This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS99.03 1585.34 4796.86 4092.05 1798.74 198.15 498.97 1799.42 13
PC_three_145291.12 2298.33 298.42 2392.51 299.81 2198.96 299.37 199.70 3
SMA-MVScopyleft94.70 1694.68 1694.76 2498.02 5985.94 3797.47 8196.77 5085.32 11897.92 398.70 1583.09 4799.84 1295.79 2999.08 1098.49 49
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
SED-MVS95.88 596.22 494.87 2199.03 1585.03 5999.12 696.78 4488.72 5297.79 498.91 288.48 1799.82 1898.15 498.97 1799.74 1
test_241102_ONE99.03 1585.03 5996.78 4488.72 5297.79 498.90 588.48 1799.82 18
DVP-MVS++96.05 496.41 394.96 2099.05 985.34 4798.13 3796.77 5088.38 5997.70 698.77 1092.06 399.84 1297.47 1499.37 199.70 3
test_241102_TWO96.78 4488.72 5297.70 698.91 287.86 2199.82 1898.15 499.00 1599.47 9
patch_mono-295.14 1196.08 792.33 10298.44 4377.84 22198.43 2697.21 2092.58 1297.68 897.65 6486.88 2699.83 1698.25 397.60 6499.33 17
test072699.05 985.18 5299.11 996.78 4488.75 5097.65 998.91 287.69 22
TSAR-MVS + MP.94.79 1595.17 1393.64 5397.66 6984.10 7495.85 19296.42 9691.26 2197.49 1096.80 10386.50 2898.49 11795.54 3399.03 1398.33 57
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MSP-MVS95.62 796.54 192.86 8398.31 4880.10 15597.42 8896.78 4492.20 1597.11 1198.29 2693.46 199.10 8896.01 2599.30 599.38 14
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CNVR-MVS96.30 196.54 195.55 1399.31 587.69 2099.06 1097.12 2494.66 396.79 1298.78 986.42 2999.95 397.59 1399.18 799.00 26
DVP-MVScopyleft95.58 895.91 994.57 2899.05 985.18 5299.06 1096.46 9188.75 5096.69 1398.76 1287.69 2299.76 2597.90 998.85 2198.77 33
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD88.38 5996.69 1398.76 1289.64 1399.76 2597.47 1498.84 2399.38 14
SD-MVS94.84 1495.02 1494.29 3497.87 6484.61 6797.76 6096.19 11789.59 4296.66 1598.17 3384.33 3699.60 4896.09 2498.50 3698.66 41
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_one_060198.91 1884.56 6896.70 6088.06 6596.57 1698.77 1088.04 20
DPE-MVScopyleft95.32 995.55 1094.64 2798.79 2384.87 6497.77 5896.74 5586.11 10396.54 1798.89 688.39 1999.74 3297.67 1299.05 1299.31 18
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DPM-MVS96.21 295.53 1198.26 196.26 9895.09 199.15 496.98 3093.39 1096.45 1898.79 890.17 1099.99 189.33 10899.25 699.70 3
PS-MVSNAJ94.17 2493.52 3296.10 895.65 11392.35 298.21 3295.79 14092.42 1496.24 1998.18 3071.04 19099.17 8296.77 2097.39 7296.79 147
旧先验296.97 12374.06 29896.10 2097.76 14688.38 118
test_part298.90 1985.14 5896.07 21
xiu_mvs_v2_base93.92 2893.26 3695.91 995.07 13092.02 698.19 3395.68 14592.06 1696.01 2298.14 3470.83 19398.96 9596.74 2296.57 9096.76 150
HPM-MVS++copyleft95.32 995.48 1294.85 2298.62 3486.04 3497.81 5696.93 3592.45 1395.69 2398.50 2085.38 3199.85 1094.75 4099.18 798.65 42
NCCC95.63 695.94 894.69 2699.21 685.15 5799.16 396.96 3294.11 695.59 2498.64 1785.07 3399.91 495.61 3299.10 999.00 26
EPNet94.06 2794.15 2593.76 4897.27 8784.35 7098.29 2997.64 1394.57 495.36 2596.88 9879.96 6699.12 8791.30 7896.11 9497.82 96
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet94.89 1394.64 1795.63 1197.55 7588.12 1499.06 1096.39 10194.07 795.34 2697.80 5576.83 10899.87 897.08 1897.64 6398.89 29
TEST998.64 3183.71 8097.82 5496.65 6784.29 14795.16 2798.09 3784.39 3599.36 68
train_agg94.28 2194.45 2093.74 4998.64 3183.71 8097.82 5496.65 6784.50 14095.16 2798.09 3784.33 3699.36 6895.91 2898.96 1998.16 69
test_898.63 3383.64 8397.81 5696.63 7284.50 14095.10 2998.11 3684.33 3699.23 73
DeepPCF-MVS89.82 194.61 1796.17 589.91 18097.09 9070.21 30998.99 1596.69 6295.57 195.08 3099.23 186.40 3099.87 897.84 1198.66 3199.65 6
SF-MVS94.17 2494.05 2694.55 2997.56 7485.95 3597.73 6296.43 9584.02 15295.07 3198.74 1482.93 4899.38 6595.42 3598.51 3498.32 58
APDe-MVS94.56 1894.75 1593.96 4498.84 2283.40 8898.04 4596.41 9785.79 11095.00 3298.28 2784.32 3999.18 8197.35 1698.77 2799.28 19
MVSFormer91.36 7390.57 7893.73 5193.00 18888.08 1594.80 23394.48 21080.74 21294.90 3397.13 8878.84 7795.10 28083.77 15697.46 6798.02 77
lupinMVS93.87 2993.58 3194.75 2593.00 18888.08 1599.15 495.50 15491.03 2494.90 3397.66 6078.84 7797.56 15494.64 4397.46 6798.62 44
CS-MVS-test92.98 3793.67 2890.90 15096.52 9476.87 23998.68 1894.73 19490.36 3494.84 3597.89 5077.94 8997.15 18594.28 4797.80 6098.70 40
9.1494.26 2498.10 5798.14 3496.52 8484.74 13294.83 3698.80 782.80 5099.37 6795.95 2798.42 40
testdata90.13 17295.92 10774.17 27496.49 9073.49 30394.82 3797.99 4478.80 7997.93 13783.53 16497.52 6698.29 62
APD-MVScopyleft93.61 3093.59 3093.69 5298.76 2483.26 9097.21 9796.09 12282.41 19094.65 3898.21 2981.96 5398.81 10594.65 4298.36 4599.01 25
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior298.37 2886.08 10594.57 3998.02 4383.14 4695.05 3798.79 26
CS-MVS92.73 4393.48 3390.48 16296.27 9775.93 25898.55 2494.93 18189.32 4494.54 4097.67 5978.91 7697.02 18993.80 5097.32 7498.49 49
FOURS198.51 3978.01 21398.13 3796.21 11483.04 17794.39 41
ACMMP_NAP93.46 3293.23 3794.17 3997.16 8884.28 7296.82 13496.65 6786.24 10194.27 4297.99 4477.94 8999.83 1693.39 5598.57 3398.39 55
agg_prior98.59 3583.13 9296.56 8194.19 4399.16 83
SteuartSystems-ACMMP94.13 2694.44 2193.20 7195.41 11981.35 12699.02 1496.59 7789.50 4394.18 4498.36 2583.68 4499.45 6294.77 3998.45 3998.81 32
Skip Steuart: Steuart Systems R&D Blog.
PHI-MVS93.59 3193.63 2993.48 6398.05 5881.76 11898.64 2197.13 2382.60 18894.09 4598.49 2180.35 5999.85 1094.74 4198.62 3298.83 31
TSAR-MVS + GP.94.35 2094.50 1893.89 4597.38 8483.04 9498.10 3995.29 16991.57 1893.81 4697.45 7286.64 2799.43 6396.28 2394.01 11699.20 22
CANet_DTU90.98 8190.04 9193.83 4694.76 13986.23 3296.32 16693.12 27793.11 1193.71 4796.82 10263.08 23599.48 6084.29 14895.12 10595.77 174
VNet92.11 5791.22 6894.79 2396.91 9186.98 2597.91 4997.96 986.38 10093.65 4895.74 12270.16 19898.95 9793.39 5588.87 16298.43 53
test_vis1_n_192089.95 10190.59 7788.03 21792.36 20468.98 31999.12 694.34 21893.86 893.64 4997.01 9451.54 30299.59 4996.76 2196.71 8995.53 179
ZD-MVS99.09 883.22 9196.60 7682.88 18293.61 5098.06 4282.93 4899.14 8495.51 3498.49 37
xiu_mvs_v1_base_debu90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
xiu_mvs_v1_base_debi90.54 9089.54 10093.55 5892.31 20587.58 2196.99 11894.87 18587.23 8693.27 5197.56 6857.43 27398.32 12692.72 6693.46 12594.74 193
CDPH-MVS93.12 3592.91 3993.74 4998.65 3083.88 7697.67 6796.26 11083.00 17993.22 5498.24 2881.31 5499.21 7589.12 10998.74 2998.14 71
ETV-MVS92.72 4592.87 4092.28 10594.54 14481.89 11297.98 4795.21 17289.77 4193.11 5596.83 10077.23 10497.50 16295.74 3095.38 10397.44 122
MSLP-MVS++94.28 2194.39 2293.97 4398.30 4984.06 7598.64 2196.93 3590.71 2793.08 5698.70 1579.98 6599.21 7594.12 4899.07 1198.63 43
alignmvs92.97 3892.26 5295.12 1795.54 11687.77 1898.67 1996.38 10288.04 6693.01 5797.45 7279.20 7398.60 11193.25 6088.76 16398.99 28
canonicalmvs92.27 5591.22 6895.41 1495.80 11088.31 1297.09 11494.64 20288.49 5792.99 5897.31 7972.68 17198.57 11393.38 5788.58 16599.36 16
DROMVSNet91.73 6292.11 5690.58 15993.54 17177.77 22398.07 4294.40 21687.44 8092.99 5897.11 9074.59 15196.87 19893.75 5197.08 7897.11 136
jason92.73 4392.23 5394.21 3890.50 25087.30 2498.65 2095.09 17590.61 2892.76 6097.13 8875.28 14097.30 17493.32 5896.75 8898.02 77
jason: jason.
