This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
IU-MVS89.48 1757.49 1591.38 966.22 6888.26 182.83 2387.60 1892.44 33
PC_three_145266.58 6087.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
MSP-MVS82.30 683.47 178.80 5782.99 11952.71 13285.04 13588.63 4366.08 7286.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 23084.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
test_241102_ONE89.48 1756.89 2988.94 3057.53 22884.61 493.29 2458.81 1196.45 1
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13888.88 3258.00 21683.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
test_241102_TWO88.76 3957.50 23083.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 31
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22974.74 683.40 894.00 621.51 34694.70 2184.07 1789.68 793.82 7
DPM-MVS82.39 482.36 682.49 580.12 19159.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8593.25 294.80 1
test072689.40 2057.45 1792.32 888.63 4357.71 22483.14 1093.96 855.17 25
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
test_part289.33 2355.48 5582.27 12
test_one_060189.39 2257.29 2088.09 5357.21 23682.06 1393.39 2054.94 29
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22481.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD58.00 21681.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 38
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16656.31 4281.59 23686.41 8169.61 3181.72 1688.16 13255.09 2788.04 17774.12 8486.31 3391.09 75
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26248.44 23384.98 13871.08 33163.50 11481.70 1793.52 1750.00 6087.18 20687.80 576.87 11590.32 92
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25848.34 23685.24 12670.62 33563.13 12281.45 1893.62 1649.98 6287.40 20287.76 676.77 11690.20 97
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 26081.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20292.28 5282.73 2585.71 3891.57 59
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19792.50 4682.75 2486.25 3491.57 59
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28149.51 20381.82 22874.08 30666.52 6380.40 2293.46 1946.95 8589.72 11886.69 775.30 13287.61 159
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6986.76 7561.48 15080.26 2393.10 2746.53 9192.41 4879.97 3988.77 1192.08 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6449.56 20090.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
MVS_030481.58 982.05 780.20 3182.36 13754.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 30
CANet80.90 1181.17 1280.09 3787.62 4254.21 9591.60 1486.47 8073.13 1079.89 2693.10 2749.88 6492.98 3484.09 1684.75 4993.08 20
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7579.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 29
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 379.40 2891.09 6655.43 2390.09 10885.01 1280.40 8191.99 48
fmvsm_s_conf0.5_n74.48 8374.12 8075.56 13876.96 24747.85 25385.32 12469.80 34264.16 9878.74 2993.48 1845.51 10589.29 12786.48 866.62 20889.55 113
fmvsm_s_conf0.5_n_a73.68 10073.15 8975.29 15175.45 26948.05 24683.88 17268.84 34763.43 11678.60 3093.37 2245.32 10688.92 14585.39 1164.04 22888.89 129
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25578.56 3192.49 3948.20 7192.65 4279.49 4083.04 5890.39 89
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
fmvsm_s_conf0.1_n73.80 9573.26 8775.43 14373.28 29647.80 25484.57 15469.43 34463.34 11778.40 3293.29 2444.73 12189.22 13085.99 966.28 21589.26 118
fmvsm_s_conf0.1_n_a72.82 11272.05 11275.12 15670.95 32347.97 24982.72 20568.43 34962.52 13378.17 3393.08 3044.21 12488.86 14684.82 1363.54 23488.54 140
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sasdasda78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3793.87 952.58 4093.91 2884.17 1487.92 1692.39 34
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3893.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
EPNet78.36 2978.49 2477.97 8085.49 6352.04 14489.36 3984.07 14373.22 977.03 3991.72 5649.32 6890.17 10773.46 8982.77 5991.69 54
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVSFormer73.53 10272.19 10777.57 8783.02 11755.24 6381.63 23381.44 19150.28 30176.67 4090.91 7244.82 11886.11 23660.83 16780.09 8591.36 67
lupinMVS78.38 2878.11 2879.19 4583.02 11755.24 6391.57 1584.82 12269.12 3476.67 4092.02 4844.82 11890.23 10580.83 3780.09 8592.08 42
alignmvs78.08 3477.98 2978.39 7283.53 10053.22 12089.77 3385.45 9866.11 7076.59 4291.99 5054.07 3489.05 13577.34 6177.00 11392.89 23
CANet_DTU73.71 9873.14 9175.40 14482.61 13350.05 18984.67 15179.36 23469.72 3075.39 4390.03 9529.41 29085.93 24767.99 11779.11 9790.22 95
VNet77.99 3677.92 3078.19 7687.43 4350.12 18890.93 2391.41 867.48 5275.12 4490.15 9246.77 8891.00 8173.52 8878.46 10293.44 11
test_fmvsmconf_n74.41 8574.05 8275.49 14274.16 28748.38 23482.66 20672.57 31967.05 5675.11 4592.88 3346.35 9287.81 18283.93 1971.71 16790.28 93
MGCFI-Net74.07 9074.64 7672.34 22182.90 12343.33 31280.04 26579.96 21665.61 7874.93 4691.85 5348.01 7480.86 29671.41 9777.10 11192.84 24
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2753.44 11187.26 7885.03 11753.79 27774.91 4791.68 5843.80 12890.31 10174.36 8181.82 6888.87 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
旧先验281.73 23145.53 33274.66 4870.48 36558.31 192
SF-MVS77.64 4077.42 3878.32 7483.75 9752.47 13786.63 9387.80 5758.78 20474.63 4992.38 4047.75 7791.35 7078.18 5586.85 2691.15 74
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1988.05 5463.22 12074.63 4990.83 7541.38 16494.40 2275.42 7379.90 9094.72 2
9.1478.19 2785.67 5988.32 5188.84 3659.89 17574.58 5192.62 3746.80 8792.66 4181.40 3685.62 40
SD-MVS76.18 5974.85 7280.18 3285.39 6556.90 2885.75 11082.45 17456.79 24474.48 5291.81 5443.72 13290.75 8974.61 7978.65 10092.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsmconf0.1_n73.69 9973.15 8975.34 14670.71 32448.26 23982.15 21871.83 32366.75 5974.47 5392.59 3844.89 11587.78 18783.59 2071.35 17189.97 104
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6950.27 18790.02 2790.57 1556.58 24974.26 5491.60 6154.26 3192.16 5475.87 6779.91 8993.05 21
jason77.01 4776.45 4978.69 6179.69 19654.74 7990.56 2583.99 14668.26 3874.10 5590.91 7242.14 15289.99 11079.30 4279.12 9691.36 67
jason: jason.
ZD-MVS89.55 1453.46 10884.38 13457.02 23873.97 5691.03 6744.57 12291.17 7675.41 7481.78 70
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5792.75 3446.88 8693.28 3178.79 4884.07 5491.50 63
PHI-MVS77.49 4177.00 4378.95 5285.33 6750.69 17088.57 4988.59 4658.14 21373.60 5893.31 2343.14 14193.79 2973.81 8688.53 1392.37 35
test_prior289.04 4361.88 14373.55 5991.46 6548.01 7474.73 7885.46 41
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 9173.52 6088.09 13348.07 7292.19 5362.24 15684.53 5191.53 61
FOURS183.24 10949.90 19384.98 13878.76 24647.71 31673.42 61
MVS_Test75.85 6674.93 7178.62 6484.08 8955.20 6683.99 16985.17 11268.07 4273.38 6282.76 20750.44 5789.00 13865.90 13080.61 7791.64 55
Effi-MVS+75.24 7673.61 8580.16 3381.92 14357.42 1985.21 12776.71 28460.68 16773.32 6389.34 10747.30 8191.63 6468.28 11579.72 9291.42 64
test_vis1_n_192068.59 18968.31 16469.44 27469.16 33541.51 32984.63 15268.58 34858.80 20373.26 6488.37 12525.30 31780.60 30179.10 4367.55 20186.23 186
ETV-MVS77.17 4576.74 4678.48 6881.80 14654.55 8886.13 10185.33 10368.20 3973.10 6590.52 8045.23 10890.66 9179.37 4180.95 7390.22 95
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14354.67 8584.06 16785.35 10261.10 15672.99 6691.50 6340.25 17391.00 8176.84 6386.98 2490.51 88
TEST985.68 5755.42 5687.59 6784.00 14457.72 22372.99 6690.98 6944.87 11688.58 154
train_agg76.91 4876.40 5078.45 7085.68 5755.42 5687.59 6784.00 14457.84 22172.99 6690.98 6944.99 11288.58 15478.19 5385.32 4391.34 69
CS-MVS-test77.20 4477.25 4077.05 10084.60 7849.04 21389.42 3785.83 9265.90 7672.85 6991.98 5245.10 10991.27 7175.02 7784.56 5090.84 81
test_885.72 5655.31 6187.60 6683.88 14757.84 22172.84 7090.99 6844.99 11288.34 165
test_fmvsmconf0.01_n71.97 12870.95 12775.04 15766.21 34947.87 25280.35 25970.08 33965.85 7772.69 7191.68 5839.99 17987.67 19182.03 2969.66 18689.58 112
xiu_mvs_v1_base_debu71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
xiu_mvs_v1_base71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
xiu_mvs_v1_base_debi71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
agg_prior85.64 6054.92 7583.61 15472.53 7588.10 175
CS-MVS76.77 5276.70 4776.99 10583.55 9948.75 22288.60 4885.18 11166.38 6572.47 7691.62 6045.53 10390.99 8374.48 8082.51 6191.23 71
VDD-MVS76.08 6174.97 7079.44 4184.27 8753.33 11791.13 2085.88 9065.33 8672.37 7789.34 10732.52 26692.76 4077.90 5875.96 12592.22 40
WTY-MVS77.47 4277.52 3777.30 9488.33 3046.25 27888.46 5090.32 1671.40 1972.32 7891.72 5653.44 3592.37 4966.28 12875.42 13193.28 15
test1279.24 4486.89 4756.08 4585.16 11372.27 7947.15 8391.10 7985.93 3690.54 87
h-mvs3373.95 9272.89 9477.15 9980.17 19050.37 18184.68 14983.33 15668.08 4071.97 8088.65 12342.50 14691.15 7778.82 4657.78 29089.91 107
hse-mvs271.44 13770.68 12973.73 19176.34 25247.44 25979.45 27279.47 23068.08 4071.97 8086.01 16742.50 14686.93 21578.82 4653.46 32786.83 176
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19271.82 8290.05 9459.72 996.04 1078.37 5188.40 1493.75 9
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 17055.31 6189.76 3486.91 7262.94 12571.65 8391.56 6242.33 14892.56 4577.14 6283.69 5690.15 99
Skip Steuart: Steuart Systems R&D Blog.
