This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16499.80 2699.94 18
ACMMP_NAP96.59 3896.18 4597.81 3698.82 8193.55 6898.88 13597.59 11690.66 12297.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5799.16 9797.65 10289.55 16099.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MTAPA96.09 5195.80 6196.96 6999.29 5591.19 11397.23 26997.45 14492.58 8194.39 13099.24 2586.43 11599.99 596.22 8599.40 6399.71 51
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8194.16 4799.30 999.49 993.32 1899.98 9
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
MP-MVScopyleft96.00 5395.82 5896.54 9399.47 4690.13 14699.36 7697.41 15190.64 12595.49 11098.95 7185.51 13099.98 996.00 9299.59 5099.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS95.90 6195.75 6396.38 10399.58 3089.41 16699.26 8697.41 15190.66 12294.82 12098.95 7186.15 12199.98 995.24 10999.64 4099.74 47
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
DP-MVS Recon95.85 6295.15 7797.95 3299.87 294.38 5499.60 3997.48 13986.58 24494.42 12899.13 4687.36 9099.98 993.64 13998.33 10899.48 81
AdaColmapbinary93.82 12593.06 13396.10 11799.88 189.07 17198.33 20197.55 12386.81 24090.39 19398.65 10075.09 23899.98 993.32 14797.53 12599.26 103
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
ZNCC-MVS96.09 5195.81 6096.95 7099.42 4791.19 11399.55 4597.53 12789.72 15195.86 10098.94 7486.59 10999.97 2195.13 11099.56 5199.68 56
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
region2R96.30 4696.17 4896.70 8399.70 790.31 13899.46 6097.66 9590.55 12897.07 7299.07 5386.85 10299.97 2195.43 10399.74 2999.81 33
API-MVS94.78 9594.18 9896.59 8999.21 6190.06 15198.80 14297.78 7383.59 29593.85 13999.21 2983.79 15399.97 2192.37 15999.00 8099.74 47
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
HFP-MVS96.42 4296.26 4296.90 7199.69 890.96 12499.47 5697.81 6890.54 12996.88 7499.05 5687.57 8299.96 2895.65 9699.72 3199.78 38
PHI-MVS96.65 3796.46 3897.21 5699.34 5091.77 10199.70 2798.05 4686.48 24998.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
GST-MVS95.97 5695.66 6696.90 7199.49 4591.22 11199.45 6297.48 13989.69 15295.89 9798.72 9386.37 11699.95 3194.62 12599.22 7199.52 77
ACMMPR96.28 4796.14 5296.73 8099.68 990.47 13699.47 5697.80 7090.54 12996.83 7999.03 5886.51 11399.95 3195.65 9699.72 3199.75 46
ACMMPcopyleft94.67 10194.30 9295.79 13099.25 5788.13 19698.41 19098.67 2290.38 13491.43 17498.72 9382.22 18899.95 3193.83 13695.76 15899.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4797.59 11792.91 8599.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 89
patch_mono-297.10 2697.97 894.49 17799.21 6183.73 29299.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
MP-MVS-pluss95.80 6495.30 7297.29 5298.95 7692.66 8898.59 17097.14 17588.95 17693.12 15099.25 2385.62 12799.94 3496.56 8199.48 5599.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22898.71 8578.11 35099.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
test_fmvsm_n_192097.08 2797.55 1495.67 13597.94 10589.61 16399.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 202
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 66
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4897.51 12292.78 8799.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 74
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14897.37 12989.16 16899.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 222
test_fmvsmvis_n_192095.47 7395.40 7195.70 13394.33 25390.22 14299.70 2796.98 19396.80 792.75 15498.89 8082.46 18499.92 4098.36 4098.33 10896.97 219
PGM-MVS95.85 6295.65 6896.45 9899.50 4289.77 15998.22 20998.90 1389.19 16896.74 8298.95 7185.91 12599.92 4093.94 13299.46 5699.66 60
CP-MVS96.22 4896.15 5196.42 10099.67 1089.62 16299.70 2797.61 11090.07 14496.00 9499.16 3887.43 8599.92 4096.03 9199.72 3199.70 52
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14796.51 16789.01 17499.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 218
test_vis1_n_192093.08 15093.42 12392.04 24196.31 17679.36 33899.83 1096.06 24896.72 998.53 3398.10 13158.57 34499.91 4597.86 5598.79 9596.85 221
MVS_030497.53 1497.15 2298.67 1197.30 13296.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 73
PAPR96.35 4395.82 5897.94 3399.63 1894.19 5899.42 6897.55 12392.43 8493.82 14199.12 4887.30 9299.91 4594.02 13199.06 7699.74 47
MAR-MVS94.43 10994.09 10095.45 14199.10 6887.47 21298.39 19797.79 7288.37 19594.02 13699.17 3778.64 22399.91 4592.48 15898.85 9098.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
无先验98.52 17597.82 6587.20 23099.90 5087.64 21299.85 30
PAPM_NR95.43 7495.05 8196.57 9299.42 4790.14 14498.58 17297.51 13390.65 12492.44 15898.90 7887.77 8199.90 5090.88 17299.32 6599.68 56
新几何197.40 4998.92 7792.51 9397.77 7585.52 26296.69 8499.06 5588.08 7699.89 5384.88 24399.62 4599.79 36
test_fmvsmconf_n96.78 3496.84 2996.61 8795.99 19290.25 13999.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
testdata299.88 5484.16 253
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6599.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DP-MVS88.75 23786.56 25695.34 14598.92 7787.45 21397.64 25493.52 35170.55 37581.49 29497.25 16574.43 24499.88 5471.14 34994.09 17498.67 156
XVS96.47 4196.37 4096.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9699.43 6099.78 38
X-MVStestdata90.69 19888.66 22196.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7529.59 40987.37 8799.87 5895.65 9699.43 6099.78 38
PVSNet_BlendedMVS93.36 14093.20 13093.84 20598.77 8391.61 10599.47 5698.04 4891.44 10794.21 13292.63 28083.50 15699.87 5897.41 6183.37 27790.05 339
PVSNet_Blended95.94 5995.66 6696.75 7898.77 8391.61 10599.88 498.04 4893.64 6494.21 13297.76 13983.50 15699.87 5897.41 6197.75 12098.79 147
QAPM91.41 18189.49 20297.17 5895.66 20393.42 7298.60 16897.51 13380.92 33681.39 29697.41 15872.89 26199.87 5882.33 27498.68 9798.21 182
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 15194.35 25289.10 17099.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 225
test_cas_vis1_n_192093.86 12493.74 11694.22 19095.39 21386.08 24999.73 2396.07 24796.38 1797.19 7097.78 13865.46 31999.86 6396.71 7498.92 8696.73 223
CSCG94.87 9294.71 8595.36 14499.54 3686.49 23299.34 7898.15 4082.71 31190.15 19699.25 2389.48 5799.86 6394.97 11698.82 9199.72 50
PLCcopyleft91.07 394.23 11294.01 10294.87 16399.17 6387.49 21199.25 8796.55 21388.43 19391.26 17898.21 12885.92 12399.86 6389.77 18897.57 12297.24 209
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15292.06 30288.94 17899.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 223
DeepC-MVS91.02 494.56 10693.92 11096.46 9697.16 14290.76 12898.39 19797.11 17993.92 5288.66 20998.33 12178.14 22599.85 6795.02 11398.57 10298.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10292.42 29689.92 15599.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 88
test_fmvs192.35 16392.94 13890.57 27497.19 13975.43 35999.55 4594.97 31595.20 3396.82 8097.57 15159.59 34299.84 6997.30 6398.29 11196.46 233
CANet_DTU94.31 11193.35 12597.20 5797.03 15194.71 4698.62 16495.54 29095.61 2797.21 6798.47 11671.88 26999.84 6988.38 20397.46 12797.04 216
CNLPA93.64 13292.74 14196.36 10598.96 7590.01 15499.19 9195.89 26986.22 25289.40 20498.85 8380.66 20599.84 6988.57 20196.92 13899.24 104
MVS93.92 12092.28 14998.83 795.69 20196.82 896.22 30698.17 3784.89 27584.34 25098.61 10579.32 21599.83 7393.88 13499.43 6099.86 29
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11598.24 12588.17 7299.83 7396.11 8999.60 4999.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
LS3D90.19 20788.72 21994.59 17698.97 7386.33 24096.90 28196.60 20774.96 36384.06 25398.74 9075.78 23599.83 7374.93 32697.57 12297.62 199
test_fmvs1_n91.07 18991.41 16990.06 28894.10 25974.31 36399.18 9394.84 31994.81 3596.37 9097.46 15550.86 37499.82 7697.14 6697.90 11496.04 240
3Dnovator87.35 1193.17 14891.77 16297.37 5195.41 21193.07 7898.82 13997.85 6091.53 10482.56 27097.58 15071.97 26899.82 7691.01 17099.23 7099.22 107
OpenMVScopyleft85.28 1490.75 19688.84 21696.48 9593.58 27893.51 7098.80 14297.41 15182.59 31278.62 32497.49 15468.00 29799.82 7684.52 24998.55 10396.11 239
