.31 61 | 89.76 33 | 86.91 76 | 62.94 128 | 71.65 83 | 91.56 60 | 42.33 155 | 92.56 45 | 77.14 61 | 83.69 57 | 90.15 101 |
| Skip Steuart: Steuart Systems R&D Blog. |
| thisisatest0515 | | | 73.64 105 | 72.20 109 | 77.97 82 | 81.63 159 | 53.01 129 | 86.69 91 | 88.81 39 | 62.53 134 | 64.06 167 | 85.65 174 | 52.15 49 | 92.50 46 | 58.43 197 | 69.84 192 | 88.39 149 |
|
| PS-MVSNAJ | | | 80.06 17 | 79.52 18 | 81.68 14 | 85.58 63 | 60.97 3 | 91.69 12 | 87.02 74 | 70.62 22 | 80.75 21 | 93.22 24 | 37.77 206 | 92.50 46 | 82.75 23 | 86.25 35 | 91.57 60 |
|
| SMA-MVS |  | | 79.10 23 | 78.76 24 | 80.12 35 | 84.42 84 | 55.87 49 | 87.58 69 | 86.76 79 | 61.48 154 | 80.26 23 | 93.10 25 | 46.53 96 | 92.41 48 | 79.97 38 | 88.77 11 | 92.08 41 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| WTY-MVS | | | 77.47 43 | 77.52 38 | 77.30 97 | 88.33 30 | 46.25 287 | 88.46 50 | 90.32 18 | 71.40 18 | 72.32 77 | 91.72 54 | 53.44 41 | 92.37 49 | 66.28 133 | 75.42 138 | 93.28 13 |
|
| testing11 | | | 79.18 22 | 78.85 23 | 80.16 33 | 88.33 30 | 56.99 26 | 88.31 52 | 92.06 1 | 72.82 10 | 70.62 102 | 88.37 129 | 57.69 17 | 92.30 50 | 75.25 74 | 76.24 128 | 91.20 73 |
|
| EI-MVSNet-Vis-set | | | 73.19 111 | 72.60 100 | 74.99 167 | 82.56 138 | 49.80 201 | 82.55 212 | 89.00 31 | 66.17 70 | 65.89 140 | 88.98 116 | 43.83 132 | 92.29 51 | 65.38 147 | 69.01 198 | 82.87 258 |
|
| xiu_mvs_v2_base | | | 79.86 18 | 79.31 19 | 81.53 15 | 85.03 75 | 60.73 4 | 91.65 13 | 86.86 77 | 70.30 26 | 80.77 20 | 93.07 29 | 37.63 211 | 92.28 52 | 82.73 24 | 85.71 39 | 91.57 60 |
|
| RRT-MVS | | | 73.29 109 | 71.37 125 | 79.07 52 | 84.63 80 | 54.16 99 | 78.16 285 | 86.64 84 | 61.67 149 | 60.17 210 | 82.35 228 | 40.63 180 | 92.26 53 | 70.19 106 | 77.87 108 | 90.81 83 |
|
| MG-MVS | | | 78.42 28 | 76.99 45 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 50 | 64.83 92 | 73.52 59 | 88.09 137 | 48.07 78 | 92.19 54 | 62.24 164 | 84.53 52 | 91.53 62 |
|
| TSAR-MVS + GP. | | | 77.82 38 | 77.59 36 | 78.49 69 | 85.25 71 | 50.27 192 | 90.02 26 | 90.57 16 | 56.58 254 | 74.26 53 | 91.60 59 | 54.26 36 | 92.16 55 | 75.87 66 | 79.91 90 | 93.05 20 |
|
| MVS_111021_HR | | | 76.39 58 | 75.38 66 | 79.42 42 | 85.33 69 | 56.47 38 | 88.15 53 | 84.97 126 | 65.15 90 | 66.06 137 | 89.88 100 | 43.79 134 | 92.16 55 | 75.03 75 | 80.03 89 | 89.64 113 |
|
| DP-MVS Recon | | | 71.99 131 | 70.31 143 | 77.01 106 | 90.65 8 | 53.44 113 | 89.37 37 | 82.97 175 | 56.33 257 | 63.56 178 | 89.47 107 | 34.02 267 | 92.15 57 | 54.05 239 | 72.41 169 | 85.43 212 |
|
| dcpmvs_2 | | | 79.33 21 | 78.94 21 | 80.49 25 | 89.75 12 | 56.54 36 | 84.83 145 | 83.68 158 | 67.85 45 | 69.36 107 | 90.24 89 | 60.20 8 | 92.10 58 | 84.14 16 | 80.40 82 | 92.82 25 |
|
| Anonymous20240529 | | | 69.71 174 | 67.28 195 | 77.00 107 | 83.78 99 | 50.36 187 | 88.87 46 | 85.10 124 | 47.22 329 | 64.03 168 | 83.37 204 | 27.93 312 | 92.10 58 | 57.78 213 | 67.44 209 | 88.53 145 |
|
| cascas | | | 69.01 187 | 66.13 216 | 77.66 89 | 79.36 207 | 55.41 58 | 86.99 83 | 83.75 157 | 56.69 251 | 58.92 233 | 81.35 241 | 24.31 340 | 92.10 58 | 53.23 243 | 70.61 186 | 85.46 211 |
|
| FE-MVS | | | 64.15 257 | 60.43 277 | 75.30 156 | 80.85 183 | 49.86 199 | 68.28 349 | 78.37 266 | 50.26 310 | 59.31 225 | 73.79 318 | 26.19 325 | 91.92 61 | 40.19 317 | 66.67 214 | 84.12 228 |
|
| EI-MVSNet-UG-set | | | 72.37 123 | 71.73 118 | 74.29 181 | 81.60 161 | 49.29 215 | 81.85 229 | 88.64 44 | 65.29 89 | 65.05 150 | 88.29 134 | 43.18 145 | 91.83 62 | 63.74 155 | 67.97 205 | 81.75 269 |
|
| HPM-MVS++ |  | | 80.50 14 | 80.71 14 | 79.88 39 | 87.34 43 | 55.20 67 | 89.93 29 | 87.55 68 | 66.04 76 | 79.46 26 | 93.00 30 | 53.10 43 | 91.76 63 | 80.40 37 | 89.56 9 | 92.68 29 |
|
| baseline2 | | | 75.15 82 | 74.54 79 | 76.98 109 | 81.67 158 | 51.74 157 | 83.84 175 | 91.94 3 | 69.97 27 | 58.98 230 | 86.02 170 | 59.73 9 | 91.73 64 | 68.37 119 | 70.40 189 | 87.48 169 |
|
| Effi-MVS+ | | | 75.24 79 | 73.61 88 | 80.16 33 | 81.92 148 | 57.42 21 | 85.21 127 | 76.71 296 | 60.68 172 | 73.32 62 | 89.34 110 | 47.30 86 | 91.63 65 | 68.28 120 | 79.72 93 | 91.42 65 |
|
| GDP-MVS | | | 75.27 78 | 74.38 80 | 77.95 84 | 79.04 216 | 52.86 133 | 85.22 126 | 86.19 93 | 62.43 138 | 70.66 100 | 90.40 86 | 53.51 40 | 91.60 66 | 69.25 112 | 72.68 167 | 89.39 120 |
|
| EIA-MVS | | | 75.92 66 | 75.18 69 | 78.13 79 | 85.14 72 | 51.60 160 | 87.17 80 | 85.32 112 | 64.69 93 | 68.56 115 | 90.53 80 | 45.79 105 | 91.58 67 | 67.21 126 | 82.18 66 | 91.20 73 |
|
| Anonymous202405211 | | | 70.11 163 | 67.88 180 | 76.79 116 | 87.20 44 | 47.24 273 | 89.49 35 | 77.38 283 | 54.88 274 | 66.14 135 | 86.84 160 | 20.93 360 | 91.54 68 | 56.45 226 | 71.62 176 | 91.59 58 |
|
| thisisatest0530 | | | 70.47 161 | 68.56 167 | 76.20 125 | 79.78 202 | 51.52 163 | 83.49 186 | 88.58 49 | 57.62 232 | 58.60 239 | 82.79 211 | 51.03 56 | 91.48 69 | 52.84 248 | 62.36 259 | 85.59 210 |
|
| MSP-MVS | | | 82.30 6 | 83.47 1 | 78.80 59 | 82.99 122 | 52.71 135 | 85.04 135 | 88.63 45 | 66.08 73 | 86.77 3 | 92.75 32 | 72.05 1 | 91.46 70 | 83.35 20 | 93.53 1 | 92.23 37 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| DeepC-MVS | | 67.15 4 | 76.90 51 | 76.27 53 | 78.80 59 | 80.70 187 | 55.02 73 | 86.39 94 | 86.71 80 | 66.96 58 | 67.91 120 | 89.97 99 | 48.03 79 | 91.41 71 | 75.60 69 | 84.14 54 | 89.96 107 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| BP-MVS1 | | | 76.09 62 | 75.55 61 | 77.71 88 | 79.49 205 | 52.27 146 | 84.70 148 | 90.49 17 | 64.44 95 | 69.86 106 | 90.31 88 | 55.05 32 | 91.35 72 | 70.07 107 | 75.58 137 | 89.53 117 |
|
| SF-MVS | | | 77.64 41 | 77.42 39 | 78.32 76 | 83.75 100 | 52.47 140 | 86.63 92 | 87.80 59 | 58.78 209 | 74.63 48 | 92.38 38 | 47.75 83 | 91.35 72 | 78.18 54 | 86.85 27 | 91.15 75 |
|
| SPE-MVS-test | | | 77.20 45 | 77.25 41 | 77.05 103 | 84.60 81 | 49.04 220 | 89.42 36 | 85.83 100 | 65.90 77 | 72.85 68 | 91.98 50 | 45.10 114 | 91.27 74 | 75.02 76 | 84.56 51 | 90.84 82 |
|
| 3Dnovator+ | | 62.71 7 | 72.29 126 | 70.50 136 | 77.65 90 | 83.40 108 | 51.29 169 | 87.32 73 | 86.40 88 | 59.01 204 | 58.49 243 | 88.32 133 | 32.40 282 | 91.27 74 | 57.04 219 | 82.15 67 | 90.38 92 |
|
| testing222 | | | 77.70 40 | 77.22 42 | 79.14 48 | 86.95 45 | 54.89 78 | 87.18 79 | 91.96 2 | 72.29 12 | 71.17 93 | 88.70 122 | 55.19 28 | 91.24 76 | 65.18 148 | 76.32 127 | 91.29 71 |
|
| casdiffmvs_mvg |  | | 77.75 39 | 77.28 40 | 79.16 47 | 80.42 194 | 54.44 91 | 87.76 61 | 85.46 105 | 71.67 15 | 71.38 88 | 88.35 131 | 51.58 50 | 91.22 77 | 79.02 43 | 79.89 92 | 91.83 53 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 114514_t | | | 69.87 172 | 67.88 180 | 75.85 135 | 88.38 29 | 52.35 143 | 86.94 85 | 83.68 158 | 53.70 283 | 55.68 282 | 85.60 175 | 30.07 302 | 91.20 78 | 55.84 229 | 71.02 182 | 83.99 233 |
|
| ZD-MVS | | | | | | 89.55 14 | 53.46 110 | | 84.38 142 | 57.02 243 | 73.97 55 | 91.03 65 | 44.57 127 | 91.17 79 | 75.41 73 | 81.78 71 | |
|
| h-mvs33 | | | 73.95 95 | 72.89 98 | 77.15 102 | 80.17 197 | 50.37 186 | 84.68 150 | 83.33 164 | 68.08 39 | 71.97 80 | 88.65 126 | 42.50 153 | 91.15 80 | 78.82 45 | 57.78 297 | 89.91 109 |
|
| EC-MVSNet | | | 75.30 76 | 75.20 67 | 75.62 140 | 80.98 176 | 49.00 221 | 87.43 70 | 84.68 136 | 63.49 118 | 70.97 95 | 90.15 95 | 42.86 152 | 91.14 81 | 74.33 81 | 81.90 68 | 86.71 187 |
|
| test12 | | | | | 79.24 44 | 86.89 46 | 56.08 45 | | 85.16 121 | | 72.27 78 | | 47.15 88 | 91.10 82 | | 85.93 37 | 90.54 89 |
|
| ZNCC-MVS | | | 75.82 71 | 75.02 71 | 78.23 77 | 83.88 98 | 53.80 103 | 86.91 87 | 86.05 96 | 59.71 183 | 67.85 121 | 90.55 79 | 42.23 157 | 91.02 83 | 72.66 96 | 85.29 45 | 89.87 110 |
|
| ACMMP_NAP | | | 76.43 57 | 75.66 59 | 78.73 61 | 81.92 148 | 54.67 86 | 84.06 168 | 85.35 110 | 61.10 161 | 72.99 65 | 91.50 61 | 40.25 182 | 91.00 84 | 76.84 62 | 86.98 25 | 90.51 90 |
|
| VNet | | | 77.99 37 | 77.92 31 | 78.19 78 | 87.43 42 | 50.12 193 | 90.93 22 | 91.41 8 | 67.48 52 | 75.12 43 | 90.15 95 | 46.77 93 | 91.00 84 | 73.52 89 | 78.46 103 | 93.44 9 |
|
| CS-MVS | | | 76.77 53 | 76.70 48 | 76.99 108 | 83.55 102 | 48.75 230 | 88.60 48 | 85.18 119 | 66.38 66 | 72.47 75 | 91.62 58 | 45.53 108 | 90.99 86 | 74.48 79 | 82.51 62 | 91.23 72 |
|
| DeepPCF-MVS | | 69.37 1 | 80.65 13 | 81.56 11 | 77.94 85 | 85.46 66 | 49.56 205 | 90.99 21 | 86.66 82 | 70.58 23 | 80.07 24 | 95.30 1 | 56.18 24 | 90.97 87 | 82.57 25 | 86.22 36 | 93.28 13 |
|
| HFP-MVS | | | 74.37 89 | 73.13 97 | 78.10 80 | 84.30 87 | 53.68 106 | 85.58 115 | 84.36 143 | 56.82 247 | 65.78 142 | 90.56 78 | 40.70 179 | 90.90 88 | 69.18 114 | 80.88 75 | 89.71 111 |
|
| MSDG | | | 59.44 292 | 55.14 312 | 72.32 231 | 74.69 287 | 50.71 174 | 74.39 310 | 73.58 324 | 44.44 350 | 43.40 356 | 77.52 275 | 19.45 364 | 90.87 89 | 31.31 357 | 57.49 299 | 75.38 344 |
|
| GST-MVS | | | 74.87 85 | 73.90 87 | 77.77 86 | 83.30 110 | 53.45 112 | 85.75 109 | 85.29 114 | 59.22 196 | 66.50 133 | 89.85 101 | 40.94 174 | 90.76 90 | 70.94 102 | 83.35 58 | 89.10 129 |
|
| SD-MVS | | | 76.18 60 | 74.85 74 | 80.18 32 | 85.39 67 | 56.90 28 | 85.75 109 | 82.45 182 | 56.79 249 | 74.48 51 | 91.81 52 | 43.72 137 | 90.75 91 | 74.61 78 | 78.65 101 | 92.91 22 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| GG-mvs-BLEND | | | | | 77.77 86 | 86.68 48 | 50.61 176 | 68.67 347 | 88.45 51 | | 68.73 114 | 87.45 151 | 59.15 11 | 90.67 92 | 54.83 233 | 87.67 17 | 92.03 45 |
|
| ETV-MVS | | | 77.17 46 | 76.74 47 | 78.48 70 | 81.80 151 | 54.55 89 | 86.13 100 | 85.33 111 | 68.20 38 | 73.10 64 | 90.52 81 | 45.23 113 | 90.66 93 | 79.37 40 | 80.95 74 | 90.22 97 |
|
| MSLP-MVS++ | | | 74.21 91 | 72.25 108 | 80.11 36 | 81.45 169 | 56.47 38 | 86.32 96 | 79.65 236 | 58.19 217 | 66.36 134 | 92.29 40 | 36.11 244 | 90.66 93 | 67.39 124 | 82.49 63 | 93.18 17 |
|
| CDPH-MVS | | | 76.05 64 | 75.19 68 | 78.62 66 | 86.51 50 | 54.98 75 | 87.32 73 | 84.59 138 | 58.62 212 | 70.75 97 | 90.85 74 | 43.10 149 | 90.63 95 | 70.50 104 | 84.51 53 | 90.24 96 |
|
