This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4897.51 12292.78 8799.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 74
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4797.59 11792.91 8599.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 89
IU-MVS99.63 1895.38 2497.73 8095.54 2899.54 399.69 699.81 2399.99 1
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
patch_mono-297.10 2697.97 894.49 17799.21 6183.73 29299.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
test072699.66 1295.20 3299.77 1897.70 8693.95 5099.35 799.54 393.18 21
iter_conf05_1194.23 11293.49 12196.46 9697.51 12291.32 11099.96 194.31 33795.62 2699.32 899.22 2757.79 34798.59 17298.00 5099.64 4099.46 83
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
test_241102_ONE99.63 1895.24 2797.72 8194.16 4799.30 999.49 993.32 1899.98 9
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5799.16 9797.65 10289.55 16099.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14796.51 16789.01 17499.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 218
test_fmvsm_n_192097.08 2797.55 1495.67 13597.94 10589.61 16399.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 202
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
TSAR-MVS + MP.97.44 1897.46 1697.39 5099.12 6593.49 7198.52 17597.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15292.06 30288.94 17899.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 223
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 13097.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 189
旧先验298.67 15785.75 26098.96 2198.97 15493.84 135
test_one_060199.59 2894.89 3697.64 10393.14 7198.93 2299.45 1493.45 17
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14897.37 12989.16 16899.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 222
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14796.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 189
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6599.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6397.45 14489.60 15698.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 15194.35 25289.10 17099.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 225
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS97.77 998.18 296.53 9499.54 3690.14 14499.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
9.1496.87 2799.34 5099.50 5297.49 13889.41 16498.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6799.16 9797.44 14790.08 14398.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_n_192093.08 15093.42 12392.04 24196.31 17679.36 33899.83 1096.06 24896.72 998.53 3398.10 13158.57 34499.91 4597.86 5598.79 9596.85 221
testdata95.26 15098.20 9687.28 21997.60 11285.21 26698.48 3499.15 4188.15 7498.72 16490.29 18199.45 5899.78 38
test_fmvsmconf_n96.78 3496.84 2996.61 8795.99 19290.25 13999.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
TEST999.57 3393.17 7599.38 7297.66 9589.57 15898.39 3699.18 3590.88 3899.66 94
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7599.38 7297.66 9590.18 13898.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7899.37 7597.64 10390.18 13898.36 3899.19 3290.94 3599.64 100
CS-MVS-test95.98 5596.34 4194.90 16298.06 10287.66 20699.69 3496.10 24393.66 6298.35 3999.05 5686.28 11797.66 22296.96 7198.90 8899.37 92
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16499.80 2699.94 18
test_part299.54 3695.42 2298.13 43
SteuartSystems-ACMMP97.25 1997.34 2097.01 6297.38 12891.46 10899.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
FOURS199.50 4288.94 17899.55 4597.47 14191.32 11198.12 45
test_prior299.57 4391.43 10898.12 4598.97 6490.43 4598.33 4299.81 23
CS-MVS95.75 6896.19 4394.40 18197.88 10786.22 24399.66 3596.12 24292.69 8098.07 4798.89 8087.09 9597.59 22896.71 7498.62 10099.39 91
PHI-MVS96.65 3796.46 3897.21 5699.34 5091.77 10199.70 2798.05 4686.48 24998.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
MVSFormer94.71 10094.08 10196.61 8795.05 23394.87 3897.77 24496.17 23986.84 23898.04 4998.52 10885.52 12895.99 30889.83 18498.97 8298.96 127
lupinMVS96.32 4595.94 5497.44 4695.05 23394.87 3899.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19296.98 7098.97 8299.37 92
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6699.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP96.59 3896.18 4597.81 3698.82 8193.55 6898.88 13597.59 11690.66 12297.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
agg_prior99.54 3692.66 8897.64 10397.98 5299.61 102
CDPH-MVS96.56 3996.18 4597.70 3899.59 2893.92 6299.13 10997.44 14789.02 17397.90 5499.22 2788.90 6399.49 11294.63 12499.79 2799.68 56
EPNet96.82 3296.68 3497.25 5598.65 8693.10 7799.48 5498.76 1596.54 1397.84 5598.22 12687.49 8499.66 9495.35 10597.78 11999.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7499.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
test1297.83 3599.33 5394.45 5197.55 12397.56 5788.60 6699.50 11199.71 3499.55 74
xiu_mvs_v1_base_debu94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base_debi94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
ZD-MVS99.67 1093.28 7397.61 11087.78 21697.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
ETV-MVS96.00 5396.00 5396.00 12296.56 16391.05 12199.63 3796.61 20693.26 7097.39 6298.30 12386.62 10898.13 18998.07 4997.57 12298.82 144
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22898.71 8578.11 35099.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
test_vis1_n90.40 20190.27 19190.79 26991.55 31276.48 35599.12 11094.44 33194.31 4397.34 6496.95 18343.60 38599.42 12397.57 5997.60 12196.47 232
EC-MVSNet95.09 8495.17 7694.84 16595.42 21088.17 19499.48 5495.92 26191.47 10697.34 6498.36 12082.77 17397.41 23997.24 6498.58 10198.94 132
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10292.42 29689.92 15599.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 88
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 66
CANet_DTU94.31 11193.35 12597.20 5797.03 15194.71 4698.62 16495.54 29095.61 2797.21 6798.47 11671.88 26999.84 6988.38 20397.46 12797.04 216
MVS_030497.53 1497.15 2298.67 1197.30 13296.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 73
test_cas_vis1_n_192093.86 12493.74 11694.22 19095.39 21386.08 24999.73 2396.07 24796.38 1797.19 7097.78 13865.46 31999.86 6396.71 7498.92 8696.73 223
VNet95.08 8594.26 9397.55 4598.07 10193.88 6398.68 15598.73 1890.33 13597.16 7197.43 15779.19 21799.53 10996.91 7391.85 20599.24 104
region2R96.30 4696.17 4896.70 8399.70 790.31 13899.46 6097.66 9590.55 12897.07 7299.07 5386.85 10299.97 2195.43 10399.74 2999.81 33
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17497.00 7398.97 6488.14 7599.71 9088.23 20599.62 4598.76 151
HFP-MVS96.42 4296.26 4296.90 7199.69 890.96 12499.47 5697.81 6890.54 12996.88 7499.05 5687.57 8299.96 2895.65 9699.72 3199.78 38
XVS96.47 4196.37 4096.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9699.43 6099.78 38
X-MVStestdata90.69 19888.66 22196.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7529.59 40987.37 8799.87 5895.65 9699.43 6099.78 38
SR-MVS96.13 5096.16 5096.07 11899.42 4789.04 17298.59 17097.33 15890.44 13296.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
TSAR-MVS + GP.96.95 2996.91 2697.07 5998.88 7991.62 10499.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
ACMMPR96.28 4796.14 5296.73 8099.68 990.47 13699.47 5697.80 7090.54 12996.83 7999.03 5886.51 11399.95 3195.65 9699.72 3199.75 46
test_fmvs192.35 16392.94 13890.57 27497.19 13975.43 35999.55 4594.97 31595.20 3396.82 8097.57 15159.59 34299.84 6997.30 6398.29 11196.46 233
PMMVS93.62 13393.90 11192.79 22396.79 15881.40 32198.85 13696.81 19891.25 11296.82 8098.15 13077.02 23198.13 18993.15 15096.30 14998.83 143
PGM-MVS95.85 6295.65 6896.45 9899.50 4289.77 15998.22 20998.90 1389.19 16896.74 8298.95 7185.91 12599.92 4093.94 13299.46 5699.66 60
jason95.40 7794.86 8497.03 6192.91 29194.23 5699.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 20196.08 9098.47 10698.96 127
jason: jason.
