This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_241102_ONE89.48 1756.89 2588.94 2457.53 21884.61 493.29 2258.81 1196.45 1
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21481.91 1393.64 1155.17 2096.44 281.68 2887.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 20681.91 1393.64 1156.54 1596.44 281.64 3086.86 2492.23 34
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12888.88 2658.00 20683.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2887.13 2092.47 28
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 22084.61 494.09 358.81 1196.37 682.28 2587.60 1794.06 3
test_241102_TWO88.76 3257.50 22083.60 694.09 356.14 1896.37 682.28 2587.43 1992.55 27
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18271.82 7990.05 9059.72 996.04 1078.37 4988.40 1393.75 7
API-MVS74.17 8072.07 10080.49 2290.02 1158.55 887.30 7084.27 12957.51 21965.77 12987.77 13341.61 15395.97 1151.71 23982.63 5986.94 159
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3693.09 2754.15 2895.57 1285.80 1085.87 3693.31 11
QAPM71.88 11969.33 14379.52 3582.20 13054.30 8686.30 9088.77 3156.61 23859.72 19887.48 13733.90 24695.36 1347.48 26781.49 7088.90 119
gm-plane-assit83.24 10154.21 8870.91 1588.23 12595.25 1466.37 119
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
MVS76.91 4175.48 5481.23 1884.56 7355.21 6080.23 25391.64 258.65 19665.37 13291.48 6045.72 9495.05 1672.11 9289.52 993.44 9
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
MAR-MVS76.76 4675.60 5280.21 2690.87 754.68 7889.14 4189.11 2062.95 11470.54 9492.33 3941.05 15794.95 1757.90 19386.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3392.13 4160.24 694.78 1978.97 4389.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 11074.63 4690.83 7141.38 15694.40 2075.42 7079.90 8994.72 2
IB-MVS68.87 274.01 8172.03 10379.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18481.74 22053.21 3194.28 2160.45 16862.41 24090.03 94
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 25081.21 1893.69 1056.51 1694.27 2278.36 5085.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
3Dnovator64.70 674.46 7572.48 8880.41 2482.84 11755.40 5483.08 18988.61 3867.61 4359.85 19688.66 11534.57 24093.97 2458.42 18388.70 1191.85 46
VDDNet74.37 7772.13 9881.09 1979.58 18756.52 3290.02 2686.70 7052.61 27771.23 8787.20 14231.75 26893.96 2574.30 7975.77 12392.79 23
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3593.87 752.58 3593.91 2684.17 1487.92 1592.39 30
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20373.60 5593.31 2143.14 13393.79 2773.81 8288.53 1292.37 31
CHOSEN 1792x268876.24 5174.03 7482.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13983.49 18841.52 15593.69 2870.55 9781.82 6792.12 37
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5492.75 3246.88 7993.28 2978.79 4684.07 5391.50 57
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2493.64 1152.40 3693.27 3088.85 486.56 3092.61 26
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 8193.25 294.80 1
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2593.10 2549.88 5892.98 3284.09 1684.75 4893.08 17
FA-MVS(test-final)69.00 16866.60 18776.19 11683.48 9347.96 24374.73 29182.07 17057.27 22462.18 17678.47 25136.09 22292.89 3353.76 22571.32 16287.73 146
MS-PatchMatch72.34 11071.26 11175.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25880.74 23132.28 26192.89 3357.95 19288.10 1478.39 299
OpenMVScopyleft61.00 1169.99 15267.55 17077.30 8778.37 21454.07 9284.36 14885.76 8657.22 22556.71 25487.67 13530.79 27492.83 3543.04 29084.06 5485.01 199
test_yl75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
DCV-MVSNet75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
VDD-MVS76.08 5474.97 6279.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7489.34 10332.52 25892.76 3877.90 5575.96 12092.22 36
9.1478.19 2485.67 5388.32 5088.84 2959.89 16574.58 4892.62 3546.80 8092.66 3981.40 3485.62 39
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24578.56 3092.49 3748.20 6592.65 4079.49 3883.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11571.65 8091.56 5842.33 14092.56 4177.14 5983.69 5590.15 90
Skip Steuart: Steuart Systems R&D Blog.
thisisatest051573.64 9172.20 9677.97 7381.63 14453.01 12186.69 8488.81 3062.53 12264.06 15185.65 16052.15 3992.50 4258.43 18169.84 17488.39 134
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 2093.22 2437.77 18992.50 4282.75 2286.25 3391.57 53
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 14080.26 2293.10 2546.53 8492.41 4479.97 3788.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 27088.46 4990.32 1171.40 1372.32 7591.72 5253.44 3092.37 4566.28 12175.42 12693.28 13
EI-MVSNet-Vis-set73.19 9772.60 8674.99 15382.56 12549.80 18982.55 20289.00 2266.17 6165.89 12788.98 10943.83 11992.29 4665.38 13469.01 18082.87 240
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1993.07 2937.63 19492.28 4782.73 2385.71 3791.57 53
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5788.09 12748.07 6692.19 4862.24 14984.53 5091.53 55
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23974.26 5191.60 5754.26 2692.16 4975.87 6479.91 8893.05 18
MVS_111021_HR76.39 5075.38 5679.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12489.88 9343.79 12192.16 4975.03 7280.03 8789.64 102
DP-MVS Recon71.99 11670.31 12677.01 9690.65 853.44 10589.37 3782.97 15956.33 24263.56 16289.47 10034.02 24492.15 5154.05 22272.41 15185.43 194
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13583.68 14267.85 3869.36 9790.24 8260.20 792.10 5284.14 1580.40 8092.82 21
Anonymous2024052969.71 15767.28 17577.00 9783.78 8850.36 17588.87 4585.10 10947.22 31064.03 15383.37 19027.93 29092.10 5257.78 19667.44 19288.53 132
cascas69.01 16766.13 19677.66 7879.36 18955.41 5386.99 7783.75 14156.69 23658.92 21681.35 22524.31 31892.10 5253.23 22670.61 16785.46 193
FE-MVS64.15 23760.43 25875.30 14380.85 16749.86 18768.28 33278.37 24650.26 29559.31 20873.79 30126.19 30391.92 5540.19 29866.67 19784.12 210
EI-MVSNet-UG-set72.37 10971.73 10474.29 16681.60 14649.29 20081.85 21788.64 3565.29 7865.05 13588.29 12443.18 13191.83 5663.74 13967.97 18781.75 251
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2693.00 3053.10 3291.76 5780.40 3689.56 892.68 25
baseline275.15 7074.54 6876.98 9981.67 14351.74 14683.84 16491.94 169.97 2158.98 21386.02 15659.73 891.73 5868.37 10770.40 17187.48 151
Effi-MVS+75.24 6773.61 7680.16 2981.92 13357.42 1985.21 11776.71 27460.68 15673.32 6089.34 10347.30 7491.63 5968.28 10879.72 9191.42 58
EIA-MVS75.92 5775.18 5978.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10290.53 7545.79 9391.58 6067.21 11482.18 6491.20 65
Anonymous20240521170.11 14667.88 16176.79 10687.20 4047.24 25689.49 3577.38 26254.88 25966.14 12286.84 14720.93 33991.54 6156.45 20971.62 15891.59 51
thisisatest053070.47 14468.56 15076.20 11579.78 18551.52 15283.49 17588.58 4057.62 21758.60 22282.79 19751.03 4691.48 6252.84 23162.36 24285.59 192
