| fmvsm_l_conf0.5_n | | | 97.65 12 | 97.72 12 | 97.41 46 | 97.51 120 | 92.78 84 | 99.85 7 | 98.05 46 | 96.78 8 | 99.60 1 | 99.23 26 | 90.42 45 | 99.92 40 | 99.55 12 | 98.50 103 | 99.55 72 |
|
| fmvsm_l_conf0.5_n_a | | | 97.70 11 | 97.80 11 | 97.42 45 | 97.59 116 | 92.91 82 | 99.86 4 | 98.04 48 | 96.70 10 | 99.58 2 | 99.26 21 | 90.90 37 | 99.94 34 | 99.57 11 | 98.66 98 | 99.40 85 |
|
| IU-MVS | | | | | | 99.63 18 | 95.38 22 | | 97.73 77 | 95.54 26 | 99.54 3 | | | | 99.69 6 | 99.81 23 | 99.99 1 |
|
| PC_three_1452 | | | | | | | | | | 94.60 36 | 99.41 4 | 99.12 46 | 95.50 7 | 99.96 28 | 99.84 2 | 99.92 3 | 99.97 7 |
|
| CNVR-MVS | | | 98.46 1 | 98.38 1 | 98.72 9 | 99.80 4 | 96.19 15 | 99.80 15 | 97.99 52 | 97.05 6 | 99.41 4 | 99.59 2 | 92.89 25 | 100.00 1 | 98.99 25 | 99.90 7 | 99.96 10 |
|
| patch_mono-2 | | | 97.10 25 | 97.97 8 | 94.49 168 | 99.21 61 | 83.73 284 | 99.62 37 | 98.25 32 | 95.28 30 | 99.38 6 | 98.91 75 | 92.28 28 | 99.94 34 | 99.61 9 | 99.22 70 | 99.78 38 |
|
| test0726 | | | | | | 99.66 12 | 95.20 30 | 99.77 17 | 97.70 83 | 93.95 48 | 99.35 7 | 99.54 3 | 93.18 22 | | | | |
|
| SED-MVS | | | 98.18 2 | 98.10 4 | 98.41 18 | 99.63 18 | 95.24 25 | 99.77 17 | 97.72 78 | 94.17 43 | 99.30 8 | 99.54 3 | 93.32 19 | 99.98 9 | 99.70 4 | 99.81 23 | 99.99 1 |
|
| test_241102_ONE | | | | | | 99.63 18 | 95.24 25 | | 97.72 78 | 94.16 45 | 99.30 8 | 99.49 9 | 93.32 19 | 99.98 9 | | | |
|
| DVP-MVS++ | | | 98.18 2 | 98.09 5 | 98.44 16 | 99.61 24 | 95.38 22 | 99.55 44 | 97.68 87 | 93.01 70 | 99.23 10 | 99.45 14 | 95.12 8 | 99.98 9 | 99.25 18 | 99.92 3 | 99.97 7 |
|
| test_241102_TWO | | | | | | | | | 97.72 78 | 94.17 43 | 99.23 10 | 99.54 3 | 93.14 24 | 99.98 9 | 99.70 4 | 99.82 19 | 99.99 1 |
|
| SMA-MVS |  | | 97.24 19 | 96.99 23 | 98.00 29 | 99.30 54 | 94.20 55 | 99.16 93 | 97.65 96 | 89.55 154 | 99.22 12 | 99.52 8 | 90.34 48 | 99.99 5 | 98.32 43 | 99.83 15 | 99.82 32 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| fmvsm_s_conf0.5_n_a | | | 95.97 55 | 96.19 42 | 95.31 138 | 96.51 157 | 89.01 166 | 99.81 11 | 98.39 27 | 95.46 28 | 99.19 13 | 99.16 36 | 81.44 194 | 99.91 45 | 98.83 28 | 96.97 136 | 97.01 208 |
|
| test_fmvsm_n_1920 | | | 97.08 26 | 97.55 14 | 95.67 126 | 97.94 104 | 89.61 155 | 99.93 1 | 98.48 24 | 97.08 5 | 99.08 14 | 99.13 44 | 88.17 68 | 99.93 38 | 99.11 23 | 99.06 75 | 97.47 193 |
|
| DVP-MVS |  | | 98.07 7 | 98.00 6 | 98.29 19 | 99.66 12 | 95.20 30 | 99.72 23 | 97.47 135 | 93.95 48 | 99.07 15 | 99.46 10 | 93.18 22 | 99.97 21 | 99.64 7 | 99.82 19 | 99.69 55 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 93.01 70 | 99.07 15 | 99.46 10 | 94.66 14 | 99.97 21 | 99.25 18 | 99.82 19 | 99.95 15 |
|
| TSAR-MVS + MP. | | | 97.44 17 | 97.46 16 | 97.39 48 | 99.12 65 | 93.49 69 | 98.52 167 | 97.50 130 | 94.46 38 | 98.99 17 | 98.64 99 | 91.58 30 | 99.08 148 | 98.49 37 | 99.83 15 | 99.60 67 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| fmvsm_s_conf0.1_n_a | | | 95.16 80 | 95.15 76 | 95.18 143 | 92.06 291 | 88.94 170 | 99.29 81 | 97.53 121 | 94.46 38 | 98.98 18 | 98.99 60 | 79.99 202 | 99.85 67 | 98.24 47 | 96.86 138 | 96.73 213 |
|
| PS-MVSNAJ | | | 96.87 30 | 96.40 38 | 98.29 19 | 97.35 124 | 97.29 5 | 99.03 115 | 97.11 172 | 95.83 20 | 98.97 19 | 99.14 42 | 82.48 176 | 99.60 103 | 98.60 33 | 99.08 73 | 98.00 180 |
|
| 旧先验2 | | | | | | | | 98.67 150 | | 85.75 251 | 98.96 20 | | | 98.97 152 | 93.84 131 | | |
|
| test_one_0601 | | | | | | 99.59 28 | 94.89 34 | | 97.64 97 | 93.14 69 | 98.93 21 | 99.45 14 | 93.45 18 | | | | |
|
| fmvsm_s_conf0.5_n | | | 96.19 48 | 96.49 35 | 95.30 139 | 97.37 123 | 89.16 160 | 99.86 4 | 98.47 25 | 95.68 23 | 98.87 22 | 99.15 39 | 82.44 180 | 99.92 40 | 99.14 21 | 97.43 127 | 96.83 212 |
|
| xiu_mvs_v2_base | | | 96.66 35 | 96.17 47 | 98.11 27 | 97.11 137 | 96.96 6 | 99.01 118 | 97.04 179 | 95.51 27 | 98.86 23 | 99.11 50 | 82.19 184 | 99.36 130 | 98.59 35 | 98.14 111 | 98.00 180 |
|
| NCCC | | | 98.12 5 | 98.11 3 | 98.13 24 | 99.76 6 | 94.46 48 | 99.81 11 | 97.88 56 | 96.54 13 | 98.84 24 | 99.46 10 | 92.55 27 | 99.98 9 | 98.25 46 | 99.93 1 | 99.94 18 |
|
| SD-MVS | | | 97.51 15 | 97.40 18 | 97.81 34 | 99.01 72 | 93.79 63 | 99.33 78 | 97.38 148 | 93.73 59 | 98.83 25 | 99.02 58 | 90.87 39 | 99.88 54 | 98.69 30 | 99.74 29 | 99.77 43 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| SF-MVS | | | 97.22 21 | 96.92 24 | 98.12 26 | 99.11 66 | 94.88 35 | 99.44 62 | 97.45 138 | 89.60 150 | 98.70 26 | 99.42 17 | 90.42 45 | 99.72 89 | 98.47 38 | 99.65 38 | 99.77 43 |
|
| fmvsm_s_conf0.1_n | | | 95.56 71 | 95.68 64 | 95.20 142 | 94.35 242 | 89.10 162 | 99.50 51 | 97.67 90 | 94.76 34 | 98.68 27 | 99.03 56 | 81.13 197 | 99.86 63 | 98.63 32 | 97.36 129 | 96.63 215 |
|
| DPE-MVS |  | | 98.11 6 | 98.00 6 | 98.44 16 | 99.50 42 | 95.39 21 | 99.29 81 | 97.72 78 | 94.50 37 | 98.64 28 | 99.54 3 | 93.32 19 | 99.97 21 | 99.58 10 | 99.90 7 | 99.95 15 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MSP-MVS | | | 97.77 9 | 98.18 2 | 96.53 92 | 99.54 36 | 90.14 136 | 99.41 68 | 97.70 83 | 95.46 28 | 98.60 29 | 99.19 30 | 95.71 4 | 99.49 112 | 98.15 48 | 99.85 13 | 99.95 15 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| 9.14 | | | | 96.87 26 | | 99.34 50 | | 99.50 51 | 97.49 132 | 89.41 157 | 98.59 30 | 99.43 16 | 89.78 52 | 99.69 91 | 98.69 30 | 99.62 44 | |
|
| APD-MVS |  | | 96.95 28 | 96.72 31 | 97.63 38 | 99.51 41 | 93.58 65 | 99.16 93 | 97.44 141 | 90.08 139 | 98.59 30 | 99.07 51 | 89.06 57 | 99.42 123 | 97.92 51 | 99.66 37 | 99.88 26 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| test_vis1_n_1920 | | | 93.08 141 | 93.42 114 | 92.04 232 | 96.31 166 | 79.36 329 | 99.83 9 | 96.06 239 | 96.72 9 | 98.53 32 | 98.10 127 | 58.57 337 | 99.91 45 | 97.86 53 | 98.79 94 | 96.85 211 |
|
| testdata | | | | | 95.26 141 | 98.20 95 | 87.28 211 | | 97.60 106 | 85.21 257 | 98.48 33 | 99.15 39 | 88.15 70 | 98.72 162 | 90.29 173 | 99.45 57 | 99.78 38 |
|
| test_fmvsmconf_n | | | 96.78 33 | 96.84 28 | 96.61 85 | 95.99 182 | 90.25 131 | 99.90 2 | 98.13 42 | 96.68 11 | 98.42 34 | 98.92 74 | 85.34 131 | 99.88 54 | 99.12 22 | 99.08 73 | 99.70 52 |
|
| TEST9 | | | | | | 99.57 33 | 93.17 73 | 99.38 71 | 97.66 91 | 89.57 152 | 98.39 35 | 99.18 33 | 90.88 38 | 99.66 94 | | | |
|
| train_agg | | | 97.20 22 | 97.08 22 | 97.57 42 | 99.57 33 | 93.17 73 | 99.38 71 | 97.66 91 | 90.18 134 | 98.39 35 | 99.18 33 | 90.94 35 | 99.66 94 | 98.58 36 | 99.85 13 | 99.88 26 |
|
| test_8 | | | | | | 99.55 35 | 93.07 76 | 99.37 74 | 97.64 97 | 90.18 134 | 98.36 37 | 99.19 30 | 90.94 35 | 99.64 100 | | | |
|
| CS-MVS-test | | | 95.98 54 | 96.34 40 | 94.90 153 | 98.06 101 | 87.66 198 | 99.69 33 | 96.10 235 | 93.66 60 | 98.35 38 | 99.05 54 | 86.28 112 | 97.66 215 | 96.96 69 | 98.90 87 | 99.37 88 |
|
| MM | | | | | 98.86 5 | | 96.83 7 | 99.81 11 | 99.13 9 | 97.66 2 | 98.29 39 | 98.96 66 | 85.84 121 | 99.90 50 | 99.72 3 | 98.80 91 | 99.85 30 |
|
| HPM-MVS++ |  | | 97.72 10 | 97.59 13 | 98.14 23 | 99.53 40 | 94.76 42 | 99.19 87 | 97.75 73 | 95.66 24 | 98.21 40 | 99.29 20 | 91.10 33 | 99.99 5 | 97.68 55 | 99.87 9 | 99.68 56 |
|
| DPM-MVS | | | 97.86 8 | 97.25 20 | 99.68 1 | 98.25 93 | 99.10 1 | 99.76 20 | 97.78 70 | 96.61 12 | 98.15 41 | 99.53 7 | 93.62 17 | 100.00 1 | 91.79 157 | 99.80 26 | 99.94 18 |
|
| test_part2 | | | | | | 99.54 36 | 95.42 20 | | | | 98.13 42 | | | | | | |
|
| SteuartSystems-ACMMP | | | 97.25 18 | 97.34 19 | 97.01 60 | 97.38 122 | 91.46 102 | 99.75 21 | 97.66 91 | 94.14 47 | 98.13 42 | 99.26 21 | 92.16 29 | 99.66 94 | 97.91 52 | 99.64 40 | 99.90 22 |
| Skip Steuart: Steuart Systems R&D Blog. |
| FOURS1 | | | | | | 99.50 42 | 88.94 170 | 99.55 44 | 97.47 135 | 91.32 108 | 98.12 44 | | | | | | |
|
| test_prior2 | | | | | | | | 99.57 42 | | 91.43 105 | 98.12 44 | 98.97 62 | 90.43 44 | | 98.33 42 | 99.81 23 | |
|
| CS-MVS | | | 95.75 67 | 96.19 42 | 94.40 172 | 97.88 106 | 86.22 235 | 99.66 34 | 96.12 234 | 92.69 78 | 98.07 46 | 98.89 78 | 87.09 90 | 97.59 221 | 96.71 72 | 98.62 99 | 99.39 87 |
|
| PHI-MVS | | | 96.65 36 | 96.46 37 | 97.21 54 | 99.34 50 | 91.77 95 | 99.70 26 | 98.05 46 | 86.48 240 | 98.05 47 | 99.20 29 | 89.33 55 | 99.96 28 | 98.38 39 | 99.62 44 | 99.90 22 |
|
| MVSFormer | | | 94.71 94 | 94.08 97 | 96.61 85 | 95.05 223 | 94.87 36 | 97.77 234 | 96.17 231 | 86.84 229 | 98.04 48 | 98.52 106 | 85.52 123 | 95.99 300 | 89.83 176 | 98.97 81 | 98.96 123 |
|
| lupinMVS | | | 96.32 44 | 95.94 53 | 97.44 44 | 95.05 223 | 94.87 36 | 99.86 4 | 96.50 209 | 93.82 57 | 98.04 48 | 98.77 85 | 85.52 123 | 98.09 185 | 96.98 68 | 98.97 81 | 99.37 88 |
|
| APDe-MVS |  | | 97.53 13 | 97.47 15 | 97.70 36 | 99.58 30 | 93.63 64 | 99.56 43 | 97.52 125 | 93.59 63 | 98.01 50 | 99.12 46 | 90.80 40 | 99.55 106 | 99.26 17 | 99.79 27 | 99.93 20 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ACMMP_NAP | | | 96.59 37 | 96.18 44 | 97.81 34 | 98.82 81 | 93.55 66 | 98.88 130 | 97.59 110 | 90.66 119 | 97.98 51 | 99.14 42 | 86.59 104 | 100.00 1 | 96.47 81 | 99.46 55 | 99.89 25 |
|
| agg_prior | | | | | | 99.54 36 | 92.66 85 | | 97.64 97 | | 97.98 51 | | | 99.61 102 | | | |
|
| CDPH-MVS | | | 96.56 38 | 96.18 44 | 97.70 36 | 99.59 28 | 93.92 60 | 99.13 104 | 97.44 141 | 89.02 166 | 97.90 53 | 99.22 27 | 88.90 60 | 99.49 112 | 94.63 119 | 99.79 27 | 99.68 56 |
|
| EPNet | | | 96.82 31 | 96.68 33 | 97.25 53 | 98.65 86 | 93.10 75 | 99.48 53 | 98.76 15 | 96.54 13 | 97.84 54 | 98.22 122 | 87.49 80 | 99.66 94 | 95.35 101 | 97.78 118 | 99.00 119 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MSLP-MVS++ | | | 97.50 16 | 97.45 17 | 97.63 38 | 99.65 16 | 93.21 72 | 99.70 26 | 98.13 42 | 94.61 35 | 97.78 55 | 99.46 10 | 89.85 51 | 99.81 79 | 97.97 50 | 99.91 6 | 99.88 26 |
|
| test12 | | | | | 97.83 33 | 99.33 53 | 94.45 49 | | 97.55 117 | | 97.56 56 | | 88.60 63 | 99.50 111 | | 99.71 34 | 99.55 72 |
|
| xiu_mvs_v1_base_debu | | | 94.73 91 | 93.98 99 | 96.99 62 | 95.19 209 | 95.24 25 | 98.62 156 | 96.50 209 | 92.99 72 | 97.52 57 | 98.83 82 | 72.37 257 | 99.15 141 | 97.03 65 | 96.74 139 | 96.58 218 |
|
| xiu_mvs_v1_base | | | 94.73 91 | 93.98 99 | 96.99 62 | 95.19 209 | 95.24 25 | 98.62 156 | 96.50 209 | 92.99 72 | 97.52 57 | 98.83 82 | 72.37 257 | 99.15 141 | 97.03 65 | 96.74 139 | 96.58 218 |
|
| xiu_mvs_v1_base_debi | | | 94.73 91 | 93.98 99 | 96.99 62 | 95.19 209 | 95.24 25 | 98.62 156 | 96.50 209 | 92.99 72 | 97.52 57 | 98.83 82 | 72.37 257 | 99.15 141 | 97.03 65 | 96.74 139 | 96.58 218 |
|
