This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1385.07 5099.27 199.54 1
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
DTE-MVSNet89.98 4391.91 1384.21 14896.51 757.84 29488.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 979.05 10998.57 1498.80 6
PS-CasMVS90.06 3991.92 1184.47 14096.56 658.83 28989.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3679.42 10798.74 599.00 2
LCM-MVSNet-Re83.48 15185.06 11978.75 24485.94 24855.75 31080.05 23794.27 1976.47 12596.09 594.54 6283.31 8289.75 22859.95 28894.89 16390.75 206
PEN-MVS90.03 4191.88 1484.48 13996.57 558.88 28688.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3478.69 11298.72 898.97 3
CP-MVSNet89.27 5890.91 4084.37 14196.34 858.61 29188.66 9192.06 10490.78 695.67 795.17 4381.80 10595.54 3979.00 11098.69 998.95 4
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13091.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
WR-MVS_H89.91 4691.31 2985.71 11996.32 962.39 24389.54 7493.31 6490.21 1095.57 995.66 2981.42 10995.90 1480.94 8798.80 298.84 5
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7395.32 1097.24 572.94 19494.85 6585.07 5097.78 5397.26 16
anonymousdsp89.73 4988.88 6692.27 789.82 16786.67 1490.51 5090.20 16169.87 21395.06 1196.14 2184.28 7293.07 13487.68 1296.34 10597.09 21
wuyk23d75.13 25479.30 20662.63 34275.56 34475.18 11880.89 22973.10 32975.06 14794.76 1295.32 3587.73 4052.85 37134.16 37197.11 8059.85 368
ACMH76.49 1489.34 5591.14 3183.96 15392.50 9270.36 16489.55 7293.84 4681.89 6594.70 1395.44 3490.69 888.31 25283.33 6598.30 2493.20 132
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo87.20 8587.45 8386.45 10192.52 9169.19 17787.84 10288.05 19981.66 6794.64 1496.53 1465.94 23394.75 6783.02 6996.83 8895.41 51
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14570.00 21294.55 1596.67 1187.94 3793.59 11384.27 5995.97 12195.52 49
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 15869.27 21694.39 1696.38 1586.02 6093.52 11783.96 6195.92 12695.34 53
test_040288.65 6589.58 5685.88 11692.55 9072.22 14684.01 15789.44 17888.63 1694.38 1795.77 2686.38 5693.59 11379.84 9995.21 15091.82 183
UniMVSNet_ETH3D89.12 6190.72 4384.31 14697.00 264.33 22189.67 6988.38 19188.84 1394.29 1897.57 390.48 1391.26 18172.57 18997.65 6097.34 15
v7n90.13 3690.96 3887.65 8791.95 11071.06 15889.99 5993.05 7786.53 2694.29 1896.27 1782.69 8694.08 9386.25 3797.63 6197.82 8
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16471.54 19394.28 2096.54 1381.57 10794.27 8286.26 3596.49 9997.09 21
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 8987.94 10091.97 10770.73 20294.19 2196.67 1176.94 15194.57 7483.07 6796.28 10796.15 33
SED-MVS90.46 3391.64 1786.93 9294.18 4672.65 13290.47 5193.69 5083.77 4594.11 2294.27 7490.28 1495.84 2286.03 4197.92 4692.29 167
test_241102_ONE94.18 4672.65 13293.69 5083.62 4794.11 2293.78 10390.28 1495.50 44
DPE-MVScopyleft90.53 3291.08 3388.88 6693.38 6978.65 8389.15 8294.05 3684.68 3993.90 2494.11 8688.13 3496.30 384.51 5897.81 5291.70 187
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
APDe-MVS91.22 2191.92 1189.14 6492.97 8078.04 8692.84 1594.14 3183.33 5193.90 2495.73 2788.77 2596.41 187.60 1597.98 4292.98 140
ACMH+77.89 1190.73 2791.50 2188.44 7593.00 7976.26 11189.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12178.35 11598.76 395.61 48
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 9693.83 2793.60 10890.81 792.96 13685.02 5298.45 1892.41 160
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6788.83 2495.51 4287.16 2697.60 6492.73 146
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6790.64 1087.16 2697.60 6492.73 146
DVP-MVScopyleft90.06 3991.32 2886.29 10494.16 4972.56 13890.54 4891.01 13583.61 4893.75 3094.65 5789.76 1895.78 2786.42 3197.97 4390.55 215
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3293.75 3094.65 5787.44 4395.78 2787.41 1998.21 2992.98 140
test072694.16 4972.56 13890.63 4593.90 4283.61 4893.75 3094.49 6489.76 18
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6093.67 3394.82 5291.18 495.52 4085.36 4798.73 695.23 59
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 11592.36 2689.06 18377.34 11893.63 3595.83 2565.40 23695.90 1485.01 5398.23 2797.49 13
DVP-MVS++90.07 3891.09 3287.00 9191.55 12772.64 13496.19 294.10 3485.33 3293.49 3694.64 6081.12 11295.88 1687.41 1995.94 12492.48 157
test_241102_TWO93.71 4983.77 4593.49 3694.27 7489.27 2195.84 2286.03 4197.82 5192.04 176
test_one_060193.85 5873.27 12894.11 3386.57 2593.47 3894.64 6088.42 26
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 8990.15 1695.67 3286.82 2997.34 7492.19 173
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7290.09 1795.08 5986.67 3097.60 6494.18 92
testf189.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
APD_test289.30 5689.12 6089.84 4888.67 18685.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23374.12 16596.10 11694.45 82
Anonymous2023121188.40 6789.62 5584.73 13590.46 15565.27 21188.86 8693.02 8187.15 2393.05 4397.10 682.28 9592.02 16276.70 13997.99 4096.88 25
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9794.51 1775.79 13792.94 4494.96 4788.36 2895.01 6190.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SD-MVS88.96 6389.88 4986.22 10791.63 12177.07 10189.82 6493.77 4778.90 10092.88 4592.29 14186.11 5890.22 21286.24 3897.24 7791.36 195
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 9992.87 4693.74 10490.60 1195.21 5682.87 7098.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9086.07 4098.48 1797.22 19
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14492.84 4895.28 3885.58 6296.09 687.92 997.76 5593.88 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_part293.86 5777.77 9192.84 48
v1086.54 9387.10 8884.84 13188.16 20063.28 23186.64 12292.20 10175.42 14392.81 5094.50 6374.05 17994.06 9483.88 6296.28 10797.17 20
dcpmvs_284.23 13485.14 11881.50 20488.61 18961.98 25082.90 19093.11 7368.66 22592.77 5192.39 13678.50 13287.63 25876.99 13892.30 21894.90 65
v886.22 9886.83 9584.36 14387.82 20462.35 24586.42 12591.33 12676.78 12492.73 5294.48 6573.41 18893.72 10583.10 6695.41 14297.01 23
nrg03087.85 8088.49 7085.91 11490.07 16369.73 16887.86 10194.20 2574.04 15592.70 5394.66 5685.88 6191.50 17379.72 10297.32 7596.50 31
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 5792.60 5493.97 9188.19 3196.29 487.61 1498.20 3194.39 86
Skip Steuart: Steuart Systems R&D Blog.
