| DPM-MVS | | | 97.86 8 | 97.25 21 | 99.68 1 | 98.25 94 | 99.10 1 | 99.76 21 | 97.78 73 | 96.61 12 | 98.15 42 | 99.53 7 | 93.62 16 | 100.00 1 | 91.79 164 | 99.80 26 | 99.94 18 |
|
| ACMMP_NAP | | | 96.59 38 | 96.18 45 | 97.81 36 | 98.82 81 | 93.55 68 | 98.88 135 | 97.59 116 | 90.66 122 | 97.98 52 | 99.14 44 | 86.59 109 | 100.00 1 | 96.47 83 | 99.46 56 | 99.89 25 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 27 | 97.98 53 | 97.18 3 | 95.96 95 | 99.33 19 | 92.62 25 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 9 | 99.80 4 | 96.19 15 | 99.80 16 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 24 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| SMA-MVS |  | | 97.24 20 | 96.99 24 | 98.00 31 | 99.30 54 | 94.20 57 | 99.16 97 | 97.65 102 | 89.55 160 | 99.22 13 | 99.52 8 | 90.34 49 | 99.99 5 | 98.32 43 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| MTAPA | | | 96.09 51 | 95.80 61 | 96.96 69 | 99.29 55 | 91.19 113 | 97.23 269 | 97.45 144 | 92.58 81 | 94.39 130 | 99.24 25 | 86.43 115 | 99.99 5 | 96.22 85 | 99.40 63 | 99.71 51 |
|
| HPM-MVS++ |  | | 97.72 11 | 97.59 13 | 98.14 24 | 99.53 40 | 94.76 44 | 99.19 91 | 97.75 76 | 95.66 24 | 98.21 41 | 99.29 20 | 91.10 32 | 99.99 5 | 97.68 57 | 99.87 9 | 99.68 56 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 24 | 96.84 29 | 98.13 25 | 99.61 24 | 94.45 51 | 98.85 136 | 97.64 103 | 96.51 16 | 95.88 98 | 99.39 18 | 87.35 91 | 99.99 5 | 96.61 79 | 99.69 36 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 24 | 99.55 45 | 97.68 90 | 93.01 72 | 99.23 11 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 88 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 27 | 99.77 18 | 97.72 81 | 94.17 45 | 99.30 9 | 99.54 3 | 93.32 18 | 99.98 9 | 99.70 4 | 99.81 23 | 99.99 1 |
|
| test_241102_TWO | | | | | | | | | 97.72 81 | 94.17 45 | 99.23 11 | 99.54 3 | 93.14 23 | 99.98 9 | 99.70 4 | 99.82 19 | 99.99 1 |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 27 | | 97.72 81 | 94.16 47 | 99.30 9 | 99.49 9 | 93.32 18 | 99.98 9 | | | |
|
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 24 | 97.68 90 | | | | | 99.98 9 | 99.64 7 | 99.82 19 | 99.96 10 |
|
| MP-MVS |  | | 96.00 53 | 95.82 58 | 96.54 93 | 99.47 46 | 90.13 146 | 99.36 76 | 97.41 151 | 90.64 125 | 95.49 110 | 98.95 71 | 85.51 130 | 99.98 9 | 96.00 92 | 99.59 50 | 99.52 77 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| mPP-MVS | | | 95.90 61 | 95.75 63 | 96.38 103 | 99.58 30 | 89.41 166 | 99.26 86 | 97.41 151 | 90.66 122 | 94.82 120 | 98.95 71 | 86.15 121 | 99.98 9 | 95.24 109 | 99.64 40 | 99.74 47 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 25 | 99.76 6 | 94.46 50 | 99.81 12 | 97.88 57 | 96.54 13 | 98.84 25 | 99.46 10 | 92.55 26 | 99.98 9 | 98.25 46 | 99.93 1 | 99.94 18 |
|
| DP-MVS Recon | | | 95.85 62 | 95.15 77 | 97.95 32 | 99.87 2 | 94.38 54 | 99.60 39 | 97.48 139 | 86.58 244 | 94.42 128 | 99.13 46 | 87.36 90 | 99.98 9 | 93.64 139 | 98.33 108 | 99.48 81 |
|
| AdaColmap |  | | 93.82 125 | 93.06 133 | 96.10 117 | 99.88 1 | 89.07 171 | 98.33 201 | 97.55 123 | 86.81 240 | 90.39 193 | 98.65 100 | 75.09 238 | 99.98 9 | 93.32 147 | 97.53 125 | 99.26 103 |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 18 | | | | 99.19 32 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| ZNCC-MVS | | | 96.09 51 | 95.81 60 | 96.95 70 | 99.42 47 | 91.19 113 | 99.55 45 | 97.53 127 | 89.72 151 | 95.86 100 | 98.94 74 | 86.59 109 | 99.97 21 | 95.13 110 | 99.56 51 | 99.68 56 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 32 | 99.72 24 | 97.47 141 | 93.95 50 | 99.07 16 | 99.46 10 | 93.18 21 | 99.97 21 | 99.64 7 | 99.82 19 | 99.69 55 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 93.01 72 | 99.07 16 | 99.46 10 | 94.66 13 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 23 | 99.29 82 | 97.72 81 | 94.50 39 | 98.64 29 | 99.54 3 | 93.32 18 | 99.97 21 | 99.58 10 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| region2R | | | 96.30 46 | 96.17 48 | 96.70 83 | 99.70 7 | 90.31 138 | 99.46 60 | 97.66 95 | 90.55 128 | 97.07 72 | 99.07 53 | 86.85 102 | 99.97 21 | 95.43 103 | 99.74 29 | 99.81 33 |
|
| API-MVS | | | 94.78 95 | 94.18 98 | 96.59 89 | 99.21 61 | 90.06 151 | 98.80 142 | 97.78 73 | 83.59 295 | 93.85 139 | 99.21 29 | 83.79 153 | 99.97 21 | 92.37 159 | 99.00 80 | 99.74 47 |
|
| PC_three_1452 | | | | | | | | | | 94.60 38 | 99.41 4 | 99.12 48 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| HFP-MVS | | | 96.42 42 | 96.26 42 | 96.90 71 | 99.69 8 | 90.96 124 | 99.47 56 | 97.81 68 | 90.54 129 | 96.88 74 | 99.05 56 | 87.57 82 | 99.96 28 | 95.65 96 | 99.72 31 | 99.78 38 |
|
| PHI-MVS | | | 96.65 37 | 96.46 38 | 97.21 56 | 99.34 50 | 91.77 101 | 99.70 27 | 98.05 46 | 86.48 249 | 98.05 48 | 99.20 30 | 89.33 58 | 99.96 28 | 98.38 39 | 99.62 45 | 99.90 22 |
|
| GST-MVS | | | 95.97 56 | 95.66 66 | 96.90 71 | 99.49 45 | 91.22 111 | 99.45 62 | 97.48 139 | 89.69 152 | 95.89 97 | 98.72 93 | 86.37 116 | 99.95 31 | 94.62 125 | 99.22 71 | 99.52 77 |
|
| ACMMPR | | | 96.28 47 | 96.14 52 | 96.73 80 | 99.68 9 | 90.47 136 | 99.47 56 | 97.80 70 | 90.54 129 | 96.83 79 | 99.03 58 | 86.51 113 | 99.95 31 | 95.65 96 | 99.72 31 | 99.75 46 |
|
| ACMMP |  | | 94.67 101 | 94.30 92 | 95.79 130 | 99.25 57 | 88.13 196 | 98.41 190 | 98.67 22 | 90.38 134 | 91.43 174 | 98.72 93 | 82.22 188 | 99.95 31 | 93.83 136 | 95.76 158 | 99.29 100 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| fmvsm_l_conf0.5_n_a | | | 97.70 12 | 97.80 11 | 97.42 47 | 97.59 117 | 92.91 85 | 99.86 5 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 21 | 90.90 37 | 99.94 34 | 99.57 11 | 98.66 99 | 99.40 89 |
|
| patch_mono-2 | | | 97.10 26 | 97.97 8 | 94.49 177 | 99.21 61 | 83.73 292 | 99.62 38 | 98.25 32 | 95.28 32 | 99.38 6 | 98.91 77 | 92.28 27 | 99.94 34 | 99.61 9 | 99.22 71 | 99.78 38 |
|
| MP-MVS-pluss | | | 95.80 64 | 95.30 72 | 97.29 52 | 98.95 76 | 92.66 88 | 98.59 170 | 97.14 175 | 88.95 176 | 93.12 150 | 99.25 23 | 85.62 127 | 99.94 34 | 96.56 81 | 99.48 55 | 99.28 101 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| DeepPCF-MVS | | 93.56 1 | 96.55 40 | 97.84 10 | 92.68 228 | 98.71 85 | 78.11 350 | 99.70 27 | 97.71 85 | 98.18 1 | 97.36 63 | 99.76 1 | 90.37 48 | 99.94 34 | 99.27 16 | 99.54 53 | 99.99 1 |
|
| test_fmvsm_n_1920 | | | 97.08 27 | 97.55 14 | 95.67 135 | 97.94 105 | 89.61 163 | 99.93 2 | 98.48 24 | 97.08 5 | 99.08 15 | 99.13 46 | 88.17 72 | 99.93 38 | 99.11 23 | 99.06 76 | 97.47 202 |
|
| CANet | | | 97.00 28 | 96.49 36 | 98.55 12 | 98.86 80 | 96.10 16 | 99.83 10 | 97.52 131 | 95.90 19 | 97.21 67 | 98.90 78 | 82.66 178 | 99.93 38 | 98.71 29 | 98.80 92 | 99.63 66 |
|
| fmvsm_l_conf0.5_n | | | 97.65 13 | 97.72 12 | 97.41 48 | 97.51 122 | 92.78 87 | 99.85 8 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 26 | 90.42 46 | 99.92 40 | 99.55 12 | 98.50 104 | 99.55 74 |
|
| fmvsm_s_conf0.5_n | | | 96.19 49 | 96.49 36 | 95.30 148 | 97.37 129 | 89.16 168 | 99.86 5 | 98.47 25 | 95.68 23 | 98.87 23 | 99.15 41 | 82.44 185 | 99.92 40 | 99.14 21 | 97.43 128 | 96.83 222 |
|
| test_fmvsmvis_n_1920 | | | 95.47 73 | 95.40 71 | 95.70 133 | 94.33 253 | 90.22 142 | 99.70 27 | 96.98 193 | 96.80 7 | 92.75 154 | 98.89 80 | 82.46 184 | 99.92 40 | 98.36 40 | 98.33 108 | 96.97 219 |
|
| PGM-MVS | | | 95.85 62 | 95.65 68 | 96.45 98 | 99.50 42 | 89.77 159 | 98.22 209 | 98.90 13 | 89.19 168 | 96.74 82 | 98.95 71 | 85.91 125 | 99.92 40 | 93.94 132 | 99.46 56 | 99.66 60 |
|
| CP-MVS | | | 96.22 48 | 96.15 51 | 96.42 100 | 99.67 10 | 89.62 162 | 99.70 27 | 97.61 110 | 90.07 144 | 96.00 94 | 99.16 38 | 87.43 85 | 99.92 40 | 96.03 91 | 99.72 31 | 99.70 52 |
|
| fmvsm_s_conf0.5_n_a | | | 95.97 56 | 96.19 43 | 95.31 147 | 96.51 167 | 89.01 174 | 99.81 12 | 98.39 27 | 95.46 30 | 99.19 14 | 99.16 38 | 81.44 199 | 99.91 45 | 98.83 28 | 96.97 137 | 97.01 218 |
|
| test_vis1_n_1920 | | | 93.08 150 | 93.42 123 | 92.04 241 | 96.31 176 | 79.36 338 | 99.83 10 | 96.06 248 | 96.72 9 | 98.53 33 | 98.10 131 | 58.57 344 | 99.91 45 | 97.86 55 | 98.79 95 | 96.85 221 |
|
| MVS_0304 | | | 97.53 14 | 97.15 22 | 98.67 11 | 97.30 132 | 96.52 12 | 99.60 39 | 98.88 14 | 97.14 4 | 97.21 67 | 98.94 74 | 86.89 101 | 99.91 45 | 99.43 15 | 98.91 87 | 99.59 73 |
|
| PAPR | | | 96.35 43 | 95.82 58 | 97.94 33 | 99.63 18 | 94.19 58 | 99.42 68 | 97.55 123 | 92.43 84 | 93.82 141 | 99.12 48 | 87.30 92 | 99.91 45 | 94.02 131 | 99.06 76 | 99.74 47 |
|
| MAR-MVS | | | 94.43 109 | 94.09 100 | 95.45 141 | 99.10 68 | 87.47 212 | 98.39 197 | 97.79 72 | 88.37 195 | 94.02 136 | 99.17 37 | 78.64 223 | 99.91 45 | 92.48 158 | 98.85 90 | 98.96 127 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| MM | | | 97.76 10 | 97.39 19 | 98.86 5 | 98.30 93 | 96.83 7 | 99.81 12 | 99.13 9 | 97.66 2 | 98.29 40 | 98.96 68 | 85.84 126 | 99.90 50 | 99.72 3 | 98.80 92 | 99.85 30 |
|
| æ— å…ˆéªŒ | | | | | | | | 98.52 175 | 97.82 65 | 87.20 230 | | | | 99.90 50 | 87.64 212 | | 99.85 30 |
|
| PAPM_NR | | | 95.43 74 | 95.05 81 | 96.57 92 | 99.42 47 | 90.14 144 | 98.58 172 | 97.51 133 | 90.65 124 | 92.44 158 | 98.90 78 | 87.77 81 | 99.90 50 | 90.88 172 | 99.32 65 | 99.68 56 |
|
| æ–°å‡ ä½•1 | | | | | 97.40 49 | 98.92 77 | 92.51 93 | | 97.77 75 | 85.52 262 | 96.69 84 | 99.06 55 | 88.08 76 | 99.89 53 | 84.88 243 | 99.62 45 | 99.79 36 |
|
| test_fmvsmconf_n | | | 96.78 34 | 96.84 29 | 96.61 87 | 95.99 192 | 90.25 139 | 99.90 3 | 98.13 42 | 96.68 11 | 98.42 35 | 98.92 76 | 85.34 136 | 99.88 54 | 99.12 22 | 99.08 74 | 99.70 52 |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 253 | | |
|
| SD-MVS | | | 97.51 16 | 97.40 18 | 97.81 36 | 99.01 72 | 93.79 65 | 99.33 79 | 97.38 154 | 93.73 61 | 98.83 26 | 99.02 60 | 90.87 39 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DP-MVS | | | 88.75 237 | 86.56 256 | 95.34 145 | 98.92 77 | 87.45 213 | 97.64 254 | 93.52 351 | 70.55 375 | 81.49 294 | 97.25 165 | 74.43 244 | 99.88 54 | 71.14 349 | 94.09 174 | 98.67 156 |
|
| XVS | | | 96.47 41 | 96.37 40 | 96.77 76 | 99.62 22 | 90.66 132 | 99.43 66 | 97.58 118 | 92.41 87 | 96.86 75 | 98.96 68 | 87.37 87 | 99.87 58 | 95.65 96 | 99.43 60 | 99.78 38 |
|
| X-MVStestdata | | | 90.69 198 | 88.66 221 | 96.77 76 | 99.62 22 | 90.66 132 | 99.43 66 | 97.58 118 | 92.41 87 | 96.86 75 | 29.59 409 | 87.37 87 | 99.87 58 | 95.65 96 | 99.43 60 | 99.78 38 |
|
| PVSNet_BlendedMVS | | | 93.36 140 | 93.20 130 | 93.84 205 | 98.77 83 | 91.61 105 | 99.47 56 | 98.04 48 | 91.44 107 | 94.21 132 | 92.63 280 | 83.50 156 | 99.87 58 | 97.41 61 | 83.37 277 | 90.05 339 |
|
| PVSNet_Blended | | | 95.94 59 | 95.66 66 | 96.75 78 | 98.77 83 | 91.61 105 | 99.88 4 | 98.04 48 | 93.64 64 | 94.21 132 | 97.76 139 | 83.50 156 | 99.87 58 | 97.41 61 | 97.75 120 | 98.79 147 |