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12588.63 3666.08 6486.77 392.75 3272.05 191.46 6383.35 1993.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10689.97 9248.03 6791.41 6475.60 6784.14 5289.96 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19474.63 4692.38 3847.75 7091.35 6578.18 5386.85 2591.15 66
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6691.98 4945.10 10291.27 6675.02 7384.56 4990.84 72
3Dnovator+62.71 772.29 11270.50 12177.65 7983.40 9751.29 15887.32 6886.40 7559.01 18958.49 22688.32 12332.40 25991.27 6657.04 20282.15 6590.38 81
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8588.35 12151.58 4091.22 6879.02 4279.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t69.87 15567.88 16175.85 12588.38 2952.35 13486.94 7983.68 14253.70 26855.68 26485.60 16130.07 27991.20 6955.84 21271.02 16483.99 215
ZD-MVS89.55 1453.46 10284.38 12657.02 22873.97 5391.03 6344.57 11491.17 7075.41 7181.78 69
h-mvs3373.95 8272.89 8477.15 9280.17 18050.37 17484.68 14083.33 14868.08 3371.97 7788.65 11842.50 13891.15 7178.82 4457.78 28189.91 98
EC-MVSNet75.30 6675.20 5775.62 12880.98 16049.00 20687.43 6584.68 12163.49 10570.97 9090.15 8842.86 13791.14 7274.33 7881.90 6686.71 168
test1279.24 3986.89 4156.08 4085.16 10672.27 7647.15 7691.10 7385.93 3590.54 78
ZNCC-MVS75.82 6275.02 6178.23 6883.88 8753.80 9486.91 8186.05 8159.71 16867.85 10790.55 7442.23 14291.02 7472.66 9085.29 4389.87 99
ACMMP_NAP76.43 4975.66 5178.73 5281.92 13354.67 7984.06 15885.35 9561.10 14572.99 6391.50 5940.25 16591.00 7576.84 6086.98 2390.51 79
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4290.15 8846.77 8191.00 7573.52 8478.46 10193.44 9
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7391.62 5645.53 9690.99 7774.48 7682.51 6091.23 64
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2395.30 156.18 1790.97 7882.57 2486.22 3493.28 13
HFP-MVS74.37 7773.13 8378.10 7184.30 7753.68 9785.58 10784.36 12756.82 23265.78 12890.56 7340.70 16390.90 7969.18 10380.88 7389.71 100
iter_conf_final71.46 12669.68 13776.81 10286.03 4653.49 10084.73 13774.37 29460.27 16166.28 12184.36 17435.14 23390.87 8065.41 13270.51 16986.05 178
iter_conf0573.51 9372.24 9577.33 8587.93 3655.97 4387.90 5770.81 32568.72 2864.04 15284.36 17447.54 7290.87 8071.11 9567.75 19085.13 197
MSDG59.44 27455.14 29472.32 21374.69 26750.71 16374.39 29473.58 30344.44 33043.40 33777.52 25919.45 34390.87 8031.31 33757.49 28375.38 327
GST-MVS74.87 7373.90 7577.77 7683.30 9953.45 10485.75 10285.29 9959.22 18166.50 11989.85 9440.94 15890.76 8370.94 9683.35 5689.10 116
SD-MVS76.18 5274.85 6480.18 2885.39 5956.90 2485.75 10282.45 16656.79 23474.48 4991.81 5043.72 12490.75 8474.61 7578.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 33088.45 4268.73 10187.45 13859.15 1090.67 8554.83 21687.67 1692.03 40
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6290.52 7645.23 10190.66 8679.37 3980.95 7290.22 86
MSLP-MVS++74.21 7972.25 9480.11 3181.45 15356.47 3386.32 8979.65 21658.19 20266.36 12092.29 4036.11 22190.66 8667.39 11282.49 6193.18 16
CDPH-MVS76.05 5575.19 5878.62 5786.51 4454.98 6987.32 6884.59 12358.62 19770.75 9190.85 7043.10 13590.63 8870.50 9884.51 5190.24 85
CLD-MVS75.60 6375.39 5576.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13788.93 11042.05 14690.58 8976.57 6173.96 13885.73 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16284.88 11471.38 1471.51 8389.15 10850.51 5090.55 9075.71 6578.65 9991.39 59
EI-MVSNet69.70 15968.70 14972.68 20375.00 26448.90 21079.54 25987.16 6161.05 14663.88 15783.74 18345.87 9190.44 9157.42 20064.68 21578.70 292
MVSTER73.25 9672.33 9176.01 12285.54 5653.76 9683.52 16987.16 6167.06 4763.88 15781.66 22152.77 3390.44 9164.66 13664.69 21483.84 222
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8692.75 3245.52 9790.37 9371.15 9485.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8288.63 11950.89 4990.35 9476.00 6379.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tttt051768.33 18266.29 19274.46 15978.08 21649.06 20280.88 24389.08 2154.40 26454.75 27280.77 23051.31 4390.33 9549.35 25458.01 27583.99 215
APD-MVScopyleft76.15 5375.68 5077.54 8188.52 2753.44 10587.26 7385.03 11053.79 26774.91 4491.68 5443.80 12090.31 9674.36 7781.82 6788.87 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMH53.70 1659.78 27155.94 29071.28 23676.59 23948.35 22780.15 25576.11 28049.74 29741.91 34373.45 30916.50 35990.31 9631.42 33657.63 28275.17 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-RMVSNet70.08 14868.01 15876.27 11184.21 8051.22 16087.29 7179.33 22758.96 19163.63 16086.77 14833.29 25290.30 9844.63 28373.96 13887.30 156
region2R73.75 8772.55 8777.33 8583.90 8652.98 12285.54 11084.09 13456.83 23165.10 13490.45 7737.34 20390.24 9968.89 10580.83 7588.77 125
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3892.02 4544.82 11090.23 10080.83 3580.09 8492.08 38
ACMMPR73.76 8672.61 8577.24 9183.92 8552.96 12385.58 10784.29 12856.82 23265.12 13390.45 7737.24 20590.18 10169.18 10380.84 7488.58 129
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3791.72 5249.32 6290.17 10273.46 8582.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2791.09 6255.43 1990.09 10385.01 1280.40 8091.99 43
MVP-Stereo70.97 13470.44 12272.59 20576.03 25051.36 15585.02 12786.99 6460.31 16056.53 25778.92 24740.11 16990.00 10460.00 17290.01 676.41 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5290.91 6842.14 14489.99 10579.30 4079.12 9591.36 61
jason: jason.
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3492.11 4450.90 4789.95 10678.18 5377.54 10793.20 15
EG-PatchMatch MVS62.40 25959.59 26370.81 24573.29 28449.05 20385.81 9884.78 11751.85 28444.19 33273.48 30815.52 36289.85 10740.16 29967.24 19373.54 342
XXY-MVS70.18 14569.28 14572.89 20177.64 22242.88 30885.06 12487.50 5962.58 12162.66 17282.34 21343.64 12689.83 10858.42 18363.70 22385.96 183
XVS72.92 9971.62 10576.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 15589.63 9835.50 22889.78 10965.50 12580.50 7888.16 135
X-MVStestdata65.85 23162.20 23976.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 1554.82 39835.50 22889.78 10965.50 12580.50 7888.16 135
PGM-MVS72.60 10571.20 11376.80 10582.95 11252.82 12583.07 19082.14 16856.51 24063.18 16489.81 9535.68 22789.76 11167.30 11380.19 8387.83 143
test_fmvsm_n_192075.56 6475.54 5375.61 12974.60 27049.51 19681.82 21974.08 29766.52 5580.40 2193.46 1746.95 7889.72 11286.69 775.30 12787.61 149
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 28166.70 11387.07 14540.15 16889.70 11351.23 24385.06 4684.10 211
TR-MVS69.71 15767.85 16475.27 14682.94 11348.48 22387.40 6780.86 19357.15 22764.61 14387.08 14432.67 25789.64 11546.38 27471.55 16087.68 148
131471.11 13169.41 14076.22 11379.32 19150.49 16980.23 25385.14 10859.44 17458.93 21588.89 11233.83 24889.60 11661.49 15577.42 10888.57 130
SDMVSNet71.89 11870.62 12075.70 12781.70 14051.61 14873.89 29688.72 3366.58 5261.64 18282.38 21137.63 19489.48 11777.44 5765.60 20886.01 179
baseline172.51 10872.12 9973.69 18585.05 6544.46 28983.51 17386.13 8071.61 1264.64 14187.97 13055.00 2389.48 11759.07 17556.05 29487.13 158