| CLD-MVS | | | 75.60 73 | 75.39 65 | 76.24 122 | 80.69 188 | 52.40 141 | 90.69 23 | 86.20 92 | 74.40 6 | 65.01 152 | 88.93 117 | 42.05 161 | 90.58 96 | 76.57 63 | 73.96 155 | 85.73 205 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| baseline | | | 76.86 52 | 76.24 54 | 78.71 62 | 80.47 193 | 54.20 98 | 83.90 173 | 84.88 129 | 71.38 19 | 71.51 86 | 89.15 115 | 50.51 62 | 90.55 97 | 75.71 67 | 78.65 101 | 91.39 66 |
|
| EI-MVSNet | | | 69.70 177 | 68.70 166 | 72.68 220 | 75.00 284 | 48.90 225 | 79.54 273 | 87.16 72 | 61.05 162 | 63.88 172 | 83.74 196 | 45.87 103 | 90.44 98 | 57.42 217 | 64.68 232 | 78.70 309 |
|
| MVSTER | | | 73.25 110 | 72.33 105 | 76.01 132 | 85.54 64 | 53.76 105 | 83.52 180 | 87.16 72 | 67.06 56 | 63.88 172 | 81.66 238 | 52.77 44 | 90.44 98 | 64.66 152 | 64.69 231 | 83.84 240 |
|
| DeepC-MVS_fast | | 67.50 3 | 78.00 36 | 77.63 35 | 79.13 49 | 88.52 27 | 55.12 69 | 89.95 28 | 85.98 97 | 68.31 36 | 71.33 89 | 92.75 32 | 45.52 109 | 90.37 100 | 71.15 101 | 85.14 46 | 91.91 49 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| casdiffmvs |  | | 77.36 44 | 76.85 46 | 78.88 56 | 80.40 195 | 54.66 87 | 87.06 82 | 85.88 98 | 72.11 13 | 71.57 85 | 88.63 127 | 50.89 60 | 90.35 101 | 76.00 65 | 79.11 98 | 91.63 57 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| tttt0517 | | | 68.33 202 | 66.29 212 | 74.46 174 | 78.08 236 | 49.06 217 | 80.88 255 | 89.08 30 | 54.40 280 | 54.75 290 | 80.77 246 | 51.31 53 | 90.33 102 | 49.35 271 | 58.01 291 | 83.99 233 |
|
| APD-MVS |  | | 76.15 61 | 75.68 58 | 77.54 92 | 88.52 27 | 53.44 113 | 87.26 78 | 85.03 125 | 53.79 282 | 74.91 46 | 91.68 56 | 43.80 133 | 90.31 103 | 74.36 80 | 81.82 69 | 88.87 134 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ACMH | | 53.70 16 | 59.78 290 | 55.94 308 | 71.28 254 | 76.59 259 | 48.35 243 | 80.15 268 | 76.11 302 | 49.74 312 | 41.91 362 | 73.45 326 | 16.50 380 | 90.31 103 | 31.42 356 | 57.63 298 | 75.17 347 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| BH-RMVSNet | | | 70.08 165 | 68.01 177 | 76.27 121 | 84.21 91 | 51.22 171 | 87.29 76 | 79.33 247 | 58.96 206 | 63.63 176 | 86.77 161 | 33.29 275 | 90.30 105 | 44.63 302 | 73.96 155 | 87.30 175 |
|
| region2R | | | 73.75 101 | 72.55 101 | 77.33 96 | 83.90 97 | 52.98 130 | 85.54 119 | 84.09 150 | 56.83 246 | 65.10 149 | 90.45 82 | 37.34 220 | 90.24 106 | 68.89 116 | 80.83 77 | 88.77 138 |
|
| lupinMVS | | | 78.38 29 | 78.11 29 | 79.19 45 | 83.02 120 | 55.24 63 | 91.57 15 | 84.82 130 | 69.12 34 | 76.67 39 | 92.02 46 | 44.82 123 | 90.23 107 | 80.83 36 | 80.09 86 | 92.08 41 |
|
| ACMMPR | | | 73.76 100 | 72.61 99 | 77.24 101 | 83.92 96 | 52.96 131 | 85.58 115 | 84.29 144 | 56.82 247 | 65.12 148 | 90.45 82 | 37.24 223 | 90.18 108 | 69.18 114 | 80.84 76 | 88.58 142 |
|
| EPNet | | | 78.36 30 | 78.49 25 | 77.97 82 | 85.49 65 | 52.04 149 | 89.36 39 | 84.07 151 | 73.22 7 | 77.03 38 | 91.72 54 | 49.32 74 | 90.17 109 | 73.46 90 | 82.77 60 | 91.69 55 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| patch_mono-2 | | | 80.84 12 | 81.59 10 | 78.62 66 | 90.34 9 | 53.77 104 | 88.08 54 | 88.36 52 | 76.17 2 | 79.40 27 | 91.09 64 | 55.43 27 | 90.09 110 | 85.01 12 | 80.40 82 | 91.99 48 |
|
| MVP-Stereo | | | 70.97 151 | 70.44 137 | 72.59 222 | 76.03 271 | 51.36 166 | 85.02 137 | 86.99 75 | 60.31 176 | 56.53 275 | 78.92 263 | 40.11 186 | 90.00 111 | 60.00 188 | 90.01 7 | 76.41 338 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| jason | | | 77.01 48 | 76.45 50 | 78.69 63 | 79.69 203 | 54.74 80 | 90.56 24 | 83.99 154 | 68.26 37 | 74.10 54 | 90.91 72 | 42.14 159 | 89.99 112 | 79.30 41 | 79.12 97 | 91.36 68 |
| jason: jason. |
| sasdasda | | | 78.17 33 | 77.86 32 | 79.12 50 | 84.30 87 | 54.22 94 | 87.71 62 | 84.57 139 | 67.70 49 | 77.70 34 | 92.11 44 | 50.90 57 | 89.95 113 | 78.18 54 | 77.54 111 | 93.20 15 |
|
| canonicalmvs | | | 78.17 33 | 77.86 32 | 79.12 50 | 84.30 87 | 54.22 94 | 87.71 62 | 84.57 139 | 67.70 49 | 77.70 34 | 92.11 44 | 50.90 57 | 89.95 113 | 78.18 54 | 77.54 111 | 93.20 15 |
|
| EG-PatchMatch MVS | | | 62.40 278 | 59.59 282 | 70.81 263 | 73.29 303 | 49.05 218 | 85.81 105 | 84.78 132 | 51.85 299 | 44.19 351 | 73.48 325 | 15.52 383 | 89.85 115 | 40.16 318 | 67.24 210 | 73.54 361 |
|
| XXY-MVS | | | 70.18 162 | 69.28 162 | 72.89 217 | 77.64 242 | 42.88 326 | 85.06 134 | 87.50 69 | 62.58 133 | 62.66 188 | 82.34 229 | 43.64 139 | 89.83 116 | 58.42 199 | 63.70 240 | 85.96 201 |
|
| XVS | | | 72.92 113 | 71.62 119 | 76.81 113 | 83.41 105 | 52.48 138 | 84.88 143 | 83.20 170 | 58.03 219 | 63.91 170 | 89.63 105 | 35.50 251 | 89.78 117 | 65.50 139 | 80.50 80 | 88.16 152 |
|
| X-MVStestdata | | | 65.85 251 | 62.20 259 | 76.81 113 | 83.41 105 | 52.48 138 | 84.88 143 | 83.20 170 | 58.03 219 | 63.91 170 | 4.82 422 | 35.50 251 | 89.78 117 | 65.50 139 | 80.50 80 | 88.16 152 |
|
| PGM-MVS | | | 72.60 119 | 71.20 128 | 76.80 115 | 82.95 123 | 52.82 134 | 83.07 200 | 82.14 184 | 56.51 255 | 63.18 180 | 89.81 102 | 35.68 250 | 89.76 119 | 67.30 125 | 80.19 85 | 87.83 161 |
|
| test_fmvsm_n_1920 | | | 75.56 74 | 75.54 62 | 75.61 141 | 74.60 290 | 49.51 210 | 81.82 231 | 74.08 318 | 66.52 64 | 80.40 22 | 93.46 17 | 46.95 90 | 89.72 120 | 86.69 7 | 75.30 139 | 87.61 167 |
|
| test_prior | | | | | 78.39 74 | 86.35 53 | 54.91 77 | | 85.45 106 | | | | | 89.70 121 | | | 90.55 87 |
|
| 原ACMM1 | | | | | 76.13 128 | 84.89 77 | 54.59 88 | | 85.26 116 | 51.98 296 | 66.70 127 | 87.07 158 | 40.15 185 | 89.70 121 | 51.23 260 | 85.06 48 | 84.10 229 |
|
| TR-MVS | | | 69.71 174 | 67.85 183 | 75.27 160 | 82.94 124 | 48.48 239 | 87.40 72 | 80.86 211 | 57.15 242 | 64.61 158 | 87.08 157 | 32.67 280 | 89.64 123 | 46.38 293 | 71.55 178 | 87.68 166 |
|
| 1314 | | | 71.11 147 | 69.41 157 | 76.22 123 | 79.32 209 | 50.49 180 | 80.23 266 | 85.14 123 | 59.44 189 | 58.93 232 | 88.89 119 | 33.83 271 | 89.60 124 | 61.49 171 | 77.42 113 | 88.57 143 |
|
| SDMVSNet | | | 71.89 133 | 70.62 135 | 75.70 139 | 81.70 155 | 51.61 159 | 73.89 312 | 88.72 42 | 66.58 61 | 61.64 198 | 82.38 225 | 37.63 211 | 89.48 125 | 77.44 59 | 65.60 225 | 86.01 197 |
|
| baseline1 | | | 72.51 122 | 72.12 113 | 73.69 201 | 85.05 73 | 44.46 304 | 83.51 184 | 86.13 95 | 71.61 16 | 64.64 156 | 87.97 142 | 55.00 33 | 89.48 125 | 59.07 191 | 56.05 310 | 87.13 177 |
|
| reproduce-ours | | | 71.77 138 | 70.43 138 | 75.78 136 | 81.96 146 | 49.54 208 | 82.54 213 | 81.01 208 | 48.77 319 | 69.21 108 | 90.96 69 | 37.13 226 | 89.40 127 | 66.28 133 | 76.01 129 | 88.39 149 |
|
| our_new_method | | | 71.77 138 | 70.43 138 | 75.78 136 | 81.96 146 | 49.54 208 | 82.54 213 | 81.01 208 | 48.77 319 | 69.21 108 | 90.96 69 | 37.13 226 | 89.40 127 | 66.28 133 | 76.01 129 | 88.39 149 |
|
| PAPR | | | 75.20 81 | 74.13 82 | 78.41 73 | 88.31 32 | 55.10 71 | 84.31 160 | 85.66 102 | 63.76 110 | 67.55 122 | 90.73 77 | 43.48 142 | 89.40 127 | 66.36 132 | 77.03 115 | 90.73 85 |
|
| HY-MVS | | 67.03 5 | 73.90 97 | 73.14 95 | 76.18 127 | 84.70 79 | 47.36 270 | 75.56 299 | 86.36 89 | 66.27 68 | 70.66 100 | 83.91 193 | 51.05 55 | 89.31 130 | 67.10 127 | 72.61 168 | 91.88 51 |
|
| fmvsm_s_conf0.5_n | | | 74.48 86 | 74.12 83 | 75.56 143 | 76.96 256 | 47.85 263 | 85.32 123 | 69.80 354 | 64.16 101 | 78.74 28 | 93.48 16 | 45.51 110 | 89.29 131 | 86.48 8 | 66.62 215 | 89.55 115 |
|
| ETVMVS | | | 75.80 72 | 75.44 64 | 76.89 112 | 86.23 54 | 50.38 185 | 85.55 118 | 91.42 7 | 71.30 20 | 68.80 113 | 87.94 143 | 56.42 23 | 89.24 132 | 56.54 222 | 74.75 151 | 91.07 77 |
|
| PAPM_NR | | | 71.80 136 | 69.98 150 | 77.26 100 | 81.54 165 | 53.34 118 | 78.60 283 | 85.25 117 | 53.46 285 | 60.53 208 | 88.66 123 | 45.69 107 | 89.24 132 | 56.49 223 | 79.62 96 | 89.19 126 |
|
| fmvsm_s_conf0.1_n | | | 73.80 99 | 73.26 92 | 75.43 149 | 73.28 304 | 47.80 264 | 84.57 155 | 69.43 356 | 63.34 120 | 78.40 31 | 93.29 22 | 44.73 126 | 89.22 134 | 85.99 9 | 66.28 222 | 89.26 122 |
|
| ECVR-MVS |  | | 71.81 135 | 71.00 130 | 74.26 182 | 80.12 198 | 43.49 316 | 84.69 149 | 82.16 183 | 64.02 103 | 64.64 156 | 87.43 152 | 35.04 257 | 89.21 135 | 61.24 173 | 79.66 94 | 90.08 103 |
|
| EPP-MVSNet | | | 71.14 145 | 70.07 149 | 74.33 179 | 79.18 213 | 46.52 280 | 83.81 176 | 86.49 85 | 56.32 258 | 57.95 249 | 84.90 185 | 54.23 37 | 89.14 136 | 58.14 204 | 69.65 195 | 87.33 173 |
|
| UBG | | | 78.86 24 | 78.86 22 | 78.86 57 | 87.80 40 | 55.43 55 | 87.67 64 | 91.21 10 | 72.83 9 | 72.10 79 | 88.40 128 | 58.53 16 | 89.08 137 | 73.21 94 | 77.98 107 | 92.08 41 |
|
| CostFormer | | | 73.89 98 | 72.30 107 | 78.66 65 | 82.36 141 | 56.58 33 | 75.56 299 | 85.30 113 | 66.06 74 | 70.50 104 | 76.88 289 | 57.02 20 | 89.06 138 | 68.27 121 | 68.74 200 | 90.33 93 |
|
| alignmvs | | | 78.08 35 | 77.98 30 | 78.39 74 | 83.53 103 | 53.22 122 | 89.77 32 | 85.45 106 | 66.11 71 | 76.59 41 | 91.99 48 | 54.07 39 | 89.05 139 | 77.34 60 | 77.00 116 | 92.89 23 |
|
| Fast-Effi-MVS+ | | | 72.73 117 | 71.15 129 | 77.48 93 | 82.75 132 | 54.76 79 | 86.77 90 | 80.64 214 | 63.05 126 | 65.93 139 | 84.01 191 | 44.42 128 | 89.03 140 | 56.45 226 | 76.36 126 | 88.64 140 |
|
| MTAPA | | | 72.73 117 | 71.22 127 | 77.27 99 | 81.54 165 | 53.57 108 | 67.06 354 | 81.31 201 | 59.41 190 | 68.39 116 | 90.96 69 | 36.07 246 | 89.01 141 | 73.80 88 | 82.45 64 | 89.23 124 |
|
| gg-mvs-nofinetune | | | 67.43 221 | 64.53 246 | 76.13 128 | 85.95 55 | 47.79 265 | 64.38 361 | 88.28 53 | 39.34 366 | 66.62 129 | 41.27 403 | 58.69 14 | 89.00 142 | 49.64 269 | 86.62 31 | 91.59 58 |
|
| MVS_Test | | | 75.85 68 | 74.93 73 | 78.62 66 | 84.08 92 | 55.20 67 | 83.99 170 | 85.17 120 | 68.07 41 | 73.38 61 | 82.76 212 | 50.44 63 | 89.00 142 | 65.90 137 | 80.61 78 | 91.64 56 |
|
| MP-MVS-pluss | | | 75.54 75 | 75.03 70 | 77.04 104 | 81.37 171 | 52.65 137 | 84.34 159 | 84.46 141 | 61.16 158 | 69.14 110 | 91.76 53 | 39.98 189 | 88.99 144 | 78.19 52 | 84.89 49 | 89.48 119 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| v2v482 | | | 69.55 180 | 67.64 186 | 75.26 161 | 72.32 318 | 53.83 102 | 84.93 142 | 81.94 188 | 65.37 86 | 60.80 205 | 79.25 259 | 41.62 167 | 88.98 145 | 63.03 159 | 59.51 272 | 82.98 256 |
|
| Anonymous20231211 | | | 66.08 249 | 63.67 252 | 73.31 208 | 83.07 118 | 48.75 230 | 86.01 104 | 84.67 137 | 45.27 343 | 56.54 274 | 76.67 292 | 28.06 311 | 88.95 146 | 52.78 250 | 59.95 267 | 82.23 263 |
|