新几何197.40 4998.92 7792.51 9397.77 7585.52 26296.69 8499.06 5588.08 7699.89 5384.88 24399.62 4599.79 36
SR-MVS-dyc-post95.75 6895.86 5795.41 14399.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 69
RE-MVS-def95.70 6499.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6485.24 13796.62 7799.31 6699.60 69
APD-MVS_3200maxsize95.64 7195.65 6895.62 13799.24 5887.80 20298.42 18897.22 16688.93 17896.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
mvsany_test194.57 10595.09 8092.98 21995.84 19682.07 31498.76 14895.24 30892.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 194
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10599.86 1299.97 7
test_fmvs1_n91.07 18991.41 16990.06 28894.10 25974.31 36399.18 9394.84 31994.81 3596.37 9097.46 15550.86 37499.82 7697.14 6697.90 11496.04 240
h-mvs3392.47 16291.95 15894.05 19897.13 14585.01 27598.36 19998.08 4493.85 5796.27 9196.73 19683.19 16599.43 12295.81 9468.09 36397.70 195
hse-mvs291.67 17791.51 16792.15 23896.22 18082.61 31097.74 24797.53 12793.85 5796.27 9196.15 21283.19 16597.44 23795.81 9466.86 37096.40 235
alignmvs95.77 6695.00 8298.06 2997.35 13095.68 2099.71 2697.50 13691.50 10596.16 9398.61 10586.28 11799.00 15196.19 8691.74 20799.51 79
CP-MVS96.22 4896.15 5196.42 10099.67 1089.62 16299.70 2797.61 11090.07 14496.00 9499.16 3887.43 8599.92 4096.03 9199.72 3199.70 52
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
diffmvspermissive94.59 10494.19 9695.81 12995.54 20690.69 13098.70 15395.68 28291.61 10195.96 9597.81 13580.11 20698.06 19496.52 8295.76 15898.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GST-MVS95.97 5695.66 6696.90 7199.49 4591.22 11199.45 6297.48 13989.69 15295.89 9798.72 9386.37 11699.95 3194.62 12599.22 7199.52 77
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test22298.32 9291.21 11298.08 22697.58 11883.74 29195.87 9999.02 6086.74 10599.64 4099.81 33
sasdasda95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
ZNCC-MVS96.09 5195.81 6096.95 7099.42 4791.19 11399.55 4597.53 12789.72 15195.86 10098.94 7486.59 10999.97 2195.13 11099.56 5199.68 56
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
dcpmvs_295.67 7096.18 4594.12 19498.82 8184.22 28597.37 26295.45 29590.70 12195.77 10398.63 10390.47 4498.68 16699.20 2099.22 7199.45 85
MGCFI-Net94.89 8893.84 11398.06 2997.49 12595.55 2198.64 16196.10 24391.60 10395.75 10498.46 11879.31 21698.98 15395.95 9391.24 22399.65 63
Effi-MVS+93.87 12393.15 13296.02 12195.79 19790.76 12896.70 29195.78 27586.98 23595.71 10597.17 17279.58 21098.01 19994.57 12696.09 15399.31 98
HPM-MVS_fast94.89 8894.62 8695.70 13399.11 6688.44 19299.14 10697.11 17985.82 25795.69 10698.47 11683.46 15899.32 13593.16 14999.63 4499.35 94
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33898.74 1692.42 8695.65 10794.76 24086.52 11299.49 11295.29 10792.97 18499.53 76
CHOSEN 280x42096.80 3396.85 2896.66 8697.85 10894.42 5394.76 33098.36 2992.50 8395.62 10897.52 15297.92 197.38 24098.31 4498.80 9298.20 183
test_fmvsmconf0.01_n94.14 11493.51 12096.04 11986.79 36989.19 16799.28 8595.94 25795.70 2195.50 10998.49 11273.27 25699.79 8298.28 4598.32 11099.15 111
MP-MVScopyleft96.00 5395.82 5896.54 9399.47 4690.13 14699.36 7697.41 15190.64 12595.49 11098.95 7185.51 13099.98 996.00 9299.59 5099.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVScopyleft95.41 7695.22 7595.99 12399.29 5589.14 16999.17 9697.09 18387.28 22995.40 11198.48 11584.93 14099.38 12895.64 10099.65 3899.47 82
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
UA-Net93.30 14292.62 14495.34 14596.27 17888.53 19195.88 31696.97 19490.90 11795.37 11297.07 17682.38 18699.10 14783.91 25994.86 16998.38 170
sss94.85 9393.94 10997.58 4296.43 17094.09 6198.93 13099.16 889.50 16195.27 11397.85 13381.50 19699.65 9892.79 15694.02 17598.99 124
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11498.46 11886.56 11199.46 11895.00 11592.69 18899.50 80
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11598.24 12588.17 7299.83 7396.11 8999.60 4999.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_111021_HR96.69 3596.69 3396.72 8298.58 8891.00 12399.14 10699.45 193.86 5695.15 11698.73 9188.48 6799.76 8697.23 6599.56 5199.40 89
MVS_Test93.67 13192.67 14396.69 8496.72 16092.66 8897.22 27096.03 24987.69 22295.12 11794.03 24881.55 19598.28 18389.17 19896.46 14399.14 112
MVS_111021_LR95.78 6595.94 5495.28 14998.19 9887.69 20398.80 14299.26 793.39 6795.04 11898.69 9884.09 15099.76 8696.96 7199.06 7698.38 170
CostFormer92.89 15292.48 14794.12 19494.99 23585.89 25692.89 34897.00 19286.98 23595.00 11990.78 31190.05 5397.51 23392.92 15391.73 20898.96 127
testing22294.48 10894.00 10395.95 12597.30 13292.27 9598.82 13997.92 5589.20 16794.82 12097.26 16387.13 9497.32 24391.95 16291.56 21198.25 177
mPP-MVS95.90 6195.75 6396.38 10399.58 3089.41 16699.26 8697.41 15190.66 12294.82 12098.95 7186.15 12199.98 995.24 10999.64 4099.74 47
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11499.14 6490.33 13798.49 18197.82 6591.92 9694.75 12298.88 8287.06 9799.48 11695.40 10497.17 13598.70 154
LFMVS92.23 16890.84 18196.42 10098.24 9591.08 12098.24 20896.22 23383.39 29894.74 12398.31 12261.12 33798.85 15694.45 12792.82 18599.32 97
tpmrst92.78 15392.16 15294.65 17296.27 17887.45 21391.83 35797.10 18289.10 17294.68 12490.69 31588.22 7197.73 22089.78 18791.80 20698.77 150
test_yl95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
DCV-MVSNet95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
testing1195.33 7894.98 8396.37 10497.20 13792.31 9499.29 8297.68 9090.59 12694.43 12797.20 16890.79 4198.60 17095.25 10892.38 19398.18 184
DP-MVS Recon95.85 6295.15 7797.95 3299.87 294.38 5499.60 3997.48 13986.58 24494.42 12899.13 4687.36 9099.98 993.64 13998.33 10899.48 81
ETVMVS94.50 10793.90 11196.31 10797.48 12692.98 8199.07 11497.86 5988.09 20694.40 12996.90 18688.35 6997.28 24490.72 17792.25 19998.66 159
MTAPA96.09 5195.80 6196.96 6999.29 5591.19 11397.23 26997.45 14492.58 8194.39 13099.24 2586.43 11599.99 596.22 8599.40 6399.71 51
CPTT-MVS94.60 10394.43 9195.09 15599.66 1286.85 22799.44 6397.47 14183.22 30094.34 13198.96 6882.50 17999.55 10694.81 11899.50 5498.88 137
PVSNet_BlendedMVS93.36 14093.20 13093.84 20598.77 8391.61 10599.47 5698.04 4891.44 10794.21 13292.63 28083.50 15699.87 5897.41 6183.37 27790.05 339
PVSNet_Blended95.94 5995.66 6696.75 7898.77 8391.61 10599.88 498.04 4893.64 6494.21 13297.76 13983.50 15699.87 5897.41 6197.75 12098.79 147
EI-MVSNet-UG-set95.43 7495.29 7395.86 12899.07 7089.87 15698.43 18797.80 7091.78 9894.11 13498.77 8786.25 11999.48 11694.95 11796.45 14498.22 181
EIA-MVS95.11 8395.27 7494.64 17496.34 17586.51 23199.59 4196.62 20592.51 8294.08 13598.64 10186.05 12298.24 18695.07 11298.50 10499.18 109
MAR-MVS94.43 10994.09 10095.45 14199.10 6887.47 21298.39 19797.79 7288.37 19594.02 13699.17 3778.64 22399.91 4592.48 15898.85 9098.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM96.35 4395.94 5497.58 4294.10 25995.25 2698.93 13098.17 3794.26 4493.94 13798.72 9389.68 5697.88 20496.36 8499.29 6899.62 68
