This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4599.21 10297.91 7699.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4699.17 10697.81 7999.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
patch_mono-298.24 5699.12 595.59 22699.67 7786.91 34599.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4999.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
xiu_mvs_v2_base98.23 5797.97 5999.02 7298.69 14398.66 5199.52 20598.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 220
test_vis1_n_192095.44 17295.31 16395.82 22298.50 15988.74 32499.98 1597.30 27797.84 1699.85 999.19 14466.82 36099.97 5398.82 7999.46 10798.76 215
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20398.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 220
旧先验299.46 21694.21 13499.85 999.95 6996.96 157
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
iter_conf05_1196.12 15195.46 15798.10 13198.62 14995.52 169100.00 196.30 35096.54 6099.81 1599.80 5169.19 34899.10 17898.92 7099.91 6699.68 113
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9198.21 18693.53 16199.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4699.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test_fmvsm_n_192098.44 4198.61 2397.92 14399.27 10195.18 185100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 223
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
SteuartSystems-ACMMP99.02 1298.97 1399.18 5298.72 14297.71 8199.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
testdata98.42 11599.47 9295.33 17798.56 9293.78 15499.79 2699.85 3093.64 9999.94 7794.97 18699.94 54100.00 1
9.1498.38 3499.87 5199.91 8498.33 17093.22 17199.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11898.38 15993.19 17299.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10698.33 17093.97 14699.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15398.63 14894.26 20899.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 199
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10698.36 16394.08 13999.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvs195.35 17495.68 15494.36 27498.99 11784.98 35499.96 3596.65 33897.60 2299.73 3398.96 16571.58 33899.93 8598.31 10699.37 11498.17 230
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
TEST999.92 3198.92 2999.96 3598.43 13193.90 15199.71 3599.86 2695.88 3799.85 108
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3598.43 13194.35 12599.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_899.92 3198.88 3299.96 3598.43 13194.35 12599.69 3799.85 3095.94 3499.85 108
CS-MVS97.79 7697.91 6597.43 17399.10 10994.42 20299.99 597.10 29895.07 9899.68 3899.75 7192.95 11798.34 23098.38 10199.14 12499.54 147
test_fmvsmconf_n98.43 4398.32 4098.78 8498.12 18596.41 12999.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
test_fmvs1_n94.25 20694.36 18693.92 28997.68 21383.70 36099.90 9196.57 34197.40 2899.67 3998.88 17661.82 37699.92 8898.23 10899.13 12598.14 233
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16395.65 29694.21 21099.83 13398.50 11296.27 7299.65 4199.64 10184.72 23599.93 8599.04 6398.84 13498.74 217
test1299.43 3599.74 6998.56 5798.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15999.06 11194.41 20399.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 222
agg_prior99.93 2498.77 4298.43 13199.63 4499.85 108
EC-MVSNet97.38 9697.24 8997.80 14897.41 22795.64 16499.99 597.06 30394.59 11499.63 4499.32 13289.20 19098.14 24698.76 8399.23 12199.62 128
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
CS-MVS-test97.88 6797.94 6397.70 15899.28 10095.20 18499.98 1597.15 29395.53 8999.62 4799.79 5792.08 14398.38 22698.75 8499.28 11899.52 151
xiu_mvs_v1_base97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
原ACMM198.96 7799.73 7296.99 11198.51 10794.06 14299.62 4799.85 3094.97 5999.96 6195.11 18299.95 4999.92 81
PHI-MVS98.41 4598.21 4599.03 7099.86 5397.10 10899.98 1598.80 6290.78 26099.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
mvsany_test197.82 7297.90 6697.55 16698.77 14093.04 24199.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
test_cas_vis1_n_192096.59 13496.23 12797.65 16098.22 17694.23 20999.99 597.25 28497.77 1799.58 5499.08 15077.10 29899.97 5397.64 13899.45 10898.74 217
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21699.94 5499.98 48
新几何199.42 3799.75 6898.27 6398.63 8092.69 19199.55 5599.82 4694.40 71100.00 191.21 25299.94 5499.99 23
test_vis1_n93.61 22393.03 22395.35 23395.86 28286.94 34399.87 10696.36 34896.85 4699.54 5798.79 18652.41 38999.83 11898.64 9198.97 13099.29 182
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5599.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
PMMVS96.76 12596.76 10996.76 19698.28 17292.10 26299.91 8497.98 21194.12 13799.53 5899.39 12786.93 21398.73 19696.95 15897.73 16199.45 161
FOURS199.92 3197.66 8599.95 5398.36 16395.58 8799.52 60
MSP-MVS99.09 999.12 598.98 7599.93 2497.24 10099.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16597.38 22994.40 20599.90 9198.64 7696.47 6399.51 6299.65 10084.99 23499.93 8599.22 5599.09 12798.46 224
test_part299.89 4599.25 1899.49 63
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
region2R98.54 3398.37 3699.05 6899.96 897.18 10399.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
MVSFormer96.94 11696.60 11697.95 14097.28 23897.70 8399.55 20197.27 28291.17 24699.43 6799.54 11290.92 16296.89 31194.67 19899.62 9099.25 186
lupinMVS97.85 6997.60 7698.62 9597.28 23897.70 8399.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19998.40 10099.62 9099.45 161
XVS98.70 2698.55 2599.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21392.06 24699.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6941.37 40994.34 7699.96 6198.92 7099.95 4999.99 23
SR-MVS-dyc-post98.31 4998.17 4898.71 8899.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
APD-MVS_3200maxsize98.25 5598.08 5598.78 8499.81 6096.60 12499.82 13698.30 17793.95 14899.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
PGM-MVS98.34 4898.13 5198.99 7499.92 3197.00 11099.75 15699.50 1893.90 15199.37 7499.76 6593.24 110100.00 197.75 13799.96 4699.98 48
SR-MVS98.46 3998.30 4398.93 7999.88 4997.04 10999.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
ZD-MVS99.92 3198.57 5698.52 10492.34 21199.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9699.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
ACMMPR98.50 3698.32 4099.05 6899.96 897.18 10399.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
ETV-MVS97.92 6697.80 7098.25 12398.14 18396.48 12699.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18999.02 6698.54 14099.46 159
test22299.55 8697.41 9899.34 23098.55 9891.86 22499.27 8199.83 4393.84 9499.95 4999.99 23
CANet_DTU96.76 12596.15 13098.60 9798.78 13997.53 8899.84 12697.63 23897.25 3799.20 8299.64 10181.36 26199.98 4392.77 23698.89 13198.28 229
EPNet98.49 3798.40 3298.77 8699.62 8096.80 11999.90 9199.51 1797.60 2299.20 8299.36 13093.71 9799.91 8997.99 12198.71 13899.61 131
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28999.63 7981.76 37299.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
VNet97.21 10296.57 11899.13 6598.97 11997.82 7899.03 26799.21 2994.31 12899.18 8598.88 17686.26 22299.89 9698.93 6994.32 22899.69 112
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
114514_t97.41 9496.83 10699.14 6199.51 9097.83 7799.89 9998.27 18188.48 30199.06 8899.66 9890.30 17399.64 14896.32 16699.97 4299.96 64
PVSNet91.05 1397.13 10596.69 11398.45 11299.52 8895.81 15399.95 5399.65 1294.73 10999.04 8999.21 14384.48 23899.95 6994.92 18898.74 13799.58 140
CHOSEN 280x42099.01 1399.03 1098.95 7899.38 9698.87 3398.46 31299.42 2297.03 4299.02 9099.09 14999.35 198.21 24399.73 3299.78 8099.77 101
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18799.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
diffmvspermissive97.00 11396.64 11498.09 13397.64 21696.17 14499.81 13897.19 28794.67 11398.95 9299.28 13386.43 21898.76 19498.37 10397.42 16999.33 176
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS_fast97.80 7497.50 7998.68 9099.79 6296.42 12899.88 10398.16 19591.75 22998.94 9399.54 11291.82 14999.65 14797.62 14099.99 2199.99 23
dcpmvs_297.42 9398.09 5495.42 23199.58 8587.24 34199.23 24496.95 31494.28 13198.93 9499.73 8094.39 7499.16 17699.89 1699.82 7799.86 89
CP-MVS98.45 4098.32 4098.87 8199.96 896.62 12399.97 2898.39 15594.43 12098.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9495.76 28796.20 14199.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
testing22297.08 11196.75 11098.06 13598.56 15196.82 11799.85 12198.61 8292.53 20298.84 9798.84 18593.36 10298.30 23495.84 17494.30 22999.05 201
MVS_Test96.46 13895.74 15098.61 9698.18 18097.23 10199.31 23497.15 29391.07 25198.84 9797.05 25788.17 19998.97 18294.39 20297.50 16699.61 131
API-MVS97.86 6897.66 7398.47 11099.52 8895.41 17499.47 21498.87 5291.68 23098.84 9799.85 3092.34 13799.99 3698.44 9999.96 46100.00 1
GST-MVS98.27 5297.97 5999.17 5599.92 3197.57 8799.93 7698.39 15594.04 14498.80 10099.74 7892.98 116100.00 198.16 11199.76 8199.93 76
MVS_111021_LR98.42 4498.38 3498.53 10799.39 9595.79 15499.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
h-mvs3394.92 18294.36 18696.59 20298.85 13591.29 28398.93 27698.94 4195.90 7898.77 10298.42 21790.89 16599.77 12897.80 13070.76 37698.72 219
hse-mvs294.38 20094.08 19495.31 23698.27 17390.02 31099.29 23998.56 9295.90 7898.77 10298.00 22890.89 16598.26 24197.80 13069.20 38297.64 241
TSAR-MVS + GP.98.60 3098.51 2898.86 8299.73 7296.63 12299.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
sss97.57 8597.03 9999.18 5298.37 16498.04 6999.73 16499.38 2393.46 16398.76 10499.06 15291.21 15399.89 9696.33 16597.01 18099.62 128
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
CostFormer96.10 15295.88 14796.78 19597.03 24492.55 25497.08 35197.83 22890.04 27398.72 10794.89 33595.01 5698.29 23596.54 16495.77 20599.50 155
tpmrst96.27 15095.98 13697.13 18597.96 19193.15 23796.34 36398.17 19192.07 21798.71 10895.12 32693.91 9098.73 19694.91 19096.62 18599.50 155
MVS_111021_HR98.72 2598.62 2299.01 7399.36 9797.18 10399.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
MAR-MVS97.43 8997.19 9298.15 12999.47 9294.79 19699.05 26498.76 6392.65 19498.66 11099.82 4688.52 19799.98 4398.12 11399.63 8999.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+96.30 14795.69 15298.16 12697.85 19896.26 13697.41 34397.21 28690.37 26698.65 11198.58 20486.61 21798.70 20097.11 15097.37 17199.52 151
HPM-MVScopyleft97.96 6397.72 7198.68 9099.84 5696.39 13299.90 9198.17 19192.61 19698.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS98.39 4798.20 4698.97 7699.97 396.92 11499.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
jason97.24 10096.86 10598.38 11895.73 29097.32 9999.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20797.94 12499.47 10599.25 186
jason: jason.