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 11992.78 8978.78 10292.51 5593.64 10788.13 3493.84 10284.83 5597.55 6794.10 97
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3492.51 5595.13 4490.65 995.34 5088.06 898.15 3495.95 41
K. test v385.14 11284.73 12486.37 10291.13 14169.63 17085.45 13576.68 30384.06 4392.44 5796.99 862.03 25494.65 7080.58 9393.24 20194.83 72
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 5992.39 5894.14 8489.15 2395.62 3387.35 2198.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SF-MVS90.27 3590.80 4288.68 7392.86 8477.09 10091.19 4095.74 581.38 7092.28 5993.80 10186.89 4994.64 7185.52 4697.51 7194.30 89
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 10891.09 4291.87 11172.61 18092.16 6095.23 4166.01 23295.59 3586.02 4397.78 5397.24 17
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6379.95 9898.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 8892.09 6293.89 9983.80 7693.10 13382.67 7298.04 3693.64 118
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 12794.02 5464.13 22284.38 15191.29 12784.88 3892.06 6393.84 10086.45 5493.73 10473.22 18098.66 1097.69 9
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11584.07 4292.00 6494.40 7186.63 5195.28 5388.59 598.31 2392.30 166
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11591.97 6594.89 4988.38 2795.45 4689.27 397.87 5093.27 129
FC-MVSNet-test85.93 10387.05 9082.58 18792.25 10056.44 30585.75 13193.09 7577.33 11991.94 6694.65 5774.78 17193.41 12375.11 15798.58 1397.88 7
lessismore_v085.95 11391.10 14270.99 15970.91 34291.79 6794.42 6961.76 25592.93 13879.52 10693.03 20693.93 103
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5691.77 6893.94 9790.55 1295.73 3088.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8191.74 6994.41 7088.17 3295.98 1086.37 3397.99 4093.96 102
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5391.54 7094.25 7887.67 4195.51 4287.21 2598.11 3593.12 136
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6291.47 7193.96 9488.35 2995.56 3787.74 1097.74 5792.85 143
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6291.40 7294.17 8387.51 4295.87 1887.74 1097.76 5593.99 99
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7591.38 7393.80 10187.20 4695.80 2487.10 2897.69 5993.93 103
ANet_high83.17 15785.68 11275.65 28781.24 29645.26 36379.94 23992.91 8483.83 4491.33 7496.88 1080.25 12185.92 28268.89 22095.89 12795.76 43
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8491.29 7593.97 9187.93 3895.87 1888.65 497.96 4594.12 96
bld_raw_dy_0_6484.85 11884.44 13386.07 11293.73 6074.93 11988.57 9281.90 27370.44 20491.28 7695.18 4256.62 28989.28 23885.15 4997.09 8193.99 99
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 14387.09 22365.22 21284.16 15394.23 2277.89 11291.28 7693.66 10684.35 7192.71 14280.07 9594.87 16695.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 7791.13 7893.19 11286.22 5795.97 1182.23 7797.18 7990.45 217
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
9.1489.29 5891.84 11788.80 8895.32 1175.14 14691.07 7992.89 12287.27 4493.78 10383.69 6497.55 67
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5291.06 8094.00 9088.26 3095.71 3187.28 2498.39 2092.55 155
FIs85.35 10986.27 10182.60 18691.86 11457.31 29885.10 13993.05 7775.83 13691.02 8193.97 9173.57 18492.91 14073.97 16898.02 3997.58 12
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11092.86 8467.02 19482.55 19991.56 11883.08 5490.92 8291.82 15378.25 13593.99 9574.16 16398.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 10893.24 7467.02 19483.16 18392.21 10081.73 6690.92 8291.97 14777.20 14593.99 9574.16 16398.35 2197.61 10
tt080588.09 7489.79 5182.98 17693.26 7363.94 22591.10 4189.64 17385.07 3590.91 8491.09 17089.16 2291.87 16782.03 7895.87 12893.13 134
V4283.47 15283.37 15083.75 15883.16 28063.33 23081.31 22290.23 16069.51 21590.91 8490.81 18174.16 17792.29 15680.06 9690.22 25995.62 47
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6490.88 8694.21 7987.75 3995.87 1887.60 1597.71 5893.83 107
APD_test188.40 6787.91 7589.88 4789.50 17086.65 1689.98 6091.91 11084.26 4090.87 8793.92 9882.18 9689.29 23773.75 17294.81 16793.70 114
WR-MVS83.56 14984.40 13681.06 21293.43 6854.88 31678.67 26185.02 24481.24 7190.74 8891.56 15972.85 19591.08 18768.00 23098.04 3697.23 18
v124084.30 13084.51 13283.65 16087.65 20961.26 25682.85 19191.54 11967.94 23490.68 8990.65 18771.71 20893.64 10782.84 7194.78 16896.07 36
ZD-MVS92.22 10280.48 6791.85 11271.22 19890.38 9092.98 11786.06 5996.11 581.99 8096.75 91
MIMVSNet183.63 14884.59 12980.74 21794.06 5362.77 23782.72 19384.53 25277.57 11790.34 9195.92 2476.88 15785.83 28461.88 27597.42 7293.62 119
LS3D90.60 3090.34 4791.38 2489.03 18084.23 4593.58 694.68 1690.65 790.33 9293.95 9684.50 6995.37 4980.87 8895.50 14194.53 79
KD-MVS_self_test81.93 17583.14 15478.30 25384.75 25952.75 32880.37 23489.42 17970.24 21090.26 9393.39 11074.55 17686.77 27068.61 22596.64 9395.38 52
PMVScopyleft80.48 690.08 3790.66 4488.34 7896.71 392.97 190.31 5489.57 17688.51 1790.11 9495.12 4590.98 688.92 24277.55 12997.07 8283.13 313
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PC_three_145258.96 29590.06 9591.33 16480.66 11793.03 13575.78 14995.94 12492.48 157
v192192084.23 13484.37 13783.79 15687.64 21061.71 25182.91 18991.20 13067.94 23490.06 9590.34 19272.04 20593.59 11382.32 7694.91 16196.07 36
ITE_SJBPF90.11 4590.72 15084.97 3790.30 15681.56 6890.02 9791.20 16882.40 9190.81 19773.58 17594.66 17294.56 76
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9894.03 8886.57 5295.80 2487.35 2197.62 6294.20 90
X-MVStestdata85.04 11482.70 16092.08 895.64 2386.25 1892.64 1893.33 6185.07 3589.99 9816.05 37586.57 5295.80 2487.35 2197.62 6294.20 90
v119284.57 12384.69 12884.21 14887.75 20662.88 23583.02 18691.43 12269.08 21989.98 10090.89 17872.70 19893.62 11182.41 7594.97 16096.13 34
Anonymous2024052986.20 9987.13 8783.42 16690.19 15964.55 21984.55 14690.71 14285.85 3189.94 10195.24 4082.13 9790.40 20869.19 21696.40 10495.31 55
pmmvs686.52 9488.06 7481.90 19692.22 10262.28 24684.66 14489.15 18183.54 5089.85 10297.32 488.08 3686.80 26970.43 20597.30 7696.62 28
v14419284.24 13384.41 13583.71 15987.59 21161.57 25282.95 18891.03 13467.82 23789.80 10390.49 19073.28 19193.51 11881.88 8294.89 16396.04 38
v114484.54 12584.72 12684.00 15187.67 20862.55 24182.97 18790.93 13870.32 20889.80 10390.99 17373.50 18593.48 11981.69 8394.65 17395.97 39
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9394.20 2573.53 16189.71 10594.82 5285.09 6395.77 2984.17 6098.03 3893.26 130
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7686.93 9391.22 2790.08 16189.30 489.68 6891.11 13279.26 9589.68 10694.81 5582.44 8987.74 25676.54 14288.74 27496.61 29
IU-MVS94.18 4672.64 13490.82 14056.98 30989.67 10785.78 4597.92 4693.28 128