| ZD-MVS | | | | | | 99.67 10 | 93.28 71 | | 97.61 104 | 87.78 208 | 97.41 60 | 99.16 36 | 90.15 49 | 99.56 105 | 98.35 41 | 99.70 35 | |
|
| ETV-MVS | | | 96.00 52 | 96.00 52 | 96.00 114 | 96.56 154 | 91.05 114 | 99.63 36 | 96.61 199 | 93.26 68 | 97.39 61 | 98.30 119 | 86.62 103 | 98.13 182 | 98.07 49 | 97.57 121 | 98.82 140 |
|
| DeepPCF-MVS | | 93.56 1 | 96.55 39 | 97.84 10 | 92.68 220 | 98.71 85 | 78.11 341 | 99.70 26 | 97.71 82 | 98.18 1 | 97.36 62 | 99.76 1 | 90.37 47 | 99.94 34 | 99.27 16 | 99.54 52 | 99.99 1 |
|
| test_vis1_n | | | 90.40 191 | 90.27 182 | 90.79 261 | 91.55 301 | 76.48 346 | 99.12 105 | 94.44 322 | 94.31 41 | 97.34 63 | 96.95 175 | 43.60 376 | 99.42 123 | 97.57 57 | 97.60 120 | 96.47 222 |
|
| EC-MVSNet | | | 95.09 82 | 95.17 75 | 94.84 156 | 95.42 200 | 88.17 186 | 99.48 53 | 95.92 252 | 91.47 103 | 97.34 63 | 98.36 116 | 82.77 168 | 97.41 232 | 97.24 62 | 98.58 100 | 98.94 128 |
|
| test_fmvsmconf0.1_n | | | 95.94 58 | 95.79 61 | 96.40 99 | 92.42 285 | 89.92 147 | 99.79 16 | 96.85 190 | 96.53 15 | 97.22 65 | 98.67 97 | 82.71 172 | 99.84 69 | 98.92 27 | 98.98 80 | 99.43 84 |
|
| CANet | | | 97.00 27 | 96.49 35 | 98.55 12 | 98.86 80 | 96.10 16 | 99.83 9 | 97.52 125 | 95.90 19 | 97.21 66 | 98.90 76 | 82.66 173 | 99.93 38 | 98.71 29 | 98.80 91 | 99.63 64 |
|
| CANet_DTU | | | 94.31 103 | 93.35 115 | 97.20 55 | 97.03 141 | 94.71 44 | 98.62 156 | 95.54 281 | 95.61 25 | 97.21 66 | 98.47 113 | 71.88 262 | 99.84 69 | 88.38 195 | 97.46 126 | 97.04 206 |
|
| MVS_0304 | | | 97.53 13 | 97.15 21 | 98.67 11 | 97.30 126 | 96.52 12 | 99.60 38 | 98.88 14 | 97.14 4 | 97.21 66 | 98.94 72 | 86.89 96 | 99.91 45 | 99.43 15 | 98.91 86 | 99.59 71 |
|
| test_cas_vis1_n_1920 | | | 93.86 115 | 93.74 108 | 94.22 181 | 95.39 203 | 86.08 241 | 99.73 22 | 96.07 238 | 96.38 17 | 97.19 69 | 97.78 134 | 65.46 312 | 99.86 63 | 96.71 72 | 98.92 85 | 96.73 213 |
|
| VNet | | | 95.08 83 | 94.26 89 | 97.55 43 | 98.07 100 | 93.88 61 | 98.68 148 | 98.73 18 | 90.33 131 | 97.16 70 | 97.43 153 | 79.19 210 | 99.53 109 | 96.91 71 | 91.85 201 | 99.24 100 |
|
| region2R | | | 96.30 45 | 96.17 47 | 96.70 81 | 99.70 7 | 90.31 130 | 99.46 59 | 97.66 91 | 90.55 124 | 97.07 71 | 99.07 51 | 86.85 97 | 99.97 21 | 95.43 99 | 99.74 29 | 99.81 33 |
|
| 原ACMM1 | | | | | 96.18 105 | 99.03 71 | 90.08 139 | | 97.63 101 | 88.98 167 | 97.00 72 | 98.97 62 | 88.14 71 | 99.71 90 | 88.23 197 | 99.62 44 | 98.76 147 |
|
| HFP-MVS | | | 96.42 41 | 96.26 41 | 96.90 69 | 99.69 8 | 90.96 117 | 99.47 55 | 97.81 65 | 90.54 125 | 96.88 73 | 99.05 54 | 87.57 78 | 99.96 28 | 95.65 92 | 99.72 31 | 99.78 38 |
|
| XVS | | | 96.47 40 | 96.37 39 | 96.77 74 | 99.62 22 | 90.66 125 | 99.43 65 | 97.58 112 | 92.41 85 | 96.86 74 | 98.96 66 | 87.37 83 | 99.87 58 | 95.65 92 | 99.43 59 | 99.78 38 |
|
| X-MVStestdata | | | 90.69 188 | 88.66 211 | 96.77 74 | 99.62 22 | 90.66 125 | 99.43 65 | 97.58 112 | 92.41 85 | 96.86 74 | 29.59 400 | 87.37 83 | 99.87 58 | 95.65 92 | 99.43 59 | 99.78 38 |
|
| SR-MVS | | | 96.13 49 | 96.16 49 | 96.07 110 | 99.42 47 | 89.04 164 | 98.59 162 | 97.33 152 | 90.44 128 | 96.84 76 | 99.12 46 | 86.75 99 | 99.41 126 | 97.47 58 | 99.44 58 | 99.76 45 |
|
| TSAR-MVS + GP. | | | 96.95 28 | 96.91 25 | 97.07 57 | 98.88 79 | 91.62 98 | 99.58 41 | 96.54 207 | 95.09 32 | 96.84 76 | 98.63 101 | 91.16 31 | 99.77 85 | 99.04 24 | 96.42 144 | 99.81 33 |
|
| ACMMPR | | | 96.28 46 | 96.14 51 | 96.73 78 | 99.68 9 | 90.47 128 | 99.47 55 | 97.80 67 | 90.54 125 | 96.83 78 | 99.03 56 | 86.51 108 | 99.95 31 | 95.65 92 | 99.72 31 | 99.75 46 |
|
| test_fmvs1 | | | 92.35 154 | 92.94 129 | 90.57 266 | 97.19 130 | 75.43 350 | 99.55 44 | 94.97 306 | 95.20 31 | 96.82 79 | 97.57 147 | 59.59 335 | 99.84 69 | 97.30 61 | 98.29 110 | 96.46 223 |
|
| PMMVS | | | 93.62 124 | 93.90 105 | 92.79 215 | 96.79 149 | 81.40 312 | 98.85 131 | 96.81 191 | 91.25 109 | 96.82 79 | 98.15 126 | 77.02 224 | 98.13 182 | 93.15 144 | 96.30 148 | 98.83 139 |
|
| PGM-MVS | | | 95.85 61 | 95.65 67 | 96.45 95 | 99.50 42 | 89.77 151 | 98.22 201 | 98.90 13 | 89.19 161 | 96.74 81 | 98.95 69 | 85.91 120 | 99.92 40 | 93.94 128 | 99.46 55 | 99.66 60 |
|
| jason | | | 95.40 76 | 94.86 82 | 97.03 59 | 92.91 280 | 94.23 54 | 99.70 26 | 96.30 220 | 93.56 64 | 96.73 82 | 98.52 106 | 81.46 193 | 97.91 194 | 96.08 87 | 98.47 105 | 98.96 123 |
| jason: jason. |
| 新几何1 | | | | | 97.40 47 | 98.92 77 | 92.51 90 | | 97.77 72 | 85.52 253 | 96.69 83 | 99.06 53 | 88.08 72 | 99.89 53 | 84.88 235 | 99.62 44 | 99.79 36 |
|
| SR-MVS-dyc-post | | | 95.75 67 | 95.86 56 | 95.41 134 | 99.22 59 | 87.26 214 | 98.40 185 | 97.21 160 | 89.63 148 | 96.67 84 | 98.97 62 | 86.73 101 | 99.36 130 | 96.62 75 | 99.31 65 | 99.60 67 |
|
| RE-MVS-def | | | | 95.70 63 | | 99.22 59 | 87.26 214 | 98.40 185 | 97.21 160 | 89.63 148 | 96.67 84 | 98.97 62 | 85.24 132 | | 96.62 75 | 99.31 65 | 99.60 67 |
|
| APD-MVS_3200maxsize | | | 95.64 70 | 95.65 67 | 95.62 128 | 99.24 58 | 87.80 194 | 98.42 180 | 97.22 159 | 88.93 171 | 96.64 86 | 98.98 61 | 85.49 126 | 99.36 130 | 96.68 74 | 99.27 68 | 99.70 52 |
|
| mvsany_test1 | | | 94.57 99 | 95.09 79 | 92.98 211 | 95.84 186 | 82.07 305 | 98.76 142 | 95.24 299 | 92.87 77 | 96.45 87 | 98.71 94 | 84.81 138 | 99.15 141 | 97.68 55 | 95.49 162 | 97.73 185 |
|
| MG-MVS | | | 97.24 19 | 96.83 30 | 98.47 15 | 99.79 5 | 95.71 18 | 99.07 109 | 99.06 10 | 94.45 40 | 96.42 88 | 98.70 95 | 88.81 61 | 99.74 88 | 95.35 101 | 99.86 12 | 99.97 7 |
|
| test_fmvs1_n | | | 91.07 179 | 91.41 160 | 90.06 280 | 94.10 248 | 74.31 354 | 99.18 89 | 94.84 310 | 94.81 33 | 96.37 89 | 97.46 151 | 50.86 365 | 99.82 76 | 97.14 64 | 97.90 113 | 96.04 230 |
|
| h-mvs33 | | | 92.47 153 | 91.95 149 | 94.05 189 | 97.13 135 | 85.01 267 | 98.36 191 | 98.08 44 | 93.85 55 | 96.27 90 | 96.73 187 | 83.19 160 | 99.43 122 | 95.81 90 | 68.09 354 | 97.70 186 |
|
| hse-mvs2 | | | 91.67 168 | 91.51 158 | 92.15 229 | 96.22 170 | 82.61 301 | 97.74 237 | 97.53 121 | 93.85 55 | 96.27 90 | 96.15 202 | 83.19 160 | 97.44 230 | 95.81 90 | 66.86 361 | 96.40 225 |
|
| alignmvs | | | 95.77 65 | 95.00 81 | 98.06 28 | 97.35 124 | 95.68 19 | 99.71 25 | 97.50 130 | 91.50 102 | 96.16 92 | 98.61 103 | 86.28 112 | 99.00 150 | 96.19 84 | 91.74 203 | 99.51 77 |
|
| CP-MVS | | | 96.22 47 | 96.15 50 | 96.42 97 | 99.67 10 | 89.62 154 | 99.70 26 | 97.61 104 | 90.07 140 | 96.00 93 | 99.16 36 | 87.43 81 | 99.92 40 | 96.03 88 | 99.72 31 | 99.70 52 |
|
| MCST-MVS | | | 98.18 2 | 97.95 9 | 98.86 5 | 99.85 3 | 96.60 10 | 99.70 26 | 97.98 53 | 97.18 3 | 95.96 94 | 99.33 19 | 92.62 26 | 100.00 1 | 98.99 25 | 99.93 1 | 99.98 6 |
|
| diffmvs |  | | 94.59 98 | 94.19 92 | 95.81 120 | 95.54 196 | 90.69 123 | 98.70 146 | 95.68 273 | 91.61 99 | 95.96 94 | 97.81 131 | 80.11 201 | 98.06 187 | 96.52 80 | 95.76 157 | 98.67 152 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| GST-MVS | | | 95.97 55 | 95.66 65 | 96.90 69 | 99.49 45 | 91.22 104 | 99.45 61 | 97.48 133 | 89.69 146 | 95.89 96 | 98.72 91 | 86.37 111 | 99.95 31 | 94.62 120 | 99.22 70 | 99.52 75 |
|
| DeepC-MVS_fast | | 93.52 2 | 97.16 23 | 96.84 28 | 98.13 24 | 99.61 24 | 94.45 49 | 98.85 131 | 97.64 97 | 96.51 16 | 95.88 97 | 99.39 18 | 87.35 87 | 99.99 5 | 96.61 77 | 99.69 36 | 99.96 10 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| test222 | | | | | | 98.32 92 | 91.21 105 | 98.08 216 | 97.58 112 | 83.74 282 | 95.87 98 | 99.02 58 | 86.74 100 | | | 99.64 40 | 99.81 33 |
|
| ZNCC-MVS | | | 96.09 50 | 95.81 59 | 96.95 68 | 99.42 47 | 91.19 106 | 99.55 44 | 97.53 121 | 89.72 145 | 95.86 99 | 98.94 72 | 86.59 104 | 99.97 21 | 95.13 105 | 99.56 50 | 99.68 56 |
|
| canonicalmvs | | | 95.02 84 | 93.96 102 | 98.20 21 | 97.53 119 | 95.92 17 | 98.71 144 | 96.19 229 | 91.78 97 | 95.86 99 | 98.49 110 | 79.53 207 | 99.03 149 | 96.12 85 | 91.42 211 | 99.66 60 |
|
| dcpmvs_2 | | | 95.67 69 | 96.18 44 | 94.12 185 | 98.82 81 | 84.22 277 | 97.37 252 | 95.45 286 | 90.70 118 | 95.77 101 | 98.63 101 | 90.47 43 | 98.68 164 | 99.20 20 | 99.22 70 | 99.45 81 |
|
| Effi-MVS+ | | | 93.87 114 | 93.15 122 | 96.02 113 | 95.79 187 | 90.76 121 | 96.70 282 | 95.78 266 | 86.98 226 | 95.71 102 | 97.17 166 | 79.58 205 | 98.01 192 | 94.57 121 | 96.09 152 | 99.31 94 |
|
| HPM-MVS_fast | | | 94.89 85 | 94.62 84 | 95.70 124 | 99.11 66 | 88.44 184 | 99.14 101 | 97.11 172 | 85.82 248 | 95.69 103 | 98.47 113 | 83.46 153 | 99.32 135 | 93.16 143 | 99.63 43 | 99.35 90 |
|
| HY-MVS | | 88.56 7 | 95.29 77 | 94.23 90 | 98.48 14 | 97.72 109 | 96.41 13 | 94.03 329 | 98.74 16 | 92.42 84 | 95.65 104 | 94.76 230 | 86.52 107 | 99.49 112 | 95.29 103 | 92.97 182 | 99.53 74 |
|
| CHOSEN 280x420 | | | 96.80 32 | 96.85 27 | 96.66 84 | 97.85 107 | 94.42 51 | 94.76 321 | 98.36 29 | 92.50 81 | 95.62 105 | 97.52 148 | 97.92 1 | 97.38 233 | 98.31 44 | 98.80 91 | 98.20 176 |
|
| test_fmvsmconf0.01_n | | | 94.14 105 | 93.51 112 | 96.04 111 | 86.79 359 | 89.19 159 | 99.28 83 | 95.94 248 | 95.70 21 | 95.50 106 | 98.49 110 | 73.27 249 | 99.79 82 | 98.28 45 | 98.32 109 | 99.15 107 |
|
| MP-MVS |  | | 96.00 52 | 95.82 57 | 96.54 91 | 99.47 46 | 90.13 138 | 99.36 75 | 97.41 145 | 90.64 122 | 95.49 107 | 98.95 69 | 85.51 125 | 99.98 9 | 96.00 89 | 99.59 49 | 99.52 75 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| HPM-MVS |  | | 95.41 75 | 95.22 74 | 95.99 115 | 99.29 55 | 89.14 161 | 99.17 92 | 97.09 176 | 87.28 221 | 95.40 108 | 98.48 112 | 84.93 135 | 99.38 128 | 95.64 96 | 99.65 38 | 99.47 80 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| UA-Net | | | 93.30 133 | 92.62 135 | 95.34 136 | 96.27 168 | 88.53 183 | 95.88 307 | 96.97 187 | 90.90 114 | 95.37 109 | 97.07 170 | 82.38 181 | 99.10 147 | 83.91 251 | 94.86 168 | 98.38 165 |
|
| sss | | | 94.85 87 | 93.94 103 | 97.58 40 | 96.43 160 | 94.09 59 | 98.93 125 | 99.16 8 | 89.50 155 | 95.27 110 | 97.85 129 | 81.50 191 | 99.65 98 | 92.79 150 | 94.02 174 | 98.99 120 |
|
| WTY-MVS | | | 95.97 55 | 95.11 78 | 98.54 13 | 97.62 113 | 96.65 9 | 99.44 62 | 98.74 16 | 92.25 89 | 95.21 111 | 98.46 115 | 86.56 106 | 99.46 118 | 95.00 110 | 92.69 186 | 99.50 78 |
|
| DELS-MVS | | | 97.12 24 | 96.60 34 | 98.68 10 | 98.03 102 | 96.57 11 | 99.84 8 | 97.84 59 | 96.36 18 | 95.20 112 | 98.24 121 | 88.17 68 | 99.83 73 | 96.11 86 | 99.60 48 | 99.64 62 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS_111021_HR | | | 96.69 34 | 96.69 32 | 96.72 80 | 98.58 88 | 91.00 116 | 99.14 101 | 99.45 1 | 93.86 54 | 95.15 113 | 98.73 89 | 88.48 64 | 99.76 86 | 97.23 63 | 99.56 50 | 99.40 85 |