GG-mvs-BLEND96.98 6796.53 16594.81 4387.20 37897.74 7793.91 13896.40 20596.56 296.94 25695.08 11198.95 8599.20 108
API-MVS94.78 9594.18 9896.59 8999.21 6190.06 15198.80 14297.78 7383.59 29593.85 13999.21 2983.79 15399.97 2192.37 15999.00 8099.74 47
tpm291.77 17591.09 17493.82 20694.83 24285.56 26492.51 35397.16 17484.00 28693.83 14090.66 31787.54 8397.17 24687.73 21191.55 21298.72 152
PAPR96.35 4395.82 5897.94 3399.63 1894.19 5899.42 6897.55 12392.43 8493.82 14199.12 4887.30 9299.91 4594.02 13199.06 7699.74 47
testing9994.88 9094.45 8996.17 11497.20 13791.91 9999.20 9097.66 9589.95 14693.68 14297.06 17790.28 5098.50 17393.52 14191.54 21398.12 186
testing9194.88 9094.44 9096.21 11097.19 13991.90 10099.23 8897.66 9589.91 14793.66 14397.05 17990.21 5198.50 17393.52 14191.53 21698.25 177
PVSNet87.13 1293.69 12892.83 14096.28 10897.99 10490.22 14299.38 7298.93 1291.42 10993.66 14397.68 14471.29 27699.64 10087.94 20997.20 13298.98 125
baseline93.91 12193.30 12795.72 13295.10 23090.07 14897.48 25895.91 26691.03 11493.54 14597.68 14479.58 21098.02 19894.27 12995.14 16699.08 119
test250694.80 9494.21 9596.58 9096.41 17192.18 9798.01 23098.96 1190.82 11993.46 14697.28 16185.92 12398.45 17689.82 18697.19 13399.12 115
VDD-MVS91.24 18790.18 19294.45 18097.08 14885.84 25998.40 19396.10 24386.99 23293.36 14798.16 12954.27 36399.20 13896.59 8090.63 22998.31 176
VDDNet90.08 21188.54 22794.69 17194.41 25187.68 20498.21 21196.40 22176.21 35893.33 14897.75 14054.93 36198.77 15994.71 12290.96 22497.61 200
thisisatest051594.75 9694.19 9696.43 9996.13 19092.64 9199.47 5697.60 11287.55 22593.17 14997.59 14994.71 1298.42 17788.28 20493.20 18198.24 180
MP-MVS-pluss95.80 6495.30 7297.29 5298.95 7692.66 8898.59 17097.14 17588.95 17693.12 15099.25 2385.62 12799.94 3496.56 8199.48 5599.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MDTV_nov1_ep13_2view91.17 11591.38 36487.45 22793.08 15186.67 10787.02 21598.95 131
EPNet_dtu92.28 16692.15 15392.70 22797.29 13484.84 27798.64 16197.82 6592.91 7793.02 15297.02 18085.48 13395.70 32272.25 34694.89 16897.55 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
gg-mvs-nofinetune90.00 21287.71 23996.89 7596.15 18594.69 4785.15 38497.74 7768.32 38492.97 15360.16 39796.10 396.84 25993.89 13398.87 8999.14 112
test_fmvsmvis_n_192095.47 7395.40 7195.70 13394.33 25390.22 14299.70 2796.98 19396.80 792.75 15498.89 8082.46 18499.92 4098.36 4098.33 10896.97 219
casdiffmvspermissive93.98 11993.43 12295.61 13895.07 23289.86 15798.80 14295.84 27490.98 11692.74 15597.66 14679.71 20998.10 19194.72 12195.37 16498.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t94.06 11593.05 13497.06 6099.08 6992.26 9698.97 12897.01 19182.58 31392.57 15698.22 12680.68 20499.30 13689.34 19499.02 7999.63 66
OMC-MVS93.90 12293.62 11894.73 17098.63 8787.00 22598.04 22996.56 21292.19 9292.46 15798.73 9179.49 21499.14 14592.16 16194.34 17398.03 188
PAPM_NR95.43 7495.05 8196.57 9299.42 4790.14 14498.58 17297.51 13390.65 12492.44 15898.90 7887.77 8199.90 5090.88 17299.32 6599.68 56
UGNet91.91 17490.85 18095.10 15497.06 14988.69 18798.01 23098.24 3492.41 8792.39 15993.61 26160.52 33999.68 9288.14 20697.25 13196.92 220
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MDTV_nov1_ep1390.47 19096.14 18788.55 18991.34 36597.51 13389.58 15792.24 16090.50 32886.99 10097.61 22777.64 30892.34 195
FE-MVS91.38 18290.16 19395.05 15896.46 16987.53 21089.69 37597.84 6182.97 30592.18 16192.00 28984.07 15198.93 15580.71 28795.52 16298.68 155
Vis-MVSNetpermissive92.64 15691.85 15995.03 15995.12 22688.23 19398.48 18396.81 19891.61 10192.16 16297.22 16771.58 27498.00 20085.85 23497.81 11698.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FA-MVS(test-final)92.22 16991.08 17595.64 13696.05 19188.98 17591.60 36197.25 16186.99 23291.84 16392.12 28383.03 16899.00 15186.91 21993.91 17698.93 133
TESTMET0.1,193.82 12593.26 12995.49 14095.21 21890.25 13999.15 10397.54 12689.18 16991.79 16494.87 23789.13 5997.63 22586.21 22796.29 15098.60 160
thisisatest053094.00 11793.52 11995.43 14295.76 19990.02 15398.99 12597.60 11286.58 24491.74 16597.36 16094.78 1198.34 17986.37 22592.48 19297.94 191
UWE-MVS93.18 14693.40 12492.50 23196.56 16383.55 29498.09 22597.84 6189.50 16191.72 16696.23 21191.08 3396.70 26586.28 22693.33 18097.26 208
AUN-MVS90.17 20889.50 20192.19 23696.21 18182.67 30897.76 24697.53 12788.05 20791.67 16796.15 21283.10 16797.47 23488.11 20766.91 36996.43 234
EPMVS92.59 15991.59 16595.59 13997.22 13690.03 15291.78 35898.04 4890.42 13391.66 16890.65 31886.49 11497.46 23581.78 28096.31 14899.28 101
test-LLR93.11 14992.68 14294.40 18194.94 23887.27 22099.15 10397.25 16190.21 13691.57 16994.04 24684.89 14197.58 22985.94 23196.13 15198.36 173
test-mter93.27 14492.89 13994.40 18194.94 23887.27 22099.15 10397.25 16188.95 17691.57 16994.04 24688.03 7797.58 22985.94 23196.13 15198.36 173
JIA-IIPM85.97 28284.85 28289.33 31093.23 28773.68 36685.05 38597.13 17769.62 38091.56 17168.03 39588.03 7796.96 25477.89 30793.12 18297.34 205
casdiffmvs_mvgpermissive94.00 11793.33 12696.03 12095.22 21790.90 12699.09 11295.99 25090.58 12791.55 17297.37 15979.91 20898.06 19495.01 11495.22 16599.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu94.67 10194.11 9996.34 10697.14 14491.10 11899.32 8097.43 14992.10 9591.53 17396.38 20883.29 16299.68 9293.42 14696.37 14698.25 177
CHOSEN 1792x268894.35 11093.82 11495.95 12597.40 12788.74 18698.41 19098.27 3192.18 9391.43 17496.40 20578.88 21899.81 7993.59 14097.81 11699.30 99
ACMMPcopyleft94.67 10194.30 9295.79 13099.25 5788.13 19698.41 19098.67 2290.38 13491.43 17498.72 9382.22 18899.95 3193.83 13695.76 15899.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ECVR-MVScopyleft92.29 16591.33 17095.15 15396.41 17187.84 20198.10 22294.84 31990.82 11991.42 17697.28 16165.61 31698.49 17590.33 18097.19 13399.12 115
EPP-MVSNet93.75 12793.67 11794.01 20095.86 19585.70 26198.67 15797.66 9584.46 28091.36 17797.18 17191.16 3097.79 21092.93 15293.75 17798.53 162
PLCcopyleft91.07 394.23 11294.01 10294.87 16399.17 6387.49 21199.25 8796.55 21388.43 19391.26 17898.21 12885.92 12399.86 6389.77 18897.57 12297.24 209
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
HyFIR lowres test93.68 13093.29 12894.87 16397.57 11988.04 19898.18 21398.47 2587.57 22491.24 17995.05 23485.49 13197.46 23593.22 14892.82 18599.10 117
thres20093.69 12892.59 14596.97 6897.76 10994.74 4599.35 7799.36 289.23 16691.21 18096.97 18283.42 15998.77 15985.08 23990.96 22497.39 204
test111192.12 17091.19 17394.94 16196.15 18587.36 21698.12 21994.84 31990.85 11890.97 18197.26 16365.60 31798.37 17889.74 18997.14 13699.07 121
CDS-MVSNet93.47 13593.04 13594.76 16794.75 24489.45 16598.82 13997.03 18887.91 21390.97 18196.48 20389.06 6096.36 28689.50 19092.81 18798.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tfpn200view993.43 13792.27 15096.90 7197.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22697.12 211