|
| QAPM | | | 91.41 181 | 89.49 202 | 97.17 58 | 95.66 203 | 93.42 72 | 98.60 168 | 97.51 133 | 80.92 336 | 81.39 296 | 97.41 158 | 72.89 261 | 99.87 58 | 82.33 274 | 98.68 97 | 98.21 182 |
|
| fmvsm_s_conf0.1_n | | | 95.56 72 | 95.68 65 | 95.20 151 | 94.35 252 | 89.10 170 | 99.50 52 | 97.67 94 | 94.76 36 | 98.68 28 | 99.03 58 | 81.13 202 | 99.86 63 | 98.63 32 | 97.36 130 | 96.63 225 |
|
| test_cas_vis1_n_1920 | | | 93.86 124 | 93.74 116 | 94.22 190 | 95.39 213 | 86.08 249 | 99.73 23 | 96.07 247 | 96.38 17 | 97.19 70 | 97.78 138 | 65.46 319 | 99.86 63 | 96.71 74 | 98.92 86 | 96.73 223 |
|
| CSCG | | | 94.87 92 | 94.71 85 | 95.36 144 | 99.54 36 | 86.49 232 | 99.34 78 | 98.15 40 | 82.71 311 | 90.15 196 | 99.25 23 | 89.48 57 | 99.86 63 | 94.97 116 | 98.82 91 | 99.72 50 |
|
| PLC |  | 91.07 3 | 94.23 112 | 94.01 102 | 94.87 163 | 99.17 63 | 87.49 211 | 99.25 87 | 96.55 213 | 88.43 193 | 91.26 178 | 98.21 128 | 85.92 123 | 99.86 63 | 89.77 188 | 97.57 122 | 97.24 209 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| fmvsm_s_conf0.1_n_a | | | 95.16 82 | 95.15 77 | 95.18 152 | 92.06 302 | 88.94 178 | 99.29 82 | 97.53 127 | 94.46 40 | 98.98 19 | 98.99 62 | 79.99 207 | 99.85 67 | 98.24 47 | 96.86 139 | 96.73 223 |
|
| DeepC-MVS | | 91.02 4 | 94.56 106 | 93.92 110 | 96.46 96 | 97.16 142 | 90.76 128 | 98.39 197 | 97.11 179 | 93.92 52 | 88.66 209 | 98.33 121 | 78.14 225 | 99.85 67 | 95.02 113 | 98.57 102 | 98.78 149 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test_fmvsmconf0.1_n | | | 95.94 59 | 95.79 62 | 96.40 102 | 92.42 296 | 89.92 155 | 99.79 17 | 96.85 197 | 96.53 15 | 97.22 66 | 98.67 99 | 82.71 177 | 99.84 69 | 98.92 27 | 98.98 81 | 99.43 88 |
|
| test_fmvs1 | | | 92.35 163 | 92.94 138 | 90.57 274 | 97.19 139 | 75.43 359 | 99.55 45 | 94.97 315 | 95.20 33 | 96.82 80 | 97.57 151 | 59.59 342 | 99.84 69 | 97.30 63 | 98.29 111 | 96.46 233 |
|
| CANet_DTU | | | 94.31 111 | 93.35 125 | 97.20 57 | 97.03 151 | 94.71 46 | 98.62 164 | 95.54 290 | 95.61 27 | 97.21 67 | 98.47 116 | 71.88 269 | 99.84 69 | 88.38 203 | 97.46 127 | 97.04 216 |
|
| CNLPA | | | 93.64 132 | 92.74 141 | 96.36 105 | 98.96 75 | 90.01 154 | 99.19 91 | 95.89 269 | 86.22 252 | 89.40 204 | 98.85 83 | 80.66 205 | 99.84 69 | 88.57 201 | 96.92 138 | 99.24 104 |
|
| MVS | | | 93.92 120 | 92.28 149 | 98.83 7 | 95.69 201 | 96.82 8 | 96.22 306 | 98.17 37 | 84.89 275 | 84.34 250 | 98.61 105 | 79.32 215 | 99.83 73 | 93.88 134 | 99.43 60 | 99.86 29 |
|
| DELS-MVS | | | 97.12 25 | 96.60 35 | 98.68 10 | 98.03 103 | 96.57 11 | 99.84 9 | 97.84 61 | 96.36 18 | 95.20 115 | 98.24 125 | 88.17 72 | 99.83 73 | 96.11 89 | 99.60 49 | 99.64 64 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| LS3D | | | 90.19 207 | 88.72 219 | 94.59 176 | 98.97 73 | 86.33 240 | 96.90 281 | 96.60 207 | 74.96 363 | 84.06 253 | 98.74 90 | 75.78 235 | 99.83 73 | 74.93 326 | 97.57 122 | 97.62 199 |
|
| test_fmvs1_n | | | 91.07 189 | 91.41 169 | 90.06 288 | 94.10 259 | 74.31 363 | 99.18 93 | 94.84 319 | 94.81 35 | 96.37 90 | 97.46 155 | 50.86 374 | 99.82 76 | 97.14 66 | 97.90 114 | 96.04 240 |
|
| 3Dnovator | | 87.35 11 | 93.17 148 | 91.77 162 | 97.37 51 | 95.41 211 | 93.07 78 | 98.82 139 | 97.85 60 | 91.53 104 | 82.56 270 | 97.58 150 | 71.97 268 | 99.82 76 | 91.01 170 | 99.23 70 | 99.22 107 |
|
| OpenMVS |  | 85.28 14 | 90.75 196 | 88.84 216 | 96.48 95 | 93.58 278 | 93.51 70 | 98.80 142 | 97.41 151 | 82.59 312 | 78.62 324 | 97.49 154 | 68.00 297 | 99.82 76 | 84.52 249 | 98.55 103 | 96.11 239 |
|
| MSLP-MVS++ | | | 97.50 17 | 97.45 17 | 97.63 40 | 99.65 16 | 93.21 74 | 99.70 27 | 98.13 42 | 94.61 37 | 97.78 56 | 99.46 10 | 89.85 54 | 99.81 79 | 97.97 52 | 99.91 6 | 99.88 26 |
|
| CHOSEN 1792x2688 | | | 94.35 110 | 93.82 114 | 95.95 125 | 97.40 127 | 88.74 186 | 98.41 190 | 98.27 31 | 92.18 93 | 91.43 174 | 96.40 205 | 78.88 218 | 99.81 79 | 93.59 140 | 97.81 116 | 99.30 99 |
|
| 1314 | | | 93.44 136 | 91.98 157 | 97.84 34 | 95.24 215 | 94.38 54 | 96.22 306 | 97.92 55 | 90.18 138 | 82.28 278 | 97.71 143 | 77.63 228 | 99.80 81 | 91.94 163 | 98.67 98 | 99.34 96 |
|
| test_fmvsmconf0.01_n | | | 94.14 114 | 93.51 120 | 96.04 119 | 86.79 369 | 89.19 167 | 99.28 85 | 95.94 257 | 95.70 21 | 95.50 109 | 98.49 112 | 73.27 256 | 99.79 82 | 98.28 45 | 98.32 110 | 99.15 111 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 137 | 91.84 160 | 98.17 23 | 95.73 200 | 95.08 34 | 98.92 132 | 97.04 186 | 91.42 109 | 81.48 295 | 97.60 148 | 74.60 241 | 99.79 82 | 90.84 173 | 98.97 82 | 99.64 64 |
|
| PCF-MVS | | 89.78 5 | 91.26 184 | 89.63 199 | 96.16 116 | 95.44 209 | 91.58 107 | 95.29 326 | 96.10 243 | 85.07 270 | 82.75 264 | 97.45 156 | 78.28 224 | 99.78 84 | 80.60 289 | 95.65 161 | 97.12 211 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| TSAR-MVS + GP. | | | 96.95 29 | 96.91 26 | 97.07 59 | 98.88 79 | 91.62 104 | 99.58 42 | 96.54 214 | 95.09 34 | 96.84 77 | 98.63 103 | 91.16 30 | 99.77 85 | 99.04 24 | 96.42 145 | 99.81 33 |
|
| MVS_111021_LR | | | 95.78 65 | 95.94 54 | 95.28 149 | 98.19 98 | 87.69 203 | 98.80 142 | 99.26 7 | 93.39 67 | 95.04 118 | 98.69 98 | 84.09 150 | 99.76 86 | 96.96 71 | 99.06 76 | 98.38 170 |
|
| MVS_111021_HR | | | 96.69 35 | 96.69 33 | 96.72 82 | 98.58 88 | 91.00 123 | 99.14 106 | 99.45 1 | 93.86 56 | 95.15 116 | 98.73 91 | 88.48 67 | 99.76 86 | 97.23 65 | 99.56 51 | 99.40 89 |
|
| MG-MVS | | | 97.24 20 | 96.83 31 | 98.47 15 | 99.79 5 | 95.71 19 | 99.07 114 | 99.06 10 | 94.45 42 | 96.42 89 | 98.70 97 | 88.81 64 | 99.74 88 | 95.35 105 | 99.86 12 | 99.97 7 |
|
| SF-MVS | | | 97.22 22 | 96.92 25 | 98.12 27 | 99.11 66 | 94.88 37 | 99.44 63 | 97.45 144 | 89.60 156 | 98.70 27 | 99.42 17 | 90.42 46 | 99.72 89 | 98.47 38 | 99.65 38 | 99.77 43 |
|
| 原ACMM1 | | | | | 96.18 112 | 99.03 71 | 90.08 147 | | 97.63 107 | 88.98 174 | 97.00 73 | 98.97 64 | 88.14 75 | 99.71 90 | 88.23 205 | 99.62 45 | 98.76 151 |
|
| 9.14 | | | | 96.87 27 | | 99.34 50 | | 99.50 52 | 97.49 138 | 89.41 164 | 98.59 31 | 99.43 16 | 89.78 55 | 99.69 91 | 98.69 30 | 99.62 45 | |
|
| PVSNet_Blended_VisFu | | | 94.67 101 | 94.11 99 | 96.34 106 | 97.14 144 | 91.10 118 | 99.32 80 | 97.43 149 | 92.10 95 | 91.53 173 | 96.38 208 | 83.29 162 | 99.68 92 | 93.42 146 | 96.37 146 | 98.25 177 |
|
| UGNet | | | 91.91 174 | 90.85 180 | 95.10 154 | 97.06 149 | 88.69 187 | 98.01 230 | 98.24 34 | 92.41 87 | 92.39 159 | 93.61 261 | 60.52 339 | 99.68 92 | 88.14 206 | 97.25 131 | 96.92 220 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| TEST9 | | | | | | 99.57 33 | 93.17 75 | 99.38 72 | 97.66 95 | 89.57 158 | 98.39 36 | 99.18 35 | 90.88 38 | 99.66 94 | | | |
|
| train_agg | | | 97.20 23 | 97.08 23 | 97.57 44 | 99.57 33 | 93.17 75 | 99.38 72 | 97.66 95 | 90.18 138 | 98.39 36 | 99.18 35 | 90.94 35 | 99.66 94 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| EPNet | | | 96.82 32 | 96.68 34 | 97.25 55 | 98.65 86 | 93.10 77 | 99.48 54 | 98.76 15 | 96.54 13 | 97.84 55 | 98.22 126 | 87.49 84 | 99.66 94 | 95.35 105 | 97.78 119 | 99.00 123 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| SteuartSystems-ACMMP | | | 97.25 19 | 97.34 20 | 97.01 62 | 97.38 128 | 91.46 108 | 99.75 22 | 97.66 95 | 94.14 49 | 98.13 43 | 99.26 21 | 92.16 28 | 99.66 94 | 97.91 54 | 99.64 40 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| sss | | | 94.85 93 | 93.94 109 | 97.58 42 | 96.43 170 | 94.09 61 | 98.93 130 | 99.16 8 | 89.50 161 | 95.27 113 | 97.85 133 | 81.50 196 | 99.65 98 | 92.79 156 | 94.02 175 | 98.99 124 |
|
| F-COLMAP | | | 92.07 172 | 91.75 163 | 93.02 218 | 98.16 99 | 82.89 304 | 98.79 146 | 95.97 252 | 86.54 246 | 87.92 214 | 97.80 136 | 78.69 222 | 99.65 98 | 85.97 229 | 95.93 157 | 96.53 231 |
|
| test_8 | | | | | | 99.55 35 | 93.07 78 | 99.37 75 | 97.64 103 | 90.18 138 | 98.36 38 | 99.19 32 | 90.94 35 | 99.64 100 | | | |
|
| PVSNet | | 87.13 12 | 93.69 128 | 92.83 140 | 96.28 108 | 97.99 104 | 90.22 142 | 99.38 72 | 98.93 12 | 91.42 109 | 93.66 143 | 97.68 144 | 71.29 276 | 99.64 100 | 87.94 209 | 97.20 132 | 98.98 125 |
|
| agg_prior | | | | | | 99.54 36 | 92.66 88 | | 97.64 103 | | 97.98 52 | | | 99.61 102 | | | |
|
| PS-MVSNAJ | | | 96.87 31 | 96.40 39 | 98.29 19 | 97.35 130 | 97.29 5 | 99.03 120 | 97.11 179 | 95.83 20 | 98.97 20 | 99.14 44 | 82.48 181 | 99.60 103 | 98.60 33 | 99.08 74 | 98.00 189 |
|
| MSDG | | | 88.29 246 | 86.37 258 | 94.04 199 | 96.90 152 | 86.15 247 | 96.52 294 | 94.36 336 | 77.89 353 | 79.22 319 | 96.95 183 | 69.72 283 | 99.59 104 | 73.20 341 | 92.58 191 | 96.37 236 |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 73 | | 97.61 110 | 87.78 216 | 97.41 61 | 99.16 38 | 90.15 52 | 99.56 105 | 98.35 41 | 99.70 35 | |
|
| APDe-MVS |  | | 97.53 14 | 97.47 15 | 97.70 38 | 99.58 30 | 93.63 66 | 99.56 44 | 97.52 131 | 93.59 65 | 98.01 51 | 99.12 48 | 90.80 40 | 99.55 106 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| CPTT-MVS | | | 94.60 103 | 94.43 91 | 95.09 155 | 99.66 12 | 86.85 227 | 99.44 63 | 97.47 141 | 83.22 300 | 94.34 131 | 98.96 68 | 82.50 179 | 99.55 106 | 94.81 118 | 99.50 54 | 98.88 137 |
|
| Anonymous202405211 | | | 88.84 231 | 87.03 250 | 94.27 187 | 98.14 100 | 84.18 286 | 98.44 186 | 95.58 288 | 76.79 357 | 89.34 205 | 96.88 189 | 53.42 366 | 99.54 108 | 87.53 213 | 87.12 243 | 99.09 118 |
|
| VNet | | | 95.08 85 | 94.26 93 | 97.55 45 | 98.07 101 | 93.88 63 | 98.68 155 | 98.73 18 | 90.33 135 | 97.16 71 | 97.43 157 | 79.19 217 | 99.53 109 | 96.91 73 | 91.85 205 | 99.24 104 |
|
| Anonymous20240529 | | | 87.66 257 | 85.58 270 | 93.92 202 | 97.59 117 | 85.01 275 | 98.13 217 | 97.13 177 | 66.69 389 | 88.47 211 | 96.01 218 | 55.09 360 | 99.51 110 | 87.00 216 | 84.12 268 | 97.23 210 |
|
| test12 | | | | | 97.83 35 | 99.33 53 | 94.45 51 | | 97.55 123 | | 97.56 57 | | 88.60 66 | 99.50 111 | | 99.71 34 | 99.55 74 |
|
| MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 94 | 99.54 36 | 90.14 144 | 99.41 69 | 97.70 86 | 95.46 30 | 98.60 30 | 99.19 32 | 95.71 4 | 99.49 112 | 98.15 48 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| test_prior | | | | | 97.01 62 | 99.58 30 | 91.77 101 | | 97.57 121 | | | | | 99.49 112 | | | 99.79 36 |
|
| CDPH-MVS | | | 96.56 39 | 96.18 45 | 97.70 38 | 99.59 28 | 93.92 62 | 99.13 109 | 97.44 147 | 89.02 173 | 97.90 54 | 99.22 27 | 88.90 63 | 99.49 112 | 94.63 124 | 99.79 27 | 99.68 56 |
|
| HY-MVS | | 88.56 7 | 95.29 79 | 94.23 94 | 98.48 14 | 97.72 110 | 96.41 13 | 94.03 338 | 98.74 16 | 92.42 86 | 95.65 107 | 94.76 240 | 86.52 112 | 99.49 112 | 95.29 107 | 92.97 184 | 99.53 76 |
|