|
| MVS_Test | | | 93.67 122 | 92.67 134 | 96.69 82 | 96.72 151 | 92.66 85 | 97.22 261 | 96.03 240 | 87.69 214 | 95.12 114 | 94.03 239 | 81.55 190 | 98.28 176 | 89.17 190 | 96.46 142 | 99.14 108 |
|
| MVS_111021_LR | | | 95.78 64 | 95.94 53 | 95.28 140 | 98.19 97 | 87.69 195 | 98.80 136 | 99.26 7 | 93.39 65 | 95.04 115 | 98.69 96 | 84.09 145 | 99.76 86 | 96.96 69 | 99.06 75 | 98.38 165 |
|
| CostFormer | | | 92.89 143 | 92.48 138 | 94.12 185 | 94.99 225 | 85.89 247 | 92.89 339 | 97.00 185 | 86.98 226 | 95.00 116 | 90.78 302 | 90.05 50 | 97.51 226 | 92.92 147 | 91.73 204 | 98.96 123 |
|
| mPP-MVS | | | 95.90 60 | 95.75 62 | 96.38 100 | 99.58 30 | 89.41 158 | 99.26 84 | 97.41 145 | 90.66 119 | 94.82 117 | 98.95 69 | 86.15 116 | 99.98 9 | 95.24 104 | 99.64 40 | 99.74 47 |
|
| EI-MVSNet-Vis-set | | | 95.76 66 | 95.63 69 | 96.17 107 | 99.14 64 | 90.33 129 | 98.49 173 | 97.82 62 | 91.92 95 | 94.75 118 | 98.88 80 | 87.06 92 | 99.48 116 | 95.40 100 | 97.17 134 | 98.70 150 |
|
| LFMVS | | | 92.23 159 | 90.84 172 | 96.42 97 | 98.24 94 | 91.08 113 | 98.24 200 | 96.22 226 | 83.39 289 | 94.74 119 | 98.31 118 | 61.12 330 | 98.85 154 | 94.45 122 | 92.82 183 | 99.32 93 |
|
| tpmrst | | | 92.78 144 | 92.16 143 | 94.65 163 | 96.27 168 | 87.45 205 | 91.83 348 | 97.10 175 | 89.10 165 | 94.68 120 | 90.69 306 | 88.22 67 | 97.73 213 | 89.78 179 | 91.80 202 | 98.77 146 |
|
| test_yl | | | 95.27 78 | 94.60 85 | 97.28 51 | 98.53 89 | 92.98 79 | 99.05 112 | 98.70 19 | 86.76 232 | 94.65 121 | 97.74 137 | 87.78 75 | 99.44 119 | 95.57 97 | 92.61 187 | 99.44 82 |
|
| DCV-MVSNet | | | 95.27 78 | 94.60 85 | 97.28 51 | 98.53 89 | 92.98 79 | 99.05 112 | 98.70 19 | 86.76 232 | 94.65 121 | 97.74 137 | 87.78 75 | 99.44 119 | 95.57 97 | 92.61 187 | 99.44 82 |
|
| DP-MVS Recon | | | 95.85 61 | 95.15 76 | 97.95 30 | 99.87 2 | 94.38 52 | 99.60 38 | 97.48 133 | 86.58 235 | 94.42 123 | 99.13 44 | 87.36 86 | 99.98 9 | 93.64 135 | 98.33 107 | 99.48 79 |
|
| MTAPA | | | 96.09 50 | 95.80 60 | 96.96 67 | 99.29 55 | 91.19 106 | 97.23 260 | 97.45 138 | 92.58 79 | 94.39 124 | 99.24 25 | 86.43 110 | 99.99 5 | 96.22 83 | 99.40 62 | 99.71 51 |
|
| CPTT-MVS | | | 94.60 97 | 94.43 87 | 95.09 146 | 99.66 12 | 86.85 219 | 99.44 62 | 97.47 135 | 83.22 291 | 94.34 125 | 98.96 66 | 82.50 174 | 99.55 106 | 94.81 113 | 99.50 53 | 98.88 133 |
|
| PVSNet_BlendedMVS | | | 93.36 131 | 93.20 120 | 93.84 196 | 98.77 83 | 91.61 99 | 99.47 55 | 98.04 48 | 91.44 104 | 94.21 126 | 92.63 271 | 83.50 151 | 99.87 58 | 97.41 59 | 83.37 267 | 90.05 331 |
|
| PVSNet_Blended | | | 95.94 58 | 95.66 65 | 96.75 76 | 98.77 83 | 91.61 99 | 99.88 3 | 98.04 48 | 93.64 62 | 94.21 126 | 97.76 135 | 83.50 151 | 99.87 58 | 97.41 59 | 97.75 119 | 98.79 143 |
|
| EI-MVSNet-UG-set | | | 95.43 73 | 95.29 72 | 95.86 119 | 99.07 70 | 89.87 148 | 98.43 179 | 97.80 67 | 91.78 97 | 94.11 128 | 98.77 85 | 86.25 114 | 99.48 116 | 94.95 112 | 96.45 143 | 98.22 174 |
|
| EIA-MVS | | | 95.11 81 | 95.27 73 | 94.64 165 | 96.34 165 | 86.51 223 | 99.59 40 | 96.62 198 | 92.51 80 | 94.08 129 | 98.64 99 | 86.05 117 | 98.24 179 | 95.07 107 | 98.50 103 | 99.18 105 |
|
| MAR-MVS | | | 94.43 101 | 94.09 96 | 95.45 132 | 99.10 68 | 87.47 204 | 98.39 189 | 97.79 69 | 88.37 188 | 94.02 130 | 99.17 35 | 78.64 216 | 99.91 45 | 92.48 152 | 98.85 89 | 98.96 123 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PAPM | | | 96.35 42 | 95.94 53 | 97.58 40 | 94.10 248 | 95.25 24 | 98.93 125 | 98.17 37 | 94.26 42 | 93.94 131 | 98.72 91 | 89.68 53 | 97.88 197 | 96.36 82 | 99.29 67 | 99.62 66 |
|
| GG-mvs-BLEND | | | | | 96.98 65 | 96.53 155 | 94.81 41 | 87.20 369 | 97.74 74 | | 93.91 132 | 96.40 196 | 96.56 2 | 96.94 247 | 95.08 106 | 98.95 84 | 99.20 104 |
|
| API-MVS | | | 94.78 89 | 94.18 94 | 96.59 87 | 99.21 61 | 90.06 143 | 98.80 136 | 97.78 70 | 83.59 286 | 93.85 133 | 99.21 28 | 83.79 148 | 99.97 21 | 92.37 153 | 99.00 79 | 99.74 47 |
|
| tpm2 | | | 91.77 166 | 91.09 165 | 93.82 197 | 94.83 232 | 85.56 256 | 92.51 344 | 97.16 167 | 84.00 277 | 93.83 134 | 90.66 308 | 87.54 79 | 97.17 237 | 87.73 204 | 91.55 207 | 98.72 148 |
|
| PAPR | | | 96.35 42 | 95.82 57 | 97.94 31 | 99.63 18 | 94.19 56 | 99.42 67 | 97.55 117 | 92.43 82 | 93.82 135 | 99.12 46 | 87.30 88 | 99.91 45 | 94.02 126 | 99.06 75 | 99.74 47 |
|
| PVSNet | | 87.13 12 | 93.69 119 | 92.83 131 | 96.28 103 | 97.99 103 | 90.22 134 | 99.38 71 | 98.93 12 | 91.42 106 | 93.66 136 | 97.68 140 | 71.29 269 | 99.64 100 | 87.94 202 | 97.20 131 | 98.98 121 |
|
| baseline | | | 93.91 112 | 93.30 117 | 95.72 123 | 95.10 220 | 90.07 140 | 97.48 248 | 95.91 257 | 91.03 111 | 93.54 137 | 97.68 140 | 79.58 205 | 98.02 191 | 94.27 124 | 95.14 165 | 99.08 115 |
|
| test2506 | | | 94.80 88 | 94.21 91 | 96.58 88 | 96.41 161 | 92.18 93 | 98.01 220 | 98.96 11 | 90.82 116 | 93.46 138 | 97.28 157 | 85.92 118 | 98.45 169 | 89.82 178 | 97.19 132 | 99.12 111 |
|
| VDD-MVS | | | 91.24 177 | 90.18 183 | 94.45 171 | 97.08 138 | 85.84 250 | 98.40 185 | 96.10 235 | 86.99 223 | 93.36 139 | 98.16 125 | 54.27 354 | 99.20 138 | 96.59 78 | 90.63 219 | 98.31 171 |
|
| VDDNet | | | 90.08 201 | 88.54 217 | 94.69 162 | 94.41 241 | 87.68 196 | 98.21 203 | 96.40 214 | 76.21 349 | 93.33 140 | 97.75 136 | 54.93 352 | 98.77 157 | 94.71 117 | 90.96 214 | 97.61 191 |
|
| thisisatest0515 | | | 94.75 90 | 94.19 92 | 96.43 96 | 96.13 180 | 92.64 88 | 99.47 55 | 97.60 106 | 87.55 217 | 93.17 141 | 97.59 145 | 94.71 13 | 98.42 170 | 88.28 196 | 93.20 179 | 98.24 173 |
|
| MP-MVS-pluss | | | 95.80 63 | 95.30 71 | 97.29 50 | 98.95 76 | 92.66 85 | 98.59 162 | 97.14 168 | 88.95 169 | 93.12 142 | 99.25 23 | 85.62 122 | 99.94 34 | 96.56 79 | 99.48 54 | 99.28 97 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MDTV_nov1_ep13_2view | | | | | | | 91.17 108 | 91.38 355 | | 87.45 219 | 93.08 143 | | 86.67 102 | | 87.02 208 | | 98.95 127 |
|
| EPNet_dtu | | | 92.28 157 | 92.15 144 | 92.70 219 | 97.29 127 | 84.84 269 | 98.64 154 | 97.82 62 | 92.91 75 | 93.02 144 | 97.02 172 | 85.48 128 | 95.70 314 | 72.25 337 | 94.89 167 | 97.55 192 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| gg-mvs-nofinetune | | | 90.00 202 | 87.71 228 | 96.89 73 | 96.15 175 | 94.69 45 | 85.15 375 | 97.74 74 | 68.32 375 | 92.97 145 | 60.16 388 | 96.10 3 | 96.84 250 | 93.89 129 | 98.87 88 | 99.14 108 |
|
| test_fmvsmvis_n_1920 | | | 95.47 72 | 95.40 70 | 95.70 124 | 94.33 243 | 90.22 134 | 99.70 26 | 96.98 186 | 96.80 7 | 92.75 146 | 98.89 78 | 82.46 179 | 99.92 40 | 98.36 40 | 98.33 107 | 96.97 209 |
|
| casdiffmvs |  | | 93.98 110 | 93.43 113 | 95.61 129 | 95.07 222 | 89.86 149 | 98.80 136 | 95.84 265 | 90.98 113 | 92.74 147 | 97.66 142 | 79.71 204 | 98.10 184 | 94.72 116 | 95.37 163 | 98.87 135 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 114514_t | | | 94.06 106 | 93.05 124 | 97.06 58 | 99.08 69 | 92.26 91 | 98.97 123 | 97.01 184 | 82.58 304 | 92.57 148 | 98.22 122 | 80.68 199 | 99.30 136 | 89.34 186 | 99.02 78 | 99.63 64 |
|
| OMC-MVS | | | 93.90 113 | 93.62 110 | 94.73 161 | 98.63 87 | 87.00 217 | 98.04 219 | 96.56 205 | 92.19 90 | 92.46 149 | 98.73 89 | 79.49 208 | 99.14 145 | 92.16 155 | 94.34 172 | 98.03 179 |
|
| PAPM_NR | | | 95.43 73 | 95.05 80 | 96.57 90 | 99.42 47 | 90.14 136 | 98.58 164 | 97.51 127 | 90.65 121 | 92.44 150 | 98.90 76 | 87.77 77 | 99.90 50 | 90.88 165 | 99.32 64 | 99.68 56 |
|
| UGNet | | | 91.91 165 | 90.85 171 | 95.10 145 | 97.06 139 | 88.69 179 | 98.01 220 | 98.24 34 | 92.41 85 | 92.39 151 | 93.61 252 | 60.52 332 | 99.68 92 | 88.14 198 | 97.25 130 | 96.92 210 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| MDTV_nov1_ep13 | | | | 90.47 181 | | 96.14 177 | 88.55 181 | 91.34 356 | 97.51 127 | 89.58 151 | 92.24 152 | 90.50 319 | 86.99 95 | 97.61 220 | 77.64 300 | 92.34 192 | |
|
| FE-MVS | | | 91.38 173 | 90.16 184 | 95.05 149 | 96.46 159 | 87.53 202 | 89.69 366 | 97.84 59 | 82.97 296 | 92.18 153 | 92.00 280 | 84.07 146 | 98.93 153 | 80.71 279 | 95.52 161 | 98.68 151 |
|
| Vis-MVSNet |  | | 92.64 147 | 91.85 150 | 95.03 150 | 95.12 216 | 88.23 185 | 98.48 175 | 96.81 191 | 91.61 99 | 92.16 154 | 97.22 162 | 71.58 267 | 98.00 193 | 85.85 226 | 97.81 115 | 98.88 133 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| FA-MVS(test-final) | | | 92.22 160 | 91.08 166 | 95.64 127 | 96.05 181 | 88.98 167 | 91.60 352 | 97.25 154 | 86.99 223 | 91.84 155 | 92.12 274 | 83.03 163 | 99.00 150 | 86.91 212 | 93.91 175 | 98.93 129 |
|
| TESTMET0.1,1 | | | 93.82 116 | 93.26 119 | 95.49 131 | 95.21 208 | 90.25 131 | 99.15 98 | 97.54 120 | 89.18 162 | 91.79 156 | 94.87 227 | 89.13 56 | 97.63 218 | 86.21 219 | 96.29 149 | 98.60 155 |
|
| thisisatest0530 | | | 94.00 108 | 93.52 111 | 95.43 133 | 95.76 189 | 90.02 145 | 98.99 120 | 97.60 106 | 86.58 235 | 91.74 157 | 97.36 156 | 94.78 12 | 98.34 172 | 86.37 218 | 92.48 190 | 97.94 182 |
|
| AUN-MVS | | | 90.17 198 | 89.50 191 | 92.19 227 | 96.21 171 | 82.67 299 | 97.76 236 | 97.53 121 | 88.05 199 | 91.67 158 | 96.15 202 | 83.10 162 | 97.47 227 | 88.11 199 | 66.91 360 | 96.43 224 |
|
| EPMVS | | | 92.59 150 | 91.59 156 | 95.59 130 | 97.22 129 | 90.03 144 | 91.78 349 | 98.04 48 | 90.42 129 | 91.66 159 | 90.65 309 | 86.49 109 | 97.46 228 | 81.78 272 | 96.31 147 | 99.28 97 |
|
| test-LLR | | | 93.11 140 | 92.68 133 | 94.40 172 | 94.94 228 | 87.27 212 | 99.15 98 | 97.25 154 | 90.21 132 | 91.57 160 | 94.04 237 | 84.89 136 | 97.58 222 | 85.94 223 | 96.13 150 | 98.36 168 |
|
| test-mter | | | 93.27 135 | 92.89 130 | 94.40 172 | 94.94 228 | 87.27 212 | 99.15 98 | 97.25 154 | 88.95 169 | 91.57 160 | 94.04 237 | 88.03 73 | 97.58 222 | 85.94 223 | 96.13 150 | 98.36 168 |
|
| JIA-IIPM | | | 85.97 272 | 84.85 272 | 89.33 301 | 93.23 276 | 73.68 357 | 85.05 376 | 97.13 170 | 69.62 371 | 91.56 162 | 68.03 386 | 88.03 73 | 96.96 245 | 77.89 299 | 93.12 180 | 97.34 196 |
|
| casdiffmvs_mvg |  | | 94.00 108 | 93.33 116 | 96.03 112 | 95.22 207 | 90.90 119 | 99.09 107 | 95.99 241 | 90.58 123 | 91.55 163 | 97.37 155 | 79.91 203 | 98.06 187 | 95.01 109 | 95.22 164 | 99.13 110 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PVSNet_Blended_VisFu | | | 94.67 95 | 94.11 95 | 96.34 102 | 97.14 134 | 91.10 111 | 99.32 79 | 97.43 143 | 92.10 94 | 91.53 164 | 96.38 199 | 83.29 157 | 99.68 92 | 93.42 140 | 96.37 145 | 98.25 172 |
|
| CHOSEN 1792x2688 | | | 94.35 102 | 93.82 106 | 95.95 117 | 97.40 121 | 88.74 178 | 98.41 182 | 98.27 31 | 92.18 91 | 91.43 165 | 96.40 196 | 78.88 211 | 99.81 79 | 93.59 136 | 97.81 115 | 99.30 95 |