thres40093.39 13992.27 15096.73 8097.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22696.61 226
CR-MVSNet88.83 23387.38 24493.16 21693.47 28086.24 24184.97 38694.20 34088.92 17990.76 18586.88 36384.43 14694.82 34370.64 35092.17 20198.41 167
RPMNet85.07 29681.88 31394.64 17493.47 28086.24 24184.97 38697.21 16764.85 39190.76 18578.80 38880.95 20399.27 13753.76 39092.17 20198.41 167
PatchmatchNetpermissive92.05 17391.04 17695.06 15696.17 18489.04 17291.26 36697.26 16089.56 15990.64 18790.56 32488.35 6997.11 24879.53 29396.07 15599.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tttt051793.30 14293.01 13694.17 19295.57 20486.47 23398.51 17897.60 11285.99 25590.55 18897.19 17094.80 1098.31 18085.06 24091.86 20497.74 193
PatchT85.44 29283.19 30192.22 23493.13 28983.00 30083.80 39296.37 22370.62 37490.55 18879.63 38784.81 14394.87 34158.18 38691.59 21098.79 147
tpm89.67 21788.95 21491.82 24592.54 29481.43 32092.95 34795.92 26187.81 21590.50 19089.44 34384.99 13995.65 32383.67 26282.71 28298.38 170
thres100view90093.34 14192.15 15396.90 7197.62 11494.84 4099.06 11799.36 287.96 21190.47 19196.78 19483.29 16298.75 16184.11 25590.69 22697.12 211
thres600view793.18 14692.00 15696.75 7897.62 11494.92 3599.07 11499.36 287.96 21190.47 19196.78 19483.29 16298.71 16582.93 26990.47 23096.61 226
AdaColmapbinary93.82 12593.06 13396.10 11799.88 189.07 17198.33 20197.55 12386.81 24090.39 19398.65 10075.09 23899.98 993.32 14797.53 12599.26 103
XVG-OURS-SEG-HR90.95 19290.66 18791.83 24495.18 22281.14 32895.92 31395.92 26188.40 19490.33 19497.85 13370.66 27999.38 12892.83 15488.83 23694.98 247
IS-MVSNet93.00 15192.51 14694.49 17796.14 18787.36 21698.31 20495.70 28088.58 18690.17 19597.50 15383.02 16997.22 24587.06 21496.07 15598.90 136
CSCG94.87 9294.71 8595.36 14499.54 3686.49 23299.34 7898.15 4082.71 31190.15 19699.25 2389.48 5799.86 6394.97 11698.82 9199.72 50
SCA90.64 19989.25 20894.83 16694.95 23788.83 18296.26 30397.21 16790.06 14590.03 19790.62 32066.61 30896.81 26183.16 26594.36 17298.84 140
XVG-OURS90.83 19490.49 18991.86 24395.23 21681.25 32595.79 32195.92 26188.96 17590.02 19898.03 13271.60 27399.35 13391.06 16987.78 24094.98 247
ADS-MVSNet287.62 25886.88 25289.86 29596.21 18179.14 34087.15 37992.99 35483.01 30389.91 19987.27 35978.87 21992.80 36474.20 33392.27 19797.64 196
ADS-MVSNet88.99 22587.30 24594.07 19696.21 18187.56 20987.15 37996.78 20083.01 30389.91 19987.27 35978.87 21997.01 25374.20 33392.27 19797.64 196
ab-mvs91.05 19189.17 20996.69 8495.96 19391.72 10392.62 35297.23 16585.61 26189.74 20193.89 25468.55 29099.42 12391.09 16887.84 23998.92 135
TAMVS92.62 15792.09 15594.20 19194.10 25987.68 20498.41 19096.97 19487.53 22689.74 20196.04 21784.77 14596.49 27988.97 20092.31 19698.42 166
Vis-MVSNet (Re-imp)93.26 14593.00 13794.06 19796.14 18786.71 23098.68 15596.70 20188.30 19989.71 20397.64 14785.43 13496.39 28488.06 20896.32 14799.08 119
CNLPA93.64 13292.74 14196.36 10598.96 7590.01 15499.19 9195.89 26986.22 25289.40 20498.85 8380.66 20599.84 6988.57 20196.92 13899.24 104
Anonymous20240521188.84 23187.03 25094.27 18798.14 10084.18 28698.44 18695.58 28876.79 35789.34 20596.88 18953.42 36699.54 10887.53 21387.12 24399.09 118
Fast-Effi-MVS+91.72 17690.79 18494.49 17795.89 19487.40 21599.54 5095.70 28085.01 27389.28 20695.68 22377.75 22797.57 23283.22 26495.06 16798.51 163
PatchMatch-RL91.47 17990.54 18894.26 18898.20 9686.36 23896.94 27997.14 17587.75 21888.98 20795.75 22271.80 27199.40 12780.92 28597.39 12997.02 217
dp90.16 20988.83 21794.14 19396.38 17486.42 23491.57 36297.06 18584.76 27788.81 20890.19 33684.29 14897.43 23875.05 32591.35 22298.56 161
DeepC-MVS91.02 494.56 10693.92 11096.46 9697.16 14290.76 12898.39 19797.11 17993.92 5288.66 20998.33 12178.14 22599.85 6795.02 11398.57 10298.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
baseline192.61 15891.28 17196.58 9097.05 15094.63 4897.72 24896.20 23489.82 14988.56 21096.85 19086.85 10297.82 20888.42 20280.10 29597.30 206
Anonymous2024052987.66 25785.58 27093.92 20297.59 11785.01 27598.13 21797.13 17766.69 38988.47 21196.01 21855.09 36099.51 11087.00 21684.12 26897.23 210
CVMVSNet90.30 20490.91 17988.46 32294.32 25473.58 36797.61 25597.59 11690.16 14188.43 21297.10 17476.83 23292.86 36182.64 27193.54 17998.93 133
TR-MVS90.77 19589.44 20394.76 16796.31 17688.02 19997.92 23495.96 25485.52 26288.22 21397.23 16666.80 30798.09 19284.58 24792.38 19398.17 185
F-COLMAP92.07 17291.75 16393.02 21898.16 9982.89 30498.79 14695.97 25286.54 24687.92 21497.80 13678.69 22299.65 9885.97 22995.93 15796.53 231
WB-MVSnew88.69 23988.34 22989.77 29994.30 25885.99 25498.14 21697.31 15987.15 23187.85 21596.07 21669.91 28095.52 32672.83 34491.47 21787.80 363
BH-RMVSNet91.25 18689.99 19495.03 15996.75 15988.55 18998.65 15994.95 31687.74 21987.74 21697.80 13668.27 29398.14 18880.53 29097.49 12698.41 167
Effi-MVS+-dtu89.97 21490.68 18687.81 32695.15 22371.98 37397.87 23895.40 29991.92 9687.57 21791.44 29974.27 24796.84 25989.45 19193.10 18394.60 249
HQP-NCC93.95 26499.16 9793.92 5287.57 217
ACMP_Plane93.95 26499.16 9793.92 5287.57 217
HQP4-MVS87.57 21797.77 21292.72 258
HQP-MVS91.50 17891.23 17292.29 23393.95 26486.39 23699.16 9796.37 22393.92 5287.57 21796.67 19973.34 25397.77 21293.82 13786.29 24792.72 258
TAPA-MVS87.50 990.35 20289.05 21294.25 18998.48 9185.17 27298.42 18896.58 21182.44 31887.24 22298.53 10782.77 17398.84 15759.09 38497.88 11598.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
GeoE90.60 20089.56 20093.72 20995.10 23085.43 26599.41 6994.94 31783.96 28887.21 22396.83 19374.37 24597.05 25280.50 29193.73 17898.67 156
bld_raw_dy_0_6491.37 18389.75 19796.23 10997.51 12290.58 13499.16 9788.98 38995.64 2587.18 22499.20 3057.19 35198.66 16798.00 5084.86 26099.46 83
HQP_MVS91.26 18490.95 17892.16 23793.84 27186.07 25199.02 12196.30 22793.38 6886.99 22596.52 20172.92 25997.75 21893.46 14486.17 25092.67 260
plane_prior385.91 25593.65 6386.99 225
GA-MVS90.10 21088.69 22094.33 18592.44 29587.97 20099.08 11396.26 23189.65 15386.92 22793.11 27368.09 29596.96 25482.54 27390.15 23198.05 187
1112_ss92.71 15491.55 16696.20 11195.56 20591.12 11698.48 18394.69 32688.29 20086.89 22898.50 11087.02 9898.66 16784.75 24489.77 23498.81 145
Test_1112_low_res92.27 16790.97 17796.18 11295.53 20791.10 11898.47 18594.66 32788.28 20186.83 22993.50 26587.00 9998.65 16984.69 24589.74 23598.80 146
cascas90.93 19389.33 20795.76 13195.69 20193.03 8098.99 12596.59 20880.49 33886.79 23094.45 24365.23 32098.60 17093.52 14192.18 20095.66 243
iter_conf0593.48 13493.18 13194.39 18497.15 14394.17 5999.30 8192.97 35592.38 9086.70 23195.42 22895.67 596.59 26994.67 12384.32 26692.39 263
baseline294.04 11693.80 11594.74 16993.07 29090.25 13998.12 21998.16 3989.86 14886.53 23296.95 18395.56 698.05 19691.44 16694.53 17095.93 241
OPM-MVS89.76 21689.15 21091.57 25390.53 32685.58 26398.11 22195.93 26092.88 7886.05 23396.47 20467.06 30697.87 20589.29 19786.08 25291.26 308
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