| v1144 | | | 68.81 192 | 66.82 200 | 74.80 170 | 72.34 317 | 53.46 110 | 84.68 150 | 81.77 195 | 64.25 99 | 60.28 209 | 77.91 270 | 40.23 183 | 88.95 146 | 60.37 185 | 59.52 271 | 81.97 265 |
|
| AdaColmap |  | | 67.86 209 | 65.48 232 | 75.00 166 | 88.15 36 | 54.99 74 | 86.10 101 | 76.63 298 | 49.30 314 | 57.80 252 | 86.65 165 | 29.39 305 | 88.94 148 | 45.10 299 | 70.21 190 | 81.06 286 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 104 | 73.15 93 | 75.29 157 | 75.45 279 | 48.05 256 | 83.88 174 | 68.84 359 | 63.43 119 | 78.60 29 | 93.37 20 | 45.32 111 | 88.92 149 | 85.39 11 | 64.04 235 | 88.89 133 |
|
| reproduce_monomvs | | | 69.71 174 | 68.52 168 | 73.29 210 | 86.43 52 | 48.21 249 | 83.91 172 | 86.17 94 | 68.02 43 | 54.91 287 | 77.46 277 | 42.96 150 | 88.86 150 | 68.44 118 | 48.38 347 | 82.80 259 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 116 | 72.05 115 | 75.12 163 | 70.95 333 | 47.97 259 | 82.72 206 | 68.43 361 | 62.52 135 | 78.17 32 | 93.08 28 | 44.21 129 | 88.86 150 | 84.82 13 | 63.54 241 | 88.54 144 |
|
| PS-MVSNAJss | | | 68.78 194 | 67.17 197 | 73.62 204 | 73.01 308 | 48.33 246 | 84.95 141 | 84.81 131 | 59.30 195 | 58.91 234 | 79.84 254 | 37.77 206 | 88.86 150 | 62.83 160 | 63.12 251 | 83.67 243 |
|
| MP-MVS |  | | 74.99 84 | 74.33 81 | 76.95 110 | 82.89 127 | 53.05 128 | 85.63 114 | 83.50 163 | 57.86 225 | 67.25 124 | 90.24 89 | 43.38 144 | 88.85 153 | 76.03 64 | 82.23 65 | 88.96 131 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| test2506 | | | 72.91 114 | 72.43 104 | 74.32 180 | 80.12 198 | 44.18 311 | 83.19 196 | 84.77 133 | 64.02 103 | 65.97 138 | 87.43 152 | 47.67 84 | 88.72 154 | 59.08 190 | 79.66 94 | 90.08 103 |
|
| ab-mvs | | | 70.65 157 | 69.11 163 | 75.29 157 | 80.87 182 | 46.23 288 | 73.48 316 | 85.24 118 | 59.99 179 | 66.65 128 | 80.94 244 | 43.13 148 | 88.69 155 | 63.58 156 | 68.07 203 | 90.95 80 |
|
| v1192 | | | 67.96 208 | 65.74 227 | 74.63 171 | 71.79 321 | 53.43 115 | 84.06 168 | 80.99 210 | 63.19 124 | 59.56 219 | 77.46 277 | 37.50 217 | 88.65 156 | 58.20 203 | 58.93 278 | 81.79 268 |
|
| HQP-MVS | | | 72.34 124 | 71.44 123 | 75.03 165 | 79.02 217 | 51.56 161 | 88.00 55 | 83.68 158 | 65.45 81 | 64.48 161 | 85.13 179 | 37.35 218 | 88.62 157 | 66.70 128 | 73.12 161 | 84.91 219 |
|
| HQP4-MVS | | | | | | | | | | | 64.47 164 | | | 88.61 158 | | | 84.91 219 |
|
| reproduce_model | | | 71.07 148 | 69.67 154 | 75.28 159 | 81.51 168 | 48.82 228 | 81.73 234 | 80.57 217 | 47.81 325 | 68.26 117 | 90.78 76 | 36.49 241 | 88.60 159 | 65.12 149 | 74.76 150 | 88.42 148 |
|
| TEST9 | | | | | | 85.68 59 | 55.42 56 | 87.59 67 | 84.00 152 | 57.72 228 | 72.99 65 | 90.98 67 | 44.87 121 | 88.58 160 | | | |
|
| train_agg | | | 76.91 49 | 76.40 51 | 78.45 72 | 85.68 59 | 55.42 56 | 87.59 67 | 84.00 152 | 57.84 226 | 72.99 65 | 90.98 67 | 44.99 117 | 88.58 160 | 78.19 52 | 85.32 44 | 91.34 70 |
|
| ACMMP |  | | 70.81 155 | 69.29 161 | 75.39 151 | 81.52 167 | 51.92 153 | 83.43 187 | 83.03 173 | 56.67 252 | 58.80 237 | 88.91 118 | 31.92 289 | 88.58 160 | 65.89 138 | 73.39 159 | 85.67 206 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| DP-MVS | | | 59.24 294 | 56.12 306 | 68.63 293 | 88.24 34 | 50.35 188 | 82.51 215 | 64.43 371 | 41.10 363 | 46.70 345 | 78.77 264 | 24.75 337 | 88.57 163 | 22.26 389 | 56.29 307 | 66.96 381 |
|
| CP-MVS | | | 72.59 121 | 71.46 122 | 76.00 133 | 82.93 125 | 52.32 144 | 86.93 86 | 82.48 181 | 55.15 269 | 63.65 175 | 90.44 85 | 35.03 258 | 88.53 164 | 68.69 117 | 77.83 109 | 87.15 176 |
|
| tpm2 | | | 70.82 154 | 68.44 170 | 77.98 81 | 80.78 185 | 56.11 44 | 74.21 311 | 81.28 203 | 60.24 177 | 68.04 119 | 75.27 307 | 52.26 48 | 88.50 165 | 55.82 230 | 68.03 204 | 89.33 121 |
|
| OPM-MVS | | | 70.75 156 | 69.58 155 | 74.26 182 | 75.55 278 | 51.34 167 | 86.05 102 | 83.29 168 | 61.94 145 | 62.95 184 | 85.77 173 | 34.15 266 | 88.44 166 | 65.44 145 | 71.07 181 | 82.99 255 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| v8 | | | 67.25 226 | 64.99 242 | 74.04 187 | 72.89 311 | 53.31 120 | 82.37 219 | 80.11 224 | 61.54 152 | 54.29 296 | 76.02 303 | 42.89 151 | 88.41 167 | 58.43 197 | 56.36 303 | 80.39 295 |
|
| GA-MVS | | | 69.04 186 | 66.70 204 | 76.06 130 | 75.11 281 | 52.36 142 | 83.12 198 | 80.23 222 | 63.32 121 | 60.65 207 | 79.22 260 | 30.98 296 | 88.37 168 | 61.25 172 | 66.41 218 | 87.46 170 |
|
| HPM-MVS |  | | 72.60 119 | 71.50 121 | 75.89 134 | 82.02 144 | 51.42 165 | 80.70 258 | 83.05 172 | 56.12 259 | 64.03 168 | 89.53 106 | 37.55 214 | 88.37 168 | 70.48 105 | 80.04 88 | 87.88 160 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| test_fmvsmvis_n_1920 | | | 71.29 144 | 70.38 141 | 74.00 189 | 71.04 332 | 48.79 229 | 79.19 279 | 64.62 370 | 62.75 130 | 66.73 126 | 91.99 48 | 40.94 174 | 88.35 170 | 83.00 21 | 73.18 160 | 84.85 221 |
|
| test_8 | | | | | | 85.72 58 | 55.31 61 | 87.60 66 | 83.88 155 | 57.84 226 | 72.84 69 | 90.99 66 | 44.99 117 | 88.34 171 | | | |
|
| VPNet | | | 72.07 130 | 71.42 124 | 74.04 187 | 78.64 228 | 47.17 274 | 89.91 31 | 87.97 57 | 72.56 11 | 64.66 155 | 85.04 182 | 41.83 166 | 88.33 172 | 61.17 174 | 60.97 264 | 86.62 188 |
|
| thres200 | | | 68.71 195 | 67.27 196 | 73.02 212 | 84.73 78 | 46.76 277 | 85.03 136 | 87.73 63 | 62.34 139 | 59.87 212 | 83.45 202 | 43.15 146 | 88.32 173 | 31.25 358 | 67.91 206 | 83.98 235 |
|
| HQP_MVS | | | 70.96 152 | 69.91 151 | 74.12 185 | 77.95 238 | 49.57 203 | 85.76 107 | 82.59 179 | 63.60 114 | 62.15 193 | 83.28 206 | 36.04 247 | 88.30 174 | 65.46 142 | 72.34 170 | 84.49 223 |
|
| plane_prior5 | | | | | | | | | 82.59 179 | | | | | 88.30 174 | 65.46 142 | 72.34 170 | 84.49 223 |
|
| mPP-MVS | | | 71.79 137 | 70.38 141 | 76.04 131 | 82.65 136 | 52.06 148 | 84.45 156 | 81.78 194 | 55.59 264 | 62.05 195 | 89.68 104 | 33.48 273 | 88.28 176 | 65.45 144 | 78.24 106 | 87.77 163 |
|
| v10 | | | 66.61 241 | 64.20 250 | 73.83 196 | 72.59 314 | 53.37 116 | 81.88 228 | 79.91 230 | 61.11 160 | 54.09 298 | 75.60 305 | 40.06 187 | 88.26 177 | 56.47 224 | 56.10 309 | 79.86 301 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 295 | 56.00 307 | 68.83 288 | 71.13 331 | 44.30 307 | 83.64 179 | 75.02 311 | 46.42 336 | 46.48 347 | 73.03 328 | 18.69 368 | 88.14 178 | 27.74 373 | 61.80 260 | 74.05 357 |
|
| PVSNet_BlendedMVS | | | 73.42 107 | 73.30 91 | 73.76 198 | 85.91 56 | 51.83 155 | 86.18 99 | 84.24 148 | 65.40 84 | 69.09 111 | 80.86 245 | 46.70 94 | 88.13 179 | 75.43 70 | 65.92 224 | 81.33 281 |
|
| PVSNet_Blended | | | 76.53 56 | 76.54 49 | 76.50 118 | 85.91 56 | 51.83 155 | 88.89 45 | 84.24 148 | 67.82 46 | 69.09 111 | 89.33 112 | 46.70 94 | 88.13 179 | 75.43 70 | 81.48 73 | 89.55 115 |
|
| GeoE | | | 69.96 170 | 67.88 180 | 76.22 123 | 81.11 175 | 51.71 158 | 84.15 164 | 76.74 295 | 59.83 181 | 60.91 203 | 84.38 187 | 41.56 169 | 88.10 181 | 51.67 257 | 70.57 187 | 88.84 135 |
|
| agg_prior | | | | | | 85.64 62 | 54.92 76 | | 83.61 162 | | 72.53 74 | | | 88.10 181 | | | |
|
| TSAR-MVS + MP. | | | 78.31 31 | 78.26 26 | 78.48 70 | 81.33 172 | 56.31 42 | 81.59 240 | 86.41 87 | 69.61 31 | 81.72 16 | 88.16 136 | 55.09 31 | 88.04 183 | 74.12 83 | 86.31 34 | 91.09 76 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| v144192 | | | 67.86 209 | 65.76 226 | 74.16 184 | 71.68 323 | 53.09 126 | 84.14 165 | 80.83 212 | 62.85 129 | 59.21 228 | 77.28 281 | 39.30 193 | 88.00 184 | 58.67 195 | 57.88 295 | 81.40 278 |
|
| test1111 | | | 71.06 149 | 70.42 140 | 72.97 214 | 79.48 206 | 41.49 339 | 84.82 146 | 82.74 178 | 64.20 100 | 62.98 183 | 87.43 152 | 35.20 254 | 87.92 185 | 58.54 196 | 78.42 104 | 89.49 118 |
|
| v1921920 | | | 67.45 220 | 65.23 239 | 74.10 186 | 71.51 326 | 52.90 132 | 83.75 178 | 80.44 218 | 62.48 137 | 59.12 229 | 77.13 282 | 36.98 230 | 87.90 186 | 57.53 215 | 58.14 289 | 81.49 273 |
|
| v7n | | | 62.50 275 | 59.27 286 | 72.20 233 | 67.25 358 | 49.83 200 | 77.87 288 | 80.12 223 | 52.50 293 | 48.80 331 | 73.07 327 | 32.10 285 | 87.90 186 | 46.83 289 | 54.92 319 | 78.86 307 |
|
| test_fmvsmconf_n | | | 74.41 88 | 74.05 85 | 75.49 148 | 74.16 296 | 48.38 242 | 82.66 207 | 72.57 331 | 67.05 57 | 75.11 44 | 92.88 31 | 46.35 97 | 87.81 188 | 83.93 18 | 71.71 175 | 90.28 95 |
|
| v1240 | | | 66.99 234 | 64.68 244 | 73.93 191 | 71.38 329 | 52.66 136 | 83.39 191 | 79.98 226 | 61.97 144 | 58.44 246 | 77.11 283 | 35.25 253 | 87.81 188 | 56.46 225 | 58.15 287 | 81.33 281 |
|
| thres100view900 | | | 66.87 237 | 65.42 236 | 71.24 255 | 83.29 111 | 43.15 323 | 81.67 236 | 87.78 60 | 59.04 203 | 55.92 280 | 82.18 231 | 43.73 135 | 87.80 190 | 28.80 365 | 66.36 219 | 82.78 260 |
|
| tfpn200view9 | | | 67.57 217 | 66.13 216 | 71.89 247 | 84.05 93 | 45.07 299 | 83.40 189 | 87.71 65 | 60.79 169 | 57.79 253 | 82.76 212 | 43.53 140 | 87.80 190 | 28.80 365 | 66.36 219 | 82.78 260 |
|
| thres400 | | | 67.40 224 | 66.13 216 | 71.19 257 | 84.05 93 | 45.07 299 | 83.40 189 | 87.71 65 | 60.79 169 | 57.79 253 | 82.76 212 | 43.53 140 | 87.80 190 | 28.80 365 | 66.36 219 | 80.71 291 |
|
| test_fmvsmconf0.1_n | | | 73.69 103 | 73.15 93 | 75.34 152 | 70.71 334 | 48.26 247 | 82.15 221 | 71.83 336 | 66.75 60 | 74.47 52 | 92.59 36 | 44.89 120 | 87.78 193 | 83.59 19 | 71.35 179 | 89.97 106 |
|
| v148 | | | 68.24 205 | 66.35 210 | 73.88 193 | 71.76 322 | 51.47 164 | 84.23 162 | 81.90 192 | 63.69 112 | 58.94 231 | 76.44 294 | 43.72 137 | 87.78 193 | 60.63 178 | 55.86 313 | 82.39 262 |
|
| PMMVS | | | 72.98 112 | 72.05 115 | 75.78 136 | 83.57 101 | 48.60 233 | 84.08 166 | 82.85 177 | 61.62 150 | 68.24 118 | 90.33 87 | 28.35 308 | 87.78 193 | 72.71 95 | 76.69 121 | 90.95 80 |
|
| IS-MVSNet | | | 68.80 193 | 67.55 189 | 72.54 223 | 78.50 231 | 43.43 318 | 81.03 250 | 79.35 245 | 59.12 202 | 57.27 266 | 86.71 162 | 46.05 101 | 87.70 196 | 44.32 304 | 75.60 136 | 86.49 190 |
|
| test_fmvsmconf0.01_n | | | 71.97 132 | 70.95 131 | 75.04 164 | 66.21 359 | 47.87 262 | 80.35 263 | 70.08 351 | 65.85 78 | 72.69 70 | 91.68 56 | 39.99 188 | 87.67 197 | 82.03 28 | 69.66 194 | 89.58 114 |
|
| V42 | | | 67.66 214 | 65.60 231 | 73.86 194 | 70.69 336 | 53.63 107 | 81.50 243 | 78.61 261 | 63.85 108 | 59.49 222 | 77.49 276 | 37.98 203 | 87.65 198 | 62.33 162 | 58.43 282 | 80.29 296 |
