This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS89.48 1757.49 1791.38 966.22 6988.26 182.83 2287.60 1892.44 32
PC_three_145266.58 6187.27 293.70 1066.82 494.95 1789.74 491.98 493.98 5
MSP-MVS82.30 683.47 178.80 5982.99 12252.71 13585.04 13588.63 4566.08 7386.77 392.75 3272.05 191.46 7083.35 2093.53 192.23 37
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.92 881.75 982.44 789.48 1756.89 2992.48 388.94 3257.50 23584.61 494.09 358.81 1296.37 682.28 2687.60 1894.06 3
test_241102_ONE89.48 1756.89 2988.94 3257.53 23384.61 493.29 2258.81 1296.45 1
DVP-MVS++82.44 382.38 682.62 491.77 457.49 1784.98 13888.88 3458.00 22183.60 693.39 1867.21 296.39 481.64 3191.98 493.98 5
test_241102_TWO88.76 4157.50 23583.60 694.09 356.14 2596.37 682.28 2687.43 2092.55 30
DPM-MVS82.39 482.36 782.49 580.12 19859.50 592.24 890.72 1569.37 3383.22 894.47 263.81 593.18 3274.02 8493.25 294.80 1
test072689.40 2057.45 1992.32 788.63 4557.71 22983.14 993.96 655.17 29
MVS_030482.10 782.64 480.47 2786.63 4954.69 8492.20 986.66 8274.48 582.63 1093.80 950.83 6193.70 2890.11 286.44 3393.01 21
MM82.69 283.29 380.89 2284.38 8655.40 5992.16 1089.85 2275.28 482.41 1193.86 854.30 3593.98 2390.29 187.13 2193.30 12
test_part289.33 2355.48 5482.27 12
test_one_060189.39 2257.29 2288.09 5557.21 24182.06 1393.39 1854.94 34
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1992.34 589.99 2057.71 22981.91 1493.64 1255.17 2996.44 281.68 2987.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 22181.91 1493.64 1256.54 2196.44 281.64 3186.86 2692.23 37
TSAR-MVS + MP.78.31 3178.26 2678.48 7081.33 17256.31 4281.59 24086.41 8769.61 3181.72 1688.16 13655.09 3188.04 18374.12 8386.31 3491.09 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_l_conf0.5_n75.95 6576.16 5575.31 15476.01 27248.44 24184.98 13871.08 34463.50 11781.70 1793.52 1550.00 6687.18 21187.80 576.87 11990.32 94
fmvsm_l_conf0.5_n_a75.88 6776.07 5675.31 15476.08 26848.34 24485.24 12570.62 34763.13 12581.45 1893.62 1449.98 6887.40 20787.76 676.77 12090.20 99
DPE-MVScopyleft79.82 1979.66 1780.29 3089.27 2455.08 7288.70 4787.92 5855.55 26581.21 1993.69 1156.51 2294.27 2278.36 5185.70 4091.51 63
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v2_base79.86 1879.31 1981.53 1585.03 7560.73 491.65 1386.86 7770.30 2680.77 2093.07 2937.63 21192.28 5282.73 2485.71 3991.57 60
PS-MVSNAJ80.06 1779.52 1881.68 1485.58 6360.97 391.69 1287.02 7470.62 2280.75 2193.22 2437.77 20692.50 4682.75 2386.25 3591.57 60
test_fmvsm_n_192075.56 7475.54 6275.61 14174.60 29049.51 21081.82 23174.08 31866.52 6480.40 2293.46 1746.95 9089.72 12086.69 775.30 13987.61 167
SMA-MVScopyleft79.10 2378.76 2480.12 3584.42 8455.87 4987.58 6986.76 7961.48 15480.26 2393.10 2546.53 9692.41 4879.97 3888.77 1192.08 41
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8585.46 6649.56 20590.99 2186.66 8270.58 2380.07 2495.30 156.18 2490.97 8782.57 2586.22 3693.28 13
CANet80.90 1181.17 1280.09 3787.62 4154.21 9691.60 1486.47 8673.13 879.89 2593.10 2549.88 7092.98 3384.09 1784.75 5093.08 19
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4355.20 6789.93 2987.55 6866.04 7679.46 2693.00 3053.10 4391.76 6380.40 3789.56 992.68 29
patch_mono-280.84 1281.59 1078.62 6690.34 953.77 10488.08 5488.36 5276.17 279.40 2791.09 6455.43 2790.09 11085.01 1280.40 8291.99 48
fmvsm_s_conf0.5_n74.48 8674.12 8375.56 14376.96 25647.85 26385.32 12369.80 35464.16 10178.74 2893.48 1645.51 11089.29 13186.48 866.62 21589.55 115
fmvsm_s_conf0.5_n_a73.68 10473.15 9375.29 15775.45 27948.05 25683.88 17468.84 35963.43 11978.60 2993.37 2045.32 11188.92 14985.39 1164.04 23588.89 133
APDe-MVScopyleft78.44 2778.20 2779.19 4588.56 2654.55 8989.76 3387.77 6255.91 26078.56 3092.49 3748.20 7792.65 4279.49 3983.04 5990.39 91
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_s_conf0.1_n73.80 9973.26 9275.43 14973.28 30447.80 26484.57 15569.43 35663.34 12078.40 3193.29 2244.73 12689.22 13485.99 966.28 22289.26 122
fmvsm_s_conf0.1_n_a72.82 11672.05 11575.12 16370.95 33347.97 25982.72 20668.43 36162.52 13578.17 3293.08 2844.21 12988.86 15084.82 1363.54 24188.54 144
DELS-MVS82.32 582.50 581.79 1286.80 4756.89 2992.77 286.30 9077.83 177.88 3392.13 4160.24 794.78 1978.97 4489.61 893.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sasdasda78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
canonicalmvs78.17 3377.86 3279.12 5084.30 8754.22 9487.71 6284.57 13967.70 4977.70 3492.11 4450.90 5789.95 11378.18 5477.54 11193.20 15
CNVR-MVS81.76 981.90 881.33 1890.04 1057.70 1491.71 1188.87 3670.31 2577.64 3693.87 752.58 4693.91 2684.17 1587.92 1692.39 33
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1693.77 191.10 1175.95 377.10 3793.09 2754.15 3895.57 1285.80 1085.87 3893.31 11
EPNet78.36 3078.49 2577.97 8285.49 6552.04 14989.36 3984.07 15173.22 777.03 3891.72 5449.32 7490.17 10973.46 9082.77 6091.69 55
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSFormer73.53 10672.19 11077.57 9183.02 12055.24 6381.63 23781.44 19950.28 30776.67 3990.91 7244.82 12386.11 24360.83 17680.09 8691.36 68
lupinMVS78.38 2978.11 2979.19 4583.02 12055.24 6391.57 1584.82 13069.12 3476.67 3992.02 4644.82 12390.23 10780.83 3680.09 8692.08 41
alignmvs78.08 3577.98 3078.39 7483.53 10353.22 12289.77 3285.45 10666.11 7176.59 4191.99 4854.07 3989.05 13977.34 6077.00 11692.89 23
CANet_DTU73.71 10273.14 9575.40 15082.61 13750.05 19484.67 15279.36 24469.72 3075.39 4290.03 9829.41 30485.93 25467.99 12279.11 9890.22 97
VNet77.99 3777.92 3178.19 7887.43 4250.12 19390.93 2291.41 867.48 5275.12 4390.15 9546.77 9391.00 8473.52 8978.46 10393.44 9
test_fmvsmconf_n74.41 8874.05 8575.49 14874.16 29648.38 24282.66 20772.57 33167.05 5775.11 4492.88 3146.35 9787.81 18883.93 1871.71 17590.28 95
MGCFI-Net74.07 9374.64 7872.34 23082.90 12643.33 32180.04 26979.96 22765.61 7974.93 4591.85 5148.01 8080.86 30571.41 9977.10 11492.84 24
APD-MVScopyleft76.15 6175.68 5877.54 9288.52 2753.44 11387.26 7885.03 12553.79 28274.91 4691.68 5643.80 13390.31 10374.36 8081.82 6988.87 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
旧先验281.73 23445.53 34274.66 4770.48 37558.31 201
SF-MVS77.64 4177.42 3978.32 7683.75 10052.47 14086.63 9287.80 5958.78 20974.63 4892.38 3847.75 8391.35 7278.18 5486.85 2791.15 75
LFMVS78.52 2577.14 4382.67 389.58 1358.90 891.27 1988.05 5663.22 12374.63 4890.83 7541.38 17194.40 2075.42 7279.90 9194.72 2
9.1478.19 2885.67 6188.32 5188.84 3859.89 18074.58 5092.62 3546.80 9292.66 4181.40 3585.62 41
SD-MVS76.18 6074.85 7480.18 3285.39 6756.90 2885.75 10982.45 18256.79 24974.48 5191.81 5243.72 13790.75 9174.61 7878.65 10192.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.1_n73.69 10373.15 9375.34 15270.71 33448.26 24782.15 22171.83 33666.75 6074.47 5292.59 3644.89 12087.78 19383.59 1971.35 17989.97 106
TSAR-MVS + GP.77.82 3877.59 3678.49 6985.25 7150.27 19290.02 2690.57 1656.58 25474.26 5391.60 5954.26 3692.16 5575.87 6679.91 9093.05 20
jason77.01 4876.45 5078.69 6379.69 20354.74 8090.56 2483.99 15468.26 3774.10 5490.91 7242.14 15989.99 11279.30 4179.12 9791.36 68
jason: jason.