|
| ACMMP |  | | 94.67 95 | 94.30 88 | 95.79 121 | 99.25 57 | 88.13 188 | 98.41 182 | 98.67 22 | 90.38 130 | 91.43 165 | 98.72 91 | 82.22 183 | 99.95 31 | 93.83 132 | 95.76 157 | 99.29 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| ECVR-MVS |  | | 92.29 156 | 91.33 161 | 95.15 144 | 96.41 161 | 87.84 193 | 98.10 213 | 94.84 310 | 90.82 116 | 91.42 167 | 97.28 157 | 65.61 309 | 98.49 168 | 90.33 172 | 97.19 132 | 99.12 111 |
|
| EPP-MVSNet | | | 93.75 118 | 93.67 109 | 94.01 191 | 95.86 185 | 85.70 252 | 98.67 150 | 97.66 91 | 84.46 271 | 91.36 168 | 97.18 165 | 91.16 31 | 97.79 203 | 92.93 146 | 93.75 176 | 98.53 157 |
|
| PLC |  | 91.07 3 | 94.23 104 | 94.01 98 | 94.87 154 | 99.17 63 | 87.49 203 | 99.25 85 | 96.55 206 | 88.43 186 | 91.26 169 | 98.21 124 | 85.92 118 | 99.86 63 | 89.77 180 | 97.57 121 | 97.24 199 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| HyFIR lowres test | | | 93.68 121 | 93.29 118 | 94.87 154 | 97.57 118 | 88.04 190 | 98.18 205 | 98.47 25 | 87.57 216 | 91.24 170 | 95.05 224 | 85.49 126 | 97.46 228 | 93.22 142 | 92.82 183 | 99.10 113 |
|
| thres200 | | | 93.69 119 | 92.59 136 | 96.97 66 | 97.76 108 | 94.74 43 | 99.35 76 | 99.36 2 | 89.23 160 | 91.21 171 | 96.97 174 | 83.42 154 | 98.77 157 | 85.08 231 | 90.96 214 | 97.39 195 |
|
| test1111 | | | 92.12 161 | 91.19 164 | 94.94 152 | 96.15 175 | 87.36 208 | 98.12 210 | 94.84 310 | 90.85 115 | 90.97 172 | 97.26 159 | 65.60 310 | 98.37 171 | 89.74 181 | 97.14 135 | 99.07 117 |
|
| CDS-MVSNet | | | 93.47 126 | 93.04 125 | 94.76 158 | 94.75 234 | 89.45 157 | 98.82 134 | 97.03 181 | 87.91 205 | 90.97 172 | 96.48 194 | 89.06 57 | 96.36 277 | 89.50 182 | 92.81 185 | 98.49 159 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| tfpn200view9 | | | 93.43 128 | 92.27 141 | 96.90 69 | 97.68 111 | 94.84 38 | 99.18 89 | 99.36 2 | 88.45 183 | 90.79 174 | 96.90 178 | 83.31 155 | 98.75 159 | 84.11 247 | 90.69 216 | 97.12 201 |
|
| thres400 | | | 93.39 130 | 92.27 141 | 96.73 78 | 97.68 111 | 94.84 38 | 99.18 89 | 99.36 2 | 88.45 183 | 90.79 174 | 96.90 178 | 83.31 155 | 98.75 159 | 84.11 247 | 90.69 216 | 96.61 216 |
|
| CR-MVSNet | | | 88.83 223 | 87.38 233 | 93.16 208 | 93.47 269 | 86.24 233 | 84.97 377 | 94.20 330 | 88.92 172 | 90.76 176 | 86.88 354 | 84.43 141 | 94.82 334 | 70.64 341 | 92.17 197 | 98.41 162 |
|
| RPMNet | | | 85.07 286 | 81.88 303 | 94.64 165 | 93.47 269 | 86.24 233 | 84.97 377 | 97.21 160 | 64.85 382 | 90.76 176 | 78.80 379 | 80.95 198 | 99.27 137 | 53.76 381 | 92.17 197 | 98.41 162 |
|
| PatchmatchNet |  | | 92.05 164 | 91.04 167 | 95.06 147 | 96.17 174 | 89.04 164 | 91.26 357 | 97.26 153 | 89.56 153 | 90.64 178 | 90.56 315 | 88.35 66 | 97.11 239 | 79.53 285 | 96.07 154 | 99.03 118 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| tttt0517 | | | 93.30 133 | 93.01 127 | 94.17 183 | 95.57 194 | 86.47 225 | 98.51 170 | 97.60 106 | 85.99 246 | 90.55 179 | 97.19 164 | 94.80 11 | 98.31 173 | 85.06 232 | 91.86 200 | 97.74 184 |
|
| PatchT | | | 85.44 282 | 83.19 291 | 92.22 225 | 93.13 278 | 83.00 291 | 83.80 383 | 96.37 216 | 70.62 365 | 90.55 179 | 79.63 378 | 84.81 138 | 94.87 332 | 58.18 377 | 91.59 206 | 98.79 143 |
|
| tpm | | | 89.67 207 | 88.95 204 | 91.82 236 | 92.54 283 | 81.43 311 | 92.95 338 | 95.92 252 | 87.81 207 | 90.50 181 | 89.44 334 | 84.99 134 | 95.65 315 | 83.67 254 | 82.71 273 | 98.38 165 |
|
| thres100view900 | | | 93.34 132 | 92.15 144 | 96.90 69 | 97.62 113 | 94.84 38 | 99.06 111 | 99.36 2 | 87.96 203 | 90.47 182 | 96.78 185 | 83.29 157 | 98.75 159 | 84.11 247 | 90.69 216 | 97.12 201 |
|
| thres600view7 | | | 93.18 138 | 92.00 147 | 96.75 76 | 97.62 113 | 94.92 33 | 99.07 109 | 99.36 2 | 87.96 203 | 90.47 182 | 96.78 185 | 83.29 157 | 98.71 163 | 82.93 261 | 90.47 220 | 96.61 216 |
|
| AdaColmap |  | | 93.82 116 | 93.06 123 | 96.10 109 | 99.88 1 | 89.07 163 | 98.33 193 | 97.55 117 | 86.81 231 | 90.39 184 | 98.65 98 | 75.09 231 | 99.98 9 | 93.32 141 | 97.53 124 | 99.26 99 |
|
| XVG-OURS-SEG-HR | | | 90.95 182 | 90.66 178 | 91.83 235 | 95.18 212 | 81.14 319 | 95.92 304 | 95.92 252 | 88.40 187 | 90.33 185 | 97.85 129 | 70.66 272 | 99.38 128 | 92.83 148 | 88.83 226 | 94.98 237 |
|
| IS-MVSNet | | | 93.00 142 | 92.51 137 | 94.49 168 | 96.14 177 | 87.36 208 | 98.31 196 | 95.70 271 | 88.58 179 | 90.17 186 | 97.50 149 | 83.02 164 | 97.22 236 | 87.06 207 | 96.07 154 | 98.90 132 |
|
| CSCG | | | 94.87 86 | 94.71 83 | 95.36 135 | 99.54 36 | 86.49 224 | 99.34 77 | 98.15 40 | 82.71 302 | 90.15 187 | 99.25 23 | 89.48 54 | 99.86 63 | 94.97 111 | 98.82 90 | 99.72 50 |
|
| SCA | | | 90.64 189 | 89.25 198 | 94.83 157 | 94.95 227 | 88.83 174 | 96.26 294 | 97.21 160 | 90.06 141 | 90.03 188 | 90.62 311 | 66.61 300 | 96.81 252 | 83.16 257 | 94.36 171 | 98.84 136 |
|
| XVG-OURS | | | 90.83 184 | 90.49 180 | 91.86 234 | 95.23 206 | 81.25 316 | 95.79 312 | 95.92 252 | 88.96 168 | 90.02 189 | 98.03 128 | 71.60 266 | 99.35 133 | 91.06 162 | 87.78 230 | 94.98 237 |
|
| ADS-MVSNet2 | | | 87.62 248 | 86.88 241 | 89.86 287 | 96.21 171 | 79.14 331 | 87.15 370 | 92.99 345 | 83.01 294 | 89.91 190 | 87.27 350 | 78.87 212 | 92.80 355 | 74.20 325 | 92.27 194 | 97.64 187 |
|
| ADS-MVSNet | | | 88.99 215 | 87.30 234 | 94.07 187 | 96.21 171 | 87.56 201 | 87.15 370 | 96.78 193 | 83.01 294 | 89.91 190 | 87.27 350 | 78.87 212 | 97.01 244 | 74.20 325 | 92.27 194 | 97.64 187 |
|
| ab-mvs | | | 91.05 181 | 89.17 199 | 96.69 82 | 95.96 183 | 91.72 97 | 92.62 343 | 97.23 158 | 85.61 252 | 89.74 192 | 93.89 245 | 68.55 282 | 99.42 123 | 91.09 161 | 87.84 229 | 98.92 131 |
|
| TAMVS | | | 92.62 148 | 92.09 146 | 94.20 182 | 94.10 248 | 87.68 196 | 98.41 182 | 96.97 187 | 87.53 218 | 89.74 192 | 96.04 206 | 84.77 140 | 96.49 270 | 88.97 192 | 92.31 193 | 98.42 161 |
|
| Vis-MVSNet (Re-imp) | | | 93.26 136 | 93.00 128 | 94.06 188 | 96.14 177 | 86.71 222 | 98.68 148 | 96.70 194 | 88.30 192 | 89.71 194 | 97.64 143 | 85.43 129 | 96.39 275 | 88.06 200 | 96.32 146 | 99.08 115 |
|
| CNLPA | | | 93.64 123 | 92.74 132 | 96.36 101 | 98.96 75 | 90.01 146 | 99.19 87 | 95.89 260 | 86.22 243 | 89.40 195 | 98.85 81 | 80.66 200 | 99.84 69 | 88.57 193 | 96.92 137 | 99.24 100 |
|
| Anonymous202405211 | | | 88.84 221 | 87.03 239 | 94.27 178 | 98.14 99 | 84.18 278 | 98.44 178 | 95.58 279 | 76.79 348 | 89.34 196 | 96.88 180 | 53.42 357 | 99.54 108 | 87.53 206 | 87.12 233 | 99.09 114 |
|
| Fast-Effi-MVS+ | | | 91.72 167 | 90.79 175 | 94.49 168 | 95.89 184 | 87.40 207 | 99.54 49 | 95.70 271 | 85.01 264 | 89.28 197 | 95.68 212 | 77.75 220 | 97.57 225 | 83.22 256 | 95.06 166 | 98.51 158 |
|
| PatchMatch-RL | | | 91.47 170 | 90.54 179 | 94.26 179 | 98.20 95 | 86.36 230 | 96.94 270 | 97.14 168 | 87.75 210 | 88.98 198 | 95.75 211 | 71.80 264 | 99.40 127 | 80.92 277 | 97.39 128 | 97.02 207 |
|
| dp | | | 90.16 199 | 88.83 207 | 94.14 184 | 96.38 164 | 86.42 226 | 91.57 353 | 97.06 178 | 84.76 268 | 88.81 199 | 90.19 327 | 84.29 143 | 97.43 231 | 75.05 317 | 91.35 213 | 98.56 156 |
|
| DeepC-MVS | | 91.02 4 | 94.56 100 | 93.92 104 | 96.46 94 | 97.16 132 | 90.76 121 | 98.39 189 | 97.11 172 | 93.92 50 | 88.66 200 | 98.33 117 | 78.14 218 | 99.85 67 | 95.02 108 | 98.57 101 | 98.78 145 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| baseline1 | | | 92.61 149 | 91.28 162 | 96.58 88 | 97.05 140 | 94.63 46 | 97.72 238 | 96.20 227 | 89.82 143 | 88.56 201 | 96.85 181 | 86.85 97 | 97.82 201 | 88.42 194 | 80.10 286 | 97.30 197 |
|
| Anonymous20240529 | | | 87.66 247 | 85.58 260 | 93.92 193 | 97.59 116 | 85.01 267 | 98.13 208 | 97.13 170 | 66.69 380 | 88.47 202 | 96.01 207 | 55.09 351 | 99.51 110 | 87.00 209 | 84.12 258 | 97.23 200 |
|
| CVMVSNet | | | 90.30 194 | 90.91 170 | 88.46 313 | 94.32 244 | 73.58 358 | 97.61 245 | 97.59 110 | 90.16 137 | 88.43 203 | 97.10 168 | 76.83 225 | 92.86 352 | 82.64 263 | 93.54 178 | 98.93 129 |
|
| TR-MVS | | | 90.77 185 | 89.44 193 | 94.76 158 | 96.31 166 | 88.02 191 | 97.92 224 | 95.96 245 | 85.52 253 | 88.22 204 | 97.23 161 | 66.80 299 | 98.09 185 | 84.58 239 | 92.38 191 | 98.17 177 |
|
| F-COLMAP | | | 92.07 163 | 91.75 154 | 93.02 210 | 98.16 98 | 82.89 295 | 98.79 140 | 95.97 243 | 86.54 237 | 87.92 205 | 97.80 132 | 78.69 215 | 99.65 98 | 85.97 221 | 95.93 156 | 96.53 221 |
|
| BH-RMVSNet | | | 91.25 176 | 89.99 185 | 95.03 150 | 96.75 150 | 88.55 181 | 98.65 152 | 94.95 307 | 87.74 211 | 87.74 206 | 97.80 132 | 68.27 285 | 98.14 181 | 80.53 282 | 97.49 125 | 98.41 162 |
|
| Effi-MVS+-dtu | | | 89.97 204 | 90.68 177 | 87.81 317 | 95.15 213 | 71.98 364 | 97.87 228 | 95.40 290 | 91.92 95 | 87.57 207 | 91.44 290 | 74.27 240 | 96.84 250 | 89.45 183 | 93.10 181 | 94.60 239 |
|
| HQP-NCC | | | | | | 93.95 253 | | 99.16 93 | | 93.92 50 | 87.57 207 | | | | | | |
|
| ACMP_Plane | | | | | | 93.95 253 | | 99.16 93 | | 93.92 50 | 87.57 207 | | | | | | |
|
| HQP4-MVS | | | | | | | | | | | 87.57 207 | | | 97.77 205 | | | 92.72 248 |
|
| HQP-MVS | | | 91.50 169 | 91.23 163 | 92.29 224 | 93.95 253 | 86.39 228 | 99.16 93 | 96.37 216 | 93.92 50 | 87.57 207 | 96.67 190 | 73.34 246 | 97.77 205 | 93.82 133 | 86.29 237 | 92.72 248 |
|
| TAPA-MVS | | 87.50 9 | 90.35 192 | 89.05 202 | 94.25 180 | 98.48 91 | 85.17 264 | 98.42 180 | 96.58 204 | 82.44 309 | 87.24 212 | 98.53 105 | 82.77 168 | 98.84 155 | 59.09 375 | 97.88 114 | 98.72 148 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| GeoE | | | 90.60 190 | 89.56 190 | 93.72 201 | 95.10 220 | 85.43 257 | 99.41 68 | 94.94 308 | 83.96 279 | 87.21 213 | 96.83 184 | 74.37 238 | 97.05 243 | 80.50 283 | 93.73 177 | 98.67 152 |
|
| HQP_MVS | | | 91.26 174 | 90.95 169 | 92.16 228 | 93.84 260 | 86.07 243 | 99.02 116 | 96.30 220 | 93.38 66 | 86.99 214 | 96.52 192 | 72.92 252 | 97.75 211 | 93.46 138 | 86.17 240 | 92.67 250 |
|
| plane_prior3 | | | | | | | 85.91 246 | | | 93.65 61 | 86.99 214 | | | | | | |
|
| iter_conf_final | | | 93.22 137 | 93.04 125 | 93.76 198 | 97.03 141 | 92.22 92 | 99.05 112 | 93.31 343 | 92.11 93 | 86.93 216 | 95.42 217 | 95.01 10 | 96.59 259 | 93.98 127 | 84.48 253 | 92.46 253 |
|
| GA-MVS | | | 90.10 200 | 88.69 210 | 94.33 176 | 92.44 284 | 87.97 192 | 99.08 108 | 96.26 224 | 89.65 147 | 86.92 217 | 93.11 264 | 68.09 287 | 96.96 245 | 82.54 265 | 90.15 221 | 98.05 178 |
|
| 1112_ss | | | 92.71 145 | 91.55 157 | 96.20 104 | 95.56 195 | 91.12 109 | 98.48 175 | 94.69 317 | 88.29 193 | 86.89 218 | 98.50 108 | 87.02 93 | 98.66 165 | 84.75 236 | 89.77 224 | 98.81 141 |