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7499.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
CHOSEN 1792x268894.35 11093.82 11495.95 12597.40 12788.74 18698.41 19098.27 3192.18 9391.43 17496.40 20578.88 21899.81 7993.59 14097.81 11699.30 99
131493.44 13691.98 15797.84 3495.24 21594.38 5496.22 30697.92 5590.18 13882.28 27897.71 14377.63 22899.80 8191.94 16398.67 9899.34 96
test_fmvsmconf0.01_n94.14 11493.51 12096.04 11986.79 36989.19 16799.28 8595.94 25795.70 2195.50 10998.49 11273.27 25699.79 8298.28 4598.32 11099.15 111
3Dnovator+87.72 893.43 13791.84 16098.17 2395.73 20095.08 3498.92 13297.04 18691.42 10981.48 29597.60 14874.60 24199.79 8290.84 17398.97 8299.64 64
PCF-MVS89.78 591.26 18489.63 19996.16 11695.44 20991.58 10795.29 32696.10 24385.07 27082.75 26497.45 15678.28 22499.78 8480.60 28995.65 16197.12 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.96.95 2996.91 2697.07 5998.88 7991.62 10499.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
MVS_111021_LR95.78 6595.94 5495.28 14998.19 9887.69 20398.80 14299.26 793.39 6795.04 11898.69 9884.09 15099.76 8696.96 7199.06 7698.38 170
MVS_111021_HR96.69 3596.69 3396.72 8298.58 8891.00 12399.14 10699.45 193.86 5695.15 11698.73 9188.48 6799.76 8697.23 6599.56 5199.40 89
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10599.86 1299.97 7
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6397.45 14489.60 15698.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17497.00 7398.97 6488.14 7599.71 9088.23 20599.62 4598.76 151
9.1496.87 2799.34 5099.50 5297.49 13889.41 16498.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
PVSNet_Blended_VisFu94.67 10194.11 9996.34 10697.14 14491.10 11899.32 8097.43 14992.10 9591.53 17396.38 20883.29 16299.68 9293.42 14696.37 14698.25 177
UGNet91.91 17490.85 18095.10 15497.06 14988.69 18798.01 23098.24 3492.41 8792.39 15993.61 26160.52 33999.68 9288.14 20697.25 13196.92 220
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST999.57 3393.17 7599.38 7297.66 9589.57 15898.39 3699.18 3590.88 3899.66 94
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7599.38 7297.66 9590.18 13898.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
EPNet96.82 3296.68 3497.25 5598.65 8693.10 7799.48 5498.76 1596.54 1397.84 5598.22 12687.49 8499.66 9495.35 10597.78 11999.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SteuartSystems-ACMMP97.25 1997.34 2097.01 6297.38 12891.46 10899.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
sss94.85 9393.94 10997.58 4296.43 17094.09 6198.93 13099.16 889.50 16195.27 11397.85 13381.50 19699.65 9892.79 15694.02 17598.99 124
F-COLMAP92.07 17291.75 16393.02 21898.16 9982.89 30498.79 14695.97 25286.54 24687.92 21497.80 13678.69 22299.65 9885.97 22995.93 15796.53 231
test_899.55 3593.07 7899.37 7597.64 10390.18 13898.36 3899.19 3290.94 3599.64 100
PVSNet87.13 1293.69 12892.83 14096.28 10897.99 10490.22 14299.38 7298.93 1291.42 10993.66 14397.68 14471.29 27699.64 10087.94 20997.20 13298.98 125
agg_prior99.54 3692.66 8897.64 10397.98 5299.61 102
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 13097.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 189
MSDG88.29 24686.37 25894.04 19996.90 15286.15 24796.52 29494.36 33677.89 35379.22 31996.95 18369.72 28399.59 10473.20 34192.58 19196.37 236
ZD-MVS99.67 1093.28 7397.61 11087.78 21697.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6699.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CPTT-MVS94.60 10394.43 9195.09 15599.66 1286.85 22799.44 6397.47 14183.22 30094.34 13198.96 6882.50 17999.55 10694.81 11899.50 5498.88 137
Anonymous20240521188.84 23187.03 25094.27 18798.14 10084.18 28698.44 18695.58 28876.79 35789.34 20596.88 18953.42 36699.54 10887.53 21387.12 24399.09 118
VNet95.08 8594.26 9397.55 4598.07 10193.88 6398.68 15598.73 1890.33 13597.16 7197.43 15779.19 21799.53 10996.91 7391.85 20599.24 104
Anonymous2024052987.66 25785.58 27093.92 20297.59 11785.01 27598.13 21797.13 17766.69 38988.47 21196.01 21855.09 36099.51 11087.00 21684.12 26897.23 210
test1297.83 3599.33 5394.45 5197.55 12397.56 5788.60 6699.50 11199.71 3499.55 74
MSP-MVS97.77 998.18 296.53 9499.54 3690.14 14499.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_prior97.01 6299.58 3091.77 10197.57 12199.49 11299.79 36
CDPH-MVS96.56 3996.18 4597.70 3899.59 2893.92 6299.13 10997.44 14789.02 17397.90 5499.22 2788.90 6399.49 11294.63 12499.79 2799.68 56
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33898.74 1692.42 8695.65 10794.76 24086.52 11299.49 11295.29 10792.97 18499.53 76
EI-MVSNet-UG-set95.43 7495.29 7395.86 12899.07 7089.87 15698.43 18797.80 7091.78 9894.11 13498.77 8786.25 11999.48 11694.95 11796.45 14498.22 181
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11499.14 6490.33 13798.49 18197.82 6591.92 9694.75 12298.88 8287.06 9799.48 11695.40 10497.17 13598.70 154
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11498.46 11886.56 11199.46 11895.00 11592.69 18899.50 80
test_vis1_rt81.31 32580.05 32885.11 34491.29 31770.66 37798.98 12777.39 40585.76 25968.80 36982.40 37636.56 39299.44 11992.67 15786.55 24685.24 380
test_yl95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
DCV-MVSNet95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
h-mvs3392.47 16291.95 15894.05 19897.13 14585.01 27598.36 19998.08 4493.85 5796.27 9196.73 19683.19 16599.43 12295.81 9468.09 36397.70 195
test_vis1_n90.40 20190.27 19190.79 26991.55 31276.48 35599.12 11094.44 33194.31 4397.34 6496.95 18343.60 38599.42 12397.57 5997.60 12196.47 232
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6799.16 9797.44 14790.08 14398.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ab-mvs91.05 19189.17 20996.69 8495.96 19391.72 10392.62 35297.23 16585.61 26189.74 20193.89 25468.55 29099.42 12391.09 16887.84 23998.92 135
SR-MVS96.13 5096.16 5096.07 11899.42 4789.04 17298.59 17097.33 15890.44 13296.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
PatchMatch-RL91.47 17990.54 18894.26 18898.20 9686.36 23896.94 27997.14 17587.75 21888.98 20795.75 22271.80 27199.40 12780.92 28597.39 12997.02 217
XVG-OURS-SEG-HR90.95 19290.66 18791.83 24495.18 22281.14 32895.92 31395.92 26188.40 19490.33 19497.85 13370.66 27999.38 12892.83 15488.83 23694.98 247
HPM-MVScopyleft95.41 7695.22 7595.99 12399.29 5589.14 16999.17 9697.09 18387.28 22995.40 11198.48 11584.93 14099.38 12895.64 10099.65 3899.47 82
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post95.75 6895.86 5795.41 14399.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 69
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14796.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 189
APD-MVS_3200maxsize95.64 7195.65 6895.62 13799.24 5887.80 20298.42 18897.22 16688.93 17896.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
XVG-OURS90.83 19490.49 18991.86 24395.23 21681.25 32595.79 32195.92 26188.96 17590.02 19898.03 13271.60 27399.35 13391.06 16987.78 24094.98 247
PVSNet_083.28 1687.31 26185.16 27693.74 20894.78 24384.59 28098.91 13398.69 2189.81 15078.59 32693.23 27061.95 33399.34 13494.75 11955.72 39097.30 206
HPM-MVS_fast94.89 8894.62 8695.70 13399.11 6688.44 19299.14 10697.11 17985.82 25795.69 10698.47 11683.46 15899.32 13593.16 14999.63 4499.35 94
114514_t94.06 11593.05 13497.06 6099.08 6992.26 9698.97 12897.01 19182.58 31392.57 15698.22 12680.68 20499.30 13689.34 19499.02 7999.63 66
RPMNet85.07 29681.88 31394.64 17493.47 28086.24 24184.97 38697.21 16764.85 39190.76 18578.80 38880.95 20399.27 13753.76 39092.17 20198.41 167
VDD-MVS91.24 18790.18 19294.45 18097.08 14885.84 25998.40 19396.10 24386.99 23293.36 14798.16 12954.27 36399.20 13896.59 8090.63 22998.31 176
AllTest84.97 29783.12 30290.52 27796.82 15478.84 34295.89 31492.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
TestCases90.52 27796.82 15478.84 34292.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
mvsany_test194.57 10595.09 8092.98 21995.84 19682.07 31498.76 14895.24 30892.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 194
