This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6998.20 899.93 199.98 296.82 24100.00 199.75 31100.00 199.99 23
fmvsm_l_conf0.5_n_a99.00 1598.91 1499.28 4599.21 10797.91 7999.98 1598.85 5698.25 599.92 299.75 7294.72 6999.97 5799.87 1999.64 9299.95 74
fmvsm_l_conf0.5_n98.94 1698.84 1799.25 4699.17 11097.81 8299.98 1598.86 5398.25 599.90 399.76 6694.21 9299.97 5799.87 1999.52 10599.98 51
patch_mono-298.24 6199.12 595.59 23699.67 8186.91 35699.95 5498.89 4997.60 2299.90 399.76 6696.54 3299.98 4799.94 1199.82 8199.88 88
NCCC99.37 299.25 299.71 1599.96 899.15 2299.97 2898.62 8298.02 1399.90 399.95 397.33 17100.00 199.54 42100.00 1100.00 1
TSAR-MVS + MP.98.93 1798.77 1999.41 3899.74 7098.67 4999.77 14998.38 16396.73 5699.88 699.74 7994.89 6499.59 15299.80 2599.98 3299.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test072699.93 2499.29 1599.96 3598.42 14797.28 3299.86 799.94 497.22 19
xiu_mvs_v2_base98.23 6297.97 6499.02 7698.69 14798.66 5199.52 21098.08 21197.05 4399.86 799.86 2990.65 17799.71 14199.39 5398.63 14698.69 230
test_vis1_n_192095.44 18095.31 17295.82 23298.50 16488.74 33499.98 1597.30 29097.84 1699.85 999.19 14766.82 37399.97 5798.82 8399.46 11298.76 225
PS-MVSNAJ98.44 4498.20 4999.16 5798.80 14298.92 2999.54 20898.17 19897.34 2999.85 999.85 3391.20 16499.89 9999.41 5199.67 9098.69 230
旧先验299.46 22394.21 13999.85 999.95 7396.96 166
IU-MVS99.93 2499.31 1098.41 15297.71 1999.84 12100.00 1100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5498.32 17697.28 3299.83 1399.91 1497.22 19100.00 199.99 5100.00 199.89 87
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 6399.83 1399.91 1497.87 5100.00 199.92 13100.00 1100.00 1
SF-MVS98.67 3098.40 3599.50 3099.77 6598.67 4999.90 9398.21 19393.53 16599.81 1599.89 2294.70 7199.86 11099.84 2299.93 6199.96 67
SD-MVS98.92 1898.70 2099.56 2599.70 7898.73 4699.94 7198.34 17396.38 6999.81 1599.76 6694.59 7299.98 4799.84 2299.96 4699.97 61
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsm_n_192098.44 4498.61 2797.92 15099.27 10695.18 193100.00 198.90 4798.05 1299.80 1799.73 8192.64 13699.99 3699.58 4199.51 10898.59 233
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5498.43 13596.48 6399.80 1799.93 1197.44 14100.00 199.92 1399.98 32100.00 1
PC_three_145296.96 4799.80 1799.79 5897.49 10100.00 199.99 599.98 32100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13597.27 3499.80 1799.94 496.71 27100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 13597.27 3499.80 1799.94 497.18 21100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13597.26 3699.80 1799.88 2496.71 27100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1799.94 495.92 40100.00 199.51 43100.00 1100.00 1
SteuartSystems-ACMMP99.02 1398.97 1399.18 5298.72 14697.71 8599.98 1598.44 12796.85 4999.80 1799.91 1497.57 899.85 11199.44 4999.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
testdata98.42 12299.47 9695.33 18598.56 9393.78 15999.79 2599.85 3393.64 10999.94 8194.97 19599.94 55100.00 1
9.1498.38 3799.87 5199.91 8798.33 17493.22 17599.78 2699.89 2294.57 7599.85 11199.84 2299.97 42
SMA-MVScopyleft98.76 2698.48 3299.62 2099.87 5198.87 3399.86 11998.38 16393.19 17699.77 2799.94 495.54 46100.00 199.74 3399.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CDPH-MVS98.65 3198.36 4199.49 3299.94 1398.73 4699.87 10898.33 17493.97 15099.76 2899.87 2794.99 6299.75 13598.55 100100.00 199.98 51
fmvsm_s_conf0.5_n_a97.73 8997.72 7697.77 16098.63 15494.26 21799.96 3598.92 4697.18 3999.75 2999.69 9087.00 22699.97 5799.46 4798.89 13899.08 209
test_one_060199.94 1399.30 1298.41 15296.63 6099.75 2999.93 1197.49 10
balanced_conf0398.27 5697.99 6299.11 6698.64 15398.43 6299.47 21997.79 23894.56 11899.74 3198.35 22294.33 8699.25 17199.12 6199.96 4699.64 124
APD-MVScopyleft98.62 3298.35 4299.41 3899.90 4298.51 5999.87 10898.36 16794.08 14399.74 3199.73 8194.08 9599.74 13799.42 5099.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs195.35 18395.68 16394.36 28498.99 12184.98 36699.96 3596.65 35297.60 2299.73 3398.96 16871.58 35299.93 8898.31 11499.37 11998.17 240
test_prior299.95 5495.78 8399.73 3399.76 6696.00 3799.78 27100.00 1
TEST999.92 3198.92 2999.96 3598.43 13593.90 15699.71 3599.86 2995.88 4199.85 111
train_agg98.88 2098.65 2499.59 2399.92 3198.92 2999.96 3598.43 13594.35 13099.71 3599.86 2995.94 3899.85 11199.69 3899.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13594.35 13099.69 3799.85 3395.94 3899.85 111
CS-MVS97.79 8497.91 7097.43 18199.10 11394.42 21099.99 497.10 31195.07 10099.68 3899.75 7292.95 12898.34 24098.38 10999.14 12999.54 151
test_fmvsmconf_n98.43 4698.32 4398.78 9098.12 19396.41 13899.99 498.83 6098.22 799.67 3999.64 10291.11 16899.94 8199.67 3999.62 9599.98 51
test_fmvs1_n94.25 21894.36 19793.92 29997.68 22283.70 37399.90 9396.57 35597.40 2899.67 3998.88 17961.82 39199.92 9198.23 11799.13 13098.14 243
fmvsm_s_conf0.1_n_a97.09 11696.90 11197.63 17095.65 30994.21 21999.83 13498.50 11696.27 7499.65 4199.64 10284.72 24899.93 8899.04 6798.84 14198.74 227
test1299.43 3599.74 7098.56 5798.40 15699.65 4194.76 6799.75 13599.98 3299.99 23
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10898.44 12797.48 2799.64 4399.94 496.68 2999.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.5_n97.80 8297.85 7397.67 16699.06 11594.41 21199.98 1598.97 4097.34 2999.63 4499.69 9087.27 22199.97 5799.62 4099.06 13398.62 232
agg_prior99.93 2498.77 4298.43 13599.63 4499.85 111
EC-MVSNet97.38 10497.24 9797.80 15597.41 23995.64 17399.99 497.06 31794.59 11799.63 4499.32 13589.20 20298.14 25698.76 8899.23 12699.62 130
xiu_mvs_v1_base_debu97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
SPE-MVS-test97.88 7297.94 6897.70 16599.28 10595.20 19299.98 1597.15 30695.53 9199.62 4799.79 5892.08 15398.38 23698.75 8999.28 12399.52 157
xiu_mvs_v1_base97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
xiu_mvs_v1_base_debi97.43 9797.06 10398.55 10997.74 21498.14 6699.31 24197.86 23396.43 6699.62 4799.69 9085.56 23999.68 14599.05 6498.31 15497.83 247
原ACMM198.96 8299.73 7396.99 11798.51 11094.06 14699.62 4799.85 3394.97 6399.96 6595.11 19199.95 5099.92 84
PHI-MVS98.41 4898.21 4899.03 7399.86 5397.10 11399.98 1598.80 6390.78 26699.62 4799.78 6295.30 52100.00 199.80 2599.93 6199.99 23
mvsany_test197.82 8097.90 7197.55 17398.77 14493.04 24999.80 14397.93 22496.95 4899.61 5399.68 9690.92 17299.83 12199.18 5998.29 15799.80 99
test_cas_vis1_n_192096.59 14396.23 13797.65 16798.22 18394.23 21899.99 497.25 29797.77 1799.58 5499.08 15377.10 31299.97 5797.64 14899.45 11398.74 227
DPM-MVS98.83 2198.46 3399.97 199.33 10299.92 199.96 3598.44 12797.96 1499.55 5599.94 497.18 21100.00 193.81 22699.94 5599.98 51
新几何199.42 3799.75 6998.27 6498.63 8192.69 19899.55 5599.82 4994.40 79100.00 191.21 26299.94 5599.99 23
test_vis1_n93.61 23393.03 23495.35 24395.86 29486.94 35499.87 10896.36 36196.85 4999.54 5798.79 18952.41 40499.83 12198.64 9698.97 13699.29 191
ACMMP_NAP98.49 4098.14 5499.54 2799.66 8298.62 5599.85 12298.37 16694.68 11599.53 5899.83 4692.87 130100.00 198.66 9599.84 7699.99 23
PMMVS96.76 13496.76 11896.76 20498.28 17992.10 27099.91 8797.98 21994.12 14199.53 5899.39 13086.93 22798.73 20696.95 16797.73 17099.45 168
FOURS199.92 3197.66 8999.95 5498.36 16795.58 8999.52 60
MSP-MVS99.09 999.12 598.98 8099.93 2497.24 10599.95 5498.42 14797.50 2699.52 6099.88 2497.43 1699.71 14199.50 4499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_s_conf0.1_n97.30 10597.21 9997.60 17297.38 24194.40 21399.90 9398.64 7796.47 6599.51 6299.65 10184.99 24799.93 8899.22 5899.09 13298.46 234
test_part299.89 4599.25 1899.49 63
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8798.39 15997.20 3899.46 6499.85 3395.53 4899.79 12699.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