diffmvspermissive75.11 8074.65 7576.46 11678.52 22153.35 11583.28 19379.94 21770.51 2571.64 8488.72 11846.02 9786.08 24177.52 5975.75 12989.96 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18854.66 8687.06 8285.88 9072.11 1471.57 8588.63 12450.89 5590.35 9976.00 6679.11 9791.63 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline76.86 5176.24 5378.71 6080.47 18654.20 9783.90 17184.88 12171.38 2071.51 8689.15 11250.51 5690.55 9575.71 6878.65 10091.39 65
testdata67.08 29877.59 23545.46 28869.20 34644.47 33871.50 8788.34 12831.21 27970.76 36452.20 24675.88 12685.03 207
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18754.44 9087.76 6285.46 9771.67 1671.38 8888.35 12751.58 4591.22 7479.02 4479.89 9191.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8992.75 3445.52 10490.37 9871.15 9985.14 4591.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet74.37 8672.13 10981.09 2179.58 19756.52 3790.02 2786.70 7752.61 28771.23 9087.20 15131.75 27693.96 2774.30 8375.77 12892.79 27
test_yl75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
testing22277.70 3977.22 4179.14 4886.95 4654.89 7787.18 7991.96 272.29 1371.17 9388.70 11955.19 2491.24 7365.18 14176.32 12391.29 70
EC-MVSNet75.30 7575.20 6575.62 13580.98 17049.00 21487.43 7084.68 12863.49 11570.97 9490.15 9242.86 14591.14 7874.33 8281.90 6786.71 178
testing9978.45 2577.78 3380.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9588.09 13357.29 1592.63 4469.24 10975.13 13791.91 49
testing9178.30 3177.54 3680.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9688.04 13755.82 2292.65 4269.61 10675.00 14192.05 44
CDPH-MVS76.05 6275.19 6678.62 6486.51 5054.98 7487.32 7384.59 13058.62 20770.75 9690.85 7443.10 14390.63 9370.50 10384.51 5290.24 94
test_cas_vis1_n_192067.10 22166.60 19868.59 28765.17 35743.23 31383.23 19469.84 34155.34 26370.67 9887.71 14324.70 32476.66 33978.57 5064.20 22785.89 194
HY-MVS67.03 573.90 9373.14 9176.18 12484.70 7747.36 26075.56 29386.36 8366.27 6770.66 9983.91 18951.05 5089.31 12667.10 12272.61 15991.88 51
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 10088.37 12557.69 1492.30 5075.25 7576.24 12491.20 72
MAR-MVS76.76 5375.60 5980.21 3090.87 754.68 8489.14 4289.11 2662.95 12470.54 10192.33 4141.05 16594.95 1757.90 20086.55 3291.00 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CostFormer73.89 9472.30 10378.66 6382.36 13756.58 3375.56 29385.30 10566.06 7370.50 10276.88 28257.02 1689.06 13468.27 11668.74 19290.33 91
PAPM76.76 5376.07 5578.81 5680.20 18959.11 686.86 8886.23 8568.60 3670.18 10388.84 11751.57 4687.16 20765.48 13486.68 2990.15 99
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14583.68 15067.85 4569.36 10490.24 8660.20 792.10 5784.14 1580.40 8192.82 25
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16552.65 13484.34 15884.46 13361.16 15469.14 10591.76 5539.98 18088.99 14078.19 5384.89 4889.48 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PVSNet_BlendedMVS73.42 10473.30 8673.76 18985.91 5451.83 15086.18 10084.24 14065.40 8369.09 10680.86 23946.70 8988.13 17375.43 7165.92 21781.33 273
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5451.83 15088.89 4584.24 14067.82 4669.09 10689.33 10946.70 8988.13 17375.43 7181.48 7289.55 113
ETVMVS75.80 7075.44 6276.89 10986.23 5250.38 18085.55 11991.42 771.30 2168.80 10887.94 13956.42 1989.24 12856.54 21274.75 14391.07 76
GG-mvs-BLEND77.77 8386.68 4950.61 17168.67 33988.45 4968.73 10987.45 14759.15 1090.67 9054.83 22387.67 1792.03 45
EIA-MVS75.92 6475.18 6778.13 7785.14 7051.60 15587.17 8085.32 10464.69 9268.56 11090.53 7945.79 10091.58 6567.21 12182.18 6591.20 72
MTAPA72.73 11371.22 12377.27 9681.54 16053.57 10667.06 34581.31 19359.41 18568.39 11190.96 7136.07 23189.01 13773.80 8782.45 6389.23 120
PMMVS72.98 10872.05 11275.78 13383.57 9848.60 22584.08 16582.85 16961.62 14668.24 11290.33 8528.35 29487.78 18772.71 9376.69 11790.95 79
tpm270.82 14768.44 16277.98 7980.78 17856.11 4474.21 30481.28 19560.24 17268.04 11375.27 30052.26 4388.50 15955.82 22068.03 19689.33 117
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 18055.02 7286.39 9586.71 7666.96 5767.91 11489.97 9648.03 7391.41 6975.60 7084.14 5389.96 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9553.80 10186.91 8786.05 8859.71 17867.85 11590.55 7842.23 15091.02 8072.66 9485.29 4489.87 108
PAPR75.20 7874.13 7978.41 7188.31 3255.10 7084.31 15985.66 9463.76 10767.55 11690.73 7643.48 13789.40 12566.36 12777.03 11290.73 83
TESTMET0.1,172.86 11172.33 10174.46 16681.98 14250.77 16885.13 13085.47 9666.09 7167.30 11783.69 19437.27 21283.57 27765.06 14278.97 9989.05 126
MP-MVScopyleft74.99 8174.33 7876.95 10782.89 12453.05 12685.63 11583.50 15557.86 22067.25 11890.24 8643.38 13888.85 14876.03 6582.23 6488.96 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03072.27 12471.56 11774.42 16875.93 26350.60 17286.97 8483.21 16162.75 12767.15 11984.38 18250.07 5986.66 22271.19 9862.37 25185.99 190
test_fmvsmvis_n_192071.29 13870.38 13574.00 18171.04 32248.79 22179.19 27564.62 35862.75 12766.73 12091.99 5040.94 16688.35 16483.00 2273.18 15284.85 212
原ACMM176.13 12584.89 7554.59 8785.26 10851.98 29166.70 12187.07 15440.15 17689.70 11951.23 25185.06 4784.10 220
ab-mvs70.65 15069.11 15675.29 15180.87 17646.23 27973.48 30985.24 11059.99 17466.65 12280.94 23843.13 14288.69 15063.58 14768.07 19590.95 79
gg-mvs-nofinetune67.43 21264.53 23876.13 12585.95 5347.79 25564.38 35188.28 5139.34 35466.62 12341.27 38858.69 1389.00 13849.64 26086.62 3091.59 57
UA-Net67.32 21666.23 20570.59 25778.85 21241.23 33373.60 30775.45 29761.54 14866.61 12484.53 18138.73 19086.57 22742.48 30474.24 14583.98 226
sss70.49 15270.13 14271.58 24381.59 15739.02 34180.78 25484.71 12759.34 18766.61 12488.09 13337.17 21485.52 25061.82 16171.02 17490.20 97
SR-MVS70.92 14669.73 14774.50 16583.38 10650.48 17684.27 16079.35 23548.96 31166.57 12690.45 8133.65 25787.11 20866.42 12574.56 14485.91 193
GST-MVS74.87 8273.90 8477.77 8383.30 10753.45 11085.75 11085.29 10659.22 19166.50 12789.85 9840.94 16690.76 8870.94 10183.35 5789.10 125
MSLP-MVS++74.21 8872.25 10480.11 3681.45 16356.47 3886.32 9779.65 22558.19 21266.36 12892.29 4236.11 22990.66 9167.39 11982.49 6293.18 19
Anonymous20240521170.11 15667.88 17276.79 11387.20 4547.24 26489.49 3677.38 27254.88 26966.14 12986.84 15620.93 34991.54 6656.45 21671.62 16891.59 57
新几何173.30 20083.10 11253.48 10771.43 32945.55 33166.14 12987.17 15233.88 25580.54 30248.50 26980.33 8385.88 195
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6756.47 3888.15 5384.97 11865.15 8966.06 13189.88 9743.79 12992.16 5475.03 7680.03 8889.64 111
test250672.91 11072.43 10074.32 17280.12 19144.18 30383.19 19584.77 12564.02 10065.97 13287.43 14847.67 7888.72 14959.08 18179.66 9390.08 101
Fast-Effi-MVS+72.73 11371.15 12577.48 8982.75 12854.76 7886.77 9080.64 20463.05 12365.93 13384.01 18744.42 12389.03 13656.45 21676.36 12288.64 136
EI-MVSNet-Vis-set73.19 10772.60 9674.99 16082.56 13449.80 19682.55 21189.00 2866.17 6965.89 13488.98 11343.83 12792.29 5165.38 14069.01 19082.87 249