FMVSNet184.55 12485.45 11581.85 19890.27 15861.05 25986.83 11688.27 19678.57 10689.66 10895.64 3075.43 16290.68 20169.09 21795.33 14593.82 108
IterMVS-LS84.73 12084.98 12183.96 15387.35 21463.66 22683.25 17989.88 16876.06 12989.62 10992.37 14073.40 19092.52 14778.16 12094.77 17095.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS88.60 6689.01 6387.36 8991.30 13477.50 9387.55 10492.97 8387.95 2089.62 10992.87 12384.56 6893.89 9977.65 12796.62 9490.70 209
UniMVSNet (Re)86.87 8786.98 9286.55 9993.11 7768.48 18283.80 16692.87 8580.37 7989.61 11191.81 15477.72 13994.18 8875.00 15898.53 1596.99 24
IS-MVSNet86.66 9286.82 9686.17 11092.05 10866.87 19791.21 3988.64 18886.30 2889.60 11292.59 13169.22 21694.91 6473.89 16997.89 4996.72 26
v2v48284.09 13784.24 13983.62 16187.13 21961.40 25382.71 19489.71 17172.19 18989.55 11391.41 16270.70 21293.20 12881.02 8693.76 19096.25 32
Baseline_NR-MVSNet84.00 14185.90 10778.29 25491.47 13253.44 32482.29 20787.00 21979.06 9889.55 11395.72 2877.20 14586.14 28072.30 19198.51 1695.28 56
CSCG86.26 9686.47 9885.60 12190.87 14774.26 12387.98 9991.85 11280.35 8089.54 11588.01 23179.09 12892.13 15875.51 15195.06 15790.41 218
ambc82.98 17690.55 15464.86 21588.20 9589.15 18189.40 11693.96 9471.67 20991.38 18078.83 11196.55 9692.71 149
DeepPCF-MVS81.24 587.28 8486.21 10390.49 3891.48 13184.90 3883.41 17592.38 9870.25 20989.35 11790.68 18582.85 8594.57 7479.55 10495.95 12392.00 178
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 10789.16 11892.25 14372.03 20696.36 288.21 790.93 24892.98 140
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 12893.60 5580.16 8389.13 11993.44 10983.82 7590.98 18983.86 6395.30 14993.60 120
MDA-MVSNet-bldmvs77.47 23076.90 23479.16 24079.03 32164.59 21666.58 34575.67 30973.15 17288.86 12088.99 21966.94 22681.23 31264.71 25488.22 28291.64 189
EG-PatchMatch MVS84.08 13884.11 14083.98 15292.22 10272.61 13782.20 21387.02 21672.63 17988.86 12091.02 17278.52 13191.11 18673.41 17791.09 24288.21 251
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12294.26 7777.55 14295.86 2184.88 5495.87 12895.24 58
EI-MVSNet-UG-set85.04 11484.44 13386.85 9483.87 27472.52 14083.82 16485.15 24080.27 8288.75 12385.45 27479.95 12491.90 16581.92 8190.80 25296.13 34
EI-MVSNet-Vis-set85.12 11384.53 13186.88 9384.01 27172.76 13183.91 16285.18 23980.44 7888.75 12385.49 27280.08 12291.92 16482.02 7990.85 25195.97 39
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10693.17 7076.02 13188.64 12591.22 16684.24 7393.37 12477.97 12597.03 8395.52 49
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12697.64 283.45 8094.55 7686.02 4398.60 1296.67 27
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 5888.52 12794.37 7386.74 5095.41 4886.32 3498.21 2993.19 133
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
canonicalmvs85.50 10686.14 10483.58 16287.97 20167.13 19287.55 10494.32 1873.44 16388.47 12887.54 24186.45 5491.06 18875.76 15093.76 19092.54 156
NR-MVSNet86.00 10186.22 10285.34 12593.24 7464.56 21882.21 21190.46 14880.99 7488.42 12991.97 14777.56 14193.85 10072.46 19098.65 1197.61 10
alignmvs83.94 14383.98 14383.80 15587.80 20567.88 18984.54 14891.42 12473.27 17088.41 13087.96 23272.33 20190.83 19676.02 14894.11 18492.69 150
TransMVSNet (Re)84.02 14085.74 11178.85 24291.00 14455.20 31582.29 20787.26 20779.65 8988.38 13195.52 3383.00 8386.88 26767.97 23196.60 9594.45 82
PM-MVS80.20 20279.00 20883.78 15788.17 19986.66 1581.31 22266.81 35669.64 21488.33 13290.19 19764.58 23883.63 30271.99 19390.03 26081.06 339
tttt051781.07 18379.58 20385.52 12288.99 18266.45 20187.03 11275.51 31173.76 15988.32 13390.20 19637.96 36494.16 9279.36 10895.13 15395.93 42
casdiffmvspermissive85.21 11085.85 10883.31 16986.17 24462.77 23783.03 18593.93 4074.69 15088.21 13492.68 13082.29 9491.89 16677.87 12693.75 19295.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_vis3_rt71.42 28870.67 29073.64 29769.66 36870.46 16266.97 34489.73 16942.68 36488.20 13583.04 30343.77 34960.07 36665.35 25086.66 29690.39 219
v14882.31 16682.48 16681.81 20185.59 25059.66 27681.47 22086.02 22872.85 17588.05 13690.65 18770.73 21190.91 19375.15 15691.79 23194.87 67
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
TestCases89.68 5391.59 12283.40 4895.44 979.47 9088.00 13793.03 11582.66 8791.47 17470.81 19796.14 11394.16 93
pm-mvs183.69 14684.95 12279.91 22990.04 16559.66 27682.43 20387.44 20475.52 14187.85 13995.26 3981.25 11185.65 28668.74 22396.04 11894.42 85
PCF-MVS74.62 1582.15 17080.92 18685.84 11789.43 17272.30 14480.53 23291.82 11457.36 30787.81 14089.92 20277.67 14093.63 10858.69 29395.08 15691.58 191
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FMVSNet281.31 18081.61 17680.41 22386.38 23358.75 29083.93 16186.58 22172.43 18187.65 14192.98 11763.78 24490.22 21266.86 23493.92 18892.27 169
GeoE85.45 10885.81 10984.37 14190.08 16167.07 19385.86 13091.39 12572.33 18687.59 14290.25 19584.85 6692.37 15278.00 12391.94 23093.66 115
VPA-MVSNet83.47 15284.73 12479.69 23390.29 15757.52 29781.30 22488.69 18776.29 12687.58 14394.44 6680.60 11887.20 26266.60 23996.82 8994.34 88
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 9979.74 8787.50 14492.38 13781.42 10993.28 12683.07 6797.24 7791.67 188
VDDNet84.35 12885.39 11681.25 20795.13 3159.32 27985.42 13681.11 27886.41 2787.41 14596.21 1973.61 18390.61 20466.33 24096.85 8693.81 111
c3_l81.64 17781.59 17781.79 20280.86 30259.15 28378.61 26290.18 16268.36 22687.20 14687.11 25169.39 21491.62 17178.16 12094.43 17894.60 75
VDD-MVS84.23 13484.58 13083.20 17291.17 14065.16 21483.25 17984.97 24779.79 8687.18 14794.27 7474.77 17290.89 19469.24 21396.54 9793.55 124
MSLP-MVS++85.00 11686.03 10581.90 19691.84 11771.56 15686.75 12093.02 8175.95 13487.12 14889.39 21077.98 13689.40 23677.46 13094.78 16884.75 290
baseline85.20 11185.93 10683.02 17586.30 23862.37 24484.55 14693.96 3974.48 15287.12 14892.03 14682.30 9391.94 16378.39 11394.21 18294.74 73
YYNet170.06 30070.44 29368.90 32373.76 35553.42 32558.99 36167.20 35258.42 29887.10 15085.39 27659.82 26767.32 35359.79 28983.50 32585.96 276
MDA-MVSNet_test_wron70.05 30170.44 29368.88 32473.84 35453.47 32358.93 36267.28 35158.43 29787.09 15185.40 27559.80 26867.25 35459.66 29083.54 32485.92 278
test_fmvs375.72 25075.20 25077.27 26975.01 35169.47 17178.93 25584.88 24846.67 34987.08 15287.84 23650.44 31571.62 33877.42 13388.53 27590.72 207
CNVR-MVS87.81 8187.68 7988.21 8092.87 8277.30 9985.25 13791.23 12977.31 12087.07 15391.47 16182.94 8494.71 6884.67 5696.27 10992.62 153
EPP-MVSNet85.47 10785.04 12086.77 9691.52 13069.37 17291.63 3687.98 20181.51 6987.05 15491.83 15266.18 23195.29 5170.75 20096.89 8595.64 46
TinyColmap81.25 18182.34 16877.99 25985.33 25360.68 26782.32 20688.33 19471.26 19786.97 15592.22 14577.10 14886.98 26662.37 26995.17 15286.31 274
eth_miper_zixun_eth80.84 18680.22 19682.71 18481.41 29460.98 26277.81 27190.14 16367.31 24086.95 15687.24 24864.26 24092.31 15475.23 15591.61 23494.85 71