region2R98.54 3698.37 3999.05 7199.96 897.18 10899.96 3598.55 9994.87 10899.45 6599.85 3394.07 96100.00 198.67 93100.00 199.98 51
MVS_030499.06 1198.84 1799.72 1399.76 6699.21 2199.99 499.34 2598.70 299.44 6699.75 7293.24 12099.99 3699.94 1199.41 11799.95 74
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5498.56 9397.56 2599.44 6699.85 3395.38 51100.00 199.31 5499.99 2199.87 90
MVSFormer96.94 12496.60 12697.95 14697.28 25097.70 8799.55 20697.27 29591.17 25299.43 6899.54 11590.92 17296.89 32394.67 20799.62 9599.25 195
lupinMVS97.85 7597.60 8298.62 10297.28 25097.70 8799.99 497.55 26195.50 9399.43 6899.67 9790.92 17298.71 20998.40 10899.62 9599.45 168
XVS98.70 2998.55 2899.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7099.78 6294.34 8499.96 6598.92 7699.95 5099.99 23
X-MVStestdata93.83 22392.06 25699.15 5999.94 1397.50 9599.94 7198.42 14796.22 7599.41 7041.37 42494.34 8499.96 6598.92 7699.95 5099.99 23
SR-MVS-dyc-post98.31 5398.17 5298.71 9599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7293.28 11899.78 12898.90 7999.92 6499.97 61
RE-MVS-def98.13 5599.79 6296.37 14299.76 15498.31 17894.43 12599.40 7299.75 7292.95 12898.90 7999.92 6499.97 61
MM98.83 2198.53 3099.76 1099.59 8599.33 899.99 499.76 698.39 499.39 7499.80 5490.49 18299.96 6599.89 1799.43 11599.98 51
APD-MVS_3200maxsize98.25 6098.08 5998.78 9099.81 6096.60 13199.82 13798.30 18193.95 15299.37 7599.77 6492.84 13199.76 13498.95 7399.92 6499.97 61
PGM-MVS98.34 5198.13 5598.99 7899.92 3197.00 11699.75 15899.50 1793.90 15699.37 7599.76 6693.24 120100.00 197.75 14799.96 4699.98 51
SR-MVS98.46 4298.30 4698.93 8499.88 4997.04 11599.84 12798.35 16994.92 10599.32 7799.80 5493.35 11399.78 12899.30 5599.95 5099.96 67
ZD-MVS99.92 3198.57 5698.52 10792.34 21799.31 7899.83 4695.06 5799.80 12499.70 3799.97 42
HFP-MVS98.56 3598.37 3999.14 6199.96 897.43 9999.95 5498.61 8394.77 11099.31 7899.85 3394.22 90100.00 198.70 9199.98 3299.98 51
ACMMPR98.50 3998.32 4399.05 7199.96 897.18 10899.95 5498.60 8594.77 11099.31 7899.84 4493.73 106100.00 198.70 9199.98 3299.98 51
ETV-MVS97.92 7197.80 7598.25 13198.14 19196.48 13599.98 1597.63 24995.61 8899.29 8199.46 12192.55 14098.82 19899.02 7198.54 14899.46 166
test22299.55 9097.41 10199.34 23798.55 9991.86 23099.27 8299.83 4693.84 10499.95 5099.99 23
MVSMamba_PlusPlus97.83 7797.45 8898.99 7898.60 15598.15 6599.58 19997.74 24190.34 27599.26 8398.32 22594.29 8899.23 17299.03 7099.89 7099.58 143
CANet_DTU96.76 13496.15 14098.60 10498.78 14397.53 9299.84 12797.63 24997.25 3799.20 8499.64 10281.36 27599.98 4792.77 24698.89 13898.28 239
EPNet98.49 4098.40 3598.77 9299.62 8496.80 12599.90 9399.51 1697.60 2299.20 8499.36 13393.71 10799.91 9297.99 13098.71 14599.61 134
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.94 297.71 9098.98 1293.92 29999.63 8381.76 38699.96 3598.56 9399.47 199.19 8699.99 194.16 94100.00 199.92 1399.93 61100.00 1
reproduce_model98.75 2798.66 2399.03 7399.71 7697.10 11399.73 16898.23 19197.02 4599.18 8799.90 1894.54 7699.99 3699.77 2899.90 6999.99 23
VNet97.21 11096.57 12899.13 6598.97 12397.82 8199.03 27599.21 2994.31 13399.18 8798.88 17986.26 23599.89 9998.93 7594.32 23899.69 115
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7798.47 399.13 8999.92 1396.38 34100.00 199.74 33100.00 1100.00 1
reproduce-ours98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
our_new_method98.78 2498.67 2199.09 6899.70 7897.30 10399.74 16198.25 18797.10 4099.10 9099.90 1894.59 7299.99 3699.77 2899.91 6799.99 23
GDP-MVS97.88 7297.59 8498.75 9397.59 22997.81 8299.95 5497.37 28294.44 12499.08 9299.58 11097.13 2399.08 18694.99 19498.17 15999.37 177
DeepC-MVS_fast96.59 198.81 2398.54 2999.62 2099.90 4298.85 3599.24 25198.47 11998.14 1099.08 9299.91 1493.09 124100.00 199.04 6799.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t97.41 10296.83 11599.14 6199.51 9497.83 8099.89 10298.27 18588.48 31199.06 9499.66 9990.30 18599.64 15196.32 17599.97 4299.96 67
PVSNet91.05 1397.13 11396.69 12398.45 11999.52 9295.81 16299.95 5499.65 1294.73 11299.04 9599.21 14684.48 25199.95 7394.92 19798.74 14499.58 143
CHOSEN 280x42099.01 1499.03 1098.95 8399.38 10098.87 3398.46 32499.42 2197.03 4499.02 9699.09 15299.35 298.21 25399.73 3599.78 8499.77 104
MG-MVS98.91 1998.65 2499.68 1699.94 1399.07 2499.64 19099.44 1997.33 3199.00 9799.72 8494.03 9799.98 4798.73 90100.00 1100.00 1
diffmvspermissive97.00 12196.64 12498.09 14097.64 22696.17 15399.81 13997.19 30094.67 11698.95 9899.28 13686.43 23298.76 20398.37 11197.42 17899.33 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS_fast97.80 8297.50 8698.68 9799.79 6296.42 13799.88 10598.16 20391.75 23598.94 9999.54 11591.82 15999.65 15097.62 15099.99 2199.99 23
dcpmvs_297.42 10198.09 5895.42 24199.58 8987.24 35299.23 25296.95 32994.28 13698.93 10099.73 8194.39 8299.16 18299.89 1799.82 8199.86 92
CP-MVS98.45 4398.32 4398.87 8699.96 896.62 13099.97 2898.39 15994.43 12598.90 10199.87 2794.30 87100.00 199.04 6799.99 2199.99 23
test_fmvsmconf0.1_n97.74 8797.44 8998.64 10195.76 29996.20 15099.94 7198.05 21498.17 998.89 10299.42 12387.65 21699.90 9499.50 4499.60 10199.82 95
testing22297.08 11996.75 11998.06 14298.56 15696.82 12399.85 12298.61 8392.53 20998.84 10398.84 18893.36 11298.30 24495.84 18394.30 23999.05 211
MVS_Test96.46 14795.74 15998.61 10398.18 18797.23 10699.31 24197.15 30691.07 25798.84 10397.05 26588.17 21298.97 19094.39 21197.50 17599.61 134
API-MVS97.86 7497.66 7998.47 11799.52 9295.41 18299.47 21998.87 5291.68 23698.84 10399.85 3392.34 14799.99 3698.44 10799.96 46100.00 1
GST-MVS98.27 5697.97 6499.17 5599.92 3197.57 9199.93 7898.39 15994.04 14898.80 10699.74 7992.98 127100.00 198.16 12099.76 8599.93 79
MVS_111021_LR98.42 4798.38 3798.53 11499.39 9995.79 16399.87 10899.86 296.70 5798.78 10799.79 5892.03 15499.90 9499.17 6099.86 7599.88 88
BP-MVS198.33 5298.18 5198.81 8997.44 23797.98 7499.96 3598.17 19894.88 10798.77 10899.59 10797.59 799.08 18698.24 11698.93 13799.36 179
h-mvs3394.92 19294.36 19796.59 21098.85 13991.29 29198.93 28698.94 4195.90 8098.77 10898.42 22090.89 17599.77 13197.80 14070.76 38998.72 229
hse-mvs294.38 21294.08 20595.31 24698.27 18090.02 31899.29 24698.56 9395.90 8098.77 10898.00 23590.89 17598.26 25197.80 14069.20 39597.64 252
TSAR-MVS + GP.98.60 3398.51 3198.86 8799.73 7396.63 12999.97 2897.92 22798.07 1198.76 11199.55 11395.00 6199.94 8199.91 1697.68 17299.99 23
sss97.57 9397.03 10799.18 5298.37 17198.04 7199.73 16899.38 2293.46 16798.76 11199.06 15591.21 16399.89 9996.33 17497.01 18999.62 130
CostFormer96.10 16195.88 15696.78 20397.03 25692.55 26297.08 36597.83 23690.04 28198.72 11394.89 34895.01 6098.29 24596.54 17395.77 21599.50 162
tpmrst96.27 15995.98 14697.13 19397.96 20093.15 24596.34 37798.17 19892.07 22398.71 11495.12 33893.91 10098.73 20694.91 19996.62 19499.50 162
MVS_111021_HR98.72 2898.62 2699.01 7799.36 10197.18 10899.93 7899.90 196.81 5498.67 11599.77 6493.92 9999.89 9999.27 5699.94 5599.96 67
MAR-MVS97.43 9797.19 10098.15 13799.47 9694.79 20499.05 27298.76 6492.65 20198.66 11699.82 4988.52 20999.98 4798.12 12299.63 9499.67 118
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+96.30 15695.69 16198.16 13497.85 20796.26 14597.41 35797.21 29990.37 27398.65 11798.58 20786.61 23198.70 21097.11 15997.37 18099.52 157
HPM-MVScopyleft97.96 6897.72 7698.68 9799.84 5696.39 14199.90 9398.17 19892.61 20398.62 11899.57 11291.87 15799.67 14898.87 8199.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS98.39 5098.20 4998.97 8199.97 396.92 12099.95 5498.38 16395.04 10198.61 11999.80 5493.39 111100.00 198.64 96100.00 199.98 51
jason97.24 10896.86 11498.38 12595.73 30297.32 10299.97 2897.40 27995.34 9698.60 12099.54 11587.70 21598.56 21797.94 13399.47 11099.25 195
jason: jason.