UWE-MVS72.17 12572.15 10872.21 22382.26 13944.29 30086.83 8989.58 2165.58 7965.82 13585.06 17645.02 11184.35 26954.07 22975.18 13487.99 151
HFP-MVS74.37 8673.13 9378.10 7884.30 8453.68 10485.58 11684.36 13556.82 24265.78 13690.56 7740.70 17190.90 8569.18 11080.88 7489.71 109
API-MVS74.17 8972.07 11180.49 2590.02 1158.55 887.30 7584.27 13757.51 22965.77 13787.77 14241.61 16195.97 1151.71 24782.63 6086.94 169
UGNet68.71 18667.11 18973.50 19780.55 18547.61 25684.08 16578.51 25359.45 18365.68 13882.73 21023.78 32885.08 26152.80 24076.40 11887.80 154
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive70.61 15169.34 15274.42 16880.95 17548.49 23086.03 10477.51 26958.74 20565.55 13987.78 14134.37 24985.95 24652.53 24580.61 7788.80 132
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS76.91 4875.48 6181.23 2084.56 7955.21 6580.23 26291.64 458.65 20665.37 14091.48 6445.72 10195.05 1672.11 9689.52 1093.44 11
ACMMPR73.76 9672.61 9577.24 9883.92 9352.96 12985.58 11684.29 13656.82 24265.12 14190.45 8137.24 21390.18 10669.18 11080.84 7588.58 138
region2R73.75 9772.55 9777.33 9283.90 9452.98 12885.54 12084.09 14256.83 24165.10 14290.45 8137.34 21190.24 10468.89 11280.83 7688.77 134
EI-MVSNet-UG-set72.37 11971.73 11574.29 17381.60 15649.29 20881.85 22688.64 4265.29 8865.05 14388.29 13043.18 13991.83 6163.74 14667.97 19781.75 260
VPA-MVSNet71.12 14070.66 13072.49 21678.75 21444.43 29887.64 6590.02 1763.97 10365.02 14481.58 23342.14 15287.42 20163.42 14863.38 23985.63 200
bld_raw_dy_0_6475.36 7473.18 8881.89 1187.91 4057.01 2486.77 9067.69 35278.56 165.01 14593.99 722.18 34194.84 1984.07 1772.45 16093.82 7
CLD-MVS75.60 7175.39 6376.24 11980.69 18152.40 13890.69 2486.20 8674.40 865.01 14588.93 11442.05 15490.58 9476.57 6473.96 14785.73 196
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmrst71.04 14369.77 14674.86 16183.19 11155.86 5175.64 29278.73 24867.88 4464.99 14773.73 31149.96 6379.56 31565.92 12967.85 19989.14 124
CHOSEN 1792x268876.24 5874.03 8382.88 183.09 11462.84 285.73 11285.39 10069.79 2964.87 14883.49 19741.52 16393.69 3070.55 10281.82 6892.12 41
VPNet72.07 12671.42 12174.04 17978.64 21947.17 26589.91 3287.97 5572.56 1264.66 14985.04 17741.83 15988.33 16661.17 16560.97 25786.62 179
ECVR-MVScopyleft71.81 13171.00 12674.26 17480.12 19143.49 30884.69 14882.16 17564.02 10064.64 15087.43 14835.04 24289.21 13161.24 16479.66 9390.08 101
baseline172.51 11872.12 11073.69 19285.05 7144.46 29683.51 18286.13 8771.61 1764.64 15087.97 13855.00 2889.48 12359.07 18256.05 30387.13 168
TR-MVS69.71 16767.85 17575.27 15382.94 12148.48 23187.40 7280.86 20157.15 23764.61 15287.08 15332.67 26589.64 12146.38 28371.55 17087.68 158
WB-MVSnew69.36 17468.24 16672.72 21079.26 20349.40 20585.72 11388.85 3561.33 15164.59 15382.38 22034.57 24787.53 19946.82 28170.63 17781.22 277
PVSNet_Blended_VisFu73.40 10572.44 9976.30 11781.32 16754.70 8285.81 10678.82 24463.70 10864.53 15485.38 17347.11 8487.38 20367.75 11877.55 10786.81 177
HQP-NCC79.02 20888.00 5565.45 8064.48 155
ACMP_Plane79.02 20888.00 5565.45 8064.48 155
HQP-MVS72.34 12071.44 12075.03 15879.02 20851.56 15688.00 5583.68 15065.45 8064.48 15585.13 17437.35 20988.62 15266.70 12373.12 15384.91 210
EPNet_dtu66.25 23766.71 19464.87 31678.66 21834.12 35882.80 20475.51 29561.75 14464.47 15886.90 15537.06 21572.46 35843.65 29769.63 18888.02 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HQP4-MVS64.47 15888.61 15384.91 210
APD-MVS_3200maxsize69.62 17168.23 16773.80 18881.58 15848.22 24081.91 22479.50 22848.21 31464.24 16089.75 10031.91 27587.55 19863.08 15073.85 14985.64 199
thisisatest051573.64 10172.20 10677.97 8081.63 15453.01 12786.69 9288.81 3762.53 13264.06 16185.65 16952.15 4492.50 4658.43 18869.84 18488.39 143
iter_conf0573.51 10372.24 10577.33 9287.93 3955.97 4887.90 6170.81 33468.72 3564.04 16284.36 18447.54 7990.87 8671.11 10067.75 20085.13 206
Anonymous2024052969.71 16767.28 18677.00 10483.78 9650.36 18288.87 4685.10 11647.22 31964.03 16383.37 19927.93 29892.10 5757.78 20367.44 20288.53 141
HPM-MVScopyleft72.60 11571.50 11875.89 13182.02 14151.42 16080.70 25583.05 16456.12 25464.03 16389.53 10337.55 20588.37 16270.48 10480.04 8787.88 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
XVS72.92 10971.62 11676.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 16589.63 10235.50 23689.78 11565.50 13280.50 7988.16 144
X-MVStestdata65.85 24262.20 25076.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 1654.82 40735.50 23689.78 11565.50 13280.50 7988.16 144
EI-MVSNet69.70 16968.70 15972.68 21175.00 27548.90 21879.54 26987.16 6861.05 15763.88 16783.74 19245.87 9890.44 9657.42 20764.68 22578.70 301
MVSTER73.25 10672.33 10176.01 12985.54 6253.76 10383.52 17887.16 6867.06 5563.88 16781.66 23152.77 3890.44 9664.66 14364.69 22483.84 231
CP-MVS72.59 11771.46 11976.00 13082.93 12252.32 14186.93 8682.48 17355.15 26463.65 16990.44 8435.03 24388.53 15868.69 11377.83 10687.15 167
BH-RMVSNet70.08 15868.01 16976.27 11884.21 8851.22 16687.29 7679.33 23758.96 20163.63 17086.77 15733.29 26090.30 10344.63 29273.96 14787.30 166
test_fmvs153.60 32552.54 32056.78 34958.07 37530.26 37168.95 33842.19 38532.46 37363.59 17182.56 21611.55 37560.81 37458.25 19355.27 31179.28 295
DP-MVS Recon71.99 12770.31 13777.01 10390.65 853.44 11189.37 3882.97 16756.33 25263.56 17289.47 10434.02 25292.15 5654.05 23072.41 16185.43 203
tpm68.36 19167.48 18370.97 25379.93 19451.34 16276.58 29078.75 24767.73 4763.54 17374.86 30248.33 7072.36 35953.93 23163.71 23289.21 121
PGM-MVS72.60 11571.20 12476.80 11282.95 12052.82 13183.07 19982.14 17656.51 25063.18 17489.81 9935.68 23589.76 11767.30 12080.19 8487.83 153
test-LLR69.65 17069.01 15771.60 24178.67 21648.17 24185.13 13079.72 22259.18 19463.13 17582.58 21436.91 21880.24 30660.56 17175.17 13586.39 184
test-mter68.36 19167.29 18571.60 24178.67 21648.17 24185.13 13079.72 22253.38 28163.13 17582.58 21427.23 30480.24 30660.56 17175.17 13586.39 184
test111171.06 14270.42 13472.97 20579.48 19841.49 33084.82 14682.74 17064.20 9762.98 17787.43 14835.20 23987.92 17958.54 18778.42 10389.49 115
OPM-MVS70.75 14969.58 14874.26 17475.55 26851.34 16286.05 10383.29 16061.94 14262.95 17885.77 16834.15 25188.44 16065.44 13871.07 17382.99 246
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test22279.36 19950.97 16777.99 28267.84 35042.54 34962.84 17986.53 16130.26 28576.91 11485.23 204
SR-MVS-dyc-post68.27 19566.87 19072.48 21780.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10531.17 28086.09 24060.52 17372.06 16583.19 242
RE-MVS-def66.66 19680.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10529.28 29260.52 17372.06 16583.19 242
XXY-MVS70.18 15569.28 15572.89 20877.64 23342.88 31785.06 13487.50 6662.58 13162.66 18282.34 22343.64 13489.83 11458.42 19063.70 23385.96 192
AUN-MVS68.20 19766.35 20173.76 18976.37 25147.45 25879.52 27179.52 22760.98 15962.34 18386.02 16536.59 22686.94 21462.32 15553.47 32686.89 170
CDS-MVSNet70.48 15369.43 14973.64 19377.56 23648.83 22083.51 18277.45 27063.27 11962.33 18485.54 17243.85 12683.29 28157.38 20874.00 14688.79 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