PAPR75.20 6974.13 7078.41 6488.31 3155.10 6584.31 15085.66 8763.76 9767.55 10890.73 7243.48 12989.40 11966.36 12077.03 10990.73 74
HY-MVS67.03 573.90 8373.14 8176.18 11784.70 7147.36 25275.56 28486.36 7666.27 5970.66 9383.91 18051.05 4589.31 12067.10 11572.61 15091.88 45
fmvsm_s_conf0.5_n74.48 7474.12 7175.56 13176.96 23647.85 24585.32 11469.80 33364.16 8878.74 2893.48 1645.51 9889.29 12186.48 866.62 19889.55 104
PAPM_NR71.80 12169.98 13377.26 9081.54 15053.34 11078.60 26985.25 10253.46 27060.53 19288.66 11545.69 9589.24 12256.49 20679.62 9489.19 113
fmvsm_s_conf0.1_n73.80 8573.26 7875.43 13673.28 28547.80 24684.57 14569.43 33563.34 10778.40 3193.29 2244.73 11389.22 12385.99 966.28 20589.26 109
ECVR-MVScopyleft71.81 12071.00 11574.26 16780.12 18143.49 30084.69 13982.16 16764.02 9064.64 14187.43 13935.04 23589.21 12461.24 15779.66 9290.08 92
mvsmamba66.93 21764.88 22473.09 19575.06 26247.26 25483.36 18269.21 33662.64 12055.68 26481.43 22429.72 28089.20 12563.35 14263.50 22582.79 241
EPP-MVSNet71.14 12970.07 13274.33 16479.18 19446.52 26383.81 16586.49 7256.32 24357.95 23284.90 17054.23 2789.14 12658.14 18869.65 17787.33 154
CostFormer73.89 8472.30 9378.66 5682.36 12856.58 2875.56 28485.30 9866.06 6570.50 9576.88 27357.02 1489.06 12768.27 10968.74 18290.33 82
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 4091.99 4754.07 2989.05 12877.34 5877.00 11092.89 20
Fast-Effi-MVS+72.73 10371.15 11477.48 8282.75 11954.76 7286.77 8380.64 19663.05 11365.93 12684.01 17844.42 11589.03 12956.45 20976.36 11988.64 127
MTAPA72.73 10371.22 11277.27 8981.54 15053.57 9967.06 33681.31 18559.41 17568.39 10390.96 6736.07 22389.01 13073.80 8382.45 6289.23 111
gg-mvs-nofinetune67.43 20164.53 22776.13 11885.95 4747.79 24764.38 34288.28 4439.34 34566.62 11541.27 37958.69 1389.00 13149.64 25286.62 2991.59 51
MVS_Test75.85 5974.93 6378.62 5784.08 8155.20 6183.99 16085.17 10568.07 3573.38 5982.76 19850.44 5189.00 13165.90 12380.61 7691.64 49
MP-MVS-pluss75.54 6575.03 6077.04 9481.37 15552.65 12884.34 14984.46 12561.16 14369.14 9891.76 5139.98 17288.99 13378.19 5184.89 4789.48 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v2v48269.55 16267.64 16775.26 14772.32 29853.83 9384.93 13281.94 17265.37 7560.80 18979.25 24341.62 15288.98 13463.03 14459.51 25682.98 238
Anonymous2023121166.08 22963.67 23273.31 19283.07 10748.75 21486.01 9784.67 12245.27 32456.54 25676.67 27628.06 28988.95 13552.78 23359.95 25082.23 245
v114468.81 17266.82 18074.80 15572.34 29753.46 10284.68 14081.77 17964.25 8660.28 19377.91 25440.23 16688.95 13560.37 16959.52 25581.97 247
AdaColmapbinary67.86 18965.48 21275.00 15288.15 3354.99 6886.10 9476.63 27649.30 29957.80 23586.65 15129.39 28388.94 13745.10 28070.21 17281.06 268
fmvsm_s_conf0.5_n_a73.68 9073.15 7975.29 14475.45 25848.05 23883.88 16368.84 33863.43 10678.60 2993.37 2045.32 9988.92 13885.39 1164.04 21888.89 120
fmvsm_s_conf0.1_n_a72.82 10272.05 10175.12 14970.95 31247.97 24182.72 19668.43 34062.52 12378.17 3293.08 2844.21 11688.86 13984.82 1363.54 22488.54 131
PS-MVSNAJss68.78 17467.17 17773.62 18873.01 28848.33 23084.95 13184.81 11659.30 18058.91 21779.84 23737.77 18988.86 13962.83 14563.12 23583.67 225
MP-MVScopyleft74.99 7274.33 6976.95 10082.89 11553.05 12085.63 10683.50 14757.86 21067.25 11090.24 8243.38 13088.85 14176.03 6282.23 6388.96 118
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test250672.91 10072.43 9074.32 16580.12 18144.18 29583.19 18684.77 11864.02 9065.97 12587.43 13947.67 7188.72 14259.08 17479.66 9290.08 92
ab-mvs70.65 14069.11 14675.29 14480.87 16646.23 27173.48 30085.24 10359.99 16466.65 11480.94 22843.13 13488.69 14363.58 14068.07 18590.95 70
v119267.96 18865.74 20774.63 15671.79 30053.43 10784.06 15880.99 19263.19 11159.56 20277.46 26137.50 20088.65 14458.20 18758.93 26281.79 250
HQP-MVS72.34 11071.44 10975.03 15179.02 19751.56 15088.00 5383.68 14265.45 7064.48 14585.13 16537.35 20188.62 14566.70 11673.12 14484.91 201
HQP4-MVS64.47 14888.61 14684.91 201
TEST985.68 5155.42 5187.59 6284.00 13657.72 21372.99 6390.98 6544.87 10888.58 147
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 21172.99 6390.98 6544.99 10488.58 14778.19 5185.32 4291.34 63
ACMMPcopyleft70.81 13869.29 14475.39 13881.52 15251.92 14283.43 17683.03 15756.67 23758.80 22088.91 11131.92 26688.58 14765.89 12473.39 14285.67 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DP-MVS59.24 27656.12 28868.63 27588.24 3250.35 17682.51 20364.43 34941.10 34346.70 32678.77 24824.75 31588.57 15022.26 36956.29 29166.96 362
CP-MVS72.59 10771.46 10876.00 12382.93 11452.32 13586.93 8082.48 16555.15 25463.65 15990.44 8035.03 23688.53 15168.69 10677.83 10587.15 157
tpm270.82 13768.44 15277.98 7280.78 16856.11 3974.21 29581.28 18760.24 16268.04 10575.27 29152.26 3888.50 15255.82 21368.03 18689.33 108
OPM-MVS70.75 13969.58 13874.26 16775.55 25751.34 15686.05 9583.29 15261.94 13262.95 16885.77 15934.15 24388.44 15365.44 13171.07 16382.99 237
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v867.25 20664.99 22274.04 17272.89 29153.31 11282.37 20780.11 20561.54 13854.29 27776.02 28742.89 13688.41 15458.43 18156.36 28780.39 277
GA-MVS69.04 16666.70 18476.06 12075.11 26052.36 13383.12 18880.23 20363.32 10860.65 19179.22 24430.98 27388.37 15561.25 15666.41 20187.46 152
HPM-MVScopyleft72.60 10571.50 10775.89 12482.02 13151.42 15480.70 24683.05 15656.12 24464.03 15389.53 9937.55 19788.37 15570.48 9980.04 8687.88 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_fmvsmvis_n_192071.29 12870.38 12474.00 17471.04 31148.79 21379.19 26564.62 34862.75 11766.73 11291.99 4740.94 15888.35 15783.00 2073.18 14384.85 203
test_885.72 5055.31 5687.60 6183.88 13957.84 21172.84 6790.99 6444.99 10488.34 158
VPNet72.07 11571.42 11074.04 17278.64 20847.17 25789.91 3187.97 4872.56 964.66 14085.04 16741.83 15188.33 15961.17 15860.97 24786.62 169
thres20068.71 17567.27 17673.02 19684.73 7046.76 26085.03 12687.73 5462.34 12659.87 19583.45 18943.15 13288.32 16031.25 33867.91 18883.98 217
HQP_MVS70.96 13569.91 13474.12 17077.95 21849.57 19185.76 10082.59 16363.60 10162.15 17783.28 19236.04 22488.30 16165.46 12872.34 15284.49 205
plane_prior582.59 16388.30 16165.46 12872.34 15284.49 205
mPP-MVS71.79 12270.38 12476.04 12182.65 12352.06 13784.45 14681.78 17855.59 24962.05 17989.68 9733.48 25088.28 16365.45 13078.24 10487.77 145
v1066.61 22164.20 23073.83 18072.59 29453.37 10881.88 21679.91 21061.11 14454.09 27975.60 28940.06 17088.26 16456.47 20756.10 29379.86 283
OpenMVS_ROBcopyleft53.19 1759.20 27756.00 28968.83 27071.13 31044.30 29283.64 16875.02 29046.42 31746.48 32873.03 31118.69 34788.14 16527.74 35361.80 24374.05 338
PVSNet_BlendedMVS73.42 9473.30 7773.76 18285.91 4851.83 14486.18 9284.24 13265.40 7369.09 9980.86 22946.70 8288.13 16675.43 6865.92 20781.33 264
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9989.33 10546.70 8288.13 16675.43 6881.48 7189.55 104
GeoE69.96 15367.88 16176.22 11381.11 15951.71 14784.15 15476.74 27359.83 16660.91 18784.38 17241.56 15488.10 16851.67 24070.57 16888.84 122
agg_prior85.64 5454.92 7083.61 14672.53 7288.10 168