|
| Test_1112_low_res | | | 92.27 158 | 90.97 168 | 96.18 105 | 95.53 197 | 91.10 111 | 98.47 177 | 94.66 318 | 88.28 194 | 86.83 219 | 93.50 256 | 87.00 94 | 98.65 166 | 84.69 237 | 89.74 225 | 98.80 142 |
|
| cascas | | | 90.93 183 | 89.33 197 | 95.76 122 | 95.69 191 | 93.03 78 | 98.99 120 | 96.59 201 | 80.49 329 | 86.79 220 | 94.45 234 | 65.23 313 | 98.60 167 | 93.52 137 | 92.18 196 | 95.66 233 |
|
| iter_conf05 | | | 93.48 125 | 93.18 121 | 94.39 175 | 97.15 133 | 94.17 57 | 99.30 80 | 92.97 346 | 92.38 88 | 86.70 221 | 95.42 217 | 95.67 5 | 96.59 259 | 94.67 118 | 84.32 256 | 92.39 254 |
|
| baseline2 | | | 94.04 107 | 93.80 107 | 94.74 160 | 93.07 279 | 90.25 131 | 98.12 210 | 98.16 39 | 89.86 142 | 86.53 222 | 96.95 175 | 95.56 6 | 98.05 189 | 91.44 159 | 94.53 169 | 95.93 231 |
|
| OPM-MVS | | | 89.76 206 | 89.15 200 | 91.57 244 | 90.53 315 | 85.58 255 | 98.11 212 | 95.93 251 | 92.88 76 | 86.05 223 | 96.47 195 | 67.06 298 | 97.87 198 | 89.29 189 | 86.08 242 | 91.26 300 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| VPA-MVSNet | | | 89.10 214 | 87.66 229 | 93.45 203 | 92.56 282 | 91.02 115 | 97.97 223 | 98.32 30 | 86.92 228 | 86.03 224 | 92.01 278 | 68.84 281 | 97.10 241 | 90.92 164 | 75.34 308 | 92.23 262 |
|
| SDMVSNet | | | 91.09 178 | 89.91 186 | 94.65 163 | 96.80 147 | 90.54 127 | 97.78 232 | 97.81 65 | 88.34 190 | 85.73 225 | 95.26 221 | 66.44 303 | 98.26 177 | 94.25 125 | 86.75 234 | 95.14 234 |
|
| sd_testset | | | 89.23 212 | 88.05 225 | 92.74 218 | 96.80 147 | 85.33 260 | 95.85 310 | 97.03 181 | 88.34 190 | 85.73 225 | 95.26 221 | 61.12 330 | 97.76 210 | 85.61 227 | 86.75 234 | 95.14 234 |
|
| tpm cat1 | | | 88.89 219 | 87.27 235 | 93.76 198 | 95.79 187 | 85.32 261 | 90.76 362 | 97.09 176 | 76.14 350 | 85.72 227 | 88.59 340 | 82.92 165 | 98.04 190 | 76.96 304 | 91.43 210 | 97.90 183 |
|
| IB-MVS | | 89.43 6 | 92.12 161 | 90.83 174 | 95.98 116 | 95.40 202 | 90.78 120 | 99.81 11 | 98.06 45 | 91.23 110 | 85.63 228 | 93.66 251 | 90.63 41 | 98.78 156 | 91.22 160 | 71.85 344 | 98.36 168 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| EI-MVSNet | | | 89.87 205 | 89.38 196 | 91.36 247 | 94.32 244 | 85.87 248 | 97.61 245 | 96.59 201 | 85.10 259 | 85.51 229 | 97.10 168 | 81.30 196 | 96.56 263 | 83.85 253 | 83.03 270 | 91.64 279 |
|
| MVSTER | | | 92.71 145 | 92.32 139 | 93.86 195 | 97.29 127 | 92.95 81 | 99.01 118 | 96.59 201 | 90.09 138 | 85.51 229 | 94.00 241 | 94.61 16 | 96.56 263 | 90.77 169 | 83.03 270 | 92.08 271 |
|
| test_fmvs2 | | | 85.10 285 | 85.45 263 | 84.02 343 | 89.85 324 | 65.63 377 | 98.49 173 | 92.59 351 | 90.45 127 | 85.43 231 | 93.32 257 | 43.94 374 | 96.59 259 | 90.81 167 | 84.19 257 | 89.85 335 |
|
| RPSCF | | | 85.33 283 | 85.55 261 | 84.67 340 | 94.63 238 | 62.28 379 | 93.73 331 | 93.76 335 | 74.38 357 | 85.23 232 | 97.06 171 | 64.09 316 | 98.31 173 | 80.98 275 | 86.08 242 | 93.41 245 |
|
| BH-w/o | | | 92.32 155 | 91.79 152 | 93.91 194 | 96.85 144 | 86.18 237 | 99.11 106 | 95.74 269 | 88.13 197 | 84.81 233 | 97.00 173 | 77.26 223 | 97.91 194 | 89.16 191 | 98.03 112 | 97.64 187 |
|
| mvsmamba | | | 89.99 203 | 89.42 194 | 91.69 242 | 90.64 314 | 86.34 231 | 98.40 185 | 92.27 355 | 91.01 112 | 84.80 234 | 94.93 225 | 76.12 226 | 96.51 267 | 92.81 149 | 83.84 260 | 92.21 264 |
|
| CLD-MVS | | | 91.06 180 | 90.71 176 | 92.10 230 | 94.05 252 | 86.10 240 | 99.55 44 | 96.29 223 | 94.16 45 | 84.70 235 | 97.17 166 | 69.62 277 | 97.82 201 | 94.74 115 | 86.08 242 | 92.39 254 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| tpmvs | | | 89.16 213 | 87.76 226 | 93.35 204 | 97.19 130 | 84.75 271 | 90.58 364 | 97.36 150 | 81.99 314 | 84.56 236 | 89.31 337 | 83.98 147 | 98.17 180 | 74.85 320 | 90.00 223 | 97.12 201 |
|
| nrg030 | | | 90.23 195 | 88.87 205 | 94.32 177 | 91.53 302 | 93.54 67 | 98.79 140 | 95.89 260 | 88.12 198 | 84.55 237 | 94.61 232 | 78.80 214 | 96.88 249 | 92.35 154 | 75.21 309 | 92.53 252 |
|
| VPNet | | | 88.30 234 | 86.57 245 | 93.49 202 | 91.95 294 | 91.35 103 | 98.18 205 | 97.20 164 | 88.61 177 | 84.52 238 | 94.89 226 | 62.21 325 | 96.76 255 | 89.34 186 | 72.26 341 | 92.36 256 |
|
| dmvs_re | | | 88.69 229 | 88.06 224 | 90.59 265 | 93.83 262 | 78.68 335 | 95.75 313 | 96.18 230 | 87.99 202 | 84.48 239 | 96.32 200 | 67.52 293 | 96.94 247 | 84.98 234 | 85.49 246 | 96.14 228 |
|
| MVS | | | 93.92 111 | 92.28 140 | 98.83 7 | 95.69 191 | 96.82 8 | 96.22 297 | 98.17 37 | 84.89 266 | 84.34 240 | 98.61 103 | 79.32 209 | 99.83 73 | 93.88 130 | 99.43 59 | 99.86 29 |
|
| mvs_anonymous | | | 92.50 152 | 91.65 155 | 95.06 147 | 96.60 153 | 89.64 153 | 97.06 266 | 96.44 213 | 86.64 234 | 84.14 241 | 93.93 243 | 82.49 175 | 96.17 293 | 91.47 158 | 96.08 153 | 99.35 90 |
|
| Fast-Effi-MVS+-dtu | | | 88.84 221 | 88.59 214 | 89.58 295 | 93.44 272 | 78.18 339 | 98.65 152 | 94.62 319 | 88.46 182 | 84.12 242 | 95.37 220 | 68.91 279 | 96.52 266 | 82.06 269 | 91.70 205 | 94.06 240 |
|
| LS3D | | | 90.19 197 | 88.72 209 | 94.59 167 | 98.97 73 | 86.33 232 | 96.90 272 | 96.60 200 | 74.96 354 | 84.06 243 | 98.74 88 | 75.78 228 | 99.83 73 | 74.93 318 | 97.57 121 | 97.62 190 |
|
| ACMM | | 86.95 13 | 88.77 226 | 88.22 221 | 90.43 271 | 93.61 266 | 81.34 314 | 98.50 171 | 95.92 252 | 87.88 206 | 83.85 244 | 95.20 223 | 67.20 296 | 97.89 196 | 86.90 213 | 84.90 249 | 92.06 272 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| BH-untuned | | | 91.46 171 | 90.84 172 | 93.33 205 | 96.51 157 | 84.83 270 | 98.84 133 | 95.50 283 | 86.44 242 | 83.50 245 | 96.70 188 | 75.49 230 | 97.77 205 | 86.78 215 | 97.81 115 | 97.40 194 |
|
| FIs | | | 90.70 187 | 89.87 187 | 93.18 207 | 92.29 286 | 91.12 109 | 98.17 207 | 98.25 32 | 89.11 164 | 83.44 246 | 94.82 229 | 82.26 182 | 96.17 293 | 87.76 203 | 82.76 272 | 92.25 260 |
|
| bld_raw_dy_0_64 | | | 87.82 239 | 86.71 244 | 91.15 250 | 89.54 330 | 85.61 253 | 97.37 252 | 89.16 379 | 89.26 159 | 83.42 247 | 94.50 233 | 65.79 306 | 96.18 291 | 88.00 201 | 83.37 267 | 91.67 278 |
|
| UniMVSNet (Re) | | | 89.50 211 | 88.32 219 | 93.03 209 | 92.21 288 | 90.96 117 | 98.90 129 | 98.39 27 | 89.13 163 | 83.22 248 | 92.03 276 | 81.69 189 | 96.34 283 | 86.79 214 | 72.53 337 | 91.81 276 |
|
| UniMVSNet_NR-MVSNet | | | 89.60 208 | 88.55 216 | 92.75 217 | 92.17 289 | 90.07 140 | 98.74 143 | 98.15 40 | 88.37 188 | 83.21 249 | 93.98 242 | 82.86 166 | 95.93 304 | 86.95 210 | 72.47 338 | 92.25 260 |
|
| DU-MVS | | | 88.83 223 | 87.51 230 | 92.79 215 | 91.46 303 | 90.07 140 | 98.71 144 | 97.62 103 | 88.87 173 | 83.21 249 | 93.68 249 | 74.63 232 | 95.93 304 | 86.95 210 | 72.47 338 | 92.36 256 |
|
| LPG-MVS_test | | | 88.86 220 | 88.47 218 | 90.06 280 | 93.35 274 | 80.95 321 | 98.22 201 | 95.94 248 | 87.73 212 | 83.17 251 | 96.11 204 | 66.28 304 | 97.77 205 | 90.19 174 | 85.19 247 | 91.46 290 |
|
| LGP-MVS_train | | | | | 90.06 280 | 93.35 274 | 80.95 321 | | 95.94 248 | 87.73 212 | 83.17 251 | 96.11 204 | 66.28 304 | 97.77 205 | 90.19 174 | 85.19 247 | 91.46 290 |
|
| miper_enhance_ethall | | | 90.33 193 | 89.70 188 | 92.22 225 | 97.12 136 | 88.93 172 | 98.35 192 | 95.96 245 | 88.60 178 | 83.14 253 | 92.33 273 | 87.38 82 | 96.18 291 | 86.49 217 | 77.89 295 | 91.55 287 |
|
| FC-MVSNet-test | | | 90.22 196 | 89.40 195 | 92.67 221 | 91.78 298 | 89.86 149 | 97.89 225 | 98.22 35 | 88.81 174 | 82.96 254 | 94.66 231 | 81.90 188 | 95.96 302 | 85.89 225 | 82.52 275 | 92.20 266 |
|
| PCF-MVS | | 89.78 5 | 91.26 174 | 89.63 189 | 96.16 108 | 95.44 199 | 91.58 101 | 95.29 317 | 96.10 235 | 85.07 261 | 82.75 255 | 97.45 152 | 78.28 217 | 99.78 84 | 80.60 281 | 95.65 160 | 97.12 201 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| V42 | | | 87.00 254 | 85.68 259 | 90.98 255 | 89.91 321 | 86.08 241 | 98.32 195 | 95.61 277 | 83.67 285 | 82.72 256 | 90.67 307 | 74.00 243 | 96.53 265 | 81.94 271 | 74.28 321 | 90.32 324 |
|
| v1144 | | | 86.83 257 | 85.31 265 | 91.40 245 | 89.75 325 | 87.21 216 | 98.31 196 | 95.45 286 | 83.22 291 | 82.70 257 | 90.78 302 | 73.36 245 | 96.36 277 | 79.49 286 | 74.69 315 | 90.63 319 |
|
| Syy-MVS | | | 84.10 301 | 84.53 280 | 82.83 348 | 95.14 214 | 65.71 376 | 97.68 241 | 96.66 196 | 86.52 238 | 82.63 258 | 96.84 182 | 68.15 286 | 89.89 372 | 45.62 386 | 91.54 208 | 92.87 246 |
|
| myMVS_eth3d | | | 88.68 230 | 89.07 201 | 87.50 320 | 95.14 214 | 79.74 327 | 97.68 241 | 96.66 196 | 86.52 238 | 82.63 258 | 96.84 182 | 85.22 133 | 89.89 372 | 69.43 346 | 91.54 208 | 92.87 246 |
|
| v144192 | | | 86.40 266 | 84.89 271 | 90.91 256 | 89.48 332 | 85.59 254 | 98.21 203 | 95.43 289 | 82.45 308 | 82.62 260 | 90.58 314 | 72.79 255 | 96.36 277 | 78.45 296 | 74.04 325 | 90.79 312 |
|
| 3Dnovator | | 87.35 11 | 93.17 139 | 91.77 153 | 97.37 49 | 95.41 201 | 93.07 76 | 98.82 134 | 97.85 58 | 91.53 101 | 82.56 261 | 97.58 146 | 71.97 261 | 99.82 76 | 91.01 163 | 99.23 69 | 99.22 103 |
|
| v2v482 | | | 87.27 252 | 85.76 257 | 91.78 241 | 89.59 327 | 87.58 200 | 98.56 165 | 95.54 281 | 84.53 270 | 82.51 262 | 91.78 284 | 73.11 251 | 96.47 271 | 82.07 268 | 74.14 324 | 91.30 298 |
|
| tt0805 | | | 86.50 265 | 84.79 274 | 91.63 243 | 91.97 292 | 81.49 310 | 96.49 286 | 97.38 148 | 82.24 311 | 82.44 263 | 95.82 210 | 51.22 362 | 98.25 178 | 84.55 240 | 80.96 282 | 95.13 236 |
|
| Baseline_NR-MVSNet | | | 85.83 275 | 84.82 273 | 88.87 310 | 88.73 340 | 83.34 288 | 98.63 155 | 91.66 364 | 80.41 332 | 82.44 263 | 91.35 292 | 74.63 232 | 95.42 321 | 84.13 246 | 71.39 347 | 87.84 353 |
|
| v1192 | | | 86.32 268 | 84.71 276 | 91.17 249 | 89.53 331 | 86.40 227 | 98.13 208 | 95.44 288 | 82.52 306 | 82.42 265 | 90.62 311 | 71.58 267 | 96.33 284 | 77.23 301 | 74.88 312 | 90.79 312 |
|
| RRT_MVS | | | 88.91 218 | 88.56 215 | 89.93 285 | 90.31 318 | 81.61 309 | 98.08 216 | 96.38 215 | 89.30 158 | 82.41 266 | 94.84 228 | 73.15 250 | 96.04 299 | 90.38 171 | 82.23 277 | 92.15 267 |
|
| test_djsdf | | | 88.26 236 | 87.73 227 | 89.84 288 | 88.05 348 | 82.21 303 | 97.77 234 | 96.17 231 | 86.84 229 | 82.41 266 | 91.95 282 | 72.07 260 | 95.99 300 | 89.83 176 | 84.50 252 | 91.32 297 |
|
| cl22 | | | 89.57 209 | 88.79 208 | 91.91 233 | 97.94 104 | 87.62 199 | 97.98 222 | 96.51 208 | 85.03 262 | 82.37 268 | 91.79 283 | 83.65 149 | 96.50 268 | 85.96 222 | 77.89 295 | 91.61 284 |
|
| 1314 | | | 93.44 127 | 91.98 148 | 97.84 32 | 95.24 205 | 94.38 52 | 96.22 297 | 97.92 55 | 90.18 134 | 82.28 269 | 97.71 139 | 77.63 221 | 99.80 81 | 91.94 156 | 98.67 97 | 99.34 92 |