test_fmvs1_n52.55 32951.19 32456.65 35051.90 38530.14 37267.66 34242.84 38432.27 37462.30 18582.02 2289.12 38360.84 37357.82 20154.75 31778.99 297
FA-MVS(test-final)69.00 17966.60 19876.19 12383.48 10147.96 25174.73 30082.07 17857.27 23462.18 18678.47 26136.09 23092.89 3553.76 23371.32 17287.73 156
HQP_MVS70.96 14569.91 14574.12 17777.95 22949.57 19885.76 10882.59 17163.60 11162.15 18783.28 20136.04 23288.30 16865.46 13572.34 16284.49 214
plane_prior348.95 21564.01 10262.15 187
mPP-MVS71.79 13370.38 13576.04 12882.65 13252.06 14384.45 15581.78 18655.59 25962.05 18989.68 10133.48 25888.28 17065.45 13778.24 10587.77 155
PCF-MVS61.03 1070.10 15768.40 16375.22 15577.15 24551.99 14579.30 27482.12 17756.47 25161.88 19086.48 16343.98 12587.24 20555.37 22172.79 15886.43 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
mvs_anonymous72.29 12270.74 12876.94 10882.85 12554.72 8178.43 28081.54 18963.77 10661.69 19179.32 25151.11 4985.31 25462.15 15875.79 12790.79 82
SDMVSNet71.89 12970.62 13175.70 13481.70 15051.61 15473.89 30588.72 4066.58 6061.64 19282.38 22037.63 20289.48 12377.44 6065.60 21886.01 188
sd_testset67.79 20365.95 21273.32 19881.70 15046.33 27668.99 33780.30 21066.58 6061.64 19282.38 22030.45 28487.63 19455.86 21865.60 21886.01 188
IB-MVS68.87 274.01 9172.03 11479.94 3883.04 11655.50 5490.24 2688.65 4167.14 5461.38 19481.74 23053.21 3694.28 2360.45 17562.41 25090.03 103
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
TAMVS69.51 17368.16 16873.56 19676.30 25548.71 22482.57 20977.17 27562.10 13861.32 19584.23 18541.90 15783.46 27954.80 22573.09 15588.50 142
1112_ss70.05 15969.37 15172.10 22580.77 17942.78 31885.12 13376.75 28259.69 17961.19 19692.12 4447.48 8083.84 27253.04 23768.21 19489.66 110
GeoE69.96 16367.88 17276.22 12081.11 16951.71 15384.15 16376.74 28359.83 17660.91 19784.38 18241.56 16288.10 17551.67 24870.57 17988.84 131
EPMVS68.45 19065.44 22677.47 9084.91 7456.17 4371.89 32581.91 18361.72 14560.85 19872.49 32536.21 22887.06 21047.32 27671.62 16889.17 123
v2v48269.55 17267.64 17875.26 15472.32 30953.83 10084.93 14281.94 18065.37 8560.80 19979.25 25341.62 16088.98 14163.03 15159.51 26582.98 247
MVS_111021_LR69.07 17667.91 17072.54 21477.27 24049.56 20079.77 26773.96 30959.33 18960.73 20087.82 14030.19 28681.53 28969.94 10572.19 16486.53 180
GA-MVS69.04 17766.70 19576.06 12775.11 27152.36 13983.12 19780.23 21163.32 11860.65 20179.22 25430.98 28188.37 16261.25 16366.41 21187.46 162
PAPM_NR71.80 13269.98 14477.26 9781.54 16053.34 11678.60 27985.25 10953.46 28060.53 20288.66 12045.69 10289.24 12856.49 21379.62 9589.19 122
v114468.81 18366.82 19174.80 16272.34 30853.46 10884.68 14981.77 18764.25 9660.28 20377.91 26440.23 17488.95 14260.37 17659.52 26481.97 256
dmvs_re67.61 20666.00 21072.42 21881.86 14543.45 30964.67 35080.00 21469.56 3260.07 20485.00 17834.71 24587.63 19451.48 24966.68 20686.17 187
thres20068.71 18667.27 18773.02 20384.73 7646.76 26885.03 13687.73 6162.34 13659.87 20583.45 19843.15 14088.32 16731.25 34767.91 19883.98 226
3Dnovator64.70 674.46 8472.48 9880.41 2882.84 12655.40 5983.08 19888.61 4567.61 5159.85 20688.66 12034.57 24793.97 2658.42 19088.70 1291.85 52
PVSNet62.49 869.27 17567.81 17673.64 19384.41 8251.85 14984.63 15277.80 26366.42 6459.80 20784.95 17922.14 34380.44 30455.03 22275.11 13888.62 137
QAPM71.88 13069.33 15379.52 4082.20 14054.30 9286.30 9888.77 3856.61 24859.72 20887.48 14633.90 25495.36 1347.48 27581.49 7188.90 128
BH-w/o70.02 16068.51 16174.56 16482.77 12750.39 17986.60 9478.14 25959.77 17759.65 20985.57 17139.27 18587.30 20449.86 25874.94 14285.99 190
UniMVSNet (Re)67.71 20466.80 19270.45 25974.44 28242.93 31682.42 21584.90 12063.69 10959.63 21080.99 23747.18 8285.23 25751.17 25256.75 29583.19 242
Baseline_NR-MVSNet65.49 24464.27 24069.13 27674.37 28541.65 32783.39 18978.85 24259.56 18159.62 21176.88 28240.75 16887.44 20049.99 25655.05 31278.28 310
v119267.96 19965.74 21874.63 16371.79 31153.43 11384.06 16780.99 20063.19 12159.56 21277.46 27137.50 20888.65 15158.20 19458.93 27181.79 259
HPM-MVS_fast67.86 20066.28 20472.61 21280.67 18248.34 23681.18 24575.95 29350.81 30059.55 21388.05 13627.86 29985.98 24358.83 18473.58 15083.51 235
test_vis1_n51.19 33449.66 33155.76 35451.26 38629.85 37667.20 34438.86 38932.12 37559.50 21479.86 2468.78 38458.23 38156.95 21052.46 33079.19 296
V4267.66 20565.60 22273.86 18570.69 32653.63 10581.50 23978.61 25163.85 10559.49 21577.49 27037.98 19487.65 19262.33 15458.43 27580.29 288
miper_enhance_ethall69.77 16668.90 15872.38 21978.93 21149.91 19283.29 19278.85 24264.90 9059.37 21679.46 24952.77 3885.16 25963.78 14558.72 27282.08 255
PatchmatchNetpermissive67.07 22463.63 24477.40 9183.10 11258.03 972.11 32377.77 26458.85 20259.37 21670.83 33837.84 19684.93 26342.96 30069.83 18589.26 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
FE-MVS64.15 24860.43 26975.30 15080.85 17749.86 19468.28 34178.37 25650.26 30459.31 21873.79 31026.19 31191.92 6040.19 30766.67 20784.12 219
OMC-MVS65.97 24165.06 23268.71 28472.97 30042.58 32278.61 27875.35 29854.72 27059.31 21886.25 16433.30 25977.88 32857.99 19667.05 20485.66 198
MDTV_nov1_ep13_2view43.62 30771.13 32854.95 26859.29 22036.76 22046.33 28487.32 165
v14419267.86 20065.76 21774.16 17671.68 31353.09 12484.14 16480.83 20262.85 12659.21 22177.28 27439.30 18488.00 17858.67 18657.88 28881.40 270
v192192067.45 21165.23 23074.10 17871.51 31652.90 13083.75 17680.44 20762.48 13559.12 22277.13 27536.98 21687.90 18057.53 20558.14 28281.49 264
baseline275.15 7974.54 7776.98 10681.67 15351.74 15283.84 17391.94 369.97 2858.98 22386.02 16559.73 891.73 6368.37 11470.40 18187.48 161
v14868.24 19666.35 20173.88 18471.76 31251.47 15984.23 16181.90 18463.69 10958.94 22476.44 28743.72 13287.78 18760.63 16955.86 30682.39 253
131471.11 14169.41 15076.22 12079.32 20150.49 17580.23 26285.14 11559.44 18458.93 22588.89 11633.83 25689.60 12261.49 16277.42 11088.57 139
cascas69.01 17866.13 20777.66 8579.36 19955.41 5886.99 8383.75 14956.69 24658.92 22681.35 23524.31 32692.10 5753.23 23470.61 17885.46 202
PS-MVSNAJss68.78 18567.17 18873.62 19573.01 29948.33 23884.95 14184.81 12359.30 19058.91 22779.84 24737.77 19788.86 14662.83 15263.12 24583.67 234
HyFIR lowres test69.94 16467.58 17977.04 10177.11 24657.29 2081.49 24179.11 24058.27 21158.86 22880.41 24242.33 14886.96 21361.91 15968.68 19386.87 171
MDTV_nov1_ep1361.56 25581.68 15255.12 6872.41 31778.18 25859.19 19258.85 22969.29 34634.69 24686.16 23536.76 32262.96 246
ACMMPcopyleft70.81 14869.29 15475.39 14581.52 16251.92 14883.43 18583.03 16556.67 24758.80 23088.91 11531.92 27488.58 15465.89 13173.39 15185.67 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tpm cat166.28 23662.78 24676.77 11481.40 16457.14 2270.03 33277.19 27453.00 28458.76 23170.73 34146.17 9386.73 22043.27 29864.46 22686.44 182
thisisatest053070.47 15468.56 16076.20 12279.78 19551.52 15883.49 18488.58 4757.62 22758.60 23282.79 20651.03 5191.48 6752.84 23962.36 25285.59 201