test1294.25 3598.34 4685.55 4496.35 10592.36 6180.84 5699.22 7498.31 4797.98 84
MG-MVS94.25 2393.72 2795.85 1099.38 389.35 1097.98 4798.09 889.99 3792.34 6296.97 9581.30 5598.99 9388.54 11498.88 2099.20 22
test_fmvs187.79 14988.52 11685.62 26692.98 19264.31 33397.88 5192.42 28687.95 6892.24 6395.82 12147.94 31598.44 12395.31 3694.09 11394.09 204
h-mvs3389.30 11288.95 11090.36 16695.07 13076.04 25296.96 12497.11 2590.39 3292.22 6495.10 14674.70 14798.86 10293.14 6165.89 32396.16 166
hse-mvs288.22 14188.21 12088.25 21193.54 17173.41 27795.41 20895.89 13490.39 3292.22 6494.22 16574.70 14796.66 20993.14 6164.37 32894.69 197
MCST-MVS96.17 396.12 696.32 799.42 289.36 998.94 1697.10 2695.17 292.11 6698.46 2287.33 2499.97 297.21 1799.31 499.63 7
SR-MVS92.16 5692.27 5191.83 12398.37 4578.41 19996.67 14595.76 14182.19 19491.97 6798.07 4176.44 11398.64 10993.71 5297.27 7598.45 52
region2R92.72 4592.70 4392.79 8598.68 2680.53 14597.53 7696.51 8585.22 12191.94 6897.98 4677.26 10099.67 4390.83 8598.37 4498.18 67
Effi-MVS+90.70 8789.90 9693.09 7593.61 16883.48 8695.20 21792.79 28283.22 17191.82 6995.70 12471.82 18197.48 16491.25 7993.67 12198.32 58
HFP-MVS92.89 3992.86 4192.98 7998.71 2581.12 12997.58 7296.70 6085.20 12391.75 7097.97 4878.47 8299.71 3690.95 8198.41 4198.12 73
DeepC-MVS_fast89.06 294.48 1994.30 2395.02 1898.86 2185.68 4298.06 4396.64 7093.64 991.74 7198.54 1880.17 6499.90 592.28 7098.75 2899.49 8
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMMPR92.69 4792.67 4492.75 8698.66 2880.57 14197.58 7296.69 6285.20 12391.57 7297.92 4977.01 10599.67 4390.95 8198.41 4198.00 82
DELS-MVS94.98 1294.49 1996.44 696.42 9590.59 799.21 297.02 2894.40 591.46 7397.08 9183.32 4599.69 3992.83 6598.70 3099.04 24
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XVS92.69 4792.71 4292.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7497.83 5477.24 10299.59 4990.46 9198.07 5298.02 77
X-MVStestdata86.26 17184.14 19092.63 9298.52 3780.29 14897.37 9196.44 9387.04 9191.38 7420.73 37677.24 10299.59 4990.46 9198.07 5298.02 77
PMMVS89.46 10989.92 9588.06 21594.64 14069.57 31696.22 17194.95 18087.27 8591.37 7696.54 11065.88 21797.39 16988.54 11493.89 11897.23 132
test_fmvs1_n86.34 16986.72 15485.17 27387.54 29163.64 33896.91 12892.37 28887.49 7991.33 7795.58 13040.81 34098.46 12095.00 3893.49 12393.41 217
dcpmvs_293.10 3693.46 3492.02 11597.77 6579.73 16594.82 23193.86 24186.91 9391.33 7796.76 10485.20 3298.06 13496.90 1997.60 6498.27 64
原ACMM191.22 14197.77 6578.10 21196.61 7381.05 20791.28 7997.42 7677.92 9198.98 9479.85 19398.51 3496.59 154
新几何193.12 7397.44 7881.60 12396.71 5974.54 29491.22 8097.57 6779.13 7499.51 5877.40 21798.46 3898.26 65
UA-Net88.92 11988.48 11790.24 16994.06 15977.18 23693.04 27294.66 19987.39 8291.09 8193.89 17474.92 14598.18 13375.83 23391.43 14695.35 184
ZNCC-MVS92.75 4192.60 4693.23 7098.24 5181.82 11697.63 6896.50 8785.00 12891.05 8297.74 5778.38 8399.80 2490.48 9098.34 4698.07 75
APD-MVS_3200maxsize91.23 7791.35 6790.89 15197.89 6276.35 24896.30 16795.52 15379.82 23591.03 8397.88 5174.70 14798.54 11492.11 7396.89 8297.77 99
test_vis1_n85.60 18285.70 16285.33 27084.79 32364.98 33196.83 13291.61 29987.36 8391.00 8494.84 15336.14 34697.18 18195.66 3193.03 12993.82 209
GST-MVS92.43 5492.22 5493.04 7798.17 5481.64 12297.40 9096.38 10284.71 13490.90 8597.40 7777.55 9799.76 2589.75 10297.74 6197.72 102
PGM-MVS91.93 5991.80 6092.32 10498.27 5079.74 16495.28 21197.27 1883.83 16090.89 8697.78 5676.12 12099.56 5488.82 11297.93 5897.66 107
SR-MVS-dyc-post91.29 7591.45 6690.80 15397.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5275.76 12698.61 11091.99 7496.79 8697.75 100
RE-MVS-def91.18 7197.76 6776.03 25396.20 17495.44 15980.56 21790.72 8797.84 5273.36 16691.99 7496.79 8697.75 100
MP-MVScopyleft92.61 5092.67 4492.42 9998.13 5679.73 16597.33 9396.20 11585.63 11290.53 8997.66 6078.14 8799.70 3892.12 7298.30 4897.85 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HY-MVS84.06 691.63 6690.37 8495.39 1596.12 10288.25 1390.22 30197.58 1488.33 6190.50 9091.96 19679.26 7199.06 9090.29 9789.07 15998.88 30
CP-MVS92.54 5292.60 4692.34 10198.50 4079.90 15898.40 2796.40 9984.75 13190.48 9198.09 3777.40 9999.21 7591.15 8098.23 5097.92 88
diffmvspermissive91.17 7890.74 7692.44 9893.11 18782.50 10296.25 17093.62 25687.79 7290.40 9295.93 11873.44 16597.42 16693.62 5492.55 13497.41 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVS_Test90.29 9689.18 10593.62 5595.23 12384.93 6294.41 23894.66 19984.31 14590.37 9391.02 21175.13 14297.82 14483.11 16994.42 11198.12 73
MTAPA92.45 5392.31 5092.86 8397.90 6180.85 13592.88 27696.33 10687.92 6990.20 9498.18 3076.71 11199.76 2592.57 6998.09 5197.96 87
test_yl91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
DCV-MVSNet91.46 7090.53 7994.24 3697.41 8085.18 5298.08 4097.72 1080.94 20889.85 9596.14 11475.61 12798.81 10590.42 9588.56 16698.74 34
WTY-MVS92.65 4991.68 6295.56 1296.00 10588.90 1198.23 3197.65 1288.57 5589.82 9797.22 8579.29 7099.06 9089.57 10488.73 16498.73 38
MVS_111021_HR93.41 3393.39 3593.47 6597.34 8582.83 9697.56 7498.27 689.16 4789.71 9897.14 8779.77 6799.56 5493.65 5397.94 5698.02 77
sss90.87 8589.96 9393.60 5694.15 15683.84 7997.14 10798.13 785.93 10889.68 9996.09 11671.67 18299.30 7087.69 12489.16 15897.66 107
test22296.15 10178.41 19995.87 19096.46 9171.97 31589.66 10097.45 7276.33 11798.24 4998.30 61
LFMVS89.27 11387.64 13194.16 4197.16 8885.52 4597.18 10194.66 19979.17 24989.63 10196.57 10955.35 29098.22 13089.52 10689.54 15598.74 34
CostFormer89.08 11588.39 11891.15 14393.13 18579.15 18088.61 31296.11 12183.14 17389.58 10286.93 27083.83 4396.87 19888.22 12085.92 18997.42 123
PVSNet_BlendedMVS90.05 9989.96 9390.33 16797.47 7683.86 7798.02 4696.73 5687.98 6789.53 10389.61 23376.42 11499.57 5294.29 4579.59 23287.57 300
PVSNet_Blended93.13 3492.98 3893.57 5797.47 7683.86 7799.32 196.73 5691.02 2589.53 10396.21 11376.42 11499.57 5294.29 4595.81 10197.29 131
HPM-MVScopyleft91.62 6791.53 6591.89 11997.88 6379.22 17796.99 11895.73 14382.07 19689.50 10597.19 8675.59 12998.93 10090.91 8397.94 5697.54 114
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EI-MVSNet-Vis-set91.84 6191.77 6192.04 11497.60 7181.17 12896.61 14696.87 3888.20 6389.19 10697.55 7178.69 8199.14 8490.29 9790.94 14995.80 173
MP-MVS-pluss92.58 5192.35 4993.29 6797.30 8682.53 10096.44 15796.04 12784.68 13589.12 10798.37 2477.48 9899.74 3293.31 5998.38 4397.59 113
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VDD-MVS88.28 13987.02 15092.06 11395.09 12880.18 15497.55 7594.45 21483.09 17589.10 10895.92 12047.97 31498.49 11793.08 6486.91 17897.52 118
baseline90.76 8690.10 9092.74 8792.90 19482.56 9994.60 23594.56 20787.69 7589.06 10995.67 12673.76 16097.51 16190.43 9492.23 14098.16 69
EIA-MVS91.73 6292.05 5790.78 15594.52 14576.40 24798.06 4395.34 16789.19 4688.90 11097.28 8377.56 9697.73 14790.77 8696.86 8598.20 66