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8799.83 5796.59 12599.40 22098.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8699.94 6998.44 12394.31 12898.50 11799.82 4693.06 11499.99 3698.30 10799.99 2199.93 76
LFMVS94.75 18893.56 20998.30 12199.03 11395.70 16098.74 29597.98 21187.81 31198.47 11899.39 12767.43 35899.53 15098.01 11995.20 21999.67 117
tpm295.47 17195.18 16896.35 21196.91 25191.70 27696.96 35497.93 21688.04 30898.44 11995.40 31293.32 10597.97 25594.00 20995.61 20999.38 168
alignmvs97.81 7397.33 8699.25 4698.77 14098.66 5199.99 598.44 12394.40 12498.41 12099.47 11693.65 9899.42 16498.57 9494.26 23099.67 117
UA-Net96.54 13595.96 14098.27 12298.23 17595.71 15998.00 33498.45 11893.72 15798.41 12099.27 13688.71 19699.66 14691.19 25397.69 16299.44 163
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12392.06 21998.40 12299.84 4195.68 40100.00 198.19 10999.71 8499.97 58
CPTT-MVS97.64 8497.32 8798.58 10099.97 395.77 15599.96 3598.35 16589.90 27498.36 12399.79 5791.18 15799.99 3698.37 10399.99 2199.99 23
PAPM98.60 3098.42 3199.14 6196.05 27698.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 21099.45 4599.89 6799.96 64
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 34199.52 1595.69 8498.32 12597.41 24493.32 10599.77 12898.08 11795.75 20799.81 94
EI-MVSNet-UG-set98.14 5997.99 5898.60 9799.80 6196.27 13599.36 22998.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10399.30 11799.81 94
PVSNet_BlendedMVS96.05 15495.82 14996.72 19899.59 8196.99 11199.95 5399.10 3194.06 14298.27 12795.80 29389.00 19299.95 6999.12 5887.53 28693.24 344
PVSNet_Blended97.94 6497.64 7498.83 8399.59 8196.99 111100.00 199.10 3195.38 9298.27 12799.08 15089.00 19299.95 6999.12 5899.25 11999.57 141
MP-MVScopyleft98.23 5797.97 5999.03 7099.94 1397.17 10699.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
WTY-MVS98.10 6197.60 7699.60 2298.92 12699.28 1799.89 9999.52 1595.58 8798.24 13099.39 12793.33 10499.74 13497.98 12395.58 21099.78 100
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13199.24 14192.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
ETVMVS97.03 11296.64 11498.20 12598.67 14597.12 10799.89 9998.57 8991.10 25098.17 13298.59 20193.86 9398.19 24495.64 17795.24 21899.28 183
testing1197.48 8897.27 8898.10 13198.36 16596.02 14899.92 7998.45 11893.45 16598.15 13398.70 19195.48 4599.22 16797.85 12995.05 22099.07 200
MDTV_nov1_ep13_2view96.26 13696.11 36891.89 22398.06 13494.40 7194.30 20599.67 117
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11499.83 7399.99 23
MDTV_nov1_ep1395.69 15297.90 19494.15 21195.98 37198.44 12393.12 17497.98 13695.74 29595.10 5198.58 20690.02 27796.92 182
test250697.53 8697.19 9298.58 10098.66 14696.90 11598.81 29099.77 594.93 10197.95 13798.96 16592.51 13199.20 17194.93 18798.15 15199.64 123
GG-mvs-BLEND98.54 10598.21 17798.01 7093.87 38198.52 10497.92 13897.92 23399.02 297.94 26098.17 11099.58 9799.67 117
EIA-MVS97.53 8697.46 8097.76 15598.04 18894.84 19399.98 1597.61 24394.41 12397.90 13999.59 10692.40 13598.87 18698.04 11899.13 12599.59 134
test_fmvsmconf0.01_n96.39 14295.74 15098.32 12091.47 36695.56 16799.84 12697.30 27797.74 1897.89 14099.35 13179.62 28099.85 10899.25 5499.24 12099.55 143
sasdasda97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
test_yl97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
MGCFI-Net97.00 11396.22 12899.34 4398.86 13498.80 3999.67 17997.30 27794.31 12897.77 14599.41 12486.36 22099.50 15598.38 10193.90 23699.72 107
VDDNet93.12 23491.91 24996.76 19696.67 26692.65 25298.69 30198.21 18682.81 36197.75 14699.28 13361.57 37799.48 16198.09 11694.09 23298.15 231
EPMVS96.53 13696.01 13398.09 13398.43 16296.12 14796.36 36299.43 2193.53 16197.64 14795.04 32894.41 7098.38 22691.13 25498.11 15499.75 103
JIA-IIPM91.76 26790.70 26794.94 24796.11 27487.51 33993.16 38498.13 20075.79 38397.58 14877.68 39792.84 12097.97 25588.47 29396.54 18699.33 176
EPNet_dtu95.71 16495.39 16096.66 20098.92 12693.41 23399.57 19798.90 4796.19 7597.52 14998.56 20692.65 12597.36 27777.89 36598.33 14599.20 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM_NR98.12 6097.93 6498.70 8999.94 1396.13 14599.82 13698.43 13194.56 11597.52 14999.70 8794.40 7199.98 4397.00 15399.98 3299.99 23
FE-MVS95.70 16695.01 17497.79 15098.21 17794.57 19895.03 37698.69 6888.90 29297.50 15196.19 28492.60 12899.49 16089.99 27897.94 16099.31 178
thisisatest051597.41 9497.02 10098.59 9997.71 21297.52 8999.97 2898.54 10191.83 22597.45 15299.04 15397.50 899.10 17894.75 19596.37 19299.16 191
OMC-MVS97.28 9897.23 9097.41 17499.76 6693.36 23699.65 18397.95 21496.03 7797.41 15399.70 8789.61 18199.51 15396.73 16298.25 15099.38 168
testing9997.17 10396.91 10297.95 14098.35 16795.70 16099.91 8498.43 13192.94 17897.36 15498.72 18994.83 6199.21 16897.00 15394.64 22298.95 205
testing9197.16 10496.90 10397.97 13998.35 16795.67 16399.91 8498.42 14392.91 18097.33 15598.72 18994.81 6299.21 16896.98 15594.63 22399.03 202
gg-mvs-nofinetune93.51 22591.86 25198.47 11097.72 21097.96 7492.62 38598.51 10774.70 38797.33 15569.59 40098.91 397.79 26497.77 13599.56 9899.67 117
PatchT90.38 29288.75 30895.25 23895.99 27890.16 30691.22 39297.54 25176.80 37997.26 15786.01 39191.88 14696.07 34666.16 39095.91 20299.51 153
PLCcopyleft95.54 397.93 6597.89 6798.05 13699.82 5894.77 19799.92 7998.46 11793.93 14997.20 15899.27 13695.44 4699.97 5397.41 14299.51 10399.41 166
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MTAPA98.29 5197.96 6299.30 4499.85 5497.93 7599.39 22498.28 17995.76 8297.18 15999.88 2192.74 124100.00 198.67 8899.88 6999.99 23
UWE-MVS96.79 12296.72 11197.00 18898.51 15893.70 22499.71 17098.60 8492.96 17797.09 16098.34 21996.67 2798.85 18892.11 24296.50 18898.44 225
PatchmatchNetpermissive95.94 15795.45 15897.39 17697.83 19994.41 20396.05 36998.40 15292.86 18197.09 16095.28 32394.21 8298.07 25189.26 28498.11 15499.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
thisisatest053097.10 10696.72 11198.22 12497.60 21896.70 12099.92 7998.54 10191.11 24997.07 16298.97 16397.47 1199.03 18093.73 22196.09 19598.92 206
test_fmvsmvis_n_192097.67 8397.59 7897.91 14597.02 24595.34 17699.95 5398.45 11897.87 1597.02 16399.59 10689.64 18099.98 4399.41 4899.34 11698.42 226
CR-MVSNet93.45 22892.62 23395.94 21896.29 26992.66 25092.01 38896.23 35192.62 19596.94 16493.31 35991.04 15996.03 34779.23 35895.96 19899.13 195