| EI-MVSNet-UG-set | | | 95.43 74 | 95.29 73 | 95.86 128 | 99.07 70 | 89.87 156 | 98.43 187 | 97.80 70 | 91.78 98 | 94.11 134 | 98.77 87 | 86.25 119 | 99.48 116 | 94.95 117 | 96.45 144 | 98.22 181 |
|
| EI-MVSNet-Vis-set | | | 95.76 67 | 95.63 70 | 96.17 114 | 99.14 64 | 90.33 137 | 98.49 181 | 97.82 65 | 91.92 96 | 94.75 122 | 98.88 82 | 87.06 97 | 99.48 116 | 95.40 104 | 97.17 135 | 98.70 154 |
|
| WTY-MVS | | | 95.97 56 | 95.11 79 | 98.54 13 | 97.62 114 | 96.65 9 | 99.44 63 | 98.74 16 | 92.25 91 | 95.21 114 | 98.46 118 | 86.56 111 | 99.46 118 | 95.00 115 | 92.69 188 | 99.50 80 |
|
| test_vis1_rt | | | 81.31 325 | 80.05 328 | 85.11 344 | 91.29 317 | 70.66 377 | 98.98 127 | 77.39 405 | 85.76 259 | 68.80 369 | 82.40 376 | 36.56 392 | 99.44 119 | 92.67 157 | 86.55 246 | 85.24 380 |
|
| test_yl | | | 95.27 80 | 94.60 87 | 97.28 53 | 98.53 89 | 92.98 81 | 99.05 118 | 98.70 19 | 86.76 241 | 94.65 125 | 97.74 141 | 87.78 79 | 99.44 119 | 95.57 101 | 92.61 189 | 99.44 86 |
|
| DCV-MVSNet | | | 95.27 80 | 94.60 87 | 97.28 53 | 98.53 89 | 92.98 81 | 99.05 118 | 98.70 19 | 86.76 241 | 94.65 125 | 97.74 141 | 87.78 79 | 99.44 119 | 95.57 101 | 92.61 189 | 99.44 86 |
|
| h-mvs33 | | | 92.47 162 | 91.95 158 | 94.05 198 | 97.13 145 | 85.01 275 | 98.36 199 | 98.08 44 | 93.85 57 | 96.27 91 | 96.73 196 | 83.19 165 | 99.43 122 | 95.81 94 | 68.09 363 | 97.70 195 |
|
| test_vis1_n | | | 90.40 201 | 90.27 191 | 90.79 269 | 91.55 312 | 76.48 355 | 99.12 110 | 94.44 331 | 94.31 43 | 97.34 64 | 96.95 183 | 43.60 385 | 99.42 123 | 97.57 59 | 97.60 121 | 96.47 232 |
|
| APD-MVS |  | | 96.95 29 | 96.72 32 | 97.63 40 | 99.51 41 | 93.58 67 | 99.16 97 | 97.44 147 | 90.08 143 | 98.59 31 | 99.07 53 | 89.06 60 | 99.42 123 | 97.92 53 | 99.66 37 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ab-mvs | | | 91.05 191 | 89.17 209 | 96.69 84 | 95.96 193 | 91.72 103 | 92.62 352 | 97.23 165 | 85.61 261 | 89.74 201 | 93.89 254 | 68.55 290 | 99.42 123 | 91.09 168 | 87.84 239 | 98.92 135 |
|
| SR-MVS | | | 96.13 50 | 96.16 50 | 96.07 118 | 99.42 47 | 89.04 172 | 98.59 170 | 97.33 158 | 90.44 132 | 96.84 77 | 99.12 48 | 86.75 104 | 99.41 126 | 97.47 60 | 99.44 59 | 99.76 45 |
|
| PatchMatch-RL | | | 91.47 179 | 90.54 188 | 94.26 188 | 98.20 96 | 86.36 238 | 96.94 279 | 97.14 175 | 87.75 218 | 88.98 207 | 95.75 222 | 71.80 271 | 99.40 127 | 80.92 285 | 97.39 129 | 97.02 217 |
|
| XVG-OURS-SEG-HR | | | 90.95 192 | 90.66 187 | 91.83 244 | 95.18 222 | 81.14 328 | 95.92 313 | 95.92 261 | 88.40 194 | 90.33 194 | 97.85 133 | 70.66 279 | 99.38 128 | 92.83 154 | 88.83 236 | 94.98 247 |
|
| HPM-MVS |  | | 95.41 76 | 95.22 75 | 95.99 123 | 99.29 55 | 89.14 169 | 99.17 96 | 97.09 183 | 87.28 229 | 95.40 111 | 98.48 115 | 84.93 140 | 99.38 128 | 95.64 100 | 99.65 38 | 99.47 82 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| SR-MVS-dyc-post | | | 95.75 68 | 95.86 57 | 95.41 143 | 99.22 59 | 87.26 222 | 98.40 193 | 97.21 167 | 89.63 154 | 96.67 85 | 98.97 64 | 86.73 106 | 99.36 130 | 96.62 77 | 99.31 66 | 99.60 69 |
|
| xiu_mvs_v2_base | | | 96.66 36 | 96.17 48 | 98.11 28 | 97.11 147 | 96.96 6 | 99.01 123 | 97.04 186 | 95.51 29 | 98.86 24 | 99.11 52 | 82.19 189 | 99.36 130 | 98.59 35 | 98.14 112 | 98.00 189 |
|
| APD-MVS_3200maxsize | | | 95.64 71 | 95.65 68 | 95.62 137 | 99.24 58 | 87.80 202 | 98.42 188 | 97.22 166 | 88.93 178 | 96.64 87 | 98.98 63 | 85.49 131 | 99.36 130 | 96.68 76 | 99.27 69 | 99.70 52 |
|
| XVG-OURS | | | 90.83 194 | 90.49 189 | 91.86 243 | 95.23 216 | 81.25 325 | 95.79 321 | 95.92 261 | 88.96 175 | 90.02 198 | 98.03 132 | 71.60 273 | 99.35 133 | 91.06 169 | 87.78 240 | 94.98 247 |
|
| PVSNet_0 | | 83.28 16 | 87.31 261 | 85.16 276 | 93.74 208 | 94.78 243 | 84.59 280 | 98.91 133 | 98.69 21 | 89.81 150 | 78.59 326 | 93.23 270 | 61.95 333 | 99.34 134 | 94.75 119 | 55.72 390 | 97.30 206 |
|
| HPM-MVS_fast | | | 94.89 88 | 94.62 86 | 95.70 133 | 99.11 66 | 88.44 192 | 99.14 106 | 97.11 179 | 85.82 257 | 95.69 106 | 98.47 116 | 83.46 158 | 99.32 135 | 93.16 149 | 99.63 44 | 99.35 94 |
|
| 114514_t | | | 94.06 115 | 93.05 134 | 97.06 60 | 99.08 69 | 92.26 96 | 98.97 128 | 97.01 191 | 82.58 313 | 92.57 156 | 98.22 126 | 80.68 204 | 99.30 136 | 89.34 194 | 99.02 79 | 99.63 66 |
|
| RPMNet | | | 85.07 296 | 81.88 313 | 94.64 174 | 93.47 280 | 86.24 241 | 84.97 386 | 97.21 167 | 64.85 391 | 90.76 185 | 78.80 388 | 80.95 203 | 99.27 137 | 53.76 390 | 92.17 201 | 98.41 167 |
|
| VDD-MVS | | | 91.24 187 | 90.18 192 | 94.45 180 | 97.08 148 | 85.84 259 | 98.40 193 | 96.10 243 | 86.99 232 | 93.36 147 | 98.16 129 | 54.27 363 | 99.20 138 | 96.59 80 | 90.63 229 | 98.31 176 |
|
| AllTest | | | 84.97 297 | 83.12 302 | 90.52 277 | 96.82 154 | 78.84 342 | 95.89 314 | 92.17 366 | 77.96 351 | 75.94 338 | 95.50 225 | 55.48 356 | 99.18 139 | 71.15 347 | 87.14 241 | 93.55 253 |
|
| TestCases | | | | | 90.52 277 | 96.82 154 | 78.84 342 | | 92.17 366 | 77.96 351 | 75.94 338 | 95.50 225 | 55.48 356 | 99.18 139 | 71.15 347 | 87.14 241 | 93.55 253 |
|
| mvsany_test1 | | | 94.57 105 | 95.09 80 | 92.98 219 | 95.84 196 | 82.07 314 | 98.76 148 | 95.24 308 | 92.87 79 | 96.45 88 | 98.71 96 | 84.81 143 | 99.15 141 | 97.68 57 | 95.49 163 | 97.73 194 |
|
| xiu_mvs_v1_base_debu | | | 94.73 97 | 93.98 104 | 96.99 64 | 95.19 219 | 95.24 27 | 98.62 164 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 264 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 228 |
|
| xiu_mvs_v1_base | | | 94.73 97 | 93.98 104 | 96.99 64 | 95.19 219 | 95.24 27 | 98.62 164 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 264 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 228 |
|
| xiu_mvs_v1_base_debi | | | 94.73 97 | 93.98 104 | 96.99 64 | 95.19 219 | 95.24 27 | 98.62 164 | 96.50 216 | 92.99 74 | 97.52 58 | 98.83 84 | 72.37 264 | 99.15 141 | 97.03 67 | 96.74 140 | 96.58 228 |
|
| OMC-MVS | | | 93.90 122 | 93.62 118 | 94.73 170 | 98.63 87 | 87.00 225 | 98.04 229 | 96.56 212 | 92.19 92 | 92.46 157 | 98.73 91 | 79.49 214 | 99.14 145 | 92.16 161 | 94.34 173 | 98.03 188 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 303 | 82.82 304 | 89.70 301 | 96.72 160 | 78.85 341 | 95.89 314 | 92.83 358 | 71.55 372 | 77.54 333 | 95.89 220 | 59.40 343 | 99.14 145 | 67.26 363 | 88.26 237 | 91.11 312 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| UA-Net | | | 93.30 142 | 92.62 144 | 95.34 145 | 96.27 178 | 88.53 191 | 95.88 316 | 96.97 194 | 90.90 117 | 95.37 112 | 97.07 176 | 82.38 186 | 99.10 147 | 83.91 259 | 94.86 169 | 98.38 170 |
|
| TSAR-MVS + MP. | | | 97.44 18 | 97.46 16 | 97.39 50 | 99.12 65 | 93.49 71 | 98.52 175 | 97.50 136 | 94.46 40 | 98.99 18 | 98.64 101 | 91.58 29 | 99.08 148 | 98.49 37 | 99.83 15 | 99.60 69 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| sasdasda | | | 95.02 86 | 93.96 107 | 98.20 21 | 97.53 120 | 95.92 17 | 98.71 150 | 96.19 236 | 91.78 98 | 95.86 100 | 98.49 112 | 79.53 212 | 99.03 149 | 96.12 87 | 91.42 219 | 99.66 60 |
|
| canonicalmvs | | | 95.02 86 | 93.96 107 | 98.20 21 | 97.53 120 | 95.92 17 | 98.71 150 | 96.19 236 | 91.78 98 | 95.86 100 | 98.49 112 | 79.53 212 | 99.03 149 | 96.12 87 | 91.42 219 | 99.66 60 |
|
| FA-MVS(test-final) | | | 92.22 169 | 91.08 175 | 95.64 136 | 96.05 191 | 88.98 175 | 91.60 361 | 97.25 161 | 86.99 232 | 91.84 163 | 92.12 283 | 83.03 168 | 99.00 151 | 86.91 219 | 93.91 176 | 98.93 133 |
|
| alignmvs | | | 95.77 66 | 95.00 82 | 98.06 29 | 97.35 130 | 95.68 20 | 99.71 26 | 97.50 136 | 91.50 105 | 96.16 93 | 98.61 105 | 86.28 117 | 99.00 151 | 96.19 86 | 91.74 207 | 99.51 79 |
|
| MGCFI-Net | | | 94.89 88 | 93.84 113 | 98.06 29 | 97.49 125 | 95.55 21 | 98.64 161 | 96.10 243 | 91.60 103 | 95.75 104 | 98.46 118 | 79.31 216 | 98.98 153 | 95.95 93 | 91.24 223 | 99.65 63 |
|
| 旧先验2 | | | | | | | | 98.67 157 | | 85.75 260 | 98.96 21 | | | 98.97 154 | 93.84 135 | | |
|
| FE-MVS | | | 91.38 182 | 90.16 193 | 95.05 158 | 96.46 169 | 87.53 210 | 89.69 375 | 97.84 61 | 82.97 305 | 92.18 161 | 92.00 289 | 84.07 151 | 98.93 155 | 80.71 287 | 95.52 162 | 98.68 155 |
|
| LFMVS | | | 92.23 168 | 90.84 181 | 96.42 100 | 98.24 95 | 91.08 120 | 98.24 208 | 96.22 233 | 83.39 298 | 94.74 123 | 98.31 122 | 61.12 337 | 98.85 156 | 94.45 127 | 92.82 185 | 99.32 97 |
|
| TAPA-MVS | | 87.50 9 | 90.35 202 | 89.05 212 | 94.25 189 | 98.48 91 | 85.17 272 | 98.42 188 | 96.58 211 | 82.44 318 | 87.24 222 | 98.53 107 | 82.77 173 | 98.84 157 | 59.09 384 | 97.88 115 | 98.72 152 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| IB-MVS | | 89.43 6 | 92.12 170 | 90.83 183 | 95.98 124 | 95.40 212 | 90.78 127 | 99.81 12 | 98.06 45 | 91.23 113 | 85.63 238 | 93.66 260 | 90.63 42 | 98.78 158 | 91.22 167 | 71.85 353 | 98.36 173 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| VDDNet | | | 90.08 211 | 88.54 227 | 94.69 171 | 94.41 251 | 87.68 204 | 98.21 211 | 96.40 221 | 76.21 358 | 93.33 148 | 97.75 140 | 54.93 361 | 98.77 159 | 94.71 122 | 90.96 224 | 97.61 200 |
|
| thres200 | | | 93.69 128 | 92.59 145 | 96.97 68 | 97.76 109 | 94.74 45 | 99.35 77 | 99.36 2 | 89.23 166 | 91.21 180 | 96.97 182 | 83.42 159 | 98.77 159 | 85.08 239 | 90.96 224 | 97.39 204 |
|
| thres100view900 | | | 93.34 141 | 92.15 153 | 96.90 71 | 97.62 114 | 94.84 40 | 99.06 117 | 99.36 2 | 87.96 211 | 90.47 191 | 96.78 194 | 83.29 162 | 98.75 161 | 84.11 255 | 90.69 226 | 97.12 211 |
|
| tfpn200view9 | | | 93.43 137 | 92.27 150 | 96.90 71 | 97.68 112 | 94.84 40 | 99.18 93 | 99.36 2 | 88.45 190 | 90.79 183 | 96.90 186 | 83.31 160 | 98.75 161 | 84.11 255 | 90.69 226 | 97.12 211 |
|
| thres400 | | | 93.39 139 | 92.27 150 | 96.73 80 | 97.68 112 | 94.84 40 | 99.18 93 | 99.36 2 | 88.45 190 | 90.79 183 | 96.90 186 | 83.31 160 | 98.75 161 | 84.11 255 | 90.69 226 | 96.61 226 |
|
| testdata | | | | | 95.26 150 | 98.20 96 | 87.28 219 | | 97.60 112 | 85.21 266 | 98.48 34 | 99.15 41 | 88.15 74 | 98.72 164 | 90.29 181 | 99.45 58 | 99.78 38 |
|
| thres600view7 | | | 93.18 146 | 92.00 156 | 96.75 78 | 97.62 114 | 94.92 35 | 99.07 114 | 99.36 2 | 87.96 211 | 90.47 191 | 96.78 194 | 83.29 162 | 98.71 165 | 82.93 269 | 90.47 230 | 96.61 226 |
|
| dcpmvs_2 | | | 95.67 70 | 96.18 45 | 94.12 194 | 98.82 81 | 84.22 285 | 97.37 262 | 95.45 295 | 90.70 121 | 95.77 103 | 98.63 103 | 90.47 44 | 98.68 166 | 99.20 20 | 99.22 71 | 99.45 85 |
|
| bld_raw_dy_0_64 | | | 91.37 183 | 89.75 197 | 96.23 109 | 97.51 122 | 90.58 134 | 99.16 97 | 88.98 389 | 95.64 25 | 87.18 224 | 99.20 30 | 57.19 351 | 98.66 167 | 98.00 50 | 84.86 260 | 99.46 83 |
|
| 1112_ss | | | 92.71 154 | 91.55 166 | 96.20 111 | 95.56 205 | 91.12 116 | 98.48 183 | 94.69 326 | 88.29 200 | 86.89 228 | 98.50 110 | 87.02 98 | 98.66 167 | 84.75 244 | 89.77 234 | 98.81 145 |