mvsany_test187.58 15388.22 11985.67 26489.78 26167.18 32695.25 21487.93 33683.96 15588.79 11197.06 9372.52 17294.53 29592.21 7186.45 18295.30 186
HPM-MVS_fast90.38 9590.17 8991.03 14697.61 7077.35 23297.15 10695.48 15579.51 24188.79 11196.90 9671.64 18498.81 10587.01 13297.44 6996.94 140
PAPM92.87 4092.40 4894.30 3392.25 21287.85 1796.40 16196.38 10291.07 2388.72 11396.90 9682.11 5297.37 17190.05 9997.70 6297.67 106
MVS_111021_LR91.60 6891.64 6491.47 13495.74 11178.79 19096.15 17696.77 5088.49 5788.64 11497.07 9272.33 17599.19 8093.13 6396.48 9196.43 158
casdiffmvspermissive90.95 8390.39 8292.63 9292.82 19582.53 10096.83 13294.47 21287.69 7588.47 11595.56 13174.04 15797.54 15890.90 8492.74 13297.83 95
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
mPP-MVS91.88 6091.82 5992.07 11298.38 4478.63 19397.29 9496.09 12285.12 12588.45 11697.66 6075.53 13099.68 4189.83 10098.02 5597.88 89
PAPR92.74 4292.17 5594.45 3098.89 2084.87 6497.20 9996.20 11587.73 7488.40 11798.12 3578.71 8099.76 2587.99 12196.28 9298.74 34
tpmrst88.36 13687.38 14191.31 13694.36 15179.92 15787.32 32295.26 17185.32 11888.34 11886.13 28680.60 5896.70 20683.78 15585.34 19797.30 130
GG-mvs-BLEND93.49 6294.94 13486.26 3181.62 34597.00 2988.32 11994.30 16391.23 596.21 22288.49 11697.43 7098.00 82
EI-MVSNet-UG-set91.35 7491.22 6891.73 12597.39 8280.68 13896.47 15496.83 4187.92 6988.30 12097.36 7877.84 9299.13 8689.43 10789.45 15695.37 183
MAR-MVS90.63 8890.22 8691.86 12098.47 4278.20 20997.18 10196.61 7383.87 15988.18 12198.18 3068.71 20299.75 3083.66 16197.15 7797.63 110
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DP-MVS Recon91.72 6490.85 7394.34 3299.50 185.00 6198.51 2595.96 13080.57 21688.08 12297.63 6676.84 10799.89 785.67 13894.88 10698.13 72
VDDNet86.44 16784.51 18192.22 10791.56 23181.83 11597.10 11394.64 20269.50 32787.84 12395.19 14048.01 31397.92 14289.82 10186.92 17796.89 144
UGNet87.73 15086.55 15691.27 13995.16 12779.11 18196.35 16496.23 11288.14 6487.83 12490.48 22050.65 30499.09 8980.13 19094.03 11495.60 177
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250690.96 8290.39 8292.65 9193.54 17182.46 10396.37 16297.35 1686.78 9787.55 12595.25 13577.83 9397.50 16284.07 15094.80 10797.98 84
tpm287.35 15686.26 15790.62 15892.93 19378.67 19288.06 31795.99 12879.33 24487.40 12686.43 28180.28 6196.40 21480.23 18885.73 19396.79 147
CPTT-MVS89.72 10489.87 9789.29 19098.33 4773.30 28097.70 6495.35 16675.68 28587.40 12697.44 7570.43 19598.25 12989.56 10596.90 8196.33 163
gg-mvs-nofinetune85.48 18582.90 20793.24 6994.51 14885.82 3979.22 34996.97 3161.19 34987.33 12853.01 36590.58 696.07 22486.07 13697.23 7697.81 97
CHOSEN 280x42091.71 6591.85 5891.29 13894.94 13482.69 9787.89 31896.17 11885.94 10787.27 12994.31 16290.27 995.65 25294.04 4995.86 9995.53 179
casdiffmvs_mvgpermissive91.13 7990.45 8193.17 7292.99 19183.58 8497.46 8394.56 20787.69 7587.19 13094.98 15174.50 15297.60 15191.88 7692.79 13198.34 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet_dtu87.65 15287.89 12586.93 24394.57 14271.37 30396.72 14096.50 8788.56 5687.12 13195.02 14875.91 12494.01 30466.62 29290.00 15295.42 182
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNetpermissive88.67 12787.82 12791.24 14092.68 19678.82 18796.95 12593.85 24287.55 7887.07 13295.13 14463.43 23397.21 17977.58 21396.15 9397.70 105
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
thisisatest051590.95 8390.26 8593.01 7894.03 16284.27 7397.91 4996.67 6483.18 17286.87 13395.51 13288.66 1697.85 14380.46 18489.01 16096.92 143
TESTMET0.1,189.83 10289.34 10391.31 13692.54 20280.19 15397.11 11096.57 7986.15 10286.85 13491.83 20079.32 6996.95 19281.30 17892.35 13896.77 149
PVSNet_Blended_VisFu91.24 7690.77 7592.66 9095.09 12882.40 10497.77 5895.87 13788.26 6286.39 13593.94 17376.77 10999.27 7188.80 11394.00 11796.31 164
API-MVS90.18 9788.97 10893.80 4798.66 2882.95 9597.50 8095.63 14875.16 28986.31 13697.69 5872.49 17399.90 581.26 17996.07 9598.56 46
test-LLR88.48 13287.98 12489.98 17692.26 21077.23 23497.11 11095.96 13083.76 16386.30 13791.38 20472.30 17696.78 20480.82 18191.92 14295.94 170
test-mter88.95 11788.60 11489.98 17692.26 21077.23 23497.11 11095.96 13085.32 11886.30 13791.38 20476.37 11696.78 20480.82 18191.92 14295.94 170
PAPM_NR91.46 7090.82 7493.37 6698.50 4081.81 11795.03 22796.13 11984.65 13686.10 13997.65 6479.24 7299.75 3083.20 16796.88 8398.56 46
FA-MVS(test-final)87.71 15186.23 15892.17 10994.19 15580.55 14287.16 32496.07 12582.12 19585.98 14088.35 24872.04 18098.49 11780.26 18789.87 15397.48 121
MDTV_nov1_ep13_2view81.74 11986.80 32680.65 21485.65 14174.26 15476.52 22596.98 139
ECVR-MVScopyleft88.35 13787.25 14391.65 12793.54 17179.40 17296.56 15090.78 31386.78 9785.57 14295.25 13557.25 27797.56 15484.73 14694.80 10797.98 84
AUN-MVS86.25 17285.57 16388.26 21093.57 17073.38 27895.45 20695.88 13583.94 15685.47 14394.21 16673.70 16396.67 20883.54 16364.41 32794.73 196
PVSNet82.34 989.02 11687.79 12892.71 8995.49 11781.50 12497.70 6497.29 1787.76 7385.47 14395.12 14556.90 27998.90 10180.33 18594.02 11597.71 104
EPP-MVSNet89.76 10389.72 9989.87 18193.78 16476.02 25597.22 9596.51 8579.35 24385.11 14595.01 14984.82 3497.10 18787.46 12788.21 17096.50 156
test111188.11 14287.04 14991.35 13593.15 18378.79 19096.57 14890.78 31386.88 9585.04 14695.20 13957.23 27897.39 16983.88 15394.59 10997.87 91
FE-MVS86.06 17484.15 18991.78 12494.33 15279.81 15984.58 33796.61 7376.69 27985.00 14787.38 26170.71 19498.37 12570.39 27591.70 14597.17 135
OMC-MVS88.80 12488.16 12290.72 15695.30 12277.92 21894.81 23294.51 20986.80 9684.97 14896.85 9967.53 20698.60 11185.08 14287.62 17395.63 176
CHOSEN 1792x268891.07 8090.21 8793.64 5395.18 12683.53 8596.26 16996.13 11988.92 4984.90 14993.10 18472.86 16999.62 4788.86 11195.67 10297.79 98
thres20088.92 11987.65 13092.73 8896.30 9685.62 4397.85 5298.86 184.38 14484.82 15093.99 17275.12 14398.01 13570.86 27286.67 17994.56 198
MDTV_nov1_ep1383.69 19394.09 15881.01 13086.78 32796.09 12283.81 16184.75 15184.32 30974.44 15396.54 21063.88 30685.07 198
CDS-MVSNet89.50 10888.96 10991.14 14491.94 22780.93 13397.09 11495.81 13984.26 14884.72 15294.20 16780.31 6095.64 25383.37 16688.96 16196.85 146
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMMPcopyleft90.39 9389.97 9291.64 12897.58 7378.21 20896.78 13796.72 5884.73 13384.72 15297.23 8471.22 18799.63 4688.37 11992.41 13797.08 138
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CSCG92.02 5891.65 6393.12 7398.53 3680.59 14097.47 8197.18 2277.06 27784.64 15497.98 4683.98 4199.52 5690.72 8797.33 7399.23 21
ab-mvs87.08 15784.94 17693.48 6393.34 17983.67 8288.82 30995.70 14481.18 20584.55 15590.14 22862.72 23698.94 9985.49 14082.54 21897.85 93
EPMVS87.47 15585.90 16192.18 10895.41 11982.26 10787.00 32596.28 10985.88 10984.23 15685.57 29275.07 14496.26 21971.14 27092.50 13598.03 76
Anonymous20240521184.41 20181.93 22091.85 12296.78 9378.41 19997.44 8491.34 30370.29 32384.06 15794.26 16441.09 33898.96 9579.46 19582.65 21798.17 68