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22786.41 7469.61 2481.72 1588.16 12655.09 2288.04 17074.12 8086.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v14419267.86 18965.76 20674.16 16971.68 30253.09 11884.14 15580.83 19462.85 11659.21 21177.28 26439.30 17688.00 17158.67 17957.88 27981.40 261
test111171.06 13270.42 12372.97 19879.48 18841.49 32184.82 13682.74 16264.20 8762.98 16787.43 13935.20 23187.92 17258.54 18078.42 10289.49 106
v192192067.45 20065.23 21974.10 17171.51 30552.90 12483.75 16780.44 19962.48 12559.12 21277.13 26536.98 20887.90 17357.53 19858.14 27381.49 255
v7n62.50 25659.27 26772.20 21467.25 33749.83 18877.87 27380.12 20452.50 27848.80 31273.07 31032.10 26287.90 17346.83 27254.92 30478.86 290
test_fmvsmconf_n74.41 7674.05 7375.49 13574.16 27648.38 22682.66 19772.57 31067.05 4875.11 4392.88 3146.35 8587.81 17583.93 1771.71 15790.28 84
v124066.99 21464.68 22573.93 17571.38 30852.66 12783.39 18079.98 20761.97 13158.44 22977.11 26635.25 23087.81 17556.46 20858.15 27181.33 264
thres100view90066.87 21865.42 21671.24 23783.29 10043.15 30581.67 22387.78 5159.04 18855.92 26282.18 21543.73 12287.80 17728.80 34566.36 20282.78 242
tfpn200view967.57 19766.13 19671.89 22884.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20282.78 242
thres40067.40 20466.13 19671.19 23984.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20280.71 273
test_fmvsmconf0.1_n73.69 8973.15 7975.34 13970.71 31348.26 23182.15 20971.83 31466.75 5174.47 5092.59 3644.89 10787.78 18083.59 1871.35 16189.97 95
v14868.24 18566.35 19073.88 17771.76 30151.47 15384.23 15281.90 17663.69 9958.94 21476.44 27843.72 12487.78 18060.63 16255.86 29782.39 244
PMMVS72.98 9872.05 10175.78 12683.57 9048.60 21784.08 15682.85 16161.62 13668.24 10490.33 8128.35 28687.78 18072.71 8976.69 11490.95 70
IS-MVSNet68.80 17367.55 17072.54 20678.50 21143.43 30281.03 23879.35 22559.12 18757.27 24986.71 14946.05 8987.70 18344.32 28575.60 12586.49 171
test_fmvsmconf0.01_n71.97 11770.95 11675.04 15066.21 33947.87 24480.35 25070.08 33065.85 6972.69 6891.68 5439.99 17187.67 18482.03 2769.66 17689.58 103
RRT_MVS63.68 24361.01 25271.70 22973.48 28145.98 27381.19 23576.08 28154.33 26552.84 28879.27 24222.21 33287.65 18554.13 22155.54 30181.46 258
V4267.66 19465.60 21173.86 17870.69 31553.63 9881.50 23078.61 24163.85 9559.49 20577.49 26037.98 18687.65 18562.33 14758.43 26680.29 278
dmvs_re67.61 19566.00 19972.42 21081.86 13543.45 30164.67 34180.00 20669.56 2560.07 19485.00 16834.71 23887.63 18751.48 24166.68 19686.17 177
sd_testset67.79 19265.95 20173.32 19181.70 14046.33 26868.99 32880.30 20266.58 5261.64 18282.38 21130.45 27687.63 18755.86 21165.60 20886.01 179
ET-MVSNet_ETH3D75.23 6874.08 7278.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28690.22 8449.71 5987.62 18972.12 9170.82 16692.82 21
TransMVSNet (Re)62.82 25260.76 25469.02 26773.98 27841.61 31986.36 8879.30 22856.90 22952.53 29076.44 27841.85 15087.60 19038.83 30240.61 35777.86 305
APD-MVS_3200maxsize69.62 16168.23 15673.80 18181.58 14848.22 23281.91 21579.50 21948.21 30564.24 15089.75 9631.91 26787.55 19163.08 14373.85 14085.64 190
Baseline_NR-MVSNet65.49 23364.27 22969.13 26674.37 27441.65 31883.39 18078.85 23259.56 17159.62 20176.88 27340.75 16087.44 19249.99 24855.05 30378.28 301
VPA-MVSNet71.12 13070.66 11972.49 20878.75 20344.43 29187.64 6090.02 1263.97 9365.02 13681.58 22342.14 14487.42 19363.42 14163.38 22985.63 191
fmvsm_l_conf0.5_n_a75.88 5876.07 4875.31 14176.08 24748.34 22885.24 11670.62 32663.13 11281.45 1793.62 1449.98 5687.40 19487.76 676.77 11390.20 88
PVSNet_Blended_VisFu73.40 9572.44 8976.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14485.38 16447.11 7787.38 19567.75 11177.55 10686.81 167
BH-w/o70.02 15068.51 15174.56 15782.77 11850.39 17386.60 8678.14 24959.77 16759.65 19985.57 16239.27 17787.30 19649.86 25074.94 13485.99 181
PCF-MVS61.03 1070.10 14768.40 15375.22 14877.15 23451.99 13979.30 26482.12 16956.47 24161.88 18086.48 15443.98 11787.24 19755.37 21472.79 14986.43 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
fmvsm_l_conf0.5_n75.95 5676.16 4775.31 14176.01 25148.44 22584.98 12871.08 32263.50 10481.70 1693.52 1550.00 5487.18 19887.80 576.87 11290.32 83
PAPM76.76 4676.07 4878.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9688.84 11351.57 4187.16 19965.48 12786.68 2890.15 90
SR-MVS70.92 13669.73 13674.50 15883.38 9850.48 17084.27 15179.35 22548.96 30266.57 11890.45 7733.65 24987.11 20066.42 11874.56 13585.91 184
BH-untuned68.28 18366.40 18973.91 17681.62 14550.01 18385.56 10977.39 26157.63 21657.47 24683.69 18536.36 21987.08 20144.81 28173.08 14784.65 204
EPMVS68.45 17965.44 21577.47 8384.91 6856.17 3871.89 31681.91 17561.72 13560.85 18872.49 31636.21 22087.06 20247.32 26871.62 15889.17 114
LPG-MVS_test66.44 22464.58 22672.02 21874.42 27248.60 21783.07 19080.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
LGP-MVS_train72.02 21874.42 27248.60 21780.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
HyFIR lowres test69.94 15467.58 16877.04 9477.11 23557.29 2081.49 23279.11 23058.27 20158.86 21880.41 23242.33 14086.96 20561.91 15268.68 18386.87 161
AUN-MVS68.20 18666.35 19073.76 18276.37 24047.45 25079.52 26179.52 21860.98 14862.34 17386.02 15636.59 21886.94 20662.32 14853.47 31786.89 160
hse-mvs271.44 12770.68 11873.73 18476.34 24147.44 25179.45 26279.47 22068.08 3371.97 7786.01 15842.50 13886.93 20778.82 4453.46 31886.83 166
thres600view766.46 22365.12 22070.47 24883.41 9443.80 29882.15 20987.78 5159.37 17656.02 26182.21 21443.73 12286.90 20826.51 35764.94 21180.71 273
tfpnnormal61.47 26459.09 26868.62 27676.29 24541.69 31781.14 23785.16 10654.48 26351.32 29873.63 30632.32 26086.89 20921.78 37155.71 29977.29 311
FMVSNet368.84 17067.40 17373.19 19485.05 6548.53 22085.71 10585.36 9460.90 15257.58 24179.15 24542.16 14386.77 21047.25 26963.40 22684.27 209
pm-mvs164.12 23862.56 23668.78 27271.68 30238.87 33382.89 19481.57 18055.54 25153.89 28177.82 25637.73 19286.74 21148.46 26253.49 31680.72 272
tpm cat166.28 22562.78 23576.77 10781.40 15457.14 2270.03 32377.19 26453.00 27458.76 22170.73 33246.17 8686.73 21243.27 28964.46 21686.44 172
FMVSNet267.57 19765.79 20572.90 19982.71 12047.97 24185.15 11984.93 11258.55 19856.71 25478.26 25236.72 21586.67 21346.15 27662.94 23784.07 212
xiu_mvs_v1_base_debu71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base_debi71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
nrg03072.27 11471.56 10674.42 16175.93 25250.60 16686.97 7883.21 15362.75 11767.15 11184.38 17250.07 5386.66 21471.19 9362.37 24185.99 181
tpmvs62.45 25859.42 26571.53 23483.93 8454.32 8570.03 32377.61 25751.91 28253.48 28568.29 34037.91 18786.66 21433.36 32858.27 26973.62 341
UA-Net67.32 20566.23 19470.59 24778.85 20141.23 32473.60 29875.45 28761.54 13866.61 11684.53 17138.73 18286.57 21942.48 29574.24 13683.98 217
test_040256.45 29953.03 30366.69 29476.78 23850.31 17881.76 22069.61 33442.79 33943.88 33372.13 32222.82 32786.46 22016.57 38150.94 32563.31 370
cl____67.43 20165.93 20271.95 22476.33 24248.02 23982.58 19979.12 22961.30 14256.72 25376.92 27146.12 8786.44 22157.98 19056.31 28981.38 263