RPMNet89.76 30787.28 32297.19 18496.29 26992.66 25092.01 38898.31 17470.19 39396.94 16485.87 39287.25 20899.78 12562.69 39495.96 19899.13 195
baseline96.43 13995.98 13697.76 15597.34 23295.17 18699.51 20797.17 29093.92 15096.90 16699.28 13385.37 23098.64 20497.50 14196.86 18499.46 159
ECVR-MVScopyleft95.66 16795.05 17297.51 16998.66 14693.71 22398.85 28798.45 11894.93 10196.86 16798.96 16575.22 32199.20 17195.34 17998.15 15199.64 123
Vis-MVSNetpermissive95.72 16295.15 16997.45 17197.62 21794.28 20799.28 24098.24 18394.27 13396.84 16898.94 17279.39 28298.76 19493.25 22698.49 14199.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
VDD-MVS93.77 21792.94 22596.27 21298.55 15490.22 30598.77 29497.79 23090.85 25696.82 16999.42 12061.18 37999.77 12898.95 6794.13 23198.82 212
UGNet95.33 17594.57 18397.62 16498.55 15494.85 19298.67 30399.32 2695.75 8396.80 17096.27 28272.18 33599.96 6194.58 20099.05 12998.04 234
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AdaColmapbinary97.23 10196.80 10898.51 10899.99 195.60 16699.09 25398.84 5893.32 16896.74 17199.72 8386.04 223100.00 198.01 11999.43 11199.94 74
tpm93.70 22193.41 21594.58 26195.36 30287.41 34097.01 35296.90 32190.85 25696.72 17294.14 35190.40 17296.84 31490.75 26588.54 27199.51 153
test111195.57 16994.98 17597.37 17798.56 15193.37 23598.86 28598.45 11894.95 10096.63 17398.95 17075.21 32299.11 17795.02 18598.14 15399.64 123
tttt051796.85 11996.49 12097.92 14397.48 22595.89 15299.85 12198.54 10190.72 26196.63 17398.93 17497.47 1199.02 18193.03 23395.76 20698.85 210
casdiffmvspermissive96.42 14195.97 13997.77 15397.30 23694.98 18999.84 12697.09 30093.75 15696.58 17599.26 13985.07 23298.78 19297.77 13597.04 17899.54 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNLPA97.76 7897.38 8398.92 8099.53 8796.84 11699.87 10698.14 19993.78 15496.55 17699.69 8992.28 13899.98 4397.13 14999.44 10999.93 76
PatchMatch-RL96.04 15595.40 15997.95 14099.59 8195.22 18399.52 20599.07 3493.96 14796.49 17798.35 21882.28 25299.82 12090.15 27699.22 12298.81 213
MP-MVS-pluss98.07 6297.64 7499.38 4299.74 6998.41 6299.74 15998.18 19093.35 16696.45 17899.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ADS-MVSNet293.80 21693.88 20093.55 30397.87 19685.94 34894.24 37796.84 32690.07 27196.43 17994.48 34690.29 17495.37 35687.44 30397.23 17299.36 171
ADS-MVSNet94.79 18594.02 19597.11 18797.87 19693.79 22094.24 37798.16 19590.07 27196.43 17994.48 34690.29 17498.19 24487.44 30397.23 17299.36 171
ACMMPcopyleft97.74 7997.44 8198.66 9299.92 3196.13 14599.18 24899.45 1994.84 10696.41 18199.71 8591.40 15199.99 3697.99 12198.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9298.81 13796.67 12199.92 7998.64 7694.51 11696.38 18298.49 21089.05 19199.88 10297.10 15198.34 14499.43 164
AUN-MVS93.28 22992.60 23495.34 23498.29 17090.09 30899.31 23498.56 9291.80 22896.35 18398.00 22889.38 18498.28 23792.46 23769.22 38197.64 241
FA-MVS(test-final)95.86 15895.09 17198.15 12997.74 20595.62 16596.31 36498.17 19191.42 24196.26 18496.13 28790.56 16999.47 16292.18 24197.07 17699.35 173
thres20096.96 11596.21 12999.22 4898.97 11998.84 3699.85 12199.71 793.17 17396.26 18498.88 17689.87 17899.51 15394.26 20694.91 22199.31 178
HyFIR lowres test96.66 13296.43 12297.36 17999.05 11293.91 21999.70 17499.80 390.54 26396.26 18498.08 22592.15 14198.23 24296.84 16195.46 21199.93 76
SCA94.69 18993.81 20297.33 18197.10 24194.44 20098.86 28598.32 17293.30 16996.17 18795.59 30276.48 30897.95 25891.06 25697.43 16799.59 134
casdiffmvs_mvgpermissive96.43 13995.94 14397.89 14797.44 22695.47 17099.86 11897.29 28093.35 16696.03 18899.19 14485.39 22998.72 19897.89 12897.04 17899.49 157
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpn200view996.79 12295.99 13499.19 5198.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.27 184
thres40096.78 12495.99 13499.16 5798.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.16 191
dp95.05 17994.43 18596.91 19197.99 19092.73 24896.29 36597.98 21189.70 27795.93 19194.67 34193.83 9598.45 21586.91 31696.53 18799.54 147
thres100view90096.74 12795.92 14599.18 5298.90 13198.77 4299.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.84 21394.57 22499.27 184
thres600view796.69 13095.87 14899.14 6198.90 13198.78 4199.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.44 22594.50 22799.16 191
EPP-MVSNet96.69 13096.60 11696.96 19097.74 20593.05 24099.37 22798.56 9288.75 29595.83 19499.01 15696.01 3298.56 20796.92 15997.20 17499.25 186
TESTMET0.1,196.74 12796.26 12698.16 12697.36 23196.48 12699.96 3598.29 17891.93 22295.77 19598.07 22695.54 4298.29 23590.55 26898.89 13199.70 110
F-COLMAP96.93 11796.95 10196.87 19399.71 7591.74 27299.85 12197.95 21493.11 17595.72 19699.16 14792.35 13699.94 7795.32 18099.35 11598.92 206
test-LLR96.47 13796.04 13297.78 15197.02 24595.44 17199.96 3598.21 18694.07 14095.55 19796.38 27893.90 9198.27 23990.42 27198.83 13599.64 123
test-mter96.39 14295.93 14497.78 15197.02 24595.44 17199.96 3598.21 18691.81 22795.55 19796.38 27895.17 4998.27 23990.42 27198.83 13599.64 123
IS-MVSNet96.29 14895.90 14697.45 17198.13 18494.80 19599.08 25597.61 24392.02 22195.54 19998.96 16590.64 16898.08 24993.73 22197.41 17099.47 158
CHOSEN 1792x268896.81 12196.53 11997.64 16198.91 13093.07 23899.65 18399.80 395.64 8595.39 20098.86 18184.35 24199.90 9196.98 15599.16 12399.95 71
CDS-MVSNet96.34 14496.07 13197.13 18597.37 23094.96 19099.53 20497.91 22091.55 23395.37 20198.32 22095.05 5497.13 29493.80 21795.75 20799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu94.53 19695.30 16492.22 32597.77 20382.54 36599.59 19397.06 30394.92 10395.29 20295.37 31685.81 22497.89 26194.80 19397.07 17696.23 256
CSCG97.10 10697.04 9897.27 18399.89 4591.92 26799.90 9199.07 3488.67 29795.26 20399.82 4693.17 11299.98 4398.15 11299.47 10599.90 83
Vis-MVSNet (Re-imp)96.32 14595.98 13697.35 18097.93 19394.82 19499.47 21498.15 19891.83 22595.09 20499.11 14891.37 15297.47 27593.47 22497.43 16799.74 104
TAMVS95.85 15995.58 15596.65 20197.07 24293.50 23099.17 24997.82 22991.39 24395.02 20598.01 22792.20 13997.30 28393.75 22095.83 20499.14 194
XVG-OURS-SEG-HR94.79 18594.70 18295.08 24298.05 18789.19 31999.08 25597.54 25193.66 15894.87 20699.58 10878.78 28999.79 12397.31 14493.40 24096.25 254