xiu_mvs_v1_base_debu94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base_debi94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
OMC-MVS93.90 12293.62 11894.73 17098.63 8787.00 22598.04 22996.56 21292.19 9292.46 15798.73 9179.49 21499.14 14592.16 16194.34 17398.03 188
COLMAP_ROBcopyleft82.69 1884.54 30382.82 30489.70 30196.72 16078.85 34195.89 31492.83 35871.55 37277.54 33395.89 22059.40 34399.14 14567.26 36388.26 23791.11 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UA-Net93.30 14292.62 14495.34 14596.27 17888.53 19195.88 31696.97 19490.90 11795.37 11297.07 17682.38 18699.10 14783.91 25994.86 16998.38 170
TSAR-MVS + MP.97.44 1897.46 1697.39 5099.12 6593.49 7198.52 17597.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
sasdasda95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
FA-MVS(test-final)92.22 16991.08 17595.64 13696.05 19188.98 17591.60 36197.25 16186.99 23291.84 16392.12 28383.03 16899.00 15186.91 21993.91 17698.93 133
alignmvs95.77 6695.00 8298.06 2997.35 13095.68 2099.71 2697.50 13691.50 10596.16 9398.61 10586.28 11799.00 15196.19 8691.74 20799.51 79
MGCFI-Net94.89 8893.84 11398.06 2997.49 12595.55 2198.64 16196.10 24391.60 10395.75 10498.46 11879.31 21698.98 15395.95 9391.24 22399.65 63
旧先验298.67 15785.75 26098.96 2198.97 15493.84 135
FE-MVS91.38 18290.16 19395.05 15896.46 16987.53 21089.69 37597.84 6182.97 30592.18 16192.00 28984.07 15198.93 15580.71 28795.52 16298.68 155
LFMVS92.23 16890.84 18196.42 10098.24 9591.08 12098.24 20896.22 23383.39 29894.74 12398.31 12261.12 33798.85 15694.45 12792.82 18599.32 97
TAPA-MVS87.50 990.35 20289.05 21294.25 18998.48 9185.17 27298.42 18896.58 21182.44 31887.24 22298.53 10782.77 17398.84 15759.09 38497.88 11598.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
IB-MVS89.43 692.12 17090.83 18395.98 12495.40 21290.78 12799.81 1298.06 4591.23 11385.63 23893.66 26090.63 4298.78 15891.22 16771.85 35398.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
VDDNet90.08 21188.54 22794.69 17194.41 25187.68 20498.21 21196.40 22176.21 35893.33 14897.75 14054.93 36198.77 15994.71 12290.96 22497.61 200
thres20093.69 12892.59 14596.97 6897.76 10994.74 4599.35 7799.36 289.23 16691.21 18096.97 18283.42 15998.77 15985.08 23990.96 22497.39 204
thres100view90093.34 14192.15 15396.90 7197.62 11494.84 4099.06 11799.36 287.96 21190.47 19196.78 19483.29 16298.75 16184.11 25590.69 22697.12 211
tfpn200view993.43 13792.27 15096.90 7197.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22697.12 211
thres40093.39 13992.27 15096.73 8097.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22696.61 226
testdata95.26 15098.20 9687.28 21997.60 11285.21 26698.48 3499.15 4188.15 7498.72 16490.29 18199.45 5899.78 38
thres600view793.18 14692.00 15696.75 7897.62 11494.92 3599.07 11499.36 287.96 21190.47 19196.78 19483.29 16298.71 16582.93 26990.47 23096.61 226
dcpmvs_295.67 7096.18 4594.12 19498.82 8184.22 28597.37 26295.45 29590.70 12195.77 10398.63 10390.47 4498.68 16699.20 2099.22 7199.45 85
bld_raw_dy_0_6491.37 18389.75 19796.23 10997.51 12290.58 13499.16 9788.98 38995.64 2587.18 22499.20 3057.19 35198.66 16798.00 5084.86 26099.46 83
1112_ss92.71 15491.55 16696.20 11195.56 20591.12 11698.48 18394.69 32688.29 20086.89 22898.50 11087.02 9898.66 16784.75 24489.77 23498.81 145
Test_1112_low_res92.27 16790.97 17796.18 11295.53 20791.10 11898.47 18594.66 32788.28 20186.83 22993.50 26587.00 9998.65 16984.69 24589.74 23598.80 146
testing1195.33 7894.98 8396.37 10497.20 13792.31 9499.29 8297.68 9090.59 12694.43 12797.20 16890.79 4198.60 17095.25 10892.38 19398.18 184
cascas90.93 19389.33 20795.76 13195.69 20193.03 8098.99 12596.59 20880.49 33886.79 23094.45 24365.23 32098.60 17093.52 14192.18 20095.66 243
iter_conf05_1194.23 11293.49 12196.46 9697.51 12291.32 11099.96 194.31 33795.62 2699.32 899.22 2757.79 34798.59 17298.00 5099.64 4099.46 83
testing9194.88 9094.44 9096.21 11097.19 13991.90 10099.23 8897.66 9589.91 14793.66 14397.05 17990.21 5198.50 17393.52 14191.53 21698.25 177
testing9994.88 9094.45 8996.17 11497.20 13791.91 9999.20 9097.66 9589.95 14693.68 14297.06 17790.28 5098.50 17393.52 14191.54 21398.12 186
ECVR-MVScopyleft92.29 16591.33 17095.15 15396.41 17187.84 20198.10 22294.84 31990.82 11991.42 17697.28 16165.61 31698.49 17590.33 18097.19 13399.12 115
test250694.80 9494.21 9596.58 9096.41 17192.18 9798.01 23098.96 1190.82 11993.46 14697.28 16185.92 12398.45 17689.82 18697.19 13399.12 115
thisisatest051594.75 9694.19 9696.43 9996.13 19092.64 9199.47 5697.60 11287.55 22593.17 14997.59 14994.71 1298.42 17788.28 20493.20 18198.24 180
test111192.12 17091.19 17394.94 16196.15 18587.36 21698.12 21994.84 31990.85 11890.97 18197.26 16365.60 31798.37 17889.74 18997.14 13699.07 121
thisisatest053094.00 11793.52 11995.43 14295.76 19990.02 15398.99 12597.60 11286.58 24491.74 16597.36 16094.78 1198.34 17986.37 22592.48 19297.94 191
tttt051793.30 14293.01 13694.17 19295.57 20486.47 23398.51 17897.60 11285.99 25590.55 18897.19 17094.80 1098.31 18085.06 24091.86 20497.74 193
RPSCF85.33 29385.55 27184.67 34994.63 24862.28 38893.73 34093.76 34574.38 36685.23 24297.06 17764.09 32398.31 18080.98 28386.08 25293.41 255
gm-plane-assit94.69 24588.14 19588.22 20297.20 16898.29 18290.79 175
MVS_Test93.67 13192.67 14396.69 8496.72 16092.66 8897.22 27096.03 24987.69 22295.12 11794.03 24881.55 19598.28 18389.17 19896.46 14399.14 112
SDMVSNet91.09 18889.91 19594.65 17296.80 15690.54 13597.78 24297.81 6888.34 19785.73 23595.26 23166.44 31198.26 18494.25 13086.75 24495.14 244
tt080586.50 27584.79 28491.63 25291.97 30381.49 31996.49 29597.38 15482.24 32082.44 27295.82 22151.22 37198.25 18584.55 24880.96 29195.13 246
EIA-MVS95.11 8395.27 7494.64 17496.34 17586.51 23199.59 4196.62 20592.51 8294.08 13598.64 10186.05 12298.24 18695.07 11298.50 10499.18 109
tpmvs89.16 22387.76 23793.35 21297.19 13984.75 27990.58 37397.36 15681.99 32384.56 24689.31 34683.98 15298.17 18774.85 32890.00 23397.12 211
BH-RMVSNet91.25 18689.99 19495.03 15996.75 15988.55 18998.65 15994.95 31687.74 21987.74 21697.80 13668.27 29398.14 18880.53 29097.49 12698.41 167
ETV-MVS96.00 5396.00 5396.00 12296.56 16391.05 12199.63 3796.61 20693.26 7097.39 6298.30 12386.62 10898.13 18998.07 4997.57 12298.82 144
PMMVS93.62 13393.90 11192.79 22396.79 15881.40 32198.85 13696.81 19891.25 11296.82 8098.15 13077.02 23198.13 18993.15 15096.30 14998.83 143
casdiffmvspermissive93.98 11993.43 12295.61 13895.07 23289.86 15798.80 14295.84 27490.98 11692.74 15597.66 14679.71 20998.10 19194.72 12195.37 16498.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
lupinMVS96.32 4595.94 5497.44 4695.05 23394.87 3899.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19296.98 7098.97 8299.37 92
TR-MVS90.77 19589.44 20394.76 16796.31 17688.02 19997.92 23495.96 25485.52 26288.22 21397.23 16666.80 30798.09 19284.58 24792.38 19398.17 185
diffmvspermissive94.59 10494.19 9695.81 12995.54 20690.69 13098.70 15395.68 28291.61 10195.96 9597.81 13580.11 20698.06 19496.52 8295.76 15898.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive94.00 11793.33 12696.03 12095.22 21790.90 12699.09 11295.99 25090.58 12791.55 17297.37 15979.91 20898.06 19495.01 11495.22 16599.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline294.04 11693.80 11594.74 16993.07 29090.25 13998.12 21998.16 3989.86 14886.53 23296.95 18395.56 698.05 19691.44 16694.53 17095.93 241
tpm cat188.89 22987.27 24693.76 20795.79 19785.32 26990.76 37197.09 18376.14 35985.72 23788.59 34982.92 17098.04 19776.96 31291.43 21897.90 192
baseline93.91 12193.30 12795.72 13295.10 23090.07 14897.48 25895.91 26691.03 11493.54 14597.68 14479.58 21098.02 19894.27 12995.14 16699.08 119
Effi-MVS+93.87 12393.15 13296.02 12195.79 19790.76 12896.70 29195.78 27586.98 23595.71 10597.17 17279.58 21098.01 19994.57 12696.09 15399.31 98
Vis-MVSNetpermissive92.64 15691.85 15995.03 15995.12 22688.23 19398.48 18396.81 19891.61 10192.16 16297.22 16771.58 27498.00 20085.85 23497.81 11698.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
jason95.40 7794.86 8497.03 6192.91 29194.23 5699.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 20196.08 9098.47 10698.96 127
jason: jason.