DIV-MVS_self_test67.43 20165.93 20271.94 22576.33 24248.01 24082.57 20079.11 23061.31 14156.73 25276.92 27146.09 8886.43 22257.98 19056.31 28981.39 262
tt080563.39 24661.31 24869.64 26169.36 32238.87 33378.00 27185.48 8848.82 30355.66 26781.66 22124.38 31786.37 22349.04 25759.36 25983.68 224
GBi-Net67.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
test167.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
FMVSNet164.57 23462.11 24071.96 22177.32 22846.36 26583.52 16983.31 14952.43 27954.42 27576.23 28227.80 29286.20 22442.59 29461.34 24683.32 228
MDTV_nov1_ep1361.56 24481.68 14255.12 6372.41 30878.18 24859.19 18258.85 21969.29 33734.69 23986.16 22736.76 31362.96 236
MVSFormer73.53 9272.19 9777.57 8083.02 10955.24 5881.63 22481.44 18350.28 29276.67 3890.91 6844.82 11086.11 22860.83 16080.09 8491.36 61
test_djsdf63.84 24061.56 24470.70 24668.78 32644.69 28881.63 22481.44 18350.28 29252.27 29376.26 28126.72 29986.11 22860.83 16055.84 29881.29 267
pmmvs659.64 27357.15 27967.09 28866.01 34036.86 34280.50 24778.64 23945.05 32649.05 31073.94 30027.28 29586.10 23043.96 28749.94 32878.31 300
ACMP61.11 966.24 22764.33 22872.00 22074.89 26649.12 20183.18 18779.83 21155.41 25252.29 29282.68 20225.83 30586.10 23060.89 15963.94 22180.78 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS-dyc-post68.27 18466.87 17972.48 20980.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10131.17 27286.09 23260.52 16672.06 15583.19 233
diffmvspermissive75.11 7174.65 6776.46 10978.52 21053.35 10983.28 18479.94 20870.51 1871.64 8188.72 11446.02 9086.08 23377.52 5675.75 12489.96 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM58.35 1264.35 23662.01 24171.38 23574.21 27548.51 22182.25 20879.66 21547.61 30854.54 27480.11 23325.26 31086.00 23451.26 24263.16 23379.64 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVS_fast67.86 18966.28 19372.61 20480.67 17248.34 22881.18 23675.95 28350.81 29059.55 20388.05 12927.86 29185.98 23558.83 17773.58 14183.51 226
ACMH+54.58 1558.55 28855.24 29268.50 27974.68 26845.80 27780.27 25170.21 32947.15 31142.77 34075.48 29016.73 35885.98 23535.10 32354.78 30673.72 340
NR-MVSNet67.25 20665.99 20071.04 24273.27 28643.91 29685.32 11484.75 11966.05 6653.65 28482.11 21645.05 10385.97 23747.55 26656.18 29283.24 231
Vis-MVSNetpermissive70.61 14169.34 14274.42 16180.95 16548.49 22286.03 9677.51 25958.74 19565.55 13187.78 13234.37 24185.95 23852.53 23780.61 7688.80 123
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CANet_DTU73.71 8873.14 8175.40 13782.61 12450.05 18284.67 14279.36 22469.72 2375.39 4190.03 9129.41 28285.93 23967.99 11079.11 9690.22 86
Fast-Effi-MVS+-dtu66.53 22264.10 23173.84 17972.41 29652.30 13684.73 13775.66 28459.51 17256.34 25979.11 24628.11 28885.85 24057.74 19763.29 23083.35 227
eth_miper_zixun_eth66.98 21565.28 21872.06 21775.61 25650.40 17281.00 23976.97 27162.00 12956.99 25176.97 26944.84 10985.58 24158.75 17854.42 30980.21 279
TranMVSNet+NR-MVSNet66.94 21665.61 21070.93 24473.45 28243.38 30383.02 19284.25 13065.31 7758.33 23081.90 21939.92 17385.52 24249.43 25354.89 30583.89 221
sss70.49 14270.13 13171.58 23381.59 14739.02 33280.78 24584.71 12059.34 17766.61 11688.09 12737.17 20685.52 24261.82 15471.02 16490.20 88
jajsoiax63.21 24860.84 25370.32 25268.33 33144.45 29081.23 23481.05 18953.37 27250.96 30277.81 25717.49 35385.49 24459.31 17358.05 27481.02 269
mvs_tets62.96 25160.55 25570.19 25368.22 33444.24 29480.90 24280.74 19552.99 27550.82 30477.56 25816.74 35785.44 24559.04 17657.94 27680.89 270
FIs70.00 15170.24 13069.30 26577.93 22038.55 33583.99 16087.72 5566.86 5057.66 23984.17 17752.28 3785.31 24652.72 23668.80 18184.02 213
mvs_anonymous72.29 11270.74 11776.94 10182.85 11654.72 7578.43 27081.54 18163.77 9661.69 18179.32 24151.11 4485.31 24662.15 15175.79 12290.79 73
RPMNet59.29 27554.25 29874.42 16173.97 27956.57 2960.52 35576.98 26835.72 35757.49 24458.87 36537.73 19285.26 24827.01 35659.93 25181.42 259
UniMVSNet (Re)67.71 19366.80 18170.45 24974.44 27142.93 30782.42 20684.90 11363.69 9959.63 20080.99 22747.18 7585.23 24951.17 24456.75 28683.19 233
cl2268.85 16967.69 16672.35 21278.07 21749.98 18482.45 20578.48 24462.50 12458.46 22777.95 25349.99 5585.17 25062.55 14658.72 26381.90 249
miper_enhance_ethall69.77 15668.90 14872.38 21178.93 20049.91 18583.29 18378.85 23264.90 8059.37 20679.46 23952.77 3385.16 25163.78 13858.72 26382.08 246
无先验85.19 11878.00 25149.08 30085.13 25252.78 23387.45 153
UGNet68.71 17567.11 17873.50 19080.55 17547.61 24884.08 15678.51 24359.45 17365.68 13082.73 20123.78 32085.08 25352.80 23276.40 11587.80 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
miper_ehance_all_eth68.70 17767.58 16872.08 21676.91 23749.48 19782.47 20478.45 24562.68 11958.28 23177.88 25550.90 4785.01 25461.91 15258.72 26381.75 251
c3_l67.97 18766.66 18571.91 22776.20 24649.31 19982.13 21178.00 25161.99 13057.64 24076.94 27049.41 6084.93 25560.62 16357.01 28581.49 255
PatchmatchNetpermissive67.07 21363.63 23377.40 8483.10 10458.03 972.11 31477.77 25458.85 19259.37 20670.83 32937.84 18884.93 25542.96 29169.83 17589.26 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_post16.22 39437.52 19884.72 257
SixPastTwentyTwo54.37 30850.10 31767.21 28770.70 31441.46 32274.73 29164.69 34747.56 30939.12 35369.49 33518.49 35084.69 25831.87 33434.20 37175.48 326
UniMVSNet_NR-MVSNet68.82 17168.29 15570.40 25175.71 25542.59 31184.23 15286.78 6766.31 5858.51 22382.45 20851.57 4184.64 25953.11 22755.96 29583.96 219
DU-MVS66.84 21965.74 20770.16 25473.27 28642.59 31181.50 23082.92 16063.53 10358.51 22382.11 21640.75 16084.64 25953.11 22755.96 29583.24 231
lessismore_v067.98 28164.76 35141.25 32345.75 37136.03 36265.63 34819.29 34584.11 26135.67 31521.24 38678.59 295
test_post170.84 32014.72 39734.33 24283.86 26248.80 258
1112_ss70.05 14969.37 14172.10 21580.77 16942.78 30985.12 12376.75 27259.69 16961.19 18692.12 4247.48 7383.84 26353.04 22968.21 18489.66 101
Effi-MVS+-dtu66.24 22764.96 22370.08 25675.17 25949.64 19082.01 21274.48 29362.15 12757.83 23476.08 28630.59 27583.79 26465.40 13360.93 24876.81 314
PVSNet_057.04 1361.19 26557.24 27873.02 19677.45 22750.31 17879.43 26377.36 26363.96 9447.51 32172.45 31825.03 31283.78 26552.76 23519.22 38884.96 200
CL-MVSNet_self_test62.98 25061.14 25068.50 27965.86 34242.96 30684.37 14782.98 15860.98 14853.95 28072.70 31540.43 16483.71 26641.10 29647.93 33378.83 291
IterMVS-LS66.63 22065.36 21770.42 25075.10 26148.90 21081.45 23376.69 27561.05 14655.71 26377.10 26745.86 9283.65 26757.44 19957.88 27978.70 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TESTMET0.1,172.86 10172.33 9174.46 15981.98 13250.77 16285.13 12085.47 8966.09 6367.30 10983.69 18537.27 20483.57 26865.06 13578.97 9889.05 117
D2MVS63.49 24561.39 24669.77 26069.29 32348.93 20978.89 26777.71 25660.64 15749.70 30772.10 32427.08 29783.48 26954.48 21962.65 23876.90 313
TAMVS69.51 16368.16 15773.56 18976.30 24448.71 21682.57 20077.17 26562.10 12861.32 18584.23 17641.90 14983.46 27054.80 21873.09 14688.50 133