HyFIR lowres test89.36 11088.60 11491.63 13094.91 13680.76 13795.60 20195.53 15182.56 18984.03 15891.24 20878.03 8896.81 20287.07 13188.41 16897.32 128
tfpn200view988.48 13287.15 14592.47 9696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18694.17 200
thres40088.42 13587.15 14592.23 10696.21 9985.30 5097.44 8498.85 283.37 16983.99 15993.82 17575.36 13797.93 13769.04 28086.24 18693.45 215
tpm85.55 18384.47 18488.80 19990.19 25575.39 26388.79 31094.69 19584.83 13083.96 16185.21 29878.22 8694.68 29176.32 22978.02 25096.34 161
Fast-Effi-MVS+87.93 14786.94 15290.92 14994.04 16079.16 17998.26 3093.72 25281.29 20483.94 16292.90 18569.83 19996.68 20776.70 22391.74 14496.93 141
XVG-OURS-SEG-HR85.74 18085.16 17287.49 23190.22 25471.45 30291.29 29494.09 23181.37 20383.90 16395.22 13760.30 25297.53 16085.58 13984.42 20193.50 213
thisisatest053089.65 10589.02 10791.53 13293.46 17780.78 13696.52 15196.67 6481.69 20183.79 16494.90 15288.85 1597.68 14877.80 20787.49 17696.14 167
DeepC-MVS86.58 391.53 6991.06 7292.94 8194.52 14581.89 11295.95 18495.98 12990.76 2683.76 16596.76 10473.24 16799.71 3691.67 7796.96 8097.22 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
IS-MVSNet88.67 12788.16 12290.20 17193.61 16876.86 24096.77 13993.07 27884.02 15283.62 16695.60 12974.69 15096.24 22178.43 20693.66 12297.49 120
thres100view90088.30 13886.95 15192.33 10296.10 10384.90 6397.14 10798.85 282.69 18683.41 16793.66 17875.43 13497.93 13769.04 28086.24 18694.17 200
thres600view788.06 14386.70 15592.15 11096.10 10385.17 5697.14 10798.85 282.70 18583.41 16793.66 17875.43 13497.82 14467.13 29085.88 19093.45 215
XVG-OURS85.18 18884.38 18587.59 22690.42 25271.73 29991.06 29794.07 23282.00 19883.29 16995.08 14756.42 28497.55 15683.70 16083.42 20693.49 214
Vis-MVSNet (Re-imp)88.88 12188.87 11288.91 19693.89 16374.43 27296.93 12794.19 22584.39 14383.22 17095.67 12678.24 8594.70 29078.88 20294.40 11297.61 112
TAMVS88.48 13287.79 12890.56 16091.09 23979.18 17896.45 15695.88 13583.64 16683.12 17193.33 18075.94 12395.74 24882.40 17288.27 16996.75 151
baseline188.85 12287.49 13792.93 8295.21 12586.85 2795.47 20594.61 20487.29 8483.11 17294.99 15080.70 5796.89 19682.28 17373.72 26695.05 188
AdaColmapbinary88.81 12387.61 13492.39 10099.33 479.95 15696.70 14495.58 14977.51 26983.05 17396.69 10861.90 24599.72 3584.29 14893.47 12497.50 119
PatchmatchNetpermissive86.83 16285.12 17391.95 11794.12 15782.27 10686.55 32995.64 14784.59 13882.98 17484.99 30477.26 10095.96 23368.61 28491.34 14797.64 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA85.63 18183.64 19691.60 13192.30 20881.86 11492.88 27695.56 15084.85 12982.52 17585.12 30258.04 26895.39 26373.89 25087.58 17597.54 114
114514_t88.79 12587.57 13592.45 9798.21 5381.74 11996.99 11895.45 15875.16 28982.48 17695.69 12568.59 20398.50 11680.33 18595.18 10497.10 137
PatchT79.75 26276.85 27388.42 20489.55 26775.49 26277.37 35594.61 20463.07 34082.46 17773.32 35375.52 13193.41 31551.36 34884.43 20096.36 159
TR-MVS86.30 17084.93 17790.42 16394.63 14177.58 22796.57 14893.82 24380.30 22582.42 17895.16 14258.74 26397.55 15674.88 24087.82 17296.13 168
HQP-NCC92.08 21997.63 6890.52 2982.30 179
ACMP_Plane92.08 21997.63 6890.52 2982.30 179
HQP4-MVS82.30 17997.32 17291.13 224
HQP-MVS87.91 14887.55 13688.98 19592.08 21978.48 19597.63 6894.80 19090.52 2982.30 17994.56 15865.40 22197.32 17287.67 12583.01 21091.13 224
CR-MVSNet83.53 21381.36 22990.06 17390.16 25679.75 16279.02 35191.12 30584.24 14982.27 18380.35 33175.45 13293.67 31063.37 31086.25 18496.75 151
RPMNet79.85 26175.92 28091.64 12890.16 25679.75 16279.02 35195.44 15958.43 35882.27 18372.55 35573.03 16898.41 12446.10 35986.25 18496.75 151
CVMVSNet84.83 19485.57 16382.63 30691.55 23260.38 34895.13 22195.03 17880.60 21582.10 18594.71 15566.40 21690.19 34574.30 24790.32 15197.31 129
iter_conf_final89.51 10789.21 10490.39 16495.60 11484.44 6997.22 9589.09 32789.11 4882.07 18692.80 18687.03 2596.03 22589.10 11080.89 22290.70 229
PLCcopyleft83.97 788.00 14587.38 14189.83 18398.02 5976.46 24597.16 10594.43 21579.26 24881.98 18796.28 11269.36 20099.27 7177.71 21192.25 13993.77 210
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
JIA-IIPM79.00 27177.20 26984.40 28789.74 26464.06 33675.30 35995.44 15962.15 34381.90 18859.08 36378.92 7595.59 25766.51 29585.78 19293.54 212
Anonymous2024052983.15 22080.60 23990.80 15395.74 11178.27 20396.81 13594.92 18260.10 35481.89 18992.54 19045.82 32298.82 10479.25 19878.32 24895.31 185
tttt051788.57 13188.19 12189.71 18793.00 18875.99 25695.67 19796.67 6480.78 21181.82 19094.40 16188.97 1497.58 15376.05 23186.31 18395.57 178
BH-RMVSNet86.84 16185.28 16891.49 13395.35 12180.26 15196.95 12592.21 28982.86 18381.77 19195.46 13359.34 25997.64 14969.79 27893.81 12096.57 155
iter_conf0590.14 9889.79 9891.17 14295.85 10986.93 2697.68 6688.67 33489.93 3881.73 19292.80 18690.37 896.03 22590.44 9380.65 22590.56 231
HQP_MVS87.50 15487.09 14888.74 20091.86 22877.96 21597.18 10194.69 19589.89 3981.33 19394.15 16864.77 22797.30 17487.08 12982.82 21490.96 226
plane_prior377.75 22490.17 3681.33 193
VPA-MVSNet85.32 18683.83 19289.77 18690.25 25382.63 9896.36 16397.07 2783.03 17881.21 19589.02 23861.58 24696.31 21885.02 14470.95 28090.36 234
GeoE86.36 16885.20 16989.83 18393.17 18276.13 25097.53 7692.11 29079.58 24080.99 19694.01 17166.60 21596.17 22373.48 25489.30 15797.20 134
GA-MVS85.79 17984.04 19191.02 14789.47 26980.27 15096.90 12994.84 18885.57 11380.88 19789.08 23656.56 28396.47 21377.72 21085.35 19696.34 161
1112_ss88.60 13087.47 13992.00 11693.21 18080.97 13296.47 15492.46 28583.64 16680.86 19897.30 8180.24 6297.62 15077.60 21285.49 19497.40 125
dp84.30 20382.31 21590.28 16894.24 15477.97 21486.57 32895.53 15179.94 23480.75 19985.16 30071.49 18696.39 21563.73 30783.36 20796.48 157
Test_1112_low_res88.03 14486.73 15391.94 11893.15 18380.88 13496.44 15792.41 28783.59 16880.74 20091.16 20980.18 6397.59 15277.48 21585.40 19597.36 127
cascas86.50 16684.48 18392.55 9592.64 20085.95 3597.04 11795.07 17775.32 28780.50 20191.02 21154.33 29797.98 13686.79 13487.62 17393.71 211
TAPA-MVS81.61 1285.02 19183.67 19489.06 19296.79 9273.27 28295.92 18694.79 19274.81 29280.47 20296.83 10071.07 18998.19 13249.82 35392.57 13395.71 175
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OPM-MVS85.84 17785.10 17488.06 21588.34 28077.83 22295.72 19594.20 22487.89 7180.45 20394.05 17058.57 26497.26 17883.88 15382.76 21689.09 264
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
nrg03086.79 16385.43 16590.87 15288.76 27485.34 4797.06 11694.33 21984.31 14580.45 20391.98 19572.36 17496.36 21688.48 11771.13 27890.93 228
EI-MVSNet85.80 17885.20 16987.59 22691.55 23277.41 23095.13 22195.36 16480.43 22280.33 20594.71 15573.72 16195.97 23076.96 22178.64 24189.39 252
MVSTER89.25 11488.92 11190.24 16995.98 10684.66 6696.79 13695.36 16487.19 8980.33 20590.61 21990.02 1295.97 23085.38 14178.64 24190.09 243