VPA-MVSNet89.10 22487.66 24093.45 21192.56 29391.02 12297.97 23398.32 3086.92 23786.03 23492.01 28768.84 28997.10 25090.92 17175.34 31792.23 271
SDMVSNet91.09 18889.91 19594.65 17296.80 15690.54 13597.78 24297.81 6888.34 19785.73 23595.26 23166.44 31198.26 18494.25 13086.75 24495.14 244
sd_testset89.23 22288.05 23692.74 22696.80 15685.33 26895.85 31997.03 18888.34 19785.73 23595.26 23161.12 33797.76 21785.61 23586.75 24495.14 244
tpm cat188.89 22987.27 24693.76 20795.79 19785.32 26990.76 37197.09 18376.14 35985.72 23788.59 34982.92 17098.04 19776.96 31291.43 21897.90 192
IB-MVS89.43 692.12 17090.83 18395.98 12495.40 21290.78 12799.81 1298.06 4591.23 11385.63 23893.66 26090.63 4298.78 15891.22 16771.85 35398.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
EI-MVSNet89.87 21589.38 20691.36 25694.32 25485.87 25797.61 25596.59 20885.10 26885.51 23997.10 17481.30 20196.56 27283.85 26183.03 27991.64 287
MVSTER92.71 15492.32 14893.86 20497.29 13492.95 8499.01 12396.59 20890.09 14285.51 23994.00 25094.61 1596.56 27290.77 17683.03 27992.08 280
test_fmvs285.10 29585.45 27384.02 35289.85 33565.63 38698.49 18192.59 36090.45 13185.43 24193.32 26643.94 38396.59 26990.81 17484.19 26789.85 343
RPSCF85.33 29385.55 27184.67 34994.63 24862.28 38893.73 34093.76 34574.38 36685.23 24297.06 17764.09 32398.31 18080.98 28386.08 25293.41 255
BH-w/o92.32 16491.79 16193.91 20396.85 15386.18 24599.11 11195.74 27888.13 20484.81 24397.00 18177.26 23097.91 20189.16 19998.03 11397.64 196
mvsmamba89.99 21389.42 20491.69 25190.64 32586.34 23998.40 19392.27 36491.01 11584.80 24494.93 23576.12 23396.51 27692.81 15583.84 27092.21 273
CLD-MVS91.06 19090.71 18592.10 23994.05 26386.10 24899.55 4596.29 23094.16 4784.70 24597.17 17269.62 28597.82 20894.74 12086.08 25292.39 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpmvs89.16 22387.76 23793.35 21297.19 13984.75 27990.58 37397.36 15681.99 32384.56 24689.31 34683.98 15298.17 18774.85 32890.00 23397.12 211
nrg03090.23 20588.87 21594.32 18691.53 31393.54 6998.79 14695.89 26988.12 20584.55 24794.61 24278.80 22196.88 25892.35 16075.21 31892.53 262
VPNet88.30 24586.57 25593.49 21091.95 30591.35 10998.18 21397.20 17188.61 18484.52 24894.89 23662.21 33296.76 26489.34 19472.26 35092.36 265
dmvs_re88.69 23988.06 23590.59 27393.83 27378.68 34495.75 32296.18 23887.99 21084.48 24996.32 20967.52 30196.94 25684.98 24285.49 25696.14 238
MVS93.92 12092.28 14998.83 795.69 20196.82 896.22 30698.17 3784.89 27584.34 25098.61 10579.32 21599.83 7393.88 13499.43 6099.86 29
mvs_anonymous92.50 16191.65 16495.06 15696.60 16289.64 16197.06 27596.44 22086.64 24384.14 25193.93 25282.49 18096.17 30191.47 16596.08 15499.35 94
Fast-Effi-MVS+-dtu88.84 23188.59 22489.58 30493.44 28378.18 34898.65 15994.62 32888.46 18984.12 25295.37 23068.91 28796.52 27582.06 27791.70 20994.06 250
LS3D90.19 20788.72 21994.59 17698.97 7386.33 24096.90 28196.60 20774.96 36384.06 25398.74 9075.78 23599.83 7374.93 32697.57 12297.62 199
ACMM86.95 1388.77 23688.22 23290.43 27993.61 27781.34 32398.50 17995.92 26187.88 21483.85 25495.20 23367.20 30497.89 20386.90 22084.90 25992.06 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
BH-untuned91.46 18090.84 18193.33 21396.51 16784.83 27898.84 13895.50 29286.44 25183.50 25596.70 19775.49 23797.77 21286.78 22297.81 11697.40 203
FIs90.70 19789.87 19693.18 21592.29 29791.12 11698.17 21598.25 3289.11 17183.44 25694.82 23982.26 18796.17 30187.76 21082.76 28192.25 269
UniMVSNet (Re)89.50 22188.32 23093.03 21792.21 29990.96 12498.90 13498.39 2789.13 17083.22 25792.03 28581.69 19496.34 29286.79 22172.53 34691.81 285
UniMVSNet_NR-MVSNet89.60 21888.55 22692.75 22592.17 30090.07 14898.74 14998.15 4088.37 19583.21 25893.98 25182.86 17195.93 31286.95 21772.47 34792.25 269
DU-MVS88.83 23387.51 24192.79 22391.46 31490.07 14898.71 15097.62 10988.87 18083.21 25893.68 25874.63 23995.93 31286.95 21772.47 34792.36 265
LPG-MVS_test88.86 23088.47 22890.06 28893.35 28580.95 33098.22 20995.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
LGP-MVS_train90.06 28893.35 28580.95 33095.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
miper_enhance_ethall90.33 20389.70 19892.22 23497.12 14688.93 18098.35 20095.96 25488.60 18583.14 26292.33 28287.38 8696.18 30086.49 22477.89 30491.55 295
FC-MVSNet-test90.22 20689.40 20592.67 22991.78 30989.86 15797.89 23598.22 3588.81 18182.96 26394.66 24181.90 19395.96 31085.89 23382.52 28492.20 275
PCF-MVS89.78 591.26 18489.63 19996.16 11695.44 20991.58 10795.29 32696.10 24385.07 27082.75 26497.45 15678.28 22499.78 8480.60 28995.65 16197.12 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
V4287.00 26485.68 26990.98 26389.91 33286.08 24998.32 20395.61 28683.67 29482.72 26590.67 31674.00 25096.53 27481.94 27974.28 33090.32 332
v114486.83 26785.31 27591.40 25489.75 33687.21 22498.31 20495.45 29583.22 30082.70 26690.78 31173.36 25296.36 28679.49 29474.69 32490.63 327
Syy-MVS84.10 31184.53 29082.83 35795.14 22465.71 38597.68 25196.66 20386.52 24782.63 26796.84 19168.15 29489.89 38145.62 39591.54 21392.87 256
myMVS_eth3d88.68 24189.07 21187.50 32995.14 22479.74 33697.68 25196.66 20386.52 24782.63 26796.84 19185.22 13889.89 38169.43 35591.54 21392.87 256
v14419286.40 27684.89 28190.91 26489.48 34285.59 26298.21 21195.43 29882.45 31782.62 26990.58 32372.79 26296.36 28678.45 30474.04 33490.79 320
3Dnovator87.35 1193.17 14891.77 16297.37 5195.41 21193.07 7898.82 13997.85 6091.53 10482.56 27097.58 15071.97 26899.82 7691.01 17099.23 7099.22 107
v2v48287.27 26285.76 26791.78 25089.59 33887.58 20898.56 17395.54 29084.53 27982.51 27191.78 29373.11 25896.47 28082.07 27674.14 33391.30 306
tt080586.50 27584.79 28491.63 25291.97 30381.49 31996.49 29597.38 15482.24 32082.44 27295.82 22151.22 37198.25 18584.55 24880.96 29195.13 246
Baseline_NR-MVSNet85.83 28584.82 28388.87 31988.73 35083.34 29798.63 16391.66 37380.41 34182.44 27291.35 30174.63 23995.42 33084.13 25471.39 35687.84 361
v119286.32 27884.71 28691.17 25889.53 34186.40 23598.13 21795.44 29782.52 31582.42 27490.62 32071.58 27496.33 29377.23 30974.88 32190.79 320
RRT_MVS88.91 22888.56 22589.93 29390.31 32981.61 31898.08 22696.38 22289.30 16582.41 27594.84 23873.15 25796.04 30790.38 17982.23 28692.15 276
test_djsdf88.26 24787.73 23889.84 29688.05 35882.21 31297.77 24496.17 23986.84 23882.41 27591.95 29172.07 26795.99 30889.83 18484.50 26391.32 305
cl2289.57 21988.79 21891.91 24297.94 10587.62 20797.98 23296.51 21585.03 27182.37 27791.79 29283.65 15496.50 27785.96 23077.89 30491.61 292
131493.44 13691.98 15797.84 3495.24 21594.38 5496.22 30697.92 5590.18 13882.28 27897.71 14377.63 22899.80 8191.94 16398.67 9899.34 96
v192192086.02 28184.44 29290.77 27089.32 34485.20 27098.10 22295.35 30382.19 32182.25 27990.71 31370.73 27796.30 29776.85 31474.49 32690.80 319
v124085.77 28884.11 29590.73 27189.26 34585.15 27397.88 23795.23 31281.89 32682.16 28090.55 32569.60 28696.31 29475.59 32374.87 32290.72 324