ZD-MVS89.55 1453.46 11084.38 14257.02 24373.97 5591.03 6544.57 12791.17 7975.41 7381.78 71
NCCC79.57 2079.23 2080.59 2489.50 1556.99 2691.38 1688.17 5467.71 4873.81 5692.75 3246.88 9193.28 3078.79 4784.07 5591.50 64
PHI-MVS77.49 4277.00 4478.95 5385.33 6950.69 17588.57 4988.59 4858.14 21873.60 5793.31 2143.14 14793.79 2773.81 8788.53 1392.37 34
test_prior289.04 4361.88 14673.55 5891.46 6348.01 8074.73 7785.46 42
MG-MVS78.42 2876.99 4582.73 293.17 164.46 189.93 2988.51 5064.83 9273.52 5988.09 13748.07 7892.19 5462.24 16484.53 5291.53 62
FOURS183.24 11249.90 19884.98 13878.76 25647.71 32673.42 60
MVS_Test75.85 6874.93 7378.62 6684.08 9255.20 6783.99 17085.17 12068.07 4173.38 6182.76 21250.44 6389.00 14265.90 13780.61 7891.64 56
Effi-MVS+75.24 7973.61 8880.16 3381.92 14857.42 2185.21 12776.71 29660.68 17273.32 6289.34 11047.30 8691.63 6568.28 12079.72 9391.42 65
test_vis1_n_192068.59 19868.31 17269.44 28269.16 34541.51 33884.63 15368.58 36058.80 20873.26 6388.37 12925.30 33180.60 31079.10 4267.55 20886.23 195
ETV-MVS77.17 4676.74 4778.48 7081.80 15154.55 8986.13 10085.33 11168.20 3873.10 6490.52 8145.23 11390.66 9379.37 4080.95 7490.22 97
ACMMP_NAP76.43 5775.66 5978.73 6181.92 14854.67 8684.06 16885.35 11061.10 16172.99 6591.50 6140.25 18291.00 8476.84 6286.98 2590.51 90
TEST985.68 5955.42 5687.59 6784.00 15257.72 22872.99 6590.98 6744.87 12188.58 160
train_agg76.91 4976.40 5178.45 7285.68 5955.42 5687.59 6784.00 15257.84 22672.99 6590.98 6744.99 11788.58 16078.19 5285.32 4491.34 70
SPE-MVS-test77.20 4577.25 4177.05 10384.60 8149.04 22089.42 3685.83 10065.90 7772.85 6891.98 5045.10 11491.27 7475.02 7684.56 5190.84 82
test_885.72 5855.31 6187.60 6683.88 15557.84 22672.84 6990.99 6644.99 11788.34 171
test_fmvsmconf0.01_n71.97 13270.95 13175.04 16466.21 35947.87 26280.35 26370.08 35165.85 7872.69 7091.68 5639.99 18887.67 19782.03 2869.66 19489.58 114
xiu_mvs_v1_base_debu71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
xiu_mvs_v1_base_debi71.60 14070.29 14475.55 14477.26 25053.15 12385.34 12079.37 24155.83 26172.54 7190.19 9222.38 35186.66 22773.28 9176.39 12386.85 182
agg_prior85.64 6254.92 7683.61 16272.53 7488.10 181
CS-MVS76.77 5376.70 4876.99 10883.55 10248.75 23088.60 4885.18 11966.38 6672.47 7591.62 5845.53 10890.99 8674.48 7982.51 6291.23 72
VDD-MVS76.08 6374.97 7279.44 4184.27 9053.33 11991.13 2085.88 9865.33 8772.37 7689.34 11032.52 28192.76 4077.90 5775.96 13192.22 39
WTY-MVS77.47 4377.52 3877.30 9788.33 3046.25 28788.46 5090.32 1871.40 1872.32 7791.72 5453.44 4192.37 4966.28 13375.42 13893.28 13
test1279.24 4486.89 4656.08 4585.16 12172.27 7847.15 8891.10 8285.93 3790.54 89
UBG78.86 2478.86 2278.86 5787.80 4055.43 5587.67 6491.21 1072.83 972.10 7988.40 12858.53 1689.08 13773.21 9477.98 10792.08 41
h-mvs3373.95 9572.89 9877.15 10280.17 19750.37 18684.68 15083.33 16468.08 3971.97 8088.65 12642.50 15391.15 8078.82 4557.78 29789.91 109
hse-mvs271.44 14370.68 13373.73 20076.34 26147.44 26979.45 27679.47 24068.08 3971.97 8086.01 17242.50 15386.93 22078.82 4553.46 33486.83 185
CSCG80.41 1579.72 1682.49 589.12 2557.67 1589.29 4191.54 559.19 19771.82 8290.05 9759.72 1096.04 1078.37 5088.40 1493.75 7
SteuartSystems-ACMMP77.08 4776.33 5279.34 4380.98 17655.31 6189.76 3386.91 7662.94 12871.65 8391.56 6042.33 15592.56 4577.14 6183.69 5790.15 101
Skip Steuart: Steuart Systems R&D Blog.
diffmvspermissive75.11 8374.65 7776.46 11978.52 23053.35 11783.28 19479.94 22870.51 2471.64 8488.72 12146.02 10286.08 24877.52 5875.75 13589.96 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive77.36 4476.85 4678.88 5680.40 19554.66 8787.06 8285.88 9872.11 1371.57 8588.63 12750.89 6090.35 10176.00 6579.11 9891.63 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline76.86 5276.24 5478.71 6280.47 19354.20 9883.90 17384.88 12971.38 1971.51 8689.15 11550.51 6290.55 9775.71 6778.65 10191.39 66
testdata67.08 30777.59 24445.46 29669.20 35744.47 34971.50 8788.34 13231.21 29470.76 37452.20 25575.88 13285.03 215
casdiffmvs_mvgpermissive77.75 3977.28 4079.16 4780.42 19454.44 9187.76 6185.46 10571.67 1571.38 8888.35 13151.58 5091.22 7779.02 4379.89 9291.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast67.50 378.00 3677.63 3579.13 4988.52 2755.12 6989.95 2885.98 9768.31 3671.33 8992.75 3245.52 10990.37 10071.15 10185.14 4691.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet74.37 8972.13 11281.09 2079.58 20456.52 3790.02 2686.70 8152.61 29271.23 9087.20 15531.75 29193.96 2574.30 8275.77 13492.79 27
test_yl75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
DCV-MVSNet75.85 6874.83 7578.91 5488.08 3751.94 15191.30 1789.28 2657.91 22371.19 9189.20 11342.03 16292.77 3869.41 11075.07 14692.01 46
testing22277.70 4077.22 4279.14 4886.95 4554.89 7887.18 7991.96 272.29 1271.17 9388.70 12255.19 2891.24 7665.18 14876.32 12791.29 71
balanced_conf0380.28 1679.73 1581.90 1186.47 5159.34 680.45 26089.51 2469.76 2971.05 9486.66 16458.68 1593.24 3184.64 1490.40 693.14 18
EC-MVSNet75.30 7675.20 6775.62 14080.98 17649.00 22187.43 7084.68 13663.49 11870.97 9590.15 9542.86 15291.14 8174.33 8181.90 6886.71 187
testing9978.45 2677.78 3480.45 2888.28 3356.81 3287.95 5991.49 671.72 1470.84 9688.09 13757.29 1992.63 4469.24 11375.13 14491.91 49
testing9178.30 3277.54 3780.61 2388.16 3557.12 2587.94 6091.07 1471.43 1770.75 9788.04 14155.82 2692.65 4269.61 10975.00 14892.05 44
CDPH-MVS76.05 6475.19 6878.62 6686.51 5054.98 7587.32 7384.59 13858.62 21270.75 9790.85 7443.10 14990.63 9570.50 10484.51 5390.24 96
test_cas_vis1_n_192067.10 23066.60 20768.59 29565.17 36743.23 32283.23 19569.84 35355.34 26870.67 9987.71 14724.70 33876.66 34978.57 4964.20 23485.89 203
GDP-MVS75.27 7874.38 8077.95 8479.04 21652.86 13385.22 12686.19 9362.43 13870.66 10090.40 8653.51 4091.60 6669.25 11272.68 16789.39 120
HY-MVS67.03 573.90 9773.14 9576.18 12784.70 7947.36 27075.56 29986.36 8966.27 6870.66 10083.91 19351.05 5589.31 13067.10 12772.61 16891.88 51
testing1179.18 2278.85 2380.16 3388.33 3056.99 2688.31 5292.06 172.82 1070.62 10288.37 12957.69 1792.30 5075.25 7476.24 12891.20 73
MAR-MVS76.76 5475.60 6080.21 3190.87 754.68 8589.14 4289.11 2962.95 12770.54 10392.33 3941.05 17294.95 1757.90 21086.55 3291.00 79
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CostFormer73.89 9872.30 10778.66 6582.36 14156.58 3375.56 29985.30 11366.06 7470.50 10476.88 28957.02 2089.06 13868.27 12168.74 20090.33 93
PAPM76.76 5476.07 5678.81 5880.20 19659.11 786.86 8886.23 9168.60 3570.18 10588.84 12051.57 5187.16 21265.48 14186.68 3090.15 101
BP-MVS176.09 6275.55 6177.71 8879.49 20552.27 14684.70 14890.49 1764.44 9569.86 10690.31 8855.05 3291.35 7270.07 10775.58 13789.53 117
dcpmvs_279.33 2178.94 2180.49 2589.75 1256.54 3684.83 14583.68 15867.85 4569.36 10790.24 8960.20 892.10 5884.14 1680.40 8292.82 25
reproduce-ours71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
our_new_method71.77 13870.43 13875.78 13681.96 14649.54 20882.54 21381.01 20848.77 31969.21 10890.96 6937.13 22689.40 12766.28 13376.01 12988.39 149
MP-MVS-pluss75.54 7575.03 7077.04 10481.37 17152.65 13784.34 15984.46 14161.16 15869.14 11091.76 5339.98 18988.99 14478.19 5284.89 4989.48 119
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_BlendedMVS73.42 10773.30 9173.76 19885.91 5651.83 15586.18 9984.24 14865.40 8469.09 11180.86 24546.70 9488.13 17975.43 7065.92 22481.33 281
PVSNet_Blended76.53 5676.54 4976.50 11885.91 5651.83 15588.89 4584.24 14867.82 4669.09 11189.33 11246.70 9488.13 17975.43 7081.48 7389.55 115
ETVMVS75.80 7275.44 6476.89 11286.23 5450.38 18585.55 11891.42 771.30 2068.80 11387.94 14356.42 2389.24 13256.54 22274.75 15191.07 77
GG-mvs-BLEND77.77 8686.68 4850.61 17668.67 34788.45 5168.73 11487.45 15159.15 1190.67 9254.83 23387.67 1792.03 45
EIA-MVS75.92 6675.18 6978.13 7985.14 7251.60 16087.17 8085.32 11264.69 9368.56 11590.53 8045.79 10591.58 6767.21 12682.18 6691.20 73
MTAPA72.73 11771.22 12777.27 9981.54 16553.57 10867.06 35481.31 20159.41 19068.39 11690.96 6936.07 24689.01 14173.80 8882.45 6489.23 124