|
| dmvs_re | | | 67.61 215 | 66.00 219 | 72.42 227 | 81.86 150 | 43.45 317 | 64.67 360 | 80.00 225 | 69.56 32 | 60.07 211 | 85.00 183 | 34.71 260 | 87.63 199 | 51.48 258 | 66.68 213 | 86.17 196 |
|
| sd_testset | | | 67.79 212 | 65.95 221 | 73.32 207 | 81.70 155 | 46.33 285 | 68.99 345 | 80.30 221 | 66.58 61 | 61.64 198 | 82.38 225 | 30.45 299 | 87.63 199 | 55.86 228 | 65.60 225 | 86.01 197 |
|
| ET-MVSNet_ETH3D | | | 75.23 80 | 74.08 84 | 78.67 64 | 84.52 83 | 55.59 51 | 88.92 44 | 89.21 28 | 68.06 42 | 53.13 305 | 90.22 91 | 49.71 71 | 87.62 201 | 72.12 97 | 70.82 184 | 92.82 25 |
|
| TransMVSNet (Re) | | | 62.82 271 | 60.76 273 | 69.02 285 | 73.98 298 | 41.61 337 | 86.36 95 | 79.30 248 | 56.90 244 | 52.53 308 | 76.44 294 | 41.85 165 | 87.60 202 | 38.83 321 | 40.61 374 | 77.86 322 |
|
| APD-MVS_3200maxsize | | | 69.62 179 | 68.23 175 | 73.80 197 | 81.58 163 | 48.22 248 | 81.91 227 | 79.50 239 | 48.21 323 | 64.24 166 | 89.75 103 | 31.91 290 | 87.55 203 | 63.08 158 | 73.85 157 | 85.64 208 |
|
| WB-MVSnew | | | 69.36 183 | 68.24 174 | 72.72 219 | 79.26 211 | 49.40 212 | 85.72 112 | 88.85 37 | 61.33 155 | 64.59 159 | 82.38 225 | 34.57 262 | 87.53 204 | 46.82 290 | 70.63 185 | 81.22 285 |
|
| Baseline_NR-MVSNet | | | 65.49 253 | 64.27 249 | 69.13 284 | 74.37 294 | 41.65 336 | 83.39 191 | 78.85 252 | 59.56 186 | 59.62 218 | 76.88 289 | 40.75 176 | 87.44 205 | 49.99 265 | 55.05 318 | 78.28 318 |
|
| VPA-MVSNet | | | 71.12 146 | 70.66 134 | 72.49 225 | 78.75 223 | 44.43 306 | 87.64 65 | 90.02 19 | 63.97 106 | 65.02 151 | 81.58 240 | 42.14 159 | 87.42 206 | 63.42 157 | 63.38 245 | 85.63 209 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 67 | 76.07 56 | 75.31 154 | 76.08 268 | 48.34 244 | 85.24 125 | 70.62 347 | 63.13 125 | 81.45 18 | 93.62 14 | 49.98 68 | 87.40 207 | 87.76 6 | 76.77 120 | 90.20 99 |
|
| PVSNet_Blended_VisFu | | | 73.40 108 | 72.44 103 | 76.30 120 | 81.32 173 | 54.70 83 | 85.81 105 | 78.82 254 | 63.70 111 | 64.53 160 | 85.38 178 | 47.11 89 | 87.38 208 | 67.75 123 | 77.55 110 | 86.81 186 |
|
| BH-w/o | | | 70.02 167 | 68.51 169 | 74.56 172 | 82.77 131 | 50.39 184 | 86.60 93 | 78.14 270 | 59.77 182 | 59.65 216 | 85.57 176 | 39.27 194 | 87.30 209 | 49.86 267 | 74.94 149 | 85.99 199 |
|
| PCF-MVS | | 61.03 10 | 70.10 164 | 68.40 171 | 75.22 162 | 77.15 254 | 51.99 150 | 79.30 278 | 82.12 185 | 56.47 256 | 61.88 196 | 86.48 168 | 43.98 130 | 87.24 210 | 55.37 231 | 72.79 166 | 86.43 192 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| fmvsm_l_conf0.5_n | | | 75.95 65 | 76.16 55 | 75.31 154 | 76.01 272 | 48.44 241 | 84.98 138 | 71.08 344 | 63.50 117 | 81.70 17 | 93.52 15 | 50.00 66 | 87.18 211 | 87.80 5 | 76.87 119 | 90.32 94 |
|
| PAPM | | | 76.76 54 | 76.07 56 | 78.81 58 | 80.20 196 | 59.11 7 | 86.86 88 | 86.23 91 | 68.60 35 | 70.18 105 | 88.84 120 | 51.57 51 | 87.16 212 | 65.48 141 | 86.68 30 | 90.15 101 |
|
| SR-MVS | | | 70.92 153 | 69.73 153 | 74.50 173 | 83.38 109 | 50.48 181 | 84.27 161 | 79.35 245 | 48.96 317 | 66.57 132 | 90.45 82 | 33.65 272 | 87.11 213 | 66.42 130 | 74.56 152 | 85.91 202 |
|
| BH-untuned | | | 68.28 203 | 66.40 209 | 73.91 192 | 81.62 160 | 50.01 195 | 85.56 117 | 77.39 282 | 57.63 231 | 57.47 263 | 83.69 198 | 36.36 242 | 87.08 214 | 44.81 300 | 73.08 164 | 84.65 222 |
|
| EPMVS | | | 68.45 199 | 65.44 235 | 77.47 94 | 84.91 76 | 56.17 43 | 71.89 333 | 81.91 191 | 61.72 148 | 60.85 204 | 72.49 333 | 36.21 243 | 87.06 215 | 47.32 285 | 71.62 176 | 89.17 127 |
|
| LPG-MVS_test | | | 66.44 244 | 64.58 245 | 72.02 237 | 74.42 292 | 48.60 233 | 83.07 200 | 80.64 214 | 54.69 276 | 53.75 301 | 83.83 194 | 25.73 329 | 86.98 216 | 60.33 186 | 64.71 229 | 80.48 293 |
|
| LGP-MVS_train | | | | | 72.02 237 | 74.42 292 | 48.60 233 | | 80.64 214 | 54.69 276 | 53.75 301 | 83.83 194 | 25.73 329 | 86.98 216 | 60.33 186 | 64.71 229 | 80.48 293 |
|
| HyFIR lowres test | | | 69.94 171 | 67.58 187 | 77.04 104 | 77.11 255 | 57.29 22 | 81.49 245 | 79.11 250 | 58.27 216 | 58.86 235 | 80.41 248 | 42.33 155 | 86.96 218 | 61.91 167 | 68.68 201 | 86.87 180 |
|
| AUN-MVS | | | 68.20 206 | 66.35 210 | 73.76 198 | 76.37 260 | 47.45 268 | 79.52 275 | 79.52 238 | 60.98 164 | 62.34 189 | 86.02 170 | 36.59 240 | 86.94 219 | 62.32 163 | 53.47 333 | 86.89 179 |
|
| hse-mvs2 | | | 71.44 143 | 70.68 133 | 73.73 200 | 76.34 261 | 47.44 269 | 79.45 276 | 79.47 240 | 68.08 39 | 71.97 80 | 86.01 172 | 42.50 153 | 86.93 220 | 78.82 45 | 53.46 334 | 86.83 185 |
|
| thres600view7 | | | 66.46 243 | 65.12 240 | 70.47 266 | 83.41 105 | 43.80 314 | 82.15 221 | 87.78 60 | 59.37 191 | 56.02 279 | 82.21 230 | 43.73 135 | 86.90 221 | 26.51 377 | 64.94 228 | 80.71 291 |
|
| tfpnnormal | | | 61.47 283 | 59.09 287 | 68.62 294 | 76.29 265 | 41.69 335 | 81.14 249 | 85.16 121 | 54.48 278 | 51.32 316 | 73.63 323 | 32.32 283 | 86.89 222 | 21.78 391 | 55.71 315 | 77.29 328 |
|
| FMVSNet3 | | | 68.84 190 | 67.40 193 | 73.19 211 | 85.05 73 | 48.53 236 | 85.71 113 | 85.36 109 | 60.90 168 | 57.58 258 | 79.15 261 | 42.16 158 | 86.77 223 | 47.25 286 | 63.40 242 | 84.27 227 |
|
| pm-mvs1 | | | 64.12 258 | 62.56 256 | 68.78 290 | 71.68 323 | 38.87 351 | 82.89 204 | 81.57 196 | 55.54 266 | 53.89 300 | 77.82 272 | 37.73 209 | 86.74 224 | 48.46 279 | 53.49 332 | 80.72 290 |
|
| tpm cat1 | | | 66.28 245 | 62.78 255 | 76.77 117 | 81.40 170 | 57.14 24 | 70.03 340 | 77.19 285 | 53.00 289 | 58.76 238 | 70.73 349 | 46.17 98 | 86.73 225 | 43.27 308 | 64.46 233 | 86.44 191 |
|
| FMVSNet2 | | | 67.57 217 | 65.79 225 | 72.90 215 | 82.71 133 | 47.97 259 | 85.15 129 | 84.93 127 | 58.55 213 | 56.71 272 | 78.26 268 | 36.72 237 | 86.67 226 | 46.15 295 | 62.94 253 | 84.07 230 |
|
| xiu_mvs_v1_base_debu | | | 71.60 140 | 70.29 144 | 75.55 144 | 77.26 250 | 53.15 123 | 85.34 120 | 79.37 241 | 55.83 261 | 72.54 71 | 90.19 92 | 22.38 351 | 86.66 227 | 73.28 91 | 76.39 123 | 86.85 182 |
|
| xiu_mvs_v1_base | | | 71.60 140 | 70.29 144 | 75.55 144 | 77.26 250 | 53.15 123 | 85.34 120 | 79.37 241 | 55.83 261 | 72.54 71 | 90.19 92 | 22.38 351 | 86.66 227 | 73.28 91 | 76.39 123 | 86.85 182 |
|
| xiu_mvs_v1_base_debi | | | 71.60 140 | 70.29 144 | 75.55 144 | 77.26 250 | 53.15 123 | 85.34 120 | 79.37 241 | 55.83 261 | 72.54 71 | 90.19 92 | 22.38 351 | 86.66 227 | 73.28 91 | 76.39 123 | 86.85 182 |
|
| nrg030 | | | 72.27 128 | 71.56 120 | 74.42 176 | 75.93 273 | 50.60 177 | 86.97 84 | 83.21 169 | 62.75 130 | 67.15 125 | 84.38 187 | 50.07 65 | 86.66 227 | 71.19 100 | 62.37 258 | 85.99 199 |
|
| tpmvs | | | 62.45 277 | 59.42 284 | 71.53 252 | 83.93 95 | 54.32 92 | 70.03 340 | 77.61 278 | 51.91 297 | 53.48 304 | 68.29 359 | 37.91 204 | 86.66 227 | 33.36 348 | 58.27 285 | 73.62 360 |
|
| UA-Net | | | 67.32 225 | 66.23 214 | 70.59 265 | 78.85 221 | 41.23 342 | 73.60 314 | 75.45 308 | 61.54 152 | 66.61 130 | 84.53 186 | 38.73 199 | 86.57 232 | 42.48 314 | 74.24 153 | 83.98 235 |
|
| WBMVS | | | 73.93 96 | 73.39 89 | 75.55 144 | 87.82 39 | 55.21 65 | 89.37 37 | 87.29 70 | 67.27 53 | 63.70 174 | 80.30 249 | 60.32 6 | 86.47 233 | 61.58 170 | 62.85 254 | 84.97 217 |
|
| test_0402 | | | 56.45 318 | 53.03 322 | 66.69 312 | 76.78 258 | 50.31 190 | 81.76 232 | 69.61 355 | 42.79 359 | 43.88 352 | 72.13 339 | 22.82 349 | 86.46 234 | 16.57 403 | 50.94 341 | 63.31 390 |
|
| cl____ | | | 67.43 221 | 65.93 222 | 71.95 243 | 76.33 262 | 48.02 257 | 82.58 209 | 79.12 249 | 61.30 157 | 56.72 271 | 76.92 287 | 46.12 99 | 86.44 235 | 57.98 206 | 56.31 305 | 81.38 280 |
|
| DIV-MVS_self_test | | | 67.43 221 | 65.93 222 | 71.94 244 | 76.33 262 | 48.01 258 | 82.57 210 | 79.11 250 | 61.31 156 | 56.73 270 | 76.92 287 | 46.09 100 | 86.43 236 | 57.98 206 | 56.31 305 | 81.39 279 |
|
| tt0805 | | | 63.39 265 | 61.31 268 | 69.64 279 | 69.36 343 | 38.87 351 | 78.00 286 | 85.48 103 | 48.82 318 | 55.66 284 | 81.66 238 | 24.38 339 | 86.37 237 | 49.04 274 | 59.36 275 | 83.68 242 |
|
| MonoMVSNet | | | 66.80 239 | 64.41 247 | 73.96 190 | 76.21 266 | 48.07 255 | 76.56 296 | 78.26 268 | 64.34 97 | 54.32 295 | 74.02 316 | 37.21 224 | 86.36 238 | 64.85 151 | 53.96 327 | 87.45 171 |
|
| GBi-Net | | | 67.09 231 | 65.47 233 | 71.96 240 | 82.71 133 | 46.36 282 | 83.52 180 | 83.31 165 | 58.55 213 | 57.58 258 | 76.23 298 | 36.72 237 | 86.20 239 | 47.25 286 | 63.40 242 | 83.32 246 |
|
| test1 | | | 67.09 231 | 65.47 233 | 71.96 240 | 82.71 133 | 46.36 282 | 83.52 180 | 83.31 165 | 58.55 213 | 57.58 258 | 76.23 298 | 36.72 237 | 86.20 239 | 47.25 286 | 63.40 242 | 83.32 246 |
|
| FMVSNet1 | | | 64.57 254 | 62.11 260 | 71.96 240 | 77.32 248 | 46.36 282 | 83.52 180 | 83.31 165 | 52.43 294 | 54.42 293 | 76.23 298 | 27.80 314 | 86.20 239 | 42.59 313 | 61.34 263 | 83.32 246 |
|
| MDTV_nov1_ep13 | | | | 61.56 264 | | 81.68 157 | 55.12 69 | 72.41 325 | 78.18 269 | 59.19 197 | 58.85 236 | 69.29 355 | 34.69 261 | 86.16 242 | 36.76 332 | 62.96 252 | |
|
| MVSFormer | | | 73.53 106 | 72.19 110 | 77.57 91 | 83.02 120 | 55.24 63 | 81.63 237 | 81.44 199 | 50.28 307 | 76.67 39 | 90.91 72 | 44.82 123 | 86.11 243 | 60.83 176 | 80.09 86 | 91.36 68 |
|
| test_djsdf | | | 63.84 260 | 61.56 264 | 70.70 264 | 68.78 347 | 44.69 303 | 81.63 237 | 81.44 199 | 50.28 307 | 52.27 311 | 76.26 297 | 26.72 321 | 86.11 243 | 60.83 176 | 55.84 314 | 81.29 284 |
|
| pmmvs6 | | | 59.64 291 | 57.15 298 | 67.09 306 | 66.01 360 | 36.86 361 | 80.50 259 | 78.64 259 | 45.05 345 | 49.05 329 | 73.94 317 | 27.28 317 | 86.10 245 | 43.96 306 | 49.94 344 | 78.31 317 |
|
| ACMP | | 61.11 9 | 66.24 247 | 64.33 248 | 72.00 239 | 74.89 286 | 49.12 216 | 83.18 197 | 79.83 231 | 55.41 267 | 52.29 310 | 82.68 216 | 25.83 327 | 86.10 245 | 60.89 175 | 63.94 238 | 80.78 289 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| SR-MVS-dyc-post | | | 68.27 204 | 66.87 199 | 72.48 226 | 80.96 178 | 48.14 252 | 81.54 241 | 76.98 289 | 46.42 336 | 62.75 186 | 89.42 108 | 31.17 295 | 86.09 247 | 60.52 182 | 72.06 173 | 83.19 251 |
|