XVG-ACMP-BASELINE85.86 28484.95 28088.57 32089.90 33377.12 35494.30 33495.60 28787.40 22882.12 28192.99 27653.42 36697.66 22285.02 24183.83 27190.92 316
GBi-Net86.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
test186.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
FMVSNet388.81 23587.08 24993.99 20196.52 16694.59 4998.08 22696.20 23485.85 25682.12 28191.60 29674.05 24995.40 33179.04 29780.24 29291.99 283
IterMVS-LS88.34 24487.44 24291.04 26194.10 25985.85 25898.10 22295.48 29385.12 26782.03 28591.21 30481.35 20095.63 32483.86 26075.73 31691.63 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_ehance_all_eth88.94 22788.12 23491.40 25495.32 21486.93 22697.85 23995.55 28984.19 28381.97 28691.50 29884.16 14995.91 31584.69 24577.89 30491.36 303
MIMVSNet84.48 30481.83 31492.42 23291.73 31087.36 21685.52 38294.42 33481.40 32981.91 28787.58 35351.92 36992.81 36373.84 33688.15 23897.08 215
PS-MVSNAJss89.54 22089.05 21291.00 26288.77 34984.36 28397.39 25995.97 25288.47 18781.88 28893.80 25682.48 18196.50 27789.34 19483.34 27892.15 276
WR-MVS88.54 24387.22 24892.52 23091.93 30789.50 16498.56 17397.84 6186.99 23281.87 28993.81 25574.25 24895.92 31485.29 23774.43 32792.12 278
TranMVSNet+NR-MVSNet87.75 25386.31 25992.07 24090.81 32288.56 18898.33 20197.18 17287.76 21781.87 28993.90 25372.45 26395.43 32983.13 26771.30 35792.23 271
eth_miper_zixun_eth87.76 25287.00 25190.06 28894.67 24682.65 30997.02 27895.37 30184.19 28381.86 29191.58 29781.47 19795.90 31683.24 26373.61 33691.61 292
UniMVSNet_ETH3D85.65 29183.79 29991.21 25790.41 32880.75 33295.36 32595.78 27578.76 34781.83 29294.33 24449.86 37696.66 26684.30 25083.52 27696.22 237
c3_l88.19 24887.23 24791.06 26094.97 23686.17 24697.72 24895.38 30083.43 29781.68 29391.37 30082.81 17295.72 32184.04 25873.70 33591.29 307
DP-MVS88.75 23786.56 25695.34 14598.92 7787.45 21397.64 25493.52 35170.55 37581.49 29497.25 16574.43 24499.88 5471.14 34994.09 17498.67 156
3Dnovator+87.72 893.43 13791.84 16098.17 2395.73 20095.08 3498.92 13297.04 18691.42 10981.48 29597.60 14874.60 24199.79 8290.84 17398.97 8299.64 64
QAPM91.41 18189.49 20297.17 5895.66 20393.42 7298.60 16897.51 13380.92 33681.39 29697.41 15872.89 26199.87 5882.33 27498.68 9798.21 182
testing387.75 25388.22 23286.36 33794.66 24777.41 35399.52 5197.95 5486.05 25481.12 29796.69 19886.18 12089.31 38561.65 37990.12 23292.35 268
XXY-MVS87.75 25386.02 26392.95 22190.46 32789.70 16097.71 25095.90 26784.02 28580.95 29894.05 24567.51 30297.10 25085.16 23878.41 30192.04 282
v14886.38 27785.06 27790.37 28389.47 34384.10 28798.52 17595.48 29383.80 29080.93 29990.22 33474.60 24196.31 29480.92 28571.55 35590.69 325
DIV-MVS_self_test87.82 25086.81 25390.87 26794.87 24185.39 26797.81 24095.22 31382.92 30980.76 30091.31 30281.99 19095.81 31981.36 28175.04 32091.42 301
cl____87.82 25086.79 25490.89 26694.88 24085.43 26597.81 24095.24 30882.91 31080.71 30191.22 30381.97 19295.84 31781.34 28275.06 31991.40 302
FMVSNet286.90 26584.79 28493.24 21495.11 22792.54 9297.67 25395.86 27382.94 30680.55 30291.17 30562.89 32995.29 33377.23 30979.71 29891.90 284
pmmvs487.58 25986.17 26291.80 24689.58 33988.92 18197.25 26795.28 30482.54 31480.49 30393.17 27275.62 23696.05 30682.75 27078.90 29990.42 330
ACMP87.39 1088.71 23888.24 23190.12 28793.91 26981.06 32998.50 17995.67 28389.43 16380.37 30495.55 22465.67 31497.83 20790.55 17884.51 26291.47 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
pmmvs585.87 28384.40 29490.30 28488.53 35384.23 28498.60 16893.71 34781.53 32880.29 30592.02 28664.51 32295.52 32682.04 27878.34 30291.15 310
test0.0.03 188.96 22688.61 22290.03 29291.09 31984.43 28298.97 12897.02 19090.21 13680.29 30596.31 21084.89 14191.93 37572.98 34285.70 25593.73 251
miper_lstm_enhance86.90 26586.20 26189.00 31694.53 24981.19 32696.74 28995.24 30882.33 31980.15 30790.51 32781.99 19094.68 34780.71 28773.58 33791.12 311
jajsoiax87.35 26086.51 25789.87 29487.75 36381.74 31697.03 27695.98 25188.47 18780.15 30793.80 25661.47 33496.36 28689.44 19284.47 26491.50 296
mvs_tets87.09 26386.22 26089.71 30087.87 35981.39 32296.73 29095.90 26788.19 20379.99 30993.61 26159.96 34196.31 29489.40 19384.34 26591.43 300
ITE_SJBPF87.93 32492.26 29876.44 35693.47 35287.67 22379.95 31095.49 22756.50 35397.38 24075.24 32482.33 28589.98 341
v886.11 28084.45 29191.10 25989.99 33186.85 22797.24 26895.36 30281.99 32379.89 31189.86 33974.53 24396.39 28478.83 30172.32 34990.05 339
v1085.73 28984.01 29790.87 26790.03 33086.73 22997.20 27195.22 31381.25 33179.85 31289.75 34073.30 25596.28 29876.87 31372.64 34589.61 347
WR-MVS_H86.53 27485.49 27289.66 30391.04 32083.31 29897.53 25798.20 3684.95 27479.64 31390.90 30978.01 22695.33 33276.29 31872.81 34390.35 331
anonymousdsp86.69 26985.75 26889.53 30586.46 37182.94 30196.39 29795.71 27983.97 28779.63 31490.70 31468.85 28895.94 31186.01 22884.02 26989.72 345
Patchmtry83.61 31581.64 31589.50 30693.36 28482.84 30684.10 38994.20 34069.47 38179.57 31586.88 36384.43 14694.78 34468.48 35974.30 32990.88 317
CP-MVSNet86.54 27385.45 27389.79 29891.02 32182.78 30797.38 26197.56 12285.37 26479.53 31693.03 27471.86 27095.25 33479.92 29273.43 34191.34 304
Patchmatch-test86.25 27984.06 29692.82 22294.42 25082.88 30582.88 39394.23 33971.58 37179.39 31790.62 32089.00 6296.42 28363.03 37591.37 22199.16 110
DSMNet-mixed81.60 32481.43 31882.10 36084.36 37760.79 38993.63 34286.74 39379.00 34379.32 31887.15 36163.87 32589.78 38366.89 36591.92 20395.73 242
MSDG88.29 24686.37 25894.04 19996.90 15286.15 24796.52 29494.36 33677.89 35379.22 31996.95 18369.72 28399.59 10473.20 34192.58 19196.37 236
Anonymous2023121184.72 29982.65 31090.91 26497.71 11184.55 28197.28 26596.67 20266.88 38879.18 32090.87 31058.47 34596.60 26882.61 27274.20 33191.59 294
PS-CasMVS85.81 28684.58 28989.49 30890.77 32382.11 31397.20 27197.36 15684.83 27679.12 32192.84 27767.42 30395.16 33678.39 30573.25 34291.21 309
IterMVS85.81 28684.67 28789.22 31193.51 27983.67 29396.32 30094.80 32285.09 26978.69 32290.17 33766.57 31093.17 36079.48 29577.42 31090.81 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PEN-MVS85.21 29483.93 29889.07 31589.89 33481.31 32497.09 27497.24 16484.45 28178.66 32392.68 27968.44 29294.87 34175.98 32070.92 35891.04 313
IterMVS-SCA-FT85.73 28984.64 28889.00 31693.46 28282.90 30396.27 30194.70 32585.02 27278.62 32490.35 32966.61 30893.33 35779.38 29677.36 31190.76 322
OpenMVScopyleft85.28 1490.75 19688.84 21696.48 9593.58 27893.51 7098.80 14297.41 15182.59 31278.62 32497.49 15468.00 29799.82 7684.52 24998.55 10396.11 239
PVSNet_083.28 1687.31 26185.16 27693.74 20894.78 24384.59 28098.91 13398.69 2189.81 15078.59 32693.23 27061.95 33399.34 13494.75 11955.72 39097.30 206
EU-MVSNet84.19 30884.42 29383.52 35588.64 35267.37 38496.04 31195.76 27785.29 26578.44 32793.18 27170.67 27891.48 37775.79 32275.98 31491.70 286
v7n84.42 30682.75 30889.43 30988.15 35681.86 31596.75 28895.67 28380.53 33778.38 32889.43 34469.89 28196.35 29173.83 33772.13 35190.07 337
FMVSNet183.94 31281.32 32091.80 24691.94 30688.81 18396.77 28595.25 30577.98 34978.25 32990.25 33150.37 37594.97 33873.27 34077.81 30891.62 289