reproduce_model71.07 14869.67 15475.28 15981.51 16848.82 22881.73 23480.57 21747.81 32568.26 11790.78 7636.49 24188.60 15965.12 14974.76 15088.42 148
PMMVS72.98 11272.05 11575.78 13683.57 10148.60 23384.08 16682.85 17761.62 15068.24 11890.33 8728.35 30887.78 19372.71 9576.69 12190.95 80
tpm270.82 15468.44 17077.98 8180.78 18556.11 4474.21 31181.28 20360.24 17768.04 11975.27 30752.26 4888.50 16555.82 23068.03 20489.33 121
DeepC-MVS67.15 476.90 5176.27 5378.80 5980.70 18755.02 7386.39 9486.71 8066.96 5867.91 12089.97 9948.03 7991.41 7175.60 6984.14 5489.96 107
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS75.82 7175.02 7178.23 7783.88 9853.80 10386.91 8786.05 9659.71 18367.85 12190.55 7942.23 15791.02 8372.66 9685.29 4589.87 110
PAPR75.20 8174.13 8278.41 7388.31 3255.10 7184.31 16085.66 10263.76 11067.55 12290.73 7743.48 14289.40 12766.36 13277.03 11590.73 85
TESTMET0.1,172.86 11572.33 10574.46 17481.98 14550.77 17385.13 13085.47 10466.09 7267.30 12383.69 19837.27 22183.57 28565.06 15078.97 10089.05 130
MP-MVScopyleft74.99 8474.33 8176.95 11082.89 12753.05 12885.63 11483.50 16357.86 22567.25 12490.24 8943.38 14488.85 15376.03 6482.23 6588.96 131
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03072.27 12871.56 12074.42 17675.93 27350.60 17786.97 8483.21 16962.75 13067.15 12584.38 18750.07 6586.66 22771.19 10062.37 25885.99 199
test_fmvsmvis_n_192071.29 14470.38 14174.00 18971.04 33248.79 22979.19 27964.62 37062.75 13066.73 12691.99 4840.94 17488.35 17083.00 2173.18 16084.85 221
原ACMM176.13 12884.89 7754.59 8885.26 11651.98 29666.70 12787.07 15840.15 18589.70 12151.23 26085.06 4884.10 229
ab-mvs70.65 15769.11 16375.29 15780.87 18246.23 28873.48 31685.24 11859.99 17966.65 12880.94 24443.13 14888.69 15563.58 15668.07 20390.95 80
gg-mvs-nofinetune67.43 22164.53 24676.13 12885.95 5547.79 26564.38 36188.28 5339.34 36666.62 12941.27 40358.69 1489.00 14249.64 26986.62 3191.59 58
UA-Net67.32 22566.23 21470.59 26578.85 22141.23 34273.60 31475.45 30861.54 15266.61 13084.53 18638.73 19986.57 23242.48 31474.24 15383.98 235
sss70.49 15970.13 14871.58 25181.59 16239.02 35080.78 25784.71 13559.34 19266.61 13088.09 13737.17 22585.52 25761.82 16971.02 18290.20 99
SR-MVS70.92 15369.73 15374.50 17383.38 10950.48 18184.27 16179.35 24548.96 31766.57 13290.45 8233.65 27287.11 21366.42 13074.56 15285.91 202
GST-MVS74.87 8573.90 8777.77 8683.30 11053.45 11285.75 10985.29 11459.22 19666.50 13389.85 10140.94 17490.76 9070.94 10283.35 5889.10 129
MSLP-MVS++74.21 9172.25 10880.11 3681.45 16956.47 3886.32 9679.65 23658.19 21766.36 13492.29 4036.11 24490.66 9367.39 12482.49 6393.18 17
Anonymous20240521170.11 16367.88 18076.79 11687.20 4447.24 27389.49 3577.38 28354.88 27466.14 13586.84 16020.93 36091.54 6856.45 22671.62 17691.59 58
新几何173.30 20983.10 11553.48 10971.43 34245.55 34166.14 13587.17 15633.88 27080.54 31148.50 27880.33 8485.88 204
MVS_111021_HR76.39 5875.38 6679.42 4285.33 6956.47 3888.15 5384.97 12665.15 9066.06 13789.88 10043.79 13492.16 5575.03 7580.03 8989.64 113
test250672.91 11472.43 10474.32 18080.12 19844.18 31183.19 19684.77 13364.02 10365.97 13887.43 15247.67 8488.72 15459.08 19079.66 9490.08 103
Fast-Effi-MVS+72.73 11771.15 12977.48 9382.75 13254.76 7986.77 9080.64 21463.05 12665.93 13984.01 19144.42 12889.03 14056.45 22676.36 12688.64 140
EI-MVSNet-Vis-set73.19 11172.60 10074.99 16782.56 13849.80 20182.55 21289.00 3166.17 7065.89 14088.98 11643.83 13292.29 5165.38 14769.01 19882.87 258
UWE-MVS72.17 12972.15 11172.21 23282.26 14244.29 30886.83 8989.58 2365.58 8065.82 14185.06 18145.02 11684.35 27654.07 23875.18 14187.99 159
HFP-MVS74.37 8973.13 9778.10 8084.30 8753.68 10685.58 11584.36 14356.82 24765.78 14290.56 7840.70 17990.90 8869.18 11480.88 7589.71 111
API-MVS74.17 9272.07 11480.49 2590.02 1158.55 987.30 7584.27 14557.51 23465.77 14387.77 14641.61 16895.97 1151.71 25682.63 6186.94 178
UGNet68.71 19567.11 19873.50 20680.55 19247.61 26684.08 16678.51 26359.45 18865.68 14482.73 21523.78 34285.08 26852.80 24976.40 12287.80 162
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive70.61 15869.34 15974.42 17680.95 18148.49 23886.03 10377.51 28058.74 21065.55 14587.78 14534.37 26485.95 25352.53 25480.61 7888.80 136
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS76.91 4975.48 6381.23 1984.56 8255.21 6580.23 26691.64 458.65 21165.37 14691.48 6245.72 10695.05 1672.11 9889.52 1093.44 9
MVSMamba_PlusPlus75.28 7773.39 8980.96 2180.85 18358.25 1074.47 30987.61 6750.53 30665.24 14783.41 20357.38 1892.83 3673.92 8687.13 2191.80 54
ACMMPR73.76 10072.61 9977.24 10183.92 9652.96 13185.58 11584.29 14456.82 24765.12 14890.45 8237.24 22390.18 10869.18 11480.84 7688.58 142
region2R73.75 10172.55 10177.33 9683.90 9752.98 13085.54 11984.09 15056.83 24665.10 14990.45 8237.34 22090.24 10668.89 11680.83 7788.77 138
EI-MVSNet-UG-set72.37 12371.73 11874.29 18181.60 16149.29 21581.85 22988.64 4465.29 8965.05 15088.29 13443.18 14591.83 6263.74 15567.97 20581.75 269
VPA-MVSNet71.12 14670.66 13472.49 22578.75 22344.43 30687.64 6590.02 1963.97 10665.02 15181.58 24042.14 15987.42 20663.42 15763.38 24585.63 209
CLD-MVS75.60 7375.39 6576.24 12280.69 18852.40 14190.69 2386.20 9274.40 665.01 15288.93 11742.05 16190.58 9676.57 6373.96 15585.73 205
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmrst71.04 15069.77 15274.86 16983.19 11455.86 5075.64 29878.73 25867.88 4464.99 15373.73 31949.96 6979.56 32565.92 13667.85 20789.14 128
CHOSEN 1792x268876.24 5974.03 8682.88 183.09 11762.84 285.73 11185.39 10869.79 2864.87 15483.49 20141.52 17093.69 2970.55 10381.82 6992.12 40
VPNet72.07 13071.42 12474.04 18778.64 22847.17 27489.91 3187.97 5772.56 1164.66 15585.04 18241.83 16688.33 17261.17 17460.97 26486.62 188
ECVR-MVScopyleft71.81 13571.00 13074.26 18280.12 19843.49 31684.69 14982.16 18364.02 10364.64 15687.43 15235.04 25789.21 13561.24 17379.66 9490.08 103
baseline172.51 12272.12 11373.69 20185.05 7344.46 30483.51 18486.13 9571.61 1664.64 15687.97 14255.00 3389.48 12559.07 19156.05 31087.13 177
TR-MVS69.71 17467.85 18375.27 16082.94 12448.48 23987.40 7280.86 21157.15 24264.61 15887.08 15732.67 28089.64 12346.38 29371.55 17887.68 166
WB-MVSnew69.36 18368.24 17472.72 21979.26 21149.40 21285.72 11288.85 3761.33 15564.59 15982.38 22534.57 26287.53 20446.82 29070.63 18581.22 285
PVSNet_Blended_VisFu73.40 10872.44 10376.30 12081.32 17354.70 8385.81 10578.82 25463.70 11164.53 16085.38 17847.11 8987.38 20867.75 12377.55 11086.81 186
HQP-NCC79.02 21788.00 5565.45 8164.48 161
ACMP_Plane79.02 21788.00 5565.45 8164.48 161
HQP-MVS72.34 12471.44 12375.03 16579.02 21751.56 16188.00 5583.68 15865.45 8164.48 16185.13 17937.35 21888.62 15766.70 12873.12 16184.91 219
EPNet_dtu66.25 24666.71 20364.87 32578.66 22734.12 36982.80 20575.51 30661.75 14764.47 16486.90 15937.06 22872.46 36843.65 30769.63 19688.02 158
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP4-MVS64.47 16488.61 15884.91 219
APD-MVS_3200maxsize69.62 17968.23 17573.80 19781.58 16348.22 24881.91 22779.50 23948.21 32364.24 16689.75 10331.91 29087.55 20363.08 15873.85 15785.64 208
thisisatest051573.64 10572.20 10977.97 8281.63 15953.01 12986.69 9188.81 3962.53 13464.06 16785.65 17452.15 4992.50 4658.43 19769.84 19288.39 149
Anonymous2024052969.71 17467.28 19577.00 10783.78 9950.36 18788.87 4685.10 12447.22 32964.03 16883.37 20427.93 31292.10 5857.78 21367.44 20988.53 145
HPM-MVScopyleft72.60 11971.50 12175.89 13482.02 14451.42 16580.70 25883.05 17256.12 25964.03 16889.53 10637.55 21488.37 16870.48 10580.04 8887.88 160
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVS72.92 11371.62 11976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 17089.63 10535.50 25189.78 11765.50 13980.50 8088.16 152
X-MVStestdata65.85 25162.20 25976.81 11383.41 10552.48 13884.88 14383.20 17058.03 21963.91 1704.82 42235.50 25189.78 11765.50 13980.50 8088.16 152