XVG-OURS94.82 18394.74 18195.06 24398.00 18989.19 31999.08 25597.55 24994.10 13894.71 20799.62 10480.51 27399.74 13496.04 17093.06 24596.25 254
ab-mvs94.69 18993.42 21398.51 10898.07 18696.26 13696.49 36098.68 7090.31 26894.54 20897.00 25976.30 31099.71 13895.98 17193.38 24199.56 142
TAPA-MVS92.12 894.42 19993.60 20696.90 19299.33 9891.78 27199.78 14598.00 20889.89 27594.52 20999.47 11691.97 14599.18 17469.90 38299.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TR-MVS94.54 19493.56 20997.49 17097.96 19194.34 20698.71 29897.51 25690.30 26994.51 21098.69 19275.56 31698.77 19392.82 23595.99 19799.35 173
Fast-Effi-MVS+95.02 18094.19 19197.52 16897.88 19594.55 19999.97 2897.08 30188.85 29494.47 21197.96 23284.59 23798.41 21889.84 28097.10 17599.59 134
DeepC-MVS94.51 496.92 11896.40 12398.45 11299.16 10795.90 15199.66 18198.06 20496.37 7094.37 21299.49 11583.29 24899.90 9197.63 13999.61 9499.55 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF91.80 26492.79 23088.83 35298.15 18269.87 39098.11 33096.60 34083.93 35394.33 21399.27 13679.60 28199.46 16391.99 24393.16 24397.18 248
WB-MVSnew92.90 23992.77 23193.26 31096.95 24993.63 22699.71 17098.16 19591.49 23494.28 21498.14 22381.33 26296.48 32879.47 35795.46 21189.68 380
BH-RMVSNet95.18 17694.31 18997.80 14898.17 18195.23 18299.76 15397.53 25392.52 20494.27 21599.25 14076.84 30398.80 19090.89 26299.54 9999.35 173
CVMVSNet94.68 19194.94 17693.89 29296.80 25986.92 34499.06 26098.98 3894.45 11794.23 21699.02 15485.60 22595.31 35890.91 26195.39 21499.43 164
baseline195.78 16194.86 17798.54 10598.47 16198.07 6799.06 26097.99 20992.68 19294.13 21798.62 20093.28 10898.69 20193.79 21885.76 29598.84 211
Anonymous20240521193.10 23591.99 24796.40 20899.10 10989.65 31698.88 28197.93 21683.71 35594.00 21898.75 18868.79 34999.88 10295.08 18491.71 24699.68 113
cascas94.64 19293.61 20497.74 15797.82 20096.26 13699.96 3597.78 23185.76 33694.00 21897.54 24176.95 30299.21 16897.23 14795.43 21397.76 240
Anonymous2024052992.10 25790.65 26896.47 20398.82 13690.61 29698.72 29798.67 7375.54 38493.90 22098.58 20466.23 36299.90 9194.70 19790.67 24998.90 209
LS3D95.84 16095.11 17098.02 13799.85 5495.10 18798.74 29598.50 11287.22 31893.66 22199.86 2687.45 20599.95 6990.94 26099.81 7999.02 203
GeoE94.36 20393.48 21196.99 18997.29 23793.54 22999.96 3596.72 33588.35 30493.43 22298.94 17282.05 25398.05 25288.12 29896.48 19099.37 170
HQP-NCC95.78 28399.87 10696.82 4893.37 223
ACMP_Plane95.78 28399.87 10696.82 4893.37 223
HQP4-MVS93.37 22398.39 22294.53 262
HQP-MVS94.61 19394.50 18494.92 24895.78 28391.85 26899.87 10697.89 22196.82 4893.37 22398.65 19680.65 27198.39 22297.92 12589.60 25194.53 262
HQP_MVS94.49 19794.36 18694.87 24995.71 29391.74 27299.84 12697.87 22396.38 6793.01 22798.59 20180.47 27598.37 22897.79 13389.55 25494.52 264
plane_prior391.64 27896.63 5693.01 227
GA-MVS93.83 21392.84 22796.80 19495.73 29093.57 22799.88 10397.24 28592.57 20092.92 22996.66 27078.73 29097.67 26987.75 30194.06 23399.17 190
tpm cat193.51 22592.52 23996.47 20397.77 20391.47 28296.13 36798.06 20480.98 36992.91 23093.78 35489.66 17998.87 18687.03 31296.39 19199.09 197
1112_ss96.01 15695.20 16798.42 11597.80 20196.41 12999.65 18396.66 33792.71 18992.88 23199.40 12592.16 14099.30 16591.92 24593.66 23799.55 143
Test_1112_low_res95.72 16294.83 17898.42 11597.79 20296.41 12999.65 18396.65 33892.70 19092.86 23296.13 28792.15 14199.30 16591.88 24693.64 23899.55 143
IB-MVS92.85 694.99 18193.94 19898.16 12697.72 21095.69 16299.99 598.81 6094.28 13192.70 23396.90 26195.08 5299.17 17596.07 16973.88 37199.60 133
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
bld_raw_dy_0_6494.22 20792.97 22497.98 13898.62 14995.09 18899.89 9993.09 39196.55 5992.59 23499.80 5168.57 35299.19 17398.92 7088.69 26699.68 113
Fast-Effi-MVS+-dtu93.72 22093.86 20193.29 30897.06 24386.16 34699.80 14296.83 32792.66 19392.58 23597.83 23681.39 26097.67 26989.75 28196.87 18396.05 259
SDMVSNet94.80 18493.96 19797.33 18198.92 12695.42 17399.59 19398.99 3792.41 20892.55 23697.85 23475.81 31598.93 18597.90 12791.62 24797.64 241
sd_testset93.55 22492.83 22895.74 22498.92 12690.89 29198.24 32398.85 5692.41 20892.55 23697.85 23471.07 34398.68 20293.93 21091.62 24797.64 241
iter_conf0596.07 15395.95 14296.44 20798.43 16297.52 8999.91 8496.85 32594.16 13592.49 23897.98 23198.20 497.34 27997.26 14688.29 27494.45 272
dmvs_re93.20 23193.15 22193.34 30696.54 26783.81 35998.71 29898.51 10791.39 24392.37 23998.56 20678.66 29197.83 26393.89 21189.74 25098.38 227
tpmvs94.28 20593.57 20896.40 20898.55 15491.50 28195.70 37598.55 9887.47 31392.15 24094.26 35091.42 15098.95 18488.15 29695.85 20398.76 215
Syy-MVS90.00 30390.63 26988.11 35997.68 21374.66 38799.71 17098.35 16590.79 25892.10 24198.67 19379.10 28793.09 37963.35 39395.95 20096.59 252
myMVS_eth3d94.46 19894.76 18093.55 30397.68 21390.97 28699.71 17098.35 16590.79 25892.10 24198.67 19392.46 13493.09 37987.13 30995.95 20096.59 252
BH-w/o95.71 16495.38 16196.68 19998.49 16092.28 25899.84 12697.50 25792.12 21692.06 24398.79 18684.69 23698.67 20395.29 18199.66 8799.09 197
VPA-MVSNet92.70 24491.55 25696.16 21495.09 30496.20 14198.88 28199.00 3691.02 25391.82 24495.29 32276.05 31497.96 25795.62 17881.19 32994.30 283
baseline296.71 12996.49 12097.37 17795.63 29895.96 15099.74 15998.88 5192.94 17891.61 24598.97 16397.72 698.62 20594.83 19298.08 15797.53 246
OPM-MVS93.21 23092.80 22994.44 27093.12 34090.85 29299.77 14897.61 24396.19 7591.56 24698.65 19675.16 32398.47 21193.78 21989.39 25793.99 313
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EI-MVSNet93.73 21993.40 21694.74 25396.80 25992.69 24999.06 26097.67 23688.96 28991.39 24799.02 15488.75 19597.30 28391.07 25587.85 28194.22 288
MVSTER95.53 17095.22 16696.45 20598.56 15197.72 8099.91 8497.67 23692.38 21091.39 24797.14 25197.24 1797.30 28394.80 19387.85 28194.34 282
mvsmamba94.10 20893.72 20395.25 23893.57 32994.13 21299.67 17996.45 34693.63 16091.34 24997.77 23786.29 22197.22 28996.65 16388.10 27894.40 274
testing393.92 21194.23 19092.99 31797.54 22090.23 30499.99 599.16 3090.57 26291.33 25098.63 19992.99 11592.52 38382.46 34295.39 21496.22 257
test_fmvs289.47 31189.70 28888.77 35594.54 31475.74 38499.83 13394.70 37994.71 11091.08 25196.82 26954.46 38697.78 26692.87 23488.27 27592.80 352