ppachtmachnet_test58.56 28754.34 29671.24 23771.42 30654.74 7381.84 21872.27 31249.02 30145.86 33168.99 33926.27 30183.30 27130.12 34043.23 35275.69 324
CDS-MVSNet70.48 14369.43 13973.64 18677.56 22548.83 21283.51 17377.45 26063.27 10962.33 17485.54 16343.85 11883.29 27257.38 20174.00 13788.79 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
anonymousdsp60.46 26957.65 27568.88 26863.63 35545.09 28372.93 30478.63 24046.52 31551.12 29972.80 31421.46 33783.07 27357.79 19553.97 31178.47 296
FC-MVSNet-test67.49 19967.91 15966.21 29776.06 24833.06 35480.82 24487.18 6064.44 8454.81 27082.87 19550.40 5282.60 27448.05 26466.55 20082.98 238
K. test v354.04 31149.42 32267.92 28368.55 32842.57 31475.51 28663.07 35352.07 28039.21 35264.59 35019.34 34482.21 27537.11 30825.31 38178.97 289
our_test_359.11 27955.08 29571.18 24071.42 30653.29 11381.96 21374.52 29248.32 30442.08 34169.28 33828.14 28782.15 27634.35 32545.68 34778.11 304
ambc62.06 32053.98 37229.38 37035.08 38479.65 21641.37 34559.96 3616.27 38482.15 27635.34 31838.22 36174.65 334
pmmvs463.34 24761.07 25170.16 25470.14 31750.53 16879.97 25671.41 32155.08 25554.12 27878.58 24932.79 25682.09 27850.33 24757.22 28477.86 305
WR-MVS67.58 19666.76 18270.04 25875.92 25345.06 28786.23 9185.28 10064.31 8558.50 22581.00 22644.80 11282.00 27949.21 25655.57 30083.06 236
MVS_111021_LR69.07 16567.91 15972.54 20677.27 22949.56 19379.77 25773.96 30059.33 17960.73 19087.82 13130.19 27881.53 28069.94 10072.19 15486.53 170
LTVRE_ROB45.45 1952.73 31749.74 32061.69 32469.78 32034.99 34444.52 37467.60 34343.11 33843.79 33474.03 29918.54 34981.45 28128.39 35057.94 27668.62 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
CPTT-MVS67.15 20965.84 20471.07 24180.96 16250.32 17781.94 21474.10 29646.18 32057.91 23387.64 13629.57 28181.31 28264.10 13770.18 17381.56 254
UniMVSNet_ETH3D62.51 25560.49 25668.57 27868.30 33240.88 32773.89 29679.93 20951.81 28554.77 27179.61 23824.80 31481.10 28349.93 24961.35 24583.73 223
LCM-MVSNet-Re58.82 28456.54 28365.68 29979.31 19229.09 37261.39 35445.79 37060.73 15537.65 35872.47 31731.42 27081.08 28449.66 25170.41 17086.87 161
Patchmatch-RL test58.72 28554.32 29771.92 22663.91 35444.25 29361.73 35155.19 36257.38 22249.31 30954.24 37037.60 19680.89 28562.19 15047.28 33890.63 75
Test_1112_low_res67.18 20866.23 19470.02 25978.75 20341.02 32583.43 17673.69 30257.29 22358.45 22882.39 21045.30 10080.88 28650.50 24666.26 20688.16 135
Syy-MVS61.51 26361.35 24762.00 32181.73 13830.09 36480.97 24081.02 19060.93 15055.06 26882.64 20335.09 23480.81 28716.40 38258.32 26775.10 331
myMVS_eth3d63.52 24463.56 23463.40 31481.73 13834.28 34780.97 24081.02 19060.93 15055.06 26882.64 20348.00 6980.81 28723.42 36758.32 26775.10 331
pmmvs562.80 25361.18 24967.66 28469.53 32142.37 31682.65 19875.19 28954.30 26652.03 29578.51 25031.64 26980.67 28948.60 26058.15 27179.95 282
MIMVSNet63.12 24960.29 25971.61 23075.92 25346.65 26165.15 33881.94 17259.14 18654.65 27369.47 33625.74 30680.63 29041.03 29769.56 17987.55 150
test_vis1_n_192068.59 17868.31 15469.44 26469.16 32441.51 32084.63 14368.58 33958.80 19373.26 6188.37 12025.30 30980.60 29179.10 4167.55 19186.23 176
新几何173.30 19383.10 10453.48 10171.43 32045.55 32266.14 12287.17 14333.88 24780.54 29248.50 26180.33 8285.88 186
Vis-MVSNet (Re-imp)65.52 23265.63 20965.17 30577.49 22630.54 36175.49 28777.73 25559.34 17752.26 29486.69 15049.38 6180.53 29337.07 30975.28 12884.42 207
PVSNet62.49 869.27 16467.81 16573.64 18684.41 7651.85 14384.63 14377.80 25366.42 5659.80 19784.95 16922.14 33480.44 29455.03 21575.11 13188.62 128
CR-MVSNet62.47 25759.04 26972.77 20273.97 27956.57 2960.52 35571.72 31660.04 16357.49 24465.86 34638.94 17980.31 29542.86 29259.93 25181.42 259
test-LLR69.65 16069.01 14771.60 23178.67 20548.17 23385.13 12079.72 21359.18 18463.13 16582.58 20536.91 21080.24 29660.56 16475.17 12986.39 174
test-mter68.36 18067.29 17471.60 23178.67 20548.17 23385.13 12079.72 21353.38 27163.13 16582.58 20527.23 29680.24 29660.56 16475.17 12986.39 174
UnsupCasMVSNet_bld53.86 31250.53 31663.84 31063.52 35634.75 34571.38 31781.92 17446.53 31438.95 35457.93 36620.55 34080.20 29839.91 30034.09 37276.57 319
Patchmtry56.56 29852.95 30567.42 28672.53 29550.59 16759.05 35971.72 31637.86 35146.92 32465.86 34638.94 17980.06 29936.94 31146.72 34371.60 352
OurMVSNet-221017-052.39 32048.73 32363.35 31565.21 34638.42 33668.54 33164.95 34638.19 34839.57 35171.43 32613.23 36579.92 30037.16 30640.32 35871.72 351
UnsupCasMVSNet_eth57.56 29355.15 29364.79 30864.57 35233.12 35373.17 30383.87 14058.98 19041.75 34470.03 33422.54 32879.92 30046.12 27735.31 36581.32 266
patchmatchnet-post59.74 36238.41 18479.91 302
SCA63.84 24060.01 26275.32 14078.58 20957.92 1061.61 35277.53 25856.71 23557.75 23870.77 33031.97 26479.91 30248.80 25856.36 28788.13 138
LS3D56.40 30053.82 30064.12 30981.12 15845.69 27973.42 30166.14 34435.30 36143.24 33979.88 23522.18 33379.62 30419.10 37764.00 22067.05 361
tpmrst71.04 13369.77 13574.86 15483.19 10355.86 4675.64 28378.73 23867.88 3764.99 13873.73 30249.96 5779.56 30565.92 12267.85 18989.14 115
bld_raw_dy_0_6459.75 27257.01 28267.96 28266.73 33845.30 28177.59 27559.97 35850.49 29147.15 32377.03 26817.45 35479.06 30656.92 20459.76 25479.51 285
IterMVS63.77 24261.67 24270.08 25672.68 29351.24 15980.44 24875.51 28560.51 15851.41 29773.70 30532.08 26378.91 30754.30 22054.35 31080.08 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ADS-MVSNet56.17 30151.95 31168.84 26980.60 17353.07 11955.03 36670.02 33144.72 32751.00 30061.19 35822.83 32578.88 30828.54 34853.63 31374.57 335
USDC54.36 30951.23 31363.76 31164.29 35337.71 33962.84 34973.48 30756.85 23035.47 36371.94 3259.23 37278.43 30938.43 30348.57 33075.13 330
Anonymous2023120659.08 28057.59 27663.55 31268.77 32732.14 35980.26 25279.78 21250.00 29649.39 30872.39 31926.64 30078.36 31033.12 33157.94 27680.14 280
XVG-OURS61.88 26159.34 26669.49 26265.37 34446.27 26964.80 34073.49 30547.04 31257.41 24882.85 19625.15 31178.18 31153.00 23064.98 21084.01 214
XVG-ACMP-BASELINE56.03 30252.85 30665.58 30061.91 36040.95 32663.36 34472.43 31145.20 32546.02 32974.09 2989.20 37378.12 31245.13 27958.27 26977.66 308
XVG-OURS-SEG-HR62.02 26059.54 26469.46 26365.30 34545.88 27465.06 33973.57 30446.45 31657.42 24783.35 19126.95 29878.09 31353.77 22464.03 21984.42 207
PatchT56.60 29752.97 30467.48 28572.94 29046.16 27257.30 36373.78 30138.77 34754.37 27657.26 36837.52 19878.06 31432.02 33352.79 32078.23 303
KD-MVS_2432*160059.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
miper_refine_blended59.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
miper_lstm_enhance63.91 23962.30 23868.75 27375.06 26246.78 25969.02 32781.14 18859.68 17052.76 28972.39 31940.71 16277.99 31756.81 20553.09 31981.48 257
testgi54.25 31052.57 30959.29 33462.76 35821.65 38472.21 31170.47 32753.25 27341.94 34277.33 26314.28 36377.95 31829.18 34451.72 32478.28 301
JIA-IIPM52.33 32147.77 32866.03 29871.20 30946.92 25840.00 38176.48 27837.10 35246.73 32537.02 38132.96 25377.88 31935.97 31452.45 32273.29 344