EI-MVSNet69.70 17768.70 16672.68 22075.00 28448.90 22579.54 27387.16 7261.05 16263.88 17283.74 19645.87 10390.44 9857.42 21764.68 23278.70 309
MVSTER73.25 11072.33 10576.01 13285.54 6453.76 10583.52 18087.16 7267.06 5663.88 17281.66 23852.77 4490.44 9864.66 15264.69 23183.84 240
WBMVS73.93 9673.39 8975.55 14487.82 3955.21 6589.37 3787.29 7067.27 5363.70 17480.30 24960.32 686.47 23361.58 17062.85 25484.97 217
CP-MVS72.59 12171.46 12276.00 13382.93 12552.32 14486.93 8682.48 18155.15 26963.65 17590.44 8535.03 25888.53 16468.69 11777.83 10987.15 176
BH-RMVSNet70.08 16568.01 17776.27 12184.21 9151.22 17187.29 7679.33 24758.96 20663.63 17686.77 16133.29 27590.30 10544.63 30273.96 15587.30 175
test_fmvs153.60 33452.54 32956.78 35958.07 38730.26 38368.95 34642.19 39932.46 38563.59 17782.56 22111.55 38860.81 38658.25 20255.27 31779.28 303
DP-MVS Recon71.99 13170.31 14377.01 10690.65 853.44 11389.37 3782.97 17556.33 25763.56 17889.47 10734.02 26792.15 5754.05 23972.41 16985.43 212
tpm68.36 20067.48 19270.97 26179.93 20151.34 16776.58 29578.75 25767.73 4763.54 17974.86 30948.33 7672.36 36953.93 24063.71 23989.21 125
PGM-MVS72.60 11971.20 12876.80 11582.95 12352.82 13483.07 20082.14 18456.51 25563.18 18089.81 10235.68 25089.76 11967.30 12580.19 8587.83 161
test-LLR69.65 17869.01 16471.60 24978.67 22548.17 25085.13 13079.72 23359.18 19963.13 18182.58 21936.91 23280.24 31560.56 18075.17 14286.39 193
test-mter68.36 20067.29 19471.60 24978.67 22548.17 25085.13 13079.72 23353.38 28663.13 18182.58 21927.23 31880.24 31560.56 18075.17 14286.39 193
test111171.06 14970.42 14072.97 21479.48 20641.49 33984.82 14682.74 17864.20 10062.98 18387.43 15235.20 25487.92 18558.54 19678.42 10489.49 118
OPM-MVS70.75 15669.58 15574.26 18275.55 27851.34 16786.05 10283.29 16861.94 14562.95 18485.77 17334.15 26688.44 16665.44 14571.07 18182.99 255
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test22279.36 20750.97 17277.99 28767.84 36242.54 36062.84 18586.53 16630.26 30076.91 11785.23 213
SR-MVS-dyc-post68.27 20466.87 19972.48 22680.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10831.17 29586.09 24760.52 18272.06 17383.19 251
RE-MVS-def66.66 20580.96 17848.14 25281.54 24176.98 28946.42 33662.75 18689.42 10829.28 30660.52 18272.06 17383.19 251
XXY-MVS70.18 16269.28 16272.89 21777.64 24242.88 32685.06 13487.50 6962.58 13362.66 18882.34 22943.64 13989.83 11658.42 19963.70 24085.96 201
AUN-MVS68.20 20666.35 21073.76 19876.37 26047.45 26879.52 27579.52 23860.98 16462.34 18986.02 17036.59 24086.94 21962.32 16353.47 33386.89 179
CDS-MVSNet70.48 16069.43 15673.64 20277.56 24548.83 22783.51 18477.45 28163.27 12262.33 19085.54 17743.85 13183.29 29057.38 21874.00 15488.79 137
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_fmvs1_n52.55 33851.19 33356.65 36051.90 39830.14 38467.66 35042.84 39832.27 38662.30 19182.02 2359.12 39760.84 38557.82 21154.75 32378.99 305
FA-MVS(test-final)69.00 18866.60 20776.19 12683.48 10447.96 26174.73 30682.07 18657.27 23962.18 19278.47 26736.09 24592.89 3453.76 24271.32 18087.73 164
HQP_MVS70.96 15269.91 15174.12 18577.95 23849.57 20385.76 10782.59 17963.60 11462.15 19383.28 20636.04 24788.30 17465.46 14272.34 17084.49 223
plane_prior348.95 22264.01 10562.15 193
mPP-MVS71.79 13770.38 14176.04 13182.65 13652.06 14884.45 15681.78 19455.59 26462.05 19589.68 10433.48 27388.28 17665.45 14478.24 10687.77 163
PCF-MVS61.03 1070.10 16468.40 17175.22 16277.15 25451.99 15079.30 27882.12 18556.47 25661.88 19686.48 16843.98 13087.24 21055.37 23172.79 16686.43 192
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvs_anonymous72.29 12670.74 13276.94 11182.85 12954.72 8278.43 28481.54 19763.77 10961.69 19779.32 25851.11 5485.31 26162.15 16675.79 13390.79 84
SDMVSNet71.89 13370.62 13575.70 13981.70 15551.61 15973.89 31288.72 4266.58 6161.64 19882.38 22537.63 21189.48 12577.44 5965.60 22586.01 197
sd_testset67.79 21265.95 22173.32 20781.70 15546.33 28568.99 34580.30 22166.58 6161.64 19882.38 22530.45 29987.63 19955.86 22865.60 22586.01 197
IB-MVS68.87 274.01 9472.03 11779.94 3883.04 11955.50 5390.24 2588.65 4367.14 5561.38 20081.74 23753.21 4294.28 2160.45 18462.41 25790.03 105
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAMVS69.51 18168.16 17673.56 20576.30 26448.71 23282.57 21077.17 28662.10 14161.32 20184.23 18941.90 16483.46 28754.80 23573.09 16388.50 146
1112_ss70.05 16669.37 15872.10 23480.77 18642.78 32785.12 13376.75 29359.69 18461.19 20292.12 4247.48 8583.84 28053.04 24668.21 20289.66 112
GeoE69.96 17067.88 18076.22 12381.11 17551.71 15884.15 16476.74 29559.83 18160.91 20384.38 18741.56 16988.10 18151.67 25770.57 18788.84 135
EPMVS68.45 19965.44 23577.47 9484.91 7656.17 4371.89 33381.91 19161.72 14860.85 20472.49 33336.21 24387.06 21547.32 28571.62 17689.17 127
v2v48269.55 18067.64 18675.26 16172.32 31853.83 10284.93 14281.94 18865.37 8660.80 20579.25 25941.62 16788.98 14563.03 15959.51 27282.98 256
MVS_111021_LR69.07 18567.91 17872.54 22377.27 24949.56 20579.77 27173.96 32159.33 19460.73 20687.82 14430.19 30181.53 29869.94 10872.19 17286.53 189
GA-MVS69.04 18666.70 20476.06 13075.11 28152.36 14283.12 19880.23 22263.32 12160.65 20779.22 26030.98 29688.37 16861.25 17266.41 21887.46 170
PAPM_NR71.80 13669.98 15077.26 10081.54 16553.34 11878.60 28385.25 11753.46 28560.53 20888.66 12345.69 10789.24 13256.49 22379.62 9689.19 126
v114468.81 19266.82 20074.80 17072.34 31753.46 11084.68 15081.77 19564.25 9960.28 20977.91 27040.23 18388.95 14660.37 18559.52 27181.97 265
RRT-MVS73.29 10971.37 12579.07 5284.63 8054.16 9978.16 28586.64 8461.67 14960.17 21082.35 22840.63 18092.26 5370.19 10677.87 10890.81 83
dmvs_re67.61 21566.00 21972.42 22781.86 15043.45 31764.67 36080.00 22569.56 3260.07 21185.00 18334.71 26087.63 19951.48 25866.68 21386.17 196
thres20068.71 19567.27 19673.02 21284.73 7846.76 27785.03 13687.73 6362.34 13959.87 21283.45 20243.15 14688.32 17331.25 35867.91 20683.98 235
3Dnovator64.70 674.46 8772.48 10280.41 2982.84 13055.40 5983.08 19988.61 4767.61 5159.85 21388.66 12334.57 26293.97 2458.42 19988.70 1291.85 52
PVSNet62.49 869.27 18467.81 18473.64 20284.41 8551.85 15484.63 15377.80 27466.42 6559.80 21484.95 18422.14 35580.44 31355.03 23275.11 14588.62 141
QAPM71.88 13469.33 16079.52 4082.20 14354.30 9386.30 9788.77 4056.61 25359.72 21587.48 15033.90 26995.36 1347.48 28481.49 7288.90 132
BH-w/o70.02 16768.51 16974.56 17282.77 13150.39 18486.60 9378.14 27059.77 18259.65 21685.57 17639.27 19487.30 20949.86 26774.94 14985.99 199
UniMVSNet (Re)67.71 21366.80 20170.45 26774.44 29142.93 32582.42 21884.90 12863.69 11259.63 21780.99 24347.18 8785.23 26451.17 26156.75 30283.19 251
Baseline_NR-MVSNet65.49 25364.27 24969.13 28474.37 29441.65 33683.39 19178.85 25259.56 18659.62 21876.88 28940.75 17687.44 20549.99 26555.05 31878.28 318
v119267.96 20865.74 22774.63 17171.79 32153.43 11584.06 16880.99 21063.19 12459.56 21977.46 27737.50 21788.65 15658.20 20358.93 27881.79 268
HPM-MVS_fast67.86 20966.28 21372.61 22180.67 18948.34 24481.18 24875.95 30450.81 30559.55 22088.05 14027.86 31385.98 25058.83 19373.58 15883.51 244
test_vis1_n51.19 34349.66 34155.76 36451.26 40029.85 38867.20 35338.86 40432.12 38759.50 22179.86 2538.78 39858.23 39356.95 22052.46 33779.19 304
V4267.66 21465.60 23173.86 19470.69 33653.63 10781.50 24378.61 26163.85 10859.49 22277.49 27637.98 20387.65 19862.33 16258.43 28280.29 296
miper_enhance_ethall69.77 17368.90 16572.38 22878.93 22049.91 19783.29 19378.85 25264.90 9159.37 22379.46 25652.77 4485.16 26663.78 15458.72 27982.08 264
PatchmatchNetpermissive67.07 23363.63 25377.40 9583.10 11558.03 1172.11 33177.77 27558.85 20759.37 22370.83 34637.84 20584.93 27042.96 31069.83 19389.26 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FE-MVS64.15 25760.43 27775.30 15680.85 18349.86 19968.28 34978.37 26650.26 31059.31 22573.79 31826.19 32591.92 6140.19 31766.67 21484.12 228
OMC-MVS65.97 25065.06 24168.71 29272.97 30942.58 33178.61 28275.35 30954.72 27559.31 22586.25 16933.30 27477.88 33857.99 20567.05 21185.66 207