Anonymous2024052180.18 20381.25 18076.95 27283.15 28160.84 26482.46 20285.99 22968.76 22386.78 15793.73 10559.13 27277.44 32373.71 17397.55 6792.56 154
Patchmatch-RL test74.48 26373.68 26276.89 27584.83 25766.54 19972.29 32469.16 34957.70 30386.76 15886.33 26045.79 33582.59 30569.63 21090.65 25781.54 330
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11593.91 4180.07 8586.75 15993.26 11193.64 290.93 19184.60 5790.75 25393.97 101
h-mvs3384.25 13282.76 15988.72 7091.82 11982.60 5684.00 15884.98 24671.27 19586.70 16090.55 18963.04 25093.92 9878.26 11894.20 18389.63 229
hse-mvs283.47 15281.81 17388.47 7491.03 14382.27 5782.61 19583.69 25771.27 19586.70 16086.05 26663.04 25092.41 15078.26 11893.62 19690.71 208
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 12878.20 10986.69 16292.28 14280.36 12095.06 6086.17 3996.49 9990.22 221
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10492.49 2491.19 13167.85 23686.63 16394.84 5179.58 12695.96 1287.62 1394.50 17594.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EI-MVSNet82.61 16282.42 16783.20 17283.25 27863.66 22683.50 17385.07 24176.06 12986.55 16485.10 28073.41 18890.25 20978.15 12290.67 25595.68 45
HQP_MVS87.75 8287.43 8488.70 7293.45 6676.42 10989.45 7793.61 5379.44 9286.55 16492.95 12074.84 16995.22 5480.78 9095.83 13094.46 80
plane_prior376.85 10377.79 11486.55 164
BH-untuned80.96 18580.99 18480.84 21688.55 19168.23 18380.33 23588.46 18972.79 17786.55 16486.76 25574.72 17391.77 17061.79 27688.99 26982.52 320
MVSTER77.09 23475.70 24581.25 20775.27 34861.08 25877.49 27885.07 24160.78 28786.55 16488.68 22343.14 35490.25 20973.69 17490.67 25592.42 159
旧先验281.73 21656.88 31086.54 16984.90 29272.81 187
IterMVS-SCA-FT80.64 19079.41 20484.34 14583.93 27269.66 16976.28 29481.09 27972.43 18186.47 17090.19 19760.46 26093.15 13177.45 13186.39 30090.22 221
DIV-MVS_self_test80.43 19380.23 19481.02 21379.99 31059.25 28077.07 28287.02 21667.38 23886.19 17189.22 21363.09 24890.16 21476.32 14395.80 13393.66 115
CDPH-MVS86.17 10085.54 11488.05 8392.25 10075.45 11683.85 16392.01 10565.91 24886.19 17191.75 15683.77 7794.98 6277.43 13296.71 9293.73 113
cl____80.42 19480.23 19481.02 21379.99 31059.25 28077.07 28287.02 21667.37 23986.18 17389.21 21463.08 24990.16 21476.31 14495.80 13393.65 117
MVS_111021_LR84.28 13183.76 14685.83 11889.23 17783.07 5180.99 22883.56 25972.71 17886.07 17489.07 21881.75 10686.19 27977.11 13693.36 19788.24 250
GBi-Net82.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24293.34 19893.82 108
test182.02 17282.07 16981.85 19886.38 23361.05 25986.83 11688.27 19672.43 18186.00 17595.64 3063.78 24490.68 20165.95 24293.34 19893.82 108
FMVSNet378.80 21678.55 21679.57 23582.89 28556.89 30381.76 21585.77 23169.04 22086.00 17590.44 19151.75 30990.09 22065.95 24293.34 19891.72 185
miper_ehance_all_eth80.34 19880.04 20181.24 20979.82 31258.95 28577.66 27389.66 17265.75 25285.99 17885.11 27968.29 22191.42 17876.03 14792.03 22693.33 126
tfpnnormal81.79 17682.95 15778.31 25288.93 18355.40 31180.83 23182.85 26576.81 12385.90 17994.14 8474.58 17586.51 27466.82 23795.68 13993.01 139
TAPA-MVS77.73 1285.71 10584.83 12388.37 7788.78 18579.72 7387.15 11093.50 5669.17 21785.80 18089.56 20780.76 11592.13 15873.21 18595.51 14093.25 131
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TSAR-MVS + GP.83.95 14282.69 16187.72 8589.27 17681.45 6383.72 16881.58 27774.73 14985.66 18186.06 26572.56 20092.69 14475.44 15395.21 15089.01 245
EU-MVSNet75.12 25574.43 25777.18 27083.11 28259.48 27885.71 13382.43 26839.76 36885.64 18288.76 22144.71 34787.88 25573.86 17085.88 30484.16 296
LF4IMVS82.75 16181.93 17285.19 12682.08 28780.15 7085.53 13488.76 18668.01 23185.58 18387.75 23771.80 20786.85 26874.02 16793.87 18988.58 248
Patchmtry76.56 24277.46 22573.83 29679.37 31846.60 36082.41 20476.90 30073.81 15885.56 18492.38 13748.07 32283.98 29963.36 26495.31 14890.92 202
MVS_111021_HR84.63 12184.34 13885.49 12490.18 16075.86 11479.23 25387.13 21173.35 16485.56 18489.34 21183.60 7990.50 20676.64 14094.05 18690.09 226
testdata79.54 23692.87 8272.34 14380.14 28659.91 29385.47 18691.75 15667.96 22385.24 28868.57 22792.18 22581.06 339
test111178.53 22078.85 21177.56 26592.22 10247.49 35682.61 19569.24 34872.43 18185.28 18794.20 8051.91 30790.07 22165.36 24996.45 10295.11 62
thisisatest053079.07 21077.33 22984.26 14787.13 21964.58 21783.66 17075.95 30668.86 22285.22 18887.36 24538.10 36293.57 11675.47 15294.28 18194.62 74
DROMVSNet88.01 7588.32 7287.09 9089.28 17572.03 14890.31 5496.31 380.88 7685.12 18989.67 20684.47 7095.46 4582.56 7396.26 11093.77 112
CLD-MVS83.18 15682.64 16284.79 13289.05 17967.82 19077.93 26992.52 9468.33 22785.07 19081.54 32182.06 9892.96 13669.35 21297.91 4893.57 121
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FA-MVS(test-final)83.13 15883.02 15683.43 16586.16 24666.08 20588.00 9888.36 19275.55 14085.02 19192.75 12865.12 23792.50 14874.94 15991.30 24091.72 185
DeepC-MVS_fast80.27 886.23 9785.65 11387.96 8491.30 13476.92 10287.19 10891.99 10670.56 20384.96 19290.69 18480.01 12395.14 5778.37 11495.78 13591.82 183
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator80.37 784.80 11984.71 12785.06 12986.36 23674.71 12088.77 8990.00 16675.65 13984.96 19293.17 11374.06 17891.19 18378.28 11791.09 24289.29 237
QAPM82.59 16382.59 16482.58 18786.44 23166.69 19889.94 6290.36 15267.97 23384.94 19492.58 13372.71 19792.18 15770.63 20387.73 28788.85 246
VPNet80.25 20081.68 17475.94 28592.46 9347.98 35476.70 28781.67 27573.45 16284.87 19592.82 12474.66 17486.51 27461.66 27896.85 8693.33 126
NCCC87.36 8386.87 9488.83 6792.32 9878.84 8286.58 12391.09 13378.77 10384.85 19690.89 17880.85 11495.29 5181.14 8595.32 14692.34 164
PHI-MVS86.38 9585.81 10988.08 8188.44 19477.34 9789.35 8093.05 7773.15 17284.76 19787.70 23878.87 13094.18 8880.67 9296.29 10692.73 146
pmmvs-eth3d78.42 22277.04 23282.57 18987.44 21374.41 12280.86 23079.67 28855.68 31384.69 19890.31 19460.91 25885.42 28762.20 27191.59 23587.88 258
test_prior283.37 17675.43 14284.58 19991.57 15881.92 10379.54 10596.97 84
TEST992.34 9679.70 7483.94 15990.32 15365.41 25884.49 20090.97 17482.03 9993.63 108
train_agg85.98 10285.28 11788.07 8292.34 9679.70 7483.94 15990.32 15365.79 24984.49 20090.97 17481.93 10193.63 10881.21 8496.54 9790.88 203
Gipumacopyleft84.44 12686.33 10078.78 24384.20 26973.57 12689.55 7290.44 14984.24 4184.38 20294.89 4976.35 16080.40 31676.14 14696.80 9082.36 322
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_f64.31 32565.85 31959.67 35066.54 37362.24 24857.76 36370.96 34140.13 36684.36 20382.09 31546.93 32451.67 37261.99 27481.89 33565.12 364
test_892.09 10678.87 8183.82 16490.31 15565.79 24984.36 20390.96 17681.93 10193.44 121
cl2278.97 21178.21 22181.24 20977.74 32659.01 28477.46 27987.13 21165.79 24984.32 20585.10 28058.96 27490.88 19575.36 15492.03 22693.84 106