BH-untuned95.18 17694.83 17896.22 21398.36 16591.22 28499.80 14297.32 27590.91 25491.08 25198.67 19383.51 24598.54 20994.23 20799.61 9498.92 206
CLD-MVS94.06 21093.90 19994.55 26396.02 27790.69 29399.98 1597.72 23296.62 5891.05 25398.85 18477.21 29798.47 21198.11 11489.51 25694.48 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MVS96.60 13395.56 15699.72 1396.85 25699.22 2098.31 32098.94 4191.57 23290.90 25499.61 10586.66 21699.96 6197.36 14399.88 6999.99 23
MSDG94.37 20193.36 21797.40 17598.88 13393.95 21899.37 22797.38 26885.75 33890.80 25599.17 14684.11 24399.88 10286.35 31798.43 14398.36 228
VPNet91.81 26190.46 27195.85 22194.74 31095.54 16898.98 27098.59 8692.14 21590.77 25697.44 24368.73 35197.54 27394.89 19177.89 35494.46 267
MIMVSNet90.30 29588.67 30995.17 24196.45 26891.64 27892.39 38697.15 29385.99 33390.50 25793.19 36166.95 35994.86 36482.01 34693.43 23999.01 204
mvs_anonymous95.65 16895.03 17397.53 16798.19 17995.74 15799.33 23197.49 25890.87 25590.47 25897.10 25388.23 19897.16 29195.92 17297.66 16499.68 113
Patchmatch-test92.65 24791.50 25796.10 21696.85 25690.49 29991.50 39097.19 28782.76 36290.23 25995.59 30295.02 5598.00 25477.41 36796.98 18199.82 92
LPG-MVS_test92.96 23792.71 23293.71 29795.43 30088.67 32699.75 15697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
LGP-MVS_train93.71 29795.43 30088.67 32697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
DP-MVS94.54 19493.42 21397.91 14599.46 9494.04 21498.93 27697.48 25981.15 36890.04 26299.55 11087.02 21199.95 6988.97 28698.11 15499.73 105
test_djsdf92.83 24192.29 24294.47 26891.90 36092.46 25599.55 20197.27 28291.17 24689.96 26396.07 29081.10 26496.89 31194.67 19888.91 26094.05 307
ACMM91.95 1092.88 24092.52 23993.98 28895.75 28989.08 32299.77 14897.52 25593.00 17689.95 26497.99 23076.17 31298.46 21493.63 22388.87 26294.39 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
131496.84 12095.96 14099.48 3496.74 26398.52 5898.31 32098.86 5395.82 8089.91 26598.98 16187.49 20499.96 6197.80 13099.73 8399.96 64
XVG-ACMP-BASELINE91.22 27590.75 26692.63 32293.73 32785.61 34998.52 31197.44 26192.77 18789.90 26696.85 26566.64 36198.39 22292.29 23988.61 26893.89 321
miper_enhance_ethall94.36 20393.98 19695.49 22798.68 14495.24 18199.73 16497.29 28093.28 17089.86 26795.97 29194.37 7597.05 30092.20 24084.45 30794.19 291
nrg03093.51 22592.53 23896.45 20594.36 31697.20 10299.81 13897.16 29291.60 23189.86 26797.46 24286.37 21997.68 26895.88 17380.31 34194.46 267
V4291.28 27290.12 28394.74 25393.42 33493.46 23199.68 17797.02 30687.36 31589.85 26995.05 32781.31 26397.34 27987.34 30680.07 34393.40 339
v14419290.79 28389.52 29394.59 26093.11 34192.77 24499.56 19996.99 30986.38 32989.82 27094.95 33480.50 27497.10 29783.98 33380.41 33993.90 320
GBi-Net90.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
test190.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
FMVSNet392.69 24591.58 25495.99 21798.29 17097.42 9799.26 24297.62 24089.80 27689.68 27195.32 31881.62 25996.27 33787.01 31385.65 29694.29 284
IterMVS-LS92.69 24592.11 24494.43 27296.80 25992.74 24699.45 21796.89 32288.98 28789.65 27495.38 31588.77 19496.34 33490.98 25982.04 32394.22 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114491.09 27689.83 28594.87 24993.25 33793.69 22599.62 19096.98 31186.83 32589.64 27594.99 33280.94 26697.05 30085.08 32781.16 33093.87 323
v192192090.46 29089.12 30094.50 26692.96 34592.46 25599.49 21196.98 31186.10 33289.61 27695.30 31978.55 29397.03 30482.17 34580.89 33794.01 310
v119290.62 28889.25 29894.72 25593.13 33893.07 23899.50 20997.02 30686.33 33089.56 27795.01 32979.22 28497.09 29982.34 34481.16 33094.01 310
PCF-MVS94.20 595.18 17694.10 19398.43 11498.55 15495.99 14997.91 33697.31 27690.35 26789.48 27899.22 14285.19 23199.89 9690.40 27398.47 14299.41 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
3Dnovator91.47 1296.28 14995.34 16299.08 6796.82 25897.47 9599.45 21798.81 6095.52 9089.39 27999.00 15881.97 25499.95 6997.27 14599.83 7399.84 90
v124090.20 29888.79 30794.44 27093.05 34392.27 25999.38 22596.92 32085.89 33489.36 28094.87 33677.89 29697.03 30480.66 35281.08 33394.01 310
FIs94.10 20893.43 21296.11 21594.70 31196.82 11799.58 19598.93 4592.54 20189.34 28197.31 24787.62 20397.10 29794.22 20886.58 29194.40 274
ITE_SJBPF92.38 32395.69 29585.14 35295.71 36192.81 18489.33 28298.11 22470.23 34598.42 21785.91 32288.16 27793.59 336
v2v48291.30 27090.07 28495.01 24493.13 33893.79 22099.77 14897.02 30688.05 30789.25 28395.37 31680.73 26997.15 29287.28 30780.04 34494.09 304
UniMVSNet (Re)93.07 23692.13 24395.88 21994.84 30896.24 14099.88 10398.98 3892.49 20689.25 28395.40 31287.09 21097.14 29393.13 23178.16 35294.26 285
tt080591.28 27290.18 28094.60 25996.26 27187.55 33898.39 31898.72 6589.00 28689.22 28598.47 21462.98 37398.96 18390.57 26788.00 28097.28 247
UniMVSNet_NR-MVSNet92.95 23892.11 24495.49 22794.61 31395.28 17999.83 13399.08 3391.49 23489.21 28696.86 26487.14 20996.73 31993.20 22777.52 35794.46 267
DU-MVS92.46 25091.45 25995.49 22794.05 32195.28 17999.81 13898.74 6492.25 21489.21 28696.64 27281.66 25796.73 31993.20 22777.52 35794.46 267
eth_miper_zixun_eth92.41 25191.93 24893.84 29397.28 23890.68 29498.83 28896.97 31388.57 30089.19 28895.73 29789.24 18996.69 32189.97 27981.55 32694.15 298
cl2293.77 21793.25 22095.33 23599.49 9194.43 20199.61 19198.09 20190.38 26589.16 28995.61 30090.56 16997.34 27991.93 24484.45 30794.21 290
Baseline_NR-MVSNet90.33 29489.51 29492.81 32092.84 34689.95 31299.77 14893.94 38684.69 35089.04 29095.66 29981.66 25796.52 32690.99 25876.98 36391.97 363
FC-MVSNet-test93.81 21593.15 22195.80 22394.30 31896.20 14199.42 21998.89 4992.33 21289.03 29197.27 24987.39 20696.83 31593.20 22786.48 29294.36 278
QAPM95.40 17394.17 19299.10 6696.92 25097.71 8199.40 22098.68 7089.31 28088.94 29298.89 17582.48 25199.96 6193.12 23299.83 7399.62 128
RRT_MVS93.14 23392.92 22693.78 29493.31 33690.04 30999.66 18197.69 23492.53 20288.91 29397.76 23884.36 23996.93 30995.10 18386.99 28994.37 277
miper_ehance_all_eth93.16 23292.60 23494.82 25297.57 21993.56 22899.50 20997.07 30288.75 29588.85 29495.52 30690.97 16196.74 31890.77 26484.45 30794.17 292
AllTest92.48 24991.64 25295.00 24599.01 11488.43 33098.94 27596.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
TestCases95.00 24599.01 11488.43 33096.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