MDTV_nov1_ep13_2view43.62 31571.13 33654.95 27359.29 22736.76 23446.33 29487.32 174
v14419267.86 20965.76 22674.16 18471.68 32353.09 12684.14 16580.83 21262.85 12959.21 22877.28 28139.30 19388.00 18458.67 19557.88 29581.40 278
v192192067.45 22065.23 23974.10 18671.51 32652.90 13283.75 17880.44 21862.48 13759.12 22977.13 28236.98 23087.90 18657.53 21558.14 28981.49 273
baseline275.15 8274.54 7976.98 10981.67 15851.74 15783.84 17591.94 369.97 2758.98 23086.02 17059.73 991.73 6468.37 11970.40 18987.48 169
v14868.24 20566.35 21073.88 19371.76 32251.47 16484.23 16281.90 19263.69 11258.94 23176.44 29443.72 13787.78 19360.63 17855.86 31382.39 262
131471.11 14769.41 15776.22 12379.32 20950.49 18080.23 26685.14 12359.44 18958.93 23288.89 11933.83 27189.60 12461.49 17177.42 11388.57 143
cascas69.01 18766.13 21677.66 8979.36 20755.41 5886.99 8383.75 15756.69 25158.92 23381.35 24124.31 34092.10 5853.23 24370.61 18685.46 211
PS-MVSNAJss68.78 19467.17 19773.62 20473.01 30848.33 24684.95 14184.81 13159.30 19558.91 23479.84 25437.77 20688.86 15062.83 16063.12 25183.67 243
HyFIR lowres test69.94 17167.58 18777.04 10477.11 25557.29 2281.49 24579.11 25058.27 21658.86 23580.41 24842.33 15586.96 21861.91 16768.68 20186.87 180
MDTV_nov1_ep1361.56 26481.68 15755.12 6972.41 32578.18 26959.19 19758.85 23669.29 35534.69 26186.16 24236.76 33262.96 252
ACMMPcopyleft70.81 15569.29 16175.39 15181.52 16751.92 15383.43 18783.03 17356.67 25258.80 23788.91 11831.92 28988.58 16065.89 13873.39 15985.67 206
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tpm cat166.28 24562.78 25576.77 11781.40 17057.14 2470.03 34077.19 28553.00 28958.76 23870.73 34946.17 9886.73 22543.27 30864.46 23386.44 191
thisisatest053070.47 16168.56 16776.20 12579.78 20251.52 16383.49 18688.58 4957.62 23258.60 23982.79 21151.03 5691.48 6952.84 24862.36 25985.59 210
UniMVSNet_NR-MVSNet68.82 19168.29 17370.40 26975.71 27642.59 32984.23 16286.78 7866.31 6758.51 24082.45 22251.57 5184.64 27453.11 24455.96 31183.96 237
DU-MVS66.84 23865.74 22770.16 27273.27 30542.59 32981.50 24382.92 17663.53 11658.51 24082.11 23240.75 17684.64 27453.11 24455.96 31183.24 249
WR-MVS67.58 21666.76 20270.04 27675.92 27445.06 30286.23 9885.28 11564.31 9858.50 24281.00 24244.80 12582.00 29749.21 27355.57 31683.06 254
3Dnovator+62.71 772.29 12670.50 13677.65 9083.40 10851.29 16987.32 7386.40 8859.01 20458.49 24388.32 13332.40 28291.27 7457.04 21982.15 6790.38 92
cl2268.85 18967.69 18572.35 22978.07 23749.98 19682.45 21778.48 26462.50 13658.46 24477.95 26949.99 6785.17 26562.55 16158.72 27981.90 267
Test_1112_low_res67.18 22866.23 21470.02 27778.75 22341.02 34383.43 18773.69 32357.29 23858.45 24582.39 22445.30 11280.88 30450.50 26366.26 22388.16 152
v124066.99 23464.68 24473.93 19171.38 32952.66 13683.39 19179.98 22661.97 14458.44 24677.11 28335.25 25387.81 18856.46 22558.15 28781.33 281
TranMVSNet+NR-MVSNet66.94 23665.61 23070.93 26273.45 30143.38 31983.02 20284.25 14665.31 8858.33 24781.90 23639.92 19085.52 25749.43 27054.89 32083.89 239
miper_ehance_all_eth68.70 19767.58 18772.08 23576.91 25749.48 21182.47 21678.45 26562.68 13258.28 24877.88 27150.90 5785.01 26961.91 16758.72 27981.75 269
EPP-MVSNet71.14 14570.07 14974.33 17979.18 21346.52 28083.81 17686.49 8556.32 25857.95 24984.90 18554.23 3789.14 13658.14 20469.65 19587.33 173
CPTT-MVS67.15 22965.84 22471.07 25980.96 17850.32 18981.94 22674.10 31746.18 33957.91 25087.64 14929.57 30381.31 30064.10 15370.18 19181.56 272
Effi-MVS+-dtu66.24 24764.96 24370.08 27475.17 28049.64 20282.01 22474.48 31562.15 14057.83 25176.08 30230.59 29883.79 28165.40 14660.93 26576.81 331
AdaColmapbinary67.86 20965.48 23275.00 16688.15 3654.99 7486.10 10176.63 29849.30 31457.80 25286.65 16529.39 30588.94 14845.10 29970.21 19081.06 286
tfpn200view967.57 21766.13 21671.89 24784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21982.78 260
thres40067.40 22466.13 21671.19 25784.05 9345.07 29983.40 18987.71 6560.79 16957.79 25382.76 21243.53 14087.80 19028.80 36566.36 21980.71 291
SCA63.84 26060.01 28175.32 15378.58 22957.92 1261.61 37377.53 27956.71 25057.75 25570.77 34731.97 28779.91 32148.80 27556.36 30388.13 155
FIs70.00 16870.24 14769.30 28377.93 24038.55 35383.99 17087.72 6466.86 5957.66 25684.17 19052.28 4785.31 26152.72 25368.80 19984.02 231
c3_l67.97 20766.66 20571.91 24676.20 26749.31 21482.13 22378.00 27261.99 14357.64 25776.94 28649.41 7284.93 27060.62 17957.01 30181.49 273
GBi-Net67.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
test167.09 23165.47 23371.96 24082.71 13346.36 28283.52 18083.31 16558.55 21357.58 25876.23 29836.72 23786.20 23947.25 28663.40 24283.32 246
FMVSNet368.84 19067.40 19373.19 21185.05 7348.53 23685.71 11385.36 10960.90 16857.58 25879.15 26142.16 15886.77 22347.25 28663.40 24284.27 227
CR-MVSNet62.47 27659.04 28872.77 21873.97 29956.57 3460.52 37671.72 33860.04 17857.49 26165.86 36538.94 19680.31 31442.86 31159.93 26881.42 276
RPMNet59.29 29354.25 31774.42 17673.97 29956.57 3460.52 37676.98 28935.72 37857.49 26158.87 38837.73 20985.26 26327.01 37659.93 26881.42 276
BH-untuned68.28 20366.40 20973.91 19281.62 16050.01 19585.56 11777.39 28257.63 23157.47 26383.69 19836.36 24287.08 21444.81 30073.08 16484.65 222
XVG-OURS-SEG-HR62.02 27959.54 28369.46 28165.30 36545.88 29065.06 35873.57 32546.45 33557.42 26483.35 20526.95 32078.09 33253.77 24164.03 23684.42 225
XVG-OURS61.88 28059.34 28569.49 28065.37 36446.27 28664.80 35973.49 32647.04 33157.41 26582.85 21025.15 33378.18 33053.00 24764.98 22784.01 232
IS-MVSNet68.80 19367.55 18972.54 22378.50 23143.43 31881.03 25079.35 24559.12 20257.27 26686.71 16246.05 10187.70 19644.32 30475.60 13686.49 190
TAPA-MVS56.12 1461.82 28160.18 28066.71 31178.48 23237.97 35775.19 30476.41 30146.82 33257.04 26786.52 16727.67 31677.03 34426.50 37867.02 21285.14 214
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
eth_miper_zixun_eth66.98 23565.28 23872.06 23675.61 27750.40 18381.00 25176.97 29262.00 14256.99 26876.97 28544.84 12285.58 25658.75 19454.42 32480.21 297
mmtdpeth57.93 31054.78 31467.39 30472.32 31843.38 31972.72 32168.93 35854.45 27956.85 26962.43 37617.02 37683.46 28757.95 20830.31 39575.31 345
DIV-MVS_self_test67.43 22165.93 22271.94 24476.33 26248.01 25882.57 21079.11 25061.31 15656.73 27076.92 28746.09 10086.43 23657.98 20656.31 30581.39 279
cl____67.43 22165.93 22271.95 24376.33 26248.02 25782.58 20979.12 24961.30 15756.72 27176.92 28746.12 9986.44 23557.98 20656.31 30581.38 280
FMVSNet267.57 21765.79 22572.90 21582.71 13347.97 25985.15 12984.93 12758.55 21356.71 27278.26 26836.72 23786.67 22646.15 29562.94 25384.07 230
OpenMVScopyleft61.00 1169.99 16967.55 18977.30 9778.37 23454.07 10184.36 15885.76 10157.22 24056.71 27287.67 14830.79 29792.83 3643.04 30984.06 5685.01 216
Anonymous2023121166.08 24963.67 25273.31 20883.07 11848.75 23086.01 10484.67 13745.27 34356.54 27476.67 29228.06 31188.95 14652.78 25059.95 26782.23 263
MVP-Stereo70.97 15170.44 13772.59 22276.03 27151.36 16685.02 13786.99 7560.31 17656.53 27578.92 26340.11 18690.00 11160.00 18890.01 776.41 338
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch72.34 12471.26 12675.61 14182.38 14055.55 5288.00 5589.95 2165.38 8556.51 27680.74 24732.28 28492.89 3457.95 20888.10 1578.39 316
Fast-Effi-MVS+-dtu66.53 24264.10 25173.84 19572.41 31652.30 14584.73 14775.66 30559.51 18756.34 27779.11 26228.11 31085.85 25557.74 21463.29 24683.35 245
CVMVSNet60.85 28660.44 27662.07 33875.00 28432.73 37679.54 27373.49 32636.98 37456.28 27883.74 19629.28 30669.53 37746.48 29263.23 24783.94 238
thres600view766.46 24365.12 24070.47 26683.41 10543.80 31482.15 22187.78 6059.37 19156.02 27982.21 23043.73 13586.90 22126.51 37764.94 22880.71 291
thres100view90066.87 23765.42 23671.24 25583.29 11143.15 32381.67 23687.78 6059.04 20355.92 28082.18 23143.73 13587.80 19028.80 36566.36 21982.78 260
IterMVS-LS66.63 24065.36 23770.42 26875.10 28248.90 22581.45 24676.69 29761.05 16255.71 28177.10 28445.86 10483.65 28457.44 21657.88 29578.70 309