|
| Test_1112_low_res | | | 92.27 167 | 90.97 177 | 96.18 112 | 95.53 207 | 91.10 118 | 98.47 185 | 94.66 327 | 88.28 201 | 86.83 229 | 93.50 265 | 87.00 99 | 98.65 169 | 84.69 245 | 89.74 235 | 98.80 146 |
|
| testing11 | | | 95.33 78 | 94.98 83 | 96.37 104 | 97.20 137 | 92.31 94 | 99.29 82 | 97.68 90 | 90.59 126 | 94.43 127 | 97.20 168 | 90.79 41 | 98.60 170 | 95.25 108 | 92.38 193 | 98.18 184 |
|
| cascas | | | 90.93 193 | 89.33 207 | 95.76 131 | 95.69 201 | 93.03 80 | 98.99 125 | 96.59 208 | 80.49 338 | 86.79 230 | 94.45 243 | 65.23 320 | 98.60 170 | 93.52 141 | 92.18 200 | 95.66 243 |
|
| iter_conf05_11 | | | 94.23 112 | 93.49 121 | 96.46 96 | 97.51 122 | 91.32 110 | 99.96 1 | 94.31 337 | 95.62 26 | 99.32 8 | 99.22 27 | 57.79 347 | 98.59 172 | 98.00 50 | 99.64 40 | 99.46 83 |
|
| testing91 | | | 94.88 90 | 94.44 90 | 96.21 110 | 97.19 139 | 91.90 100 | 99.23 88 | 97.66 95 | 89.91 147 | 93.66 143 | 97.05 179 | 90.21 51 | 98.50 173 | 93.52 141 | 91.53 216 | 98.25 177 |
|
| testing99 | | | 94.88 90 | 94.45 89 | 96.17 114 | 97.20 137 | 91.91 99 | 99.20 90 | 97.66 95 | 89.95 146 | 93.68 142 | 97.06 177 | 90.28 50 | 98.50 173 | 93.52 141 | 91.54 213 | 98.12 186 |
|
| ECVR-MVS |  | | 92.29 165 | 91.33 170 | 95.15 153 | 96.41 171 | 87.84 201 | 98.10 222 | 94.84 319 | 90.82 119 | 91.42 176 | 97.28 161 | 65.61 316 | 98.49 175 | 90.33 180 | 97.19 133 | 99.12 115 |
|
| test2506 | | | 94.80 94 | 94.21 95 | 96.58 90 | 96.41 171 | 92.18 97 | 98.01 230 | 98.96 11 | 90.82 119 | 93.46 146 | 97.28 161 | 85.92 123 | 98.45 176 | 89.82 186 | 97.19 133 | 99.12 115 |
|
| thisisatest0515 | | | 94.75 96 | 94.19 96 | 96.43 99 | 96.13 190 | 92.64 91 | 99.47 56 | 97.60 112 | 87.55 225 | 93.17 149 | 97.59 149 | 94.71 12 | 98.42 177 | 88.28 204 | 93.20 181 | 98.24 180 |
|
| test1111 | | | 92.12 170 | 91.19 173 | 94.94 161 | 96.15 185 | 87.36 216 | 98.12 219 | 94.84 319 | 90.85 118 | 90.97 181 | 97.26 163 | 65.60 317 | 98.37 178 | 89.74 189 | 97.14 136 | 99.07 121 |
|
| thisisatest0530 | | | 94.00 117 | 93.52 119 | 95.43 142 | 95.76 199 | 90.02 153 | 98.99 125 | 97.60 112 | 86.58 244 | 91.74 165 | 97.36 160 | 94.78 11 | 98.34 179 | 86.37 225 | 92.48 192 | 97.94 191 |
|
| tttt0517 | | | 93.30 142 | 93.01 136 | 94.17 192 | 95.57 204 | 86.47 233 | 98.51 178 | 97.60 112 | 85.99 255 | 90.55 188 | 97.19 170 | 94.80 10 | 98.31 180 | 85.06 240 | 91.86 204 | 97.74 193 |
|
| RPSCF | | | 85.33 293 | 85.55 271 | 84.67 349 | 94.63 248 | 62.28 388 | 93.73 340 | 93.76 345 | 74.38 366 | 85.23 242 | 97.06 177 | 64.09 323 | 98.31 180 | 80.98 283 | 86.08 252 | 93.41 255 |
|
| gm-plane-assit | | | | | | 94.69 245 | 88.14 195 | | | 88.22 202 | | 97.20 168 | | 98.29 182 | 90.79 175 | | |
|
| MVS_Test | | | 93.67 131 | 92.67 143 | 96.69 84 | 96.72 160 | 92.66 88 | 97.22 270 | 96.03 249 | 87.69 222 | 95.12 117 | 94.03 248 | 81.55 195 | 98.28 183 | 89.17 198 | 96.46 143 | 99.14 112 |
|
| SDMVSNet | | | 91.09 188 | 89.91 195 | 94.65 172 | 96.80 156 | 90.54 135 | 97.78 242 | 97.81 68 | 88.34 197 | 85.73 235 | 95.26 231 | 66.44 311 | 98.26 184 | 94.25 130 | 86.75 244 | 95.14 244 |
|
| tt0805 | | | 86.50 275 | 84.79 284 | 91.63 252 | 91.97 303 | 81.49 319 | 96.49 295 | 97.38 154 | 82.24 320 | 82.44 272 | 95.82 221 | 51.22 371 | 98.25 185 | 84.55 248 | 80.96 291 | 95.13 246 |
|
| EIA-MVS | | | 95.11 83 | 95.27 74 | 94.64 174 | 96.34 175 | 86.51 231 | 99.59 41 | 96.62 205 | 92.51 82 | 94.08 135 | 98.64 101 | 86.05 122 | 98.24 186 | 95.07 112 | 98.50 104 | 99.18 109 |
|
| tpmvs | | | 89.16 223 | 87.76 237 | 93.35 212 | 97.19 139 | 84.75 279 | 90.58 373 | 97.36 156 | 81.99 323 | 84.56 246 | 89.31 346 | 83.98 152 | 98.17 187 | 74.85 328 | 90.00 233 | 97.12 211 |
|
| BH-RMVSNet | | | 91.25 186 | 89.99 194 | 95.03 159 | 96.75 159 | 88.55 189 | 98.65 159 | 94.95 316 | 87.74 219 | 87.74 216 | 97.80 136 | 68.27 293 | 98.14 188 | 80.53 290 | 97.49 126 | 98.41 167 |
|
| ETV-MVS | | | 96.00 53 | 96.00 53 | 96.00 122 | 96.56 163 | 91.05 121 | 99.63 37 | 96.61 206 | 93.26 70 | 97.39 62 | 98.30 123 | 86.62 108 | 98.13 189 | 98.07 49 | 97.57 122 | 98.82 144 |
|
| PMMVS | | | 93.62 133 | 93.90 111 | 92.79 223 | 96.79 158 | 81.40 321 | 98.85 136 | 96.81 198 | 91.25 112 | 96.82 80 | 98.15 130 | 77.02 231 | 98.13 189 | 93.15 150 | 96.30 149 | 98.83 143 |
|
| casdiffmvs |  | | 93.98 119 | 93.43 122 | 95.61 138 | 95.07 232 | 89.86 157 | 98.80 142 | 95.84 274 | 90.98 116 | 92.74 155 | 97.66 146 | 79.71 209 | 98.10 191 | 94.72 121 | 95.37 164 | 98.87 139 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| lupinMVS | | | 96.32 45 | 95.94 54 | 97.44 46 | 95.05 233 | 94.87 38 | 99.86 5 | 96.50 216 | 93.82 59 | 98.04 49 | 98.77 87 | 85.52 128 | 98.09 192 | 96.98 70 | 98.97 82 | 99.37 92 |
|
| TR-MVS | | | 90.77 195 | 89.44 203 | 94.76 167 | 96.31 176 | 88.02 199 | 97.92 234 | 95.96 254 | 85.52 262 | 88.22 213 | 97.23 166 | 66.80 307 | 98.09 192 | 84.58 247 | 92.38 193 | 98.17 185 |
|
| diffmvs |  | | 94.59 104 | 94.19 96 | 95.81 129 | 95.54 206 | 90.69 130 | 98.70 153 | 95.68 282 | 91.61 101 | 95.96 95 | 97.81 135 | 80.11 206 | 98.06 194 | 96.52 82 | 95.76 158 | 98.67 156 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| casdiffmvs_mvg |  | | 94.00 117 | 93.33 126 | 96.03 120 | 95.22 217 | 90.90 126 | 99.09 112 | 95.99 250 | 90.58 127 | 91.55 172 | 97.37 159 | 79.91 208 | 98.06 194 | 95.01 114 | 95.22 165 | 99.13 114 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| baseline2 | | | 94.04 116 | 93.80 115 | 94.74 169 | 93.07 290 | 90.25 139 | 98.12 219 | 98.16 39 | 89.86 148 | 86.53 232 | 96.95 183 | 95.56 6 | 98.05 196 | 91.44 166 | 94.53 170 | 95.93 241 |
|
| tpm cat1 | | | 88.89 229 | 87.27 246 | 93.76 207 | 95.79 197 | 85.32 269 | 90.76 371 | 97.09 183 | 76.14 359 | 85.72 237 | 88.59 349 | 82.92 170 | 98.04 197 | 76.96 312 | 91.43 218 | 97.90 192 |
|
| baseline | | | 93.91 121 | 93.30 127 | 95.72 132 | 95.10 230 | 90.07 148 | 97.48 258 | 95.91 266 | 91.03 114 | 93.54 145 | 97.68 144 | 79.58 210 | 98.02 198 | 94.27 129 | 95.14 166 | 99.08 119 |
|
| Effi-MVS+ | | | 93.87 123 | 93.15 132 | 96.02 121 | 95.79 197 | 90.76 128 | 96.70 291 | 95.78 275 | 86.98 235 | 95.71 105 | 97.17 172 | 79.58 210 | 98.01 199 | 94.57 126 | 96.09 153 | 99.31 98 |
|
| Vis-MVSNet |  | | 92.64 156 | 91.85 159 | 95.03 159 | 95.12 226 | 88.23 193 | 98.48 183 | 96.81 198 | 91.61 101 | 92.16 162 | 97.22 167 | 71.58 274 | 98.00 200 | 85.85 234 | 97.81 116 | 98.88 137 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| jason | | | 95.40 77 | 94.86 84 | 97.03 61 | 92.91 291 | 94.23 56 | 99.70 27 | 96.30 227 | 93.56 66 | 96.73 83 | 98.52 108 | 81.46 198 | 97.91 201 | 96.08 90 | 98.47 106 | 98.96 127 |
| jason: jason. |
| BH-w/o | | | 92.32 164 | 91.79 161 | 93.91 203 | 96.85 153 | 86.18 245 | 99.11 111 | 95.74 278 | 88.13 204 | 84.81 243 | 97.00 181 | 77.26 230 | 97.91 201 | 89.16 199 | 98.03 113 | 97.64 196 |
|
| ACMM | | 86.95 13 | 88.77 236 | 88.22 232 | 90.43 279 | 93.61 277 | 81.34 323 | 98.50 179 | 95.92 261 | 87.88 214 | 83.85 254 | 95.20 233 | 67.20 304 | 97.89 203 | 86.90 220 | 84.90 259 | 92.06 281 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PAPM | | | 96.35 43 | 95.94 54 | 97.58 42 | 94.10 259 | 95.25 26 | 98.93 130 | 98.17 37 | 94.26 44 | 93.94 137 | 98.72 93 | 89.68 56 | 97.88 204 | 96.36 84 | 99.29 68 | 99.62 68 |
|
| OPM-MVS | | | 89.76 216 | 89.15 210 | 91.57 253 | 90.53 326 | 85.58 263 | 98.11 221 | 95.93 260 | 92.88 78 | 86.05 233 | 96.47 204 | 67.06 306 | 97.87 205 | 89.29 197 | 86.08 252 | 91.26 308 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| CMPMVS |  | 58.40 21 | 80.48 328 | 80.11 327 | 81.59 363 | 85.10 375 | 59.56 391 | 94.14 337 | 95.95 256 | 68.54 383 | 60.71 387 | 93.31 267 | 55.35 359 | 97.87 205 | 83.06 268 | 84.85 261 | 87.33 367 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| ACMP | | 87.39 10 | 88.71 238 | 88.24 231 | 90.12 287 | 93.91 269 | 81.06 329 | 98.50 179 | 95.67 283 | 89.43 163 | 80.37 304 | 95.55 224 | 65.67 314 | 97.83 207 | 90.55 178 | 84.51 262 | 91.47 297 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| baseline1 | | | 92.61 158 | 91.28 171 | 96.58 90 | 97.05 150 | 94.63 48 | 97.72 248 | 96.20 234 | 89.82 149 | 88.56 210 | 96.85 190 | 86.85 102 | 97.82 208 | 88.42 202 | 80.10 295 | 97.30 206 |
|
| CLD-MVS | | | 91.06 190 | 90.71 185 | 92.10 239 | 94.05 263 | 86.10 248 | 99.55 45 | 96.29 230 | 94.16 47 | 84.70 245 | 97.17 172 | 69.62 285 | 97.82 208 | 94.74 120 | 86.08 252 | 92.39 263 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| EPP-MVSNet | | | 93.75 127 | 93.67 117 | 94.01 200 | 95.86 195 | 85.70 261 | 98.67 157 | 97.66 95 | 84.46 280 | 91.36 177 | 97.18 171 | 91.16 30 | 97.79 210 | 92.93 152 | 93.75 177 | 98.53 162 |
|
| ACMH | | 83.09 17 | 84.60 301 | 82.61 311 | 90.57 274 | 93.18 288 | 82.94 301 | 96.27 301 | 94.92 318 | 81.01 334 | 72.61 361 | 93.61 261 | 56.54 352 | 97.79 210 | 74.31 331 | 81.07 290 | 90.99 314 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| LPG-MVS_test | | | 88.86 230 | 88.47 228 | 90.06 288 | 93.35 285 | 80.95 330 | 98.22 209 | 95.94 257 | 87.73 220 | 83.17 260 | 96.11 214 | 66.28 312 | 97.77 212 | 90.19 182 | 85.19 257 | 91.46 298 |
|
| LGP-MVS_train | | | | | 90.06 288 | 93.35 285 | 80.95 330 | | 95.94 257 | 87.73 220 | 83.17 260 | 96.11 214 | 66.28 312 | 97.77 212 | 90.19 182 | 85.19 257 | 91.46 298 |
|
| HQP4-MVS | | | | | | | | | | | 87.57 217 | | | 97.77 212 | | | 92.72 258 |
|
| BH-untuned | | | 91.46 180 | 90.84 181 | 93.33 213 | 96.51 167 | 84.83 278 | 98.84 138 | 95.50 292 | 86.44 251 | 83.50 255 | 96.70 197 | 75.49 237 | 97.77 212 | 86.78 222 | 97.81 116 | 97.40 203 |
|
| HQP-MVS | | | 91.50 178 | 91.23 172 | 92.29 233 | 93.95 264 | 86.39 236 | 99.16 97 | 96.37 223 | 93.92 52 | 87.57 217 | 96.67 199 | 73.34 253 | 97.77 212 | 93.82 137 | 86.29 247 | 92.72 258 |
|
| sd_testset | | | 89.23 222 | 88.05 236 | 92.74 226 | 96.80 156 | 85.33 268 | 95.85 319 | 97.03 188 | 88.34 197 | 85.73 235 | 95.26 231 | 61.12 337 | 97.76 217 | 85.61 235 | 86.75 244 | 95.14 244 |
|
| HQP_MVS | | | 91.26 184 | 90.95 178 | 92.16 237 | 93.84 271 | 86.07 251 | 99.02 121 | 96.30 227 | 93.38 68 | 86.99 225 | 96.52 201 | 72.92 259 | 97.75 218 | 93.46 144 | 86.17 250 | 92.67 260 |
|
| plane_prior5 | | | | | | | | | 96.30 227 | | | | | 97.75 218 | 93.46 144 | 86.17 250 | 92.67 260 |
|
| tpmrst | | | 92.78 153 | 92.16 152 | 94.65 172 | 96.27 178 | 87.45 213 | 91.83 357 | 97.10 182 | 89.10 172 | 94.68 124 | 90.69 315 | 88.22 71 | 97.73 220 | 89.78 187 | 91.80 206 | 98.77 150 |
|