c3_l92.53 24891.87 25094.52 26497.40 22892.99 24299.40 22096.93 31987.86 30988.69 29795.44 31089.95 17796.44 33090.45 27080.69 33894.14 301
pmmvs492.10 25791.07 26495.18 24092.82 34894.96 19099.48 21396.83 32787.45 31488.66 29896.56 27683.78 24496.83 31589.29 28384.77 30593.75 329
PS-MVSNAJss93.64 22293.31 21894.61 25892.11 35792.19 26099.12 25197.38 26892.51 20588.45 29996.99 26091.20 15497.29 28694.36 20387.71 28394.36 278
UniMVSNet_ETH3D90.06 30288.58 31094.49 26794.67 31288.09 33597.81 33997.57 24883.91 35488.44 30097.41 24457.44 38397.62 27191.41 25088.59 27097.77 239
TranMVSNet+NR-MVSNet91.68 26890.61 27094.87 24993.69 32893.98 21799.69 17598.65 7491.03 25288.44 30096.83 26880.05 27896.18 34090.26 27576.89 36594.45 272
FMVSNet291.02 27789.56 29195.41 23297.53 22195.74 15798.98 27097.41 26687.05 31988.43 30295.00 33171.34 33996.24 33985.12 32685.21 30194.25 287
COLMAP_ROBcopyleft90.47 1492.18 25691.49 25894.25 27799.00 11688.04 33698.42 31796.70 33682.30 36488.43 30299.01 15676.97 30199.85 10886.11 32096.50 18894.86 261
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
3Dnovator+91.53 1196.31 14695.24 16599.52 2896.88 25598.64 5499.72 16798.24 18395.27 9688.42 30498.98 16182.76 25099.94 7797.10 15199.83 7399.96 64
v14890.70 28489.63 28993.92 28992.97 34490.97 28699.75 15696.89 32287.51 31288.27 30595.01 32981.67 25697.04 30287.40 30577.17 36293.75 329
DSMNet-mixed88.28 32088.24 31588.42 35789.64 37975.38 38698.06 33289.86 40085.59 34088.20 30692.14 36976.15 31391.95 38678.46 36396.05 19697.92 235
WR-MVS92.31 25391.25 26195.48 23094.45 31595.29 17899.60 19298.68 7090.10 27088.07 30796.89 26280.68 27096.80 31793.14 23079.67 34594.36 278
test0.0.03 193.86 21293.61 20494.64 25795.02 30792.18 26199.93 7698.58 8794.07 14087.96 30898.50 20993.90 9194.96 36281.33 34993.17 24296.78 249
XXY-MVS91.82 26090.46 27195.88 21993.91 32495.40 17598.87 28497.69 23488.63 29987.87 30997.08 25474.38 32897.89 26191.66 24884.07 31194.35 281
Patchmtry89.70 30888.49 31193.33 30796.24 27289.94 31491.37 39196.23 35178.22 37787.69 31093.31 35991.04 15996.03 34780.18 35682.10 32294.02 308
DIV-MVS_self_test92.32 25291.60 25394.47 26897.31 23592.74 24699.58 19596.75 33386.99 32287.64 31195.54 30489.55 18296.50 32788.58 29082.44 32094.17 292
D2MVS92.76 24292.59 23793.27 30995.13 30389.54 31899.69 17599.38 2392.26 21387.59 31294.61 34385.05 23397.79 26491.59 24988.01 27992.47 357
cl____92.31 25391.58 25494.52 26497.33 23492.77 24499.57 19796.78 33286.97 32387.56 31395.51 30789.43 18396.62 32388.60 28982.44 32094.16 297
v890.54 28989.17 29994.66 25693.43 33393.40 23499.20 24696.94 31885.76 33687.56 31394.51 34481.96 25597.19 29084.94 32878.25 35193.38 341
miper_lstm_enhance91.81 26191.39 26093.06 31697.34 23289.18 32199.38 22596.79 33186.70 32687.47 31595.22 32490.00 17695.86 35188.26 29481.37 32894.15 298
anonymousdsp91.79 26690.92 26594.41 27390.76 37292.93 24398.93 27697.17 29089.08 28287.46 31695.30 31978.43 29596.92 31092.38 23888.73 26593.39 340
jajsoiax91.92 25991.18 26294.15 27891.35 36790.95 28999.00 26997.42 26492.61 19687.38 31797.08 25472.46 33497.36 27794.53 20188.77 26494.13 302
mvs_tets91.81 26191.08 26394.00 28691.63 36490.58 29798.67 30397.43 26292.43 20787.37 31897.05 25771.76 33697.32 28294.75 19588.68 26794.11 303
v1090.25 29788.82 30694.57 26293.53 33193.43 23299.08 25596.87 32485.00 34587.34 31994.51 34480.93 26797.02 30682.85 34079.23 34693.26 343
pmmvs590.17 30089.09 30193.40 30592.10 35889.77 31599.74 15995.58 36585.88 33587.24 32095.74 29573.41 33296.48 32888.54 29183.56 31493.95 316
ACMP92.05 992.74 24392.42 24193.73 29595.91 28188.72 32599.81 13897.53 25394.13 13687.00 32198.23 22174.07 32998.47 21196.22 16888.86 26393.99 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS-HIRNet86.22 32983.19 34295.31 23696.71 26590.29 30392.12 38797.33 27462.85 39486.82 32270.37 39969.37 34797.49 27475.12 37497.99 15998.15 231
Anonymous2023121189.86 30588.44 31294.13 28098.93 12390.68 29498.54 30998.26 18276.28 38086.73 32395.54 30470.60 34497.56 27290.82 26380.27 34294.15 298
v7n89.65 30988.29 31493.72 29692.22 35590.56 29899.07 25997.10 29885.42 34386.73 32394.72 33780.06 27797.13 29481.14 35078.12 35393.49 337
IterMVS-SCA-FT90.85 28290.16 28292.93 31896.72 26489.96 31198.89 27996.99 30988.95 29086.63 32595.67 29876.48 30895.00 36187.04 31184.04 31393.84 325
EU-MVSNet90.14 30190.34 27589.54 34792.55 35181.06 37698.69 30198.04 20791.41 24286.59 32696.84 26780.83 26893.31 37886.20 31881.91 32494.26 285
OpenMVScopyleft90.15 1594.77 18793.59 20798.33 11996.07 27597.48 9499.56 19998.57 8990.46 26486.51 32798.95 17078.57 29299.94 7793.86 21299.74 8297.57 245
IterMVS90.91 27990.17 28193.12 31396.78 26290.42 30298.89 27997.05 30589.03 28486.49 32895.42 31176.59 30695.02 36087.22 30884.09 31093.93 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WR-MVS_H91.30 27090.35 27494.15 27894.17 32092.62 25399.17 24998.94 4188.87 29386.48 32994.46 34884.36 23996.61 32488.19 29578.51 35093.21 345
MS-PatchMatch90.65 28590.30 27691.71 33194.22 31985.50 35198.24 32397.70 23388.67 29786.42 33096.37 28067.82 35698.03 25383.62 33699.62 9091.60 365
CP-MVSNet91.23 27490.22 27894.26 27693.96 32392.39 25799.09 25398.57 8988.95 29086.42 33096.57 27579.19 28596.37 33290.29 27478.95 34794.02 308
LF4IMVS89.25 31588.85 30590.45 34192.81 34981.19 37598.12 32994.79 37691.44 23886.29 33297.11 25265.30 36798.11 24888.53 29285.25 30092.07 360
PVSNet_088.03 1991.80 26490.27 27796.38 21098.27 17390.46 30099.94 6999.61 1493.99 14586.26 33397.39 24671.13 34299.89 9698.77 8267.05 38798.79 214
PS-CasMVS90.63 28789.51 29493.99 28793.83 32591.70 27698.98 27098.52 10488.48 30186.15 33496.53 27775.46 31796.31 33688.83 28778.86 34993.95 316
FMVSNet188.50 31886.64 32494.08 28195.62 29991.97 26398.43 31496.95 31483.00 35986.08 33594.72 33759.09 38196.11 34281.82 34884.07 31194.17 292
PEN-MVS90.19 29989.06 30293.57 30293.06 34290.90 29099.06 26098.47 11588.11 30685.91 33696.30 28176.67 30495.94 35087.07 31076.91 36493.89 321
ppachtmachnet_test89.58 31088.35 31393.25 31192.40 35390.44 30199.33 23196.73 33485.49 34185.90 33795.77 29481.09 26596.00 34976.00 37382.49 31993.30 342
OurMVSNet-221017-089.81 30689.48 29690.83 33791.64 36381.21 37498.17 32895.38 36991.48 23685.65 33897.31 24772.66 33397.29 28688.15 29684.83 30493.97 315