CS-MVS88.14 7287.67 8089.54 5889.56 16979.18 7890.47 5194.77 1579.37 9484.32 20589.33 21283.87 7494.53 7782.45 7494.89 16394.90 65
agg_prior91.58 12577.69 9290.30 15684.32 20593.18 129
Anonymous20240521180.51 19281.19 18378.49 24988.48 19257.26 29976.63 28982.49 26781.21 7284.30 20892.24 14467.99 22286.24 27862.22 27095.13 15391.98 180
LFMVS80.15 20480.56 18878.89 24189.19 17855.93 30785.22 13873.78 32382.96 5584.28 20992.72 12957.38 28490.07 22163.80 26095.75 13690.68 210
Vis-MVSNetpermissive86.86 8886.58 9787.72 8592.09 10677.43 9687.35 10792.09 10378.87 10184.27 21094.05 8778.35 13493.65 10680.54 9491.58 23692.08 175
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ECVR-MVScopyleft78.44 22178.63 21577.88 26191.85 11548.95 35083.68 16969.91 34672.30 18784.26 21194.20 8051.89 30889.82 22563.58 26196.02 11994.87 67
iter_conf0578.81 21577.35 22883.21 17182.98 28460.75 26684.09 15588.34 19363.12 26784.25 21289.48 20831.41 37294.51 7976.64 14095.83 13094.38 87
FE-MVS79.98 20778.86 21083.36 16786.47 23066.45 20189.73 6584.74 25172.80 17684.22 21391.38 16344.95 34593.60 11263.93 25991.50 23790.04 227
ETV-MVS84.31 12983.91 14585.52 12288.58 19070.40 16384.50 15093.37 5878.76 10484.07 21478.72 34280.39 11995.13 5873.82 17192.98 20891.04 199
MCST-MVS84.36 12783.93 14485.63 12091.59 12271.58 15583.52 17292.13 10261.82 27683.96 21589.75 20579.93 12593.46 12078.33 11694.34 17991.87 182
新几何182.95 17893.96 5578.56 8480.24 28555.45 31483.93 21691.08 17171.19 21088.33 25165.84 24593.07 20581.95 326
BH-RMVSNet80.53 19180.22 19681.49 20587.19 21866.21 20477.79 27286.23 22574.21 15483.69 21788.50 22573.25 19290.75 19863.18 26687.90 28487.52 261
USDC76.63 24076.73 23676.34 28183.46 27657.20 30080.02 23888.04 20052.14 33183.65 21891.25 16563.24 24786.65 27354.66 31994.11 18485.17 285
miper_enhance_ethall77.83 22676.93 23380.51 22176.15 34058.01 29375.47 30488.82 18458.05 30183.59 21980.69 32564.41 23991.20 18273.16 18692.03 22692.33 165
Effi-MVS+-dtu85.82 10483.38 14993.14 387.13 21991.15 287.70 10388.42 19074.57 15183.56 22085.65 27078.49 13394.21 8672.04 19292.88 21094.05 98
CNLPA83.55 15083.10 15584.90 13089.34 17483.87 4684.54 14888.77 18579.09 9783.54 22188.66 22474.87 16881.73 31066.84 23692.29 22089.11 239
OpenMVS_ROBcopyleft70.19 1777.77 22977.46 22578.71 24584.39 26561.15 25781.18 22682.52 26662.45 27383.34 22287.37 24466.20 23088.66 24864.69 25585.02 31186.32 273
thres100view90075.45 25175.05 25176.66 27887.27 21551.88 33681.07 22773.26 32775.68 13883.25 22386.37 25945.54 33688.80 24351.98 33290.99 24489.31 235
miper_lstm_enhance76.45 24476.10 24177.51 26676.72 33560.97 26364.69 34985.04 24363.98 26483.20 22488.22 22856.67 28878.79 32173.22 18093.12 20492.78 145
IterMVS76.91 23676.34 23978.64 24680.91 30064.03 22376.30 29379.03 29164.88 26183.11 22589.16 21559.90 26684.46 29568.61 22585.15 31087.42 262
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
thres600view775.97 24775.35 24977.85 26387.01 22551.84 33780.45 23373.26 32775.20 14583.10 22686.31 26245.54 33689.05 23955.03 31792.24 22292.66 151
mvs_anonymous78.13 22478.76 21376.23 28479.24 31950.31 34778.69 26084.82 24961.60 28083.09 22792.82 12473.89 18187.01 26368.33 22986.41 29991.37 194
test_fmvs273.57 27072.80 27275.90 28672.74 36268.84 18177.07 28284.32 25445.14 35482.89 22884.22 29248.37 32070.36 34173.40 17887.03 29388.52 249
MVS_Test82.47 16583.22 15180.22 22682.62 28657.75 29682.54 20091.96 10871.16 19982.89 22892.52 13577.41 14390.50 20680.04 9787.84 28692.40 161
test1286.57 9890.74 14972.63 13690.69 14382.76 23079.20 12794.80 6695.32 14692.27 169
原ACMM184.60 13892.81 8774.01 12491.50 12062.59 27082.73 23190.67 18676.53 15894.25 8469.24 21395.69 13885.55 281
test_yl78.71 21878.51 21779.32 23884.32 26658.84 28778.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26792.73 21389.10 240
DCV-MVSNet78.71 21878.51 21779.32 23884.32 26658.84 28778.38 26385.33 23675.99 13282.49 23286.57 25658.01 27890.02 22362.74 26792.73 21389.10 240
diffmvspermissive80.40 19580.48 19180.17 22779.02 32260.04 27177.54 27690.28 15966.65 24582.40 23487.33 24673.50 18587.35 26177.98 12489.62 26393.13 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test22293.31 7176.54 10579.38 24877.79 29652.59 32682.36 23590.84 18066.83 22891.69 23381.25 334
D2MVS76.84 23775.67 24680.34 22480.48 30862.16 24973.50 31884.80 25057.61 30582.24 23687.54 24151.31 31087.65 25770.40 20693.19 20391.23 196
VNet79.31 20980.27 19376.44 27987.92 20353.95 32075.58 30284.35 25374.39 15382.23 23790.72 18372.84 19684.39 29660.38 28793.98 18790.97 200
Vis-MVSNet (Re-imp)77.82 22777.79 22477.92 26088.82 18451.29 34183.28 17771.97 33574.04 15582.23 23789.78 20457.38 28489.41 23557.22 30195.41 14293.05 138
API-MVS82.28 16782.61 16381.30 20686.29 23969.79 16688.71 9087.67 20378.42 10882.15 23984.15 29477.98 13691.59 17265.39 24892.75 21282.51 321
iter_conf_final80.36 19778.88 20984.79 13286.29 23966.36 20386.95 11386.25 22468.16 23082.09 24089.48 20836.59 36794.51 7979.83 10094.30 18093.50 125
DP-MVS Recon84.05 13983.22 15186.52 10091.73 12075.27 11783.23 18192.40 9672.04 19082.04 24188.33 22777.91 13893.95 9766.17 24195.12 15590.34 220
MSDG80.06 20679.99 20280.25 22583.91 27368.04 18877.51 27789.19 18077.65 11581.94 24283.45 30076.37 15986.31 27763.31 26586.59 29786.41 272
test250674.12 26673.39 26676.28 28291.85 11544.20 36684.06 15648.20 37672.30 18781.90 24394.20 8027.22 37989.77 22664.81 25396.02 11994.87 67
Fast-Effi-MVS+81.04 18480.57 18782.46 19187.50 21263.22 23278.37 26589.63 17468.01 23181.87 24482.08 31682.31 9292.65 14567.10 23388.30 28191.51 193
testgi72.36 28074.61 25365.59 33580.56 30742.82 37068.29 33773.35 32666.87 24381.84 24589.93 20172.08 20466.92 35646.05 35692.54 21587.01 268
tfpn200view974.86 25974.23 25876.74 27786.24 24152.12 33379.24 25173.87 32173.34 16581.82 24684.60 28946.02 33088.80 24351.98 33290.99 24489.31 235
thres40075.14 25374.23 25877.86 26286.24 24152.12 33379.24 25173.87 32173.34 16581.82 24684.60 28946.02 33088.80 24351.98 33290.99 24492.66 151
CL-MVSNet_self_test76.81 23877.38 22775.12 29086.90 22751.34 33973.20 32180.63 28468.30 22881.80 24888.40 22666.92 22780.90 31355.35 31494.90 16293.12 136
OpenMVScopyleft76.72 1381.98 17482.00 17181.93 19584.42 26468.22 18488.50 9489.48 17766.92 24281.80 24891.86 14972.59 19990.16 21471.19 19691.25 24187.40 263
AdaColmapbinary83.66 14783.69 14783.57 16390.05 16472.26 14586.29 12790.00 16678.19 11081.65 25087.16 24983.40 8194.24 8561.69 27794.76 17184.21 295
CS-MVS-test87.00 8686.43 9988.71 7189.46 17177.46 9489.42 7995.73 677.87 11381.64 25187.25 24782.43 9094.53 7777.65 12796.46 10194.14 95
DELS-MVS81.44 17981.25 18082.03 19484.27 26862.87 23676.47 29292.49 9570.97 20081.64 25183.83 29575.03 16692.70 14374.29 16192.22 22490.51 216
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