| diffmvs |  | | 75.11 83 | 74.65 77 | 76.46 119 | 78.52 230 | 53.35 117 | 83.28 194 | 79.94 228 | 70.51 24 | 71.64 84 | 88.72 121 | 46.02 102 | 86.08 248 | 77.52 58 | 75.75 135 | 89.96 107 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ACMM | | 58.35 12 | 64.35 256 | 62.01 261 | 71.38 253 | 74.21 295 | 48.51 237 | 82.25 220 | 79.66 235 | 47.61 327 | 54.54 292 | 80.11 250 | 25.26 332 | 86.00 249 | 51.26 259 | 63.16 249 | 79.64 302 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| HPM-MVS_fast | | | 67.86 209 | 66.28 213 | 72.61 221 | 80.67 189 | 48.34 244 | 81.18 248 | 75.95 304 | 50.81 305 | 59.55 220 | 88.05 140 | 27.86 313 | 85.98 250 | 58.83 193 | 73.58 158 | 83.51 244 |
|
| ACMH+ | | 54.58 15 | 58.55 306 | 55.24 310 | 68.50 297 | 74.68 288 | 45.80 293 | 80.27 264 | 70.21 350 | 47.15 330 | 42.77 359 | 75.48 306 | 16.73 379 | 85.98 250 | 35.10 343 | 54.78 321 | 73.72 359 |
|
| NR-MVSNet | | | 67.25 226 | 65.99 220 | 71.04 260 | 73.27 305 | 43.91 312 | 85.32 123 | 84.75 134 | 66.05 75 | 53.65 303 | 82.11 232 | 45.05 115 | 85.97 252 | 47.55 283 | 56.18 308 | 83.24 249 |
|
| Vis-MVSNet |  | | 70.61 158 | 69.34 159 | 74.42 176 | 80.95 181 | 48.49 238 | 86.03 103 | 77.51 280 | 58.74 210 | 65.55 145 | 87.78 145 | 34.37 264 | 85.95 253 | 52.53 254 | 80.61 78 | 88.80 136 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| CANet_DTU | | | 73.71 102 | 73.14 95 | 75.40 150 | 82.61 137 | 50.05 194 | 84.67 152 | 79.36 244 | 69.72 30 | 75.39 42 | 90.03 98 | 29.41 304 | 85.93 254 | 67.99 122 | 79.11 98 | 90.22 97 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 242 | 64.10 251 | 73.84 195 | 72.41 316 | 52.30 145 | 84.73 147 | 75.66 305 | 59.51 187 | 56.34 277 | 79.11 262 | 28.11 310 | 85.85 255 | 57.74 214 | 63.29 246 | 83.35 245 |
|
| eth_miper_zixun_eth | | | 66.98 235 | 65.28 238 | 72.06 236 | 75.61 277 | 50.40 183 | 81.00 251 | 76.97 292 | 62.00 142 | 56.99 268 | 76.97 285 | 44.84 122 | 85.58 256 | 58.75 194 | 54.42 324 | 80.21 297 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 236 | 65.61 230 | 70.93 262 | 73.45 301 | 43.38 319 | 83.02 202 | 84.25 146 | 65.31 88 | 58.33 247 | 81.90 236 | 39.92 190 | 85.52 257 | 49.43 270 | 54.89 320 | 83.89 239 |
|
| sss | | | 70.49 159 | 70.13 148 | 71.58 251 | 81.59 162 | 39.02 350 | 80.78 257 | 84.71 135 | 59.34 192 | 66.61 130 | 88.09 137 | 37.17 225 | 85.52 257 | 61.82 169 | 71.02 182 | 90.20 99 |
|
| jajsoiax | | | 63.21 267 | 60.84 272 | 70.32 270 | 68.33 352 | 44.45 305 | 81.23 247 | 81.05 205 | 53.37 287 | 50.96 320 | 77.81 273 | 17.49 374 | 85.49 259 | 59.31 189 | 58.05 290 | 81.02 287 |
|
| mvs_tets | | | 62.96 270 | 60.55 274 | 70.19 271 | 68.22 355 | 44.24 310 | 80.90 254 | 80.74 213 | 52.99 290 | 50.82 322 | 77.56 274 | 16.74 378 | 85.44 260 | 59.04 192 | 57.94 292 | 80.89 288 |
|
| FIs | | | 70.00 168 | 70.24 147 | 69.30 283 | 77.93 240 | 38.55 353 | 83.99 170 | 87.72 64 | 66.86 59 | 57.66 256 | 84.17 190 | 52.28 47 | 85.31 261 | 52.72 253 | 68.80 199 | 84.02 231 |
|
| mvs_anonymous | | | 72.29 126 | 70.74 132 | 76.94 111 | 82.85 129 | 54.72 82 | 78.43 284 | 81.54 197 | 63.77 109 | 61.69 197 | 79.32 258 | 51.11 54 | 85.31 261 | 62.15 166 | 75.79 133 | 90.79 84 |
|
| RPMNet | | | 59.29 293 | 54.25 317 | 74.42 176 | 73.97 299 | 56.57 34 | 60.52 376 | 76.98 289 | 35.72 378 | 57.49 261 | 58.87 388 | 37.73 209 | 85.26 263 | 27.01 376 | 59.93 268 | 81.42 276 |
|
| UniMVSNet (Re) | | | 67.71 213 | 66.80 201 | 70.45 267 | 74.44 291 | 42.93 325 | 82.42 218 | 84.90 128 | 63.69 112 | 59.63 217 | 80.99 243 | 47.18 87 | 85.23 264 | 51.17 261 | 56.75 302 | 83.19 251 |
|
| cl22 | | | 68.85 189 | 67.69 185 | 72.35 229 | 78.07 237 | 49.98 196 | 82.45 217 | 78.48 264 | 62.50 136 | 58.46 244 | 77.95 269 | 49.99 67 | 85.17 265 | 62.55 161 | 58.72 279 | 81.90 267 |
|
| miper_enhance_ethall | | | 69.77 173 | 68.90 165 | 72.38 228 | 78.93 220 | 49.91 197 | 83.29 193 | 78.85 252 | 64.90 91 | 59.37 223 | 79.46 256 | 52.77 44 | 85.16 266 | 63.78 154 | 58.72 279 | 82.08 264 |
|
| æ— å…ˆéªŒ | | | | | | | | 85.19 128 | 78.00 272 | 49.08 315 | | | | 85.13 267 | 52.78 250 | | 87.45 171 |
|
| UGNet | | | 68.71 195 | 67.11 198 | 73.50 206 | 80.55 192 | 47.61 266 | 84.08 166 | 78.51 263 | 59.45 188 | 65.68 144 | 82.73 215 | 23.78 342 | 85.08 268 | 52.80 249 | 76.40 122 | 87.80 162 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| miper_ehance_all_eth | | | 68.70 197 | 67.58 187 | 72.08 235 | 76.91 257 | 49.48 211 | 82.47 216 | 78.45 265 | 62.68 132 | 58.28 248 | 77.88 271 | 50.90 57 | 85.01 269 | 61.91 167 | 58.72 279 | 81.75 269 |
|
| c3_l | | | 67.97 207 | 66.66 205 | 71.91 246 | 76.20 267 | 49.31 214 | 82.13 223 | 78.00 272 | 61.99 143 | 57.64 257 | 76.94 286 | 49.41 72 | 84.93 270 | 60.62 179 | 57.01 301 | 81.49 273 |
|
| PatchmatchNet |  | | 67.07 233 | 63.63 253 | 77.40 95 | 83.10 115 | 58.03 11 | 72.11 331 | 77.77 275 | 58.85 207 | 59.37 223 | 70.83 346 | 37.84 205 | 84.93 270 | 42.96 310 | 69.83 193 | 89.26 122 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| test_post | | | | | | | | | | | | 16.22 418 | 37.52 215 | 84.72 272 | | | |
|
| SixPastTwentyTwo | | | 54.37 327 | 50.10 336 | 67.21 305 | 70.70 335 | 41.46 340 | 74.73 306 | 64.69 369 | 47.56 328 | 39.12 375 | 69.49 352 | 18.49 371 | 84.69 273 | 31.87 354 | 34.20 389 | 75.48 343 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 191 | 68.29 173 | 70.40 269 | 75.71 276 | 42.59 329 | 84.23 162 | 86.78 78 | 66.31 67 | 58.51 240 | 82.45 222 | 51.57 51 | 84.64 274 | 53.11 244 | 55.96 311 | 83.96 237 |
|
| DU-MVS | | | 66.84 238 | 65.74 227 | 70.16 272 | 73.27 305 | 42.59 329 | 81.50 243 | 82.92 176 | 63.53 116 | 58.51 240 | 82.11 232 | 40.75 176 | 84.64 274 | 53.11 244 | 55.96 311 | 83.24 249 |
|
| UWE-MVS | | | 72.17 129 | 72.15 111 | 72.21 232 | 82.26 142 | 44.29 308 | 86.83 89 | 89.58 23 | 65.58 80 | 65.82 141 | 85.06 181 | 45.02 116 | 84.35 276 | 54.07 238 | 75.18 141 | 87.99 159 |
|
| mvsmamba | | | 69.38 182 | 67.52 191 | 74.95 168 | 82.86 128 | 52.22 147 | 67.36 352 | 76.75 293 | 61.14 159 | 49.43 326 | 82.04 234 | 37.26 222 | 84.14 277 | 73.93 85 | 76.91 117 | 88.50 146 |
|
| lessismore_v0 | | | | | 67.98 299 | 64.76 371 | 41.25 341 | | 45.75 394 | | 36.03 384 | 65.63 368 | 19.29 366 | 84.11 278 | 35.67 335 | 21.24 407 | 78.59 312 |
|
| test_post1 | | | | | | | | 70.84 337 | | | | 14.72 421 | 34.33 265 | 83.86 279 | 48.80 275 | | |
|
| 1112_ss | | | 70.05 166 | 69.37 158 | 72.10 234 | 80.77 186 | 42.78 327 | 85.12 133 | 76.75 293 | 59.69 184 | 61.19 202 | 92.12 42 | 47.48 85 | 83.84 280 | 53.04 246 | 68.21 202 | 89.66 112 |
|
| Effi-MVS+-dtu | | | 66.24 247 | 64.96 243 | 70.08 274 | 75.17 280 | 49.64 202 | 82.01 224 | 74.48 315 | 62.15 140 | 57.83 251 | 76.08 302 | 30.59 298 | 83.79 281 | 65.40 146 | 60.93 265 | 76.81 331 |
|
| PVSNet_0 | | 57.04 13 | 61.19 284 | 57.24 297 | 73.02 212 | 77.45 247 | 50.31 190 | 79.43 277 | 77.36 284 | 63.96 107 | 47.51 341 | 72.45 335 | 25.03 334 | 83.78 282 | 52.76 252 | 19.22 410 | 84.96 218 |
|
| CL-MVSNet_self_test | | | 62.98 269 | 61.14 270 | 68.50 297 | 65.86 362 | 42.96 324 | 84.37 157 | 82.98 174 | 60.98 164 | 53.95 299 | 72.70 332 | 40.43 181 | 83.71 283 | 41.10 315 | 47.93 350 | 78.83 308 |
|
| IterMVS-LS | | | 66.63 240 | 65.36 237 | 70.42 268 | 75.10 282 | 48.90 225 | 81.45 246 | 76.69 297 | 61.05 162 | 55.71 281 | 77.10 284 | 45.86 104 | 83.65 284 | 57.44 216 | 57.88 295 | 78.70 309 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| TESTMET0.1,1 | | | 72.86 115 | 72.33 105 | 74.46 174 | 81.98 145 | 50.77 173 | 85.13 130 | 85.47 104 | 66.09 72 | 67.30 123 | 83.69 198 | 37.27 221 | 83.57 285 | 65.06 150 | 78.97 100 | 89.05 130 |
|
| D2MVS | | | 63.49 264 | 61.39 266 | 69.77 278 | 69.29 344 | 48.93 224 | 78.89 281 | 77.71 277 | 60.64 173 | 49.70 325 | 72.10 341 | 27.08 319 | 83.48 286 | 54.48 236 | 62.65 255 | 76.90 330 |
|
| mmtdpeth | | | 57.93 310 | 54.78 314 | 67.39 304 | 72.32 318 | 43.38 319 | 72.72 321 | 68.93 358 | 54.45 279 | 56.85 269 | 62.43 376 | 17.02 376 | 83.46 287 | 57.95 208 | 30.31 395 | 75.31 345 |
|
| TAMVS | | | 69.51 181 | 68.16 176 | 73.56 205 | 76.30 264 | 48.71 232 | 82.57 210 | 77.17 286 | 62.10 141 | 61.32 201 | 84.23 189 | 41.90 164 | 83.46 287 | 54.80 235 | 73.09 163 | 88.50 146 |
|
| ppachtmachnet_test | | | 58.56 305 | 54.34 315 | 71.24 255 | 71.42 327 | 54.74 80 | 81.84 230 | 72.27 333 | 49.02 316 | 45.86 350 | 68.99 357 | 26.27 323 | 83.30 289 | 30.12 360 | 43.23 369 | 75.69 341 |
|
| CDS-MVSNet | | | 70.48 160 | 69.43 156 | 73.64 202 | 77.56 245 | 48.83 227 | 83.51 184 | 77.45 281 | 63.27 122 | 62.33 190 | 85.54 177 | 43.85 131 | 83.29 290 | 57.38 218 | 74.00 154 | 88.79 137 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| anonymousdsp | | | 60.46 288 | 57.65 294 | 68.88 286 | 63.63 376 | 45.09 298 | 72.93 320 | 78.63 260 | 46.52 334 | 51.12 317 | 72.80 331 | 21.46 358 | 83.07 291 | 57.79 212 | 53.97 326 | 78.47 313 |
|
| FC-MVSNet-test | | | 67.49 219 | 67.91 178 | 66.21 315 | 76.06 269 | 33.06 374 | 80.82 256 | 87.18 71 | 64.44 95 | 54.81 288 | 82.87 209 | 50.40 64 | 82.60 292 | 48.05 281 | 66.55 217 | 82.98 256 |
|
| K. test v3 | | | 54.04 330 | 49.42 342 | 67.92 300 | 68.55 349 | 42.57 332 | 75.51 301 | 63.07 375 | 52.07 295 | 39.21 374 | 64.59 371 | 19.34 365 | 82.21 293 | 37.11 327 | 25.31 401 | 78.97 306 |
|
| our_test_3 | | | 59.11 297 | 55.08 313 | 71.18 258 | 71.42 327 | 53.29 121 | 81.96 225 | 74.52 314 | 48.32 321 | 42.08 360 | 69.28 356 | 28.14 309 | 82.15 294 | 34.35 345 | 45.68 364 | 78.11 321 |
|
| ambc | | | | | 62.06 339 | 53.98 395 | 29.38 391 | 35.08 408 | 79.65 236 | | 41.37 364 | 59.96 384 | 6.27 407 | 82.15 294 | 35.34 338 | 38.22 378 | 74.65 353 |
|
| pmmvs4 | | | 63.34 266 | 61.07 271 | 70.16 272 | 70.14 338 | 50.53 179 | 79.97 270 | 71.41 343 | 55.08 270 | 54.12 297 | 78.58 265 | 32.79 279 | 82.09 296 | 50.33 264 | 57.22 300 | 77.86 322 |
|
| WR-MVS | | | 67.58 216 | 66.76 202 | 70.04 276 | 75.92 274 | 45.06 302 | 86.23 98 | 85.28 115 | 64.31 98 | 58.50 242 | 81.00 242 | 44.80 125 | 82.00 297 | 49.21 273 | 55.57 316 | 83.06 254 |
|