D2MVS87.96 24987.39 24389.70 30191.84 30883.40 29698.31 20498.49 2388.04 20878.23 33090.26 33073.57 25196.79 26384.21 25283.53 27588.90 355
MS-PatchMatch86.75 26885.92 26589.22 31191.97 30382.47 31196.91 28096.14 24183.74 29177.73 33193.53 26458.19 34697.37 24276.75 31598.35 10787.84 361
DTE-MVSNet84.14 30982.80 30588.14 32388.95 34879.87 33596.81 28496.24 23283.50 29677.60 33292.52 28167.89 29994.24 35272.64 34569.05 36190.32 332
COLMAP_ROBcopyleft82.69 1884.54 30382.82 30489.70 30196.72 16078.85 34195.89 31492.83 35871.55 37277.54 33395.89 22059.40 34399.14 14567.26 36388.26 23791.11 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
OurMVSNet-221017-084.13 31083.59 30085.77 34287.81 36070.24 37894.89 32993.65 34986.08 25376.53 33493.28 26961.41 33596.14 30380.95 28477.69 30990.93 315
tfpnnormal83.65 31381.35 31990.56 27691.37 31688.06 19797.29 26497.87 5878.51 34876.20 33590.91 30864.78 32196.47 28061.71 37873.50 33887.13 370
ppachtmachnet_test83.63 31481.57 31789.80 29789.01 34685.09 27497.13 27394.50 33078.84 34576.14 33691.00 30769.78 28294.61 34863.40 37374.36 32889.71 346
pm-mvs184.68 30082.78 30790.40 28089.58 33985.18 27197.31 26394.73 32481.93 32576.05 33792.01 28765.48 31896.11 30478.75 30269.14 36089.91 342
AllTest84.97 29783.12 30290.52 27796.82 15478.84 34295.89 31492.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
TestCases90.52 27796.82 15478.84 34292.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
CL-MVSNet_self_test79.89 33278.34 33384.54 35081.56 38575.01 36096.88 28295.62 28581.10 33275.86 34085.81 36868.49 29190.26 37963.21 37456.51 38888.35 358
testgi82.29 31981.00 32286.17 33987.24 36674.84 36297.39 25991.62 37488.63 18375.85 34195.42 22846.07 38291.55 37666.87 36679.94 29692.12 278
MVP-Stereo86.61 27285.83 26688.93 31888.70 35183.85 29196.07 31094.41 33582.15 32275.64 34291.96 29067.65 30096.45 28277.20 31198.72 9686.51 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LF4IMVS81.94 32281.17 32184.25 35187.23 36768.87 38393.35 34491.93 37183.35 29975.40 34393.00 27549.25 37996.65 26778.88 30078.11 30387.22 369
our_test_384.47 30582.80 30589.50 30689.01 34683.90 29097.03 27694.56 32981.33 33075.36 34490.52 32671.69 27294.54 34968.81 35776.84 31290.07 337
LTVRE_ROB81.71 1984.59 30282.72 30990.18 28592.89 29283.18 29993.15 34594.74 32378.99 34475.14 34592.69 27865.64 31597.63 22569.46 35481.82 28889.74 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Anonymous2023120680.76 32779.42 33184.79 34884.78 37672.98 36896.53 29392.97 35579.56 34274.33 34688.83 34761.27 33692.15 37260.59 38175.92 31589.24 352
FMVSNet582.29 31980.54 32387.52 32893.79 27584.01 28893.73 34092.47 36276.92 35674.27 34786.15 36763.69 32789.24 38669.07 35674.79 32389.29 351
MVS-HIRNet79.01 33575.13 34790.66 27293.82 27481.69 31785.16 38393.75 34654.54 39374.17 34859.15 39957.46 34996.58 27163.74 37294.38 17193.72 252
ACMH+83.78 1584.21 30782.56 31289.15 31393.73 27679.16 33996.43 29694.28 33881.09 33374.00 34994.03 24854.58 36297.67 22176.10 31978.81 30090.63 327
KD-MVS_2432*160082.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
miper_refine_blended82.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
NR-MVSNet87.74 25686.00 26492.96 22091.46 31490.68 13196.65 29297.42 15088.02 20973.42 35293.68 25877.31 22995.83 31884.26 25171.82 35492.36 265
test_fmvs375.09 34975.19 34674.81 37077.45 39354.08 39695.93 31290.64 38082.51 31673.29 35381.19 38122.29 39986.29 39285.50 23667.89 36584.06 383
USDC84.74 29882.93 30390.16 28691.73 31083.54 29595.00 32893.30 35388.77 18273.19 35493.30 26853.62 36597.65 22475.88 32181.54 28989.30 350
KD-MVS_self_test77.47 34475.88 34482.24 35881.59 38468.93 38292.83 35194.02 34377.03 35573.14 35583.39 37355.44 35890.42 37867.95 36057.53 38787.38 365
LCM-MVSNet-Re88.59 24288.61 22288.51 32195.53 20772.68 37196.85 28388.43 39088.45 19073.14 35590.63 31975.82 23494.38 35092.95 15195.71 16098.48 165
TDRefinement78.01 34175.31 34586.10 34070.06 40073.84 36593.59 34391.58 37574.51 36573.08 35791.04 30649.63 37897.12 24774.88 32759.47 38387.33 367
TransMVSNet (Re)81.97 32179.61 33089.08 31489.70 33784.01 28897.26 26691.85 37278.84 34573.07 35891.62 29567.17 30595.21 33567.50 36259.46 38488.02 360
SixPastTwentyTwo82.63 31881.58 31685.79 34188.12 35771.01 37695.17 32792.54 36184.33 28272.93 35992.08 28460.41 34095.61 32574.47 33074.15 33290.75 323
pmmvs679.90 33177.31 33787.67 32784.17 37878.13 34995.86 31893.68 34867.94 38572.67 36089.62 34250.98 37395.75 32074.80 32966.04 37189.14 353
ACMH83.09 1784.60 30182.61 31190.57 27493.18 28882.94 30196.27 30194.92 31881.01 33472.61 36193.61 26156.54 35297.79 21074.31 33181.07 29090.99 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052178.63 33976.90 34083.82 35382.82 38272.86 36995.72 32393.57 35073.55 36972.17 36284.79 37049.69 37792.51 36865.29 37074.50 32586.09 375
Patchmatch-RL test81.90 32380.13 32687.23 33280.71 38770.12 38084.07 39088.19 39183.16 30270.57 36382.18 37887.18 9392.59 36682.28 27562.78 37798.98 125
mvsany_test375.85 34874.52 35079.83 36573.53 39760.64 39091.73 35987.87 39283.91 28970.55 36482.52 37531.12 39493.66 35486.66 22362.83 37685.19 381
test_040278.81 33776.33 34286.26 33891.18 31878.44 34795.88 31691.34 37768.55 38270.51 36589.91 33852.65 36894.99 33747.14 39479.78 29785.34 379
TinyColmap80.42 32977.94 33487.85 32592.09 30178.58 34593.74 33989.94 38374.99 36269.77 36691.78 29346.09 38197.58 22965.17 37177.89 30487.38 365
dmvs_testset77.17 34578.99 33271.71 37387.25 36538.55 41091.44 36381.76 40185.77 25869.49 36795.94 21969.71 28484.37 39352.71 39276.82 31392.21 273
test20.0378.51 34077.48 33681.62 36283.07 38171.03 37596.11 30992.83 35881.66 32769.31 36889.68 34157.53 34887.29 39158.65 38568.47 36286.53 372
test_vis1_rt81.31 32580.05 32885.11 34491.29 31770.66 37798.98 12777.39 40585.76 25968.80 36982.40 37636.56 39299.44 11992.67 15786.55 24685.24 380
N_pmnet70.19 35569.87 35771.12 37588.24 35530.63 41495.85 31928.70 41370.18 37768.73 37086.55 36564.04 32493.81 35353.12 39173.46 33988.94 354
OpenMVS_ROBcopyleft73.86 2077.99 34275.06 34886.77 33583.81 38077.94 35196.38 29891.53 37667.54 38668.38 37187.13 36243.94 38396.08 30555.03 38981.83 28786.29 374
ambc79.60 36672.76 39956.61 39376.20 39792.01 37068.25 37280.23 38523.34 39894.73 34573.78 33860.81 38187.48 364
PM-MVS74.88 35072.85 35380.98 36478.98 39164.75 38790.81 37085.77 39480.95 33568.23 37382.81 37429.08 39692.84 36276.54 31762.46 37985.36 378
pmmvs372.86 35369.76 35882.17 35973.86 39674.19 36494.20 33589.01 38864.23 39267.72 37480.91 38441.48 38788.65 38862.40 37654.02 39283.68 385
lessismore_v085.08 34585.59 37469.28 38190.56 38167.68 37590.21 33554.21 36495.46 32873.88 33562.64 37890.50 329
K. test v381.04 32679.77 32984.83 34787.41 36470.23 37995.60 32493.93 34483.70 29367.51 37689.35 34555.76 35493.58 35676.67 31668.03 36490.67 326