| ACMH+ | | 83.78 15 | 84.21 307 | 82.56 312 | 89.15 313 | 93.73 276 | 79.16 339 | 96.43 296 | 94.28 338 | 81.09 333 | 74.00 349 | 94.03 248 | 54.58 362 | 97.67 221 | 76.10 319 | 78.81 300 | 90.63 327 |
|
| CS-MVS-test | | | 95.98 55 | 96.34 41 | 94.90 162 | 98.06 102 | 87.66 206 | 99.69 34 | 96.10 243 | 93.66 62 | 98.35 39 | 99.05 56 | 86.28 117 | 97.66 222 | 96.96 71 | 98.90 88 | 99.37 92 |
|
| XVG-ACMP-BASELINE | | | 85.86 284 | 84.95 280 | 88.57 320 | 89.90 333 | 77.12 354 | 94.30 334 | 95.60 287 | 87.40 228 | 82.12 281 | 92.99 276 | 53.42 366 | 97.66 222 | 85.02 241 | 83.83 271 | 90.92 316 |
|
| USDC | | | 84.74 298 | 82.93 303 | 90.16 286 | 91.73 310 | 83.54 295 | 95.00 328 | 93.30 353 | 88.77 182 | 73.19 354 | 93.30 268 | 53.62 365 | 97.65 224 | 75.88 321 | 81.54 289 | 89.30 350 |
|
| TESTMET0.1,1 | | | 93.82 125 | 93.26 129 | 95.49 140 | 95.21 218 | 90.25 139 | 99.15 103 | 97.54 126 | 89.18 169 | 91.79 164 | 94.87 237 | 89.13 59 | 97.63 225 | 86.21 227 | 96.29 150 | 98.60 160 |
|
| LTVRE_ROB | | 81.71 19 | 84.59 302 | 82.72 309 | 90.18 285 | 92.89 292 | 83.18 299 | 93.15 345 | 94.74 323 | 78.99 344 | 75.14 345 | 92.69 278 | 65.64 315 | 97.63 225 | 69.46 354 | 81.82 288 | 89.74 344 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| MDTV_nov1_ep13 | | | | 90.47 190 | | 96.14 187 | 88.55 189 | 91.34 365 | 97.51 133 | 89.58 157 | 92.24 160 | 90.50 328 | 86.99 100 | 97.61 227 | 77.64 308 | 92.34 195 | |
|
| CS-MVS | | | 95.75 68 | 96.19 43 | 94.40 181 | 97.88 107 | 86.22 243 | 99.66 35 | 96.12 242 | 92.69 80 | 98.07 47 | 98.89 80 | 87.09 95 | 97.59 228 | 96.71 74 | 98.62 100 | 99.39 91 |
|
| test-LLR | | | 93.11 149 | 92.68 142 | 94.40 181 | 94.94 238 | 87.27 220 | 99.15 103 | 97.25 161 | 90.21 136 | 91.57 169 | 94.04 246 | 84.89 141 | 97.58 229 | 85.94 231 | 96.13 151 | 98.36 173 |
|
| test-mter | | | 93.27 144 | 92.89 139 | 94.40 181 | 94.94 238 | 87.27 220 | 99.15 103 | 97.25 161 | 88.95 176 | 91.57 169 | 94.04 246 | 88.03 77 | 97.58 229 | 85.94 231 | 96.13 151 | 98.36 173 |
|
| TinyColmap | | | 80.42 329 | 77.94 334 | 87.85 325 | 92.09 301 | 78.58 345 | 93.74 339 | 89.94 383 | 74.99 362 | 69.77 366 | 91.78 293 | 46.09 381 | 97.58 229 | 65.17 371 | 77.89 304 | 87.38 365 |
|
| Fast-Effi-MVS+ | | | 91.72 176 | 90.79 184 | 94.49 177 | 95.89 194 | 87.40 215 | 99.54 50 | 95.70 280 | 85.01 273 | 89.28 206 | 95.68 223 | 77.75 227 | 97.57 232 | 83.22 264 | 95.06 167 | 98.51 163 |
|
| CostFormer | | | 92.89 152 | 92.48 147 | 94.12 194 | 94.99 235 | 85.89 256 | 92.89 348 | 97.00 192 | 86.98 235 | 95.00 119 | 90.78 311 | 90.05 53 | 97.51 233 | 92.92 153 | 91.73 208 | 98.96 127 |
|
| AUN-MVS | | | 90.17 208 | 89.50 201 | 92.19 236 | 96.21 181 | 82.67 308 | 97.76 246 | 97.53 127 | 88.05 207 | 91.67 167 | 96.15 212 | 83.10 167 | 97.47 234 | 88.11 207 | 66.91 369 | 96.43 234 |
|
| HyFIR lowres test | | | 93.68 130 | 93.29 128 | 94.87 163 | 97.57 119 | 88.04 198 | 98.18 213 | 98.47 25 | 87.57 224 | 91.24 179 | 95.05 234 | 85.49 131 | 97.46 235 | 93.22 148 | 92.82 185 | 99.10 117 |
|
| EPMVS | | | 92.59 159 | 91.59 165 | 95.59 139 | 97.22 136 | 90.03 152 | 91.78 358 | 98.04 48 | 90.42 133 | 91.66 168 | 90.65 318 | 86.49 114 | 97.46 235 | 81.78 280 | 96.31 148 | 99.28 101 |
|
| hse-mvs2 | | | 91.67 177 | 91.51 167 | 92.15 238 | 96.22 180 | 82.61 310 | 97.74 247 | 97.53 127 | 93.85 57 | 96.27 91 | 96.15 212 | 83.19 165 | 97.44 237 | 95.81 94 | 66.86 370 | 96.40 235 |
|
| dp | | | 90.16 209 | 88.83 217 | 94.14 193 | 96.38 174 | 86.42 234 | 91.57 362 | 97.06 185 | 84.76 277 | 88.81 208 | 90.19 336 | 84.29 148 | 97.43 238 | 75.05 325 | 91.35 222 | 98.56 161 |
|
| EC-MVSNet | | | 95.09 84 | 95.17 76 | 94.84 165 | 95.42 210 | 88.17 194 | 99.48 54 | 95.92 261 | 91.47 106 | 97.34 64 | 98.36 120 | 82.77 173 | 97.41 239 | 97.24 64 | 98.58 101 | 98.94 132 |
|
| CHOSEN 280x420 | | | 96.80 33 | 96.85 28 | 96.66 86 | 97.85 108 | 94.42 53 | 94.76 330 | 98.36 29 | 92.50 83 | 95.62 108 | 97.52 152 | 97.92 1 | 97.38 240 | 98.31 44 | 98.80 92 | 98.20 183 |
|
| ITE_SJBPF | | | | | 87.93 324 | 92.26 298 | 76.44 356 | | 93.47 352 | 87.67 223 | 79.95 310 | 95.49 227 | 56.50 353 | 97.38 240 | 75.24 324 | 82.33 285 | 89.98 341 |
|
| MS-PatchMatch | | | 86.75 268 | 85.92 265 | 89.22 311 | 91.97 303 | 82.47 311 | 96.91 280 | 96.14 241 | 83.74 291 | 77.73 331 | 93.53 264 | 58.19 346 | 97.37 242 | 76.75 315 | 98.35 107 | 87.84 361 |
|
| testing222 | | | 94.48 108 | 94.00 103 | 95.95 125 | 97.30 132 | 92.27 95 | 98.82 139 | 97.92 55 | 89.20 167 | 94.82 120 | 97.26 163 | 87.13 94 | 97.32 243 | 91.95 162 | 91.56 211 | 98.25 177 |
|
| ETVMVS | | | 94.50 107 | 93.90 111 | 96.31 107 | 97.48 126 | 92.98 81 | 99.07 114 | 97.86 59 | 88.09 206 | 94.40 129 | 96.90 186 | 88.35 69 | 97.28 244 | 90.72 177 | 92.25 199 | 98.66 159 |
|
| IS-MVSNet | | | 93.00 151 | 92.51 146 | 94.49 177 | 96.14 187 | 87.36 216 | 98.31 204 | 95.70 280 | 88.58 186 | 90.17 195 | 97.50 153 | 83.02 169 | 97.22 245 | 87.06 214 | 96.07 155 | 98.90 136 |
|
| tpm2 | | | 91.77 175 | 91.09 174 | 93.82 206 | 94.83 242 | 85.56 264 | 92.51 353 | 97.16 174 | 84.00 286 | 93.83 140 | 90.66 317 | 87.54 83 | 97.17 246 | 87.73 211 | 91.55 212 | 98.72 152 |
|
| TDRefinement | | | 78.01 341 | 75.31 345 | 86.10 340 | 70.06 400 | 73.84 365 | 93.59 343 | 91.58 375 | 74.51 365 | 73.08 357 | 91.04 306 | 49.63 378 | 97.12 247 | 74.88 327 | 59.47 383 | 87.33 367 |
|
| test_post | | | | | | | | | | | | 46.00 405 | 87.37 87 | 97.11 248 | | | |
|
| PatchmatchNet |  | | 92.05 173 | 91.04 176 | 95.06 156 | 96.17 184 | 89.04 172 | 91.26 366 | 97.26 160 | 89.56 159 | 90.64 187 | 90.56 324 | 88.35 69 | 97.11 248 | 79.53 293 | 96.07 155 | 99.03 122 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| VPA-MVSNet | | | 89.10 224 | 87.66 240 | 93.45 211 | 92.56 293 | 91.02 122 | 97.97 233 | 98.32 30 | 86.92 237 | 86.03 234 | 92.01 287 | 68.84 289 | 97.10 250 | 90.92 171 | 75.34 317 | 92.23 271 |
|
| XXY-MVS | | | 87.75 253 | 86.02 263 | 92.95 221 | 90.46 327 | 89.70 160 | 97.71 250 | 95.90 267 | 84.02 285 | 80.95 298 | 94.05 245 | 67.51 302 | 97.10 250 | 85.16 238 | 78.41 301 | 92.04 282 |
|
| GeoE | | | 90.60 200 | 89.56 200 | 93.72 209 | 95.10 230 | 85.43 265 | 99.41 69 | 94.94 317 | 83.96 288 | 87.21 223 | 96.83 193 | 74.37 245 | 97.05 252 | 80.50 291 | 93.73 178 | 98.67 156 |
|
| ADS-MVSNet | | | 88.99 225 | 87.30 245 | 94.07 196 | 96.21 181 | 87.56 209 | 87.15 379 | 96.78 200 | 83.01 303 | 89.91 199 | 87.27 359 | 78.87 219 | 97.01 253 | 74.20 333 | 92.27 197 | 97.64 196 |
|
| GA-MVS | | | 90.10 210 | 88.69 220 | 94.33 185 | 92.44 295 | 87.97 200 | 99.08 113 | 96.26 231 | 89.65 153 | 86.92 227 | 93.11 273 | 68.09 295 | 96.96 254 | 82.54 273 | 90.15 231 | 98.05 187 |
|
| JIA-IIPM | | | 85.97 282 | 84.85 282 | 89.33 310 | 93.23 287 | 73.68 366 | 85.05 385 | 97.13 177 | 69.62 380 | 91.56 171 | 68.03 395 | 88.03 77 | 96.96 254 | 77.89 307 | 93.12 182 | 97.34 205 |
|
| dmvs_re | | | 88.69 239 | 88.06 235 | 90.59 273 | 93.83 273 | 78.68 344 | 95.75 322 | 96.18 238 | 87.99 210 | 84.48 249 | 96.32 209 | 67.52 301 | 96.94 256 | 84.98 242 | 85.49 256 | 96.14 238 |
|
| GG-mvs-BLEND | | | | | 96.98 67 | 96.53 165 | 94.81 43 | 87.20 378 | 97.74 77 | | 93.91 138 | 96.40 205 | 96.56 2 | 96.94 256 | 95.08 111 | 98.95 85 | 99.20 108 |
|
| nrg030 | | | 90.23 205 | 88.87 215 | 94.32 186 | 91.53 313 | 93.54 69 | 98.79 146 | 95.89 269 | 88.12 205 | 84.55 247 | 94.61 242 | 78.80 221 | 96.88 258 | 92.35 160 | 75.21 318 | 92.53 262 |
|
| Effi-MVS+-dtu | | | 89.97 214 | 90.68 186 | 87.81 326 | 95.15 223 | 71.98 373 | 97.87 238 | 95.40 299 | 91.92 96 | 87.57 217 | 91.44 299 | 74.27 247 | 96.84 259 | 89.45 191 | 93.10 183 | 94.60 249 |
|
| gg-mvs-nofinetune | | | 90.00 212 | 87.71 239 | 96.89 75 | 96.15 185 | 94.69 47 | 85.15 384 | 97.74 77 | 68.32 384 | 92.97 153 | 60.16 397 | 96.10 3 | 96.84 259 | 93.89 133 | 98.87 89 | 99.14 112 |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 369 | 88.73 65 | 96.81 261 | | | |
|
| SCA | | | 90.64 199 | 89.25 208 | 94.83 166 | 94.95 237 | 88.83 182 | 96.26 303 | 97.21 167 | 90.06 145 | 90.03 197 | 90.62 320 | 66.61 308 | 96.81 261 | 83.16 265 | 94.36 172 | 98.84 140 |
|
| D2MVS | | | 87.96 249 | 87.39 243 | 89.70 301 | 91.84 308 | 83.40 296 | 98.31 204 | 98.49 23 | 88.04 208 | 78.23 330 | 90.26 330 | 73.57 251 | 96.79 263 | 84.21 252 | 83.53 275 | 88.90 355 |
|
| VPNet | | | 88.30 245 | 86.57 255 | 93.49 210 | 91.95 305 | 91.35 109 | 98.18 213 | 97.20 171 | 88.61 184 | 84.52 248 | 94.89 236 | 62.21 332 | 96.76 264 | 89.34 194 | 72.26 350 | 92.36 265 |
|
| UWE-MVS | | | 93.18 146 | 93.40 124 | 92.50 231 | 96.56 163 | 83.55 294 | 98.09 225 | 97.84 61 | 89.50 161 | 91.72 166 | 96.23 211 | 91.08 33 | 96.70 265 | 86.28 226 | 93.33 180 | 97.26 208 |
|
| UniMVSNet_ETH3D | | | 85.65 291 | 83.79 299 | 91.21 257 | 90.41 328 | 80.75 332 | 95.36 325 | 95.78 275 | 78.76 347 | 81.83 292 | 94.33 244 | 49.86 376 | 96.66 266 | 84.30 250 | 83.52 276 | 96.22 237 |
|
| LF4IMVS | | | 81.94 322 | 81.17 321 | 84.25 351 | 87.23 367 | 68.87 383 | 93.35 344 | 91.93 371 | 83.35 299 | 75.40 343 | 93.00 275 | 49.25 379 | 96.65 267 | 78.88 300 | 78.11 303 | 87.22 369 |
|
| Anonymous20231211 | | | 84.72 299 | 82.65 310 | 90.91 264 | 97.71 111 | 84.55 281 | 97.28 265 | 96.67 202 | 66.88 388 | 79.18 320 | 90.87 310 | 58.47 345 | 96.60 268 | 82.61 272 | 74.20 331 | 91.59 294 |
|
| test_fmvs2 | | | 85.10 295 | 85.45 273 | 84.02 352 | 89.85 335 | 65.63 386 | 98.49 181 | 92.59 360 | 90.45 131 | 85.43 241 | 93.32 266 | 43.94 383 | 96.59 269 | 90.81 174 | 84.19 267 | 89.85 343 |
|
| iter_conf05 | | | 93.48 134 | 93.18 131 | 94.39 184 | 97.15 143 | 94.17 59 | 99.30 81 | 92.97 355 | 92.38 90 | 86.70 231 | 95.42 228 | 95.67 5 | 96.59 269 | 94.67 123 | 84.32 266 | 92.39 263 |
|
| MVS-HIRNet | | | 79.01 335 | 75.13 347 | 90.66 272 | 93.82 274 | 81.69 317 | 85.16 383 | 93.75 346 | 54.54 393 | 74.17 348 | 59.15 399 | 57.46 349 | 96.58 271 | 63.74 372 | 94.38 171 | 93.72 252 |
|
| EI-MVSNet | | | 89.87 215 | 89.38 206 | 91.36 256 | 94.32 254 | 85.87 257 | 97.61 255 | 96.59 208 | 85.10 268 | 85.51 239 | 97.10 174 | 81.30 201 | 96.56 272 | 83.85 261 | 83.03 279 | 91.64 287 |
|
| MVSTER | | | 92.71 154 | 92.32 148 | 93.86 204 | 97.29 134 | 92.95 84 | 99.01 123 | 96.59 208 | 90.09 142 | 85.51 239 | 94.00 250 | 94.61 15 | 96.56 272 | 90.77 176 | 83.03 279 | 92.08 280 |
|
| V42 | | | 87.00 264 | 85.68 269 | 90.98 263 | 89.91 332 | 86.08 249 | 98.32 203 | 95.61 286 | 83.67 294 | 82.72 265 | 90.67 316 | 74.00 250 | 96.53 274 | 81.94 279 | 74.28 330 | 90.32 332 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 231 | 88.59 224 | 89.58 304 | 93.44 283 | 78.18 348 | 98.65 159 | 94.62 328 | 88.46 189 | 84.12 252 | 95.37 230 | 68.91 287 | 96.52 275 | 82.06 277 | 91.70 209 | 94.06 250 |