UBG97.84 7697.69 7898.29 12998.38 16996.59 13399.90 9398.53 10593.91 15598.52 12198.42 22096.77 2599.17 18098.54 10196.20 20299.11 206
CANet98.27 5697.82 7499.63 1799.72 7599.10 2399.98 1598.51 11097.00 4698.52 12199.71 8687.80 21499.95 7399.75 3199.38 11899.83 94
EI-MVSNet-Vis-set98.27 5698.11 5798.75 9399.83 5796.59 13399.40 22798.51 11095.29 9798.51 12399.76 6693.60 11099.71 14198.53 10399.52 10599.95 74
ZNCC-MVS98.31 5398.03 6099.17 5599.88 4997.59 9099.94 7198.44 12794.31 13398.50 12499.82 4993.06 12599.99 3698.30 11599.99 2199.93 79
LFMVS94.75 19993.56 22098.30 12899.03 11795.70 16998.74 30697.98 21987.81 32298.47 12599.39 13067.43 37199.53 15398.01 12895.20 22999.67 118
tpm295.47 17995.18 17796.35 21896.91 26391.70 28496.96 36897.93 22488.04 31898.44 12695.40 32393.32 11597.97 26694.00 21995.61 21999.38 175
mvsmamba96.94 12496.73 12097.55 17397.99 19894.37 21499.62 19397.70 24393.13 17998.42 12797.92 24088.02 21398.75 20598.78 8699.01 13599.52 157
alignmvs97.81 8197.33 9499.25 4698.77 14498.66 5199.99 498.44 12794.40 12998.41 12899.47 11993.65 10899.42 16798.57 9994.26 24099.67 118
UA-Net96.54 14495.96 15098.27 13098.23 18295.71 16898.00 34898.45 12293.72 16298.41 12899.27 13988.71 20899.66 14991.19 26397.69 17199.44 170
DP-MVS Recon98.41 4898.02 6199.56 2599.97 398.70 4899.92 8198.44 12792.06 22598.40 13099.84 4495.68 44100.00 198.19 11899.71 8899.97 61
CPTT-MVS97.64 9297.32 9598.58 10799.97 395.77 16499.96 3598.35 16989.90 28398.36 13199.79 5891.18 16799.99 3698.37 11199.99 2199.99 23
PAPM98.60 3398.42 3499.14 6196.05 28898.96 2699.90 9399.35 2496.68 5898.35 13299.66 9996.45 3398.51 22099.45 4899.89 7099.96 67
HY-MVS92.50 797.79 8497.17 10299.63 1798.98 12299.32 997.49 35599.52 1495.69 8698.32 13397.41 25293.32 11599.77 13198.08 12695.75 21799.81 97
EI-MVSNet-UG-set98.14 6497.99 6298.60 10499.80 6196.27 14499.36 23698.50 11695.21 9998.30 13499.75 7293.29 11799.73 14098.37 11199.30 12299.81 97
PVSNet_BlendedMVS96.05 16295.82 15896.72 20699.59 8596.99 11799.95 5499.10 3194.06 14698.27 13595.80 30389.00 20499.95 7399.12 6187.53 29693.24 355
PVSNet_Blended97.94 6997.64 8098.83 8899.59 8596.99 117100.00 199.10 3195.38 9498.27 13599.08 15389.00 20499.95 7399.12 6199.25 12499.57 145
MP-MVScopyleft98.23 6297.97 6499.03 7399.94 1397.17 11199.95 5498.39 15994.70 11498.26 13799.81 5391.84 158100.00 198.85 8299.97 4299.93 79
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
WTY-MVS98.10 6697.60 8299.60 2298.92 13099.28 1799.89 10299.52 1495.58 8998.24 13899.39 13093.33 11499.74 13797.98 13295.58 22099.78 103
DELS-MVS98.54 3698.22 4799.50 3099.15 11298.65 53100.00 198.58 8897.70 2098.21 13999.24 14492.58 13999.94 8198.63 9899.94 5599.92 84
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETVMVS97.03 12096.64 12498.20 13398.67 14997.12 11299.89 10298.57 9091.10 25698.17 14098.59 20493.86 10398.19 25495.64 18695.24 22899.28 192
testing1197.48 9697.27 9698.10 13998.36 17296.02 15799.92 8198.45 12293.45 16998.15 14198.70 19495.48 4999.22 17397.85 13895.05 23099.07 210
MDTV_nov1_ep13_2view96.26 14596.11 38291.89 22998.06 14294.40 7994.30 21599.67 118
PAPR98.52 3898.16 5399.58 2499.97 398.77 4299.95 5498.43 13595.35 9598.03 14399.75 7294.03 9799.98 4798.11 12399.83 7799.99 23
MDTV_nov1_ep1395.69 16197.90 20394.15 22095.98 38598.44 12793.12 18097.98 14495.74 30595.10 5598.58 21690.02 28796.92 191
test250697.53 9497.19 10098.58 10798.66 15096.90 12198.81 30199.77 594.93 10397.95 14598.96 16892.51 14199.20 17794.93 19698.15 16099.64 124
GG-mvs-BLEND98.54 11298.21 18498.01 7293.87 39598.52 10797.92 14697.92 24099.02 397.94 27198.17 11999.58 10299.67 118
EIA-MVS97.53 9497.46 8797.76 16298.04 19694.84 20199.98 1597.61 25594.41 12897.90 14799.59 10792.40 14598.87 19598.04 12799.13 13099.59 137
test_fmvsmconf0.01_n96.39 15195.74 15998.32 12791.47 37995.56 17699.84 12797.30 29097.74 1897.89 14899.35 13479.62 29499.85 11199.25 5799.24 12599.55 147
sasdasda97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
test_yl97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
DCV-MVSNet97.83 7797.37 9299.21 4999.18 10897.98 7499.64 19099.27 2791.43 24597.88 14998.99 16295.84 4299.84 11998.82 8395.32 22699.79 100
canonicalmvs97.09 11696.32 13499.39 4098.93 12798.95 2799.72 17297.35 28394.45 12197.88 14999.42 12386.71 22899.52 15498.48 10493.97 24499.72 110
MGCFI-Net97.00 12196.22 13899.34 4398.86 13898.80 3999.67 18497.30 29094.31 13397.77 15399.41 12786.36 23499.50 15898.38 10993.90 24699.72 110
VDDNet93.12 24491.91 25996.76 20496.67 27892.65 26098.69 31298.21 19382.81 37597.75 15499.28 13661.57 39299.48 16498.09 12594.09 24298.15 241
EPMVS96.53 14596.01 14398.09 14098.43 16796.12 15696.36 37699.43 2093.53 16597.64 15595.04 34194.41 7898.38 23691.13 26498.11 16399.75 106
JIA-IIPM91.76 27790.70 27894.94 25696.11 28687.51 34993.16 39898.13 20875.79 39797.58 15677.68 41292.84 13197.97 26688.47 30396.54 19599.33 185
EPNet_dtu95.71 17295.39 16996.66 20898.92 13093.41 24199.57 20298.90 4796.19 7797.52 15798.56 20992.65 13597.36 28977.89 37898.33 15399.20 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR98.12 6597.93 6998.70 9699.94 1396.13 15499.82 13798.43 13594.56 11897.52 15799.70 8894.40 7999.98 4797.00 16299.98 3299.99 23
FE-MVS95.70 17495.01 18497.79 15798.21 18494.57 20695.03 39098.69 6988.90 30197.50 15996.19 29392.60 13899.49 16389.99 28897.94 16999.31 187
thisisatest051597.41 10297.02 10898.59 10697.71 22197.52 9399.97 2898.54 10291.83 23197.45 16099.04 15697.50 999.10 18594.75 20496.37 20199.16 200
RRT-MVS96.24 16095.68 16397.94 14997.65 22594.92 19999.27 24997.10 31192.79 19397.43 16197.99 23781.85 26999.37 16898.46 10698.57 14799.53 155
OMC-MVS97.28 10697.23 9897.41 18299.76 6693.36 24499.65 18697.95 22296.03 7997.41 16299.70 8889.61 19399.51 15696.73 17198.25 15899.38 175
testing9997.17 11196.91 11097.95 14698.35 17495.70 16999.91 8798.43 13592.94 18497.36 16398.72 19294.83 6599.21 17497.00 16294.64 23298.95 215
testing9197.16 11296.90 11197.97 14598.35 17495.67 17299.91 8798.42 14792.91 18697.33 16498.72 19294.81 6699.21 17496.98 16494.63 23399.03 212
gg-mvs-nofinetune93.51 23591.86 26198.47 11797.72 21997.96 7792.62 39998.51 11074.70 40197.33 16469.59 41598.91 497.79 27597.77 14599.56 10399.67 118
PatchT90.38 30388.75 31995.25 24895.99 29090.16 31591.22 40697.54 26376.80 39397.26 16686.01 40691.88 15696.07 35966.16 40595.91 21299.51 160
PLCcopyleft95.54 397.93 7097.89 7298.05 14399.82 5894.77 20599.92 8198.46 12193.93 15397.20 16799.27 13995.44 5099.97 5797.41 15299.51 10899.41 173
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
mmtdpeth88.52 32987.75 33190.85 34995.71 30583.47 37598.94 28494.85 38988.78 30497.19 16889.58 39263.29 38598.97 19098.54 10162.86 40890.10 391
MTAPA98.29 5597.96 6799.30 4499.85 5497.93 7899.39 23198.28 18395.76 8497.18 16999.88 2492.74 134100.00 198.67 9399.88 7399.99 23
UWE-MVS96.79 13196.72 12197.00 19698.51 16393.70 23299.71 17598.60 8592.96 18397.09 17098.34 22496.67 3198.85 19792.11 25296.50 19798.44 235
PatchmatchNetpermissive95.94 16595.45 16797.39 18497.83 20894.41 21196.05 38398.40 15692.86 18797.09 17095.28 33494.21 9298.07 26289.26 29498.11 16399.70 113
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053097.10 11496.72 12198.22 13297.60 22896.70 12699.92 8198.54 10291.11 25597.07 17298.97 16697.47 1299.03 18893.73 23196.09 20598.92 216
test_fmvsmvis_n_192097.67 9197.59 8497.91 15297.02 25795.34 18499.95 5498.45 12297.87 1597.02 17399.59 10789.64 19299.98 4799.41 5199.34 12198.42 236
CR-MVSNet93.45 23892.62 24295.94 22896.29 28192.66 25892.01 40296.23 36392.62 20296.94 17493.31 37391.04 16996.03 36079.23 37095.96 20899.13 204
RPMNet89.76 31887.28 33497.19 19296.29 28192.66 25892.01 40298.31 17870.19 40896.94 17485.87 40787.25 22299.78 12862.69 40995.96 20899.13 204