ADS-MVSNet279.57 26577.53 26785.71 26293.78 16472.13 29079.48 34786.11 34673.09 30680.14 20779.99 33462.15 24090.14 34659.49 32283.52 20494.85 190
ADS-MVSNet81.26 24978.36 26189.96 17893.78 16479.78 16079.48 34793.60 25773.09 30680.14 20779.99 33462.15 24095.24 27259.49 32283.52 20494.85 190
test_fmvs279.59 26479.90 25178.67 32482.86 33755.82 35795.20 21789.55 32181.09 20680.12 20989.80 23034.31 35193.51 31387.82 12278.36 24786.69 312
baseline290.39 9390.21 8790.93 14890.86 24480.99 13195.20 21797.41 1586.03 10680.07 21094.61 15790.58 697.47 16587.29 12889.86 15494.35 199
Effi-MVS+-dtu84.61 19784.90 17883.72 29591.96 22563.14 34094.95 22893.34 26985.57 11379.79 21187.12 26761.99 24395.61 25683.55 16285.83 19192.41 220
VPNet84.69 19682.92 20690.01 17489.01 27383.45 8796.71 14295.46 15785.71 11179.65 21292.18 19356.66 28296.01 22983.05 17067.84 31190.56 231
CLD-MVS87.97 14687.48 13889.44 18892.16 21780.54 14498.14 3494.92 18291.41 1979.43 21395.40 13462.34 23897.27 17790.60 8982.90 21390.50 233
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
IB-MVS85.34 488.67 12787.14 14793.26 6893.12 18684.32 7198.76 1797.27 1887.19 8979.36 21490.45 22183.92 4298.53 11584.41 14769.79 29196.93 141
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PatchMatch-RL85.00 19283.66 19589.02 19495.86 10874.55 27192.49 28093.60 25779.30 24679.29 21591.47 20258.53 26598.45 12170.22 27692.17 14194.07 205
CNLPA86.96 15885.37 16791.72 12697.59 7279.34 17597.21 9791.05 30874.22 29578.90 21696.75 10667.21 21098.95 9774.68 24290.77 15096.88 145
MVS90.60 8988.64 11396.50 594.25 15390.53 893.33 26497.21 2077.59 26878.88 21797.31 7971.52 18599.69 3989.60 10398.03 5499.27 20
mvs_anonymous88.68 12687.62 13391.86 12094.80 13881.69 12193.53 26094.92 18282.03 19778.87 21890.43 22275.77 12595.34 26685.04 14393.16 12898.55 48
MVS_030478.43 27376.70 27483.60 29788.22 28269.81 31292.91 27595.10 17472.32 31378.71 21980.29 33333.78 35293.37 31668.77 28380.23 22787.63 297
mvsmamba85.17 18984.54 18087.05 24187.94 28575.11 26696.22 17187.79 33886.91 9378.55 22091.77 20164.93 22695.91 23686.94 13379.80 22890.12 240
tpm cat183.63 21281.38 22890.39 16493.53 17678.19 21085.56 33595.09 17570.78 32178.51 22183.28 31774.80 14697.03 18866.77 29184.05 20295.95 169
UniMVSNet (Re)85.31 18784.23 18788.55 20389.75 26280.55 14296.72 14096.89 3785.42 11678.40 22288.93 23975.38 13695.52 26078.58 20468.02 30889.57 251
FIs86.73 16586.10 15988.61 20290.05 25880.21 15296.14 17796.95 3385.56 11578.37 22392.30 19176.73 11095.28 27079.51 19479.27 23590.35 235
BH-w/o88.24 14087.47 13990.54 16195.03 13378.54 19497.41 8993.82 24384.08 15078.23 22494.51 16069.34 20197.21 17980.21 18994.58 11095.87 172
UniMVSNet_NR-MVSNet85.49 18484.59 17988.21 21389.44 27079.36 17396.71 14296.41 9785.22 12178.11 22590.98 21376.97 10695.14 27779.14 19968.30 30590.12 240
DU-MVS84.57 19883.33 20288.28 20988.76 27479.36 17396.43 15995.41 16385.42 11678.11 22590.82 21567.61 20495.14 27779.14 19968.30 30590.33 236
miper_enhance_ethall85.95 17685.20 16988.19 21494.85 13779.76 16196.00 18194.06 23382.98 18077.74 22788.76 24179.42 6895.46 26280.58 18372.42 27389.36 257
v114482.90 22681.27 23087.78 22186.29 30279.07 18496.14 17793.93 23680.05 23177.38 22886.80 27265.50 21995.93 23575.21 23870.13 28688.33 285
FC-MVSNet-test85.96 17585.39 16687.66 22389.38 27178.02 21295.65 19996.87 3885.12 12577.34 22991.94 19876.28 11894.74 28977.09 21878.82 23990.21 238
v2v48283.46 21481.86 22188.25 21186.19 30479.65 16796.34 16594.02 23481.56 20277.32 23088.23 25065.62 21896.03 22577.77 20869.72 29389.09 264
Baseline_NR-MVSNet81.22 25080.07 24784.68 27985.32 31975.12 26596.48 15388.80 33076.24 28377.28 23186.40 28267.61 20494.39 29875.73 23566.73 32184.54 332
V4283.04 22381.53 22687.57 22886.27 30379.09 18395.87 19094.11 23080.35 22477.22 23286.79 27365.32 22396.02 22877.74 20970.14 28587.61 299
v14419282.43 23280.73 23687.54 22985.81 31178.22 20595.98 18293.78 24879.09 25177.11 23386.49 27764.66 22995.91 23674.20 24869.42 29488.49 279
ACMM80.70 1383.72 21182.85 20886.31 25391.19 23772.12 29195.88 18994.29 22180.44 22077.02 23491.96 19655.24 29197.14 18679.30 19780.38 22689.67 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v119282.31 23680.55 24087.60 22585.94 30878.47 19895.85 19293.80 24679.33 24476.97 23586.51 27663.33 23495.87 23873.11 25570.13 28688.46 281
PCF-MVS84.09 586.77 16485.00 17592.08 11192.06 22283.07 9392.14 28494.47 21279.63 23976.90 23694.78 15471.15 18899.20 7972.87 25691.05 14893.98 206
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2285.11 19084.17 18887.92 21895.06 13278.82 18795.51 20394.22 22379.74 23776.77 23787.92 25575.96 12295.68 24979.93 19272.42 27389.27 258
v192192082.02 24080.23 24487.41 23285.62 31377.92 21895.79 19493.69 25378.86 25576.67 23886.44 27962.50 23795.83 24072.69 25769.77 29288.47 280
WR-MVS84.32 20282.96 20588.41 20589.38 27180.32 14796.59 14796.25 11183.97 15476.63 23990.36 22367.53 20694.86 28775.82 23470.09 28990.06 245
BH-untuned86.95 15985.94 16089.99 17594.52 14577.46 22996.78 13793.37 26881.80 19976.62 24093.81 17766.64 21497.02 18976.06 23093.88 11995.48 181
v124081.70 24379.83 25287.30 23685.50 31477.70 22695.48 20493.44 26278.46 26076.53 24186.44 27960.85 24995.84 23971.59 26470.17 28488.35 284
bld_raw_dy_0_6482.13 23880.76 23586.24 25585.78 31275.03 26794.40 24182.62 35883.12 17476.46 24290.96 21453.83 29994.55 29381.04 18078.60 24489.14 262
PS-MVSNAJss84.91 19384.30 18686.74 24485.89 31074.40 27394.95 22894.16 22783.93 15776.45 24390.11 22971.04 19095.77 24383.16 16879.02 23890.06 245
miper_ehance_all_eth84.57 19883.60 19887.50 23092.64 20078.25 20495.40 20993.47 26179.28 24776.41 24487.64 25876.53 11295.24 27278.58 20472.42 27389.01 269
LPG-MVS_test84.20 20483.49 20086.33 25090.88 24273.06 28395.28 21194.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
LGP-MVS_train86.33 25090.88 24273.06 28394.13 22882.20 19276.31 24593.20 18154.83 29596.95 19283.72 15880.83 22388.98 270
F-COLMAP84.50 20083.44 20187.67 22295.22 12472.22 28895.95 18493.78 24875.74 28476.30 24795.18 14159.50 25798.45 12172.67 25886.59 18192.35 221
tpmvs83.04 22380.77 23489.84 18295.43 11877.96 21585.59 33495.32 16875.31 28876.27 24883.70 31473.89 15897.41 16759.53 32181.93 22094.14 202
tt080581.20 25179.06 25887.61 22486.50 29872.97 28593.66 25595.48 15574.11 29676.23 24991.99 19441.36 33797.40 16877.44 21674.78 26292.45 219
3Dnovator82.32 1089.33 11187.64 13194.42 3193.73 16785.70 4197.73 6296.75 5486.73 9976.21 25095.93 11862.17 23999.68 4181.67 17797.81 5997.88 89
TranMVSNet+NR-MVSNet83.24 21981.71 22387.83 21987.71 28878.81 18996.13 17994.82 18984.52 13976.18 25190.78 21764.07 23094.60 29274.60 24566.59 32290.09 243
c3_l83.80 20982.65 21187.25 23792.10 21877.74 22595.25 21493.04 27978.58 25876.01 25287.21 26675.25 14195.11 27977.54 21468.89 29988.91 275
131488.94 11887.20 14494.17 3993.21 18085.73 4093.33 26496.64 7082.89 18175.98 25396.36 11166.83 21399.39 6483.52 16596.02 9797.39 126