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
114514_t69.87 17267.88 18075.85 13588.38 2952.35 14386.94 8583.68 15853.70 28355.68 28285.60 17530.07 30291.20 7855.84 22971.02 18283.99 233
dp64.41 25561.58 26372.90 21582.40 13954.09 10072.53 32376.59 29960.39 17555.68 28270.39 35035.18 25576.90 34739.34 32061.71 26187.73 164
tt080563.39 26561.31 26869.64 27969.36 34338.87 35178.00 28685.48 10348.82 31855.66 28481.66 23824.38 33986.37 23749.04 27459.36 27583.68 242
Syy-MVS61.51 28261.35 26762.00 34081.73 15330.09 38580.97 25281.02 20660.93 16655.06 28582.64 21735.09 25680.81 30616.40 40458.32 28375.10 349
myMVS_eth3d63.52 26363.56 25463.40 33281.73 15334.28 36680.97 25281.02 20660.93 16655.06 28582.64 21748.00 8280.81 30623.42 38758.32 28375.10 349
reproduce_monomvs69.71 17468.52 16873.29 21086.43 5248.21 24983.91 17286.17 9468.02 4354.91 28777.46 27742.96 15088.86 15068.44 11848.38 34782.80 259
FC-MVSNet-test67.49 21967.91 17866.21 31576.06 26933.06 37480.82 25687.18 7164.44 9554.81 28882.87 20950.40 6482.60 29248.05 28166.55 21782.98 256
UniMVSNet_ETH3D62.51 27460.49 27568.57 29668.30 35340.88 34573.89 31279.93 22951.81 30054.77 28979.61 25524.80 33681.10 30149.93 26661.35 26283.73 241
tttt051768.33 20266.29 21274.46 17478.08 23649.06 21780.88 25589.08 3054.40 28054.75 29080.77 24651.31 5390.33 10249.35 27158.01 29183.99 233
MIMVSNet63.12 26860.29 27871.61 24875.92 27446.65 27865.15 35781.94 18859.14 20154.65 29169.47 35325.74 32880.63 30941.03 31669.56 19787.55 168
ACMM58.35 1264.35 25662.01 26171.38 25374.21 29548.51 23782.25 22079.66 23547.61 32754.54 29280.11 25025.26 33286.00 24951.26 25963.16 24979.64 302
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet164.57 25462.11 26071.96 24077.32 24846.36 28283.52 18083.31 16552.43 29454.42 29376.23 29827.80 31486.20 23942.59 31361.34 26383.32 246
PatchT56.60 31652.97 32367.48 30272.94 31046.16 28957.30 38473.78 32238.77 36854.37 29457.26 39137.52 21578.06 33332.02 35352.79 33678.23 320
MonoMVSNet66.80 23964.41 24773.96 19076.21 26648.07 25576.56 29678.26 26864.34 9754.32 29574.02 31637.21 22486.36 23864.85 15153.96 32787.45 171
v867.25 22664.99 24274.04 18772.89 31153.31 12082.37 21980.11 22461.54 15254.29 29676.02 30342.89 15188.41 16758.43 19756.36 30380.39 295
pmmvs463.34 26661.07 27170.16 27270.14 33850.53 17979.97 27071.41 34355.08 27054.12 29778.58 26532.79 27982.09 29650.33 26457.22 30077.86 322
v1066.61 24164.20 25073.83 19672.59 31453.37 11681.88 22879.91 23061.11 16054.09 29875.60 30540.06 18788.26 17756.47 22456.10 30979.86 301
CL-MVSNet_self_test62.98 26961.14 27068.50 29765.86 36242.96 32484.37 15782.98 17460.98 16453.95 29972.70 33240.43 18183.71 28341.10 31547.93 35078.83 308
pm-mvs164.12 25862.56 25668.78 29071.68 32338.87 35182.89 20481.57 19655.54 26653.89 30077.82 27237.73 20986.74 22448.46 27953.49 33280.72 290
LPG-MVS_test66.44 24464.58 24572.02 23774.42 29248.60 23383.07 20080.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
LGP-MVS_train72.02 23774.42 29248.60 23380.64 21454.69 27653.75 30183.83 19425.73 32986.98 21660.33 18664.71 22980.48 293
NR-MVSNet67.25 22665.99 22071.04 26073.27 30543.91 31285.32 12384.75 13466.05 7553.65 30382.11 23245.05 11585.97 25247.55 28356.18 30883.24 249
tpmvs62.45 27759.42 28471.53 25283.93 9554.32 9270.03 34077.61 27851.91 29753.48 30468.29 35937.91 20486.66 22733.36 34858.27 28573.62 360
ET-MVSNet_ETH3D75.23 8074.08 8478.67 6484.52 8355.59 5188.92 4489.21 2868.06 4253.13 30590.22 9149.71 7187.62 20172.12 9770.82 18492.82 25
test0.0.03 162.54 27362.44 25762.86 33772.28 32029.51 39082.93 20378.78 25559.18 19953.07 30682.41 22336.91 23277.39 34237.45 32458.96 27781.66 271
miper_lstm_enhance63.91 25962.30 25868.75 29175.06 28346.78 27669.02 34481.14 20459.68 18552.76 30772.39 33640.71 17877.99 33656.81 22153.09 33581.48 275
TransMVSNet (Re)62.82 27160.76 27369.02 28573.98 29841.61 33786.36 9579.30 24856.90 24452.53 30876.44 29441.85 16587.60 20238.83 32140.61 37477.86 322
test_fmvs245.89 35444.32 35650.62 37045.85 40924.70 40058.87 38237.84 40725.22 39652.46 30974.56 3127.07 40154.69 39749.28 27247.70 35172.48 366
ACMP61.11 966.24 24764.33 24872.00 23974.89 28649.12 21683.18 19779.83 23155.41 26752.29 31082.68 21625.83 32786.10 24560.89 17563.94 23880.78 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf63.84 26061.56 26470.70 26468.78 34744.69 30381.63 23781.44 19950.28 30752.27 31176.26 29726.72 32186.11 24360.83 17655.84 31481.29 284
Vis-MVSNet (Re-imp)65.52 25265.63 22965.17 32377.49 24630.54 38175.49 30277.73 27659.34 19252.26 31286.69 16349.38 7380.53 31237.07 32875.28 14084.42 225
pmmvs562.80 27261.18 26967.66 30169.53 34242.37 33482.65 20875.19 31054.30 28152.03 31378.51 26631.64 29280.67 30848.60 27758.15 28779.95 300
CNLPA60.59 28758.44 29167.05 30879.21 21247.26 27279.75 27264.34 37242.46 36151.90 31483.94 19227.79 31575.41 35437.12 32659.49 27378.47 313
IterMVS63.77 26261.67 26270.08 27472.68 31351.24 17080.44 26175.51 30660.51 17451.41 31573.70 32232.08 28678.91 32654.30 23754.35 32580.08 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal61.47 28359.09 28768.62 29476.29 26541.69 33581.14 24985.16 12154.48 27851.32 31673.63 32332.32 28386.89 22221.78 39155.71 31577.29 328
anonymousdsp60.46 28857.65 29468.88 28663.63 37645.09 29872.93 32078.63 26046.52 33451.12 31772.80 33121.46 35883.07 29157.79 21253.97 32678.47 313
ADS-MVSNet255.21 32651.44 33166.51 31480.60 19049.56 20555.03 38865.44 36744.72 34751.00 31861.19 38022.83 34775.41 35428.54 36853.63 32974.57 354
ADS-MVSNet56.17 32051.95 33068.84 28780.60 19053.07 12755.03 38870.02 35244.72 34751.00 31861.19 38022.83 34778.88 32728.54 36853.63 32974.57 354
jajsoiax63.21 26760.84 27270.32 27068.33 35244.45 30581.23 24781.05 20553.37 28750.96 32077.81 27317.49 37485.49 25959.31 18958.05 29081.02 287
CHOSEN 280x42057.53 31356.38 30560.97 34874.01 29748.10 25446.30 39654.31 38648.18 32450.88 32177.43 27938.37 20259.16 39254.83 23363.14 25075.66 342
mvs_tets62.96 27060.55 27470.19 27168.22 35544.24 31080.90 25480.74 21352.99 29050.82 32277.56 27416.74 37885.44 26059.04 19257.94 29280.89 288
testing359.97 28960.19 27959.32 35277.60 24330.01 38781.75 23381.79 19353.54 28450.34 32379.94 25148.99 7576.91 34517.19 40250.59 34271.03 375
IterMVS-SCA-FT59.12 29658.81 29060.08 35070.68 33745.07 29980.42 26274.25 31643.54 35650.02 32473.73 31931.97 28756.74 39651.06 26253.60 33178.42 315
D2MVS63.49 26461.39 26669.77 27869.29 34448.93 22478.89 28177.71 27760.64 17349.70 32572.10 34127.08 31983.48 28654.48 23662.65 25576.90 330
mvsmamba69.38 18267.52 19174.95 16882.86 12852.22 14767.36 35276.75 29361.14 15949.43 32682.04 23437.26 22284.14 27773.93 8576.91 11788.50 146
Anonymous2023120659.08 29857.59 29563.55 33068.77 34832.14 37980.26 26579.78 23250.00 31149.39 32772.39 33626.64 32278.36 32933.12 35157.94 29280.14 298
Patchmatch-RL test58.72 30354.32 31671.92 24563.91 37444.25 30961.73 37255.19 38457.38 23749.31 32854.24 39437.60 21380.89 30362.19 16547.28 35590.63 86
pmmvs659.64 29157.15 29867.09 30666.01 36036.86 36180.50 25978.64 25945.05 34549.05 32973.94 31727.28 31786.10 24543.96 30649.94 34478.31 317
dmvs_testset57.65 31158.21 29255.97 36374.62 2899.82 42463.75 36363.34 37467.23 5448.89 33083.68 20039.12 19576.14 35023.43 38659.80 27081.96 266
v7n62.50 27559.27 28672.20 23367.25 35849.83 20077.87 28880.12 22352.50 29348.80 33173.07 32732.10 28587.90 18646.83 28954.92 31978.86 307
WR-MVS_H58.91 30158.04 29361.54 34469.07 34633.83 37176.91 29281.99 18751.40 30248.17 33274.67 31040.23 18374.15 35731.78 35548.10 34876.64 335
KD-MVS_2432*160059.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
miper_refine_blended59.04 29956.44 30366.86 30979.07 21445.87 29172.13 32980.42 21955.03 27148.15 33371.01 34436.73 23578.05 33435.21 33930.18 39676.67 332
mvs5depth50.97 34446.98 35062.95 33556.63 39134.23 36862.73 37067.35 36545.03 34648.00 33565.41 36910.40 39279.88 32336.00 33331.27 39474.73 352