baseline96.43 14895.98 14697.76 16297.34 24495.17 19499.51 21297.17 30393.92 15496.90 17699.28 13685.37 24398.64 21497.50 15196.86 19399.46 166
ECVR-MVScopyleft95.66 17595.05 18297.51 17798.66 15093.71 23198.85 29898.45 12294.93 10396.86 17798.96 16875.22 33599.20 17795.34 18898.15 16099.64 124
Vis-MVSNetpermissive95.72 17095.15 17897.45 17997.62 22794.28 21699.28 24798.24 18994.27 13896.84 17898.94 17579.39 29698.76 20393.25 23698.49 14999.30 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDD-MVS93.77 22792.94 23596.27 22098.55 15990.22 31498.77 30597.79 23890.85 26296.82 17999.42 12361.18 39499.77 13198.95 7394.13 24198.82 222
UGNet95.33 18494.57 19397.62 17198.55 15994.85 20098.67 31499.32 2695.75 8596.80 18096.27 29172.18 34999.96 6594.58 20999.05 13498.04 244
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary97.23 10996.80 11798.51 11599.99 195.60 17599.09 26198.84 5993.32 17296.74 18199.72 8486.04 236100.00 198.01 12899.43 11599.94 78
tpm93.70 23193.41 22694.58 27195.36 31587.41 35097.01 36696.90 33690.85 26296.72 18294.14 36590.40 18396.84 32690.75 27588.54 28399.51 160
test111195.57 17794.98 18597.37 18598.56 15693.37 24398.86 29698.45 12294.95 10296.63 18398.95 17375.21 33699.11 18395.02 19398.14 16299.64 124
tttt051796.85 12896.49 13097.92 15097.48 23695.89 16199.85 12298.54 10290.72 26896.63 18398.93 17797.47 1299.02 18993.03 24395.76 21698.85 220
casdiffmvspermissive96.42 15095.97 14997.77 16097.30 24894.98 19699.84 12797.09 31493.75 16196.58 18599.26 14285.07 24598.78 20197.77 14597.04 18799.54 151
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA97.76 8697.38 9198.92 8599.53 9196.84 12299.87 10898.14 20793.78 15996.55 18699.69 9092.28 14899.98 4797.13 15899.44 11499.93 79
PatchMatch-RL96.04 16395.40 16897.95 14699.59 8595.22 19199.52 21099.07 3493.96 15196.49 18798.35 22282.28 26599.82 12390.15 28699.22 12798.81 223
MP-MVS-pluss98.07 6797.64 8099.38 4299.74 7098.41 6399.74 16198.18 19793.35 17096.45 18899.85 3392.64 13699.97 5798.91 7899.89 7099.77 104
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ADS-MVSNet293.80 22693.88 21293.55 31297.87 20585.94 36094.24 39196.84 34090.07 27996.43 18994.48 35990.29 18695.37 37087.44 31397.23 18199.36 179
ADS-MVSNet94.79 19694.02 20797.11 19597.87 20593.79 22894.24 39198.16 20390.07 27996.43 18994.48 35990.29 18698.19 25487.44 31397.23 18199.36 179
ACMMPcopyleft97.74 8797.44 8998.66 9999.92 3196.13 15499.18 25699.45 1894.84 10996.41 19199.71 8691.40 16199.99 3697.99 13098.03 16799.87 90
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.27 10796.81 11698.66 9998.81 14196.67 12899.92 8198.64 7794.51 12096.38 19298.49 21389.05 20399.88 10597.10 16098.34 15299.43 171
AUN-MVS93.28 23992.60 24395.34 24498.29 17790.09 31799.31 24198.56 9391.80 23496.35 19398.00 23589.38 19698.28 24792.46 24769.22 39497.64 252
FA-MVS(test-final)95.86 16695.09 18098.15 13797.74 21495.62 17496.31 37898.17 19891.42 24796.26 19496.13 29690.56 18099.47 16592.18 25197.07 18599.35 182
thres20096.96 12396.21 13999.22 4898.97 12398.84 3699.85 12299.71 793.17 17796.26 19498.88 17989.87 19099.51 15694.26 21694.91 23199.31 187
HyFIR lowres test96.66 14196.43 13297.36 18799.05 11693.91 22799.70 17999.80 390.54 27096.26 19498.08 23292.15 15198.23 25296.84 17095.46 22199.93 79
SCA94.69 20093.81 21497.33 18997.10 25394.44 20898.86 29698.32 17693.30 17396.17 19795.59 31276.48 32297.95 26991.06 26697.43 17699.59 137
casdiffmvs_mvgpermissive96.43 14895.94 15297.89 15497.44 23795.47 17899.86 11997.29 29393.35 17096.03 19899.19 14785.39 24298.72 20897.89 13797.04 18799.49 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpn200view996.79 13195.99 14499.19 5198.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.27 193
thres40096.78 13395.99 14499.16 5798.94 12598.82 3799.78 14699.71 792.86 18796.02 19998.87 18289.33 19799.50 15893.84 22394.57 23499.16 200
mamv495.24 18596.90 11190.25 35698.65 15272.11 40398.28 33597.64 24889.99 28295.93 20198.25 22794.74 6899.11 18399.01 7299.64 9299.53 155
dp95.05 18994.43 19596.91 19997.99 19892.73 25696.29 37997.98 21989.70 28695.93 20194.67 35493.83 10598.45 22586.91 32696.53 19699.54 151
thres100view90096.74 13695.92 15499.18 5298.90 13598.77 4299.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.84 22394.57 23499.27 193
thres600view796.69 13995.87 15799.14 6198.90 13598.78 4199.74 16199.71 792.59 20595.84 20398.86 18489.25 19999.50 15893.44 23594.50 23799.16 200
EPP-MVSNet96.69 13996.60 12696.96 19897.74 21493.05 24899.37 23498.56 9388.75 30595.83 20599.01 15996.01 3698.56 21796.92 16897.20 18399.25 195
TESTMET0.1,196.74 13696.26 13698.16 13497.36 24396.48 13599.96 3598.29 18291.93 22895.77 20698.07 23395.54 4698.29 24590.55 27898.89 13899.70 113
F-COLMAP96.93 12696.95 10996.87 20199.71 7691.74 28099.85 12297.95 22293.11 18195.72 20799.16 15092.35 14699.94 8195.32 18999.35 12098.92 216
test-LLR96.47 14696.04 14297.78 15897.02 25795.44 17999.96 3598.21 19394.07 14495.55 20896.38 28693.90 10198.27 24990.42 28198.83 14299.64 124
test-mter96.39 15195.93 15397.78 15897.02 25795.44 17999.96 3598.21 19391.81 23395.55 20896.38 28695.17 5398.27 24990.42 28198.83 14299.64 124
IS-MVSNet96.29 15795.90 15597.45 17998.13 19294.80 20399.08 26397.61 25592.02 22795.54 21098.96 16890.64 17898.08 26093.73 23197.41 17999.47 165
CHOSEN 1792x268896.81 13096.53 12997.64 16898.91 13493.07 24699.65 18699.80 395.64 8795.39 21198.86 18484.35 25399.90 9496.98 16499.16 12899.95 74
CDS-MVSNet96.34 15396.07 14197.13 19397.37 24294.96 19799.53 20997.91 22891.55 23995.37 21298.32 22595.05 5897.13 30593.80 22795.75 21799.30 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu94.53 20795.30 17392.22 33597.77 21282.54 37999.59 19797.06 31794.92 10595.29 21395.37 32785.81 23797.89 27294.80 20297.07 18596.23 268
CSCG97.10 11497.04 10697.27 19199.89 4591.92 27599.90 9399.07 3488.67 30795.26 21499.82 4993.17 12399.98 4798.15 12199.47 11099.90 86
Vis-MVSNet (Re-imp)96.32 15495.98 14697.35 18897.93 20294.82 20299.47 21998.15 20691.83 23195.09 21599.11 15191.37 16297.47 28793.47 23497.43 17699.74 107
TAMVS95.85 16795.58 16596.65 20997.07 25493.50 23899.17 25797.82 23791.39 24995.02 21698.01 23492.20 14997.30 29593.75 23095.83 21499.14 203
XVG-OURS-SEG-HR94.79 19694.70 19295.08 25198.05 19589.19 32899.08 26397.54 26393.66 16394.87 21799.58 11078.78 30399.79 12697.31 15493.40 25196.25 266
XVG-OURS94.82 19394.74 19195.06 25298.00 19789.19 32899.08 26397.55 26194.10 14294.71 21899.62 10580.51 28799.74 13796.04 17993.06 25696.25 266
ab-mvs94.69 20093.42 22498.51 11598.07 19496.26 14596.49 37498.68 7190.31 27694.54 21997.00 26776.30 32499.71 14195.98 18093.38 25299.56 146
TAPA-MVS92.12 894.42 21193.60 21796.90 20099.33 10291.78 27999.78 14698.00 21689.89 28494.52 22099.47 11991.97 15599.18 17969.90 39799.52 10599.73 108
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS94.54 20593.56 22097.49 17897.96 20094.34 21598.71 30997.51 26890.30 27794.51 22198.69 19575.56 33098.77 20292.82 24595.99 20799.35 182
Fast-Effi-MVS+95.02 19094.19 20297.52 17697.88 20494.55 20799.97 2897.08 31588.85 30394.47 22297.96 23984.59 25098.41 22889.84 29097.10 18499.59 137
DeepC-MVS94.51 496.92 12796.40 13398.45 11999.16 11195.90 16099.66 18598.06 21296.37 7294.37 22399.49 11883.29 26099.90 9497.63 14999.61 9999.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF91.80 27492.79 23988.83 36798.15 19069.87 40598.11 34496.60 35483.93 36594.33 22499.27 13979.60 29599.46 16691.99 25393.16 25497.18 259
WB-MVSnew92.90 24992.77 24093.26 31996.95 26193.63 23499.71 17598.16 20391.49 24094.28 22598.14 23081.33 27696.48 34179.47 36995.46 22189.68 395
BH-RMVSNet95.18 18694.31 20097.80 15598.17 18895.23 19099.76 15497.53 26592.52 21094.27 22699.25 14376.84 31798.80 19990.89 27299.54 10499.35 182