| MVS_111021_LR | | | 69.07 185 | 67.91 178 | 72.54 223 | 77.27 249 | 49.56 205 | 79.77 271 | 73.96 321 | 59.33 194 | 60.73 206 | 87.82 144 | 30.19 301 | 81.53 298 | 69.94 108 | 72.19 172 | 86.53 189 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 336 | 49.74 340 | 61.69 343 | 69.78 341 | 34.99 363 | 44.52 397 | 67.60 364 | 43.11 358 | 43.79 353 | 74.03 315 | 18.54 370 | 81.45 299 | 28.39 370 | 57.94 292 | 68.62 378 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| CPTT-MVS | | | 67.15 229 | 65.84 224 | 71.07 259 | 80.96 178 | 50.32 189 | 81.94 226 | 74.10 317 | 46.18 339 | 57.91 250 | 87.64 149 | 29.57 303 | 81.31 300 | 64.10 153 | 70.18 191 | 81.56 272 |
|
| UniMVSNet_ETH3D | | | 62.51 274 | 60.49 275 | 68.57 296 | 68.30 353 | 40.88 345 | 73.89 312 | 79.93 229 | 51.81 300 | 54.77 289 | 79.61 255 | 24.80 336 | 81.10 301 | 49.93 266 | 61.35 262 | 83.73 241 |
|
| LCM-MVSNet-Re | | | 58.82 302 | 56.54 301 | 65.68 317 | 79.31 210 | 29.09 393 | 61.39 375 | 45.79 393 | 60.73 171 | 37.65 380 | 72.47 334 | 31.42 293 | 81.08 302 | 49.66 268 | 70.41 188 | 86.87 180 |
|
| Patchmatch-RL test | | | 58.72 303 | 54.32 316 | 71.92 245 | 63.91 374 | 44.25 309 | 61.73 372 | 55.19 384 | 57.38 237 | 49.31 328 | 54.24 394 | 37.60 213 | 80.89 303 | 62.19 165 | 47.28 355 | 90.63 86 |
|
| Test_1112_low_res | | | 67.18 228 | 66.23 214 | 70.02 277 | 78.75 223 | 41.02 343 | 83.43 187 | 73.69 323 | 57.29 238 | 58.45 245 | 82.39 224 | 45.30 112 | 80.88 304 | 50.50 263 | 66.26 223 | 88.16 152 |
|
| MGCFI-Net | | | 74.07 93 | 74.64 78 | 72.34 230 | 82.90 126 | 43.33 321 | 80.04 269 | 79.96 227 | 65.61 79 | 74.93 45 | 91.85 51 | 48.01 80 | 80.86 305 | 71.41 99 | 77.10 114 | 92.84 24 |
|
| Syy-MVS | | | 61.51 282 | 61.35 267 | 62.00 340 | 81.73 153 | 30.09 385 | 80.97 252 | 81.02 206 | 60.93 166 | 55.06 285 | 82.64 217 | 35.09 256 | 80.81 306 | 16.40 404 | 58.32 283 | 75.10 349 |
|
| myMVS_eth3d | | | 63.52 263 | 63.56 254 | 63.40 332 | 81.73 153 | 34.28 366 | 80.97 252 | 81.02 206 | 60.93 166 | 55.06 285 | 82.64 217 | 48.00 82 | 80.81 306 | 23.42 387 | 58.32 283 | 75.10 349 |
|
| pmmvs5 | | | 62.80 272 | 61.18 269 | 67.66 301 | 69.53 342 | 42.37 334 | 82.65 208 | 75.19 310 | 54.30 281 | 52.03 313 | 78.51 266 | 31.64 292 | 80.67 308 | 48.60 277 | 58.15 287 | 79.95 300 |
|
| MIMVSNet | | | 63.12 268 | 60.29 278 | 71.61 248 | 75.92 274 | 46.65 278 | 65.15 357 | 81.94 188 | 59.14 201 | 54.65 291 | 69.47 353 | 25.74 328 | 80.63 309 | 41.03 316 | 69.56 197 | 87.55 168 |
|
| test_vis1_n_1920 | | | 68.59 198 | 68.31 172 | 69.44 282 | 69.16 345 | 41.51 338 | 84.63 153 | 68.58 360 | 58.80 208 | 73.26 63 | 88.37 129 | 25.30 331 | 80.60 310 | 79.10 42 | 67.55 208 | 86.23 195 |
|
| æ–°å‡ ä½•1 | | | | | 73.30 209 | 83.10 115 | 53.48 109 | | 71.43 342 | 45.55 341 | 66.14 135 | 87.17 156 | 33.88 270 | 80.54 311 | 48.50 278 | 80.33 84 | 85.88 204 |
|
| Vis-MVSNet (Re-imp) | | | 65.52 252 | 65.63 229 | 65.17 323 | 77.49 246 | 30.54 381 | 75.49 302 | 77.73 276 | 59.34 192 | 52.26 312 | 86.69 163 | 49.38 73 | 80.53 312 | 37.07 328 | 75.28 140 | 84.42 225 |
|
| PVSNet | | 62.49 8 | 69.27 184 | 67.81 184 | 73.64 202 | 84.41 85 | 51.85 154 | 84.63 153 | 77.80 274 | 66.42 65 | 59.80 214 | 84.95 184 | 22.14 355 | 80.44 313 | 55.03 232 | 75.11 145 | 88.62 141 |
|
| CR-MVSNet | | | 62.47 276 | 59.04 288 | 72.77 218 | 73.97 299 | 56.57 34 | 60.52 376 | 71.72 338 | 60.04 178 | 57.49 261 | 65.86 365 | 38.94 196 | 80.31 314 | 42.86 311 | 59.93 268 | 81.42 276 |
|
| test-LLR | | | 69.65 178 | 69.01 164 | 71.60 249 | 78.67 225 | 48.17 250 | 85.13 130 | 79.72 233 | 59.18 199 | 63.13 181 | 82.58 219 | 36.91 232 | 80.24 315 | 60.56 180 | 75.17 142 | 86.39 193 |
|
| test-mter | | | 68.36 200 | 67.29 194 | 71.60 249 | 78.67 225 | 48.17 250 | 85.13 130 | 79.72 233 | 53.38 286 | 63.13 181 | 82.58 219 | 27.23 318 | 80.24 315 | 60.56 180 | 75.17 142 | 86.39 193 |
|
| UnsupCasMVSNet_bld | | | 53.86 331 | 50.53 335 | 63.84 328 | 63.52 377 | 34.75 364 | 71.38 334 | 81.92 190 | 46.53 333 | 38.95 376 | 57.93 389 | 20.55 361 | 80.20 317 | 39.91 319 | 34.09 390 | 76.57 336 |
|
| Patchmtry | | | 56.56 317 | 52.95 324 | 67.42 303 | 72.53 315 | 50.59 178 | 59.05 380 | 71.72 338 | 37.86 372 | 46.92 343 | 65.86 365 | 38.94 196 | 80.06 318 | 36.94 330 | 46.72 360 | 71.60 371 |
|
| OurMVSNet-221017-0 | | | 52.39 339 | 48.73 343 | 63.35 333 | 65.21 366 | 38.42 354 | 68.54 348 | 64.95 368 | 38.19 369 | 39.57 373 | 71.43 343 | 13.23 386 | 79.92 319 | 37.16 325 | 40.32 375 | 71.72 370 |
|
| UnsupCasMVSNet_eth | | | 57.56 312 | 55.15 311 | 64.79 326 | 64.57 372 | 33.12 373 | 73.17 319 | 83.87 156 | 58.98 205 | 41.75 363 | 70.03 351 | 22.54 350 | 79.92 319 | 46.12 296 | 35.31 383 | 81.32 283 |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 385 | 38.41 201 | 79.91 321 | | | |
|
| SCA | | | 63.84 260 | 60.01 281 | 75.32 153 | 78.58 229 | 57.92 12 | 61.61 373 | 77.53 279 | 56.71 250 | 57.75 255 | 70.77 347 | 31.97 287 | 79.91 321 | 48.80 275 | 56.36 303 | 88.13 155 |
|
| mvs5depth | | | 50.97 344 | 46.98 350 | 62.95 335 | 56.63 391 | 34.23 368 | 62.73 370 | 67.35 365 | 45.03 346 | 48.00 335 | 65.41 369 | 10.40 392 | 79.88 323 | 36.00 333 | 31.27 394 | 74.73 352 |
|
| LS3D | | | 56.40 319 | 53.82 319 | 64.12 327 | 81.12 174 | 45.69 295 | 73.42 317 | 66.14 366 | 35.30 382 | 43.24 358 | 79.88 252 | 22.18 354 | 79.62 324 | 19.10 398 | 64.00 237 | 67.05 380 |
|
| tpmrst | | | 71.04 150 | 69.77 152 | 74.86 169 | 83.19 114 | 55.86 50 | 75.64 298 | 78.73 258 | 67.88 44 | 64.99 153 | 73.73 319 | 49.96 69 | 79.56 325 | 65.92 136 | 67.85 207 | 89.14 128 |
|
| IterMVS | | | 63.77 262 | 61.67 262 | 70.08 274 | 72.68 313 | 51.24 170 | 80.44 261 | 75.51 306 | 60.51 174 | 51.41 315 | 73.70 322 | 32.08 286 | 78.91 326 | 54.30 237 | 54.35 325 | 80.08 299 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| ADS-MVSNet | | | 56.17 320 | 51.95 330 | 68.84 287 | 80.60 190 | 53.07 127 | 55.03 388 | 70.02 352 | 44.72 347 | 51.00 318 | 61.19 380 | 22.83 347 | 78.88 327 | 28.54 368 | 53.63 329 | 74.57 354 |
|
| USDC | | | 54.36 328 | 51.23 332 | 63.76 329 | 64.29 373 | 37.71 358 | 62.84 369 | 73.48 328 | 56.85 245 | 35.47 385 | 71.94 342 | 9.23 395 | 78.43 328 | 38.43 322 | 48.57 346 | 75.13 348 |
|
| Anonymous20231206 | | | 59.08 298 | 57.59 295 | 63.55 330 | 68.77 348 | 32.14 379 | 80.26 265 | 79.78 232 | 50.00 311 | 49.39 327 | 72.39 336 | 26.64 322 | 78.36 329 | 33.12 351 | 57.94 292 | 80.14 298 |
|
| XVG-OURS | | | 61.88 280 | 59.34 285 | 69.49 280 | 65.37 364 | 46.27 286 | 64.80 359 | 73.49 326 | 47.04 331 | 57.41 265 | 82.85 210 | 25.15 333 | 78.18 330 | 53.00 247 | 64.98 227 | 84.01 232 |
|
| XVG-ACMP-BASELINE | | | 56.03 321 | 52.85 325 | 65.58 318 | 61.91 381 | 40.95 344 | 63.36 364 | 72.43 332 | 45.20 344 | 46.02 348 | 74.09 314 | 9.20 396 | 78.12 331 | 45.13 298 | 58.27 285 | 77.66 325 |
|
| XVG-OURS-SEG-HR | | | 62.02 279 | 59.54 283 | 69.46 281 | 65.30 365 | 45.88 290 | 65.06 358 | 73.57 325 | 46.45 335 | 57.42 264 | 83.35 205 | 26.95 320 | 78.09 332 | 53.77 241 | 64.03 236 | 84.42 225 |
|
| PatchT | | | 56.60 316 | 52.97 323 | 67.48 302 | 72.94 310 | 46.16 289 | 57.30 384 | 73.78 322 | 38.77 368 | 54.37 294 | 57.26 391 | 37.52 215 | 78.06 333 | 32.02 353 | 52.79 336 | 78.23 320 |
|
| KD-MVS_2432*1600 | | | 59.04 299 | 56.44 303 | 66.86 309 | 79.07 214 | 45.87 291 | 72.13 329 | 80.42 219 | 55.03 271 | 48.15 333 | 71.01 344 | 36.73 235 | 78.05 334 | 35.21 339 | 30.18 396 | 76.67 332 |
|
| miper_refine_blended | | | 59.04 299 | 56.44 303 | 66.86 309 | 79.07 214 | 45.87 291 | 72.13 329 | 80.42 219 | 55.03 271 | 48.15 333 | 71.01 344 | 36.73 235 | 78.05 334 | 35.21 339 | 30.18 396 | 76.67 332 |
|
| miper_lstm_enhance | | | 63.91 259 | 62.30 258 | 68.75 291 | 75.06 283 | 46.78 276 | 69.02 344 | 81.14 204 | 59.68 185 | 52.76 307 | 72.39 336 | 40.71 178 | 77.99 336 | 56.81 221 | 53.09 335 | 81.48 275 |
|
| testgi | | | 54.25 329 | 52.57 328 | 59.29 353 | 62.76 379 | 21.65 408 | 72.21 328 | 70.47 348 | 53.25 288 | 41.94 361 | 77.33 280 | 14.28 384 | 77.95 337 | 29.18 364 | 51.72 340 | 78.28 318 |
|
| JIA-IIPM | | | 52.33 340 | 47.77 348 | 66.03 316 | 71.20 330 | 46.92 275 | 40.00 405 | 76.48 300 | 37.10 373 | 46.73 344 | 37.02 405 | 32.96 276 | 77.88 338 | 35.97 334 | 52.45 338 | 73.29 363 |
|
| OMC-MVS | | | 65.97 250 | 65.06 241 | 68.71 292 | 72.97 309 | 42.58 331 | 78.61 282 | 75.35 309 | 54.72 275 | 59.31 225 | 86.25 169 | 33.30 274 | 77.88 338 | 57.99 205 | 67.05 211 | 85.66 207 |
|
| testdata2 | | | | | | | | | | | | | | 77.81 340 | 45.64 297 | | |
|
| PLC |  | 52.38 18 | 60.89 285 | 58.97 289 | 66.68 313 | 81.77 152 | 45.70 294 | 78.96 280 | 74.04 320 | 43.66 355 | 47.63 338 | 83.19 208 | 23.52 345 | 77.78 341 | 37.47 323 | 60.46 266 | 76.55 337 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test0.0.03 1 | | | 62.54 273 | 62.44 257 | 62.86 337 | 72.28 320 | 29.51 390 | 82.93 203 | 78.78 255 | 59.18 199 | 53.07 306 | 82.41 223 | 36.91 232 | 77.39 342 | 37.45 324 | 58.96 277 | 81.66 271 |
|
| pmmvs-eth3d | | | 55.97 322 | 52.78 326 | 65.54 319 | 61.02 383 | 46.44 281 | 75.36 303 | 67.72 363 | 49.61 313 | 43.65 354 | 67.58 361 | 21.63 357 | 77.04 343 | 44.11 305 | 44.33 366 | 73.15 365 |
|
| TAPA-MVS | | 56.12 14 | 61.82 281 | 60.18 280 | 66.71 311 | 78.48 232 | 37.97 357 | 75.19 304 | 76.41 301 | 46.82 332 | 57.04 267 | 86.52 167 | 27.67 316 | 77.03 344 | 26.50 378 | 67.02 212 | 85.14 214 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| testing3 | | | 59.97 289 | 60.19 279 | 59.32 352 | 77.60 243 | 30.01 387 | 81.75 233 | 81.79 193 | 53.54 284 | 50.34 323 | 79.94 251 | 48.99 75 | 76.91 345 | 17.19 402 | 50.59 342 | 71.03 375 |
|
| PatchMatch-RL | | | 56.66 315 | 53.75 320 | 65.37 322 | 77.91 241 | 45.28 297 | 69.78 342 | 60.38 378 | 41.35 362 | 47.57 339 | 73.73 319 | 16.83 377 | 76.91 345 | 36.99 329 | 59.21 276 | 73.92 358 |
|
| FMVSNet5 | | | 58.61 304 | 56.45 302 | 65.10 324 | 77.20 253 | 39.74 347 | 74.77 305 | 77.12 287 | 50.27 309 | 43.28 357 | 67.71 360 | 26.15 326 | 76.90 347 | 36.78 331 | 54.78 321 | 78.65 311 |
|
| dp | | | 64.41 255 | 61.58 263 | 72.90 215 | 82.40 139 | 54.09 100 | 72.53 323 | 76.59 299 | 60.39 175 | 55.68 282 | 70.39 350 | 35.18 255 | 76.90 347 | 39.34 320 | 61.71 261 | 87.73 164 |