|
| v1921920 | | | 86.02 271 | 84.44 282 | 90.77 262 | 89.32 334 | 85.20 262 | 98.10 213 | 95.35 294 | 82.19 312 | 82.25 270 | 90.71 304 | 70.73 270 | 96.30 288 | 76.85 306 | 74.49 317 | 90.80 311 |
|
| v1240 | | | 85.77 278 | 84.11 285 | 90.73 263 | 89.26 335 | 85.15 265 | 97.88 227 | 95.23 303 | 81.89 317 | 82.16 271 | 90.55 316 | 69.60 278 | 96.31 285 | 75.59 315 | 74.87 313 | 90.72 316 |
|
| XVG-ACMP-BASELINE | | | 85.86 274 | 84.95 270 | 88.57 311 | 89.90 322 | 77.12 345 | 94.30 325 | 95.60 278 | 87.40 220 | 82.12 272 | 92.99 267 | 53.42 357 | 97.66 215 | 85.02 233 | 83.83 261 | 90.92 308 |
|
| GBi-Net | | | 86.67 260 | 84.96 268 | 91.80 237 | 95.11 217 | 88.81 175 | 96.77 276 | 95.25 296 | 82.94 297 | 82.12 272 | 90.25 322 | 62.89 322 | 94.97 329 | 79.04 289 | 80.24 283 | 91.62 281 |
|
| test1 | | | 86.67 260 | 84.96 268 | 91.80 237 | 95.11 217 | 88.81 175 | 96.77 276 | 95.25 296 | 82.94 297 | 82.12 272 | 90.25 322 | 62.89 322 | 94.97 329 | 79.04 289 | 80.24 283 | 91.62 281 |
|
| FMVSNet3 | | | 88.81 225 | 87.08 238 | 93.99 192 | 96.52 156 | 94.59 47 | 98.08 216 | 96.20 227 | 85.85 247 | 82.12 272 | 91.60 287 | 74.05 242 | 95.40 322 | 79.04 289 | 80.24 283 | 91.99 274 |
|
| IterMVS-LS | | | 88.34 233 | 87.44 231 | 91.04 253 | 94.10 248 | 85.85 249 | 98.10 213 | 95.48 284 | 85.12 258 | 82.03 276 | 91.21 295 | 81.35 195 | 95.63 316 | 83.86 252 | 75.73 307 | 91.63 280 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| miper_ehance_all_eth | | | 88.94 217 | 88.12 223 | 91.40 245 | 95.32 204 | 86.93 218 | 97.85 229 | 95.55 280 | 84.19 274 | 81.97 277 | 91.50 289 | 84.16 144 | 95.91 307 | 84.69 237 | 77.89 295 | 91.36 295 |
|
| MIMVSNet | | | 84.48 294 | 81.83 304 | 92.42 223 | 91.73 299 | 87.36 208 | 85.52 373 | 94.42 325 | 81.40 320 | 81.91 278 | 87.58 344 | 51.92 360 | 92.81 354 | 73.84 328 | 88.15 228 | 97.08 205 |
|
| PS-MVSNAJss | | | 89.54 210 | 89.05 202 | 91.00 254 | 88.77 339 | 84.36 275 | 97.39 249 | 95.97 243 | 88.47 180 | 81.88 279 | 93.80 247 | 82.48 176 | 96.50 268 | 89.34 186 | 83.34 269 | 92.15 267 |
|
| WR-MVS | | | 88.54 232 | 87.22 237 | 92.52 222 | 91.93 296 | 89.50 156 | 98.56 165 | 97.84 59 | 86.99 223 | 81.87 280 | 93.81 246 | 74.25 241 | 95.92 306 | 85.29 229 | 74.43 318 | 92.12 269 |
|
| TranMVSNet+NR-MVSNet | | | 87.75 243 | 86.31 249 | 92.07 231 | 90.81 311 | 88.56 180 | 98.33 193 | 97.18 165 | 87.76 209 | 81.87 280 | 93.90 244 | 72.45 256 | 95.43 320 | 83.13 259 | 71.30 348 | 92.23 262 |
|
| eth_miper_zixun_eth | | | 87.76 242 | 87.00 240 | 90.06 280 | 94.67 236 | 82.65 300 | 97.02 269 | 95.37 292 | 84.19 274 | 81.86 282 | 91.58 288 | 81.47 192 | 95.90 308 | 83.24 255 | 73.61 327 | 91.61 284 |
|
| UniMVSNet_ETH3D | | | 85.65 281 | 83.79 289 | 91.21 248 | 90.41 317 | 80.75 323 | 95.36 316 | 95.78 266 | 78.76 338 | 81.83 283 | 94.33 235 | 49.86 367 | 96.66 256 | 84.30 242 | 83.52 266 | 96.22 227 |
|
| c3_l | | | 88.19 237 | 87.23 236 | 91.06 252 | 94.97 226 | 86.17 238 | 97.72 238 | 95.38 291 | 83.43 288 | 81.68 284 | 91.37 291 | 82.81 167 | 95.72 313 | 84.04 250 | 73.70 326 | 91.29 299 |
|
| DP-MVS | | | 88.75 227 | 86.56 246 | 95.34 136 | 98.92 77 | 87.45 205 | 97.64 244 | 93.52 341 | 70.55 366 | 81.49 285 | 97.25 160 | 74.43 237 | 99.88 54 | 71.14 340 | 94.09 173 | 98.67 152 |
|
| 3Dnovator+ | | 87.72 8 | 93.43 128 | 91.84 151 | 98.17 22 | 95.73 190 | 95.08 32 | 98.92 127 | 97.04 179 | 91.42 106 | 81.48 286 | 97.60 144 | 74.60 234 | 99.79 82 | 90.84 166 | 98.97 81 | 99.64 62 |
|
| QAPM | | | 91.41 172 | 89.49 192 | 97.17 56 | 95.66 193 | 93.42 70 | 98.60 160 | 97.51 127 | 80.92 327 | 81.39 287 | 97.41 154 | 72.89 254 | 99.87 58 | 82.33 266 | 98.68 96 | 98.21 175 |
|
| testing3 | | | 87.75 243 | 88.22 221 | 86.36 328 | 94.66 237 | 77.41 344 | 99.52 50 | 97.95 54 | 86.05 245 | 81.12 288 | 96.69 189 | 86.18 115 | 89.31 376 | 61.65 370 | 90.12 222 | 92.35 259 |
|
| XXY-MVS | | | 87.75 243 | 86.02 253 | 92.95 213 | 90.46 316 | 89.70 152 | 97.71 240 | 95.90 258 | 84.02 276 | 80.95 289 | 94.05 236 | 67.51 294 | 97.10 241 | 85.16 230 | 78.41 292 | 92.04 273 |
|
| v148 | | | 86.38 267 | 85.06 267 | 90.37 275 | 89.47 333 | 84.10 279 | 98.52 167 | 95.48 284 | 83.80 281 | 80.93 290 | 90.22 325 | 74.60 234 | 96.31 285 | 80.92 277 | 71.55 346 | 90.69 317 |
|
| DIV-MVS_self_test | | | 87.82 239 | 86.81 242 | 90.87 259 | 94.87 231 | 85.39 259 | 97.81 230 | 95.22 304 | 82.92 300 | 80.76 291 | 91.31 293 | 81.99 185 | 95.81 311 | 81.36 273 | 75.04 311 | 91.42 293 |
|
| cl____ | | | 87.82 239 | 86.79 243 | 90.89 258 | 94.88 230 | 85.43 257 | 97.81 230 | 95.24 299 | 82.91 301 | 80.71 292 | 91.22 294 | 81.97 187 | 95.84 309 | 81.34 274 | 75.06 310 | 91.40 294 |
|
| FMVSNet2 | | | 86.90 255 | 84.79 274 | 93.24 206 | 95.11 217 | 92.54 89 | 97.67 243 | 95.86 264 | 82.94 297 | 80.55 293 | 91.17 296 | 62.89 322 | 95.29 324 | 77.23 301 | 79.71 289 | 91.90 275 |
|
| pmmvs4 | | | 87.58 249 | 86.17 252 | 91.80 237 | 89.58 328 | 88.92 173 | 97.25 258 | 95.28 295 | 82.54 305 | 80.49 294 | 93.17 263 | 75.62 229 | 96.05 298 | 82.75 262 | 78.90 290 | 90.42 322 |
|
| ACMP | | 87.39 10 | 88.71 228 | 88.24 220 | 90.12 279 | 93.91 258 | 81.06 320 | 98.50 171 | 95.67 274 | 89.43 156 | 80.37 295 | 95.55 213 | 65.67 307 | 97.83 200 | 90.55 170 | 84.51 251 | 91.47 289 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| pmmvs5 | | | 85.87 273 | 84.40 284 | 90.30 276 | 88.53 343 | 84.23 276 | 98.60 160 | 93.71 337 | 81.53 319 | 80.29 296 | 92.02 277 | 64.51 315 | 95.52 318 | 82.04 270 | 78.34 293 | 91.15 302 |
|
| test0.0.03 1 | | | 88.96 216 | 88.61 212 | 90.03 284 | 91.09 308 | 84.43 274 | 98.97 123 | 97.02 183 | 90.21 132 | 80.29 296 | 96.31 201 | 84.89 136 | 91.93 366 | 72.98 334 | 85.70 245 | 93.73 241 |
|
| miper_lstm_enhance | | | 86.90 255 | 86.20 251 | 89.00 307 | 94.53 239 | 81.19 317 | 96.74 280 | 95.24 299 | 82.33 310 | 80.15 298 | 90.51 318 | 81.99 185 | 94.68 338 | 80.71 279 | 73.58 328 | 91.12 303 |
|
| jajsoiax | | | 87.35 250 | 86.51 247 | 89.87 286 | 87.75 353 | 81.74 307 | 97.03 267 | 95.98 242 | 88.47 180 | 80.15 298 | 93.80 247 | 61.47 327 | 96.36 277 | 89.44 184 | 84.47 254 | 91.50 288 |
|
| mvs_tets | | | 87.09 253 | 86.22 250 | 89.71 291 | 87.87 349 | 81.39 313 | 96.73 281 | 95.90 258 | 88.19 196 | 79.99 300 | 93.61 252 | 59.96 334 | 96.31 285 | 89.40 185 | 84.34 255 | 91.43 292 |
|
| ITE_SJBPF | | | | | 87.93 315 | 92.26 287 | 76.44 347 | | 93.47 342 | 87.67 215 | 79.95 301 | 95.49 216 | 56.50 344 | 97.38 233 | 75.24 316 | 82.33 276 | 89.98 333 |
|
| v8 | | | 86.11 270 | 84.45 281 | 91.10 251 | 89.99 320 | 86.85 219 | 97.24 259 | 95.36 293 | 81.99 314 | 79.89 302 | 89.86 330 | 74.53 236 | 96.39 275 | 78.83 293 | 72.32 340 | 90.05 331 |
|
| v10 | | | 85.73 279 | 84.01 287 | 90.87 259 | 90.03 319 | 86.73 221 | 97.20 262 | 95.22 304 | 81.25 322 | 79.85 303 | 89.75 331 | 73.30 248 | 96.28 289 | 76.87 305 | 72.64 336 | 89.61 339 |
|
| WR-MVS_H | | | 86.53 264 | 85.49 262 | 89.66 294 | 91.04 309 | 83.31 289 | 97.53 247 | 98.20 36 | 84.95 265 | 79.64 304 | 90.90 300 | 78.01 219 | 95.33 323 | 76.29 310 | 72.81 334 | 90.35 323 |
|
| anonymousdsp | | | 86.69 259 | 85.75 258 | 89.53 296 | 86.46 361 | 82.94 292 | 96.39 288 | 95.71 270 | 83.97 278 | 79.63 305 | 90.70 305 | 68.85 280 | 95.94 303 | 86.01 220 | 84.02 259 | 89.72 337 |
|
| Patchmtry | | | 83.61 305 | 81.64 305 | 89.50 297 | 93.36 273 | 82.84 297 | 84.10 380 | 94.20 330 | 69.47 372 | 79.57 306 | 86.88 354 | 84.43 141 | 94.78 335 | 68.48 350 | 74.30 320 | 90.88 309 |
|
| CP-MVSNet | | | 86.54 263 | 85.45 263 | 89.79 290 | 91.02 310 | 82.78 298 | 97.38 251 | 97.56 116 | 85.37 255 | 79.53 307 | 93.03 265 | 71.86 263 | 95.25 325 | 79.92 284 | 73.43 332 | 91.34 296 |
|
| Patchmatch-test | | | 86.25 269 | 84.06 286 | 92.82 214 | 94.42 240 | 82.88 296 | 82.88 384 | 94.23 329 | 71.58 362 | 79.39 308 | 90.62 311 | 89.00 59 | 96.42 274 | 63.03 366 | 91.37 212 | 99.16 106 |
|
| DSMNet-mixed | | | 81.60 314 | 81.43 308 | 82.10 351 | 84.36 367 | 60.79 380 | 93.63 333 | 86.74 384 | 79.00 334 | 79.32 309 | 87.15 352 | 63.87 318 | 89.78 374 | 66.89 356 | 91.92 199 | 95.73 232 |
|
| MSDG | | | 88.29 235 | 86.37 248 | 94.04 190 | 96.90 143 | 86.15 239 | 96.52 285 | 94.36 327 | 77.89 344 | 79.22 310 | 96.95 175 | 69.72 275 | 99.59 104 | 73.20 333 | 92.58 189 | 96.37 226 |
|
| Anonymous20231211 | | | 84.72 289 | 82.65 300 | 90.91 256 | 97.71 110 | 84.55 273 | 97.28 256 | 96.67 195 | 66.88 379 | 79.18 311 | 90.87 301 | 58.47 338 | 96.60 258 | 82.61 264 | 74.20 322 | 91.59 286 |
|
| PS-CasMVS | | | 85.81 276 | 84.58 279 | 89.49 299 | 90.77 312 | 82.11 304 | 97.20 262 | 97.36 150 | 84.83 267 | 79.12 312 | 92.84 268 | 67.42 295 | 95.16 327 | 78.39 297 | 73.25 333 | 91.21 301 |
|
| IterMVS | | | 85.81 276 | 84.67 277 | 89.22 302 | 93.51 268 | 83.67 285 | 96.32 291 | 94.80 313 | 85.09 260 | 78.69 313 | 90.17 328 | 66.57 302 | 93.17 351 | 79.48 287 | 77.42 301 | 90.81 310 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| PEN-MVS | | | 85.21 284 | 83.93 288 | 89.07 306 | 89.89 323 | 81.31 315 | 97.09 265 | 97.24 157 | 84.45 272 | 78.66 314 | 92.68 270 | 68.44 284 | 94.87 332 | 75.98 312 | 70.92 349 | 91.04 305 |
|
| IterMVS-SCA-FT | | | 85.73 279 | 84.64 278 | 89.00 307 | 93.46 271 | 82.90 294 | 96.27 292 | 94.70 316 | 85.02 263 | 78.62 315 | 90.35 320 | 66.61 300 | 93.33 348 | 79.38 288 | 77.36 302 | 90.76 314 |
|
| OpenMVS |  | 85.28 14 | 90.75 186 | 88.84 206 | 96.48 93 | 93.58 267 | 93.51 68 | 98.80 136 | 97.41 145 | 82.59 303 | 78.62 315 | 97.49 150 | 68.00 289 | 99.82 76 | 84.52 241 | 98.55 102 | 96.11 229 |
|
| PVSNet_0 | | 83.28 16 | 87.31 251 | 85.16 266 | 93.74 200 | 94.78 233 | 84.59 272 | 98.91 128 | 98.69 21 | 89.81 144 | 78.59 317 | 93.23 261 | 61.95 326 | 99.34 134 | 94.75 114 | 55.72 381 | 97.30 197 |
|
| EU-MVSNet | | | 84.19 298 | 84.42 283 | 83.52 346 | 88.64 342 | 67.37 375 | 96.04 302 | 95.76 268 | 85.29 256 | 78.44 318 | 93.18 262 | 70.67 271 | 91.48 368 | 75.79 314 | 75.98 305 | 91.70 277 |
|
| v7n | | | 84.42 296 | 82.75 298 | 89.43 300 | 88.15 346 | 81.86 306 | 96.75 279 | 95.67 274 | 80.53 328 | 78.38 319 | 89.43 335 | 69.89 273 | 96.35 282 | 73.83 329 | 72.13 342 | 90.07 329 |
|
| FMVSNet1 | | | 83.94 302 | 81.32 310 | 91.80 237 | 91.94 295 | 88.81 175 | 96.77 276 | 95.25 296 | 77.98 340 | 78.25 320 | 90.25 322 | 50.37 366 | 94.97 329 | 73.27 332 | 77.81 299 | 91.62 281 |
|