our_test_390.39 29189.48 29693.12 31392.40 35389.57 31799.33 23196.35 34987.84 31085.30 33994.99 33284.14 24296.09 34580.38 35384.56 30693.71 334
testgi89.01 31688.04 31791.90 32993.49 33284.89 35599.73 16495.66 36393.89 15385.14 34098.17 22259.68 38094.66 36677.73 36688.88 26196.16 258
DTE-MVSNet89.40 31288.24 31592.88 31992.66 35089.95 31299.10 25298.22 18587.29 31685.12 34196.22 28376.27 31195.30 35983.56 33775.74 36893.41 338
FMVSNet588.32 31987.47 32190.88 33596.90 25488.39 33297.28 34595.68 36282.60 36384.67 34292.40 36779.83 27991.16 38876.39 37281.51 32793.09 346
tfpnnormal89.29 31487.61 32094.34 27594.35 31794.13 21298.95 27498.94 4183.94 35284.47 34395.51 30774.84 32497.39 27677.05 37080.41 33991.48 367
MVP-Stereo90.93 27890.45 27392.37 32491.25 36988.76 32398.05 33396.17 35387.27 31784.04 34495.30 31978.46 29497.27 28883.78 33599.70 8591.09 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LTVRE_ROB88.28 1890.29 29689.05 30394.02 28495.08 30590.15 30797.19 34797.43 26284.91 34883.99 34597.06 25674.00 33098.28 23784.08 33187.71 28393.62 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
pm-mvs189.36 31387.81 31994.01 28593.40 33591.93 26698.62 30696.48 34586.25 33183.86 34696.14 28673.68 33197.04 30286.16 31975.73 36993.04 348
USDC90.00 30388.96 30493.10 31594.81 30988.16 33498.71 29895.54 36693.66 15883.75 34797.20 25065.58 36498.31 23383.96 33487.49 28792.85 351
CL-MVSNet_self_test84.50 34083.15 34388.53 35686.00 38781.79 37198.82 28997.35 27085.12 34483.62 34890.91 37476.66 30591.40 38769.53 38360.36 39692.40 358
ACMH+89.98 1690.35 29389.54 29292.78 32195.99 27886.12 34798.81 29097.18 28989.38 27983.14 34997.76 23868.42 35498.43 21689.11 28586.05 29493.78 328
Anonymous2023120686.32 32885.42 33189.02 35189.11 38180.53 38099.05 26495.28 37085.43 34282.82 35093.92 35274.40 32793.44 37766.99 38781.83 32593.08 347
KD-MVS_self_test83.59 34682.06 34688.20 35886.93 38580.70 37897.21 34696.38 34782.87 36082.49 35188.97 38067.63 35792.32 38473.75 37662.30 39591.58 366
SixPastTwentyTwo88.73 31788.01 31890.88 33591.85 36182.24 36798.22 32695.18 37488.97 28882.26 35296.89 26271.75 33796.67 32284.00 33282.98 31593.72 333
KD-MVS_2432*160088.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
miper_refine_blended88.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
TinyColmap87.87 32486.51 32591.94 32895.05 30685.57 35097.65 34094.08 38384.40 35181.82 35596.85 26562.14 37598.33 23180.25 35586.37 29391.91 364
ACMH89.72 1790.64 28689.63 28993.66 30195.64 29788.64 32898.55 30797.45 26089.03 28481.62 35697.61 24069.75 34698.41 21889.37 28287.62 28593.92 319
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052185.15 33683.81 33889.16 35088.32 38282.69 36398.80 29295.74 36079.72 37381.53 35790.99 37265.38 36694.16 36972.69 37781.11 33290.63 373
pmmvs685.69 33083.84 33791.26 33490.00 37884.41 35797.82 33896.15 35475.86 38281.29 35895.39 31461.21 37896.87 31383.52 33873.29 37292.50 356
TransMVSNet (Re)87.25 32585.28 33293.16 31293.56 33091.03 28598.54 30994.05 38583.69 35681.09 35996.16 28575.32 31896.40 33176.69 37168.41 38392.06 361
test_method80.79 35179.70 35584.08 36692.83 34767.06 39299.51 20795.42 36754.34 39881.07 36093.53 35644.48 39492.22 38578.90 36277.23 36192.94 349
NR-MVSNet91.56 26990.22 27895.60 22594.05 32195.76 15698.25 32298.70 6791.16 24880.78 36196.64 27283.23 24996.57 32591.41 25077.73 35694.46 267
LCM-MVSNet-Re92.31 25392.60 23491.43 33297.53 22179.27 38299.02 26891.83 39692.07 21780.31 36294.38 34983.50 24695.48 35497.22 14897.58 16599.54 147
TDRefinement84.76 33782.56 34591.38 33374.58 40384.80 35697.36 34494.56 38084.73 34980.21 36396.12 28963.56 37198.39 22287.92 29963.97 39290.95 371
N_pmnet80.06 35480.78 35277.89 37391.94 35945.28 41198.80 29256.82 41378.10 37880.08 36493.33 35777.03 29995.76 35268.14 38682.81 31692.64 353
test_fmvs379.99 35580.17 35479.45 37284.02 39162.83 39399.05 26493.49 39088.29 30580.06 36586.65 38928.09 40188.00 39388.63 28873.27 37387.54 389
test_040285.58 33183.94 33690.50 33993.81 32685.04 35398.55 30795.20 37376.01 38179.72 36695.13 32564.15 37096.26 33866.04 39186.88 29090.21 376
test20.0384.72 33983.99 33486.91 36188.19 38480.62 37998.88 28195.94 35788.36 30378.87 36794.62 34268.75 35089.11 39266.52 38975.82 36791.00 369
pmmvs380.27 35377.77 35887.76 36080.32 39882.43 36698.23 32591.97 39572.74 39178.75 36887.97 38557.30 38490.99 38970.31 38162.37 39489.87 378
dmvs_testset83.79 34486.07 32876.94 37492.14 35648.60 40996.75 35790.27 39989.48 27878.65 36998.55 20879.25 28386.65 39766.85 38882.69 31795.57 260
MIMVSNet182.58 34780.51 35388.78 35386.68 38684.20 35896.65 35895.41 36878.75 37678.59 37092.44 36451.88 39089.76 39165.26 39278.95 34792.38 359
DeepMVS_CXcopyleft82.92 36995.98 28058.66 40096.01 35692.72 18878.34 37195.51 30758.29 38298.08 24982.57 34185.29 29992.03 362
test_vis1_rt86.87 32786.05 32989.34 34896.12 27378.07 38399.87 10683.54 40792.03 22078.21 37289.51 37845.80 39399.91 8996.25 16793.11 24490.03 377
mvsany_test382.12 34881.14 35085.06 36581.87 39470.41 38997.09 35092.14 39491.27 24577.84 37388.73 38139.31 39695.49 35390.75 26571.24 37589.29 385
Patchmatch-RL test86.90 32685.98 33089.67 34684.45 38975.59 38589.71 39592.43 39386.89 32477.83 37490.94 37394.22 8093.63 37587.75 30169.61 37899.79 97
APD_test181.15 35080.92 35181.86 37092.45 35259.76 39996.04 37093.61 38973.29 39077.06 37596.64 27244.28 39596.16 34172.35 37882.52 31889.67 381
lessismore_v090.53 33890.58 37380.90 37795.80 35977.01 37695.84 29266.15 36396.95 30783.03 33975.05 37093.74 332
K. test v388.05 32187.24 32390.47 34091.82 36282.23 36898.96 27397.42 26489.05 28376.93 37795.60 30168.49 35395.42 35585.87 32381.01 33593.75 329
ambc83.23 36877.17 40162.61 39487.38 39794.55 38176.72 37886.65 38930.16 39896.36 33384.85 32969.86 37790.73 372
PM-MVS80.47 35278.88 35785.26 36483.79 39272.22 38895.89 37391.08 39785.71 33976.56 37988.30 38236.64 39793.90 37282.39 34369.57 37989.66 382
OpenMVS_ROBcopyleft79.82 2083.77 34581.68 34890.03 34488.30 38382.82 36298.46 31295.22 37273.92 38976.00 38091.29 37155.00 38596.94 30868.40 38588.51 27290.34 374
UnsupCasMVSNet_eth85.52 33283.99 33490.10 34389.36 38083.51 36196.65 35897.99 20989.14 28175.89 38193.83 35363.25 37293.92 37181.92 34767.90 38692.88 350