MIMVSNet175.92 34773.30 35283.81 35481.29 38675.57 35892.26 35492.05 36973.09 37067.48 37786.18 36640.87 38987.64 39055.78 38870.68 35988.21 359
ET-MVSNet_ETH3D92.56 16091.45 16895.88 12796.39 17394.13 6099.46 6096.97 19492.18 9366.94 37898.29 12494.65 1494.28 35194.34 12883.82 27399.24 104
pmmvs-eth3d78.71 33876.16 34386.38 33680.25 38981.19 32694.17 33692.13 36877.97 35066.90 37982.31 37755.76 35492.56 36773.63 33962.31 38085.38 377
EG-PatchMatch MVS79.92 33077.59 33586.90 33487.06 36877.90 35296.20 30894.06 34274.61 36466.53 38088.76 34840.40 39096.20 29967.02 36483.66 27486.61 371
test_method70.10 35668.66 35974.41 37286.30 37355.84 39494.47 33189.82 38435.18 40166.15 38184.75 37130.54 39577.96 40270.40 35360.33 38289.44 349
UnsupCasMVSNet_eth78.90 33676.67 34185.58 34382.81 38374.94 36191.98 35696.31 22684.64 27865.84 38287.71 35251.33 37092.23 37172.89 34356.50 38989.56 348
test_f71.94 35470.82 35575.30 36972.77 39853.28 39791.62 36089.66 38675.44 36164.47 38378.31 38920.48 40089.56 38478.63 30366.02 37283.05 388
new-patchmatchnet74.80 35172.40 35481.99 36178.36 39272.20 37294.44 33292.36 36377.06 35463.47 38479.98 38651.04 37288.85 38760.53 38254.35 39184.92 382
new_pmnet76.02 34673.71 35182.95 35683.88 37972.85 37091.26 36692.26 36570.44 37662.60 38581.37 38047.64 38092.32 37061.85 37772.10 35283.68 385
UnsupCasMVSNet_bld73.85 35270.14 35684.99 34679.44 39075.73 35788.53 37695.24 30870.12 37861.94 38674.81 39241.41 38893.62 35568.65 35851.13 39685.62 376
CMPMVSbinary58.40 2180.48 32880.11 32781.59 36385.10 37559.56 39194.14 33795.95 25668.54 38360.71 38793.31 26755.35 35997.87 20583.06 26884.85 26187.33 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
APD_test168.93 35766.98 36074.77 37180.62 38853.15 39887.97 37785.01 39653.76 39459.26 38887.52 35525.19 39789.95 38056.20 38767.33 36881.19 389
DeepMVS_CXcopyleft76.08 36890.74 32451.65 40190.84 37986.47 25057.89 38987.98 35035.88 39392.60 36565.77 36965.06 37483.97 384
WB-MVS66.44 35866.29 36166.89 37874.84 39444.93 40593.00 34684.09 39971.15 37355.82 39081.63 37963.79 32680.31 40021.85 40450.47 39775.43 391
SSC-MVS65.42 35965.20 36266.06 37973.96 39543.83 40692.08 35583.54 40069.77 37954.73 39180.92 38363.30 32879.92 40120.48 40548.02 39874.44 392
YYNet179.64 33477.04 33987.43 33187.80 36179.98 33496.23 30594.44 33173.83 36851.83 39287.53 35467.96 29892.07 37466.00 36867.75 36790.23 334
MDA-MVSNet_test_wron79.65 33377.05 33887.45 33087.79 36280.13 33396.25 30494.44 33173.87 36751.80 39387.47 35868.04 29692.12 37366.02 36767.79 36690.09 335
LCM-MVSNet60.07 36356.37 36571.18 37454.81 40948.67 40282.17 39489.48 38737.95 39949.13 39469.12 39313.75 40781.76 39459.28 38351.63 39583.10 387
MDA-MVSNet-bldmvs77.82 34374.75 34987.03 33388.33 35478.52 34696.34 29992.85 35775.57 36048.87 39587.89 35157.32 35092.49 36960.79 38064.80 37590.08 336
PMMVS258.97 36455.07 36770.69 37662.72 40455.37 39585.97 38180.52 40249.48 39545.94 39668.31 39415.73 40580.78 39849.79 39337.12 40175.91 390
testf156.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
APD_test256.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
FPMVS61.57 36060.32 36365.34 38060.14 40742.44 40891.02 36989.72 38544.15 39642.63 39980.93 38219.02 40180.59 39942.50 39672.76 34473.00 393
test_vis3_rt61.29 36158.75 36468.92 37767.41 40152.84 39991.18 36859.23 41266.96 38741.96 40058.44 40011.37 40894.72 34674.25 33257.97 38659.20 399
Gipumacopyleft54.77 36752.22 37162.40 38486.50 37059.37 39250.20 40290.35 38236.52 40041.20 40149.49 40218.33 40381.29 39532.10 40165.34 37346.54 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
tmp_tt53.66 36852.86 37056.05 38532.75 41341.97 40973.42 39976.12 40621.91 40639.68 40296.39 20742.59 38665.10 40578.00 30614.92 40661.08 398
E-PMN41.02 37240.93 37441.29 38861.97 40533.83 41184.00 39165.17 41027.17 40327.56 40346.72 40417.63 40460.41 40719.32 40618.82 40329.61 403
ANet_high50.71 36946.17 37264.33 38144.27 41152.30 40076.13 39878.73 40364.95 39027.37 40455.23 40114.61 40667.74 40436.01 40018.23 40472.95 394
EMVS39.96 37339.88 37540.18 38959.57 40832.12 41384.79 38864.57 41126.27 40426.14 40544.18 40718.73 40259.29 40817.03 40717.67 40529.12 404
MVEpermissive44.00 2241.70 37137.64 37653.90 38749.46 41043.37 40765.09 40166.66 40926.19 40525.77 40648.53 4033.58 41363.35 40626.15 40327.28 40254.97 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMVScopyleft41.42 2345.67 37042.50 37355.17 38634.28 41232.37 41266.24 40078.71 40430.72 40222.04 40759.59 3984.59 41177.85 40327.49 40258.84 38555.29 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
testmvs18.81 37523.05 3786.10 3924.48 4142.29 41797.78 2423.00 4153.27 40818.60 40862.71 3961.53 4152.49 41114.26 4091.80 40813.50 406
test12316.58 37719.47 3797.91 3913.59 4155.37 41694.32 3331.39 4162.49 40913.98 40944.60 4062.91 4142.65 41011.35 4100.57 40915.70 405
wuyk23d16.71 37616.73 38016.65 39060.15 40625.22 41541.24 4035.17 4146.56 4075.48 4103.61 4103.64 41222.72 40915.20 4089.52 4071.99 407
EGC-MVSNET60.70 36255.37 36676.72 36786.35 37271.08 37489.96 37484.44 3980.38 4101.50 41184.09 37237.30 39188.10 38940.85 39973.44 34070.97 395
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k22.52 37430.03 3770.00 3930.00 4160.00 4180.00 40497.17 1730.00 4110.00 41298.77 8774.35 2460.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.87 3799.16 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41182.48 1810.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.21 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.50 1100.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.74 33667.75 361
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
eth-test20.00 416
eth-test0.00 416
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
save fliter99.34 5093.85 6499.65 3697.63 10795.69 22
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
GSMVS98.84 140
sam_mvs188.39 6898.84 140
sam_mvs87.08 96
MTGPAbinary97.45 144
test_post190.74 37241.37 40885.38 13596.36 28683.16 265
test_post46.00 40587.37 8797.11 248
patchmatchnet-post84.86 36988.73 6596.81 261
MTMP99.21 8991.09 378
gm-plane-assit94.69 24588.14 19588.22 20297.20 16898.29 18290.79 175
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
test_prior492.00 9899.41 69
test_prior97.01 6299.58 3091.77 10197.57 12199.49 11299.79 36
新几何298.26 207
旧先验198.97 7392.90 8697.74 7799.15 4191.05 3499.33 6499.60 69
无先验98.52 17597.82 6587.20 23099.90 5087.64 21299.85 30
原ACMM298.69 154
testdata299.88 5484.16 253
segment_acmp90.56 43
testdata197.89 23592.43 84
plane_prior793.84 27185.73 260
plane_prior693.92 26886.02 25372.92 259
plane_prior596.30 22797.75 21893.46 14486.17 25092.67 260
plane_prior496.52 201
plane_prior299.02 12193.38 68
plane_prior193.90 270
plane_prior86.07 25199.14 10693.81 6086.26 249
n20.00 417
nn0.00 417
door-mid84.90 397
test1197.68 90
door85.30 395
HQP5-MVS86.39 236
BP-MVS93.82 137
HQP3-MVS96.37 22386.29 247
HQP2-MVS73.34 253
NP-MVS93.94 26786.22 24396.67 199
ACMMP++_ref82.64 283
ACMMP++83.83 271
Test By Simon83.62 155