| D2MVS | | | 87.96 238 | 87.39 232 | 89.70 292 | 91.84 297 | 83.40 287 | 98.31 196 | 98.49 23 | 88.04 200 | 78.23 321 | 90.26 321 | 73.57 244 | 96.79 254 | 84.21 244 | 83.53 265 | 88.90 347 |
|
| MS-PatchMatch | | | 86.75 258 | 85.92 255 | 89.22 302 | 91.97 292 | 82.47 302 | 96.91 271 | 96.14 233 | 83.74 282 | 77.73 322 | 93.53 255 | 58.19 339 | 97.37 235 | 76.75 307 | 98.35 106 | 87.84 353 |
|
| DTE-MVSNet | | | 84.14 299 | 82.80 295 | 88.14 314 | 88.95 338 | 79.87 326 | 96.81 275 | 96.24 225 | 83.50 287 | 77.60 323 | 92.52 272 | 67.89 291 | 94.24 343 | 72.64 336 | 69.05 352 | 90.32 324 |
|
| COLMAP_ROB |  | 82.69 18 | 84.54 293 | 82.82 294 | 89.70 292 | 96.72 151 | 78.85 332 | 95.89 305 | 92.83 349 | 71.55 363 | 77.54 324 | 95.89 209 | 59.40 336 | 99.14 145 | 67.26 354 | 88.26 227 | 91.11 304 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| OurMVSNet-221017-0 | | | 84.13 300 | 83.59 290 | 85.77 333 | 87.81 350 | 70.24 369 | 94.89 320 | 93.65 339 | 86.08 244 | 76.53 325 | 93.28 260 | 61.41 328 | 96.14 295 | 80.95 276 | 77.69 300 | 90.93 307 |
|
| tfpnnormal | | | 83.65 303 | 81.35 309 | 90.56 268 | 91.37 305 | 88.06 189 | 97.29 255 | 97.87 57 | 78.51 339 | 76.20 326 | 90.91 299 | 64.78 314 | 96.47 271 | 61.71 369 | 73.50 329 | 87.13 361 |
|
| ppachtmachnet_test | | | 83.63 304 | 81.57 307 | 89.80 289 | 89.01 336 | 85.09 266 | 97.13 264 | 94.50 321 | 78.84 336 | 76.14 327 | 91.00 298 | 69.78 274 | 94.61 339 | 63.40 364 | 74.36 319 | 89.71 338 |
|
| pm-mvs1 | | | 84.68 290 | 82.78 297 | 90.40 272 | 89.58 328 | 85.18 263 | 97.31 254 | 94.73 315 | 81.93 316 | 76.05 328 | 92.01 278 | 65.48 311 | 96.11 296 | 78.75 294 | 69.14 351 | 89.91 334 |
|
| AllTest | | | 84.97 287 | 83.12 292 | 90.52 269 | 96.82 145 | 78.84 333 | 95.89 305 | 92.17 357 | 77.96 342 | 75.94 329 | 95.50 214 | 55.48 347 | 99.18 139 | 71.15 338 | 87.14 231 | 93.55 243 |
|
| TestCases | | | | | 90.52 269 | 96.82 145 | 78.84 333 | | 92.17 357 | 77.96 342 | 75.94 329 | 95.50 214 | 55.48 347 | 99.18 139 | 71.15 338 | 87.14 231 | 93.55 243 |
|
| CL-MVSNet_self_test | | | 79.89 322 | 78.34 323 | 84.54 341 | 81.56 375 | 75.01 351 | 96.88 273 | 95.62 276 | 81.10 323 | 75.86 331 | 85.81 359 | 68.49 283 | 90.26 370 | 63.21 365 | 56.51 379 | 88.35 350 |
|
| testgi | | | 82.29 309 | 81.00 312 | 86.17 330 | 87.24 356 | 74.84 353 | 97.39 249 | 91.62 365 | 88.63 176 | 75.85 332 | 95.42 217 | 46.07 373 | 91.55 367 | 66.87 357 | 79.94 287 | 92.12 269 |
|
| MVP-Stereo | | | 86.61 262 | 85.83 256 | 88.93 309 | 88.70 341 | 83.85 283 | 96.07 301 | 94.41 326 | 82.15 313 | 75.64 333 | 91.96 281 | 67.65 292 | 96.45 273 | 77.20 303 | 98.72 95 | 86.51 364 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| LF4IMVS | | | 81.94 312 | 81.17 311 | 84.25 342 | 87.23 357 | 68.87 374 | 93.35 335 | 91.93 362 | 83.35 290 | 75.40 334 | 93.00 266 | 49.25 370 | 96.65 257 | 78.88 292 | 78.11 294 | 87.22 360 |
|
| our_test_3 | | | 84.47 295 | 82.80 295 | 89.50 297 | 89.01 336 | 83.90 282 | 97.03 267 | 94.56 320 | 81.33 321 | 75.36 335 | 90.52 317 | 71.69 265 | 94.54 340 | 68.81 348 | 76.84 303 | 90.07 329 |
|
| LTVRE_ROB | | 81.71 19 | 84.59 292 | 82.72 299 | 90.18 277 | 92.89 281 | 83.18 290 | 93.15 336 | 94.74 314 | 78.99 335 | 75.14 336 | 92.69 269 | 65.64 308 | 97.63 218 | 69.46 345 | 81.82 279 | 89.74 336 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| Anonymous20231206 | | | 80.76 317 | 79.42 321 | 84.79 339 | 84.78 366 | 72.98 359 | 96.53 284 | 92.97 346 | 79.56 333 | 74.33 337 | 88.83 338 | 61.27 329 | 92.15 363 | 60.59 372 | 75.92 306 | 89.24 344 |
|
| FMVSNet5 | | | 82.29 309 | 80.54 313 | 87.52 319 | 93.79 264 | 84.01 280 | 93.73 331 | 92.47 353 | 76.92 347 | 74.27 338 | 86.15 358 | 63.69 320 | 89.24 377 | 69.07 347 | 74.79 314 | 89.29 343 |
|
| MVS-HIRNet | | | 79.01 325 | 75.13 337 | 90.66 264 | 93.82 263 | 81.69 308 | 85.16 374 | 93.75 336 | 54.54 384 | 74.17 339 | 59.15 390 | 57.46 341 | 96.58 262 | 63.74 363 | 94.38 170 | 93.72 242 |
|
| ACMH+ | | 83.78 15 | 84.21 297 | 82.56 302 | 89.15 304 | 93.73 265 | 79.16 330 | 96.43 287 | 94.28 328 | 81.09 324 | 74.00 340 | 94.03 239 | 54.58 353 | 97.67 214 | 76.10 311 | 78.81 291 | 90.63 319 |
|
| KD-MVS_2432*1600 | | | 82.98 306 | 80.52 314 | 90.38 273 | 94.32 244 | 88.98 167 | 92.87 340 | 95.87 262 | 80.46 330 | 73.79 341 | 87.49 347 | 82.76 170 | 93.29 349 | 70.56 342 | 46.53 390 | 88.87 348 |
|
| miper_refine_blended | | | 82.98 306 | 80.52 314 | 90.38 273 | 94.32 244 | 88.98 167 | 92.87 340 | 95.87 262 | 80.46 330 | 73.79 341 | 87.49 347 | 82.76 170 | 93.29 349 | 70.56 342 | 46.53 390 | 88.87 348 |
|
| NR-MVSNet | | | 87.74 246 | 86.00 254 | 92.96 212 | 91.46 303 | 90.68 124 | 96.65 283 | 97.42 144 | 88.02 201 | 73.42 343 | 93.68 249 | 77.31 222 | 95.83 310 | 84.26 243 | 71.82 345 | 92.36 256 |
|
| test_fmvs3 | | | 75.09 339 | 75.19 336 | 74.81 361 | 77.45 383 | 54.08 387 | 95.93 303 | 90.64 371 | 82.51 307 | 73.29 344 | 81.19 372 | 22.29 390 | 86.29 383 | 85.50 228 | 67.89 356 | 84.06 374 |
|
| USDC | | | 84.74 288 | 82.93 293 | 90.16 278 | 91.73 299 | 83.54 286 | 95.00 319 | 93.30 344 | 88.77 175 | 73.19 345 | 93.30 259 | 53.62 356 | 97.65 217 | 75.88 313 | 81.54 280 | 89.30 342 |
|
| KD-MVS_self_test | | | 77.47 334 | 75.88 334 | 82.24 349 | 81.59 374 | 68.93 373 | 92.83 342 | 94.02 333 | 77.03 346 | 73.14 346 | 83.39 364 | 55.44 349 | 90.42 369 | 67.95 351 | 57.53 378 | 87.38 356 |
|
| LCM-MVSNet-Re | | | 88.59 231 | 88.61 212 | 88.51 312 | 95.53 197 | 72.68 362 | 96.85 274 | 88.43 381 | 88.45 183 | 73.14 346 | 90.63 310 | 75.82 227 | 94.38 341 | 92.95 145 | 95.71 159 | 98.48 160 |
|
| TDRefinement | | | 78.01 331 | 75.31 335 | 86.10 331 | 70.06 390 | 73.84 356 | 93.59 334 | 91.58 366 | 74.51 356 | 73.08 348 | 91.04 297 | 49.63 369 | 97.12 238 | 74.88 319 | 59.47 374 | 87.33 358 |
|
| TransMVSNet (Re) | | | 81.97 311 | 79.61 320 | 89.08 305 | 89.70 326 | 84.01 280 | 97.26 257 | 91.85 363 | 78.84 336 | 73.07 349 | 91.62 286 | 67.17 297 | 95.21 326 | 67.50 353 | 59.46 375 | 88.02 352 |
|
| SixPastTwentyTwo | | | 82.63 308 | 81.58 306 | 85.79 332 | 88.12 347 | 71.01 367 | 95.17 318 | 92.54 352 | 84.33 273 | 72.93 350 | 92.08 275 | 60.41 333 | 95.61 317 | 74.47 322 | 74.15 323 | 90.75 315 |
|
| pmmvs6 | | | 79.90 321 | 77.31 327 | 87.67 318 | 84.17 368 | 78.13 340 | 95.86 309 | 93.68 338 | 67.94 376 | 72.67 351 | 89.62 333 | 50.98 364 | 95.75 312 | 74.80 321 | 66.04 362 | 89.14 345 |
|
| ACMH | | 83.09 17 | 84.60 291 | 82.61 301 | 90.57 266 | 93.18 277 | 82.94 292 | 96.27 292 | 94.92 309 | 81.01 325 | 72.61 352 | 93.61 252 | 56.54 343 | 97.79 203 | 74.31 323 | 81.07 281 | 90.99 306 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous20240521 | | | 78.63 329 | 76.90 330 | 83.82 344 | 82.82 372 | 72.86 360 | 95.72 314 | 93.57 340 | 73.55 360 | 72.17 353 | 84.79 361 | 49.69 368 | 92.51 359 | 65.29 361 | 74.50 316 | 86.09 366 |
|
| Patchmatch-RL test | | | 81.90 313 | 80.13 316 | 87.23 323 | 80.71 377 | 70.12 371 | 84.07 381 | 88.19 382 | 83.16 293 | 70.57 354 | 82.18 369 | 87.18 89 | 92.59 357 | 82.28 267 | 62.78 368 | 98.98 121 |
|
| mvsany_test3 | | | 75.85 338 | 74.52 340 | 79.83 356 | 73.53 387 | 60.64 381 | 91.73 350 | 87.87 383 | 83.91 280 | 70.55 355 | 82.52 366 | 31.12 385 | 93.66 345 | 86.66 216 | 62.83 367 | 85.19 372 |
|
| test_0402 | | | 78.81 327 | 76.33 332 | 86.26 329 | 91.18 307 | 78.44 338 | 95.88 307 | 91.34 368 | 68.55 373 | 70.51 356 | 89.91 329 | 52.65 359 | 94.99 328 | 47.14 385 | 79.78 288 | 85.34 370 |
|
| TinyColmap | | | 80.42 319 | 77.94 324 | 87.85 316 | 92.09 290 | 78.58 336 | 93.74 330 | 89.94 374 | 74.99 353 | 69.77 357 | 91.78 284 | 46.09 372 | 97.58 222 | 65.17 362 | 77.89 295 | 87.38 356 |
|
| dmvs_testset | | | 77.17 335 | 78.99 322 | 71.71 364 | 87.25 355 | 38.55 401 | 91.44 354 | 81.76 392 | 85.77 249 | 69.49 358 | 95.94 208 | 69.71 276 | 84.37 384 | 52.71 383 | 76.82 304 | 92.21 264 |
|
| test20.03 | | | 78.51 330 | 77.48 326 | 81.62 353 | 83.07 371 | 71.03 366 | 96.11 300 | 92.83 349 | 81.66 318 | 69.31 359 | 89.68 332 | 57.53 340 | 87.29 382 | 58.65 376 | 68.47 353 | 86.53 363 |
|
| test_vis1_rt | | | 81.31 315 | 80.05 318 | 85.11 335 | 91.29 306 | 70.66 368 | 98.98 122 | 77.39 396 | 85.76 250 | 68.80 360 | 82.40 367 | 36.56 383 | 99.44 119 | 92.67 151 | 86.55 236 | 85.24 371 |
|
| N_pmnet | | | 70.19 345 | 69.87 347 | 71.12 366 | 88.24 345 | 30.63 405 | 95.85 310 | 28.70 404 | 70.18 368 | 68.73 361 | 86.55 356 | 64.04 317 | 93.81 344 | 53.12 382 | 73.46 330 | 88.94 346 |
|
| OpenMVS_ROB |  | 73.86 20 | 77.99 332 | 75.06 338 | 86.77 326 | 83.81 370 | 77.94 342 | 96.38 289 | 91.53 367 | 67.54 377 | 68.38 362 | 87.13 353 | 43.94 374 | 96.08 297 | 55.03 380 | 81.83 278 | 86.29 365 |
|
| ambc | | | | | 79.60 357 | 72.76 389 | 56.61 384 | 76.20 388 | 92.01 361 | | 68.25 363 | 80.23 376 | 23.34 389 | 94.73 336 | 73.78 330 | 60.81 372 | 87.48 355 |
|
| PM-MVS | | | 74.88 340 | 72.85 343 | 80.98 355 | 78.98 381 | 64.75 378 | 90.81 361 | 85.77 385 | 80.95 326 | 68.23 364 | 82.81 365 | 29.08 387 | 92.84 353 | 76.54 309 | 62.46 370 | 85.36 369 |
|
| pmmvs3 | | | 72.86 343 | 69.76 348 | 82.17 350 | 73.86 386 | 74.19 355 | 94.20 326 | 89.01 380 | 64.23 383 | 67.72 365 | 80.91 375 | 41.48 378 | 88.65 379 | 62.40 367 | 54.02 383 | 83.68 376 |
|
| lessismore_v0 | | | | | 85.08 336 | 85.59 364 | 69.28 372 | | 90.56 372 | | 67.68 366 | 90.21 326 | 54.21 355 | 95.46 319 | 73.88 327 | 62.64 369 | 90.50 321 |
|
| K. test v3 | | | 81.04 316 | 79.77 319 | 84.83 338 | 87.41 354 | 70.23 370 | 95.60 315 | 93.93 334 | 83.70 284 | 67.51 367 | 89.35 336 | 55.76 345 | 93.58 347 | 76.67 308 | 68.03 355 | 90.67 318 |
|
| MIMVSNet1 | | | 75.92 337 | 73.30 342 | 83.81 345 | 81.29 376 | 75.57 349 | 92.26 345 | 92.05 360 | 73.09 361 | 67.48 368 | 86.18 357 | 40.87 380 | 87.64 381 | 55.78 379 | 70.68 350 | 88.21 351 |
|
| ET-MVSNet_ETH3D | | | 92.56 151 | 91.45 159 | 95.88 118 | 96.39 163 | 94.13 58 | 99.46 59 | 96.97 187 | 92.18 91 | 66.94 369 | 98.29 120 | 94.65 15 | 94.28 342 | 94.34 123 | 83.82 263 | 99.24 100 |
|
| pmmvs-eth3d | | | 78.71 328 | 76.16 333 | 86.38 327 | 80.25 379 | 81.19 317 | 94.17 327 | 92.13 359 | 77.97 341 | 66.90 370 | 82.31 368 | 55.76 345 | 92.56 358 | 73.63 331 | 62.31 371 | 85.38 368 |
|
| EG-PatchMatch MVS | | | 79.92 320 | 77.59 325 | 86.90 325 | 87.06 358 | 77.90 343 | 96.20 299 | 94.06 332 | 74.61 355 | 66.53 371 | 88.76 339 | 40.40 381 | 96.20 290 | 67.02 355 | 83.66 264 | 86.61 362 |