BH-w/o92.32 16491.79 16193.91 20396.85 15386.18 24599.11 11195.74 27888.13 20484.81 24397.00 18177.26 23097.91 20189.16 19998.03 11397.64 196
ACMM86.95 1388.77 23688.22 23290.43 27993.61 27781.34 32398.50 17995.92 26187.88 21483.85 25495.20 23367.20 30497.89 20386.90 22084.90 25992.06 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PAPM96.35 4395.94 5497.58 4294.10 25995.25 2698.93 13098.17 3794.26 4493.94 13798.72 9389.68 5697.88 20496.36 8499.29 6899.62 68
OPM-MVS89.76 21689.15 21091.57 25390.53 32685.58 26398.11 22195.93 26092.88 7886.05 23396.47 20467.06 30697.87 20589.29 19786.08 25291.26 308
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CMPMVSbinary58.40 2180.48 32880.11 32781.59 36385.10 37559.56 39194.14 33795.95 25668.54 38360.71 38793.31 26755.35 35997.87 20583.06 26884.85 26187.33 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ACMP87.39 1088.71 23888.24 23190.12 28793.91 26981.06 32998.50 17995.67 28389.43 16380.37 30495.55 22465.67 31497.83 20790.55 17884.51 26291.47 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline192.61 15891.28 17196.58 9097.05 15094.63 4897.72 24896.20 23489.82 14988.56 21096.85 19086.85 10297.82 20888.42 20280.10 29597.30 206
CLD-MVS91.06 19090.71 18592.10 23994.05 26386.10 24899.55 4596.29 23094.16 4784.70 24597.17 17269.62 28597.82 20894.74 12086.08 25292.39 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPP-MVSNet93.75 12793.67 11794.01 20095.86 19585.70 26198.67 15797.66 9584.46 28091.36 17797.18 17191.16 3097.79 21092.93 15293.75 17798.53 162
ACMH83.09 1784.60 30182.61 31190.57 27493.18 28882.94 30196.27 30194.92 31881.01 33472.61 36193.61 26156.54 35297.79 21074.31 33181.07 29090.99 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LPG-MVS_test88.86 23088.47 22890.06 28893.35 28580.95 33098.22 20995.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
LGP-MVS_train90.06 28893.35 28580.95 33095.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
HQP4-MVS87.57 21797.77 21292.72 258
BH-untuned91.46 18090.84 18193.33 21396.51 16784.83 27898.84 13895.50 29286.44 25183.50 25596.70 19775.49 23797.77 21286.78 22297.81 11697.40 203
HQP-MVS91.50 17891.23 17292.29 23393.95 26486.39 23699.16 9796.37 22393.92 5287.57 21796.67 19973.34 25397.77 21293.82 13786.29 24792.72 258
sd_testset89.23 22288.05 23692.74 22696.80 15685.33 26895.85 31997.03 18888.34 19785.73 23595.26 23161.12 33797.76 21785.61 23586.75 24495.14 244
HQP_MVS91.26 18490.95 17892.16 23793.84 27186.07 25199.02 12196.30 22793.38 6886.99 22596.52 20172.92 25997.75 21893.46 14486.17 25092.67 260
plane_prior596.30 22797.75 21893.46 14486.17 25092.67 260
tpmrst92.78 15392.16 15294.65 17296.27 17887.45 21391.83 35797.10 18289.10 17294.68 12490.69 31588.22 7197.73 22089.78 18791.80 20698.77 150
ACMH+83.78 1584.21 30782.56 31289.15 31393.73 27679.16 33996.43 29694.28 33881.09 33374.00 34994.03 24854.58 36297.67 22176.10 31978.81 30090.63 327
CS-MVS-test95.98 5596.34 4194.90 16298.06 10287.66 20699.69 3496.10 24393.66 6298.35 3999.05 5686.28 11797.66 22296.96 7198.90 8899.37 92
XVG-ACMP-BASELINE85.86 28484.95 28088.57 32089.90 33377.12 35494.30 33495.60 28787.40 22882.12 28192.99 27653.42 36697.66 22285.02 24183.83 27190.92 316
USDC84.74 29882.93 30390.16 28691.73 31083.54 29595.00 32893.30 35388.77 18273.19 35493.30 26853.62 36597.65 22475.88 32181.54 28989.30 350
TESTMET0.1,193.82 12593.26 12995.49 14095.21 21890.25 13999.15 10397.54 12689.18 16991.79 16494.87 23789.13 5997.63 22586.21 22796.29 15098.60 160
LTVRE_ROB81.71 1984.59 30282.72 30990.18 28592.89 29283.18 29993.15 34594.74 32378.99 34475.14 34592.69 27865.64 31597.63 22569.46 35481.82 28889.74 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MDTV_nov1_ep1390.47 19096.14 18788.55 18991.34 36597.51 13389.58 15792.24 16090.50 32886.99 10097.61 22777.64 30892.34 195
CS-MVS95.75 6896.19 4394.40 18197.88 10786.22 24399.66 3596.12 24292.69 8098.07 4798.89 8087.09 9597.59 22896.71 7498.62 10099.39 91
test-LLR93.11 14992.68 14294.40 18194.94 23887.27 22099.15 10397.25 16190.21 13691.57 16994.04 24684.89 14197.58 22985.94 23196.13 15198.36 173
test-mter93.27 14492.89 13994.40 18194.94 23887.27 22099.15 10397.25 16188.95 17691.57 16994.04 24688.03 7797.58 22985.94 23196.13 15198.36 173
TinyColmap80.42 32977.94 33487.85 32592.09 30178.58 34593.74 33989.94 38374.99 36269.77 36691.78 29346.09 38197.58 22965.17 37177.89 30487.38 365
Fast-Effi-MVS+91.72 17690.79 18494.49 17795.89 19487.40 21599.54 5095.70 28085.01 27389.28 20695.68 22377.75 22797.57 23283.22 26495.06 16798.51 163
CostFormer92.89 15292.48 14794.12 19494.99 23585.89 25692.89 34897.00 19286.98 23595.00 11990.78 31190.05 5397.51 23392.92 15391.73 20898.96 127
AUN-MVS90.17 20889.50 20192.19 23696.21 18182.67 30897.76 24697.53 12788.05 20791.67 16796.15 21283.10 16797.47 23488.11 20766.91 36996.43 234
HyFIR lowres test93.68 13093.29 12894.87 16397.57 11988.04 19898.18 21398.47 2587.57 22491.24 17995.05 23485.49 13197.46 23593.22 14892.82 18599.10 117
EPMVS92.59 15991.59 16595.59 13997.22 13690.03 15291.78 35898.04 4890.42 13391.66 16890.65 31886.49 11497.46 23581.78 28096.31 14899.28 101
hse-mvs291.67 17791.51 16792.15 23896.22 18082.61 31097.74 24797.53 12793.85 5796.27 9196.15 21283.19 16597.44 23795.81 9466.86 37096.40 235
dp90.16 20988.83 21794.14 19396.38 17486.42 23491.57 36297.06 18584.76 27788.81 20890.19 33684.29 14897.43 23875.05 32591.35 22298.56 161
EC-MVSNet95.09 8495.17 7694.84 16595.42 21088.17 19499.48 5495.92 26191.47 10697.34 6498.36 12082.77 17397.41 23997.24 6498.58 10198.94 132
CHOSEN 280x42096.80 3396.85 2896.66 8697.85 10894.42 5394.76 33098.36 2992.50 8395.62 10897.52 15297.92 197.38 24098.31 4498.80 9298.20 183
ITE_SJBPF87.93 32492.26 29876.44 35693.47 35287.67 22379.95 31095.49 22756.50 35397.38 24075.24 32482.33 28589.98 341
MS-PatchMatch86.75 26885.92 26589.22 31191.97 30382.47 31196.91 28096.14 24183.74 29177.73 33193.53 26458.19 34697.37 24276.75 31598.35 10787.84 361
testing22294.48 10894.00 10395.95 12597.30 13292.27 9598.82 13997.92 5589.20 16794.82 12097.26 16387.13 9497.32 24391.95 16291.56 21198.25 177
ETVMVS94.50 10793.90 11196.31 10797.48 12692.98 8199.07 11497.86 5988.09 20694.40 12996.90 18688.35 6997.28 24490.72 17792.25 19998.66 159
IS-MVSNet93.00 15192.51 14694.49 17796.14 18787.36 21698.31 20495.70 28088.58 18690.17 19597.50 15383.02 16997.22 24587.06 21496.07 15598.90 136
tpm291.77 17591.09 17493.82 20694.83 24285.56 26492.51 35397.16 17484.00 28693.83 14090.66 31787.54 8397.17 24687.73 21191.55 21298.72 152