114514_t83.10 15982.54 16584.77 13492.90 8169.10 17986.65 12190.62 14654.66 31781.46 25390.81 18176.98 15094.38 8172.62 18896.18 11190.82 205
TR-MVS76.77 23975.79 24379.72 23286.10 24765.79 20877.14 28083.02 26365.20 25981.40 25482.10 31466.30 22990.73 20055.57 31185.27 30882.65 315
TAMVS78.08 22576.36 23883.23 17090.62 15272.87 13079.08 25480.01 28761.72 27881.35 25586.92 25463.96 24388.78 24650.61 33793.01 20788.04 254
Effi-MVS+83.90 14484.01 14283.57 16387.22 21765.61 21086.55 12492.40 9678.64 10581.34 25684.18 29383.65 7892.93 13874.22 16287.87 28592.17 174
new-patchmatchnet70.10 29973.37 26760.29 34981.23 29716.95 38059.54 35874.62 31462.93 26880.97 25787.93 23462.83 25371.90 33755.24 31595.01 15992.00 178
PVSNet_Blended_VisFu81.55 17880.49 19084.70 13791.58 12573.24 12984.21 15291.67 11762.86 26980.94 25887.16 24967.27 22592.87 14169.82 20988.94 27187.99 255
BH-w/o76.57 24176.07 24278.10 25786.88 22865.92 20777.63 27486.33 22265.69 25380.89 25979.95 33468.97 21990.74 19953.01 32885.25 30977.62 349
PAPM_NR83.23 15583.19 15383.33 16890.90 14665.98 20688.19 9690.78 14178.13 11180.87 26087.92 23573.49 18792.42 14970.07 20788.40 27691.60 190
ab-mvs79.67 20880.56 18876.99 27188.48 19256.93 30184.70 14386.06 22768.95 22180.78 26193.08 11475.30 16484.62 29456.78 30290.90 24989.43 233
XXY-MVS74.44 26576.19 24069.21 32284.61 26052.43 33271.70 32677.18 29960.73 28880.60 26290.96 17675.44 16169.35 34456.13 30788.33 27785.86 279
HQP4-MVS80.56 26394.61 7293.56 122
HQP-NCC91.19 13784.77 14073.30 16780.55 264
ACMP_Plane91.19 13784.77 14073.30 16780.55 264
HQP-MVS84.61 12284.06 14186.27 10591.19 13770.66 16084.77 14092.68 9173.30 16780.55 26490.17 19972.10 20294.61 7277.30 13494.47 17693.56 122
AUN-MVS81.18 18278.78 21288.39 7690.93 14582.14 5882.51 20183.67 25864.69 26280.29 26785.91 26951.07 31192.38 15176.29 14593.63 19590.65 212
HyFIR lowres test75.12 25572.66 27582.50 19091.44 13365.19 21372.47 32387.31 20646.79 34880.29 26784.30 29152.70 30692.10 16151.88 33686.73 29590.22 221
test20.0373.75 26974.59 25571.22 31181.11 29851.12 34370.15 33272.10 33470.42 20580.28 26991.50 16064.21 24174.72 33346.96 35394.58 17487.82 260
mvsany_test365.48 32262.97 32873.03 30269.99 36776.17 11364.83 34743.71 37843.68 35980.25 27087.05 25352.83 30563.09 36551.92 33572.44 36179.84 345
F-COLMAP84.97 11783.42 14889.63 5592.39 9483.40 4888.83 8791.92 10973.19 17180.18 27189.15 21677.04 14993.28 12665.82 24692.28 22192.21 172
GA-MVS75.83 24874.61 25379.48 23781.87 28959.25 28073.42 31982.88 26468.68 22479.75 27281.80 31850.62 31389.46 23166.85 23585.64 30589.72 228
xiu_mvs_v1_base_debu80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
xiu_mvs_v1_base_debi80.84 18680.14 19882.93 17988.31 19571.73 15179.53 24487.17 20865.43 25579.59 27382.73 31076.94 15190.14 21773.22 18088.33 27786.90 269
test_fmvs1_n70.94 29270.41 29572.53 30673.92 35366.93 19675.99 29784.21 25643.31 36179.40 27679.39 33843.47 35068.55 34969.05 21884.91 31482.10 324
patch_mono-278.89 21279.39 20577.41 26884.78 25868.11 18675.60 30083.11 26260.96 28579.36 27789.89 20375.18 16572.97 33473.32 17992.30 21891.15 197
UnsupCasMVSNet_eth71.63 28772.30 28069.62 32076.47 33752.70 33070.03 33380.97 28059.18 29479.36 27788.21 22960.50 25969.12 34558.33 29677.62 35487.04 267
ppachtmachnet_test74.73 26274.00 26076.90 27480.71 30556.89 30371.53 32778.42 29358.24 29979.32 27982.92 30757.91 28184.26 29765.60 24791.36 23989.56 230
MG-MVS80.32 19980.94 18578.47 25088.18 19852.62 33182.29 20785.01 24572.01 19179.24 28092.54 13469.36 21593.36 12570.65 20289.19 26889.45 231
Fast-Effi-MVS+-dtu82.54 16481.41 17985.90 11585.60 24976.53 10783.07 18489.62 17573.02 17479.11 28183.51 29880.74 11690.24 21168.76 22289.29 26590.94 201
CDS-MVSNet77.32 23275.40 24783.06 17489.00 18172.48 14177.90 27082.17 27060.81 28678.94 28283.49 29959.30 27088.76 24754.64 32092.37 21787.93 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline173.26 27273.54 26472.43 30784.92 25647.79 35579.89 24074.00 31965.93 24778.81 28386.28 26356.36 29181.63 31156.63 30379.04 34987.87 259
EIA-MVS82.19 16981.23 18285.10 12887.95 20269.17 17883.22 18293.33 6170.42 20578.58 28479.77 33777.29 14494.20 8771.51 19488.96 27091.93 181
thres20072.34 28171.55 28774.70 29383.48 27551.60 33875.02 30773.71 32470.14 21178.56 28580.57 32846.20 32888.20 25346.99 35289.29 26584.32 294
our_test_371.85 28471.59 28472.62 30480.71 30553.78 32169.72 33471.71 33958.80 29678.03 28680.51 33056.61 29078.84 32062.20 27186.04 30385.23 284
KD-MVS_2432*160066.87 31465.81 32070.04 31667.50 37047.49 35662.56 35379.16 28961.21 28377.98 28780.61 32625.29 38182.48 30653.02 32684.92 31280.16 343
miper_refine_blended66.87 31465.81 32070.04 31667.50 37047.49 35662.56 35379.16 28961.21 28377.98 28780.61 32625.29 38182.48 30653.02 32684.92 31280.16 343
jason77.42 23175.75 24482.43 19287.10 22269.27 17377.99 26881.94 27251.47 33577.84 28985.07 28360.32 26289.00 24070.74 20189.27 26789.03 243
jason: jason.
MAR-MVS80.24 20178.74 21484.73 13586.87 22978.18 8585.75 13187.81 20265.67 25477.84 28978.50 34373.79 18290.53 20561.59 27990.87 25085.49 283
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
FPMVS72.29 28272.00 28173.14 30088.63 18885.00 3674.65 31067.39 35071.94 19277.80 29187.66 23950.48 31475.83 32949.95 33979.51 34358.58 370
test_fmvs169.57 30569.05 30471.14 31369.15 36965.77 20973.98 31483.32 26042.83 36377.77 29278.27 34543.39 35368.50 35068.39 22884.38 32179.15 346
pmmvs474.92 25872.98 27180.73 21884.95 25571.71 15476.23 29577.59 29752.83 32577.73 29386.38 25856.35 29284.97 29157.72 30087.05 29285.51 282
ET-MVSNet_ETH3D75.28 25272.77 27382.81 18383.03 28368.11 18677.09 28176.51 30460.67 28977.60 29480.52 32938.04 36391.15 18570.78 19990.68 25489.17 238
UnsupCasMVSNet_bld69.21 30769.68 30167.82 32979.42 31651.15 34267.82 34175.79 30754.15 31977.47 29585.36 27859.26 27170.64 34048.46 34679.35 34581.66 328
Anonymous2023120671.38 28971.88 28269.88 31886.31 23754.37 31770.39 33174.62 31452.57 32776.73 29688.76 22159.94 26572.06 33644.35 35993.23 20283.23 311
CMPMVSbinary59.41 2075.12 25573.57 26379.77 23075.84 34367.22 19181.21 22582.18 26950.78 34076.50 29787.66 23955.20 29882.99 30462.17 27390.64 25889.09 242
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet572.10 28371.69 28373.32 29881.57 29253.02 32776.77 28678.37 29463.31 26576.37 29891.85 15036.68 36678.98 31947.87 34992.45 21687.95 256
CVMVSNet72.62 27871.41 28876.28 28283.25 27860.34 26983.50 17379.02 29237.77 37176.33 29985.10 28049.60 31887.41 26070.54 20477.54 35581.08 337
PLCcopyleft73.85 1682.09 17180.31 19287.45 8890.86 14880.29 6985.88 12990.65 14468.17 22976.32 30086.33 26073.12 19392.61 14661.40 28090.02 26189.44 232
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVSFormer82.23 16881.57 17884.19 15085.54 25169.26 17491.98 3190.08 16471.54 19376.23 30185.07 28358.69 27594.27 8286.26 3588.77 27289.03 243