|
| test_method | | | 70.10 346 | 68.66 349 | 74.41 363 | 86.30 363 | 55.84 385 | 94.47 322 | 89.82 375 | 35.18 392 | 66.15 372 | 84.75 362 | 30.54 386 | 77.96 393 | 70.40 344 | 60.33 373 | 89.44 341 |
|
| UnsupCasMVSNet_eth | | | 78.90 326 | 76.67 331 | 85.58 334 | 82.81 373 | 74.94 352 | 91.98 347 | 96.31 219 | 84.64 269 | 65.84 373 | 87.71 343 | 51.33 361 | 92.23 362 | 72.89 335 | 56.50 380 | 89.56 340 |
|
| test_f | | | 71.94 344 | 70.82 345 | 75.30 360 | 72.77 388 | 53.28 388 | 91.62 351 | 89.66 377 | 75.44 352 | 64.47 374 | 78.31 380 | 20.48 391 | 89.56 375 | 78.63 295 | 66.02 363 | 83.05 379 |
|
| new-patchmatchnet | | | 74.80 341 | 72.40 344 | 81.99 352 | 78.36 382 | 72.20 363 | 94.44 323 | 92.36 354 | 77.06 345 | 63.47 375 | 79.98 377 | 51.04 363 | 88.85 378 | 60.53 373 | 54.35 382 | 84.92 373 |
|
| new_pmnet | | | 76.02 336 | 73.71 341 | 82.95 347 | 83.88 369 | 72.85 361 | 91.26 357 | 92.26 356 | 70.44 367 | 62.60 376 | 81.37 371 | 47.64 371 | 92.32 361 | 61.85 368 | 72.10 343 | 83.68 376 |
|
| UnsupCasMVSNet_bld | | | 73.85 342 | 70.14 346 | 84.99 337 | 79.44 380 | 75.73 348 | 88.53 367 | 95.24 299 | 70.12 369 | 61.94 377 | 74.81 383 | 41.41 379 | 93.62 346 | 68.65 349 | 51.13 387 | 85.62 367 |
|
| CMPMVS |  | 58.40 21 | 80.48 318 | 80.11 317 | 81.59 354 | 85.10 365 | 59.56 382 | 94.14 328 | 95.95 247 | 68.54 374 | 60.71 378 | 93.31 258 | 55.35 350 | 97.87 198 | 83.06 260 | 84.85 250 | 87.33 358 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| APD_test1 | | | 68.93 347 | 66.98 350 | 74.77 362 | 80.62 378 | 53.15 389 | 87.97 368 | 85.01 387 | 53.76 385 | 59.26 379 | 87.52 346 | 25.19 388 | 89.95 371 | 56.20 378 | 67.33 359 | 81.19 380 |
|
| DeepMVS_CX |  | | | | 76.08 359 | 90.74 313 | 51.65 392 | | 90.84 370 | 86.47 241 | 57.89 380 | 87.98 341 | 35.88 384 | 92.60 356 | 65.77 360 | 65.06 365 | 83.97 375 |
|
| WB-MVS | | | 66.44 348 | 66.29 351 | 66.89 369 | 74.84 384 | 44.93 396 | 93.00 337 | 84.09 390 | 71.15 364 | 55.82 381 | 81.63 370 | 63.79 319 | 80.31 391 | 21.85 395 | 50.47 388 | 75.43 382 |
|
| SSC-MVS | | | 65.42 349 | 65.20 352 | 66.06 370 | 73.96 385 | 43.83 397 | 92.08 346 | 83.54 391 | 69.77 370 | 54.73 382 | 80.92 374 | 63.30 321 | 79.92 392 | 20.48 396 | 48.02 389 | 74.44 383 |
|
| YYNet1 | | | 79.64 324 | 77.04 329 | 87.43 322 | 87.80 351 | 79.98 325 | 96.23 296 | 94.44 322 | 73.83 359 | 51.83 383 | 87.53 345 | 67.96 290 | 92.07 365 | 66.00 359 | 67.75 358 | 90.23 326 |
|
| MDA-MVSNet_test_wron | | | 79.65 323 | 77.05 328 | 87.45 321 | 87.79 352 | 80.13 324 | 96.25 295 | 94.44 322 | 73.87 358 | 51.80 384 | 87.47 349 | 68.04 288 | 92.12 364 | 66.02 358 | 67.79 357 | 90.09 327 |
|
| LCM-MVSNet | | | 60.07 353 | 56.37 355 | 71.18 365 | 54.81 399 | 48.67 393 | 82.17 385 | 89.48 378 | 37.95 390 | 49.13 385 | 69.12 384 | 13.75 398 | 81.76 385 | 59.28 374 | 51.63 386 | 83.10 378 |
|
| MDA-MVSNet-bldmvs | | | 77.82 333 | 74.75 339 | 87.03 324 | 88.33 344 | 78.52 337 | 96.34 290 | 92.85 348 | 75.57 351 | 48.87 386 | 87.89 342 | 57.32 342 | 92.49 360 | 60.79 371 | 64.80 366 | 90.08 328 |
|
| PMMVS2 | | | 58.97 354 | 55.07 357 | 70.69 367 | 62.72 394 | 55.37 386 | 85.97 372 | 80.52 393 | 49.48 386 | 45.94 387 | 68.31 385 | 15.73 396 | 80.78 389 | 49.79 384 | 37.12 392 | 75.91 381 |
|
| testf1 | | | 56.38 355 | 53.73 358 | 64.31 373 | 64.84 392 | 45.11 394 | 80.50 386 | 75.94 398 | 38.87 388 | 42.74 388 | 75.07 381 | 11.26 400 | 81.19 387 | 41.11 388 | 53.27 384 | 66.63 387 |
|
| APD_test2 | | | 56.38 355 | 53.73 358 | 64.31 373 | 64.84 392 | 45.11 394 | 80.50 386 | 75.94 398 | 38.87 388 | 42.74 388 | 75.07 381 | 11.26 400 | 81.19 387 | 41.11 388 | 53.27 384 | 66.63 387 |
|
| FPMVS | | | 61.57 350 | 60.32 353 | 65.34 371 | 60.14 397 | 42.44 399 | 91.02 360 | 89.72 376 | 44.15 387 | 42.63 390 | 80.93 373 | 19.02 392 | 80.59 390 | 42.50 387 | 72.76 335 | 73.00 384 |
|
| test_vis3_rt | | | 61.29 351 | 58.75 354 | 68.92 368 | 67.41 391 | 52.84 390 | 91.18 359 | 59.23 403 | 66.96 378 | 41.96 391 | 58.44 391 | 11.37 399 | 94.72 337 | 74.25 324 | 57.97 377 | 59.20 390 |
|
| Gipuma |  | | 54.77 357 | 52.22 361 | 62.40 375 | 86.50 360 | 59.37 383 | 50.20 393 | 90.35 373 | 36.52 391 | 41.20 392 | 49.49 393 | 18.33 394 | 81.29 386 | 32.10 392 | 65.34 364 | 46.54 393 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| tmp_tt | | | 53.66 358 | 52.86 360 | 56.05 376 | 32.75 403 | 41.97 400 | 73.42 390 | 76.12 397 | 21.91 397 | 39.68 393 | 96.39 198 | 42.59 377 | 65.10 396 | 78.00 298 | 14.92 397 | 61.08 389 |
|
| E-PMN | | | 41.02 362 | 40.93 364 | 41.29 379 | 61.97 395 | 33.83 402 | 84.00 382 | 65.17 401 | 27.17 394 | 27.56 394 | 46.72 395 | 17.63 395 | 60.41 398 | 19.32 397 | 18.82 394 | 29.61 394 |
|
| ANet_high | | | 50.71 359 | 46.17 362 | 64.33 372 | 44.27 401 | 52.30 391 | 76.13 389 | 78.73 394 | 64.95 381 | 27.37 395 | 55.23 392 | 14.61 397 | 67.74 395 | 36.01 391 | 18.23 395 | 72.95 385 |
|
| EMVS | | | 39.96 363 | 39.88 365 | 40.18 380 | 59.57 398 | 32.12 404 | 84.79 379 | 64.57 402 | 26.27 395 | 26.14 396 | 44.18 398 | 18.73 393 | 59.29 399 | 17.03 398 | 17.67 396 | 29.12 395 |
|
| MVE |  | 44.00 22 | 41.70 361 | 37.64 366 | 53.90 378 | 49.46 400 | 43.37 398 | 65.09 392 | 66.66 400 | 26.19 396 | 25.77 397 | 48.53 394 | 3.58 404 | 63.35 397 | 26.15 394 | 27.28 393 | 54.97 392 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| PMVS |  | 41.42 23 | 45.67 360 | 42.50 363 | 55.17 377 | 34.28 402 | 32.37 403 | 66.24 391 | 78.71 395 | 30.72 393 | 22.04 398 | 59.59 389 | 4.59 402 | 77.85 394 | 27.49 393 | 58.84 376 | 55.29 391 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| testmvs | | | 18.81 365 | 23.05 368 | 6.10 383 | 4.48 404 | 2.29 408 | 97.78 232 | 3.00 406 | 3.27 399 | 18.60 399 | 62.71 387 | 1.53 406 | 2.49 402 | 14.26 400 | 1.80 399 | 13.50 397 |
|
| test123 | | | 16.58 367 | 19.47 369 | 7.91 382 | 3.59 405 | 5.37 407 | 94.32 324 | 1.39 407 | 2.49 400 | 13.98 400 | 44.60 397 | 2.91 405 | 2.65 401 | 11.35 401 | 0.57 400 | 15.70 396 |
|
| wuyk23d | | | 16.71 366 | 16.73 370 | 16.65 381 | 60.15 396 | 25.22 406 | 41.24 394 | 5.17 405 | 6.56 398 | 5.48 401 | 3.61 401 | 3.64 403 | 22.72 400 | 15.20 399 | 9.52 398 | 1.99 398 |
|
| EGC-MVSNET | | | 60.70 352 | 55.37 356 | 76.72 358 | 86.35 362 | 71.08 365 | 89.96 365 | 84.44 389 | 0.38 401 | 1.50 402 | 84.09 363 | 37.30 382 | 88.10 380 | 40.85 390 | 73.44 331 | 70.97 386 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 22.52 364 | 30.03 367 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 97.17 166 | 0.00 402 | 0.00 403 | 98.77 85 | 74.35 239 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 6.87 369 | 9.16 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 82.48 176 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| ab-mvs-re | | | 8.21 368 | 10.94 371 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 98.50 108 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| WAC-MVS | | | | | | | 79.74 327 | | | | | | | | 67.75 352 | | |
|
| MSC_two_6792asdad | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 85 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| No_MVS | | | | | 99.51 2 | 99.61 24 | 98.60 2 | | 97.69 85 | | | | | 99.98 9 | 99.55 12 | 99.83 15 | 99.96 10 |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 99.49 4 | 99.64 17 | 98.51 4 | 99.77 17 | | | | 99.19 30 | 95.12 8 | 99.97 21 | 99.90 1 | 99.92 3 | 99.99 1 |
|
| save fliter | | | | | | 99.34 50 | 93.85 62 | 99.65 35 | 97.63 101 | 95.69 22 | | | | | | | |
|
| test_0728_SECOND | | | | | 98.77 8 | 99.66 12 | 96.37 14 | 99.72 23 | 97.68 87 | | | | | 99.98 9 | 99.64 7 | 99.82 19 | 99.96 10 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.84 136 |
|
| sam_mvs1 | | | | | | | | | | | | | 88.39 65 | | | | 98.84 136 |
|
| sam_mvs | | | | | | | | | | | | | 87.08 91 | | | | |
|
| MTGPA |  | | | | | | | | 97.45 138 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.74 363 | | | | 41.37 399 | 85.38 130 | 96.36 277 | 83.16 257 | | |
|
| test_post | | | | | | | | | | | | 46.00 396 | 87.37 83 | 97.11 239 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 84.86 360 | 88.73 62 | 96.81 252 | | | |
|
| MTMP | | | | | | | | 99.21 86 | 91.09 369 | | | | | | | | |
|
| gm-plane-assit | | | | | | 94.69 235 | 88.14 187 | | | 88.22 195 | | 97.20 163 | | 98.29 175 | 90.79 168 | | |
|
| test9_res | | | | | | | | | | | | | | | 98.60 33 | 99.87 9 | 99.90 22 |
|
| agg_prior2 | | | | | | | | | | | | | | | 97.84 54 | 99.87 9 | 99.91 21 |
|
| test_prior4 | | | | | | | 92.00 94 | 99.41 68 | | | | | | | | | |
|
| test_prior | | | | | 97.01 60 | 99.58 30 | 91.77 95 | | 97.57 115 | | | | | 99.49 112 | | | 99.79 36 |
|
| 新几何2 | | | | | | | | 98.26 199 | | | | | | | | | |
|
| 旧先验1 | | | | | | 98.97 73 | 92.90 83 | | 97.74 74 | | | 99.15 39 | 91.05 34 | | | 99.33 63 | 99.60 67 |
|
| 无先验 | | | | | | | | 98.52 167 | 97.82 62 | 87.20 222 | | | | 99.90 50 | 87.64 205 | | 99.85 30 |
|
| 原ACMM2 | | | | | | | | 98.69 147 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.88 54 | 84.16 245 | | |
|
| segment_acmp | | | | | | | | | | | | | 90.56 42 | | | | |
|
| testdata1 | | | | | | | | 97.89 225 | | 92.43 82 | | | | | | | |
|
| plane_prior7 | | | | | | 93.84 260 | 85.73 251 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 93.92 257 | 86.02 245 | | | | | | 72.92 252 | | | | |
|
| plane_prior5 | | | | | | | | | 96.30 220 | | | | | 97.75 211 | 93.46 138 | 86.17 240 | 92.67 250 |
|
| plane_prior4 | | | | | | | | | | | | 96.52 192 | | | | | |
|
| plane_prior2 | | | | | | | | 99.02 116 | | 93.38 66 | | | | | | | |
|
| plane_prior1 | | | | | | 93.90 259 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 86.07 243 | 99.14 101 | | 93.81 58 | | | | | | 86.26 239 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 84.90 388 | | | | | | | | |
|
| test11 | | | | | | | | | 97.68 87 | | | | | | | | |
|
| door | | | | | | | | | 85.30 386 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 86.39 228 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 93.82 133 | | |
|
| HQP3-MVS | | | | | | | | | 96.37 216 | | | | | | | 86.29 237 | |
|
| HQP2-MVS | | | | | | | | | | | | | 73.34 246 | | | | |
|
| NP-MVS | | | | | | 93.94 256 | 86.22 235 | | | | | 96.67 190 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 82.64 274 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 83.83 261 | |
|
| Test By Simon | | | | | | | | | | | | | 83.62 150 | | | | |
|