TDRefinement78.01 34175.31 34586.10 34070.06 40073.84 36593.59 34391.58 37574.51 36573.08 35791.04 30649.63 37897.12 24774.88 32759.47 38387.33 367
test_post46.00 40587.37 8797.11 248
PatchmatchNetpermissive92.05 17391.04 17695.06 15696.17 18489.04 17291.26 36697.26 16089.56 15990.64 18790.56 32488.35 6997.11 24879.53 29396.07 15599.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
VPA-MVSNet89.10 22487.66 24093.45 21192.56 29391.02 12297.97 23398.32 3086.92 23786.03 23492.01 28768.84 28997.10 25090.92 17175.34 31792.23 271
XXY-MVS87.75 25386.02 26392.95 22190.46 32789.70 16097.71 25095.90 26784.02 28580.95 29894.05 24567.51 30297.10 25085.16 23878.41 30192.04 282
GeoE90.60 20089.56 20093.72 20995.10 23085.43 26599.41 6994.94 31783.96 28887.21 22396.83 19374.37 24597.05 25280.50 29193.73 17898.67 156
ADS-MVSNet88.99 22587.30 24594.07 19696.21 18187.56 20987.15 37996.78 20083.01 30389.91 19987.27 35978.87 21997.01 25374.20 33392.27 19797.64 196
GA-MVS90.10 21088.69 22094.33 18592.44 29587.97 20099.08 11396.26 23189.65 15386.92 22793.11 27368.09 29596.96 25482.54 27390.15 23198.05 187
JIA-IIPM85.97 28284.85 28289.33 31093.23 28773.68 36685.05 38597.13 17769.62 38091.56 17168.03 39588.03 7796.96 25477.89 30793.12 18297.34 205
dmvs_re88.69 23988.06 23590.59 27393.83 27378.68 34495.75 32296.18 23887.99 21084.48 24996.32 20967.52 30196.94 25684.98 24285.49 25696.14 238
GG-mvs-BLEND96.98 6796.53 16594.81 4387.20 37897.74 7793.91 13896.40 20596.56 296.94 25695.08 11198.95 8599.20 108
nrg03090.23 20588.87 21594.32 18691.53 31393.54 6998.79 14695.89 26988.12 20584.55 24794.61 24278.80 22196.88 25892.35 16075.21 31892.53 262
Effi-MVS+-dtu89.97 21490.68 18687.81 32695.15 22371.98 37397.87 23895.40 29991.92 9687.57 21791.44 29974.27 24796.84 25989.45 19193.10 18394.60 249
gg-mvs-nofinetune90.00 21287.71 23996.89 7596.15 18594.69 4785.15 38497.74 7768.32 38492.97 15360.16 39796.10 396.84 25993.89 13398.87 8999.14 112
patchmatchnet-post84.86 36988.73 6596.81 261
SCA90.64 19989.25 20894.83 16694.95 23788.83 18296.26 30397.21 16790.06 14590.03 19790.62 32066.61 30896.81 26183.16 26594.36 17298.84 140
D2MVS87.96 24987.39 24389.70 30191.84 30883.40 29698.31 20498.49 2388.04 20878.23 33090.26 33073.57 25196.79 26384.21 25283.53 27588.90 355
VPNet88.30 24586.57 25593.49 21091.95 30591.35 10998.18 21397.20 17188.61 18484.52 24894.89 23662.21 33296.76 26489.34 19472.26 35092.36 265
UWE-MVS93.18 14693.40 12492.50 23196.56 16383.55 29498.09 22597.84 6189.50 16191.72 16696.23 21191.08 3396.70 26586.28 22693.33 18097.26 208
UniMVSNet_ETH3D85.65 29183.79 29991.21 25790.41 32880.75 33295.36 32595.78 27578.76 34781.83 29294.33 24449.86 37696.66 26684.30 25083.52 27696.22 237
LF4IMVS81.94 32281.17 32184.25 35187.23 36768.87 38393.35 34491.93 37183.35 29975.40 34393.00 27549.25 37996.65 26778.88 30078.11 30387.22 369
Anonymous2023121184.72 29982.65 31090.91 26497.71 11184.55 28197.28 26596.67 20266.88 38879.18 32090.87 31058.47 34596.60 26882.61 27274.20 33191.59 294
test_fmvs285.10 29585.45 27384.02 35289.85 33565.63 38698.49 18192.59 36090.45 13185.43 24193.32 26643.94 38396.59 26990.81 17484.19 26789.85 343
iter_conf0593.48 13493.18 13194.39 18497.15 14394.17 5999.30 8192.97 35592.38 9086.70 23195.42 22895.67 596.59 26994.67 12384.32 26692.39 263
MVS-HIRNet79.01 33575.13 34790.66 27293.82 27481.69 31785.16 38393.75 34654.54 39374.17 34859.15 39957.46 34996.58 27163.74 37294.38 17193.72 252
EI-MVSNet89.87 21589.38 20691.36 25694.32 25485.87 25797.61 25596.59 20885.10 26885.51 23997.10 17481.30 20196.56 27283.85 26183.03 27991.64 287
MVSTER92.71 15492.32 14893.86 20497.29 13492.95 8499.01 12396.59 20890.09 14285.51 23994.00 25094.61 1596.56 27290.77 17683.03 27992.08 280
V4287.00 26485.68 26990.98 26389.91 33286.08 24998.32 20395.61 28683.67 29482.72 26590.67 31674.00 25096.53 27481.94 27974.28 33090.32 332
Fast-Effi-MVS+-dtu88.84 23188.59 22489.58 30493.44 28378.18 34898.65 15994.62 32888.46 18984.12 25295.37 23068.91 28796.52 27582.06 27791.70 20994.06 250
mvsmamba89.99 21389.42 20491.69 25190.64 32586.34 23998.40 19392.27 36491.01 11584.80 24494.93 23576.12 23396.51 27692.81 15583.84 27092.21 273
cl2289.57 21988.79 21891.91 24297.94 10587.62 20797.98 23296.51 21585.03 27182.37 27791.79 29283.65 15496.50 27785.96 23077.89 30491.61 292
PS-MVSNAJss89.54 22089.05 21291.00 26288.77 34984.36 28397.39 25995.97 25288.47 18781.88 28893.80 25682.48 18196.50 27789.34 19483.34 27892.15 276
TAMVS92.62 15792.09 15594.20 19194.10 25987.68 20498.41 19096.97 19487.53 22689.74 20196.04 21784.77 14596.49 27988.97 20092.31 19698.42 166
tfpnnormal83.65 31381.35 31990.56 27691.37 31688.06 19797.29 26497.87 5878.51 34876.20 33590.91 30864.78 32196.47 28061.71 37873.50 33887.13 370
v2v48287.27 26285.76 26791.78 25089.59 33887.58 20898.56 17395.54 29084.53 27982.51 27191.78 29373.11 25896.47 28082.07 27674.14 33391.30 306
MVP-Stereo86.61 27285.83 26688.93 31888.70 35183.85 29196.07 31094.41 33582.15 32275.64 34291.96 29067.65 30096.45 28277.20 31198.72 9686.51 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Patchmatch-test86.25 27984.06 29692.82 22294.42 25082.88 30582.88 39394.23 33971.58 37179.39 31790.62 32089.00 6296.42 28363.03 37591.37 22199.16 110
v886.11 28084.45 29191.10 25989.99 33186.85 22797.24 26895.36 30281.99 32379.89 31189.86 33974.53 24396.39 28478.83 30172.32 34990.05 339
Vis-MVSNet (Re-imp)93.26 14593.00 13794.06 19796.14 18786.71 23098.68 15596.70 20188.30 19989.71 20397.64 14785.43 13496.39 28488.06 20896.32 14799.08 119
test_post190.74 37241.37 40885.38 13596.36 28683.16 265
v14419286.40 27684.89 28190.91 26489.48 34285.59 26298.21 21195.43 29882.45 31782.62 26990.58 32372.79 26296.36 28678.45 30474.04 33490.79 320
v114486.83 26785.31 27591.40 25489.75 33687.21 22498.31 20495.45 29583.22 30082.70 26690.78 31173.36 25296.36 28679.49 29474.69 32490.63 327
jajsoiax87.35 26086.51 25789.87 29487.75 36381.74 31697.03 27695.98 25188.47 18780.15 30793.80 25661.47 33496.36 28689.44 19284.47 26491.50 296
CDS-MVSNet93.47 13593.04 13594.76 16794.75 24489.45 16598.82 13997.03 18887.91 21390.97 18196.48 20389.06 6096.36 28689.50 19092.81 18798.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n84.42 30682.75 30889.43 30988.15 35681.86 31596.75 28895.67 28380.53 33778.38 32889.43 34469.89 28196.35 29173.83 33772.13 35190.07 337