|
| test_cas_vis1_n_1920 | | | 67.10 230 | 66.60 207 | 68.59 295 | 65.17 367 | 43.23 322 | 83.23 195 | 69.84 353 | 55.34 268 | 70.67 99 | 87.71 147 | 24.70 338 | 76.66 349 | 78.57 49 | 64.20 234 | 85.89 203 |
|
| dmvs_testset | | | 57.65 311 | 58.21 292 | 55.97 363 | 74.62 289 | 9.82 424 | 63.75 363 | 63.34 374 | 67.23 54 | 48.89 330 | 83.68 200 | 39.12 195 | 76.14 350 | 23.43 386 | 59.80 270 | 81.96 266 |
|
| MDA-MVSNet-bldmvs | | | 51.56 342 | 47.75 349 | 63.00 334 | 71.60 325 | 47.32 271 | 69.70 343 | 72.12 334 | 43.81 354 | 27.65 403 | 63.38 373 | 21.97 356 | 75.96 351 | 27.30 375 | 32.19 391 | 65.70 386 |
|
| MVS-HIRNet | | | 49.01 349 | 44.71 353 | 61.92 342 | 76.06 269 | 46.61 279 | 63.23 366 | 54.90 385 | 24.77 398 | 33.56 390 | 36.60 407 | 21.28 359 | 75.88 352 | 29.49 362 | 62.54 256 | 63.26 391 |
|
| CMPMVS |  | 40.41 21 | 55.34 324 | 52.64 327 | 63.46 331 | 60.88 384 | 43.84 313 | 61.58 374 | 71.06 345 | 30.43 390 | 36.33 382 | 74.63 311 | 24.14 341 | 75.44 353 | 48.05 281 | 66.62 215 | 71.12 374 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ADS-MVSNet2 | | | 55.21 326 | 51.44 331 | 66.51 314 | 80.60 190 | 49.56 205 | 55.03 388 | 65.44 367 | 44.72 347 | 51.00 318 | 61.19 380 | 22.83 347 | 75.41 354 | 28.54 368 | 53.63 329 | 74.57 354 |
|
| CNLPA | | | 60.59 287 | 58.44 291 | 67.05 308 | 79.21 212 | 47.26 272 | 79.75 272 | 64.34 372 | 42.46 361 | 51.90 314 | 83.94 192 | 27.79 315 | 75.41 354 | 37.12 326 | 59.49 273 | 78.47 313 |
|
| test20.03 | | | 55.22 325 | 54.07 318 | 58.68 355 | 63.14 378 | 25.00 399 | 77.69 289 | 74.78 313 | 52.64 291 | 43.43 355 | 72.39 336 | 26.21 324 | 74.76 356 | 29.31 363 | 47.05 358 | 76.28 339 |
|
| WR-MVS_H | | | 58.91 301 | 58.04 293 | 61.54 344 | 69.07 346 | 33.83 371 | 76.91 292 | 81.99 187 | 51.40 302 | 48.17 332 | 74.67 310 | 40.23 183 | 74.15 357 | 31.78 355 | 48.10 348 | 76.64 335 |
|
| MDA-MVSNet_test_wron | | | 53.82 332 | 49.95 339 | 65.43 320 | 70.13 339 | 49.05 218 | 72.30 326 | 71.65 341 | 44.23 353 | 31.85 396 | 63.13 374 | 23.68 344 | 74.01 358 | 33.25 350 | 39.35 377 | 73.23 364 |
|
| YYNet1 | | | 53.82 332 | 49.96 338 | 65.41 321 | 70.09 340 | 48.95 222 | 72.30 326 | 71.66 340 | 44.25 352 | 31.89 395 | 63.07 375 | 23.73 343 | 73.95 359 | 33.26 349 | 39.40 376 | 73.34 362 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 345 | 48.05 346 | 59.47 351 | 67.81 356 | 40.57 346 | 71.25 335 | 62.72 377 | 36.49 377 | 36.19 383 | 73.51 324 | 13.48 385 | 73.92 360 | 20.71 393 | 50.26 343 | 63.92 389 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| PEN-MVS | | | 58.35 308 | 57.15 298 | 61.94 341 | 67.55 357 | 34.39 365 | 77.01 291 | 78.35 267 | 51.87 298 | 47.72 337 | 76.73 291 | 33.91 268 | 73.75 361 | 34.03 346 | 47.17 356 | 77.68 324 |
|
| F-COLMAP | | | 55.96 323 | 53.65 321 | 62.87 336 | 72.76 312 | 42.77 328 | 74.70 308 | 70.37 349 | 40.03 364 | 41.11 368 | 79.36 257 | 17.77 373 | 73.70 362 | 32.80 352 | 53.96 327 | 72.15 367 |
|
| Patchmatch-test | | | 53.33 335 | 48.17 345 | 68.81 289 | 73.31 302 | 42.38 333 | 42.98 400 | 58.23 380 | 32.53 384 | 38.79 377 | 70.77 347 | 39.66 191 | 73.51 363 | 25.18 380 | 52.06 339 | 90.55 87 |
|
| TinyColmap | | | 48.15 351 | 44.49 355 | 59.13 354 | 65.73 363 | 38.04 355 | 63.34 365 | 62.86 376 | 38.78 367 | 29.48 398 | 67.23 363 | 6.46 406 | 73.30 364 | 24.59 382 | 41.90 372 | 66.04 384 |
|
| DTE-MVSNet | | | 57.03 314 | 55.73 309 | 60.95 349 | 65.94 361 | 32.57 377 | 75.71 297 | 77.09 288 | 51.16 304 | 46.65 346 | 76.34 296 | 32.84 278 | 73.22 365 | 30.94 359 | 44.87 365 | 77.06 329 |
|
| CP-MVSNet | | | 58.54 307 | 57.57 296 | 61.46 345 | 68.50 350 | 33.96 370 | 76.90 293 | 78.60 262 | 51.67 301 | 47.83 336 | 76.60 293 | 34.99 259 | 72.79 366 | 35.45 336 | 47.58 352 | 77.64 326 |
|
| PS-CasMVS | | | 58.12 309 | 57.03 300 | 61.37 346 | 68.24 354 | 33.80 372 | 76.73 294 | 78.01 271 | 51.20 303 | 47.54 340 | 76.20 301 | 32.85 277 | 72.76 367 | 35.17 341 | 47.37 354 | 77.55 327 |
|
| EPNet_dtu | | | 66.25 246 | 66.71 203 | 64.87 325 | 78.66 227 | 34.12 369 | 82.80 205 | 75.51 306 | 61.75 147 | 64.47 164 | 86.90 159 | 37.06 228 | 72.46 368 | 43.65 307 | 69.63 196 | 88.02 158 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tpm | | | 68.36 200 | 67.48 192 | 70.97 261 | 79.93 201 | 51.34 167 | 76.58 295 | 78.75 257 | 67.73 47 | 63.54 179 | 74.86 309 | 48.33 76 | 72.36 369 | 53.93 240 | 63.71 239 | 89.21 125 |
|
| Anonymous20240521 | | | 51.65 341 | 48.42 344 | 61.34 347 | 56.43 392 | 39.65 349 | 73.57 315 | 73.47 329 | 36.64 376 | 36.59 381 | 63.98 372 | 10.75 391 | 72.25 370 | 35.35 337 | 49.01 345 | 72.11 368 |
|
| MIMVSNet1 | | | 50.35 346 | 47.81 347 | 57.96 357 | 61.53 382 | 27.80 397 | 67.40 351 | 74.06 319 | 43.25 357 | 33.31 394 | 65.38 370 | 16.03 381 | 71.34 371 | 21.80 390 | 47.55 353 | 74.75 351 |
|
| KD-MVS_self_test | | | 49.24 348 | 46.85 351 | 56.44 361 | 54.32 393 | 22.87 402 | 57.39 383 | 73.36 330 | 44.36 351 | 37.98 379 | 59.30 387 | 18.97 367 | 71.17 372 | 33.48 347 | 42.44 370 | 75.26 346 |
|
| EU-MVSNet | | | 52.63 337 | 50.72 334 | 58.37 356 | 62.69 380 | 28.13 396 | 72.60 322 | 75.97 303 | 30.94 389 | 40.76 370 | 72.11 340 | 20.16 362 | 70.80 373 | 35.11 342 | 46.11 362 | 76.19 340 |
|
| testdata | | | | | 67.08 307 | 77.59 244 | 45.46 296 | | 69.20 357 | 44.47 349 | 71.50 87 | 88.34 132 | 31.21 294 | 70.76 374 | 52.20 255 | 75.88 132 | 85.03 215 |
|
| 旧先验2 | | | | | | | | 81.73 234 | | 45.53 342 | 74.66 47 | | | 70.48 375 | 58.31 201 | | |
|
| new-patchmatchnet | | | 48.21 350 | 46.55 352 | 53.18 367 | 57.73 389 | 18.19 416 | 70.24 338 | 71.02 346 | 45.70 340 | 33.70 389 | 60.23 383 | 18.00 372 | 69.86 376 | 27.97 372 | 34.35 387 | 71.49 373 |
|
| CVMVSNet | | | 60.85 286 | 60.44 276 | 62.07 338 | 75.00 284 | 32.73 376 | 79.54 273 | 73.49 326 | 36.98 374 | 56.28 278 | 83.74 196 | 29.28 306 | 69.53 377 | 46.48 292 | 63.23 247 | 83.94 238 |
|
| N_pmnet | | | 41.25 360 | 39.77 363 | 45.66 378 | 68.50 350 | 0.82 430 | 72.51 324 | 0.38 429 | 35.61 379 | 35.26 386 | 61.51 379 | 20.07 363 | 67.74 378 | 23.51 385 | 40.63 373 | 68.42 379 |
|
| kuosan | | | 50.20 347 | 50.09 337 | 50.52 371 | 73.09 307 | 29.09 393 | 65.25 356 | 74.89 312 | 48.27 322 | 41.34 365 | 60.85 382 | 43.45 143 | 67.48 379 | 18.59 400 | 25.07 402 | 55.01 396 |
|
| pmmvs3 | | | 45.53 356 | 41.55 362 | 57.44 358 | 48.97 405 | 39.68 348 | 70.06 339 | 57.66 381 | 28.32 393 | 34.06 388 | 57.29 390 | 8.50 399 | 66.85 380 | 34.86 344 | 34.26 388 | 65.80 385 |
|
| PM-MVS | | | 46.92 353 | 43.76 360 | 56.41 362 | 52.18 397 | 32.26 378 | 63.21 367 | 38.18 405 | 37.99 371 | 40.78 369 | 66.20 364 | 5.09 410 | 65.42 381 | 48.19 280 | 41.99 371 | 71.54 372 |
|
| WB-MVS | | | 37.41 367 | 36.37 367 | 40.54 385 | 54.23 394 | 10.43 423 | 65.29 355 | 43.75 396 | 34.86 383 | 27.81 402 | 54.63 392 | 24.94 335 | 63.21 382 | 6.81 418 | 15.00 413 | 47.98 404 |
|
| Gipuma |  | | 27.47 376 | 24.26 381 | 37.12 390 | 60.55 385 | 29.17 392 | 11.68 417 | 60.00 379 | 14.18 409 | 10.52 418 | 15.12 419 | 2.20 419 | 63.01 383 | 8.39 413 | 35.65 382 | 19.18 415 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| ttmdpeth | | | 40.58 362 | 37.50 366 | 49.85 372 | 49.40 403 | 22.71 403 | 56.65 385 | 46.78 391 | 28.35 392 | 40.29 372 | 69.42 354 | 5.35 409 | 61.86 384 | 20.16 395 | 21.06 408 | 64.96 387 |
|
| test_fmvs1_n | | | 52.55 338 | 51.19 333 | 56.65 360 | 51.90 398 | 30.14 384 | 67.66 350 | 42.84 398 | 32.27 386 | 62.30 191 | 82.02 235 | 9.12 397 | 60.84 385 | 57.82 211 | 54.75 323 | 78.99 305 |
|
| test_fmvs1 | | | 53.60 334 | 52.54 329 | 56.78 359 | 58.07 387 | 30.26 383 | 68.95 346 | 42.19 399 | 32.46 385 | 63.59 177 | 82.56 221 | 11.55 388 | 60.81 386 | 58.25 202 | 55.27 317 | 79.28 303 |
|
| EGC-MVSNET | | | 33.75 371 | 30.42 375 | 43.75 381 | 64.94 370 | 36.21 362 | 60.47 378 | 40.70 402 | 0.02 423 | 0.10 424 | 53.79 395 | 7.39 400 | 60.26 387 | 11.09 410 | 35.23 385 | 34.79 409 |
|
| ANet_high | | | 34.39 370 | 29.59 376 | 48.78 374 | 30.34 419 | 22.28 404 | 55.53 387 | 63.79 373 | 38.11 370 | 15.47 411 | 36.56 408 | 6.94 402 | 59.98 388 | 13.93 407 | 5.64 422 | 64.08 388 |
|
| AllTest | | | 47.32 352 | 44.66 354 | 55.32 365 | 65.08 368 | 37.50 359 | 62.96 368 | 54.25 387 | 35.45 380 | 33.42 391 | 72.82 329 | 9.98 393 | 59.33 389 | 24.13 383 | 43.84 367 | 69.13 376 |
|
| TestCases | | | | | 55.32 365 | 65.08 368 | 37.50 359 | | 54.25 387 | 35.45 380 | 33.42 391 | 72.82 329 | 9.98 393 | 59.33 389 | 24.13 383 | 43.84 367 | 69.13 376 |
|
| SSC-MVS | | | 35.20 369 | 34.30 371 | 37.90 388 | 52.58 396 | 8.65 426 | 61.86 371 | 41.64 400 | 31.81 388 | 25.54 405 | 52.94 398 | 23.39 346 | 59.28 391 | 6.10 419 | 12.86 414 | 45.78 407 |
|
| CHOSEN 280x420 | | | 57.53 313 | 56.38 305 | 60.97 348 | 74.01 297 | 48.10 254 | 46.30 396 | 54.31 386 | 48.18 324 | 50.88 321 | 77.43 279 | 38.37 202 | 59.16 392 | 54.83 233 | 63.14 250 | 75.66 342 |
|
| test_vis1_n | | | 51.19 343 | 49.66 341 | 55.76 364 | 51.26 400 | 29.85 388 | 67.20 353 | 38.86 404 | 32.12 387 | 59.50 221 | 79.86 253 | 8.78 398 | 58.23 393 | 56.95 220 | 52.46 337 | 79.19 304 |
|
| dongtai | | | 43.51 357 | 44.07 358 | 41.82 382 | 63.75 375 | 21.90 406 | 63.80 362 | 72.05 335 | 39.59 365 | 33.35 393 | 54.54 393 | 41.04 173 | 57.30 394 | 10.75 411 | 17.77 411 | 46.26 405 |
|
| MVStest1 | | | 38.35 364 | 34.53 370 | 49.82 373 | 51.43 399 | 30.41 382 | 50.39 392 | 55.25 383 | 17.56 406 | 26.45 404 | 65.85 367 | 11.72 387 | 57.00 395 | 14.79 405 | 17.31 412 | 62.05 392 |
|
| IterMVS-SCA-FT | | | 59.12 296 | 58.81 290 | 60.08 350 | 70.68 337 | 45.07 299 | 80.42 262 | 74.25 316 | 43.54 356 | 50.02 324 | 73.73 319 | 31.97 287 | 56.74 396 | 51.06 262 | 53.60 331 | 78.42 315 |
|
| test_fmvs2 | | | 45.89 354 | 44.32 356 | 50.62 370 | 45.85 409 | 24.70 400 | 58.87 382 | 37.84 407 | 25.22 396 | 52.46 309 | 74.56 312 | 7.07 401 | 54.69 397 | 49.28 272 | 47.70 351 | 72.48 366 |
|
| TDRefinement | | | 40.91 361 | 38.37 365 | 48.55 375 | 50.45 402 | 33.03 375 | 58.98 381 | 50.97 390 | 28.50 391 | 29.89 397 | 67.39 362 | 6.21 408 | 54.51 398 | 17.67 401 | 35.25 384 | 58.11 393 |