UniMVSNet_NR-MVSNet68.82 18268.29 16570.40 26175.71 26642.59 32084.23 16186.78 7466.31 6658.51 23382.45 21751.57 4684.64 26753.11 23555.96 30483.96 228
DU-MVS66.84 23065.74 21870.16 26473.27 29742.59 32081.50 23982.92 16863.53 11358.51 23382.11 22640.75 16884.64 26753.11 23555.96 30483.24 240
WR-MVS67.58 20766.76 19370.04 26875.92 26445.06 29486.23 9985.28 10764.31 9558.50 23581.00 23644.80 12082.00 28849.21 26455.57 30983.06 245
3Dnovator+62.71 772.29 12270.50 13277.65 8683.40 10551.29 16487.32 7386.40 8259.01 19958.49 23688.32 12932.40 26791.27 7157.04 20982.15 6690.38 90
cl2268.85 18067.69 17772.35 22078.07 22849.98 19182.45 21478.48 25462.50 13458.46 23777.95 26349.99 6185.17 25862.55 15358.72 27281.90 258
Test_1112_low_res67.18 21966.23 20570.02 26978.75 21441.02 33483.43 18573.69 31157.29 23358.45 23882.39 21945.30 10780.88 29550.50 25466.26 21688.16 144
v124066.99 22564.68 23673.93 18271.38 31952.66 13383.39 18979.98 21561.97 14158.44 23977.11 27635.25 23887.81 18256.46 21558.15 28081.33 273
TranMVSNet+NR-MVSNet66.94 22765.61 22170.93 25473.45 29343.38 31183.02 20184.25 13865.31 8758.33 24081.90 22939.92 18185.52 25049.43 26154.89 31483.89 230
miper_ehance_all_eth68.70 18867.58 17972.08 22676.91 24849.48 20482.47 21378.45 25562.68 12958.28 24177.88 26550.90 5285.01 26261.91 15958.72 27281.75 260
EPP-MVSNet71.14 13970.07 14374.33 17179.18 20546.52 27183.81 17486.49 7956.32 25357.95 24284.90 18054.23 3289.14 13358.14 19569.65 18787.33 164
CPTT-MVS67.15 22065.84 21571.07 25180.96 17250.32 18481.94 22374.10 30546.18 32957.91 24387.64 14529.57 28981.31 29164.10 14470.18 18381.56 263
Effi-MVS+-dtu66.24 23864.96 23470.08 26675.17 27049.64 19782.01 22174.48 30362.15 13757.83 24476.08 29530.59 28383.79 27365.40 13960.93 25876.81 323
AdaColmapbinary67.86 20065.48 22375.00 15988.15 3654.99 7386.10 10276.63 28649.30 30857.80 24586.65 16029.39 29188.94 14445.10 28970.21 18281.06 278
tfpn200view967.57 20866.13 20771.89 23884.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21282.78 251
thres40067.40 21566.13 20771.19 24984.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21280.71 283
SCA63.84 25160.01 27375.32 14778.58 22057.92 1061.61 36177.53 26856.71 24557.75 24870.77 33931.97 27279.91 31248.80 26656.36 29688.13 147
FIs70.00 16170.24 14169.30 27577.93 23138.55 34483.99 16987.72 6266.86 5857.66 24984.17 18652.28 4285.31 25452.72 24468.80 19184.02 222
c3_l67.97 19866.66 19671.91 23776.20 25749.31 20782.13 22078.00 26161.99 14057.64 25076.94 27949.41 6684.93 26360.62 17057.01 29481.49 264
GBi-Net67.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
test167.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
FMVSNet368.84 18167.40 18473.19 20185.05 7148.53 22885.71 11485.36 10160.90 16357.58 25179.15 25542.16 15186.77 21847.25 27763.40 23684.27 218
CR-MVSNet62.47 26859.04 28072.77 20973.97 29056.57 3460.52 36471.72 32560.04 17357.49 25465.86 35538.94 18780.31 30542.86 30159.93 26181.42 268
RPMNet59.29 28554.25 30874.42 16873.97 29056.57 3460.52 36476.98 27835.72 36657.49 25458.87 37437.73 20085.26 25627.01 36559.93 26181.42 268
BH-untuned68.28 19466.40 20073.91 18381.62 15550.01 19085.56 11877.39 27157.63 22657.47 25683.69 19436.36 22787.08 20944.81 29073.08 15684.65 213
XVG-OURS-SEG-HR62.02 27159.54 27569.46 27365.30 35545.88 28265.06 34873.57 31346.45 32557.42 25783.35 20026.95 30678.09 32253.77 23264.03 22984.42 216
XVG-OURS61.88 27259.34 27769.49 27265.37 35446.27 27764.80 34973.49 31447.04 32157.41 25882.85 20525.15 31978.18 32053.00 23864.98 22084.01 223
IS-MVSNet68.80 18467.55 18172.54 21478.50 22243.43 31081.03 24779.35 23559.12 19757.27 25986.71 15846.05 9687.70 19044.32 29475.60 13086.49 181
TAPA-MVS56.12 1461.82 27360.18 27266.71 30278.48 22337.97 34775.19 29876.41 28946.82 32257.04 26086.52 16227.67 30277.03 33426.50 36767.02 20585.14 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
eth_miper_zixun_eth66.98 22665.28 22972.06 22775.61 26750.40 17881.00 24876.97 28162.00 13956.99 26176.97 27844.84 11785.58 24958.75 18554.42 31880.21 289
DIV-MVS_self_test67.43 21265.93 21371.94 23576.33 25348.01 24882.57 20979.11 24061.31 15256.73 26276.92 28046.09 9586.43 23057.98 19756.31 29881.39 271
cl____67.43 21265.93 21371.95 23476.33 25348.02 24782.58 20879.12 23961.30 15356.72 26376.92 28046.12 9486.44 22957.98 19756.31 29881.38 272
FMVSNet267.57 20865.79 21672.90 20682.71 12947.97 24985.15 12984.93 11958.55 20856.71 26478.26 26236.72 22386.67 22146.15 28562.94 24784.07 221
OpenMVScopyleft61.00 1169.99 16267.55 18177.30 9478.37 22554.07 9984.36 15785.76 9357.22 23556.71 26487.67 14430.79 28292.83 3743.04 29984.06 5585.01 208
Anonymous2023121166.08 24063.67 24373.31 19983.07 11548.75 22286.01 10584.67 12945.27 33356.54 26676.67 28528.06 29788.95 14252.78 24159.95 26082.23 254
MVP-Stereo70.97 14470.44 13372.59 21376.03 26151.36 16185.02 13786.99 7160.31 17156.53 26778.92 25740.11 17790.00 10960.00 17990.01 676.41 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch72.34 12071.26 12275.61 13682.38 13655.55 5388.00 5589.95 1965.38 8456.51 26880.74 24132.28 26992.89 3557.95 19988.10 1578.39 308
Fast-Effi-MVS+-dtu66.53 23364.10 24273.84 18672.41 30752.30 14284.73 14775.66 29459.51 18256.34 26979.11 25628.11 29685.85 24857.74 20463.29 24083.35 236
CVMVSNet60.85 27860.44 26862.07 32875.00 27532.73 36579.54 26973.49 31436.98 36256.28 27083.74 19229.28 29269.53 36746.48 28263.23 24183.94 229
thres600view766.46 23465.12 23170.47 25883.41 10243.80 30682.15 21887.78 5859.37 18656.02 27182.21 22443.73 13086.90 21626.51 36664.94 22180.71 283
thres100view90066.87 22965.42 22771.24 24783.29 10843.15 31481.67 23287.78 5859.04 19855.92 27282.18 22543.73 13087.80 18428.80 35466.36 21282.78 251
IterMVS-LS66.63 23165.36 22870.42 26075.10 27248.90 21881.45 24276.69 28561.05 15755.71 27377.10 27745.86 9983.65 27657.44 20657.88 28878.70 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
mvsmamba66.93 22864.88 23573.09 20275.06 27347.26 26283.36 19169.21 34562.64 13055.68 27481.43 23429.72 28889.20 13263.35 14963.50 23582.79 250
114514_t69.87 16567.88 17275.85 13288.38 2952.35 14086.94 8583.68 15053.70 27855.68 27485.60 17030.07 28791.20 7555.84 21971.02 17483.99 224
dp64.41 24661.58 25472.90 20682.40 13554.09 9872.53 31576.59 28760.39 17055.68 27470.39 34235.18 24076.90 33739.34 31061.71 25487.73 156
tt080563.39 25761.31 25969.64 27169.36 33338.87 34278.00 28185.48 9548.82 31255.66 27781.66 23124.38 32586.37 23149.04 26559.36 26883.68 233
Syy-MVS61.51 27461.35 25862.00 33081.73 14830.09 37380.97 24981.02 19860.93 16155.06 27882.64 21235.09 24180.81 29716.40 39158.32 27675.10 340
myMVS_eth3d63.52 25563.56 24563.40 32381.73 14834.28 35680.97 24981.02 19860.93 16155.06 27882.64 21248.00 7680.81 29723.42 37658.32 27675.10 340
FC-MVSNet-test67.49 21067.91 17066.21 30676.06 25933.06 36380.82 25387.18 6764.44 9454.81 28082.87 20450.40 5882.60 28348.05 27266.55 21082.98 247
UniMVSNet_ETH3D62.51 26660.49 26768.57 28868.30 34340.88 33673.89 30579.93 21851.81 29554.77 28179.61 24824.80 32281.10 29249.93 25761.35 25583.73 232