Fast-Effi-MVS+-dtu83.33 21682.60 21285.50 26889.55 26769.38 31796.09 18091.38 30082.30 19175.96 25491.41 20356.71 28095.58 25875.13 23984.90 19991.54 222
XXY-MVS83.84 20882.00 21989.35 18987.13 29481.38 12595.72 19594.26 22280.15 22975.92 25590.63 21861.96 24496.52 21178.98 20173.28 27190.14 239
RRT_MVS83.88 20783.27 20385.71 26287.53 29272.12 29195.35 21094.33 21983.81 16175.86 25691.28 20760.55 25095.09 28283.93 15276.76 25389.90 248
GBi-Net82.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
test182.42 23380.43 24288.39 20692.66 19781.95 10894.30 24493.38 26579.06 25275.82 25785.66 28856.38 28593.84 30671.23 26775.38 25989.38 254
FMVSNet384.71 19582.71 21090.70 15794.55 14387.71 1995.92 18694.67 19881.73 20075.82 25788.08 25366.99 21194.47 29671.23 26775.38 25989.91 247
eth_miper_zixun_eth83.12 22182.01 21886.47 24991.85 23074.80 26894.33 24293.18 27479.11 25075.74 26087.25 26572.71 17095.32 26876.78 22267.13 31789.27 258
IterMVS-LS83.93 20682.80 20987.31 23591.46 23577.39 23195.66 19893.43 26380.44 22075.51 26187.26 26473.72 16195.16 27676.99 21970.72 28289.39 252
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator+82.88 889.63 10687.85 12694.99 1994.49 14986.76 2997.84 5395.74 14286.10 10475.47 26296.02 11765.00 22599.51 5882.91 17197.07 7998.72 39
test_djsdf83.00 22582.45 21484.64 28184.07 33169.78 31394.80 23394.48 21080.74 21275.41 26387.70 25761.32 24895.10 28083.77 15679.76 22989.04 267
v14882.41 23580.89 23286.99 24286.18 30576.81 24196.27 16893.82 24380.49 21975.28 26486.11 28767.32 20995.75 24575.48 23667.03 31988.42 283
QAPM86.88 16084.51 18193.98 4294.04 16085.89 3897.19 10096.05 12673.62 30075.12 26595.62 12862.02 24299.74 3270.88 27196.06 9696.30 165
UniMVSNet_ETH3D80.86 25578.75 26087.22 23886.31 30172.02 29391.95 28593.76 25173.51 30175.06 26690.16 22743.04 33195.66 25076.37 22878.55 24593.98 206
cl____83.27 21782.12 21686.74 24492.20 21375.95 25795.11 22393.27 27178.44 26174.82 26787.02 26974.19 15595.19 27474.67 24369.32 29589.09 264
DIV-MVS_self_test83.27 21782.12 21686.74 24492.19 21475.92 25995.11 22393.26 27278.44 26174.81 26887.08 26874.19 15595.19 27474.66 24469.30 29689.11 263
FMVSNet282.79 22780.44 24189.83 18392.66 19785.43 4695.42 20794.35 21779.06 25274.46 26987.28 26256.38 28594.31 29969.72 27974.68 26389.76 249
MIMVSNet79.18 27075.99 27988.72 20187.37 29380.66 13979.96 34691.82 29477.38 27174.33 27081.87 32341.78 33490.74 34166.36 29783.10 20994.76 192
RPSCF77.73 28076.63 27581.06 31488.66 27855.76 35887.77 31987.88 33764.82 33974.14 27192.79 18849.22 31096.81 20267.47 28876.88 25290.62 230
ACMP81.66 1184.00 20583.22 20486.33 25091.53 23472.95 28695.91 18893.79 24783.70 16573.79 27292.22 19254.31 29896.89 19683.98 15179.74 23189.16 261
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs581.34 24879.54 25386.73 24785.02 32176.91 23896.22 17191.65 29777.65 26773.55 27388.61 24355.70 28894.43 29774.12 24973.35 27088.86 276
jajsoiax82.12 23981.15 23185.03 27584.19 32970.70 30594.22 24893.95 23583.07 17673.48 27489.75 23149.66 30995.37 26582.24 17479.76 22989.02 268
mvs_tets81.74 24280.71 23784.84 27684.22 32870.29 30893.91 25293.78 24882.77 18473.37 27589.46 23447.36 31995.31 26981.99 17579.55 23488.92 274
pmmvs482.54 23180.79 23387.79 22086.11 30680.49 14693.55 25993.18 27477.29 27273.35 27689.40 23565.26 22495.05 28475.32 23773.61 26787.83 293
LS3D82.22 23779.94 25089.06 19297.43 7974.06 27693.20 27092.05 29161.90 34473.33 27795.21 13859.35 25899.21 7554.54 34192.48 13693.90 208
v1081.43 24779.53 25487.11 23986.38 29978.87 18694.31 24393.43 26377.88 26473.24 27885.26 29665.44 22095.75 24572.14 26167.71 31286.72 311
v881.88 24180.06 24887.32 23486.63 29779.04 18594.41 23893.65 25578.77 25673.19 27985.57 29266.87 21295.81 24173.84 25267.61 31387.11 307
test0.0.03 182.79 22782.48 21383.74 29486.81 29672.22 28896.52 15195.03 17883.76 16373.00 28093.20 18172.30 17688.88 34864.15 30577.52 25190.12 240
anonymousdsp80.98 25479.97 24984.01 28981.73 33970.44 30792.49 28093.58 25977.10 27672.98 28186.31 28357.58 27294.90 28579.32 19678.63 24386.69 312
XVG-ACMP-BASELINE79.38 26877.90 26583.81 29184.98 32267.14 32889.03 30893.18 27480.26 22872.87 28288.15 25238.55 34296.26 21976.05 23178.05 24988.02 290
WR-MVS_H81.02 25280.09 24583.79 29288.08 28471.26 30494.46 23696.54 8280.08 23072.81 28386.82 27170.36 19692.65 32064.18 30467.50 31487.46 304
OpenMVScopyleft79.58 1486.09 17383.62 19793.50 6190.95 24186.71 3097.44 8495.83 13875.35 28672.64 28495.72 12357.42 27699.64 4571.41 26595.85 10094.13 203
Anonymous2023121179.72 26377.19 27087.33 23395.59 11577.16 23795.18 22094.18 22659.31 35672.57 28586.20 28547.89 31695.66 25074.53 24669.24 29789.18 260
CP-MVSNet81.01 25380.08 24683.79 29287.91 28670.51 30694.29 24795.65 14680.83 21072.54 28688.84 24063.71 23192.32 32368.58 28568.36 30488.55 278
miper_lstm_enhance81.66 24580.66 23884.67 28091.19 23771.97 29591.94 28693.19 27377.86 26572.27 28785.26 29673.46 16493.42 31473.71 25367.05 31888.61 277
PS-CasMVS80.27 25979.18 25583.52 29987.56 29069.88 31194.08 25095.29 16980.27 22772.08 28888.51 24759.22 26192.23 32567.49 28768.15 30788.45 282
FMVSNet179.50 26676.54 27688.39 20688.47 27981.95 10894.30 24493.38 26573.14 30572.04 28985.66 28843.86 32593.84 30665.48 29972.53 27289.38 254
PEN-MVS79.47 26778.26 26383.08 30286.36 30068.58 32093.85 25394.77 19379.76 23671.37 29088.55 24459.79 25392.46 32164.50 30365.40 32488.19 287
Patchmtry77.36 28474.59 28985.67 26489.75 26275.75 26177.85 35491.12 30560.28 35271.23 29180.35 33175.45 13293.56 31257.94 32767.34 31687.68 296
IterMVS80.67 25679.16 25685.20 27289.79 26076.08 25192.97 27491.86 29380.28 22671.20 29285.14 30157.93 27191.34 33572.52 25970.74 28188.18 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS81.47 24678.28 26291.04 14598.14 5578.48 19595.09 22686.97 34061.14 35071.12 29392.78 18959.59 25599.38 6553.11 34586.61 18095.27 187
IterMVS-SCA-FT80.51 25879.10 25784.73 27889.63 26674.66 26992.98 27391.81 29580.05 23171.06 29485.18 29958.04 26891.40 33472.48 26070.70 28388.12 289
v7n79.32 26977.34 26885.28 27184.05 33272.89 28793.38 26293.87 24075.02 29170.68 29584.37 30859.58 25695.62 25567.60 28667.50 31487.32 306
MS-PatchMatch83.05 22281.82 22286.72 24889.64 26579.10 18294.88 23094.59 20679.70 23870.67 29689.65 23250.43 30696.82 20170.82 27495.99 9884.25 335
DTE-MVSNet78.37 27477.06 27182.32 30985.22 32067.17 32793.40 26193.66 25478.71 25770.53 29788.29 24959.06 26292.23 32561.38 31763.28 33387.56 301
pm-mvs180.05 26078.02 26486.15 25685.42 31575.81 26095.11 22392.69 28477.13 27470.36 29887.43 26058.44 26695.27 27171.36 26664.25 32987.36 305
D2MVS82.67 22981.55 22586.04 25887.77 28776.47 24495.21 21696.58 7882.66 18770.26 29985.46 29560.39 25195.80 24276.40 22779.18 23685.83 325
PVSNet_077.72 1581.70 24378.95 25989.94 17990.77 24776.72 24395.96 18396.95 3385.01 12770.24 30088.53 24652.32 30098.20 13186.68 13544.08 36494.89 189