|
| PMMVS2 | | | 26.71 378 | 22.98 383 | 37.87 389 | 36.89 413 | 8.51 427 | 42.51 401 | 29.32 416 | 19.09 404 | 13.01 413 | 37.54 404 | 2.23 418 | 53.11 399 | 14.54 406 | 11.71 415 | 51.99 401 |
|
| DSMNet-mixed | | | 38.35 364 | 35.36 369 | 47.33 376 | 48.11 407 | 14.91 420 | 37.87 406 | 36.60 408 | 19.18 403 | 34.37 387 | 59.56 386 | 15.53 382 | 53.01 400 | 20.14 396 | 46.89 359 | 74.07 356 |
|
| ITE_SJBPF | | | | | 51.84 368 | 58.03 388 | 31.94 380 | | 53.57 389 | 36.67 375 | 41.32 366 | 75.23 308 | 11.17 390 | 51.57 401 | 25.81 379 | 48.04 349 | 72.02 369 |
|
| test_vis1_rt | | | 40.29 363 | 38.64 364 | 45.25 379 | 48.91 406 | 30.09 385 | 59.44 379 | 27.07 418 | 24.52 399 | 38.48 378 | 51.67 399 | 6.71 404 | 49.44 402 | 44.33 303 | 46.59 361 | 56.23 394 |
|
| PMVS |  | 19.57 22 | 25.07 380 | 22.43 385 | 32.99 395 | 23.12 426 | 22.98 401 | 40.98 403 | 35.19 410 | 15.99 408 | 11.95 417 | 35.87 409 | 1.47 423 | 49.29 403 | 5.41 421 | 31.90 392 | 26.70 414 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| new_pmnet | | | 33.56 372 | 31.89 374 | 38.59 386 | 49.01 404 | 20.42 409 | 51.01 391 | 37.92 406 | 20.58 400 | 23.45 406 | 46.79 401 | 6.66 405 | 49.28 404 | 20.00 397 | 31.57 393 | 46.09 406 |
|
| LCM-MVSNet | | | 28.07 374 | 23.85 382 | 40.71 383 | 27.46 424 | 18.93 411 | 30.82 412 | 46.19 392 | 12.76 411 | 16.40 409 | 34.70 410 | 1.90 420 | 48.69 405 | 20.25 394 | 24.22 403 | 54.51 397 |
|
| test_fmvs3 | | | 37.95 366 | 35.75 368 | 44.55 380 | 35.50 415 | 18.92 412 | 48.32 393 | 34.00 412 | 18.36 405 | 41.31 367 | 61.58 378 | 2.29 417 | 48.06 406 | 42.72 312 | 37.71 379 | 66.66 382 |
|
| RPSCF | | | 45.77 355 | 44.13 357 | 50.68 369 | 57.67 390 | 29.66 389 | 54.92 390 | 45.25 395 | 26.69 395 | 45.92 349 | 75.92 304 | 17.43 375 | 45.70 407 | 27.44 374 | 45.95 363 | 76.67 332 |
|
| mvsany_test1 | | | 43.38 358 | 42.57 361 | 45.82 377 | 50.96 401 | 26.10 398 | 55.80 386 | 27.74 417 | 27.15 394 | 47.41 342 | 74.39 313 | 18.67 369 | 44.95 408 | 44.66 301 | 36.31 381 | 66.40 383 |
|
| FPMVS | | | 35.40 368 | 33.67 372 | 40.57 384 | 46.34 408 | 28.74 395 | 41.05 402 | 57.05 382 | 20.37 402 | 22.27 407 | 53.38 396 | 6.87 403 | 44.94 409 | 8.62 412 | 47.11 357 | 48.01 403 |
|
| APD_test1 | | | 26.46 379 | 24.41 380 | 32.62 396 | 37.58 412 | 21.74 407 | 40.50 404 | 30.39 414 | 11.45 413 | 16.33 410 | 43.76 402 | 1.63 422 | 41.62 410 | 11.24 409 | 26.82 400 | 34.51 410 |
|
| E-PMN | | | 19.16 385 | 18.40 389 | 21.44 401 | 36.19 414 | 13.63 421 | 47.59 394 | 30.89 413 | 10.73 414 | 5.91 421 | 16.59 417 | 3.66 413 | 39.77 411 | 5.95 420 | 8.14 417 | 10.92 417 |
|
| EMVS | | | 18.42 386 | 17.66 390 | 20.71 402 | 34.13 416 | 12.64 422 | 46.94 395 | 29.94 415 | 10.46 416 | 5.58 422 | 14.93 420 | 4.23 412 | 38.83 412 | 5.24 422 | 7.51 419 | 10.67 418 |
|
| test_vis3_rt | | | 24.79 381 | 22.95 384 | 30.31 397 | 28.59 421 | 18.92 412 | 37.43 407 | 17.27 425 | 12.90 410 | 21.28 408 | 29.92 414 | 1.02 424 | 36.35 413 | 28.28 371 | 29.82 398 | 35.65 408 |
|
| MVE |  | 16.60 23 | 17.34 388 | 13.39 391 | 29.16 398 | 28.43 422 | 19.72 410 | 13.73 416 | 23.63 421 | 7.23 419 | 7.96 419 | 21.41 415 | 0.80 425 | 36.08 414 | 6.97 416 | 10.39 416 | 31.69 411 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 24.09 382 | 21.07 386 | 33.16 394 | 27.67 423 | 8.35 428 | 26.63 414 | 35.11 411 | 3.40 420 | 14.35 412 | 36.98 406 | 3.46 414 | 35.31 415 | 19.08 399 | 22.95 404 | 55.81 395 |
|
| testf1 | | | 21.11 383 | 19.08 387 | 27.18 399 | 30.56 417 | 18.28 414 | 33.43 410 | 24.48 419 | 8.02 417 | 12.02 415 | 33.50 411 | 0.75 426 | 35.09 416 | 7.68 414 | 21.32 405 | 28.17 412 |
|
| APD_test2 | | | 21.11 383 | 19.08 387 | 27.18 399 | 30.56 417 | 18.28 414 | 33.43 410 | 24.48 419 | 8.02 417 | 12.02 415 | 33.50 411 | 0.75 426 | 35.09 416 | 7.68 414 | 21.32 405 | 28.17 412 |
|
| test_f | | | 27.12 377 | 24.85 378 | 33.93 393 | 26.17 425 | 15.25 419 | 30.24 413 | 22.38 422 | 12.53 412 | 28.23 400 | 49.43 400 | 2.59 416 | 34.34 418 | 25.12 381 | 26.99 399 | 52.20 400 |
|
| mvsany_test3 | | | 28.00 375 | 25.98 377 | 34.05 392 | 28.97 420 | 15.31 418 | 34.54 409 | 18.17 423 | 16.24 407 | 29.30 399 | 53.37 397 | 2.79 415 | 33.38 419 | 30.01 361 | 20.41 409 | 53.45 398 |
|
| LF4IMVS | | | 33.04 373 | 32.55 373 | 34.52 391 | 40.96 410 | 22.03 405 | 44.45 398 | 35.62 409 | 20.42 401 | 28.12 401 | 62.35 377 | 5.03 411 | 31.88 420 | 21.61 392 | 34.42 386 | 49.63 402 |
|
| mamv4 | | | 42.60 359 | 44.05 359 | 38.26 387 | 59.21 386 | 38.00 356 | 44.14 399 | 39.03 403 | 25.03 397 | 40.61 371 | 68.39 358 | 37.01 229 | 24.28 421 | 46.62 291 | 36.43 380 | 52.50 399 |
|
| DeepMVS_CX |  | | | | 13.10 403 | 21.34 427 | 8.99 425 | | 10.02 427 | 10.59 415 | 7.53 420 | 30.55 413 | 1.82 421 | 14.55 422 | 6.83 417 | 7.52 418 | 15.75 416 |
|
| wuyk23d | | | 9.11 390 | 8.77 394 | 10.15 404 | 40.18 411 | 16.76 417 | 20.28 415 | 1.01 428 | 2.58 421 | 2.66 423 | 0.98 423 | 0.23 428 | 12.49 423 | 4.08 423 | 6.90 420 | 1.19 420 |
|
| tmp_tt | | | 9.44 389 | 10.68 392 | 5.73 405 | 2.49 428 | 4.21 429 | 10.48 418 | 18.04 424 | 0.34 422 | 12.59 414 | 20.49 416 | 11.39 389 | 7.03 424 | 13.84 408 | 6.46 421 | 5.95 419 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| cdsmvs_eth3d_5k | | | 18.33 387 | 24.44 379 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 89.40 25 | 0.00 424 | 0.00 427 | 92.02 46 | 38.55 200 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 3.15 394 | 4.20 397 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 37.77 206 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| testmvs | | | 6.14 392 | 8.18 395 | 0.01 406 | 0.01 429 | 0.00 432 | 73.40 318 | 0.00 430 | 0.00 424 | 0.02 425 | 0.15 424 | 0.00 429 | 0.00 425 | 0.02 424 | 0.00 423 | 0.02 421 |
|
| test123 | | | 6.01 393 | 8.01 396 | 0.01 406 | 0.00 430 | 0.01 431 | 71.93 332 | 0.00 430 | 0.00 424 | 0.02 425 | 0.11 425 | 0.00 429 | 0.00 425 | 0.02 424 | 0.00 423 | 0.02 421 |
|
| ab-mvs-re | | | 7.68 391 | 10.24 393 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 92.12 42 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 430 | 0.00 432 | 0.00 419 | 0.00 430 | 0.00 424 | 0.00 427 | 0.00 426 | 0.00 429 | 0.00 425 | 0.00 426 | 0.00 423 | 0.00 423 |
|
| WAC-MVS | | | | | | | 34.28 366 | | | | | | | | 22.56 388 | | |
|
| FOURS1 | | | | | | 83.24 112 | 49.90 198 | 84.98 138 | 78.76 256 | 47.71 326 | 73.42 60 | | | | | | |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 22 | | 88.09 55 | 57.21 241 | 82.06 13 | 93.39 18 | 54.94 34 | | | | |
|
| eth-test2 | | | | | | 0.00 430 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 430 | | | | | | | | | | | |
|
| RE-MVS-def | | | | 66.66 205 | | 80.96 178 | 48.14 252 | 81.54 241 | 76.98 289 | 46.42 336 | 62.75 186 | 89.42 108 | 29.28 306 | | 60.52 182 | 72.06 173 | 83.19 251 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 17 | | 91.38 9 | 66.22 69 | 88.26 1 | | | | 82.83 22 | 87.60 18 | 92.44 32 |
|
| save fliter | | | | | | 85.35 68 | 56.34 41 | 89.31 40 | 81.46 198 | 61.55 151 | | | | | | | |
|
| test0726 | | | | | | 89.40 20 | 57.45 19 | 92.32 7 | 88.63 45 | 57.71 229 | 83.14 9 | 93.96 6 | 55.17 29 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 155 |
|
| test_part2 | | | | | | 89.33 23 | 55.48 54 | | | | 82.27 12 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 198 | | | | 88.13 155 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 249 | | | | |
|
| MTGPA |  | | | | | | | | 81.31 201 | | | | | | | | |
|
| MTMP | | | | | | | | 87.27 77 | 15.34 426 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 78.72 48 | 85.44 43 | 91.39 66 |
|
| agg_prior2 | | | | | | | | | | | | | | | 75.65 68 | 85.11 47 | 91.01 78 |
|
| test_prior4 | | | | | | | 56.39 40 | 87.15 81 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 89.04 43 | | 61.88 146 | 73.55 58 | 91.46 63 | 48.01 80 | | 74.73 77 | 85.46 42 | |
|
| æ–°å‡ ä½•2 | | | | | | | | 81.61 239 | | | | | | | | | |
|
| 旧先验1 | | | | | | 81.57 164 | 47.48 267 | | 71.83 336 | | | 88.66 123 | 36.94 231 | | | 78.34 105 | 88.67 139 |
|
| 原ACMM2 | | | | | | | | 83.77 177 | | | | | | | | | |
|
| test222 | | | | | | 79.36 207 | 50.97 172 | 77.99 287 | 67.84 362 | 42.54 360 | 62.84 185 | 86.53 166 | 30.26 300 | | | 76.91 117 | 85.23 213 |
|
| segment_acmp | | | | | | | | | | | | | 44.97 119 | | | | |
|
| testdata1 | | | | | | | | 77.55 290 | | 64.14 102 | | | | | | | |
|
| plane_prior7 | | | | | | 77.95 238 | 48.46 240 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 233 | 49.39 213 | | | | | | 36.04 247 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 83.28 206 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 222 | | | 64.01 105 | 62.15 193 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 107 | | 63.60 114 | | | | | | | |
|
| plane_prior1 | | | | | | 78.31 235 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 49.57 203 | 87.43 70 | | 64.57 94 | | | | | | 72.84 165 | |
|
| n2 | | | | | | | | | 0.00 430 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 430 | | | | | | | | |
|
| door-mid | | | | | | | | | 41.31 401 | | | | | | | | |
|
| test11 | | | | | | | | | 84.25 146 | | | | | | | | |
|
| door | | | | | | | | | 43.27 397 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 51.56 161 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 79.02 217 | | 88.00 55 | | 65.45 81 | 64.48 161 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 217 | | 88.00 55 | | 65.45 81 | 64.48 161 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 128 | | |
|
| HQP3-MVS | | | | | | | | | 83.68 158 | | | | | | | 73.12 161 | |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 218 | | | | |
|
| NP-MVS | | | | | | 78.76 222 | 50.43 182 | | | | | 85.12 180 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 315 | 71.13 336 | | 54.95 273 | 59.29 227 | | 36.76 234 | | 46.33 294 | | 87.32 174 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 248 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 274 | |
|
| Test By Simon | | | | | | | | | | | | | 39.38 192 | | | | |
|