OMC-MVS65.97 23065.06 22168.71 27472.97 28942.58 31378.61 26875.35 28854.72 26059.31 20886.25 15533.30 25177.88 31957.99 18967.05 19485.66 189
testdata277.81 32145.64 278
PLCcopyleft52.38 1860.89 26658.97 27066.68 29581.77 13745.70 27878.96 26674.04 29943.66 33547.63 31883.19 19423.52 32377.78 32237.47 30460.46 24976.55 320
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test0.0.03 162.54 25462.44 23762.86 31872.28 29929.51 36982.93 19378.78 23559.18 18453.07 28782.41 20936.91 21077.39 32337.45 30558.96 26181.66 253
pmmvs-eth3d55.97 30352.78 30765.54 30161.02 36246.44 26475.36 28867.72 34249.61 29843.65 33567.58 34221.63 33677.04 32444.11 28644.33 34973.15 346
TAPA-MVS56.12 1461.82 26260.18 26166.71 29378.48 21237.97 33875.19 28976.41 27946.82 31357.04 25086.52 15327.67 29477.03 32526.50 35867.02 19585.14 196
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
testing359.97 27060.19 26059.32 33377.60 22330.01 36681.75 22181.79 17753.54 26950.34 30579.94 23448.99 6376.91 32617.19 38050.59 32671.03 356
PatchMatch-RL56.66 29653.75 30165.37 30477.91 22145.28 28269.78 32560.38 35641.35 34247.57 31973.73 30216.83 35676.91 32636.99 31059.21 26073.92 339
FMVSNet558.61 28656.45 28465.10 30677.20 23339.74 32974.77 29077.12 26650.27 29443.28 33867.71 34126.15 30476.90 32836.78 31254.78 30678.65 294
dp64.41 23561.58 24372.90 19982.40 12654.09 9172.53 30676.59 27760.39 15955.68 26470.39 33335.18 23276.90 32839.34 30161.71 24487.73 146
test_cas_vis1_n_192067.10 21066.60 18768.59 27765.17 34743.23 30483.23 18569.84 33255.34 25370.67 9287.71 13424.70 31676.66 33078.57 4864.20 21785.89 185
dmvs_testset57.65 29258.21 27355.97 34474.62 2699.82 40063.75 34363.34 35267.23 4548.89 31183.68 18739.12 17876.14 33123.43 36659.80 25381.96 248
MDA-MVSNet-bldmvs51.56 32347.75 32963.00 31671.60 30447.32 25369.70 32672.12 31343.81 33427.65 38063.38 35221.97 33575.96 33227.30 35532.19 37365.70 367
MVS-HIRNet49.01 32844.71 33261.92 32376.06 24846.61 26263.23 34654.90 36324.77 37533.56 36836.60 38321.28 33875.88 33329.49 34262.54 23963.26 371
CMPMVSbinary40.41 2155.34 30552.64 30863.46 31360.88 36343.84 29761.58 35371.06 32330.43 36936.33 36074.63 29524.14 31975.44 33448.05 26466.62 19871.12 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ADS-MVSNet255.21 30751.44 31266.51 29680.60 17349.56 19355.03 36665.44 34544.72 32751.00 30061.19 35822.83 32575.41 33528.54 34853.63 31374.57 335
CNLPA60.59 26858.44 27267.05 29079.21 19347.26 25479.75 25864.34 35042.46 34151.90 29683.94 17927.79 29375.41 33537.12 30759.49 25778.47 296
test20.0355.22 30654.07 29958.68 33663.14 35725.00 37777.69 27474.78 29152.64 27643.43 33672.39 31926.21 30274.76 33729.31 34347.05 34176.28 322
WR-MVS_H58.91 28358.04 27461.54 32569.07 32533.83 35176.91 27881.99 17151.40 28748.17 31374.67 29440.23 16674.15 33831.78 33548.10 33176.64 318
MDA-MVSNet_test_wron53.82 31349.95 31965.43 30270.13 31849.05 20372.30 30971.65 31944.23 33331.85 37363.13 35323.68 32274.01 33933.25 33039.35 36073.23 345
YYNet153.82 31349.96 31865.41 30370.09 31948.95 20772.30 30971.66 31844.25 33231.89 37263.07 35423.73 32173.95 34033.26 32939.40 35973.34 343
COLMAP_ROBcopyleft43.60 2050.90 32548.05 32659.47 33267.81 33540.57 32871.25 31862.72 35536.49 35636.19 36173.51 30713.48 36473.92 34120.71 37350.26 32763.92 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PEN-MVS58.35 29057.15 27961.94 32267.55 33634.39 34677.01 27778.35 24751.87 28347.72 31776.73 27533.91 24573.75 34234.03 32647.17 33977.68 307
F-COLMAP55.96 30453.65 30262.87 31772.76 29242.77 31074.70 29370.37 32840.03 34441.11 34879.36 24017.77 35273.70 34332.80 33253.96 31272.15 348
Patchmatch-test53.33 31648.17 32568.81 27173.31 28342.38 31542.98 37658.23 35932.53 36338.79 35570.77 33039.66 17473.51 34425.18 36052.06 32390.55 76
TinyColmap48.15 33044.49 33459.13 33565.73 34338.04 33763.34 34562.86 35438.78 34629.48 37567.23 3446.46 38373.30 34524.59 36241.90 35566.04 365
DTE-MVSNet57.03 29555.73 29160.95 33065.94 34132.57 35775.71 28277.09 26751.16 28946.65 32776.34 28032.84 25573.22 34630.94 33944.87 34877.06 312
CP-MVSNet58.54 28957.57 27761.46 32668.50 32933.96 35076.90 27978.60 24251.67 28647.83 31676.60 27734.99 23772.79 34735.45 31647.58 33577.64 309
PS-CasMVS58.12 29157.03 28161.37 32768.24 33333.80 35276.73 28078.01 25051.20 28847.54 32076.20 28532.85 25472.76 34835.17 32147.37 33777.55 310
EPNet_dtu66.25 22666.71 18364.87 30778.66 20734.12 34982.80 19575.51 28561.75 13464.47 14886.90 14637.06 20772.46 34943.65 28869.63 17888.02 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm68.36 18067.48 17270.97 24379.93 18451.34 15676.58 28178.75 23767.73 4063.54 16374.86 29348.33 6472.36 35053.93 22363.71 22289.21 112
Anonymous2024052151.65 32248.42 32461.34 32856.43 36939.65 33173.57 29973.47 30836.64 35536.59 35963.98 35110.75 36972.25 35135.35 31749.01 32972.11 349
MIMVSNet150.35 32647.81 32757.96 33861.53 36127.80 37567.40 33474.06 29843.25 33733.31 37165.38 34916.03 36071.34 35221.80 37047.55 33674.75 333
KD-MVS_self_test49.24 32746.85 33056.44 34254.32 37022.87 38057.39 36273.36 30944.36 33137.98 35759.30 36418.97 34671.17 35333.48 32742.44 35375.26 328
EU-MVSNet52.63 31850.72 31558.37 33762.69 35928.13 37472.60 30575.97 28230.94 36840.76 35072.11 32320.16 34170.80 35435.11 32246.11 34576.19 323
testdata67.08 28977.59 22445.46 28069.20 33744.47 32971.50 8488.34 12231.21 27170.76 35552.20 23875.88 12185.03 198
旧先验281.73 22245.53 32374.66 4570.48 35658.31 185
new-patchmatchnet48.21 32946.55 33153.18 34857.73 36718.19 39270.24 32171.02 32445.70 32133.70 36760.23 36018.00 35169.86 35727.97 35234.35 36971.49 354
CVMVSNet60.85 26760.44 25762.07 31975.00 26432.73 35679.54 25973.49 30536.98 35356.28 26083.74 18329.28 28469.53 35846.48 27363.23 23183.94 220
N_pmnet41.25 33739.77 34045.66 35668.50 3290.82 40672.51 3070.38 40535.61 35835.26 36461.51 35720.07 34267.74 35923.51 36540.63 35668.42 360
pmmvs345.53 33541.55 33957.44 33948.97 38039.68 33070.06 32257.66 36028.32 37134.06 36657.29 3678.50 37666.85 36034.86 32434.26 37065.80 366
PM-MVS46.92 33243.76 33756.41 34352.18 37432.26 35863.21 34738.18 38137.99 35040.78 34966.20 3455.09 38665.42 36148.19 26341.99 35471.54 353
WB-MVS37.41 34236.37 34340.54 36254.23 37110.43 39965.29 33743.75 37334.86 36227.81 37954.63 36924.94 31363.21 3626.81 39415.00 38947.98 381
Gipumacopyleft27.47 35124.26 35637.12 36660.55 36429.17 37111.68 39360.00 35714.18 38510.52 39415.12 3952.20 39563.01 3638.39 38935.65 36419.18 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_fmvs1_n52.55 31951.19 31456.65 34151.90 37530.14 36367.66 33342.84 37532.27 36562.30 17582.02 2189.12 37460.84 36457.82 19454.75 30878.99 288
test_fmvs153.60 31552.54 31056.78 34058.07 36530.26 36268.95 32942.19 37632.46 36463.59 16182.56 20711.55 36660.81 36558.25 18655.27 30279.28 286
EGC-MVSNET33.75 34630.42 35043.75 35964.94 35036.21 34360.47 35740.70 3790.02 3990.10 40053.79 3717.39 37760.26 36611.09 38735.23 36734.79 385
ANet_high34.39 34529.59 35148.78 35230.34 39422.28 38155.53 36563.79 35138.11 34915.47 38736.56 3846.94 37959.98 36713.93 3845.64 39864.08 368