new_pmnet84.49 34182.92 34489.21 34990.03 37782.60 36496.89 35695.62 36480.59 37075.77 38289.17 37965.04 36894.79 36572.12 37981.02 33490.23 375
EG-PatchMatch MVS85.35 33583.81 33889.99 34590.39 37481.89 37098.21 32796.09 35581.78 36674.73 38393.72 35551.56 39197.12 29679.16 36188.61 26890.96 370
test_f78.40 35777.59 35980.81 37180.82 39662.48 39696.96 35493.08 39283.44 35774.57 38484.57 39327.95 40292.63 38284.15 33072.79 37487.32 390
pmmvs-eth3d84.03 34381.97 34790.20 34284.15 39087.09 34298.10 33194.73 37883.05 35874.10 38587.77 38665.56 36594.01 37081.08 35169.24 38089.49 383
new-patchmatchnet81.19 34979.34 35686.76 36282.86 39380.36 38197.92 33595.27 37182.09 36572.02 38686.87 38862.81 37490.74 39071.10 38063.08 39389.19 386
ET-MVSNet_ETH3D94.37 20193.28 21997.64 16198.30 16997.99 7199.99 597.61 24394.35 12571.57 38799.45 11996.23 3195.34 35796.91 16085.14 30299.59 134
UnsupCasMVSNet_bld79.97 35677.03 36188.78 35385.62 38881.98 36993.66 38297.35 27075.51 38570.79 38883.05 39448.70 39294.91 36378.31 36460.29 39789.46 384
CMPMVSbinary61.59 2184.75 33885.14 33383.57 36790.32 37562.54 39596.98 35397.59 24774.33 38869.95 38996.66 27064.17 36998.32 23287.88 30088.41 27389.84 379
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WB-MVS76.28 35877.28 36073.29 37881.18 39554.68 40397.87 33794.19 38281.30 36769.43 39090.70 37577.02 30082.06 40135.71 40668.11 38583.13 392
SSC-MVS75.42 35976.40 36272.49 38280.68 39753.62 40497.42 34294.06 38480.42 37168.75 39190.14 37776.54 30781.66 40233.25 40766.34 38982.19 393
testmvs40.60 37444.45 37729.05 39119.49 41514.11 41799.68 17718.47 41420.74 40764.59 39298.48 21310.95 41217.09 41156.66 40011.01 40755.94 404
LCM-MVSNet67.77 36564.73 36876.87 37562.95 40956.25 40289.37 39693.74 38844.53 40161.99 39380.74 39520.42 40886.53 39869.37 38459.50 39887.84 387
PMMVS267.15 36664.15 36976.14 37670.56 40662.07 39793.89 38087.52 40458.09 39560.02 39478.32 39622.38 40584.54 39959.56 39647.03 40181.80 394
testf168.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
APD_test268.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
Gipumacopyleft66.95 36765.00 36772.79 37991.52 36567.96 39166.16 40295.15 37547.89 40058.54 39767.99 40229.74 39987.54 39650.20 40177.83 35562.87 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
YYNet185.50 33483.33 34092.00 32790.89 37188.38 33399.22 24596.55 34279.60 37557.26 39892.72 36279.09 28893.78 37477.25 36877.37 36093.84 325
MDA-MVSNet_test_wron85.51 33383.32 34192.10 32690.96 37088.58 32999.20 24696.52 34379.70 37457.12 39992.69 36379.11 28693.86 37377.10 36977.46 35993.86 324
MDA-MVSNet-bldmvs84.09 34281.52 34991.81 33091.32 36888.00 33798.67 30395.92 35880.22 37255.60 40093.32 35868.29 35593.60 37673.76 37576.61 36693.82 327
FPMVS68.72 36268.72 36368.71 38465.95 40744.27 41395.97 37294.74 37751.13 39953.26 40190.50 37625.11 40483.00 40060.80 39580.97 33678.87 397
test12337.68 37539.14 37833.31 39019.94 41424.83 41698.36 3199.75 41515.53 40851.31 40287.14 38719.62 40917.74 41047.10 4023.47 40957.36 403
test_vis3_rt68.82 36166.69 36675.21 37776.24 40260.41 39896.44 36168.71 41275.13 38650.54 40369.52 40116.42 41196.32 33580.27 35466.92 38868.89 399
tmp_tt65.23 36862.94 37172.13 38344.90 41250.03 40881.05 39989.42 40338.45 40248.51 40499.90 1854.09 38778.70 40491.84 24718.26 40687.64 388
E-PMN52.30 37152.18 37352.67 38871.51 40445.40 41093.62 38376.60 41036.01 40443.50 40564.13 40427.11 40367.31 40731.06 40826.06 40345.30 406
EMVS51.44 37351.22 37552.11 38970.71 40544.97 41294.04 37975.66 41135.34 40642.40 40661.56 40728.93 40065.87 40827.64 40924.73 40445.49 405
MVEpermissive53.74 2251.54 37247.86 37662.60 38659.56 41050.93 40579.41 40077.69 40935.69 40536.27 40761.76 4065.79 41569.63 40537.97 40536.61 40267.24 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
ANet_high56.10 36952.24 37267.66 38549.27 41156.82 40183.94 39882.02 40870.47 39233.28 40864.54 40317.23 41069.16 40645.59 40323.85 40577.02 398
PMVScopyleft49.05 2353.75 37051.34 37460.97 38740.80 41334.68 41474.82 40189.62 40237.55 40328.67 40972.12 3987.09 41381.63 40343.17 40468.21 38466.59 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 37720.84 38018.99 39265.34 40827.73 41550.43 4037.67 4169.50 4098.01 4106.34 4106.13 41426.24 40923.40 41010.69 4082.99 407
EGC-MVSNET69.38 36063.76 37086.26 36390.32 37581.66 37396.24 36693.85 3870.99 4103.22 41192.33 36852.44 38892.92 38159.53 39784.90 30384.21 391
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.02 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.43 37631.24 3790.00 3930.00 4160.00 4180.00 40498.09 2010.00 4110.00 41299.67 9683.37 2470.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.60 37910.13 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41291.20 1540.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.28 37811.04 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.40 1250.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.97 28686.10 321
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
eth-test20.00 416
eth-test0.00 416
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15297.66 21
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
GSMVS99.59 134
sam_mvs194.72 6499.59 134
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post195.78 37459.23 40893.20 11197.74 26791.06 256
test_post63.35 40594.43 6998.13 247
patchmatchnet-post91.70 37095.12 5097.95 258
MTMP99.87 10696.49 344
gm-plane-assit96.97 24893.76 22291.47 23798.96 16598.79 19194.92 188
test9_res99.71 3399.99 21100.00 1
agg_prior299.48 43100.00 1100.00 1
test_prior498.05 6899.94 69
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
新几何299.40 220
旧先验199.76 6697.52 8998.64 7699.85 3095.63 4199.94 5499.99 23
无先验99.49 21198.71 6693.46 163100.00 194.36 20399.99 23
原ACMM299.90 91
testdata299.99 3690.54 269
segment_acmp96.68 25
testdata199.28 24096.35 71
plane_prior795.71 29391.59 280
plane_prior695.76 28791.72 27580.47 275
plane_prior597.87 22398.37 22897.79 13389.55 25494.52 264
plane_prior498.59 201
plane_prior299.84 12696.38 67
plane_prior195.73 290
plane_prior91.74 27299.86 11896.76 5289.59 253
n20.00 417
nn0.00 417
door-mid89.69 401
test1198.44 123
door90.31 398
HQP5-MVS91.85 268
BP-MVS97.92 125
HQP3-MVS97.89 22189.60 251
HQP2-MVS80.65 271
NP-MVS95.77 28691.79 27098.65 196
ACMMP++_ref87.04 288
ACMMP++88.23 276
Test By Simon92.82 122