CL-MVSNet_self_test75.81 29374.14 29580.83 31678.33 34967.79 32394.22 24893.52 26077.28 27369.82 30181.54 32561.47 24789.22 34757.59 33053.51 34985.48 327
tfpnnormal78.14 27675.42 28286.31 25388.33 28179.24 17694.41 23896.22 11373.51 30169.81 30285.52 29455.43 28995.75 24547.65 35767.86 31083.95 338
EU-MVSNet76.92 28876.95 27276.83 33084.10 33054.73 36091.77 28992.71 28372.74 30969.57 30388.69 24258.03 27087.43 35464.91 30270.00 29088.33 285
ITE_SJBPF82.38 30787.00 29565.59 33089.55 32179.99 23369.37 30491.30 20641.60 33695.33 26762.86 31274.63 26486.24 318
DSMNet-mixed73.13 30672.45 30175.19 33677.51 35246.82 36585.09 33682.01 35967.61 33469.27 30581.33 32650.89 30386.28 35654.54 34183.80 20392.46 218
MVP-Stereo82.65 23081.67 22485.59 26786.10 30778.29 20293.33 26492.82 28177.75 26669.17 30687.98 25459.28 26095.76 24471.77 26296.88 8382.73 343
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MSDG80.62 25777.77 26689.14 19193.43 17877.24 23391.89 28790.18 31769.86 32668.02 30791.94 19852.21 30198.84 10359.32 32483.12 20891.35 223
NR-MVSNet83.35 21581.52 22788.84 19788.76 27481.31 12794.45 23795.16 17384.65 13667.81 30890.82 21570.36 19694.87 28674.75 24166.89 32090.33 236
TransMVSNet (Re)76.94 28774.38 29184.62 28285.92 30975.25 26495.28 21189.18 32673.88 29967.22 30986.46 27859.64 25494.10 30259.24 32552.57 35384.50 333
Anonymous2023120675.29 29673.64 29780.22 31880.75 34063.38 33993.36 26390.71 31573.09 30667.12 31083.70 31450.33 30790.85 34053.63 34470.10 28886.44 315
ppachtmachnet_test77.19 28574.22 29386.13 25785.39 31678.22 20593.98 25191.36 30271.74 31767.11 31184.87 30556.67 28193.37 31652.21 34664.59 32686.80 310
KD-MVS_2432*160077.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
miper_refine_blended77.63 28174.92 28685.77 26090.86 24479.44 17088.08 31593.92 23776.26 28167.05 31282.78 31972.15 17891.92 32861.53 31441.62 36785.94 323
Patchmatch-test78.25 27574.72 28888.83 19891.20 23674.10 27573.91 36288.70 33359.89 35566.82 31485.12 30278.38 8394.54 29448.84 35579.58 23397.86 92
test_fmvs369.56 31669.19 31670.67 33969.01 36347.05 36490.87 29886.81 34271.31 32066.79 31577.15 34216.40 36783.17 36281.84 17662.51 33581.79 351
LTVRE_ROB73.68 1877.99 27775.74 28184.74 27790.45 25172.02 29386.41 33091.12 30572.57 31166.63 31687.27 26354.95 29496.98 19156.29 33675.98 25485.21 329
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-077.18 28676.06 27880.55 31783.78 33460.00 35090.35 30091.05 30877.01 27866.62 31787.92 25547.73 31794.03 30371.63 26368.44 30387.62 298
testgi74.88 29873.40 29879.32 32280.13 34461.75 34393.21 26986.64 34479.49 24266.56 31891.06 21035.51 34988.67 34956.79 33571.25 27787.56 301
LCM-MVSNet-Re83.75 21083.54 19984.39 28893.54 17164.14 33592.51 27984.03 35383.90 15866.14 31986.59 27567.36 20892.68 31984.89 14592.87 13096.35 160
pmmvs674.65 29971.67 30483.60 29779.13 34769.94 31093.31 26790.88 31261.05 35165.83 32084.15 31143.43 32794.83 28866.62 29260.63 33886.02 322
our_test_377.90 27975.37 28385.48 26985.39 31676.74 24293.63 25691.67 29673.39 30465.72 32184.65 30758.20 26793.13 31857.82 32867.87 30986.57 314
COLMAP_ROBcopyleft73.24 1975.74 29473.00 30083.94 29092.38 20369.08 31891.85 28886.93 34161.48 34765.32 32290.27 22442.27 33396.93 19550.91 35075.63 25885.80 326
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
FMVSNet576.46 29074.16 29483.35 30190.05 25876.17 24989.58 30489.85 31971.39 31965.29 32380.42 33050.61 30587.70 35361.05 31969.24 29786.18 319
ACMH+76.62 1677.47 28374.94 28585.05 27491.07 24071.58 30193.26 26890.01 31871.80 31664.76 32488.55 24441.62 33596.48 21262.35 31371.00 27987.09 308
Patchmatch-RL test76.65 28974.01 29684.55 28377.37 35364.23 33478.49 35382.84 35778.48 25964.63 32573.40 35276.05 12191.70 33376.99 21957.84 34297.72 102
SixPastTwentyTwo76.04 29174.32 29281.22 31384.54 32561.43 34691.16 29589.30 32577.89 26364.04 32686.31 28348.23 31194.29 30063.54 30963.84 33187.93 292
AllTest75.92 29273.06 29984.47 28492.18 21567.29 32491.07 29684.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
TestCases84.47 28492.18 21567.29 32484.43 35167.63 33063.48 32790.18 22538.20 34397.16 18257.04 33273.37 26888.97 272
ACMH75.40 1777.99 27774.96 28487.10 24090.67 24876.41 24693.19 27191.64 29872.47 31263.44 32987.61 25943.34 32897.16 18258.34 32673.94 26587.72 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ET-MVSNet_ETH3D90.01 10089.03 10692.95 8094.38 15086.77 2898.14 3496.31 10889.30 4563.33 33096.72 10790.09 1193.63 31190.70 8882.29 21998.46 51
USDC78.65 27276.25 27785.85 25987.58 28974.60 27089.58 30490.58 31684.05 15163.13 33188.23 25040.69 34196.86 20066.57 29475.81 25786.09 321
LF4IMVS72.36 31070.82 30776.95 32979.18 34656.33 35486.12 33186.11 34669.30 32863.06 33286.66 27433.03 35492.25 32465.33 30068.64 30182.28 347
KD-MVS_self_test70.97 31569.31 31575.95 33576.24 35955.39 35987.45 32090.94 31170.20 32462.96 33377.48 34144.01 32488.09 35061.25 31853.26 35084.37 334
Anonymous2024052172.06 31269.91 31278.50 32677.11 35461.67 34591.62 29390.97 31065.52 33762.37 33479.05 33736.32 34590.96 33957.75 32968.52 30282.87 340
test_040272.68 30869.54 31482.09 31088.67 27771.81 29892.72 27886.77 34361.52 34662.21 33583.91 31243.22 32993.76 30934.60 36572.23 27680.72 353
OpenMVS_ROBcopyleft68.52 2073.02 30769.57 31383.37 30080.54 34371.82 29793.60 25888.22 33562.37 34261.98 33683.15 31835.31 35095.47 26145.08 36075.88 25682.82 341
MVS-HIRNet71.36 31467.00 31984.46 28690.58 24969.74 31479.15 35087.74 33946.09 36261.96 33750.50 36645.14 32395.64 25353.74 34388.11 17188.00 291
test20.0372.36 31071.15 30675.98 33477.79 35059.16 35292.40 28289.35 32474.09 29761.50 33884.32 30948.09 31285.54 35950.63 35162.15 33683.24 339
mvsany_test367.19 32265.34 32472.72 33863.08 36848.57 36383.12 34278.09 36572.07 31461.21 33977.11 34322.94 36287.78 35278.59 20351.88 35481.80 350
PM-MVS69.32 31866.93 32076.49 33173.60 36155.84 35685.91 33279.32 36474.72 29361.09 34078.18 33921.76 36391.10 33870.86 27256.90 34482.51 344
TDRefinement69.20 31965.78 32379.48 32166.04 36762.21 34288.21 31486.12 34562.92 34161.03 34185.61 29133.23 35394.16 30155.82 33953.02 35182.08 348
ambc76.02 33368.11 36451.43 36164.97 36789.59 32060.49 34274.49 34917.17 36692.46 32161.50 31652.85 35284.17 336
pmmvs-eth3d73.59 30270.66 30882.38 30776.40 35773.38 27889.39 30789.43 32372.69 31060.34 34377.79 34046.43 32191.26 33766.42 29657.06 34382.51 344
test_vis1_rt73.96 30072.40 30278.64 32583.91 33361.16 34795.63 20068.18 37176.32 28060.09 34474.77 34729.01 36097.54 15887.74 12375.94 25577.22 357
K. test v373.62 30171.59 30579.69 32082.98 33659.85 35190.85 29988.83 32977.13 27458.90 34582.11 32143.62 32691.72 33265.83 29854.10 34887.50 303
EG-PatchMatch MVS74.92 29772.02 30383.62 29683.76 33573.28 28193.62 25792.04 29268.57 32958.88 34683.80 31331.87 35695.57 25956.97 33478.67 24082.00 349