AllTest47.32 33144.66 33355.32 34665.08 34837.50 34062.96 34854.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
TestCases55.32 34665.08 34837.50 34054.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
SSC-MVS35.20 34434.30 34637.90 36452.58 3738.65 40261.86 35041.64 37731.81 36725.54 38152.94 37423.39 32459.28 3706.10 39512.86 39045.78 383
CHOSEN 280x42057.53 29456.38 28760.97 32974.01 27748.10 23746.30 37354.31 36448.18 30650.88 30377.43 26238.37 18559.16 37154.83 21663.14 23475.66 325
test_vis1_n51.19 32449.66 32155.76 34551.26 37629.85 36767.20 33538.86 38032.12 36659.50 20479.86 2368.78 37558.23 37256.95 20352.46 32179.19 287
IterMVS-SCA-FT59.12 27858.81 27160.08 33170.68 31645.07 28480.42 24974.25 29543.54 33650.02 30673.73 30231.97 26456.74 37351.06 24553.60 31578.42 298
test_fmvs245.89 33344.32 33550.62 35145.85 38424.70 37858.87 36137.84 38325.22 37452.46 29174.56 2967.07 37854.69 37449.28 25547.70 33472.48 347
TDRefinement40.91 33838.37 34248.55 35350.45 37833.03 35558.98 36050.97 36828.50 37029.89 37467.39 3436.21 38554.51 37517.67 37935.25 36658.11 372
PMMVS226.71 35322.98 35837.87 36536.89 3888.51 40342.51 37729.32 39219.09 38113.01 38937.54 3802.23 39453.11 37614.54 38311.71 39151.99 378
DSMNet-mixed38.35 34035.36 34547.33 35448.11 38214.91 39637.87 38236.60 38419.18 38034.37 36559.56 36315.53 36153.01 37720.14 37546.89 34274.07 337
ITE_SJBPF51.84 34958.03 36631.94 36053.57 36736.67 35441.32 34675.23 29211.17 36851.57 37825.81 35948.04 33272.02 350
test_vis1_rt40.29 33938.64 34145.25 35748.91 38130.09 36459.44 35827.07 39424.52 37638.48 35651.67 3756.71 38149.44 37944.33 28446.59 34456.23 373
PMVScopyleft19.57 2225.07 35522.43 36032.99 37123.12 40122.98 37940.98 37935.19 38615.99 38411.95 39335.87 3851.47 39949.29 3805.41 39731.90 37426.70 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
new_pmnet33.56 34731.89 34938.59 36349.01 37920.42 38551.01 36937.92 38220.58 37723.45 38246.79 3776.66 38249.28 38120.00 37631.57 37546.09 382
LCM-MVSNet28.07 34923.85 35740.71 36027.46 39918.93 38730.82 38846.19 36912.76 38716.40 38534.70 3861.90 39648.69 38220.25 37424.22 38254.51 375
test_fmvs337.95 34135.75 34444.55 35835.50 39018.92 38848.32 37034.00 38818.36 38241.31 34761.58 3562.29 39348.06 38342.72 29337.71 36266.66 363
RPSCF45.77 33444.13 33650.68 35057.67 36829.66 36854.92 36845.25 37226.69 37345.92 33075.92 28817.43 35545.70 38427.44 35445.95 34676.67 315
mvsany_test143.38 33642.57 33845.82 35550.96 37726.10 37655.80 36427.74 39327.15 37247.41 32274.39 29718.67 34844.95 38544.66 28236.31 36366.40 364
FPMVS35.40 34333.67 34740.57 36146.34 38328.74 37341.05 37857.05 36120.37 37922.27 38353.38 3726.87 38044.94 3868.62 38847.11 34048.01 380
APD_test126.46 35424.41 35532.62 37237.58 38721.74 38340.50 38030.39 39011.45 38916.33 38643.76 3781.63 39841.62 38711.24 38626.82 38034.51 386
E-PMN19.16 36018.40 36421.44 37736.19 38913.63 39747.59 37130.89 38910.73 3905.91 39716.59 3933.66 38939.77 3885.95 3968.14 39310.92 393
EMVS18.42 36117.66 36520.71 37834.13 39112.64 39846.94 37229.94 39110.46 3925.58 39814.93 3964.23 38838.83 3895.24 3987.51 39510.67 394
test_vis3_rt24.79 35622.95 35930.31 37328.59 39618.92 38837.43 38317.27 40112.90 38621.28 38429.92 3901.02 40036.35 39028.28 35129.82 37835.65 384
MVEpermissive16.60 2317.34 36313.39 36629.16 37428.43 39719.72 38613.73 39223.63 3977.23 3957.96 39521.41 3910.80 40136.08 3916.97 39210.39 39231.69 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method24.09 35721.07 36133.16 37027.67 3988.35 40426.63 39035.11 3873.40 39614.35 38836.98 3823.46 39035.31 39219.08 37822.95 38355.81 374
testf121.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
APD_test221.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
test_f27.12 35224.85 35333.93 36926.17 40015.25 39530.24 38922.38 39812.53 38828.23 37749.43 3762.59 39234.34 39525.12 36126.99 37952.20 377
mvsany_test328.00 35025.98 35234.05 36828.97 39515.31 39434.54 38518.17 39916.24 38329.30 37653.37 3732.79 39133.38 39630.01 34120.41 38753.45 376
LF4IMVS33.04 34832.55 34834.52 36740.96 38522.03 38244.45 37535.62 38520.42 37828.12 37862.35 3555.03 38731.88 39721.61 37234.42 36849.63 379
DeepMVS_CXcopyleft13.10 37921.34 4028.99 40110.02 40310.59 3917.53 39630.55 3891.82 39714.55 3986.83 3937.52 39415.75 392
wuyk23d9.11 3658.77 36910.15 38040.18 38616.76 39320.28 3911.01 4042.58 3972.66 3990.98 3990.23 40412.49 3994.08 3996.90 3961.19 396
tmp_tt9.44 36410.68 3675.73 3812.49 4034.21 40510.48 39418.04 4000.34 39812.59 39020.49 39211.39 3677.03 40013.84 3856.46 3975.95 395
test_blank0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
cdsmvs_eth3d_5k18.33 36224.44 3540.00 3840.00 4050.00 4080.00 39589.40 160.00 4000.00 40392.02 4538.55 1830.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.15 3694.20 3720.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 40237.77 1890.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
testmvs6.14 3678.18 3700.01 3820.01 4040.00 40873.40 3020.00 4060.00 4000.02 4010.15 4000.00 4050.00 4010.02 4000.00 3990.02 397
test1236.01 3688.01 3710.01 3820.00 4050.01 40771.93 3150.00 4060.00 4000.02 4010.11 4010.00 4050.00 4010.02 4000.00 3990.02 397
ab-mvs-re7.68 36610.24 3680.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 40392.12 420.00 4050.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
WAC-MVS34.28 34722.56 368
FOURS183.24 10149.90 18684.98 12878.76 23647.71 30773.42 58
test_one_060189.39 2257.29 2088.09 4657.21 22682.06 1293.39 1854.94 24
eth-test20.00 405
eth-test0.00 405
RE-MVS-def66.66 18580.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10129.28 28460.52 16672.06 15583.19 233
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 2187.60 1792.44 29
save fliter85.35 6056.34 3689.31 3981.46 18261.55 137
test072689.40 2057.45 1792.32 788.63 3657.71 21483.14 993.96 655.17 20
GSMVS88.13 138
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 18188.13 138
sam_mvs35.99 226
MTGPAbinary81.31 185
MTMP87.27 7215.34 402
test9_res78.72 4785.44 4191.39 59
agg_prior275.65 6685.11 4591.01 68
test_prior456.39 3587.15 75
test_prior289.04 4261.88 13373.55 5691.46 6148.01 6874.73 7485.46 40
新几何281.61 226
旧先验181.57 14947.48 24971.83 31488.66 11536.94 20978.34 10388.67 126
原ACMM283.77 166
test22279.36 18950.97 16177.99 27267.84 34142.54 34062.84 16986.53 15230.26 27776.91 11185.23 195
segment_acmp44.97 106
testdata177.55 27664.14 89
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 224
plane_prior483.28 192
plane_prior348.95 20764.01 9262.15 177
plane_prior285.76 10063.60 101
plane_prior178.31 215
plane_prior49.57 19187.43 6564.57 8372.84 148
n20.00 406
nn0.00 406
door-mid41.31 378
test1184.25 130
door43.27 374
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 145
ACMP_Plane79.02 19788.00 5365.45 7064.48 145
BP-MVS66.70 116
HQP3-MVS83.68 14273.12 144
HQP2-MVS37.35 201
NP-MVS78.76 20250.43 17185.12 166
MDTV_nov1_ep13_2view43.62 29971.13 31954.95 25859.29 21036.76 21246.33 27587.32 155
ACMMP++_ref63.20 232
ACMMP++59.38 258
Test By Simon39.38 175