lupinMVS76.37 24574.46 25682.09 19385.54 25169.26 17476.79 28580.77 28350.68 34276.23 30182.82 30858.69 27588.94 24169.85 20888.77 27288.07 252
PatchMatch-RL74.48 26373.22 26878.27 25587.70 20785.26 3475.92 29870.09 34464.34 26376.09 30381.25 32365.87 23478.07 32253.86 32283.82 32371.48 357
thisisatest051573.00 27670.52 29280.46 22281.45 29359.90 27473.16 32274.31 31857.86 30276.08 30477.78 34637.60 36592.12 16065.00 25191.45 23889.35 234
MS-PatchMatch70.93 29370.22 29673.06 30181.85 29062.50 24273.82 31777.90 29552.44 32875.92 30581.27 32255.67 29581.75 30955.37 31377.70 35374.94 353
CHOSEN 1792x268872.45 27970.56 29178.13 25690.02 16663.08 23368.72 33683.16 26142.99 36275.92 30585.46 27357.22 28685.18 29049.87 34181.67 33686.14 275
CR-MVSNet74.00 26773.04 27076.85 27679.58 31362.64 23982.58 19776.90 30050.50 34375.72 30792.38 13748.07 32284.07 29868.72 22482.91 32983.85 300
RPMNet78.88 21378.28 22080.68 22079.58 31362.64 23982.58 19794.16 2774.80 14875.72 30792.59 13148.69 31995.56 3773.48 17682.91 32983.85 300
DPM-MVS80.10 20579.18 20782.88 18290.71 15169.74 16778.87 25890.84 13960.29 29175.64 30985.92 26867.28 22493.11 13271.24 19591.79 23185.77 280
test_vis1_n70.29 29669.99 29971.20 31275.97 34266.50 20076.69 28880.81 28144.22 35775.43 31077.23 35150.00 31668.59 34866.71 23882.85 33178.52 348
PVSNet_BlendedMVS78.80 21677.84 22381.65 20384.43 26263.41 22879.49 24790.44 14961.70 27975.43 31087.07 25269.11 21791.44 17660.68 28592.24 22290.11 225
PVSNet_Blended76.49 24375.40 24779.76 23184.43 26263.41 22875.14 30690.44 14957.36 30775.43 31078.30 34469.11 21791.44 17660.68 28587.70 28884.42 293
PAPR78.84 21478.10 22281.07 21185.17 25460.22 27082.21 21190.57 14762.51 27175.32 31384.61 28874.99 16792.30 15559.48 29188.04 28390.68 210
N_pmnet70.20 29768.80 30774.38 29480.91 30084.81 3959.12 36076.45 30555.06 31575.31 31482.36 31355.74 29454.82 37047.02 35187.24 29183.52 304
cascas76.29 24674.81 25280.72 21984.47 26162.94 23473.89 31687.34 20555.94 31275.16 31576.53 35663.97 24291.16 18465.00 25190.97 24788.06 253
SCA73.32 27172.57 27775.58 28881.62 29155.86 30878.89 25771.37 34061.73 27774.93 31683.42 30160.46 26087.01 26358.11 29882.63 33483.88 297
test_vis1_n_192071.30 29071.58 28670.47 31477.58 32959.99 27374.25 31184.22 25551.06 33774.85 31779.10 33955.10 29968.83 34768.86 22179.20 34882.58 317
xiu_mvs_v2_base77.19 23376.75 23578.52 24887.01 22561.30 25575.55 30387.12 21461.24 28274.45 31878.79 34177.20 14590.93 19164.62 25784.80 31883.32 309
CANet83.79 14582.85 15886.63 9786.17 24472.21 14783.76 16791.43 12277.24 12174.39 31987.45 24375.36 16395.42 4777.03 13792.83 21192.25 171
PS-MVSNAJ77.04 23576.53 23778.56 24787.09 22361.40 25375.26 30587.13 21161.25 28174.38 32077.22 35276.94 15190.94 19064.63 25684.83 31783.35 308
MVP-Stereo75.81 24973.51 26582.71 18489.35 17373.62 12580.06 23685.20 23860.30 29073.96 32187.94 23357.89 28289.45 23252.02 33174.87 35985.06 287
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
UGNet82.78 16081.64 17586.21 10886.20 24376.24 11286.86 11485.68 23277.07 12273.76 32292.82 12469.64 21391.82 16969.04 21993.69 19390.56 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
1112_ss74.82 26073.74 26178.04 25889.57 16860.04 27176.49 29187.09 21554.31 31873.66 32379.80 33560.25 26386.76 27258.37 29484.15 32287.32 264
Test_1112_low_res73.90 26873.08 26976.35 28090.35 15655.95 30673.40 32086.17 22650.70 34173.14 32485.94 26758.31 27785.90 28356.51 30483.22 32687.20 265
131473.22 27372.56 27875.20 28980.41 30957.84 29481.64 21885.36 23551.68 33473.10 32576.65 35561.45 25685.19 28963.54 26279.21 34782.59 316
test_vis1_rt65.64 32164.09 32570.31 31566.09 37470.20 16561.16 35681.60 27638.65 36972.87 32669.66 36452.84 30460.04 36756.16 30677.77 35280.68 341
Patchmatch-test65.91 31967.38 31261.48 34775.51 34543.21 36968.84 33563.79 36062.48 27272.80 32783.42 30144.89 34659.52 36848.27 34886.45 29881.70 327
PatchmatchNetpermissive69.71 30468.83 30672.33 30877.66 32853.60 32279.29 24969.99 34557.66 30472.53 32882.93 30646.45 32780.08 31860.91 28372.09 36283.31 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpm67.95 31068.08 31167.55 33078.74 32443.53 36875.60 30067.10 35554.92 31672.23 32988.10 23042.87 35575.97 32852.21 33080.95 34283.15 312
pmmvs570.73 29470.07 29772.72 30377.03 33352.73 32974.14 31275.65 31050.36 34472.17 33085.37 27755.42 29780.67 31552.86 32987.59 28984.77 289
PatchT70.52 29572.76 27463.79 34179.38 31733.53 37677.63 27465.37 35873.61 16071.77 33192.79 12744.38 34875.65 33064.53 25885.37 30782.18 323
MVS73.21 27472.59 27675.06 29180.97 29960.81 26581.64 21885.92 23046.03 35271.68 33277.54 34768.47 22089.77 22655.70 31085.39 30674.60 354
MIMVSNet71.09 29171.59 28469.57 32187.23 21650.07 34878.91 25671.83 33660.20 29271.26 33391.76 15555.08 30076.09 32741.06 36487.02 29482.54 319
WTY-MVS67.91 31168.35 30966.58 33380.82 30348.12 35365.96 34672.60 33053.67 32171.20 33481.68 32058.97 27369.06 34648.57 34581.67 33682.55 318
test0.0.03 164.66 32464.36 32465.57 33675.03 35046.89 35964.69 34961.58 36562.43 27471.18 33577.54 34743.41 35168.47 35140.75 36582.65 33281.35 331
CostFormer69.98 30268.68 30873.87 29577.14 33150.72 34579.26 25074.51 31651.94 33370.97 33684.75 28645.16 34487.49 25955.16 31679.23 34683.40 307
tpmvs70.16 29869.56 30271.96 30974.71 35248.13 35279.63 24275.45 31265.02 26070.26 33781.88 31745.34 34185.68 28558.34 29575.39 35882.08 325
sss66.92 31367.26 31365.90 33477.23 33051.10 34464.79 34871.72 33852.12 33270.13 33880.18 33257.96 28065.36 36150.21 33881.01 34181.25 334
tpm268.45 30966.83 31573.30 29978.93 32348.50 35179.76 24171.76 33747.50 34769.92 33983.60 29742.07 35688.40 25048.44 34779.51 34383.01 314
HY-MVS64.64 1873.03 27572.47 27974.71 29283.36 27754.19 31882.14 21481.96 27156.76 31169.57 34086.21 26460.03 26484.83 29349.58 34282.65 33285.11 286
tpm cat166.76 31665.21 32371.42 31077.09 33250.62 34678.01 26773.68 32544.89 35568.64 34179.00 34045.51 33882.42 30849.91 34070.15 36581.23 336
IB-MVS62.13 1971.64 28668.97 30579.66 23480.80 30462.26 24773.94 31576.90 30063.27 26668.63 34276.79 35433.83 37091.84 16859.28 29287.26 29084.88 288
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EPNet80.37 19678.41 21986.23 10676.75 33473.28 12787.18 10977.45 29876.24 12868.14 34388.93 22065.41 23593.85 10069.47 21196.12 11591.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet58.17 2166.41 31765.63 32268.75 32581.96 28849.88 34962.19 35572.51 33251.03 33868.04 34475.34 35950.84 31274.77 33145.82 35782.96 32781.60 329
tpmrst66.28 31866.69 31765.05 33872.82 36139.33 37178.20 26670.69 34353.16 32467.88 34580.36 33148.18 32174.75 33258.13 29770.79 36481.08 337
CANet_DTU77.81 22877.05 23180.09 22881.37 29559.90 27483.26 17888.29 19569.16 21867.83 34683.72 29660.93 25789.47 23069.22 21589.70 26290.88 203
EPMVS62.47 32662.63 33062.01 34370.63 36638.74 37274.76 30852.86 37353.91 32067.71 34780.01 33339.40 36066.60 35755.54 31268.81 36980.68 341