tttt051768.33 19366.29 20374.46 16678.08 22749.06 21080.88 25289.08 2754.40 27454.75 28280.77 24051.31 4890.33 10049.35 26258.01 28483.99 224
MIMVSNet63.12 26060.29 27071.61 24075.92 26446.65 26965.15 34781.94 18059.14 19654.65 28369.47 34525.74 31480.63 30041.03 30669.56 18987.55 160
ACMM58.35 1264.35 24762.01 25271.38 24574.21 28648.51 22982.25 21779.66 22447.61 31754.54 28480.11 24325.26 31886.00 24251.26 25063.16 24379.64 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet164.57 24562.11 25171.96 23177.32 23946.36 27383.52 17883.31 15752.43 28954.42 28576.23 29127.80 30086.20 23242.59 30361.34 25683.32 237
PatchT56.60 30752.97 31467.48 29472.94 30146.16 28057.30 37273.78 31038.77 35654.37 28657.26 37737.52 20678.06 32332.02 34252.79 32978.23 312
v867.25 21764.99 23374.04 17972.89 30253.31 11882.37 21680.11 21361.54 14854.29 28776.02 29642.89 14488.41 16158.43 18856.36 29680.39 287
pmmvs463.34 25861.07 26270.16 26470.14 32850.53 17479.97 26671.41 33055.08 26554.12 28878.58 25932.79 26482.09 28750.33 25557.22 29377.86 314
v1066.61 23264.20 24173.83 18772.59 30553.37 11481.88 22579.91 21961.11 15554.09 28975.60 29840.06 17888.26 17156.47 21456.10 30279.86 293
CL-MVSNet_self_test62.98 26161.14 26168.50 28965.86 35242.96 31584.37 15682.98 16660.98 15953.95 29072.70 32440.43 17283.71 27541.10 30547.93 34278.83 300
pm-mvs164.12 24962.56 24768.78 28271.68 31338.87 34282.89 20381.57 18855.54 26153.89 29177.82 26637.73 20086.74 21948.46 27053.49 32580.72 282
LPG-MVS_test66.44 23564.58 23772.02 22874.42 28348.60 22583.07 19980.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
LGP-MVS_train72.02 22874.42 28348.60 22580.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
NR-MVSNet67.25 21765.99 21171.04 25273.27 29743.91 30485.32 12484.75 12666.05 7453.65 29482.11 22645.05 11085.97 24547.55 27456.18 30183.24 240
tpmvs62.45 26959.42 27671.53 24483.93 9254.32 9170.03 33277.61 26751.91 29253.48 29568.29 34937.91 19586.66 22233.36 33758.27 27873.62 350
ET-MVSNet_ETH3D75.23 7774.08 8178.67 6284.52 8055.59 5288.92 4489.21 2568.06 4353.13 29690.22 8849.71 6587.62 19672.12 9570.82 17692.82 25
test0.0.03 162.54 26562.44 24862.86 32772.28 31029.51 37882.93 20278.78 24559.18 19453.07 29782.41 21836.91 21877.39 33237.45 31458.96 27081.66 262
RRT_MVS63.68 25461.01 26371.70 23973.48 29245.98 28181.19 24476.08 29154.33 27552.84 29879.27 25222.21 34087.65 19254.13 22855.54 31081.46 267
miper_lstm_enhance63.91 25062.30 24968.75 28375.06 27346.78 26769.02 33681.14 19659.68 18052.76 29972.39 32840.71 17077.99 32656.81 21153.09 32881.48 266
TransMVSNet (Re)62.82 26360.76 26569.02 27773.98 28941.61 32886.36 9679.30 23856.90 23952.53 30076.44 28741.85 15887.60 19738.83 31140.61 36677.86 314
test_fmvs245.89 34344.32 34550.62 36045.85 39424.70 38758.87 37037.84 39225.22 38352.46 30174.56 3057.07 38754.69 38349.28 26347.70 34372.48 356
ACMP61.11 966.24 23864.33 23972.00 23074.89 27749.12 20983.18 19679.83 22055.41 26252.29 30282.68 21125.83 31386.10 23860.89 16663.94 23180.78 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf63.84 25161.56 25570.70 25668.78 33744.69 29581.63 23381.44 19150.28 30152.27 30376.26 29026.72 30786.11 23660.83 16755.84 30781.29 276
Vis-MVSNet (Re-imp)65.52 24365.63 22065.17 31477.49 23730.54 37075.49 29677.73 26559.34 18752.26 30486.69 15949.38 6780.53 30337.07 31875.28 13384.42 216
pmmvs562.80 26461.18 26067.66 29369.53 33242.37 32582.65 20775.19 29954.30 27652.03 30578.51 26031.64 27780.67 29948.60 26858.15 28079.95 292
CNLPA60.59 27958.44 28367.05 29979.21 20447.26 26279.75 26864.34 36042.46 35051.90 30683.94 18827.79 30175.41 34437.12 31659.49 26678.47 305
IterMVS63.77 25361.67 25370.08 26672.68 30451.24 16580.44 25775.51 29560.51 16951.41 30773.70 31432.08 27178.91 31654.30 22754.35 31980.08 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal61.47 27559.09 27968.62 28676.29 25641.69 32681.14 24685.16 11354.48 27351.32 30873.63 31532.32 26886.89 21721.78 38055.71 30877.29 320
anonymousdsp60.46 28057.65 28668.88 27863.63 36545.09 29072.93 31378.63 25046.52 32451.12 30972.80 32321.46 34783.07 28257.79 20253.97 32078.47 305
ADS-MVSNet255.21 31751.44 32266.51 30580.60 18349.56 20055.03 37565.44 35544.72 33651.00 31061.19 36722.83 33375.41 34428.54 35753.63 32274.57 344
ADS-MVSNet56.17 31151.95 32168.84 27980.60 18353.07 12555.03 37570.02 34044.72 33651.00 31061.19 36722.83 33378.88 31728.54 35753.63 32274.57 344
jajsoiax63.21 25960.84 26470.32 26268.33 34244.45 29781.23 24381.05 19753.37 28250.96 31277.81 26717.49 36385.49 25259.31 18058.05 28381.02 279
CHOSEN 280x42057.53 30456.38 29760.97 33874.01 28848.10 24546.30 38254.31 37348.18 31550.88 31377.43 27238.37 19359.16 38054.83 22363.14 24475.66 334
mvs_tets62.96 26260.55 26670.19 26368.22 34544.24 30280.90 25180.74 20352.99 28550.82 31477.56 26816.74 36685.44 25359.04 18357.94 28580.89 280
testing359.97 28160.19 27159.32 34277.60 23430.01 37581.75 23081.79 18553.54 27950.34 31579.94 24448.99 6976.91 33517.19 38950.59 33571.03 365
IterMVS-SCA-FT59.12 28858.81 28260.08 34070.68 32745.07 29180.42 25874.25 30443.54 34550.02 31673.73 31131.97 27256.74 38251.06 25353.60 32478.42 307
D2MVS63.49 25661.39 25769.77 27069.29 33448.93 21778.89 27777.71 26660.64 16849.70 31772.10 33327.08 30583.48 27854.48 22662.65 24876.90 322
Anonymous2023120659.08 29057.59 28763.55 32168.77 33832.14 36880.26 26179.78 22150.00 30549.39 31872.39 32826.64 30878.36 31933.12 34057.94 28580.14 290
Patchmatch-RL test58.72 29554.32 30771.92 23663.91 36444.25 30161.73 36055.19 37157.38 23249.31 31954.24 37937.60 20480.89 29462.19 15747.28 34790.63 84
pmmvs659.64 28357.15 29067.09 29766.01 35036.86 35180.50 25678.64 24945.05 33549.05 32073.94 30927.28 30386.10 23843.96 29649.94 33778.31 309
dmvs_testset57.65 30258.21 28455.97 35374.62 2809.82 40963.75 35263.34 36267.23 5348.89 32183.68 19639.12 18676.14 34023.43 37559.80 26381.96 257
v7n62.50 26759.27 27872.20 22467.25 34849.83 19577.87 28380.12 21252.50 28848.80 32273.07 31932.10 27087.90 18046.83 28054.92 31378.86 299
WR-MVS_H58.91 29358.04 28561.54 33469.07 33633.83 36076.91 28781.99 17951.40 29748.17 32374.67 30340.23 17474.15 34731.78 34448.10 34076.64 327
KD-MVS_2432*160059.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
miper_refine_blended59.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
CP-MVSNet58.54 29957.57 28861.46 33568.50 34033.96 35976.90 28878.60 25251.67 29647.83 32676.60 28634.99 24472.79 35635.45 32547.58 34477.64 318
PEN-MVS58.35 30057.15 29061.94 33167.55 34734.39 35577.01 28678.35 25751.87 29347.72 32776.73 28433.91 25373.75 35134.03 33547.17 34877.68 316
PLCcopyleft52.38 1860.89 27758.97 28166.68 30481.77 14745.70 28678.96 27674.04 30843.66 34447.63 32883.19 20323.52 33177.78 33137.47 31360.46 25976.55 329
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PatchMatch-RL56.66 30653.75 31165.37 31377.91 23245.28 28969.78 33460.38 36641.35 35147.57 32973.73 31116.83 36576.91 33536.99 31959.21 26973.92 348