|
| mvsmamba | | | 89.99 213 | 89.42 204 | 91.69 251 | 90.64 325 | 86.34 239 | 98.40 193 | 92.27 364 | 91.01 115 | 84.80 244 | 94.93 235 | 76.12 233 | 96.51 276 | 92.81 155 | 83.84 270 | 92.21 273 |
|
| cl22 | | | 89.57 219 | 88.79 218 | 91.91 242 | 97.94 105 | 87.62 207 | 97.98 232 | 96.51 215 | 85.03 271 | 82.37 277 | 91.79 292 | 83.65 154 | 96.50 277 | 85.96 230 | 77.89 304 | 91.61 292 |
|
| PS-MVSNAJss | | | 89.54 220 | 89.05 212 | 91.00 262 | 88.77 349 | 84.36 283 | 97.39 259 | 95.97 252 | 88.47 187 | 81.88 288 | 93.80 256 | 82.48 181 | 96.50 277 | 89.34 194 | 83.34 278 | 92.15 276 |
|
| TAMVS | | | 92.62 157 | 92.09 155 | 94.20 191 | 94.10 259 | 87.68 204 | 98.41 190 | 96.97 194 | 87.53 226 | 89.74 201 | 96.04 217 | 84.77 145 | 96.49 279 | 88.97 200 | 92.31 196 | 98.42 166 |
|
| tfpnnormal | | | 83.65 313 | 81.35 319 | 90.56 276 | 91.37 316 | 88.06 197 | 97.29 264 | 97.87 58 | 78.51 348 | 76.20 335 | 90.91 308 | 64.78 321 | 96.47 280 | 61.71 378 | 73.50 338 | 87.13 370 |
|
| v2v482 | | | 87.27 262 | 85.76 267 | 91.78 250 | 89.59 338 | 87.58 208 | 98.56 173 | 95.54 290 | 84.53 279 | 82.51 271 | 91.78 293 | 73.11 258 | 96.47 280 | 82.07 276 | 74.14 333 | 91.30 306 |
|
| MVP-Stereo | | | 86.61 272 | 85.83 266 | 88.93 318 | 88.70 351 | 83.85 291 | 96.07 310 | 94.41 335 | 82.15 322 | 75.64 342 | 91.96 290 | 67.65 300 | 96.45 282 | 77.20 311 | 98.72 96 | 86.51 373 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| Patchmatch-test | | | 86.25 279 | 84.06 296 | 92.82 222 | 94.42 250 | 82.88 305 | 82.88 393 | 94.23 339 | 71.58 371 | 79.39 317 | 90.62 320 | 89.00 62 | 96.42 283 | 63.03 375 | 91.37 221 | 99.16 110 |
|
| v8 | | | 86.11 280 | 84.45 291 | 91.10 259 | 89.99 331 | 86.85 227 | 97.24 268 | 95.36 302 | 81.99 323 | 79.89 311 | 89.86 339 | 74.53 243 | 96.39 284 | 78.83 301 | 72.32 349 | 90.05 339 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 145 | 93.00 137 | 94.06 197 | 96.14 187 | 86.71 230 | 98.68 155 | 96.70 201 | 88.30 199 | 89.71 203 | 97.64 147 | 85.43 134 | 96.39 284 | 88.06 208 | 96.32 147 | 99.08 119 |
|
| test_post1 | | | | | | | | 90.74 372 | | | | 41.37 408 | 85.38 135 | 96.36 286 | 83.16 265 | | |
|
| v144192 | | | 86.40 276 | 84.89 281 | 90.91 264 | 89.48 342 | 85.59 262 | 98.21 211 | 95.43 298 | 82.45 317 | 82.62 269 | 90.58 323 | 72.79 262 | 96.36 286 | 78.45 304 | 74.04 334 | 90.79 320 |
|
| v1144 | | | 86.83 267 | 85.31 275 | 91.40 254 | 89.75 336 | 87.21 224 | 98.31 204 | 95.45 295 | 83.22 300 | 82.70 266 | 90.78 311 | 73.36 252 | 96.36 286 | 79.49 294 | 74.69 324 | 90.63 327 |
|
| jajsoiax | | | 87.35 260 | 86.51 257 | 89.87 294 | 87.75 363 | 81.74 316 | 97.03 276 | 95.98 251 | 88.47 187 | 80.15 307 | 93.80 256 | 61.47 334 | 96.36 286 | 89.44 192 | 84.47 264 | 91.50 296 |
|
| CDS-MVSNet | | | 93.47 135 | 93.04 135 | 94.76 167 | 94.75 244 | 89.45 165 | 98.82 139 | 97.03 188 | 87.91 213 | 90.97 181 | 96.48 203 | 89.06 60 | 96.36 286 | 89.50 190 | 92.81 187 | 98.49 164 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| v7n | | | 84.42 306 | 82.75 308 | 89.43 309 | 88.15 356 | 81.86 315 | 96.75 288 | 95.67 283 | 80.53 337 | 78.38 328 | 89.43 344 | 69.89 281 | 96.35 291 | 73.83 337 | 72.13 351 | 90.07 337 |
|
| UniMVSNet (Re) | | | 89.50 221 | 88.32 230 | 93.03 217 | 92.21 299 | 90.96 124 | 98.90 134 | 98.39 27 | 89.13 170 | 83.22 257 | 92.03 285 | 81.69 194 | 96.34 292 | 86.79 221 | 72.53 346 | 91.81 285 |
|
| v1192 | | | 86.32 278 | 84.71 286 | 91.17 258 | 89.53 341 | 86.40 235 | 98.13 217 | 95.44 297 | 82.52 315 | 82.42 274 | 90.62 320 | 71.58 274 | 96.33 293 | 77.23 309 | 74.88 321 | 90.79 320 |
|
| v148 | | | 86.38 277 | 85.06 277 | 90.37 283 | 89.47 343 | 84.10 287 | 98.52 175 | 95.48 293 | 83.80 290 | 80.93 299 | 90.22 334 | 74.60 241 | 96.31 294 | 80.92 285 | 71.55 355 | 90.69 325 |
|
| mvs_tets | | | 87.09 263 | 86.22 260 | 89.71 300 | 87.87 359 | 81.39 322 | 96.73 290 | 95.90 267 | 88.19 203 | 79.99 309 | 93.61 261 | 59.96 341 | 96.31 294 | 89.40 193 | 84.34 265 | 91.43 300 |
|
| v1240 | | | 85.77 288 | 84.11 295 | 90.73 271 | 89.26 345 | 85.15 273 | 97.88 237 | 95.23 312 | 81.89 326 | 82.16 280 | 90.55 325 | 69.60 286 | 96.31 294 | 75.59 323 | 74.87 322 | 90.72 324 |
|
| v1921920 | | | 86.02 281 | 84.44 292 | 90.77 270 | 89.32 344 | 85.20 270 | 98.10 222 | 95.35 303 | 82.19 321 | 82.25 279 | 90.71 313 | 70.73 277 | 96.30 297 | 76.85 314 | 74.49 326 | 90.80 319 |
|
| v10 | | | 85.73 289 | 84.01 297 | 90.87 267 | 90.03 330 | 86.73 229 | 97.20 271 | 95.22 313 | 81.25 331 | 79.85 312 | 89.75 340 | 73.30 255 | 96.28 298 | 76.87 313 | 72.64 345 | 89.61 347 |
|
| EG-PatchMatch MVS | | | 79.92 330 | 77.59 335 | 86.90 334 | 87.06 368 | 77.90 352 | 96.20 308 | 94.06 342 | 74.61 364 | 66.53 380 | 88.76 348 | 40.40 390 | 96.20 299 | 67.02 364 | 83.66 274 | 86.61 371 |
|
| miper_enhance_ethall | | | 90.33 203 | 89.70 198 | 92.22 234 | 97.12 146 | 88.93 180 | 98.35 200 | 95.96 254 | 88.60 185 | 83.14 262 | 92.33 282 | 87.38 86 | 96.18 300 | 86.49 224 | 77.89 304 | 91.55 295 |
|
| FIs | | | 90.70 197 | 89.87 196 | 93.18 215 | 92.29 297 | 91.12 116 | 98.17 215 | 98.25 32 | 89.11 171 | 83.44 256 | 94.82 239 | 82.26 187 | 96.17 301 | 87.76 210 | 82.76 281 | 92.25 269 |
|
| mvs_anonymous | | | 92.50 161 | 91.65 164 | 95.06 156 | 96.60 162 | 89.64 161 | 97.06 275 | 96.44 220 | 86.64 243 | 84.14 251 | 93.93 252 | 82.49 180 | 96.17 301 | 91.47 165 | 96.08 154 | 99.35 94 |
|
| OurMVSNet-221017-0 | | | 84.13 310 | 83.59 300 | 85.77 342 | 87.81 360 | 70.24 378 | 94.89 329 | 93.65 349 | 86.08 253 | 76.53 334 | 93.28 269 | 61.41 335 | 96.14 303 | 80.95 284 | 77.69 309 | 90.93 315 |
|
| pm-mvs1 | | | 84.68 300 | 82.78 307 | 90.40 280 | 89.58 339 | 85.18 271 | 97.31 263 | 94.73 324 | 81.93 325 | 76.05 337 | 92.01 287 | 65.48 318 | 96.11 304 | 78.75 302 | 69.14 360 | 89.91 342 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 342 | 75.06 348 | 86.77 335 | 83.81 380 | 77.94 351 | 96.38 298 | 91.53 376 | 67.54 386 | 68.38 371 | 87.13 362 | 43.94 383 | 96.08 305 | 55.03 389 | 81.83 287 | 86.29 374 |
|
| pmmvs4 | | | 87.58 259 | 86.17 262 | 91.80 246 | 89.58 339 | 88.92 181 | 97.25 267 | 95.28 304 | 82.54 314 | 80.49 303 | 93.17 272 | 75.62 236 | 96.05 306 | 82.75 270 | 78.90 299 | 90.42 330 |
|
| RRT_MVS | | | 88.91 228 | 88.56 225 | 89.93 293 | 90.31 329 | 81.61 318 | 98.08 226 | 96.38 222 | 89.30 165 | 82.41 275 | 94.84 238 | 73.15 257 | 96.04 307 | 90.38 179 | 82.23 286 | 92.15 276 |
|
| MVSFormer | | | 94.71 100 | 94.08 101 | 96.61 87 | 95.05 233 | 94.87 38 | 97.77 244 | 96.17 239 | 86.84 238 | 98.04 49 | 98.52 108 | 85.52 128 | 95.99 308 | 89.83 184 | 98.97 82 | 98.96 127 |
|
| test_djsdf | | | 88.26 247 | 87.73 238 | 89.84 296 | 88.05 358 | 82.21 312 | 97.77 244 | 96.17 239 | 86.84 238 | 82.41 275 | 91.95 291 | 72.07 267 | 95.99 308 | 89.83 184 | 84.50 263 | 91.32 305 |
|
| FC-MVSNet-test | | | 90.22 206 | 89.40 205 | 92.67 229 | 91.78 309 | 89.86 157 | 97.89 235 | 98.22 35 | 88.81 181 | 82.96 263 | 94.66 241 | 81.90 193 | 95.96 310 | 85.89 233 | 82.52 284 | 92.20 275 |
|
| anonymousdsp | | | 86.69 269 | 85.75 268 | 89.53 305 | 86.46 371 | 82.94 301 | 96.39 297 | 95.71 279 | 83.97 287 | 79.63 314 | 90.70 314 | 68.85 288 | 95.94 311 | 86.01 228 | 84.02 269 | 89.72 345 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 218 | 88.55 226 | 92.75 225 | 92.17 300 | 90.07 148 | 98.74 149 | 98.15 40 | 88.37 195 | 83.21 258 | 93.98 251 | 82.86 171 | 95.93 312 | 86.95 217 | 72.47 347 | 92.25 269 |
|
| DU-MVS | | | 88.83 233 | 87.51 241 | 92.79 223 | 91.46 314 | 90.07 148 | 98.71 150 | 97.62 109 | 88.87 180 | 83.21 258 | 93.68 258 | 74.63 239 | 95.93 312 | 86.95 217 | 72.47 347 | 92.36 265 |
|
| WR-MVS | | | 88.54 243 | 87.22 248 | 92.52 230 | 91.93 307 | 89.50 164 | 98.56 173 | 97.84 61 | 86.99 232 | 81.87 289 | 93.81 255 | 74.25 248 | 95.92 314 | 85.29 237 | 74.43 327 | 92.12 278 |
|
| miper_ehance_all_eth | | | 88.94 227 | 88.12 234 | 91.40 254 | 95.32 214 | 86.93 226 | 97.85 239 | 95.55 289 | 84.19 283 | 81.97 286 | 91.50 298 | 84.16 149 | 95.91 315 | 84.69 245 | 77.89 304 | 91.36 303 |
|
| eth_miper_zixun_eth | | | 87.76 252 | 87.00 251 | 90.06 288 | 94.67 246 | 82.65 309 | 97.02 278 | 95.37 301 | 84.19 283 | 81.86 291 | 91.58 297 | 81.47 197 | 95.90 316 | 83.24 263 | 73.61 336 | 91.61 292 |
|
| cl____ | | | 87.82 250 | 86.79 254 | 90.89 266 | 94.88 240 | 85.43 265 | 97.81 240 | 95.24 308 | 82.91 310 | 80.71 301 | 91.22 303 | 81.97 192 | 95.84 317 | 81.34 282 | 75.06 319 | 91.40 302 |
|
| NR-MVSNet | | | 87.74 256 | 86.00 264 | 92.96 220 | 91.46 314 | 90.68 131 | 96.65 292 | 97.42 150 | 88.02 209 | 73.42 352 | 93.68 258 | 77.31 229 | 95.83 318 | 84.26 251 | 71.82 354 | 92.36 265 |
|
| DIV-MVS_self_test | | | 87.82 250 | 86.81 253 | 90.87 267 | 94.87 241 | 85.39 267 | 97.81 240 | 95.22 313 | 82.92 309 | 80.76 300 | 91.31 302 | 81.99 190 | 95.81 319 | 81.36 281 | 75.04 320 | 91.42 301 |
|
| pmmvs6 | | | 79.90 331 | 77.31 337 | 87.67 327 | 84.17 378 | 78.13 349 | 95.86 318 | 93.68 348 | 67.94 385 | 72.67 360 | 89.62 342 | 50.98 373 | 95.75 320 | 74.80 329 | 66.04 371 | 89.14 353 |
|
| c3_l | | | 88.19 248 | 87.23 247 | 91.06 260 | 94.97 236 | 86.17 246 | 97.72 248 | 95.38 300 | 83.43 297 | 81.68 293 | 91.37 300 | 82.81 172 | 95.72 321 | 84.04 258 | 73.70 335 | 91.29 307 |
|
| EPNet_dtu | | | 92.28 166 | 92.15 153 | 92.70 227 | 97.29 134 | 84.84 277 | 98.64 161 | 97.82 65 | 92.91 77 | 93.02 152 | 97.02 180 | 85.48 133 | 95.70 322 | 72.25 346 | 94.89 168 | 97.55 201 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tpm | | | 89.67 217 | 88.95 214 | 91.82 245 | 92.54 294 | 81.43 320 | 92.95 347 | 95.92 261 | 87.81 215 | 90.50 190 | 89.44 343 | 84.99 139 | 95.65 323 | 83.67 262 | 82.71 282 | 98.38 170 |
|
| IterMVS-LS | | | 88.34 244 | 87.44 242 | 91.04 261 | 94.10 259 | 85.85 258 | 98.10 222 | 95.48 293 | 85.12 267 | 82.03 285 | 91.21 304 | 81.35 200 | 95.63 324 | 83.86 260 | 75.73 316 | 91.63 288 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| SixPastTwentyTwo | | | 82.63 318 | 81.58 316 | 85.79 341 | 88.12 357 | 71.01 376 | 95.17 327 | 92.54 361 | 84.33 282 | 72.93 359 | 92.08 284 | 60.41 340 | 95.61 325 | 74.47 330 | 74.15 332 | 90.75 323 |
|
| WB-MVSnew | | | 88.69 239 | 88.34 229 | 89.77 299 | 94.30 258 | 85.99 254 | 98.14 216 | 97.31 159 | 87.15 231 | 87.85 215 | 96.07 216 | 69.91 280 | 95.52 326 | 72.83 344 | 91.47 217 | 87.80 363 |
|
| pmmvs5 | | | 85.87 283 | 84.40 294 | 90.30 284 | 88.53 353 | 84.23 284 | 98.60 168 | 93.71 347 | 81.53 328 | 80.29 305 | 92.02 286 | 64.51 322 | 95.52 326 | 82.04 278 | 78.34 302 | 91.15 310 |