UniMVSNet (Re)89.50 22188.32 23093.03 21792.21 29990.96 12498.90 13498.39 2789.13 17083.22 25792.03 28581.69 19496.34 29286.79 22172.53 34691.81 285
v119286.32 27884.71 28691.17 25889.53 34186.40 23598.13 21795.44 29782.52 31582.42 27490.62 32071.58 27496.33 29377.23 30974.88 32190.79 320
v14886.38 27785.06 27790.37 28389.47 34384.10 28798.52 17595.48 29383.80 29080.93 29990.22 33474.60 24196.31 29480.92 28571.55 35590.69 325
mvs_tets87.09 26386.22 26089.71 30087.87 35981.39 32296.73 29095.90 26788.19 20379.99 30993.61 26159.96 34196.31 29489.40 19384.34 26591.43 300
v124085.77 28884.11 29590.73 27189.26 34585.15 27397.88 23795.23 31281.89 32682.16 28090.55 32569.60 28696.31 29475.59 32374.87 32290.72 324
v192192086.02 28184.44 29290.77 27089.32 34485.20 27098.10 22295.35 30382.19 32182.25 27990.71 31370.73 27796.30 29776.85 31474.49 32690.80 319
v1085.73 28984.01 29790.87 26790.03 33086.73 22997.20 27195.22 31381.25 33179.85 31289.75 34073.30 25596.28 29876.87 31372.64 34589.61 347
EG-PatchMatch MVS79.92 33077.59 33586.90 33487.06 36877.90 35296.20 30894.06 34274.61 36466.53 38088.76 34840.40 39096.20 29967.02 36483.66 27486.61 371
miper_enhance_ethall90.33 20389.70 19892.22 23497.12 14688.93 18098.35 20095.96 25488.60 18583.14 26292.33 28287.38 8696.18 30086.49 22477.89 30491.55 295
FIs90.70 19789.87 19693.18 21592.29 29791.12 11698.17 21598.25 3289.11 17183.44 25694.82 23982.26 18796.17 30187.76 21082.76 28192.25 269
mvs_anonymous92.50 16191.65 16495.06 15696.60 16289.64 16197.06 27596.44 22086.64 24384.14 25193.93 25282.49 18096.17 30191.47 16596.08 15499.35 94
OurMVSNet-221017-084.13 31083.59 30085.77 34287.81 36070.24 37894.89 32993.65 34986.08 25376.53 33493.28 26961.41 33596.14 30380.95 28477.69 30990.93 315
pm-mvs184.68 30082.78 30790.40 28089.58 33985.18 27197.31 26394.73 32481.93 32576.05 33792.01 28765.48 31896.11 30478.75 30269.14 36089.91 342
OpenMVS_ROBcopyleft73.86 2077.99 34275.06 34886.77 33583.81 38077.94 35196.38 29891.53 37667.54 38668.38 37187.13 36243.94 38396.08 30555.03 38981.83 28786.29 374
pmmvs487.58 25986.17 26291.80 24689.58 33988.92 18197.25 26795.28 30482.54 31480.49 30393.17 27275.62 23696.05 30682.75 27078.90 29990.42 330
RRT_MVS88.91 22888.56 22589.93 29390.31 32981.61 31898.08 22696.38 22289.30 16582.41 27594.84 23873.15 25796.04 30790.38 17982.23 28692.15 276
MVSFormer94.71 10094.08 10196.61 8795.05 23394.87 3897.77 24496.17 23986.84 23898.04 4998.52 10885.52 12895.99 30889.83 18498.97 8298.96 127
test_djsdf88.26 24787.73 23889.84 29688.05 35882.21 31297.77 24496.17 23986.84 23882.41 27591.95 29172.07 26795.99 30889.83 18484.50 26391.32 305
FC-MVSNet-test90.22 20689.40 20592.67 22991.78 30989.86 15797.89 23598.22 3588.81 18182.96 26394.66 24181.90 19395.96 31085.89 23382.52 28492.20 275
anonymousdsp86.69 26985.75 26889.53 30586.46 37182.94 30196.39 29795.71 27983.97 28779.63 31490.70 31468.85 28895.94 31186.01 22884.02 26989.72 345
UniMVSNet_NR-MVSNet89.60 21888.55 22692.75 22592.17 30090.07 14898.74 14998.15 4088.37 19583.21 25893.98 25182.86 17195.93 31286.95 21772.47 34792.25 269
DU-MVS88.83 23387.51 24192.79 22391.46 31490.07 14898.71 15097.62 10988.87 18083.21 25893.68 25874.63 23995.93 31286.95 21772.47 34792.36 265
WR-MVS88.54 24387.22 24892.52 23091.93 30789.50 16498.56 17397.84 6186.99 23281.87 28993.81 25574.25 24895.92 31485.29 23774.43 32792.12 278
miper_ehance_all_eth88.94 22788.12 23491.40 25495.32 21486.93 22697.85 23995.55 28984.19 28381.97 28691.50 29884.16 14995.91 31584.69 24577.89 30491.36 303
eth_miper_zixun_eth87.76 25287.00 25190.06 28894.67 24682.65 30997.02 27895.37 30184.19 28381.86 29191.58 29781.47 19795.90 31683.24 26373.61 33691.61 292
cl____87.82 25086.79 25490.89 26694.88 24085.43 26597.81 24095.24 30882.91 31080.71 30191.22 30381.97 19295.84 31781.34 28275.06 31991.40 302
NR-MVSNet87.74 25686.00 26492.96 22091.46 31490.68 13196.65 29297.42 15088.02 20973.42 35293.68 25877.31 22995.83 31884.26 25171.82 35492.36 265
DIV-MVS_self_test87.82 25086.81 25390.87 26794.87 24185.39 26797.81 24095.22 31382.92 30980.76 30091.31 30281.99 19095.81 31981.36 28175.04 32091.42 301
pmmvs679.90 33177.31 33787.67 32784.17 37878.13 34995.86 31893.68 34867.94 38572.67 36089.62 34250.98 37395.75 32074.80 32966.04 37189.14 353
c3_l88.19 24887.23 24791.06 26094.97 23686.17 24697.72 24895.38 30083.43 29781.68 29391.37 30082.81 17295.72 32184.04 25873.70 33591.29 307
EPNet_dtu92.28 16692.15 15392.70 22797.29 13484.84 27798.64 16197.82 6592.91 7793.02 15297.02 18085.48 13395.70 32272.25 34694.89 16897.55 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm89.67 21788.95 21491.82 24592.54 29481.43 32092.95 34795.92 26187.81 21590.50 19089.44 34384.99 13995.65 32383.67 26282.71 28298.38 170
IterMVS-LS88.34 24487.44 24291.04 26194.10 25985.85 25898.10 22295.48 29385.12 26782.03 28591.21 30481.35 20095.63 32483.86 26075.73 31691.63 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SixPastTwentyTwo82.63 31881.58 31685.79 34188.12 35771.01 37695.17 32792.54 36184.33 28272.93 35992.08 28460.41 34095.61 32574.47 33074.15 33290.75 323
WB-MVSnew88.69 23988.34 22989.77 29994.30 25885.99 25498.14 21697.31 15987.15 23187.85 21596.07 21669.91 28095.52 32672.83 34491.47 21787.80 363
pmmvs585.87 28384.40 29490.30 28488.53 35384.23 28498.60 16893.71 34781.53 32880.29 30592.02 28664.51 32295.52 32682.04 27878.34 30291.15 310
lessismore_v085.08 34585.59 37469.28 38190.56 38167.68 37590.21 33554.21 36495.46 32873.88 33562.64 37890.50 329
TranMVSNet+NR-MVSNet87.75 25386.31 25992.07 24090.81 32288.56 18898.33 20197.18 17287.76 21781.87 28993.90 25372.45 26395.43 32983.13 26771.30 35792.23 271
Baseline_NR-MVSNet85.83 28584.82 28388.87 31988.73 35083.34 29798.63 16391.66 37380.41 34182.44 27291.35 30174.63 23995.42 33084.13 25471.39 35687.84 361
FMVSNet388.81 23587.08 24993.99 20196.52 16694.59 4998.08 22696.20 23485.85 25682.12 28191.60 29674.05 24995.40 33179.04 29780.24 29291.99 283
WR-MVS_H86.53 27485.49 27289.66 30391.04 32083.31 29897.53 25798.20 3684.95 27479.64 31390.90 30978.01 22695.33 33276.29 31872.81 34390.35 331
FMVSNet286.90 26584.79 28493.24 21495.11 22792.54 9297.67 25395.86 27382.94 30680.55 30291.17 30562.89 32995.29 33377.23 30979.71 29891.90 284
CP-MVSNet86.54 27385.45 27389.79 29891.02 32182.78 30797.38 26197.56 12285.37 26479.53 31693.03 27471.86 27095.25 33479.92 29273.43 34191.34 304
TransMVSNet (Re)81.97 32179.61 33089.08 31489.70 33784.01 28897.26 26691.85 37278.84 34573.07 35891.62 29567.17 30595.21 33567.50 36259.46 38488.02 360