PS-CasMVS58.12 30157.03 29261.37 33668.24 34433.80 36176.73 28978.01 26051.20 29847.54 33076.20 29432.85 26272.76 35735.17 33047.37 34677.55 319
PVSNet_057.04 1361.19 27657.24 28973.02 20377.45 23850.31 18579.43 27377.36 27363.96 10447.51 33172.45 32725.03 32083.78 27452.76 24319.22 39784.96 209
mvsany_test143.38 34642.57 34845.82 36450.96 38726.10 38555.80 37327.74 40227.15 38147.41 33274.39 30618.67 35844.95 39444.66 29136.31 37266.40 373
Patchmtry56.56 30852.95 31567.42 29572.53 30650.59 17359.05 36871.72 32537.86 36046.92 33365.86 35538.94 18780.06 30936.94 32046.72 35271.60 361
JIA-IIPM52.33 33147.77 33866.03 30771.20 32046.92 26640.00 39076.48 28837.10 36146.73 33437.02 39032.96 26177.88 32835.97 32352.45 33173.29 353
DP-MVS59.24 28656.12 29868.63 28588.24 3450.35 18382.51 21264.43 35941.10 35246.70 33578.77 25824.75 32388.57 15722.26 37856.29 30066.96 371
DTE-MVSNet57.03 30555.73 30160.95 33965.94 35132.57 36675.71 29177.09 27751.16 29946.65 33676.34 28932.84 26373.22 35530.94 34844.87 35777.06 321
OpenMVS_ROBcopyleft53.19 1759.20 28756.00 29968.83 28071.13 32144.30 29983.64 17775.02 30046.42 32646.48 33773.03 32018.69 35788.14 17227.74 36261.80 25374.05 347
XVG-ACMP-BASELINE56.03 31252.85 31665.58 30961.91 37040.95 33563.36 35372.43 32045.20 33446.02 33874.09 3079.20 38278.12 32145.13 28858.27 27877.66 317
RPSCF45.77 34444.13 34650.68 35957.67 37829.66 37754.92 37745.25 38126.69 38245.92 33975.92 29717.43 36445.70 39327.44 36345.95 35576.67 324
ppachtmachnet_test58.56 29754.34 30671.24 24771.42 31754.74 7981.84 22772.27 32149.02 31045.86 34068.99 34826.27 30983.30 28030.12 34943.23 36175.69 333
EG-PatchMatch MVS62.40 27059.59 27470.81 25573.29 29549.05 21185.81 10684.78 12451.85 29444.19 34173.48 31715.52 37189.85 11340.16 30867.24 20373.54 351
test_040256.45 30953.03 31366.69 30376.78 24950.31 18581.76 22969.61 34342.79 34843.88 34272.13 33122.82 33586.46 22816.57 39050.94 33463.31 379
LTVRE_ROB45.45 1952.73 32749.74 33061.69 33369.78 33134.99 35344.52 38367.60 35343.11 34743.79 34374.03 30818.54 35981.45 29028.39 35957.94 28568.62 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pmmvs-eth3d55.97 31352.78 31765.54 31061.02 37246.44 27275.36 29767.72 35149.61 30743.65 34467.58 35121.63 34577.04 33344.11 29544.33 35873.15 355
test20.0355.22 31654.07 30958.68 34563.14 36725.00 38677.69 28474.78 30152.64 28643.43 34572.39 32826.21 31074.76 34629.31 35247.05 35076.28 331
MSDG59.44 28455.14 30472.32 22274.69 27850.71 16974.39 30373.58 31244.44 33943.40 34677.52 26919.45 35390.87 8631.31 34657.49 29275.38 336
FMVSNet558.61 29656.45 29465.10 31577.20 24439.74 33874.77 29977.12 27650.27 30343.28 34767.71 35026.15 31276.90 33736.78 32154.78 31578.65 303
LS3D56.40 31053.82 31064.12 31881.12 16845.69 28773.42 31066.14 35435.30 37043.24 34879.88 24522.18 34179.62 31419.10 38664.00 23067.05 370
ACMH+54.58 1558.55 29855.24 30268.50 28974.68 27945.80 28580.27 26070.21 33847.15 32042.77 34975.48 29916.73 36785.98 24335.10 33254.78 31573.72 349
our_test_359.11 28955.08 30571.18 25071.42 31753.29 11981.96 22274.52 30248.32 31342.08 35069.28 34728.14 29582.15 28534.35 33445.68 35678.11 313
testgi54.25 32052.57 31959.29 34362.76 36821.65 39372.21 32070.47 33653.25 28341.94 35177.33 27314.28 37277.95 32729.18 35351.72 33378.28 310
ACMH53.70 1659.78 28255.94 30071.28 24676.59 25048.35 23580.15 26476.11 29049.74 30641.91 35273.45 31816.50 36890.31 10131.42 34557.63 29175.17 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UnsupCasMVSNet_eth57.56 30355.15 30364.79 31764.57 36233.12 36273.17 31283.87 14858.98 20041.75 35370.03 34322.54 33679.92 31046.12 28635.31 37481.32 275
ambc62.06 32953.98 38229.38 37935.08 39379.65 22541.37 35459.96 3706.27 39382.15 28535.34 32738.22 37074.65 343
ITE_SJBPF51.84 35858.03 37631.94 36953.57 37636.67 36341.32 35575.23 30111.17 37751.57 38725.81 36848.04 34172.02 359
test_fmvs337.95 35135.75 35444.55 36735.50 40018.92 39748.32 37934.00 39718.36 39141.31 35661.58 3652.29 40248.06 39242.72 30237.71 37166.66 372
F-COLMAP55.96 31453.65 31262.87 32672.76 30342.77 31974.70 30270.37 33740.03 35341.11 35779.36 25017.77 36273.70 35232.80 34153.96 32172.15 357
PM-MVS46.92 34243.76 34756.41 35252.18 38432.26 36763.21 35638.18 39037.99 35940.78 35866.20 3545.09 39565.42 37048.19 27141.99 36371.54 362
EU-MVSNet52.63 32850.72 32558.37 34662.69 36928.13 38372.60 31475.97 29230.94 37740.76 35972.11 33220.16 35170.80 36335.11 33146.11 35476.19 332
OurMVSNet-221017-052.39 33048.73 33363.35 32465.21 35638.42 34568.54 34064.95 35638.19 35739.57 36071.43 33513.23 37479.92 31037.16 31540.32 36771.72 360
K. test v354.04 32149.42 33267.92 29268.55 33942.57 32375.51 29563.07 36352.07 29039.21 36164.59 35919.34 35482.21 28437.11 31725.31 39078.97 298
SixPastTwentyTwo54.37 31850.10 32767.21 29670.70 32541.46 33174.73 30064.69 35747.56 31839.12 36269.49 34418.49 36084.69 26631.87 34334.20 38075.48 335
UnsupCasMVSNet_bld53.86 32250.53 32663.84 31963.52 36634.75 35471.38 32681.92 18246.53 32338.95 36357.93 37520.55 35080.20 30839.91 30934.09 38176.57 328
Patchmatch-test53.33 32648.17 33568.81 28173.31 29442.38 32442.98 38558.23 36832.53 37238.79 36470.77 33939.66 18273.51 35325.18 36952.06 33290.55 85
test_vis1_rt40.29 34938.64 35145.25 36648.91 39130.09 37359.44 36727.07 40324.52 38538.48 36551.67 3846.71 39049.44 38844.33 29346.59 35356.23 382
KD-MVS_self_test49.24 33746.85 34056.44 35154.32 38022.87 38957.39 37173.36 31844.36 34037.98 36659.30 37318.97 35671.17 36233.48 33642.44 36275.26 337
LCM-MVSNet-Re58.82 29456.54 29365.68 30879.31 20229.09 38161.39 36345.79 37960.73 16637.65 36772.47 32631.42 27881.08 29349.66 25970.41 18086.87 171
Anonymous2024052151.65 33248.42 33461.34 33756.43 37939.65 34073.57 30873.47 31736.64 36436.59 36863.98 36010.75 37872.25 36035.35 32649.01 33872.11 358
CMPMVSbinary40.41 2155.34 31552.64 31863.46 32260.88 37343.84 30561.58 36271.06 33230.43 37836.33 36974.63 30424.14 32775.44 34348.05 27266.62 20871.12 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
COLMAP_ROBcopyleft43.60 2050.90 33548.05 33659.47 34167.81 34640.57 33771.25 32762.72 36536.49 36536.19 37073.51 31613.48 37373.92 35020.71 38250.26 33663.92 378
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lessismore_v067.98 29164.76 36141.25 33245.75 38036.03 37165.63 35719.29 35584.11 27035.67 32421.24 39578.59 304
USDC54.36 31951.23 32363.76 32064.29 36337.71 34862.84 35873.48 31656.85 24035.47 37271.94 3349.23 38178.43 31838.43 31248.57 33975.13 339
N_pmnet41.25 34739.77 35045.66 36568.50 3400.82 41572.51 3160.38 41435.61 36735.26 37361.51 36620.07 35267.74 36823.51 37440.63 36568.42 369
DSMNet-mixed38.35 35035.36 35547.33 36348.11 39214.91 40537.87 39136.60 39319.18 38934.37 37459.56 37215.53 37053.01 38620.14 38446.89 35174.07 346
pmmvs345.53 34541.55 34957.44 34848.97 39039.68 33970.06 33157.66 36928.32 38034.06 37557.29 3768.50 38566.85 36934.86 33334.26 37965.80 375
new-patchmatchnet48.21 33946.55 34153.18 35757.73 37718.19 40170.24 33071.02 33345.70 33033.70 37660.23 36918.00 36169.86 36627.97 36134.35 37871.49 363