CP-MVSNet58.54 30757.57 29661.46 34568.50 35033.96 37076.90 29378.60 26251.67 30147.83 33676.60 29334.99 25972.79 36635.45 33647.58 35277.64 326
PEN-MVS58.35 30857.15 29861.94 34167.55 35734.39 36577.01 29178.35 26751.87 29847.72 33776.73 29133.91 26873.75 36134.03 34647.17 35677.68 324
PLCcopyleft52.38 1860.89 28558.97 28966.68 31381.77 15245.70 29478.96 28074.04 32043.66 35547.63 33883.19 20823.52 34577.78 34137.47 32360.46 26676.55 337
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchMatch-RL56.66 31553.75 32065.37 32277.91 24145.28 29769.78 34260.38 37841.35 36247.57 33973.73 31916.83 37776.91 34536.99 32959.21 27673.92 358
PS-CasMVS58.12 30957.03 30061.37 34668.24 35433.80 37276.73 29478.01 27151.20 30347.54 34076.20 30132.85 27772.76 36735.17 34147.37 35477.55 327
PVSNet_057.04 1361.19 28457.24 29773.02 21277.45 24750.31 19079.43 27777.36 28463.96 10747.51 34172.45 33525.03 33483.78 28252.76 25219.22 41084.96 218
mvsany_test143.38 35842.57 36145.82 37750.96 40126.10 39855.80 38627.74 41727.15 39447.41 34274.39 31318.67 36944.95 40844.66 30136.31 38166.40 383
Patchmtry56.56 31752.95 32467.42 30372.53 31550.59 17859.05 38071.72 33837.86 37246.92 34365.86 36538.94 19680.06 31836.94 33046.72 36071.60 371
JIA-IIPM52.33 34047.77 34866.03 31671.20 33046.92 27540.00 40576.48 30037.10 37346.73 34437.02 40532.96 27677.88 33835.97 33452.45 33873.29 363
DP-MVS59.24 29456.12 30668.63 29388.24 3450.35 18882.51 21564.43 37141.10 36346.70 34578.77 26424.75 33788.57 16322.26 38956.29 30766.96 381
DTE-MVSNet57.03 31455.73 30960.95 34965.94 36132.57 37775.71 29777.09 28851.16 30446.65 34676.34 29632.84 27873.22 36530.94 35944.87 36577.06 329
OpenMVS_ROBcopyleft53.19 1759.20 29556.00 30768.83 28871.13 33144.30 30783.64 17975.02 31146.42 33646.48 34773.03 32818.69 36888.14 17827.74 37361.80 26074.05 357
XVG-ACMP-BASELINE56.03 32152.85 32565.58 31861.91 38140.95 34463.36 36472.43 33245.20 34446.02 34874.09 3149.20 39678.12 33145.13 29858.27 28577.66 325
RPSCF45.77 35544.13 35750.68 36957.67 39029.66 38954.92 39045.25 39526.69 39545.92 34975.92 30417.43 37545.70 40727.44 37445.95 36376.67 332
ppachtmachnet_test58.56 30554.34 31571.24 25571.42 32754.74 8081.84 23072.27 33349.02 31645.86 35068.99 35726.27 32383.30 28930.12 36043.23 36975.69 341
EG-PatchMatch MVS62.40 27859.59 28270.81 26373.29 30349.05 21885.81 10584.78 13251.85 29944.19 35173.48 32515.52 38389.85 11540.16 31867.24 21073.54 361
test_040256.45 31853.03 32266.69 31276.78 25850.31 19081.76 23269.61 35542.79 35943.88 35272.13 33922.82 34986.46 23416.57 40350.94 34163.31 390
LTVRE_ROB45.45 1952.73 33649.74 34061.69 34369.78 34134.99 36344.52 39767.60 36443.11 35843.79 35374.03 31518.54 37081.45 29928.39 37057.94 29268.62 378
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs-eth3d55.97 32252.78 32665.54 31961.02 38346.44 28175.36 30367.72 36349.61 31343.65 35467.58 36121.63 35777.04 34344.11 30544.33 36673.15 365
test20.0355.22 32554.07 31858.68 35563.14 37825.00 39977.69 28974.78 31352.64 29143.43 35572.39 33626.21 32474.76 35629.31 36347.05 35876.28 339
MSDG59.44 29255.14 31272.32 23174.69 28750.71 17474.39 31073.58 32444.44 35043.40 35677.52 27519.45 36490.87 8931.31 35757.49 29975.38 344
FMVSNet558.61 30456.45 30265.10 32477.20 25339.74 34774.77 30577.12 28750.27 30943.28 35767.71 36026.15 32676.90 34736.78 33154.78 32178.65 311
LS3D56.40 31953.82 31964.12 32781.12 17445.69 29573.42 31766.14 36635.30 38243.24 35879.88 25222.18 35479.62 32419.10 39864.00 23767.05 380
ACMH+54.58 1558.55 30655.24 31068.50 29774.68 28845.80 29380.27 26470.21 35047.15 33042.77 35975.48 30616.73 37985.98 25035.10 34354.78 32173.72 359
our_test_359.11 29755.08 31371.18 25871.42 32753.29 12181.96 22574.52 31448.32 32142.08 36069.28 35628.14 30982.15 29434.35 34545.68 36478.11 321
testgi54.25 32952.57 32859.29 35362.76 37921.65 40872.21 32870.47 34853.25 28841.94 36177.33 28014.28 38477.95 33729.18 36451.72 34078.28 318
ACMH53.70 1659.78 29055.94 30871.28 25476.59 25948.35 24380.15 26876.11 30249.74 31241.91 36273.45 32616.50 38090.31 10331.42 35657.63 29875.17 347
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UnsupCasMVSNet_eth57.56 31255.15 31164.79 32664.57 37233.12 37373.17 31983.87 15658.98 20541.75 36370.03 35122.54 35079.92 31946.12 29635.31 38381.32 283
ambc62.06 33953.98 39529.38 39135.08 40879.65 23641.37 36459.96 3846.27 40782.15 29435.34 33838.22 37874.65 353
kuosan50.20 34750.09 33750.52 37173.09 30729.09 39365.25 35674.89 31248.27 32241.34 36560.85 38243.45 14367.48 37918.59 40025.07 40255.01 396
ITE_SJBPF51.84 36858.03 38831.94 38053.57 38936.67 37541.32 36675.23 30811.17 39051.57 40125.81 37948.04 34972.02 369
test_fmvs337.95 36635.75 36844.55 38035.50 41518.92 41248.32 39334.00 41218.36 40541.31 36761.58 3782.29 41748.06 40642.72 31237.71 37966.66 382
F-COLMAP55.96 32353.65 32162.87 33672.76 31242.77 32874.70 30870.37 34940.03 36441.11 36879.36 25717.77 37373.70 36232.80 35253.96 32772.15 367
PM-MVS46.92 35343.76 36056.41 36252.18 39732.26 37863.21 36738.18 40537.99 37140.78 36966.20 3645.09 41065.42 38148.19 28041.99 37171.54 372
EU-MVSNet52.63 33750.72 33458.37 35662.69 38028.13 39672.60 32275.97 30330.94 38940.76 37072.11 34020.16 36270.80 37335.11 34246.11 36276.19 340
mamv442.60 35944.05 35938.26 38759.21 38638.00 35644.14 39939.03 40325.03 39740.61 37168.39 35837.01 22924.28 42146.62 29136.43 38052.50 399
ttmdpeth40.58 36237.50 36649.85 37249.40 40322.71 40356.65 38546.78 39128.35 39240.29 37269.42 3545.35 40961.86 38420.16 39521.06 40864.96 387
OurMVSNet-221017-052.39 33948.73 34363.35 33365.21 36638.42 35468.54 34864.95 36838.19 36939.57 37371.43 34313.23 38679.92 31937.16 32540.32 37571.72 370
K. test v354.04 33049.42 34267.92 30068.55 34942.57 33275.51 30163.07 37552.07 29539.21 37464.59 37119.34 36582.21 29337.11 32725.31 40178.97 306
SixPastTwentyTwo54.37 32750.10 33667.21 30570.70 33541.46 34074.73 30664.69 36947.56 32839.12 37569.49 35218.49 37184.69 27331.87 35434.20 38975.48 343
UnsupCasMVSNet_bld53.86 33150.53 33563.84 32863.52 37734.75 36471.38 33481.92 19046.53 33338.95 37657.93 38920.55 36180.20 31739.91 31934.09 39076.57 336
Patchmatch-test53.33 33548.17 34568.81 28973.31 30242.38 33342.98 40058.23 38032.53 38438.79 37770.77 34739.66 19173.51 36325.18 38052.06 33990.55 87
test_vis1_rt40.29 36338.64 36445.25 37948.91 40630.09 38559.44 37927.07 41824.52 39938.48 37851.67 3996.71 40449.44 40244.33 30346.59 36156.23 394
KD-MVS_self_test49.24 34846.85 35156.44 36154.32 39322.87 40257.39 38373.36 33044.36 35137.98 37959.30 38718.97 36771.17 37233.48 34742.44 37075.26 346
LCM-MVSNet-Re58.82 30256.54 30165.68 31779.31 21029.09 39361.39 37545.79 39360.73 17137.65 38072.47 33431.42 29381.08 30249.66 26870.41 18886.87 180
Anonymous2024052151.65 34148.42 34461.34 34756.43 39239.65 34973.57 31573.47 32936.64 37636.59 38163.98 37210.75 39172.25 37035.35 33749.01 34572.11 368
CMPMVSbinary40.41 2155.34 32452.64 32763.46 33160.88 38443.84 31361.58 37471.06 34530.43 39036.33 38274.63 31124.14 34175.44 35348.05 28166.62 21571.12 374
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
COLMAP_ROBcopyleft43.60 2050.90 34548.05 34659.47 35167.81 35640.57 34671.25 33562.72 37736.49 37736.19 38373.51 32413.48 38573.92 36020.71 39350.26 34363.92 389
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lessismore_v067.98 29964.76 37141.25 34145.75 39436.03 38465.63 36819.29 36684.11 27835.67 33521.24 40778.59 312
USDC54.36 32851.23 33263.76 32964.29 37337.71 35862.84 36973.48 32856.85 24535.47 38571.94 3429.23 39578.43 32838.43 32248.57 34675.13 348
N_pmnet41.25 36039.77 36345.66 37868.50 3500.82 43072.51 3240.38 42935.61 37935.26 38661.51 37920.07 36367.74 37823.51 38540.63 37368.42 379
DSMNet-mixed38.35 36435.36 36947.33 37648.11 40714.91 42037.87 40636.60 40819.18 40334.37 38759.56 38615.53 38253.01 40020.14 39646.89 35974.07 356