CVMVSNet94.68 20294.94 18693.89 30296.80 27186.92 35599.06 26898.98 3894.45 12194.23 22799.02 15785.60 23895.31 37290.91 27195.39 22499.43 171
baseline195.78 16994.86 18798.54 11298.47 16698.07 6999.06 26897.99 21792.68 19994.13 22898.62 20393.28 11898.69 21193.79 22885.76 30498.84 221
Anonymous20240521193.10 24591.99 25796.40 21599.10 11389.65 32498.88 29297.93 22483.71 36794.00 22998.75 19168.79 36299.88 10595.08 19291.71 25899.68 116
cascas94.64 20393.61 21597.74 16497.82 20996.26 14599.96 3597.78 24085.76 34794.00 22997.54 24976.95 31699.21 17497.23 15695.43 22397.76 251
Anonymous2024052992.10 26790.65 27996.47 21198.82 14090.61 30598.72 30898.67 7475.54 39893.90 23198.58 20766.23 37599.90 9494.70 20690.67 26298.90 219
LS3D95.84 16895.11 17998.02 14499.85 5495.10 19598.74 30698.50 11687.22 32993.66 23299.86 2987.45 21999.95 7390.94 27099.81 8399.02 213
GeoE94.36 21593.48 22296.99 19797.29 24993.54 23799.96 3596.72 34988.35 31493.43 23398.94 17582.05 26698.05 26388.12 30896.48 19999.37 177
HQP-NCC95.78 29599.87 10896.82 5193.37 234
ACMP_Plane95.78 29599.87 10896.82 5193.37 234
HQP4-MVS93.37 23498.39 23294.53 274
HQP-MVS94.61 20494.50 19494.92 25795.78 29591.85 27699.87 10897.89 22996.82 5193.37 23498.65 19980.65 28598.39 23297.92 13489.60 26494.53 274
MonoMVSNet94.82 19394.43 19595.98 22694.54 32790.73 30199.03 27597.06 31793.16 17893.15 23895.47 32088.29 21097.57 28397.85 13891.33 26199.62 130
HQP_MVS94.49 20994.36 19794.87 25895.71 30591.74 28099.84 12797.87 23196.38 6993.01 23998.59 20480.47 28998.37 23897.79 14389.55 26794.52 276
plane_prior391.64 28696.63 6093.01 239
GA-MVS93.83 22392.84 23696.80 20295.73 30293.57 23599.88 10597.24 29892.57 20792.92 24196.66 27878.73 30497.67 28087.75 31194.06 24399.17 199
tpm cat193.51 23592.52 24996.47 21197.77 21291.47 29096.13 38198.06 21280.98 38392.91 24293.78 36889.66 19198.87 19587.03 32296.39 20099.09 207
1112_ss96.01 16495.20 17698.42 12297.80 21096.41 13899.65 18696.66 35192.71 19692.88 24399.40 12892.16 15099.30 16991.92 25593.66 24799.55 147
Test_1112_low_res95.72 17094.83 18898.42 12297.79 21196.41 13899.65 18696.65 35292.70 19792.86 24496.13 29692.15 15199.30 16991.88 25693.64 24899.55 147
IB-MVS92.85 694.99 19193.94 21098.16 13497.72 21995.69 17199.99 498.81 6194.28 13692.70 24596.90 26995.08 5699.17 18096.07 17873.88 38399.60 136
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Fast-Effi-MVS+-dtu93.72 23093.86 21393.29 31797.06 25586.16 35899.80 14396.83 34192.66 20092.58 24697.83 24581.39 27497.67 28089.75 29196.87 19296.05 271
SDMVSNet94.80 19593.96 20997.33 18998.92 13095.42 18199.59 19798.99 3792.41 21492.55 24797.85 24375.81 32998.93 19497.90 13691.62 25997.64 252
sd_testset93.55 23492.83 23795.74 23498.92 13090.89 29998.24 33798.85 5692.41 21492.55 24797.85 24371.07 35798.68 21293.93 22091.62 25997.64 252
dmvs_re93.20 24193.15 23293.34 31596.54 27983.81 37298.71 30998.51 11091.39 24992.37 24998.56 20978.66 30597.83 27493.89 22189.74 26398.38 237
tpmvs94.28 21793.57 21996.40 21598.55 15991.50 28995.70 38998.55 9987.47 32492.15 25094.26 36491.42 16098.95 19388.15 30695.85 21398.76 225
Syy-MVS90.00 31490.63 28088.11 37497.68 22274.66 40199.71 17598.35 16990.79 26492.10 25198.67 19679.10 30193.09 39463.35 40895.95 21096.59 264
myMVS_eth3d94.46 21094.76 19093.55 31297.68 22290.97 29499.71 17598.35 16990.79 26492.10 25198.67 19692.46 14493.09 39487.13 31995.95 21096.59 264
BH-w/o95.71 17295.38 17096.68 20798.49 16592.28 26699.84 12797.50 26992.12 22292.06 25398.79 18984.69 24998.67 21395.29 19099.66 9199.09 207
VPA-MVSNet92.70 25491.55 26696.16 22295.09 31796.20 15098.88 29299.00 3691.02 25991.82 25495.29 33376.05 32897.96 26895.62 18781.19 33994.30 293
baseline296.71 13896.49 13097.37 18595.63 31195.96 15999.74 16198.88 5192.94 18491.61 25598.97 16697.72 698.62 21594.83 20198.08 16697.53 257
OPM-MVS93.21 24092.80 23894.44 28093.12 35290.85 30099.77 14997.61 25596.19 7791.56 25698.65 19975.16 33798.47 22193.78 22989.39 27093.99 324
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet93.73 22993.40 22794.74 26396.80 27192.69 25799.06 26897.67 24688.96 29891.39 25799.02 15788.75 20797.30 29591.07 26587.85 29194.22 299
MVSTER95.53 17895.22 17596.45 21398.56 15697.72 8499.91 8797.67 24692.38 21691.39 25797.14 25997.24 1897.30 29594.80 20287.85 29194.34 292
testing393.92 22194.23 20192.99 32697.54 23190.23 31399.99 499.16 3090.57 26991.33 25998.63 20292.99 12692.52 39882.46 35495.39 22496.22 269
test_fmvs289.47 32289.70 29988.77 37094.54 32775.74 39899.83 13494.70 39494.71 11391.08 26096.82 27754.46 40197.78 27792.87 24488.27 28692.80 363
BH-untuned95.18 18694.83 18896.22 22198.36 17291.22 29299.80 14397.32 28890.91 26091.08 26098.67 19683.51 25798.54 21994.23 21799.61 9998.92 216
CLD-MVS94.06 22093.90 21194.55 27396.02 28990.69 30299.98 1597.72 24296.62 6291.05 26298.85 18777.21 31198.47 22198.11 12389.51 26994.48 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS96.60 14295.56 16699.72 1396.85 26899.22 2098.31 33398.94 4191.57 23890.90 26399.61 10686.66 23099.96 6597.36 15399.88 7399.99 23
MSDG94.37 21393.36 22897.40 18398.88 13793.95 22699.37 23497.38 28085.75 34990.80 26499.17 14984.11 25599.88 10586.35 32798.43 15198.36 238
VPNet91.81 27190.46 28295.85 23194.74 32395.54 17798.98 27998.59 8792.14 22190.77 26597.44 25168.73 36497.54 28594.89 20077.89 36594.46 279
MIMVSNet90.30 30688.67 32095.17 25096.45 28091.64 28692.39 40097.15 30685.99 34490.50 26693.19 37566.95 37294.86 37982.01 35893.43 25099.01 214
mvs_anonymous95.65 17695.03 18397.53 17598.19 18695.74 16699.33 23897.49 27090.87 26190.47 26797.10 26188.23 21197.16 30295.92 18197.66 17399.68 116
Patchmatch-test92.65 25791.50 26796.10 22496.85 26890.49 30891.50 40497.19 30082.76 37690.23 26895.59 31295.02 5998.00 26577.41 38096.98 19099.82 95
LPG-MVS_test92.96 24792.71 24193.71 30695.43 31388.67 33699.75 15897.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
LGP-MVS_train93.71 30695.43 31388.67 33697.62 25292.81 19090.05 26998.49 21375.24 33398.40 23095.84 18389.12 27194.07 316
DP-MVS94.54 20593.42 22497.91 15299.46 9894.04 22298.93 28697.48 27181.15 38290.04 27199.55 11387.02 22599.95 7388.97 29698.11 16399.73 108
test_djsdf92.83 25192.29 25294.47 27891.90 37392.46 26399.55 20697.27 29591.17 25289.96 27296.07 29981.10 27896.89 32394.67 20788.91 27394.05 318
ACMM91.95 1092.88 25092.52 24993.98 29895.75 30189.08 33299.77 14997.52 26793.00 18289.95 27397.99 23776.17 32698.46 22493.63 23388.87 27594.39 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
131496.84 12995.96 15099.48 3496.74 27598.52 5898.31 33398.86 5395.82 8289.91 27498.98 16487.49 21899.96 6597.80 14099.73 8799.96 67
XVG-ACMP-BASELINE91.22 28690.75 27792.63 33293.73 34185.61 36198.52 32397.44 27392.77 19489.90 27596.85 27366.64 37498.39 23292.29 24988.61 28093.89 332
miper_enhance_ethall94.36 21593.98 20895.49 23798.68 14895.24 18999.73 16897.29 29393.28 17489.86 27695.97 30194.37 8397.05 31192.20 25084.45 31694.19 302
nrg03093.51 23592.53 24896.45 21394.36 33097.20 10799.81 13997.16 30591.60 23789.86 27697.46 25086.37 23397.68 27995.88 18280.31 35294.46 279
V4291.28 28390.12 29494.74 26393.42 34793.46 23999.68 18297.02 32187.36 32689.85 27895.05 34081.31 27797.34 29187.34 31680.07 35493.40 350
v14419290.79 29489.52 30494.59 27093.11 35392.77 25299.56 20496.99 32486.38 34089.82 27994.95 34780.50 28897.10 30883.98 34480.41 35093.90 331
GBi-Net90.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
test190.88 29189.82 29794.08 29197.53 23291.97 27198.43 32796.95 32987.05 33089.68 28094.72 35071.34 35396.11 35587.01 32385.65 30594.17 303
FMVSNet392.69 25591.58 26495.99 22598.29 17797.42 10099.26 25097.62 25289.80 28589.68 28095.32 32981.62 27396.27 35087.01 32385.65 30594.29 294