MVS-HIRNet49.01 33844.71 34261.92 33276.06 25946.61 27063.23 35554.90 37224.77 38433.56 37736.60 39221.28 34875.88 34229.49 35162.54 24963.26 380
AllTest47.32 34144.66 34355.32 35565.08 35837.50 34962.96 35754.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
TestCases55.32 35565.08 35837.50 34954.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
MIMVSNet150.35 33647.81 33757.96 34761.53 37127.80 38467.40 34374.06 30743.25 34633.31 38065.38 35816.03 36971.34 36121.80 37947.55 34574.75 342
YYNet153.82 32349.96 32865.41 31270.09 33048.95 21572.30 31871.66 32744.25 34131.89 38163.07 36323.73 32973.95 34933.26 33839.40 36873.34 352
MDA-MVSNet_test_wron53.82 32349.95 32965.43 31170.13 32949.05 21172.30 31871.65 32844.23 34231.85 38263.13 36223.68 33074.01 34833.25 33939.35 36973.23 354
TDRefinement40.91 34838.37 35248.55 36250.45 38833.03 36458.98 36950.97 37728.50 37929.89 38367.39 3526.21 39454.51 38417.67 38835.25 37558.11 381
TinyColmap48.15 34044.49 34459.13 34465.73 35338.04 34663.34 35462.86 36438.78 35529.48 38467.23 3536.46 39273.30 35424.59 37141.90 36466.04 374
mvsany_test328.00 36025.98 36234.05 37728.97 40515.31 40334.54 39418.17 40816.24 39229.30 38553.37 3822.79 40033.38 40530.01 35020.41 39653.45 385
test_f27.12 36224.85 36333.93 37826.17 41015.25 40430.24 39822.38 40712.53 39728.23 38649.43 3852.59 40134.34 40425.12 37026.99 38852.20 386
LF4IMVS33.04 35832.55 35834.52 37640.96 39522.03 39144.45 38435.62 39420.42 38728.12 38762.35 3645.03 39631.88 40621.61 38134.42 37749.63 388
WB-MVS37.41 35236.37 35340.54 37154.23 38110.43 40865.29 34643.75 38234.86 37127.81 38854.63 37824.94 32163.21 3716.81 40315.00 39847.98 390
MDA-MVSNet-bldmvs51.56 33347.75 33963.00 32571.60 31547.32 26169.70 33572.12 32243.81 34327.65 38963.38 36121.97 34475.96 34127.30 36432.19 38265.70 376
SSC-MVS35.20 35434.30 35637.90 37352.58 3838.65 41161.86 35941.64 38631.81 37625.54 39052.94 38323.39 33259.28 3796.10 40412.86 39945.78 392
new_pmnet33.56 35731.89 35938.59 37249.01 38920.42 39451.01 37837.92 39120.58 38623.45 39146.79 3866.66 39149.28 39020.00 38531.57 38446.09 391
FPMVS35.40 35333.67 35740.57 37046.34 39328.74 38241.05 38757.05 37020.37 38822.27 39253.38 3816.87 38944.94 3958.62 39747.11 34948.01 389
test_vis3_rt24.79 36622.95 36930.31 38228.59 40618.92 39737.43 39217.27 41012.90 39521.28 39329.92 3991.02 40936.35 39928.28 36029.82 38735.65 393
LCM-MVSNet28.07 35923.85 36740.71 36927.46 40918.93 39630.82 39746.19 37812.76 39616.40 39434.70 3951.90 40548.69 39120.25 38324.22 39154.51 384
APD_test126.46 36424.41 36532.62 38137.58 39721.74 39240.50 38930.39 39911.45 39816.33 39543.76 3871.63 40741.62 39611.24 39526.82 38934.51 395
ANet_high34.39 35529.59 36148.78 36130.34 40422.28 39055.53 37463.79 36138.11 35815.47 39636.56 3936.94 38859.98 37613.93 3935.64 40764.08 377
test_method24.09 36721.07 37133.16 37927.67 4088.35 41326.63 39935.11 3963.40 40514.35 39736.98 3913.46 39935.31 40119.08 38722.95 39255.81 383
PMMVS226.71 36322.98 36837.87 37436.89 3988.51 41242.51 38629.32 40119.09 39013.01 39837.54 3892.23 40353.11 38514.54 39211.71 40051.99 387
tmp_tt9.44 37410.68 3775.73 3902.49 4134.21 41410.48 40318.04 4090.34 40712.59 39920.49 40111.39 3767.03 40913.84 3946.46 4065.95 404
testf121.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
APD_test221.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
PMVScopyleft19.57 2225.07 36522.43 37032.99 38023.12 41122.98 38840.98 38835.19 39515.99 39311.95 40235.87 3941.47 40849.29 3895.41 40631.90 38326.70 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft27.47 36124.26 36637.12 37560.55 37429.17 38011.68 40260.00 36714.18 39410.52 40315.12 4042.20 40463.01 3728.39 39835.65 37319.18 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVEpermissive16.60 2317.34 37313.39 37629.16 38328.43 40719.72 39513.73 40123.63 4067.23 4047.96 40421.41 4000.80 41036.08 4006.97 40110.39 40131.69 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft13.10 38821.34 4128.99 41010.02 41210.59 4007.53 40530.55 3981.82 40614.55 4076.83 4027.52 40315.75 401
E-PMN19.16 37018.40 37421.44 38636.19 39913.63 40647.59 38030.89 39810.73 3995.91 40616.59 4023.66 39839.77 3975.95 4058.14 40210.92 402
EMVS18.42 37117.66 37520.71 38734.13 40112.64 40746.94 38129.94 40010.46 4015.58 40714.93 4054.23 39738.83 3985.24 4077.51 40410.67 403
wuyk23d9.11 3758.77 37910.15 38940.18 39616.76 40220.28 4001.01 4132.58 4062.66 4080.98 4080.23 41312.49 4084.08 4086.90 4051.19 405
EGC-MVSNET33.75 35630.42 36043.75 36864.94 36036.21 35260.47 36640.70 3880.02 4080.10 40953.79 3807.39 38660.26 37511.09 39635.23 37634.79 394
testmvs6.14 3778.18 3800.01 3910.01 4140.00 41773.40 3110.00 4150.00 4090.02 4100.15 4090.00 4140.00 4100.02 4090.00 4080.02 406
test1236.01 3788.01 3810.01 3910.00 4150.01 41671.93 3240.00 4150.00 4090.02 4100.11 4100.00 4140.00 4100.02 4090.00 4080.02 406
test_blank0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
cdsmvs_eth3d_5k18.33 37224.44 3640.00 3930.00 4150.00 4170.00 40489.40 220.00 4090.00 41292.02 4838.55 1910.00 4100.00 4110.00 4080.00 408
pcd_1.5k_mvsjas3.15 3794.20 3820.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 41137.77 1970.00 4100.00 4110.00 4080.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
sosnet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
Regformer0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
ab-mvs-re7.68 37610.24 3780.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 41292.12 440.00 4140.00 4100.00 4110.00 4080.00 408
uanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
WAC-MVS34.28 35622.56 377
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
eth-test20.00 415
eth-test0.00 415
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
save fliter85.35 6656.34 4189.31 4081.46 19061.55 147
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 32
GSMVS88.13 147
sam_mvs138.86 18988.13 147
sam_mvs35.99 234
MTGPAbinary81.31 193
test_post170.84 32914.72 40634.33 25083.86 27148.80 266
test_post16.22 40337.52 20684.72 265
patchmatchnet-post59.74 37138.41 19279.91 312
MTMP87.27 7715.34 411
gm-plane-assit83.24 10954.21 9570.91 2288.23 13195.25 1466.37 126
test9_res78.72 4985.44 4291.39 65
agg_prior275.65 6985.11 4691.01 77
test_prior456.39 4087.15 81
test_prior78.39 7286.35 5154.91 7685.45 9889.70 11990.55 85
新几何281.61 235
旧先验181.57 15947.48 25771.83 32388.66 12036.94 21778.34 10488.67 135
无先验85.19 12878.00 26149.08 30985.13 26052.78 24187.45 163
原ACMM283.77 175
testdata277.81 33045.64 287
segment_acmp44.97 114
testdata177.55 28564.14 99
plane_prior777.95 22948.46 232
plane_prior678.42 22449.39 20636.04 232
plane_prior582.59 17188.30 16865.46 13572.34 16284.49 214
plane_prior483.28 201
plane_prior285.76 10863.60 111
plane_prior178.31 226
plane_prior49.57 19887.43 7064.57 9372.84 157
n20.00 415
nn0.00 415
door-mid41.31 387
test1184.25 138
door43.27 383
HQP5-MVS51.56 156
BP-MVS66.70 123
HQP3-MVS83.68 15073.12 153
HQP2-MVS37.35 209
NP-MVS78.76 21350.43 17785.12 175
ACMMP++_ref63.20 242
ACMMP++59.38 267
Test By Simon39.38 183