PS-CasMVS85.81 28684.58 28989.49 30890.77 32382.11 31397.20 27197.36 15684.83 27679.12 32192.84 27767.42 30395.16 33678.39 30573.25 34291.21 309
test_040278.81 33776.33 34286.26 33891.18 31878.44 34795.88 31691.34 37768.55 38270.51 36589.91 33852.65 36894.99 33747.14 39479.78 29785.34 379
GBi-Net86.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
test186.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
FMVSNet183.94 31281.32 32091.80 24691.94 30688.81 18396.77 28595.25 30577.98 34978.25 32990.25 33150.37 37594.97 33873.27 34077.81 30891.62 289
PEN-MVS85.21 29483.93 29889.07 31589.89 33481.31 32497.09 27497.24 16484.45 28178.66 32392.68 27968.44 29294.87 34175.98 32070.92 35891.04 313
PatchT85.44 29283.19 30192.22 23493.13 28983.00 30083.80 39296.37 22370.62 37490.55 18879.63 38784.81 14394.87 34158.18 38691.59 21098.79 147
CR-MVSNet88.83 23387.38 24493.16 21693.47 28086.24 24184.97 38694.20 34088.92 17990.76 18586.88 36384.43 14694.82 34370.64 35092.17 20198.41 167
Patchmtry83.61 31581.64 31589.50 30693.36 28482.84 30684.10 38994.20 34069.47 38179.57 31586.88 36384.43 14694.78 34468.48 35974.30 32990.88 317
ambc79.60 36672.76 39956.61 39376.20 39792.01 37068.25 37280.23 38523.34 39894.73 34573.78 33860.81 38187.48 364
test_vis3_rt61.29 36158.75 36468.92 37767.41 40152.84 39991.18 36859.23 41266.96 38741.96 40058.44 40011.37 40894.72 34674.25 33257.97 38659.20 399
miper_lstm_enhance86.90 26586.20 26189.00 31694.53 24981.19 32696.74 28995.24 30882.33 31980.15 30790.51 32781.99 19094.68 34780.71 28773.58 33791.12 311
ppachtmachnet_test83.63 31481.57 31789.80 29789.01 34685.09 27497.13 27394.50 33078.84 34576.14 33691.00 30769.78 28294.61 34863.40 37374.36 32889.71 346
our_test_384.47 30582.80 30589.50 30689.01 34683.90 29097.03 27694.56 32981.33 33075.36 34490.52 32671.69 27294.54 34968.81 35776.84 31290.07 337
LCM-MVSNet-Re88.59 24288.61 22288.51 32195.53 20772.68 37196.85 28388.43 39088.45 19073.14 35590.63 31975.82 23494.38 35092.95 15195.71 16098.48 165
ET-MVSNet_ETH3D92.56 16091.45 16895.88 12796.39 17394.13 6099.46 6096.97 19492.18 9366.94 37898.29 12494.65 1494.28 35194.34 12883.82 27399.24 104
DTE-MVSNet84.14 30982.80 30588.14 32388.95 34879.87 33596.81 28496.24 23283.50 29677.60 33292.52 28167.89 29994.24 35272.64 34569.05 36190.32 332
N_pmnet70.19 35569.87 35771.12 37588.24 35530.63 41495.85 31928.70 41370.18 37768.73 37086.55 36564.04 32493.81 35353.12 39173.46 33988.94 354
mvsany_test375.85 34874.52 35079.83 36573.53 39760.64 39091.73 35987.87 39283.91 28970.55 36482.52 37531.12 39493.66 35486.66 22362.83 37685.19 381
UnsupCasMVSNet_bld73.85 35270.14 35684.99 34679.44 39075.73 35788.53 37695.24 30870.12 37861.94 38674.81 39241.41 38893.62 35568.65 35851.13 39685.62 376
K. test v381.04 32679.77 32984.83 34787.41 36470.23 37995.60 32493.93 34483.70 29367.51 37689.35 34555.76 35493.58 35676.67 31668.03 36490.67 326
IterMVS-SCA-FT85.73 28984.64 28889.00 31693.46 28282.90 30396.27 30194.70 32585.02 27278.62 32490.35 32966.61 30893.33 35779.38 29677.36 31190.76 322
KD-MVS_2432*160082.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
miper_refine_blended82.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
IterMVS85.81 28684.67 28789.22 31193.51 27983.67 29396.32 30094.80 32285.09 26978.69 32290.17 33766.57 31093.17 36079.48 29577.42 31090.81 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CVMVSNet90.30 20490.91 17988.46 32294.32 25473.58 36797.61 25597.59 11690.16 14188.43 21297.10 17476.83 23292.86 36182.64 27193.54 17998.93 133
PM-MVS74.88 35072.85 35380.98 36478.98 39164.75 38790.81 37085.77 39480.95 33568.23 37382.81 37429.08 39692.84 36276.54 31762.46 37985.36 378
MIMVSNet84.48 30481.83 31492.42 23291.73 31087.36 21685.52 38294.42 33481.40 32981.91 28787.58 35351.92 36992.81 36373.84 33688.15 23897.08 215
ADS-MVSNet287.62 25886.88 25289.86 29596.21 18179.14 34087.15 37992.99 35483.01 30389.91 19987.27 35978.87 21992.80 36474.20 33392.27 19797.64 196
DeepMVS_CXcopyleft76.08 36890.74 32451.65 40190.84 37986.47 25057.89 38987.98 35035.88 39392.60 36565.77 36965.06 37483.97 384
Patchmatch-RL test81.90 32380.13 32687.23 33280.71 38770.12 38084.07 39088.19 39183.16 30270.57 36382.18 37887.18 9392.59 36682.28 27562.78 37798.98 125
pmmvs-eth3d78.71 33876.16 34386.38 33680.25 38981.19 32694.17 33692.13 36877.97 35066.90 37982.31 37755.76 35492.56 36773.63 33962.31 38085.38 377
Anonymous2024052178.63 33976.90 34083.82 35382.82 38272.86 36995.72 32393.57 35073.55 36972.17 36284.79 37049.69 37792.51 36865.29 37074.50 32586.09 375
MDA-MVSNet-bldmvs77.82 34374.75 34987.03 33388.33 35478.52 34696.34 29992.85 35775.57 36048.87 39587.89 35157.32 35092.49 36960.79 38064.80 37590.08 336
new_pmnet76.02 34673.71 35182.95 35683.88 37972.85 37091.26 36692.26 36570.44 37662.60 38581.37 38047.64 38092.32 37061.85 37772.10 35283.68 385
UnsupCasMVSNet_eth78.90 33676.67 34185.58 34382.81 38374.94 36191.98 35696.31 22684.64 27865.84 38287.71 35251.33 37092.23 37172.89 34356.50 38989.56 348
Anonymous2023120680.76 32779.42 33184.79 34884.78 37672.98 36896.53 29392.97 35579.56 34274.33 34688.83 34761.27 33692.15 37260.59 38175.92 31589.24 352
MDA-MVSNet_test_wron79.65 33377.05 33887.45 33087.79 36280.13 33396.25 30494.44 33173.87 36751.80 39387.47 35868.04 29692.12 37366.02 36767.79 36690.09 335
YYNet179.64 33477.04 33987.43 33187.80 36179.98 33496.23 30594.44 33173.83 36851.83 39287.53 35467.96 29892.07 37466.00 36867.75 36790.23 334
test0.0.03 188.96 22688.61 22290.03 29291.09 31984.43 28298.97 12897.02 19090.21 13680.29 30596.31 21084.89 14191.93 37572.98 34285.70 25593.73 251
testgi82.29 31981.00 32286.17 33987.24 36674.84 36297.39 25991.62 37488.63 18375.85 34195.42 22846.07 38291.55 37666.87 36679.94 29692.12 278
EU-MVSNet84.19 30884.42 29383.52 35588.64 35267.37 38496.04 31195.76 27785.29 26578.44 32793.18 27170.67 27891.48 37775.79 32275.98 31491.70 286
KD-MVS_self_test77.47 34475.88 34482.24 35881.59 38468.93 38292.83 35194.02 34377.03 35573.14 35583.39 37355.44 35890.42 37867.95 36057.53 38787.38 365
CL-MVSNet_self_test79.89 33278.34 33384.54 35081.56 38575.01 36096.88 28295.62 28581.10 33275.86 34085.81 36868.49 29190.26 37963.21 37456.51 38888.35 358
APD_test168.93 35766.98 36074.77 37180.62 38853.15 39887.97 37785.01 39653.76 39459.26 38887.52 35525.19 39789.95 38056.20 38767.33 36881.19 389
Syy-MVS84.10 31184.53 29082.83 35795.14 22465.71 38597.68 25196.66 20386.52 24782.63 26796.84 19168.15 29489.89 38145.62 39591.54 21392.87 256