IterMVS-LS92.69 25592.11 25494.43 28296.80 27192.74 25499.45 22496.89 33788.98 29689.65 28395.38 32688.77 20696.34 34790.98 26982.04 33394.22 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WBMVS94.52 20894.03 20695.98 22698.38 16996.68 12799.92 8197.63 24990.75 26789.64 28495.25 33596.77 2596.90 32294.35 21483.57 32394.35 290
v114491.09 28789.83 29694.87 25893.25 34993.69 23399.62 19396.98 32686.83 33689.64 28494.99 34580.94 28097.05 31185.08 33881.16 34093.87 334
v192192090.46 30189.12 31194.50 27692.96 35792.46 26399.49 21696.98 32686.10 34389.61 28695.30 33078.55 30797.03 31682.17 35780.89 34894.01 321
v119290.62 29989.25 30994.72 26593.13 35093.07 24699.50 21497.02 32186.33 34189.56 28795.01 34279.22 29897.09 31082.34 35681.16 34094.01 321
PCF-MVS94.20 595.18 18694.10 20498.43 12198.55 15995.99 15897.91 35097.31 28990.35 27489.48 28899.22 14585.19 24499.89 9990.40 28398.47 15099.41 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator91.47 1296.28 15895.34 17199.08 7096.82 27097.47 9899.45 22498.81 6195.52 9289.39 28999.00 16181.97 26799.95 7397.27 15599.83 7799.84 93
v124090.20 30988.79 31894.44 28093.05 35592.27 26799.38 23296.92 33585.89 34589.36 29094.87 34977.89 31097.03 31680.66 36481.08 34394.01 321
FIs94.10 21993.43 22396.11 22394.70 32496.82 12399.58 19998.93 4592.54 20889.34 29197.31 25587.62 21797.10 30894.22 21886.58 30094.40 285
ITE_SJBPF92.38 33395.69 30885.14 36495.71 37492.81 19089.33 29298.11 23170.23 35998.42 22785.91 33388.16 28893.59 347
v2v48291.30 28190.07 29595.01 25393.13 35093.79 22899.77 14997.02 32188.05 31789.25 29395.37 32780.73 28397.15 30387.28 31780.04 35594.09 315
UniMVSNet (Re)93.07 24692.13 25395.88 22994.84 32196.24 14999.88 10598.98 3892.49 21289.25 29395.40 32387.09 22497.14 30493.13 24178.16 36394.26 295
tt080591.28 28390.18 29194.60 26996.26 28387.55 34898.39 33198.72 6689.00 29589.22 29598.47 21762.98 38798.96 19290.57 27788.00 29097.28 258
UniMVSNet_NR-MVSNet92.95 24892.11 25495.49 23794.61 32695.28 18799.83 13499.08 3391.49 24089.21 29696.86 27287.14 22396.73 33293.20 23777.52 36894.46 279
DU-MVS92.46 26091.45 26995.49 23794.05 33595.28 18799.81 13998.74 6592.25 22089.21 29696.64 28081.66 27196.73 33293.20 23777.52 36894.46 279
eth_miper_zixun_eth92.41 26191.93 25893.84 30397.28 25090.68 30398.83 29996.97 32888.57 31089.19 29895.73 30789.24 20196.69 33489.97 28981.55 33694.15 309
cl2293.77 22793.25 23195.33 24599.49 9594.43 20999.61 19598.09 20990.38 27289.16 29995.61 31090.56 18097.34 29191.93 25484.45 31694.21 301
Baseline_NR-MVSNet90.33 30589.51 30592.81 33092.84 35989.95 32099.77 14993.94 40184.69 36189.04 30095.66 30981.66 27196.52 33990.99 26876.98 37491.97 374
FC-MVSNet-test93.81 22593.15 23295.80 23394.30 33296.20 15099.42 22698.89 4992.33 21889.03 30197.27 25787.39 22096.83 32893.20 23786.48 30194.36 287
QAPM95.40 18194.17 20399.10 6796.92 26297.71 8599.40 22798.68 7189.31 28988.94 30298.89 17882.48 26499.96 6593.12 24299.83 7799.62 130
miper_ehance_all_eth93.16 24392.60 24394.82 26297.57 23093.56 23699.50 21497.07 31688.75 30588.85 30395.52 31690.97 17196.74 33190.77 27484.45 31694.17 303
AllTest92.48 25991.64 26295.00 25499.01 11888.43 34098.94 28496.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
TestCases95.00 25499.01 11888.43 34096.82 34386.50 33888.71 30498.47 21774.73 33999.88 10585.39 33596.18 20396.71 262
c3_l92.53 25891.87 26094.52 27497.40 24092.99 25099.40 22796.93 33487.86 32088.69 30695.44 32189.95 18996.44 34390.45 28080.69 34994.14 312
pmmvs492.10 26791.07 27595.18 24992.82 36194.96 19799.48 21896.83 34187.45 32588.66 30796.56 28483.78 25696.83 32889.29 29384.77 31493.75 340
kuosan93.17 24292.60 24394.86 26198.40 16889.54 32698.44 32698.53 10584.46 36288.49 30897.92 24090.57 17997.05 31183.10 35093.49 24997.99 245
PS-MVSNAJss93.64 23293.31 22994.61 26892.11 37092.19 26899.12 25997.38 28092.51 21188.45 30996.99 26891.20 16497.29 29894.36 21287.71 29394.36 287
UniMVSNet_ETH3D90.06 31388.58 32194.49 27794.67 32588.09 34597.81 35397.57 26083.91 36688.44 31097.41 25257.44 39897.62 28291.41 26088.59 28297.77 250
TranMVSNet+NR-MVSNet91.68 27890.61 28194.87 25893.69 34293.98 22599.69 18098.65 7591.03 25888.44 31096.83 27680.05 29296.18 35390.26 28576.89 37694.45 284
FMVSNet291.02 28889.56 30295.41 24297.53 23295.74 16698.98 27997.41 27887.05 33088.43 31295.00 34471.34 35396.24 35285.12 33785.21 31094.25 297
COLMAP_ROBcopyleft90.47 1492.18 26691.49 26894.25 28799.00 12088.04 34698.42 33096.70 35082.30 37888.43 31299.01 15976.97 31599.85 11186.11 33196.50 19794.86 273
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+91.53 1196.31 15595.24 17499.52 2896.88 26798.64 5499.72 17298.24 18995.27 9888.42 31498.98 16482.76 26399.94 8197.10 16099.83 7799.96 67
v14890.70 29589.63 30093.92 29992.97 35690.97 29499.75 15896.89 33787.51 32388.27 31595.01 34281.67 27097.04 31487.40 31577.17 37393.75 340
DSMNet-mixed88.28 33288.24 32688.42 37289.64 39375.38 40098.06 34689.86 41585.59 35188.20 31692.14 38376.15 32791.95 40178.46 37696.05 20697.92 246
WR-MVS92.31 26391.25 27195.48 24094.45 32995.29 18699.60 19698.68 7190.10 27888.07 31796.89 27080.68 28496.80 33093.14 24079.67 35694.36 287
test0.0.03 193.86 22293.61 21594.64 26795.02 32092.18 26999.93 7898.58 8894.07 14487.96 31898.50 21293.90 10194.96 37681.33 36193.17 25396.78 261
XXY-MVS91.82 27090.46 28295.88 22993.91 33895.40 18398.87 29597.69 24588.63 30987.87 31997.08 26274.38 34297.89 27291.66 25884.07 32094.35 290
reproduce_monomvs95.38 18295.07 18196.32 21999.32 10496.60 13199.76 15498.85 5696.65 5987.83 32096.05 30099.52 198.11 25896.58 17281.07 34494.25 297
Patchmtry89.70 31988.49 32293.33 31696.24 28489.94 32291.37 40596.23 36378.22 39187.69 32193.31 37391.04 16996.03 36080.18 36882.10 33294.02 319
DIV-MVS_self_test92.32 26291.60 26394.47 27897.31 24792.74 25499.58 19996.75 34786.99 33387.64 32295.54 31489.55 19496.50 34088.58 30082.44 33094.17 303
D2MVS92.76 25292.59 24793.27 31895.13 31689.54 32699.69 18099.38 2292.26 21987.59 32394.61 35685.05 24697.79 27591.59 25988.01 28992.47 368
cl____92.31 26391.58 26494.52 27497.33 24692.77 25299.57 20296.78 34686.97 33487.56 32495.51 31789.43 19596.62 33688.60 29982.44 33094.16 308
v890.54 30089.17 31094.66 26693.43 34693.40 24299.20 25496.94 33385.76 34787.56 32494.51 35781.96 26897.19 30184.94 33978.25 36293.38 352
miper_lstm_enhance91.81 27191.39 27093.06 32597.34 24489.18 33099.38 23296.79 34586.70 33787.47 32695.22 33690.00 18895.86 36488.26 30481.37 33894.15 309
anonymousdsp91.79 27690.92 27694.41 28390.76 38592.93 25198.93 28697.17 30389.08 29187.46 32795.30 33078.43 30996.92 32192.38 24888.73 27893.39 351
jajsoiax91.92 26991.18 27294.15 28891.35 38090.95 29799.00 27897.42 27692.61 20387.38 32897.08 26272.46 34897.36 28994.53 21088.77 27794.13 313
mvs_tets91.81 27191.08 27494.00 29691.63 37790.58 30698.67 31497.43 27492.43 21387.37 32997.05 26571.76 35097.32 29394.75 20488.68 27994.11 314
v1090.25 30888.82 31794.57 27293.53 34493.43 24099.08 26396.87 33985.00 35687.34 33094.51 35780.93 28197.02 31882.85 35279.23 35793.26 354
pmmvs590.17 31189.09 31293.40 31492.10 37189.77 32399.74 16195.58 37885.88 34687.24 33195.74 30573.41 34696.48 34188.54 30183.56 32493.95 327
ACMP92.05 992.74 25392.42 25193.73 30495.91 29388.72 33599.81 13997.53 26594.13 14087.00 33298.23 22874.07 34398.47 22196.22 17788.86 27693.99 324
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS-HIRNet86.22 34283.19 35595.31 24696.71 27790.29 31292.12 40197.33 28762.85 40986.82 33370.37 41469.37 36197.49 28675.12 38897.99 16898.15 241
Anonymous2023121189.86 31688.44 32394.13 29098.93 12790.68 30398.54 32198.26 18676.28 39486.73 33495.54 31470.60 35897.56 28490.82 27380.27 35394.15 309
v7n89.65 32088.29 32593.72 30592.22 36890.56 30799.07 26797.10 31185.42 35486.73 33494.72 35080.06 29197.13 30581.14 36278.12 36493.49 348
IterMVS-SCA-FT90.85 29390.16 29392.93 32796.72 27689.96 31998.89 29096.99 32488.95 29986.63 33695.67 30876.48 32295.00 37587.04 32184.04 32293.84 336