MVS_030478.17 22377.23 23080.99 21584.13 27069.07 18081.39 22180.81 28176.28 12767.53 34889.11 21762.87 25286.77 27060.90 28492.01 22987.13 266
MDTV_nov1_ep1368.29 31078.03 32543.87 36774.12 31372.22 33352.17 32967.02 34985.54 27145.36 34080.85 31455.73 30884.42 320
pmmvs362.47 32660.02 33869.80 31971.58 36564.00 22470.52 33058.44 36939.77 36766.05 35075.84 35727.10 38072.28 33546.15 35584.77 31973.11 355
ADS-MVSNet265.87 32063.64 32772.55 30573.16 35856.92 30267.10 34274.81 31349.74 34566.04 35182.97 30446.71 32577.26 32442.29 36169.96 36683.46 305
ADS-MVSNet61.90 32862.19 33161.03 34873.16 35836.42 37467.10 34261.75 36349.74 34566.04 35182.97 30446.71 32563.21 36342.29 36169.96 36683.46 305
mvsany_test158.48 33756.47 34264.50 33965.90 37668.21 18556.95 36442.11 37938.30 37065.69 35377.19 35356.96 28759.35 36946.16 35458.96 37265.93 363
DSMNet-mixed60.98 33461.61 33359.09 35272.88 36045.05 36474.70 30946.61 37726.20 37365.34 35490.32 19355.46 29663.12 36441.72 36381.30 34069.09 361
JIA-IIPM69.41 30666.64 31877.70 26473.19 35771.24 15775.67 29965.56 35770.42 20565.18 35592.97 11933.64 37183.06 30353.52 32469.61 36878.79 347
test-LLR67.21 31266.74 31668.63 32676.45 33855.21 31367.89 33867.14 35362.43 27465.08 35672.39 36143.41 35169.37 34261.00 28184.89 31581.31 332
test-mter65.00 32363.79 32668.63 32676.45 33855.21 31367.89 33867.14 35350.98 33965.08 35672.39 36128.27 37769.37 34261.00 28184.89 31581.31 332
PMMVS255.64 34059.27 33944.74 35664.30 37812.32 38140.60 36949.79 37553.19 32365.06 35884.81 28553.60 30349.76 37332.68 37389.41 26472.15 356
baseline269.77 30366.89 31478.41 25179.51 31558.09 29276.23 29569.57 34757.50 30664.82 35977.45 34946.02 33088.44 24953.08 32577.83 35188.70 247
gg-mvs-nofinetune68.96 30869.11 30368.52 32876.12 34145.32 36283.59 17155.88 37186.68 2464.62 36097.01 730.36 37483.97 30044.78 35882.94 32876.26 351
PAPM71.77 28570.06 29876.92 27386.39 23253.97 31976.62 29086.62 22053.44 32263.97 36184.73 28757.79 28392.34 15339.65 36681.33 33984.45 292
new_pmnet55.69 33957.66 34049.76 35575.47 34630.59 37759.56 35751.45 37443.62 36062.49 36275.48 35840.96 35849.15 37437.39 36972.52 36069.55 360
MDTV_nov1_ep13_2view27.60 37970.76 32946.47 35161.27 36345.20 34249.18 34383.75 302
dp60.70 33560.29 33761.92 34572.04 36438.67 37370.83 32864.08 35951.28 33660.75 36477.28 35036.59 36771.58 33947.41 35062.34 37175.52 352
TESTMET0.1,161.29 33160.32 33664.19 34072.06 36351.30 34067.89 33862.09 36145.27 35360.65 36569.01 36527.93 37864.74 36256.31 30581.65 33876.53 350
PMMVS61.65 32960.38 33565.47 33765.40 37769.26 17463.97 35161.73 36436.80 37260.11 36668.43 36659.42 26966.35 35848.97 34478.57 35060.81 367
PVSNet_051.08 2256.10 33854.97 34359.48 35175.12 34953.28 32655.16 36561.89 36244.30 35659.16 36762.48 37054.22 30165.91 36035.40 37047.01 37359.25 369
MVS-HIRNet61.16 33262.92 32955.87 35379.09 32035.34 37571.83 32557.98 37046.56 35059.05 36891.14 16949.95 31776.43 32638.74 36771.92 36355.84 371
E-PMN61.59 33061.62 33261.49 34666.81 37255.40 31153.77 36660.34 36666.80 24458.90 36965.50 36840.48 35966.12 35955.72 30986.25 30162.95 366
GG-mvs-BLEND67.16 33173.36 35646.54 36184.15 15455.04 37258.64 37061.95 37129.93 37583.87 30138.71 36876.92 35671.07 358
EPNet_dtu72.87 27771.33 28977.49 26777.72 32760.55 26882.35 20575.79 30766.49 24658.39 37181.06 32453.68 30285.98 28153.55 32392.97 20985.95 277
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EMVS61.10 33360.81 33461.99 34465.96 37555.86 30853.10 36758.97 36867.06 24156.89 37263.33 36940.98 35767.03 35554.79 31886.18 30263.08 365
CHOSEN 280x42059.08 33656.52 34166.76 33276.51 33664.39 22049.62 36859.00 36743.86 35855.66 37368.41 36735.55 36968.21 35243.25 36076.78 35767.69 362
MVEpermissive40.22 2351.82 34150.47 34455.87 35362.66 37951.91 33531.61 37139.28 38040.65 36550.76 37474.98 36056.24 29344.67 37533.94 37264.11 37071.04 359
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft24.13 35832.95 38029.49 37821.63 38312.07 37437.95 37545.07 37330.84 37319.21 37717.94 37633.06 37623.69 373
tmp_tt20.25 34424.50 3477.49 3594.47 3828.70 38234.17 37025.16 3821.00 37732.43 37618.49 37439.37 3619.21 37821.64 37543.75 3744.57 374
test_method30.46 34229.60 34533.06 35717.99 3813.84 38313.62 37273.92 3202.79 37518.29 37753.41 37228.53 37643.25 37622.56 37435.27 37552.11 372
EGC-MVSNET74.79 26169.99 29989.19 6394.89 3787.00 1191.89 3486.28 2231.09 3762.23 37895.98 2381.87 10489.48 22979.76 10195.96 12291.10 198
testmvs5.91 3487.65 3510.72 3611.20 3830.37 38559.14 3590.67 3850.49 3791.11 3792.76 3780.94 3840.24 3801.02 3781.47 3771.55 376
test1236.27 3478.08 3500.84 3601.11 3840.57 38462.90 3520.82 3840.54 3781.07 3802.75 3791.26 3830.30 3791.04 3771.26 3781.66 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k20.81 34327.75 3460.00 3620.00 3850.00 3860.00 37385.44 2340.00 3800.00 38182.82 30881.46 1080.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas6.41 3468.55 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38076.94 1510.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re6.65 3458.87 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38179.80 3350.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
MSC_two_6792asdad88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
No_MVS88.81 6891.55 12777.99 8791.01 13596.05 787.45 1798.17 3292.40 161
eth-test20.00 385
eth-test0.00 385
OPU-MVS88.27 7991.89 11377.83 9090.47 5191.22 16681.12 11294.68 6974.48 16095.35 14492.29 167
save fliter93.75 5977.44 9586.31 12689.72 17070.80 201
test_0728_SECOND86.79 9594.25 4572.45 14290.54 4894.10 3495.88 1686.42 3197.97 4392.02 177
GSMVS83.88 297
sam_mvs146.11 32983.88 297
sam_mvs45.92 334
MTGPAbinary91.81 115
test_post178.85 2593.13 37645.19 34380.13 31758.11 298
test_post3.10 37745.43 33977.22 325
patchmatchnet-post81.71 31945.93 33387.01 263
MTMP90.66 4433.14 381
gm-plane-assit75.42 34744.97 36552.17 32972.36 36387.90 25454.10 321
test9_res80.83 8996.45 10290.57 213
agg_prior279.68 10396.16 11290.22 221
test_prior478.97 8084.59 145
test_prior86.32 10390.59 15371.99 14992.85 8694.17 9092.80 144
新几何281.72 217
旧先验191.97 10971.77 15081.78 27491.84 15173.92 18093.65 19483.61 303
无先验82.81 19285.62 23358.09 30091.41 17967.95 23284.48 291
原ACMM282.26 210
testdata286.43 27663.52 263
segment_acmp81.94 100
testdata179.62 24373.95 157
plane_prior793.45 6677.31 98
plane_prior692.61 8876.54 10574.84 169
plane_prior593.61 5395.22 5480.78 9095.83 13094.46 80
plane_prior492.95 120
plane_prior289.45 7779.44 92
plane_prior192.83 86
plane_prior76.42 10987.15 11075.94 13595.03 158
n20.00 386
nn0.00 386
door-mid74.45 317
test1191.46 121
door72.57 331
HQP5-MVS70.66 160
BP-MVS77.30 134
HQP3-MVS92.68 9194.47 176
HQP2-MVS72.10 202
NP-MVS91.95 11074.55 12190.17 199
ACMMP++_ref95.74 137
ACMMP++97.35 73
Test By Simon79.09 128