myMVS_eth3d88.68 24189.07 21187.50 32995.14 22479.74 33697.68 25196.66 20386.52 24782.63 26796.84 19185.22 13889.89 38169.43 35591.54 21392.87 256
DSMNet-mixed81.60 32481.43 31882.10 36084.36 37760.79 38993.63 34286.74 39379.00 34379.32 31887.15 36163.87 32589.78 38366.89 36591.92 20395.73 242
test_f71.94 35470.82 35575.30 36972.77 39853.28 39791.62 36089.66 38675.44 36164.47 38378.31 38920.48 40089.56 38478.63 30366.02 37283.05 388
testing387.75 25388.22 23286.36 33794.66 24777.41 35399.52 5197.95 5486.05 25481.12 29796.69 19886.18 12089.31 38561.65 37990.12 23292.35 268
FMVSNet582.29 31980.54 32387.52 32893.79 27584.01 28893.73 34092.47 36276.92 35674.27 34786.15 36763.69 32789.24 38669.07 35674.79 32389.29 351
new-patchmatchnet74.80 35172.40 35481.99 36178.36 39272.20 37294.44 33292.36 36377.06 35463.47 38479.98 38651.04 37288.85 38760.53 38254.35 39184.92 382
pmmvs372.86 35369.76 35882.17 35973.86 39674.19 36494.20 33589.01 38864.23 39267.72 37480.91 38441.48 38788.65 38862.40 37654.02 39283.68 385
EGC-MVSNET60.70 36255.37 36676.72 36786.35 37271.08 37489.96 37484.44 3980.38 4101.50 41184.09 37237.30 39188.10 38940.85 39973.44 34070.97 395
MIMVSNet175.92 34773.30 35283.81 35481.29 38675.57 35892.26 35492.05 36973.09 37067.48 37786.18 36640.87 38987.64 39055.78 38870.68 35988.21 359
test20.0378.51 34077.48 33681.62 36283.07 38171.03 37596.11 30992.83 35881.66 32769.31 36889.68 34157.53 34887.29 39158.65 38568.47 36286.53 372
test_fmvs375.09 34975.19 34674.81 37077.45 39354.08 39695.93 31290.64 38082.51 31673.29 35381.19 38122.29 39986.29 39285.50 23667.89 36584.06 383
dmvs_testset77.17 34578.99 33271.71 37387.25 36538.55 41091.44 36381.76 40185.77 25869.49 36795.94 21969.71 28484.37 39352.71 39276.82 31392.21 273
LCM-MVSNet60.07 36356.37 36571.18 37454.81 40948.67 40282.17 39489.48 38737.95 39949.13 39469.12 39313.75 40781.76 39459.28 38351.63 39583.10 387
Gipumacopyleft54.77 36752.22 37162.40 38486.50 37059.37 39250.20 40290.35 38236.52 40041.20 40149.49 40218.33 40381.29 39532.10 40165.34 37346.54 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf156.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
APD_test256.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
PMMVS258.97 36455.07 36770.69 37662.72 40455.37 39585.97 38180.52 40249.48 39545.94 39668.31 39415.73 40580.78 39849.79 39337.12 40175.91 390
FPMVS61.57 36060.32 36365.34 38060.14 40742.44 40891.02 36989.72 38544.15 39642.63 39980.93 38219.02 40180.59 39942.50 39672.76 34473.00 393
WB-MVS66.44 35866.29 36166.89 37874.84 39444.93 40593.00 34684.09 39971.15 37355.82 39081.63 37963.79 32680.31 40021.85 40450.47 39775.43 391
SSC-MVS65.42 35965.20 36266.06 37973.96 39543.83 40692.08 35583.54 40069.77 37954.73 39180.92 38363.30 32879.92 40120.48 40548.02 39874.44 392
test_method70.10 35668.66 35974.41 37286.30 37355.84 39494.47 33189.82 38435.18 40166.15 38184.75 37130.54 39577.96 40270.40 35360.33 38289.44 349
PMVScopyleft41.42 2345.67 37042.50 37355.17 38634.28 41232.37 41266.24 40078.71 40430.72 40222.04 40759.59 3984.59 41177.85 40327.49 40258.84 38555.29 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high50.71 36946.17 37264.33 38144.27 41152.30 40076.13 39878.73 40364.95 39027.37 40455.23 40114.61 40667.74 40436.01 40018.23 40472.95 394
tmp_tt53.66 36852.86 37056.05 38532.75 41341.97 40973.42 39976.12 40621.91 40639.68 40296.39 20742.59 38665.10 40578.00 30614.92 40661.08 398
MVEpermissive44.00 2241.70 37137.64 37653.90 38749.46 41043.37 40765.09 40166.66 40926.19 40525.77 40648.53 4033.58 41363.35 40626.15 40327.28 40254.97 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN41.02 37240.93 37441.29 38861.97 40533.83 41184.00 39165.17 41027.17 40327.56 40346.72 40417.63 40460.41 40719.32 40618.82 40329.61 403
EMVS39.96 37339.88 37540.18 38959.57 40832.12 41384.79 38864.57 41126.27 40426.14 40544.18 40718.73 40259.29 40817.03 40717.67 40529.12 404
wuyk23d16.71 37616.73 38016.65 39060.15 40625.22 41541.24 4035.17 4146.56 4075.48 4103.61 4103.64 41222.72 40915.20 4089.52 4071.99 407
test12316.58 37719.47 3797.91 3913.59 4155.37 41694.32 3331.39 4162.49 40913.98 40944.60 4062.91 4142.65 41011.35 4100.57 40915.70 405
testmvs18.81 37523.05 3786.10 3924.48 4142.29 41797.78 2423.00 4153.27 40818.60 40862.71 3961.53 4152.49 41114.26 4091.80 40813.50 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k22.52 37430.03 3770.00 3930.00 4160.00 4180.00 40497.17 1730.00 4110.00 41298.77 8774.35 2460.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.87 3799.16 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41182.48 1810.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.21 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.50 1100.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.74 33667.75 361
FOURS199.50 4288.94 17899.55 4597.47 14191.32 11198.12 45
test_one_060199.59 2894.89 3697.64 10393.14 7198.93 2299.45 1493.45 17
eth-test20.00 416
eth-test0.00 416
RE-MVS-def95.70 6499.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6485.24 13796.62 7799.31 6699.60 69
IU-MVS99.63 1895.38 2497.73 8095.54 2899.54 399.69 699.81 2399.99 1
save fliter99.34 5093.85 6499.65 3697.63 10795.69 22
test072699.66 1295.20 3299.77 1897.70 8693.95 5099.35 799.54 393.18 21
GSMVS98.84 140
test_part299.54 3695.42 2298.13 43
sam_mvs188.39 6898.84 140
sam_mvs87.08 96
MTGPAbinary97.45 144
MTMP99.21 8991.09 378
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
test_prior492.00 9899.41 69
test_prior299.57 4391.43 10898.12 4598.97 6490.43 4598.33 4299.81 23
新几何298.26 207
旧先验198.97 7392.90 8697.74 7799.15 4191.05 3499.33 6499.60 69
原ACMM298.69 154
test22298.32 9291.21 11298.08 22697.58 11883.74 29195.87 9999.02 6086.74 10599.64 4099.81 33
segment_acmp90.56 43
testdata197.89 23592.43 84
plane_prior793.84 27185.73 260
plane_prior693.92 26886.02 25372.92 259
plane_prior496.52 201
plane_prior385.91 25593.65 6386.99 225
plane_prior299.02 12193.38 68
plane_prior193.90 270
plane_prior86.07 25199.14 10693.81 6086.26 249
n20.00 417
nn0.00 417
door-mid84.90 397
test1197.68 90
door85.30 395
HQP5-MVS86.39 236
HQP-NCC93.95 26499.16 9793.92 5287.57 217
ACMP_Plane93.95 26499.16 9793.92 5287.57 217
BP-MVS93.82 137
HQP3-MVS96.37 22386.29 247
HQP2-MVS73.34 253
NP-MVS93.94 26786.22 24396.67 199
MDTV_nov1_ep13_2view91.17 11591.38 36487.45 22793.08 15186.67 10787.02 21598.95 131
ACMMP++_ref82.64 283
ACMMP++83.83 271
Test By Simon83.62 155