EU-MVSNet90.14 31290.34 28689.54 36292.55 36481.06 39098.69 31298.04 21591.41 24886.59 33796.84 27580.83 28293.31 39386.20 32981.91 33494.26 295
OpenMVScopyleft90.15 1594.77 19893.59 21898.33 12696.07 28797.48 9799.56 20498.57 9090.46 27186.51 33898.95 17378.57 30699.94 8193.86 22299.74 8697.57 256
IterMVS90.91 29090.17 29293.12 32296.78 27490.42 31198.89 29097.05 32089.03 29386.49 33995.42 32276.59 32095.02 37487.22 31884.09 31993.93 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H91.30 28190.35 28594.15 28894.17 33492.62 26199.17 25798.94 4188.87 30286.48 34094.46 36184.36 25296.61 33788.19 30578.51 36193.21 356
MS-PatchMatch90.65 29690.30 28791.71 34394.22 33385.50 36398.24 33797.70 24388.67 30786.42 34196.37 28867.82 36998.03 26483.62 34799.62 9591.60 376
CP-MVSNet91.23 28590.22 28994.26 28693.96 33792.39 26599.09 26198.57 9088.95 29986.42 34196.57 28379.19 29996.37 34590.29 28478.95 35894.02 319
LF4IMVS89.25 32688.85 31690.45 35592.81 36281.19 38998.12 34394.79 39191.44 24486.29 34397.11 26065.30 38098.11 25888.53 30285.25 30992.07 371
PVSNet_088.03 1991.80 27490.27 28896.38 21798.27 18090.46 30999.94 7199.61 1393.99 14986.26 34497.39 25471.13 35699.89 9998.77 8767.05 40098.79 224
PS-CasMVS90.63 29889.51 30593.99 29793.83 33991.70 28498.98 27998.52 10788.48 31186.15 34596.53 28575.46 33196.31 34988.83 29778.86 36093.95 327
FMVSNet188.50 33086.64 33794.08 29195.62 31291.97 27198.43 32796.95 32983.00 37386.08 34694.72 35059.09 39696.11 35581.82 36084.07 32094.17 303
PEN-MVS90.19 31089.06 31393.57 31193.06 35490.90 29899.06 26898.47 11988.11 31685.91 34796.30 29076.67 31895.94 36387.07 32076.91 37593.89 332
ppachtmachnet_test89.58 32188.35 32493.25 32092.40 36690.44 31099.33 23896.73 34885.49 35285.90 34895.77 30481.09 27996.00 36276.00 38782.49 32993.30 353
OurMVSNet-221017-089.81 31789.48 30790.83 35091.64 37681.21 38898.17 34295.38 38291.48 24285.65 34997.31 25572.66 34797.29 29888.15 30684.83 31393.97 326
our_test_390.39 30289.48 30793.12 32292.40 36689.57 32599.33 23896.35 36287.84 32185.30 35094.99 34584.14 25496.09 35880.38 36584.56 31593.71 345
testgi89.01 32788.04 32891.90 33993.49 34584.89 36799.73 16895.66 37693.89 15885.14 35198.17 22959.68 39594.66 38177.73 37988.88 27496.16 270
DTE-MVSNet89.40 32388.24 32692.88 32892.66 36389.95 32099.10 26098.22 19287.29 32785.12 35296.22 29276.27 32595.30 37383.56 34875.74 38093.41 349
mvs5depth84.87 35182.90 35890.77 35185.59 40384.84 36891.10 40793.29 40683.14 37185.07 35394.33 36362.17 38997.32 29378.83 37572.59 38790.14 390
dongtai91.55 28091.13 27392.82 32998.16 18986.35 35799.47 21998.51 11083.24 37085.07 35397.56 24890.33 18494.94 37776.09 38691.73 25797.18 259
FMVSNet588.32 33187.47 33390.88 34796.90 26688.39 34297.28 35995.68 37582.60 37784.67 35592.40 38179.83 29391.16 40376.39 38581.51 33793.09 357
tfpnnormal89.29 32587.61 33294.34 28594.35 33194.13 22198.95 28398.94 4183.94 36484.47 35695.51 31774.84 33897.39 28877.05 38380.41 35091.48 378
MVP-Stereo90.93 28990.45 28492.37 33491.25 38288.76 33398.05 34796.17 36587.27 32884.04 35795.30 33078.46 30897.27 30083.78 34699.70 8991.09 379
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ttmdpeth88.23 33387.06 33691.75 34289.91 39287.35 35198.92 28995.73 37387.92 31984.02 35896.31 28968.23 36896.84 32686.33 32876.12 37891.06 380
LTVRE_ROB88.28 1890.29 30789.05 31494.02 29495.08 31890.15 31697.19 36197.43 27484.91 35983.99 35997.06 26474.00 34498.28 24784.08 34287.71 29393.62 346
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 32487.81 33094.01 29593.40 34891.93 27498.62 31796.48 35986.25 34283.86 36096.14 29573.68 34597.04 31486.16 33075.73 38193.04 359
USDC90.00 31488.96 31593.10 32494.81 32288.16 34498.71 30995.54 37993.66 16383.75 36197.20 25865.58 37798.31 24383.96 34587.49 29792.85 362
CL-MVSNet_self_test84.50 35583.15 35688.53 37186.00 40181.79 38598.82 30097.35 28385.12 35583.62 36290.91 38876.66 31991.40 40269.53 39860.36 41192.40 369
ACMH+89.98 1690.35 30489.54 30392.78 33195.99 29086.12 35998.81 30197.18 30289.38 28883.14 36397.76 24668.42 36698.43 22689.11 29586.05 30393.78 339
Anonymous2023120686.32 34185.42 34489.02 36689.11 39580.53 39499.05 27295.28 38385.43 35382.82 36493.92 36674.40 34193.44 39266.99 40281.83 33593.08 358
KD-MVS_self_test83.59 36182.06 36188.20 37386.93 39980.70 39297.21 36096.38 36082.87 37482.49 36588.97 39567.63 37092.32 39973.75 39162.30 41091.58 377
SixPastTwentyTwo88.73 32888.01 32990.88 34791.85 37482.24 38198.22 34095.18 38788.97 29782.26 36696.89 27071.75 35196.67 33584.00 34382.98 32593.72 344
KD-MVS_2432*160088.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
miper_refine_blended88.00 33586.10 33993.70 30896.91 26394.04 22297.17 36297.12 30984.93 35781.96 36792.41 37992.48 14294.51 38279.23 37052.68 41492.56 365
TinyColmap87.87 33786.51 33891.94 33895.05 31985.57 36297.65 35494.08 39884.40 36381.82 36996.85 27362.14 39098.33 24180.25 36786.37 30291.91 375
ACMH89.72 1790.64 29789.63 30093.66 31095.64 31088.64 33898.55 31997.45 27289.03 29381.62 37097.61 24769.75 36098.41 22889.37 29287.62 29593.92 330
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052185.15 34983.81 35189.16 36588.32 39682.69 37798.80 30395.74 37279.72 38781.53 37190.99 38665.38 37994.16 38472.69 39281.11 34290.63 386
pmmvs685.69 34383.84 35091.26 34690.00 39184.41 37097.82 35296.15 36675.86 39681.29 37295.39 32561.21 39396.87 32583.52 34973.29 38492.50 367
TransMVSNet (Re)87.25 33885.28 34593.16 32193.56 34391.03 29398.54 32194.05 40083.69 36881.09 37396.16 29475.32 33296.40 34476.69 38468.41 39692.06 372
test_method80.79 36679.70 37084.08 38192.83 36067.06 40799.51 21295.42 38054.34 41381.07 37493.53 37044.48 40992.22 40078.90 37477.23 37292.94 360
NR-MVSNet91.56 27990.22 28995.60 23594.05 33595.76 16598.25 33698.70 6891.16 25480.78 37596.64 28083.23 26196.57 33891.41 26077.73 36794.46 279
LCM-MVSNet-Re92.31 26392.60 24391.43 34497.53 23279.27 39699.02 27791.83 41192.07 22380.31 37694.38 36283.50 25895.48 36897.22 15797.58 17499.54 151
TDRefinement84.76 35282.56 36091.38 34574.58 41884.80 36997.36 35894.56 39584.73 36080.21 37796.12 29863.56 38498.39 23287.92 30963.97 40690.95 383
N_pmnet80.06 36980.78 36777.89 38891.94 37245.28 42698.80 30356.82 42878.10 39280.08 37893.33 37177.03 31395.76 36568.14 40182.81 32692.64 364
test_fmvs379.99 37080.17 36979.45 38784.02 40662.83 40899.05 27293.49 40588.29 31580.06 37986.65 40428.09 41688.00 40888.63 29873.27 38587.54 404
test_040285.58 34483.94 34990.50 35393.81 34085.04 36598.55 31995.20 38676.01 39579.72 38095.13 33764.15 38396.26 35166.04 40686.88 29990.21 389
test20.0384.72 35483.99 34786.91 37688.19 39880.62 39398.88 29295.94 36988.36 31378.87 38194.62 35568.75 36389.11 40766.52 40475.82 37991.00 381
pmmvs380.27 36877.77 37387.76 37580.32 41382.43 38098.23 33991.97 41072.74 40578.75 38287.97 40057.30 39990.99 40470.31 39662.37 40989.87 393
dmvs_testset83.79 35986.07 34176.94 38992.14 36948.60 42496.75 37190.27 41489.48 28778.65 38398.55 21179.25 29786.65 41266.85 40382.69 32795.57 272
MIMVSNet182.58 36280.51 36888.78 36886.68 40084.20 37196.65 37295.41 38178.75 39078.59 38492.44 37851.88 40589.76 40665.26 40778.95 35892.38 370
DeepMVS_CXcopyleft82.92 38495.98 29258.66 41596.01 36892.72 19578.34 38595.51 31758.29 39798.08 26082.57 35385.29 30892.03 373
test_vis1_rt86.87 34086.05 34289.34 36396.12 28578.07 39799.87 10883.54 42292.03 22678.21 38689.51 39345.80 40899.91 9296.25 17693.11 25590.03 392
mvsany_test382.12 36381.14 36585.06 38081.87 40970.41 40497.09 36492.14 40991.27 25177.84 38788.73 39639.31 41195.49 36790.75 27571.24 38889.29 400
Patchmatch-RL test86.90 33985.98 34389.67 36184.45 40475.59 39989.71 41092.43 40886.89 33577.83 38890.94 38794.22 9093.63 39087.75 31169.61 39199.79 100