|
| lessismore_v0 | | | | | 85.08 345 | 85.59 374 | 69.28 381 | | 90.56 381 | | 67.68 375 | 90.21 335 | 54.21 364 | 95.46 328 | 73.88 335 | 62.64 378 | 90.50 329 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 253 | 86.31 259 | 92.07 240 | 90.81 322 | 88.56 188 | 98.33 201 | 97.18 172 | 87.76 217 | 81.87 289 | 93.90 253 | 72.45 263 | 95.43 329 | 83.13 267 | 71.30 357 | 92.23 271 |
|
| Baseline_NR-MVSNet | | | 85.83 285 | 84.82 283 | 88.87 319 | 88.73 350 | 83.34 297 | 98.63 163 | 91.66 373 | 80.41 341 | 82.44 272 | 91.35 301 | 74.63 239 | 95.42 330 | 84.13 254 | 71.39 356 | 87.84 361 |
|
| FMVSNet3 | | | 88.81 235 | 87.08 249 | 93.99 201 | 96.52 166 | 94.59 49 | 98.08 226 | 96.20 234 | 85.85 256 | 82.12 281 | 91.60 296 | 74.05 249 | 95.40 331 | 79.04 297 | 80.24 292 | 91.99 283 |
|
| WR-MVS_H | | | 86.53 274 | 85.49 272 | 89.66 303 | 91.04 320 | 83.31 298 | 97.53 257 | 98.20 36 | 84.95 274 | 79.64 313 | 90.90 309 | 78.01 226 | 95.33 332 | 76.29 318 | 72.81 343 | 90.35 331 |
|
| FMVSNet2 | | | 86.90 265 | 84.79 284 | 93.24 214 | 95.11 227 | 92.54 92 | 97.67 253 | 95.86 273 | 82.94 306 | 80.55 302 | 91.17 305 | 62.89 329 | 95.29 333 | 77.23 309 | 79.71 298 | 91.90 284 |
|
| CP-MVSNet | | | 86.54 273 | 85.45 273 | 89.79 298 | 91.02 321 | 82.78 307 | 97.38 261 | 97.56 122 | 85.37 264 | 79.53 316 | 93.03 274 | 71.86 270 | 95.25 334 | 79.92 292 | 73.43 341 | 91.34 304 |
|
| TransMVSNet (Re) | | | 81.97 321 | 79.61 330 | 89.08 314 | 89.70 337 | 84.01 288 | 97.26 266 | 91.85 372 | 78.84 345 | 73.07 358 | 91.62 295 | 67.17 305 | 95.21 335 | 67.50 362 | 59.46 384 | 88.02 360 |
|
| PS-CasMVS | | | 85.81 286 | 84.58 289 | 89.49 308 | 90.77 323 | 82.11 313 | 97.20 271 | 97.36 156 | 84.83 276 | 79.12 321 | 92.84 277 | 67.42 303 | 95.16 336 | 78.39 305 | 73.25 342 | 91.21 309 |
|
| test_0402 | | | 78.81 337 | 76.33 342 | 86.26 338 | 91.18 318 | 78.44 347 | 95.88 316 | 91.34 377 | 68.55 382 | 70.51 365 | 89.91 338 | 52.65 368 | 94.99 337 | 47.14 394 | 79.78 297 | 85.34 379 |
|
| GBi-Net | | | 86.67 270 | 84.96 278 | 91.80 246 | 95.11 227 | 88.81 183 | 96.77 285 | 95.25 305 | 82.94 306 | 82.12 281 | 90.25 331 | 62.89 329 | 94.97 338 | 79.04 297 | 80.24 292 | 91.62 289 |
|
| test1 | | | 86.67 270 | 84.96 278 | 91.80 246 | 95.11 227 | 88.81 183 | 96.77 285 | 95.25 305 | 82.94 306 | 82.12 281 | 90.25 331 | 62.89 329 | 94.97 338 | 79.04 297 | 80.24 292 | 91.62 289 |
|
| FMVSNet1 | | | 83.94 312 | 81.32 320 | 91.80 246 | 91.94 306 | 88.81 183 | 96.77 285 | 95.25 305 | 77.98 349 | 78.25 329 | 90.25 331 | 50.37 375 | 94.97 338 | 73.27 340 | 77.81 308 | 91.62 289 |
|
| PEN-MVS | | | 85.21 294 | 83.93 298 | 89.07 315 | 89.89 334 | 81.31 324 | 97.09 274 | 97.24 164 | 84.45 281 | 78.66 323 | 92.68 279 | 68.44 292 | 94.87 341 | 75.98 320 | 70.92 358 | 91.04 313 |
|
| PatchT | | | 85.44 292 | 83.19 301 | 92.22 234 | 93.13 289 | 83.00 300 | 83.80 392 | 96.37 223 | 70.62 374 | 90.55 188 | 79.63 387 | 84.81 143 | 94.87 341 | 58.18 386 | 91.59 210 | 98.79 147 |
|
| CR-MVSNet | | | 88.83 233 | 87.38 244 | 93.16 216 | 93.47 280 | 86.24 241 | 84.97 386 | 94.20 340 | 88.92 179 | 90.76 185 | 86.88 363 | 84.43 146 | 94.82 343 | 70.64 350 | 92.17 201 | 98.41 167 |
|
| Patchmtry | | | 83.61 315 | 81.64 315 | 89.50 306 | 93.36 284 | 82.84 306 | 84.10 389 | 94.20 340 | 69.47 381 | 79.57 315 | 86.88 363 | 84.43 146 | 94.78 344 | 68.48 359 | 74.30 329 | 90.88 317 |
|
| ambc | | | | | 79.60 366 | 72.76 399 | 56.61 393 | 76.20 397 | 92.01 370 | | 68.25 372 | 80.23 385 | 23.34 398 | 94.73 345 | 73.78 338 | 60.81 381 | 87.48 364 |
|
| test_vis3_rt | | | 61.29 361 | 58.75 364 | 68.92 377 | 67.41 401 | 52.84 399 | 91.18 368 | 59.23 412 | 66.96 387 | 41.96 400 | 58.44 400 | 11.37 408 | 94.72 346 | 74.25 332 | 57.97 386 | 59.20 399 |
|
| miper_lstm_enhance | | | 86.90 265 | 86.20 261 | 89.00 316 | 94.53 249 | 81.19 326 | 96.74 289 | 95.24 308 | 82.33 319 | 80.15 307 | 90.51 327 | 81.99 190 | 94.68 347 | 80.71 287 | 73.58 337 | 91.12 311 |
|
| ppachtmachnet_test | | | 83.63 314 | 81.57 317 | 89.80 297 | 89.01 346 | 85.09 274 | 97.13 273 | 94.50 330 | 78.84 345 | 76.14 336 | 91.00 307 | 69.78 282 | 94.61 348 | 63.40 373 | 74.36 328 | 89.71 346 |
|
| our_test_3 | | | 84.47 305 | 82.80 305 | 89.50 306 | 89.01 346 | 83.90 290 | 97.03 276 | 94.56 329 | 81.33 330 | 75.36 344 | 90.52 326 | 71.69 272 | 94.54 349 | 68.81 357 | 76.84 312 | 90.07 337 |
|
| LCM-MVSNet-Re | | | 88.59 242 | 88.61 222 | 88.51 321 | 95.53 207 | 72.68 371 | 96.85 283 | 88.43 390 | 88.45 190 | 73.14 355 | 90.63 319 | 75.82 234 | 94.38 350 | 92.95 151 | 95.71 160 | 98.48 165 |
|
| ET-MVSNet_ETH3D | | | 92.56 160 | 91.45 168 | 95.88 127 | 96.39 173 | 94.13 60 | 99.46 60 | 96.97 194 | 92.18 93 | 66.94 378 | 98.29 124 | 94.65 14 | 94.28 351 | 94.34 128 | 83.82 273 | 99.24 104 |
|
| DTE-MVSNet | | | 84.14 309 | 82.80 305 | 88.14 323 | 88.95 348 | 79.87 335 | 96.81 284 | 96.24 232 | 83.50 296 | 77.60 332 | 92.52 281 | 67.89 299 | 94.24 352 | 72.64 345 | 69.05 361 | 90.32 332 |
|
| N_pmnet | | | 70.19 355 | 69.87 357 | 71.12 375 | 88.24 355 | 30.63 414 | 95.85 319 | 28.70 413 | 70.18 377 | 68.73 370 | 86.55 365 | 64.04 324 | 93.81 353 | 53.12 391 | 73.46 339 | 88.94 354 |
|
| mvsany_test3 | | | 75.85 348 | 74.52 350 | 79.83 365 | 73.53 397 | 60.64 390 | 91.73 359 | 87.87 392 | 83.91 289 | 70.55 364 | 82.52 375 | 31.12 394 | 93.66 354 | 86.66 223 | 62.83 376 | 85.19 381 |
|
| UnsupCasMVSNet_bld | | | 73.85 352 | 70.14 356 | 84.99 346 | 79.44 390 | 75.73 357 | 88.53 376 | 95.24 308 | 70.12 378 | 61.94 386 | 74.81 392 | 41.41 388 | 93.62 355 | 68.65 358 | 51.13 396 | 85.62 376 |
|
| K. test v3 | | | 81.04 326 | 79.77 329 | 84.83 347 | 87.41 364 | 70.23 379 | 95.60 324 | 93.93 344 | 83.70 293 | 67.51 376 | 89.35 345 | 55.76 354 | 93.58 356 | 76.67 316 | 68.03 364 | 90.67 326 |
|
| IterMVS-SCA-FT | | | 85.73 289 | 84.64 288 | 89.00 316 | 93.46 282 | 82.90 303 | 96.27 301 | 94.70 325 | 85.02 272 | 78.62 324 | 90.35 329 | 66.61 308 | 93.33 357 | 79.38 296 | 77.36 311 | 90.76 322 |
|
| KD-MVS_2432*1600 | | | 82.98 316 | 80.52 324 | 90.38 281 | 94.32 254 | 88.98 175 | 92.87 349 | 95.87 271 | 80.46 339 | 73.79 350 | 87.49 356 | 82.76 175 | 93.29 358 | 70.56 351 | 46.53 399 | 88.87 356 |
|
| miper_refine_blended | | | 82.98 316 | 80.52 324 | 90.38 281 | 94.32 254 | 88.98 175 | 92.87 349 | 95.87 271 | 80.46 339 | 73.79 350 | 87.49 356 | 82.76 175 | 93.29 358 | 70.56 351 | 46.53 399 | 88.87 356 |
|
| IterMVS | | | 85.81 286 | 84.67 287 | 89.22 311 | 93.51 279 | 83.67 293 | 96.32 300 | 94.80 322 | 85.09 269 | 78.69 322 | 90.17 337 | 66.57 310 | 93.17 360 | 79.48 295 | 77.42 310 | 90.81 318 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CVMVSNet | | | 90.30 204 | 90.91 179 | 88.46 322 | 94.32 254 | 73.58 367 | 97.61 255 | 97.59 116 | 90.16 141 | 88.43 212 | 97.10 174 | 76.83 232 | 92.86 361 | 82.64 271 | 93.54 179 | 98.93 133 |
|
| PM-MVS | | | 74.88 350 | 72.85 353 | 80.98 364 | 78.98 391 | 64.75 387 | 90.81 370 | 85.77 394 | 80.95 335 | 68.23 373 | 82.81 374 | 29.08 396 | 92.84 362 | 76.54 317 | 62.46 379 | 85.36 378 |
|
| MIMVSNet | | | 84.48 304 | 81.83 314 | 92.42 232 | 91.73 310 | 87.36 216 | 85.52 382 | 94.42 334 | 81.40 329 | 81.91 287 | 87.58 353 | 51.92 369 | 92.81 363 | 73.84 336 | 88.15 238 | 97.08 215 |
|
| ADS-MVSNet2 | | | 87.62 258 | 86.88 252 | 89.86 295 | 96.21 181 | 79.14 340 | 87.15 379 | 92.99 354 | 83.01 303 | 89.91 199 | 87.27 359 | 78.87 219 | 92.80 364 | 74.20 333 | 92.27 197 | 97.64 196 |
|
| DeepMVS_CX |  | | | | 76.08 368 | 90.74 324 | 51.65 401 | | 90.84 379 | 86.47 250 | 57.89 389 | 87.98 350 | 35.88 393 | 92.60 365 | 65.77 369 | 65.06 374 | 83.97 384 |
|
| Patchmatch-RL test | | | 81.90 323 | 80.13 326 | 87.23 332 | 80.71 387 | 70.12 380 | 84.07 390 | 88.19 391 | 83.16 302 | 70.57 363 | 82.18 378 | 87.18 93 | 92.59 366 | 82.28 275 | 62.78 377 | 98.98 125 |
|
| pmmvs-eth3d | | | 78.71 338 | 76.16 343 | 86.38 336 | 80.25 389 | 81.19 326 | 94.17 336 | 92.13 368 | 77.97 350 | 66.90 379 | 82.31 377 | 55.76 354 | 92.56 367 | 73.63 339 | 62.31 380 | 85.38 377 |
|
| Anonymous20240521 | | | 78.63 339 | 76.90 340 | 83.82 353 | 82.82 382 | 72.86 369 | 95.72 323 | 93.57 350 | 73.55 369 | 72.17 362 | 84.79 370 | 49.69 377 | 92.51 368 | 65.29 370 | 74.50 325 | 86.09 375 |
|
| MDA-MVSNet-bldmvs | | | 77.82 343 | 74.75 349 | 87.03 333 | 88.33 354 | 78.52 346 | 96.34 299 | 92.85 357 | 75.57 360 | 48.87 395 | 87.89 351 | 57.32 350 | 92.49 369 | 60.79 380 | 64.80 375 | 90.08 336 |
|
| new_pmnet | | | 76.02 346 | 73.71 351 | 82.95 356 | 83.88 379 | 72.85 370 | 91.26 366 | 92.26 365 | 70.44 376 | 62.60 385 | 81.37 380 | 47.64 380 | 92.32 370 | 61.85 377 | 72.10 352 | 83.68 385 |
|
| UnsupCasMVSNet_eth | | | 78.90 336 | 76.67 341 | 85.58 343 | 82.81 383 | 74.94 361 | 91.98 356 | 96.31 226 | 84.64 278 | 65.84 382 | 87.71 352 | 51.33 370 | 92.23 371 | 72.89 343 | 56.50 389 | 89.56 348 |
|
| Anonymous20231206 | | | 80.76 327 | 79.42 331 | 84.79 348 | 84.78 376 | 72.98 368 | 96.53 293 | 92.97 355 | 79.56 342 | 74.33 346 | 88.83 347 | 61.27 336 | 92.15 372 | 60.59 381 | 75.92 315 | 89.24 352 |
|
| MDA-MVSNet_test_wron | | | 79.65 333 | 77.05 338 | 87.45 330 | 87.79 362 | 80.13 333 | 96.25 304 | 94.44 331 | 73.87 367 | 51.80 393 | 87.47 358 | 68.04 296 | 92.12 373 | 66.02 367 | 67.79 366 | 90.09 335 |
|
| YYNet1 | | | 79.64 334 | 77.04 339 | 87.43 331 | 87.80 361 | 79.98 334 | 96.23 305 | 94.44 331 | 73.83 368 | 51.83 392 | 87.53 354 | 67.96 298 | 92.07 374 | 66.00 368 | 67.75 367 | 90.23 334 |
|
| test0.0.03 1 | | | 88.96 226 | 88.61 222 | 90.03 292 | 91.09 319 | 84.43 282 | 98.97 128 | 97.02 190 | 90.21 136 | 80.29 305 | 96.31 210 | 84.89 141 | 91.93 375 | 72.98 342 | 85.70 255 | 93.73 251 |
|
| testgi | | | 82.29 319 | 81.00 322 | 86.17 339 | 87.24 366 | 74.84 362 | 97.39 259 | 91.62 374 | 88.63 183 | 75.85 341 | 95.42 228 | 46.07 382 | 91.55 376 | 66.87 366 | 79.94 296 | 92.12 278 |
|
| EU-MVSNet | | | 84.19 308 | 84.42 293 | 83.52 355 | 88.64 352 | 67.37 384 | 96.04 311 | 95.76 277 | 85.29 265 | 78.44 327 | 93.18 271 | 70.67 278 | 91.48 377 | 75.79 322 | 75.98 314 | 91.70 286 |
|
| KD-MVS_self_test | | | 77.47 344 | 75.88 344 | 82.24 358 | 81.59 384 | 68.93 382 | 92.83 351 | 94.02 343 | 77.03 355 | 73.14 355 | 83.39 373 | 55.44 358 | 90.42 378 | 67.95 360 | 57.53 387 | 87.38 365 |
|
| CL-MVSNet_self_test | | | 79.89 332 | 78.34 333 | 84.54 350 | 81.56 385 | 75.01 360 | 96.88 282 | 95.62 285 | 81.10 332 | 75.86 340 | 85.81 368 | 68.49 291 | 90.26 379 | 63.21 374 | 56.51 388 | 88.35 358 |