pmmvs345.53 35641.55 36257.44 35848.97 40539.68 34870.06 33957.66 38128.32 39334.06 38857.29 3908.50 39966.85 38034.86 34434.26 38865.80 385
new-patchmatchnet48.21 35046.55 35253.18 36757.73 38918.19 41670.24 33871.02 34645.70 34033.70 38960.23 38318.00 37269.86 37627.97 37234.35 38771.49 373
MVS-HIRNet49.01 34944.71 35361.92 34276.06 26946.61 27963.23 36654.90 38524.77 39833.56 39036.60 40721.28 35975.88 35229.49 36262.54 25663.26 391
AllTest47.32 35244.66 35455.32 36565.08 36837.50 35962.96 36854.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
TestCases55.32 36565.08 36837.50 35954.25 38735.45 38033.42 39172.82 3299.98 39359.33 38924.13 38343.84 36769.13 376
dongtai43.51 35744.07 35841.82 38263.75 37521.90 40663.80 36272.05 33539.59 36533.35 39354.54 39341.04 17357.30 39410.75 41117.77 41146.26 405
MIMVSNet150.35 34647.81 34757.96 35761.53 38227.80 39767.40 35174.06 31943.25 35733.31 39465.38 37016.03 38171.34 37121.80 39047.55 35374.75 351
YYNet153.82 33249.96 33865.41 32170.09 34048.95 22272.30 32671.66 34044.25 35231.89 39563.07 37523.73 34373.95 35933.26 34939.40 37673.34 362
MDA-MVSNet_test_wron53.82 33249.95 33965.43 32070.13 33949.05 21872.30 32671.65 34144.23 35331.85 39663.13 37423.68 34474.01 35833.25 35039.35 37773.23 364
TDRefinement40.91 36138.37 36548.55 37550.45 40233.03 37558.98 38150.97 39028.50 39129.89 39767.39 3626.21 40854.51 39817.67 40135.25 38458.11 393
TinyColmap48.15 35144.49 35559.13 35465.73 36338.04 35563.34 36562.86 37638.78 36729.48 39867.23 3636.46 40673.30 36424.59 38241.90 37266.04 384
mvsany_test328.00 37525.98 37734.05 39228.97 42015.31 41834.54 40918.17 42316.24 40729.30 39953.37 3972.79 41533.38 41930.01 36120.41 40953.45 398
test_f27.12 37724.85 37833.93 39326.17 42515.25 41930.24 41322.38 42212.53 41228.23 40049.43 4002.59 41634.34 41825.12 38126.99 39952.20 400
LF4IMVS33.04 37332.55 37334.52 39140.96 41022.03 40544.45 39835.62 40920.42 40128.12 40162.35 3775.03 41131.88 42021.61 39234.42 38649.63 402
WB-MVS37.41 36736.37 36740.54 38554.23 39410.43 42365.29 35543.75 39634.86 38327.81 40254.63 39224.94 33563.21 3826.81 41815.00 41347.98 404
MDA-MVSNet-bldmvs51.56 34247.75 34963.00 33471.60 32547.32 27169.70 34372.12 33443.81 35427.65 40363.38 37321.97 35675.96 35127.30 37532.19 39165.70 386
MVStest138.35 36434.53 37049.82 37351.43 39930.41 38250.39 39255.25 38317.56 40626.45 40465.85 36711.72 38757.00 39514.79 40517.31 41262.05 392
SSC-MVS35.20 36934.30 37137.90 38852.58 3968.65 42661.86 37141.64 40031.81 38825.54 40552.94 39823.39 34659.28 3916.10 41912.86 41445.78 407
new_pmnet33.56 37231.89 37438.59 38649.01 40420.42 40951.01 39137.92 40620.58 40023.45 40646.79 4016.66 40549.28 40420.00 39731.57 39346.09 406
FPMVS35.40 36833.67 37240.57 38446.34 40828.74 39541.05 40257.05 38220.37 40222.27 40753.38 3966.87 40344.94 4098.62 41247.11 35748.01 403
test_vis3_rt24.79 38122.95 38430.31 39728.59 42118.92 41237.43 40717.27 42512.90 41021.28 40829.92 4141.02 42436.35 41328.28 37129.82 39835.65 408
LCM-MVSNet28.07 37423.85 38240.71 38327.46 42418.93 41130.82 41246.19 39212.76 41116.40 40934.70 4101.90 42048.69 40520.25 39424.22 40354.51 397
APD_test126.46 37924.41 38032.62 39637.58 41221.74 40740.50 40430.39 41411.45 41316.33 41043.76 4021.63 42241.62 41011.24 40926.82 40034.51 410
ANet_high34.39 37029.59 37648.78 37430.34 41922.28 40455.53 38763.79 37338.11 37015.47 41136.56 4086.94 40259.98 38813.93 4075.64 42264.08 388
test_method24.09 38221.07 38633.16 39427.67 4238.35 42826.63 41435.11 4113.40 42014.35 41236.98 4063.46 41435.31 41519.08 39922.95 40455.81 395
PMMVS226.71 37822.98 38337.87 38936.89 4138.51 42742.51 40129.32 41619.09 40413.01 41337.54 4042.23 41853.11 39914.54 40611.71 41551.99 401
tmp_tt9.44 38910.68 3925.73 4052.49 4284.21 42910.48 41818.04 4240.34 42212.59 41420.49 41611.39 3897.03 42413.84 4086.46 4215.95 419
testf121.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
APD_test221.11 38319.08 38727.18 39930.56 41718.28 41433.43 41024.48 4198.02 41712.02 41533.50 4110.75 42635.09 4167.68 41421.32 40528.17 412
PMVScopyleft19.57 2225.07 38022.43 38532.99 39523.12 42622.98 40140.98 40335.19 41015.99 40811.95 41735.87 4091.47 42349.29 4035.41 42131.90 39226.70 414
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft27.47 37624.26 38137.12 39060.55 38529.17 39211.68 41760.00 37914.18 40910.52 41815.12 4192.20 41963.01 3838.39 41335.65 38219.18 415
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive16.60 2317.34 38813.39 39129.16 39828.43 42219.72 41013.73 41623.63 4217.23 4197.96 41921.41 4150.80 42536.08 4146.97 41610.39 41631.69 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft13.10 40321.34 4278.99 42510.02 42710.59 4157.53 42030.55 4131.82 42114.55 4226.83 4177.52 41815.75 416
E-PMN19.16 38518.40 38921.44 40136.19 41413.63 42147.59 39430.89 41310.73 4145.91 42116.59 4173.66 41339.77 4115.95 4208.14 41710.92 417
EMVS18.42 38617.66 39020.71 40234.13 41612.64 42246.94 39529.94 41510.46 4165.58 42214.93 4204.23 41238.83 4125.24 4227.51 41910.67 418
wuyk23d9.11 3908.77 39410.15 40440.18 41116.76 41720.28 4151.01 4282.58 4212.66 4230.98 4230.23 42812.49 4234.08 4236.90 4201.19 420
EGC-MVSNET33.75 37130.42 37543.75 38164.94 37036.21 36260.47 37840.70 4020.02 4230.10 42453.79 3957.39 40060.26 38711.09 41035.23 38534.79 409
testmvs6.14 3928.18 3950.01 4060.01 4290.00 43273.40 3180.00 4300.00 4240.02 4250.15 4240.00 4290.00 4250.02 4240.00 4230.02 421
test1236.01 3938.01 3960.01 4060.00 4300.01 43171.93 3320.00 4300.00 4240.02 4250.11 4250.00 4290.00 4250.02 4240.00 4230.02 421
mmdepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
test_blank0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
cdsmvs_eth3d_5k18.33 38724.44 3790.00 4080.00 4300.00 4320.00 41989.40 250.00 4240.00 42792.02 4638.55 2000.00 4250.00 4260.00 4230.00 423
pcd_1.5k_mvsjas3.15 3944.20 3970.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 42637.77 2060.00 4250.00 4260.00 4230.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
sosnet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
Regformer0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
ab-mvs-re7.68 39110.24 3930.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 42792.12 420.00 4290.00 4250.00 4260.00 4230.00 423
uanet0.00 3950.00 3980.00 4080.00 4300.00 4320.00 4190.00 4300.00 4240.00 4270.00 4260.00 4290.00 4250.00 4260.00 4230.00 423
WAC-MVS34.28 36622.56 388
MSC_two_6792asdad81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
No_MVS81.53 1591.77 456.03 4691.10 1196.22 881.46 3386.80 2892.34 35
eth-test20.00 430
eth-test0.00 430
OPU-MVS81.71 1392.05 355.97 4892.48 394.01 567.21 295.10 1589.82 392.55 394.06 3
save fliter85.35 6856.34 4189.31 4081.46 19861.55 151
test_0728_SECOND82.20 889.50 1557.73 1392.34 588.88 3496.39 481.68 2987.13 2192.47 31
GSMVS88.13 155
sam_mvs138.86 19888.13 155
sam_mvs35.99 249
MTGPAbinary81.31 201
test_post170.84 33714.72 42134.33 26583.86 27948.80 275
test_post16.22 41837.52 21584.72 272
patchmatchnet-post59.74 38538.41 20179.91 321
MTMP87.27 7715.34 426
gm-plane-assit83.24 11254.21 9670.91 2188.23 13595.25 1466.37 131
test9_res78.72 4885.44 4391.39 66
agg_prior275.65 6885.11 4791.01 78
test_prior456.39 4087.15 81
test_prior78.39 7486.35 5354.91 7785.45 10689.70 12190.55 87
新几何281.61 239
旧先验181.57 16447.48 26771.83 33688.66 12336.94 23178.34 10588.67 139
无先验85.19 12878.00 27249.08 31585.13 26752.78 25087.45 171
原ACMM283.77 177
testdata277.81 34045.64 297
segment_acmp44.97 119
testdata177.55 29064.14 102
plane_prior777.95 23848.46 240
plane_prior678.42 23349.39 21336.04 247
plane_prior582.59 17988.30 17465.46 14272.34 17084.49 223
plane_prior483.28 206
plane_prior285.76 10763.60 114
plane_prior178.31 235
plane_prior49.57 20387.43 7064.57 9472.84 165
n20.00 430
nn0.00 430
door-mid41.31 401
test1184.25 146
door43.27 397
HQP5-MVS51.56 161
BP-MVS66.70 128
HQP3-MVS83.68 15873.12 161
HQP2-MVS37.35 218
NP-MVS78.76 22250.43 18285.12 180
ACMMP++_ref63.20 248
ACMMP++59.38 274
Test By Simon39.38 192