APD_test181.15 36580.92 36681.86 38592.45 36559.76 41496.04 38493.61 40473.29 40477.06 38996.64 28044.28 41096.16 35472.35 39382.52 32889.67 396
lessismore_v090.53 35290.58 38680.90 39195.80 37177.01 39095.84 30266.15 37696.95 31983.03 35175.05 38293.74 343
K. test v388.05 33487.24 33590.47 35491.82 37582.23 38298.96 28297.42 27689.05 29276.93 39195.60 31168.49 36595.42 36985.87 33481.01 34693.75 340
ambc83.23 38377.17 41662.61 40987.38 41294.55 39676.72 39286.65 40430.16 41396.36 34684.85 34069.86 39090.73 384
PM-MVS80.47 36778.88 37285.26 37983.79 40772.22 40295.89 38791.08 41285.71 35076.56 39388.30 39736.64 41293.90 38782.39 35569.57 39289.66 397
OpenMVS_ROBcopyleft79.82 2083.77 36081.68 36390.03 35988.30 39782.82 37698.46 32495.22 38573.92 40376.00 39491.29 38555.00 40096.94 32068.40 40088.51 28490.34 387
UnsupCasMVSNet_eth85.52 34583.99 34790.10 35889.36 39483.51 37496.65 37297.99 21789.14 29075.89 39593.83 36763.25 38693.92 38681.92 35967.90 39992.88 361
new_pmnet84.49 35682.92 35789.21 36490.03 39082.60 37896.89 37095.62 37780.59 38475.77 39689.17 39465.04 38194.79 38072.12 39481.02 34590.23 388
EG-PatchMatch MVS85.35 34883.81 35189.99 36090.39 38781.89 38498.21 34196.09 36781.78 38074.73 39793.72 36951.56 40697.12 30779.16 37388.61 28090.96 382
test_f78.40 37277.59 37480.81 38680.82 41162.48 41196.96 36893.08 40783.44 36974.57 39884.57 40827.95 41792.63 39784.15 34172.79 38687.32 405
pmmvs-eth3d84.03 35881.97 36290.20 35784.15 40587.09 35398.10 34594.73 39383.05 37274.10 39987.77 40165.56 37894.01 38581.08 36369.24 39389.49 398
new-patchmatchnet81.19 36479.34 37186.76 37782.86 40880.36 39597.92 34995.27 38482.09 37972.02 40086.87 40362.81 38890.74 40571.10 39563.08 40789.19 401
ET-MVSNet_ETH3D94.37 21393.28 23097.64 16898.30 17697.99 7399.99 497.61 25594.35 13071.57 40199.45 12296.23 3595.34 37196.91 16985.14 31199.59 137
UnsupCasMVSNet_bld79.97 37177.03 37688.78 36885.62 40281.98 38393.66 39697.35 28375.51 39970.79 40283.05 40948.70 40794.91 37878.31 37760.29 41289.46 399
CMPMVSbinary61.59 2184.75 35385.14 34683.57 38290.32 38862.54 41096.98 36797.59 25974.33 40269.95 40396.66 27864.17 38298.32 24287.88 31088.41 28589.84 394
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.28 37377.28 37573.29 39381.18 41054.68 41897.87 35194.19 39781.30 38169.43 40490.70 38977.02 31482.06 41635.71 42168.11 39883.13 407
SSC-MVS75.42 37476.40 37772.49 39780.68 41253.62 41997.42 35694.06 39980.42 38568.75 40590.14 39176.54 32181.66 41733.25 42266.34 40282.19 408
MVStest185.03 35082.76 35991.83 34092.95 35889.16 33198.57 31894.82 39071.68 40668.54 40695.11 33983.17 26295.66 36674.69 38965.32 40390.65 385
testmvs40.60 38944.45 39229.05 40619.49 43014.11 43299.68 18218.47 42920.74 42264.59 40798.48 21610.95 42717.09 42656.66 41511.01 42255.94 419
LCM-MVSNet67.77 38064.73 38376.87 39062.95 42456.25 41789.37 41193.74 40344.53 41661.99 40880.74 41020.42 42386.53 41369.37 39959.50 41387.84 402
PMMVS267.15 38164.15 38476.14 39170.56 42162.07 41293.89 39487.52 41958.09 41060.02 40978.32 41122.38 42084.54 41459.56 41147.03 41681.80 409
testf168.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
APD_test268.38 37866.92 37972.78 39578.80 41450.36 42190.95 40887.35 42055.47 41158.95 41088.14 39820.64 42187.60 40957.28 41364.69 40480.39 410
Gipumacopyleft66.95 38265.00 38272.79 39491.52 37867.96 40666.16 41795.15 38847.89 41558.54 41267.99 41729.74 41487.54 41150.20 41677.83 36662.87 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet185.50 34783.33 35392.00 33790.89 38488.38 34399.22 25396.55 35679.60 38957.26 41392.72 37679.09 30293.78 38977.25 38177.37 37193.84 336
MDA-MVSNet_test_wron85.51 34683.32 35492.10 33690.96 38388.58 33999.20 25496.52 35779.70 38857.12 41492.69 37779.11 30093.86 38877.10 38277.46 37093.86 335
MDA-MVSNet-bldmvs84.09 35781.52 36491.81 34191.32 38188.00 34798.67 31495.92 37080.22 38655.60 41593.32 37268.29 36793.60 39173.76 39076.61 37793.82 338
FPMVS68.72 37768.72 37868.71 39965.95 42244.27 42895.97 38694.74 39251.13 41453.26 41690.50 39025.11 41983.00 41560.80 41080.97 34778.87 412
test12337.68 39039.14 39333.31 40519.94 42924.83 43198.36 3329.75 43015.53 42351.31 41787.14 40219.62 42417.74 42547.10 4173.47 42457.36 418
test_vis3_rt68.82 37666.69 38175.21 39276.24 41760.41 41396.44 37568.71 42775.13 40050.54 41869.52 41616.42 42696.32 34880.27 36666.92 40168.89 414
tmp_tt65.23 38362.94 38672.13 39844.90 42750.03 42381.05 41489.42 41838.45 41748.51 41999.90 1854.09 40278.70 41991.84 25718.26 42187.64 403
E-PMN52.30 38652.18 38852.67 40371.51 41945.40 42593.62 39776.60 42536.01 41943.50 42064.13 41927.11 41867.31 42231.06 42326.06 41845.30 421
EMVS51.44 38851.22 39052.11 40470.71 42044.97 42794.04 39375.66 42635.34 42142.40 42161.56 42228.93 41565.87 42327.64 42424.73 41945.49 420
MVEpermissive53.74 2251.54 38747.86 39162.60 40159.56 42550.93 42079.41 41577.69 42435.69 42036.27 42261.76 4215.79 43069.63 42037.97 42036.61 41767.24 415
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 38452.24 38767.66 40049.27 42656.82 41683.94 41382.02 42370.47 40733.28 42364.54 41817.23 42569.16 42145.59 41823.85 42077.02 413
PMVScopyleft49.05 2353.75 38551.34 38960.97 40240.80 42834.68 42974.82 41689.62 41737.55 41828.67 42472.12 4137.09 42881.63 41843.17 41968.21 39766.59 416
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 39220.84 39518.99 40765.34 42327.73 43050.43 4187.67 4319.50 4248.01 4256.34 4256.13 42926.24 42423.40 42510.69 4232.99 422
EGC-MVSNET69.38 37563.76 38586.26 37890.32 38881.66 38796.24 38093.85 4020.99 4253.22 42692.33 38252.44 40392.92 39659.53 41284.90 31284.21 406
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.02 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k23.43 39131.24 3940.00 4080.00 4310.00 4330.00 41998.09 2090.00 4260.00 42799.67 9783.37 2590.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.60 39410.13 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42791.20 1640.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.28 39311.04 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.40 1280.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4270.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.97 29486.10 332
MSC_two_6792asdad99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 152100.00 199.96 9100.00 1100.00 1
eth-test20.00 431
eth-test0.00 431
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5497.44 14100.00 1100.00 199.98 32100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15697.66 21
test_0728_SECOND99.82 799.94 1399.47 799.95 5498.43 135100.00 199.99 5100.00 1100.00 1
GSMVS99.59 137
sam_mvs194.72 6999.59 137
sam_mvs94.25 89
MTGPAbinary98.28 183
test_post195.78 38859.23 42393.20 12297.74 27891.06 266
test_post63.35 42094.43 7798.13 257
patchmatchnet-post91.70 38495.12 5497.95 269
MTMP99.87 10896.49 358
gm-plane-assit96.97 26093.76 23091.47 24398.96 16898.79 20094.92 197
test9_res99.71 3699.99 21100.00 1
agg_prior299.48 46100.00 1100.00 1
test_prior498.05 7099.94 71
test_prior99.43 3599.94 1398.49 6098.65 7599.80 12499.99 23
新几何299.40 227
旧先验199.76 6697.52 9398.64 7799.85 3395.63 4599.94 5599.99 23
无先验99.49 21698.71 6793.46 167100.00 194.36 21299.99 23
原ACMM299.90 93
testdata299.99 3690.54 279
segment_acmp96.68 29
testdata199.28 24796.35 73
plane_prior795.71 30591.59 288
plane_prior695.76 29991.72 28380.47 289
plane_prior597.87 23198.37 23897.79 14389.55 26794.52 276
plane_prior498.59 204
plane_prior299.84 12796.38 69
plane_prior195.73 302
plane_prior91.74 28099.86 11996.76 5589.59 266
n20.00 432
nn0.00 432
door-mid89.69 416
test1198.44 127
door90.31 413
HQP5-MVS91.85 276
BP-MVS97.92 134
HQP3-MVS97.89 22989.60 264
HQP2-MVS80.65 285
NP-MVS95.77 29891.79 27898.65 199
ACMMP++_ref87.04 298
ACMMP++88.23 287
Test By Simon92.82 133