|
| APD_test1 | | | 68.93 357 | 66.98 360 | 74.77 371 | 80.62 388 | 53.15 398 | 87.97 377 | 85.01 396 | 53.76 394 | 59.26 388 | 87.52 355 | 25.19 397 | 89.95 380 | 56.20 387 | 67.33 368 | 81.19 389 |
|
| Syy-MVS | | | 84.10 311 | 84.53 290 | 82.83 357 | 95.14 224 | 65.71 385 | 97.68 251 | 96.66 203 | 86.52 247 | 82.63 267 | 96.84 191 | 68.15 294 | 89.89 381 | 45.62 395 | 91.54 213 | 92.87 256 |
|
| myMVS_eth3d | | | 88.68 241 | 89.07 211 | 87.50 329 | 95.14 224 | 79.74 336 | 97.68 251 | 96.66 203 | 86.52 247 | 82.63 267 | 96.84 191 | 85.22 138 | 89.89 381 | 69.43 355 | 91.54 213 | 92.87 256 |
|
| DSMNet-mixed | | | 81.60 324 | 81.43 318 | 82.10 360 | 84.36 377 | 60.79 389 | 93.63 342 | 86.74 393 | 79.00 343 | 79.32 318 | 87.15 361 | 63.87 325 | 89.78 383 | 66.89 365 | 91.92 203 | 95.73 242 |
|
| test_f | | | 71.94 354 | 70.82 355 | 75.30 369 | 72.77 398 | 53.28 397 | 91.62 360 | 89.66 386 | 75.44 361 | 64.47 383 | 78.31 389 | 20.48 400 | 89.56 384 | 78.63 303 | 66.02 372 | 83.05 388 |
|
| testing3 | | | 87.75 253 | 88.22 232 | 86.36 337 | 94.66 247 | 77.41 353 | 99.52 51 | 97.95 54 | 86.05 254 | 81.12 297 | 96.69 198 | 86.18 120 | 89.31 385 | 61.65 379 | 90.12 232 | 92.35 268 |
|
| FMVSNet5 | | | 82.29 319 | 80.54 323 | 87.52 328 | 93.79 275 | 84.01 288 | 93.73 340 | 92.47 362 | 76.92 356 | 74.27 347 | 86.15 367 | 63.69 327 | 89.24 386 | 69.07 356 | 74.79 323 | 89.29 351 |
|
| new-patchmatchnet | | | 74.80 351 | 72.40 354 | 81.99 361 | 78.36 392 | 72.20 372 | 94.44 332 | 92.36 363 | 77.06 354 | 63.47 384 | 79.98 386 | 51.04 372 | 88.85 387 | 60.53 382 | 54.35 391 | 84.92 382 |
|
| pmmvs3 | | | 72.86 353 | 69.76 358 | 82.17 359 | 73.86 396 | 74.19 364 | 94.20 335 | 89.01 388 | 64.23 392 | 67.72 374 | 80.91 384 | 41.48 387 | 88.65 388 | 62.40 376 | 54.02 392 | 83.68 385 |
|
| EGC-MVSNET | | | 60.70 362 | 55.37 366 | 76.72 367 | 86.35 372 | 71.08 374 | 89.96 374 | 84.44 398 | 0.38 410 | 1.50 411 | 84.09 372 | 37.30 391 | 88.10 389 | 40.85 399 | 73.44 340 | 70.97 395 |
|
| MIMVSNet1 | | | 75.92 347 | 73.30 352 | 83.81 354 | 81.29 386 | 75.57 358 | 92.26 354 | 92.05 369 | 73.09 370 | 67.48 377 | 86.18 366 | 40.87 389 | 87.64 390 | 55.78 388 | 70.68 359 | 88.21 359 |
|
| test20.03 | | | 78.51 340 | 77.48 336 | 81.62 362 | 83.07 381 | 71.03 375 | 96.11 309 | 92.83 358 | 81.66 327 | 69.31 368 | 89.68 341 | 57.53 348 | 87.29 391 | 58.65 385 | 68.47 362 | 86.53 372 |
|
| test_fmvs3 | | | 75.09 349 | 75.19 346 | 74.81 370 | 77.45 393 | 54.08 396 | 95.93 312 | 90.64 380 | 82.51 316 | 73.29 353 | 81.19 381 | 22.29 399 | 86.29 392 | 85.50 236 | 67.89 365 | 84.06 383 |
|
| dmvs_testset | | | 77.17 345 | 78.99 332 | 71.71 373 | 87.25 365 | 38.55 410 | 91.44 363 | 81.76 401 | 85.77 258 | 69.49 367 | 95.94 219 | 69.71 284 | 84.37 393 | 52.71 392 | 76.82 313 | 92.21 273 |
|
| LCM-MVSNet | | | 60.07 363 | 56.37 365 | 71.18 374 | 54.81 409 | 48.67 402 | 82.17 394 | 89.48 387 | 37.95 399 | 49.13 394 | 69.12 393 | 13.75 407 | 81.76 394 | 59.28 383 | 51.63 395 | 83.10 387 |
|
| Gipuma |  | | 54.77 367 | 52.22 371 | 62.40 384 | 86.50 370 | 59.37 392 | 50.20 402 | 90.35 382 | 36.52 400 | 41.20 401 | 49.49 402 | 18.33 403 | 81.29 395 | 32.10 401 | 65.34 373 | 46.54 402 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 56.38 365 | 53.73 368 | 64.31 382 | 64.84 402 | 45.11 403 | 80.50 395 | 75.94 407 | 38.87 397 | 42.74 397 | 75.07 390 | 11.26 409 | 81.19 396 | 41.11 397 | 53.27 393 | 66.63 396 |
|
| APD_test2 | | | 56.38 365 | 53.73 368 | 64.31 382 | 64.84 402 | 45.11 403 | 80.50 395 | 75.94 407 | 38.87 397 | 42.74 397 | 75.07 390 | 11.26 409 | 81.19 396 | 41.11 397 | 53.27 393 | 66.63 396 |
|
| PMMVS2 | | | 58.97 364 | 55.07 367 | 70.69 376 | 62.72 404 | 55.37 395 | 85.97 381 | 80.52 402 | 49.48 395 | 45.94 396 | 68.31 394 | 15.73 405 | 80.78 398 | 49.79 393 | 37.12 401 | 75.91 390 |
|
| FPMVS | | | 61.57 360 | 60.32 363 | 65.34 380 | 60.14 407 | 42.44 408 | 91.02 369 | 89.72 385 | 44.15 396 | 42.63 399 | 80.93 382 | 19.02 401 | 80.59 399 | 42.50 396 | 72.76 344 | 73.00 393 |
|
| WB-MVS | | | 66.44 358 | 66.29 361 | 66.89 378 | 74.84 394 | 44.93 405 | 93.00 346 | 84.09 399 | 71.15 373 | 55.82 390 | 81.63 379 | 63.79 326 | 80.31 400 | 21.85 404 | 50.47 397 | 75.43 391 |
|
| SSC-MVS | | | 65.42 359 | 65.20 362 | 66.06 379 | 73.96 395 | 43.83 406 | 92.08 355 | 83.54 400 | 69.77 379 | 54.73 391 | 80.92 383 | 63.30 328 | 79.92 401 | 20.48 405 | 48.02 398 | 74.44 392 |
|
| test_method | | | 70.10 356 | 68.66 359 | 74.41 372 | 86.30 373 | 55.84 394 | 94.47 331 | 89.82 384 | 35.18 401 | 66.15 381 | 84.75 371 | 30.54 395 | 77.96 402 | 70.40 353 | 60.33 382 | 89.44 349 |
|
| PMVS |  | 41.42 23 | 45.67 370 | 42.50 373 | 55.17 386 | 34.28 412 | 32.37 412 | 66.24 400 | 78.71 404 | 30.72 402 | 22.04 407 | 59.59 398 | 4.59 411 | 77.85 403 | 27.49 402 | 58.84 385 | 55.29 400 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| ANet_high | | | 50.71 369 | 46.17 372 | 64.33 381 | 44.27 411 | 52.30 400 | 76.13 398 | 78.73 403 | 64.95 390 | 27.37 404 | 55.23 401 | 14.61 406 | 67.74 404 | 36.01 400 | 18.23 404 | 72.95 394 |
|
| tmp_tt | | | 53.66 368 | 52.86 370 | 56.05 385 | 32.75 413 | 41.97 409 | 73.42 399 | 76.12 406 | 21.91 406 | 39.68 402 | 96.39 207 | 42.59 386 | 65.10 405 | 78.00 306 | 14.92 406 | 61.08 398 |
|
| MVE |  | 44.00 22 | 41.70 371 | 37.64 376 | 53.90 387 | 49.46 410 | 43.37 407 | 65.09 401 | 66.66 409 | 26.19 405 | 25.77 406 | 48.53 403 | 3.58 413 | 63.35 406 | 26.15 403 | 27.28 402 | 54.97 401 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| E-PMN | | | 41.02 372 | 40.93 374 | 41.29 388 | 61.97 405 | 33.83 411 | 84.00 391 | 65.17 410 | 27.17 403 | 27.56 403 | 46.72 404 | 17.63 404 | 60.41 407 | 19.32 406 | 18.82 403 | 29.61 403 |
|
| EMVS | | | 39.96 373 | 39.88 375 | 40.18 389 | 59.57 408 | 32.12 413 | 84.79 388 | 64.57 411 | 26.27 404 | 26.14 405 | 44.18 407 | 18.73 402 | 59.29 408 | 17.03 407 | 17.67 405 | 29.12 404 |
|
| wuyk23d | | | 16.71 376 | 16.73 380 | 16.65 390 | 60.15 406 | 25.22 415 | 41.24 403 | 5.17 414 | 6.56 407 | 5.48 410 | 3.61 410 | 3.64 412 | 22.72 409 | 15.20 408 | 9.52 407 | 1.99 407 |
|
| test123 | | | 16.58 377 | 19.47 379 | 7.91 391 | 3.59 415 | 5.37 416 | 94.32 333 | 1.39 416 | 2.49 409 | 13.98 409 | 44.60 406 | 2.91 414 | 2.65 410 | 11.35 410 | 0.57 409 | 15.70 405 |
|
| testmvs | | | 18.81 375 | 23.05 378 | 6.10 392 | 4.48 414 | 2.29 417 | 97.78 242 | 3.00 415 | 3.27 408 | 18.60 408 | 62.71 396 | 1.53 415 | 2.49 411 | 14.26 409 | 1.80 408 | 13.50 406 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| cdsmvs_eth3d_5k | | | 22.52 374 | 30.03 377 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 97.17 173 | 0.00 411 | 0.00 412 | 98.77 87 | 74.35 246 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| pcd_1.5k_mvsjas | | | 6.87 379 | 9.16 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 82.48 181 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| ab-mvs-re | | | 8.21 378 | 10.94 381 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 98.50 110 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 79.74 336 | | | | | | | | 67.75 361 | | |
|
| FOURS1 | | | | | | 99.50 42 | 88.94 178 | 99.55 45 | 97.47 141 | 91.32 111 | 98.12 45 | | | | | | |
|
| test_one_0601 | | | | | | 99.59 28 | 94.89 36 | | 97.64 103 | 93.14 71 | 98.93 22 | 99.45 14 | 93.45 17 | | | | |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| RE-MVS-def | | | | 95.70 64 | | 99.22 59 | 87.26 222 | 98.40 193 | 97.21 167 | 89.63 154 | 96.67 85 | 98.97 64 | 85.24 137 | | 96.62 77 | 99.31 66 | 99.60 69 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 24 | | 97.73 80 | 95.54 28 | 99.54 3 | | | | 99.69 6 | 99.81 23 | 99.99 1 |
|
| save fliter | | | | | | 99.34 50 | 93.85 64 | 99.65 36 | 97.63 107 | 95.69 22 | | | | | | | |
|
| test0726 | | | | | | 99.66 12 | 95.20 32 | 99.77 18 | 97.70 86 | 93.95 50 | 99.35 7 | 99.54 3 | 93.18 21 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 140 |
|
| test_part2 | | | | | | 99.54 36 | 95.42 22 | | | | 98.13 43 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 68 | | | | 98.84 140 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 96 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 144 | | | | | | | | |
|
| MTMP | | | | | | | | 99.21 89 | 91.09 378 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 56 | 99.87 9 | 99.91 21 |
|
| test_prior4 | | | | | | | 92.00 98 | 99.41 69 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 99.57 43 | | 91.43 108 | 98.12 45 | 98.97 64 | 90.43 45 | | 98.33 42 | 99.81 23 | |
|
| æ–°å‡ ä½•2 | | | | | | | | 98.26 207 | | | | | | | | | |
|
| 旧先验1 | | | | | | 98.97 73 | 92.90 86 | | 97.74 77 | | | 99.15 41 | 91.05 34 | | | 99.33 64 | 99.60 69 |
|
| 原ACMM2 | | | | | | | | 98.69 154 | | | | | | | | | |
|
| test222 | | | | | | 98.32 92 | 91.21 112 | 98.08 226 | 97.58 118 | 83.74 291 | 95.87 99 | 99.02 60 | 86.74 105 | | | 99.64 40 | 99.81 33 |
|
| segment_acmp | | | | | | | | | | | | | 90.56 43 | | | | |
|
| testdata1 | | | | | | | | 97.89 235 | | 92.43 84 | | | | | | | |
|
| plane_prior7 | | | | | | 93.84 271 | 85.73 260 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 93.92 268 | 86.02 253 | | | | | | 72.92 259 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 96.52 201 | | | | | |
|
| plane_prior3 | | | | | | | 85.91 255 | | | 93.65 63 | 86.99 225 | | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 121 | | 93.38 68 | | | | | | | |
|
| plane_prior1 | | | | | | 93.90 270 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 86.07 251 | 99.14 106 | | 93.81 60 | | | | | | 86.26 249 | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 397 | | | | | | | | |
|
| test11 | | | | | | | | | 97.68 90 | | | | | | | | |
|
| door | | | | | | | | | 85.30 395 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 236 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 93.95 264 | | 99.16 97 | | 93.92 52 | 87.57 217 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 264 | | 99.16 97 | | 93.92 52 | 87.57 217 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 137 | | |
|
| HQP3-MVS | | | | | | | | | 96.37 223 | | | | | | | 86.29 247 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 253 | | | | |
|
| NP-MVS | | | | | | 93.94 267 | 86.22 243 | | | | | 96.67 199 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 91.17 115 | 91.38 364 | | 87.45 227 | 93.08 151 | | 86.67 107 | | 87.02 215 | | 98.95 131 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 283 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 271 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 155 | | | | |
|