lessismore_v079.98 31980.59 34258.34 35380.87 36058.49 34783.46 31643.10 33093.89 30563.11 31148.68 35787.72 294
N_pmnet61.30 32660.20 32964.60 34584.32 32717.00 38391.67 29210.98 38261.77 34558.45 34878.55 33849.89 30891.83 33142.27 36263.94 33084.97 330
TinyColmap72.41 30968.99 31782.68 30588.11 28369.59 31588.41 31385.20 34865.55 33657.91 34984.82 30630.80 35895.94 23451.38 34768.70 30082.49 346
UnsupCasMVSNet_eth73.25 30570.57 30981.30 31277.53 35166.33 32987.24 32393.89 23980.38 22357.90 35081.59 32442.91 33290.56 34265.18 30148.51 35887.01 309
MIMVSNet169.44 31766.65 32177.84 32776.48 35662.84 34187.42 32188.97 32866.96 33557.75 35179.72 33632.77 35585.83 35846.32 35863.42 33284.85 331
pmmvs365.75 32462.18 32776.45 33267.12 36664.54 33288.68 31185.05 34954.77 36157.54 35273.79 35029.40 35986.21 35755.49 34047.77 36078.62 355
test_f64.01 32562.13 32869.65 34063.00 36945.30 37083.66 34180.68 36161.30 34855.70 35372.62 35414.23 36984.64 36069.84 27758.11 34179.00 354
new-patchmatchnet68.85 32065.93 32277.61 32873.57 36263.94 33790.11 30288.73 33271.62 31855.08 35473.60 35140.84 33987.22 35551.35 34948.49 35981.67 352
UnsupCasMVSNet_bld68.60 32164.50 32580.92 31574.63 36067.80 32283.97 33992.94 28065.12 33854.63 35568.23 35935.97 34792.17 32760.13 32044.83 36282.78 342
CMPMVSbinary54.94 2175.71 29574.56 29079.17 32379.69 34555.98 35589.59 30393.30 27060.28 35253.85 35689.07 23747.68 31896.33 21776.55 22481.02 22185.22 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet66.18 32363.18 32675.18 33776.27 35861.74 34483.79 34084.66 35056.64 35951.57 35771.85 35831.29 35787.93 35149.98 35262.55 33475.86 358
test_method56.77 32754.53 33063.49 34776.49 35540.70 37375.68 35874.24 36719.47 37348.73 35871.89 35719.31 36465.80 37357.46 33147.51 36183.97 337
YYNet173.53 30470.43 31082.85 30484.52 32671.73 29991.69 29191.37 30167.63 33046.79 35981.21 32755.04 29390.43 34355.93 33759.70 34086.38 316
MDA-MVSNet_test_wron73.54 30370.43 31082.86 30384.55 32471.85 29691.74 29091.32 30467.63 33046.73 36081.09 32855.11 29290.42 34455.91 33859.76 33986.31 317
MDA-MVSNet-bldmvs71.45 31367.94 31881.98 31185.33 31868.50 32192.35 28388.76 33170.40 32242.99 36181.96 32246.57 32091.31 33648.75 35654.39 34786.11 320
APD_test156.56 32853.58 33165.50 34267.93 36546.51 36777.24 35772.95 36838.09 36442.75 36275.17 34613.38 37082.78 36340.19 36354.53 34667.23 363
DeepMVS_CXcopyleft64.06 34678.53 34843.26 37168.11 37369.94 32538.55 36376.14 34518.53 36579.34 36443.72 36141.62 36769.57 361
LCM-MVSNet52.52 33148.24 33465.35 34347.63 37841.45 37272.55 36383.62 35531.75 36637.66 36457.92 3649.19 37676.76 36649.26 35444.60 36377.84 356
test_vis3_rt54.10 33051.04 33363.27 34858.16 37046.08 36984.17 33849.32 38156.48 36036.56 36549.48 3688.03 37791.91 33067.29 28949.87 35551.82 367
FPMVS55.09 32952.93 33261.57 34955.98 37140.51 37483.11 34383.41 35637.61 36534.95 36671.95 35614.40 36876.95 36529.81 36665.16 32567.25 362
PMMVS250.90 33346.31 33664.67 34455.53 37246.67 36677.30 35671.02 37040.89 36334.16 36759.32 3629.83 37576.14 36840.09 36428.63 37071.21 359
testf145.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
APD_test245.70 33542.41 33755.58 35153.29 37540.02 37568.96 36562.67 37527.45 36829.85 36861.58 3605.98 37873.83 37028.49 36943.46 36552.90 365
tmp_tt41.54 33841.93 34040.38 35620.10 38226.84 37961.93 36859.09 37714.81 37528.51 37080.58 32935.53 34848.33 37763.70 30813.11 37445.96 370
Gipumacopyleft45.11 33742.05 33954.30 35380.69 34151.30 36235.80 37183.81 35428.13 36727.94 37134.53 37111.41 37476.70 36721.45 37154.65 34534.90 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ANet_high46.22 33441.28 34161.04 35039.91 38046.25 36870.59 36476.18 36658.87 35723.09 37248.00 36912.58 37266.54 37228.65 36813.62 37370.35 360
MVEpermissive35.65 2233.85 34029.49 34546.92 35541.86 37936.28 37750.45 37056.52 37818.75 37418.28 37337.84 3702.41 38158.41 37418.71 37220.62 37146.06 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft34.80 2339.19 33935.53 34250.18 35429.72 38130.30 37859.60 36966.20 37426.06 37017.91 37449.53 3673.12 38074.09 36918.19 37349.40 35646.14 368
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN32.70 34132.39 34333.65 35753.35 37425.70 38074.07 36153.33 37921.08 37117.17 37533.63 37311.85 37354.84 37512.98 37414.04 37220.42 372
EMVS31.70 34231.45 34432.48 35850.72 37723.95 38174.78 36052.30 38020.36 37216.08 37631.48 37412.80 37153.60 37611.39 37513.10 37519.88 373
wuyk23d14.10 34413.89 34714.72 35955.23 37322.91 38233.83 3723.56 3834.94 3764.11 3772.28 3792.06 38219.66 37810.23 3768.74 3761.59 376
testmvs9.92 34512.94 3480.84 3610.65 3830.29 38593.78 2540.39 3840.42 3772.85 37815.84 3770.17 3840.30 3802.18 3770.21 3771.91 375
test1239.07 34611.73 3491.11 3600.50 3840.77 38489.44 3060.20 3850.34 3782.15 37910.72 3780.34 3830.32 3791.79 3780.08 3782.23 374
EGC-MVSNET52.46 33247.56 33567.15 34181.98 33860.11 34982.54 34472.44 3690.11 3790.70 38074.59 34825.11 36183.26 36129.04 36761.51 33758.09 364
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k21.43 34328.57 3460.00 3620.00 3850.00 3860.00 37395.93 1330.00 3800.00 38197.66 6063.57 2320.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.92 3487.89 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38071.04 1900.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.11 34710.81 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.30 810.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
No_MVS97.14 399.05 992.19 496.83 4199.81 2198.08 798.81 2499.43 11
eth-test20.00 385
eth-test0.00 385
OPU-MVS97.30 299.19 792.31 399.12 698.54 1892.06 399.84 1299.11 199.37 199.74 1
save fliter98.24 5183.34 8998.61 2396.57 7991.32 20
test_0728_SECOND95.14 1699.04 1486.14 3399.06 1096.77 5099.84 1297.90 998.85 2199.45 10
GSMVS97.54 114
sam_mvs177.59 9597.54 114
sam_mvs75.35 139
MTGPAbinary96.33 106
test_post185.88 33330.24 37573.77 15995.07 28373.89 250
test_post33.80 37276.17 11995.97 230
patchmatchnet-post77.09 34477.78 9495.39 263
MTMP97.53 7668.16 372
gm-plane-assit92.27 20979.64 16884.47 14295.15 14397.93 13785.81 137
test9_res96.00 2699.03 1398.31 60
agg_prior294.30 4499.00 1598.57 45
test_prior482.34 10597.75 61
test_prior93.09 7598.68 2681.91 11196.40 9999.06 9098.29 62
新几何296.42 160
旧先验197.39 8279.58 16996.54 8298.08 4084.00 4097.42 7197.62 111
无先验96.87 13096.78 4477.39 27099.52 5679.95 19198.43 53
原ACMM296.84 131
testdata299.48 6076.45 226
segment_acmp82.69 51
testdata195.57 20287.44 80
plane_prior791.86 22877.55 228
plane_prior691.98 22477.92 21864.77 227
plane_prior594.69 19597.30 17487.08 12982.82 21490.96 226
plane_prior494.15 168
plane_prior297.18 10189.89 39
plane_prior191.95 226
plane_prior77.96 21597.52 7990.36 3482.96 212
n20.00 386
nn0.00 386
door-mid79.75 363
test1196.50 87
door80.13 362
HQP5-MVS78.48 195
BP-MVS87.67 125
HQP3-MVS94.80 19083.01 210
HQP2-MVS65.40 221
NP-MVS92.04 22378.22 20594.56 158
ACMMP++_ref78.45 246
ACMMP++79.05 237
Test By Simon71.65 183