This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
pmmvs686.52 9588.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
gg-mvs-nofinetune68.96 32669.11 32168.52 34476.12 36145.32 37883.59 18255.88 39386.68 2464.62 38297.01 730.36 39483.97 31344.78 38082.94 34776.26 371
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27094.65 7280.58 10693.24 20994.83 72
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ANet_high83.17 16385.68 11575.65 30081.24 31445.26 37979.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
VDDNet84.35 13385.39 12081.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
EGC-MVSNET74.79 27669.99 31689.19 6394.89 3787.00 1191.89 3486.28 2291.09 3982.23 40095.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
MIMVSNet183.63 15384.59 13480.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25395.90 1585.01 5898.23 2797.49 13
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
Baseline_NR-MVSNet84.00 14685.90 10978.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
GBi-Net82.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
test182.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
FMVSNet184.55 12985.45 11981.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
TransMVSNet (Re)84.02 14585.74 11478.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
wuyk23d75.13 26979.30 22262.63 36375.56 36475.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39334.16 39397.11 8059.85 390
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
pm-mvs183.69 15184.95 12779.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
Anonymous2024052986.20 10187.13 8783.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30689.28 24385.15 5497.09 8193.99 103
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
Gipumacopyleft84.44 13186.33 10178.78 25584.20 28473.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33176.14 15996.80 9082.36 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
FC-MVSNet-test85.93 10687.05 9082.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
SSC-MVS77.55 24381.64 18365.29 35790.46 15520.33 40273.56 33468.28 36685.44 3288.18 13994.64 6070.93 22681.33 32571.25 20892.03 23494.20 92
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
LCM-MVSNet-Re83.48 15785.06 12478.75 25685.94 25855.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
v1086.54 9487.10 8884.84 13788.16 20663.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
v886.22 10086.83 9584.36 15187.82 21062.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
VPA-MVSNet83.47 15884.73 12979.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27192.93 14079.52 11993.03 21493.93 107
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
VDD-MVS84.23 13984.58 13583.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
test250674.12 28173.39 28176.28 29591.85 11544.20 38284.06 16748.20 39872.30 19381.90 25994.20 8127.22 39989.77 23164.81 27196.02 12194.87 67
test111178.53 23478.85 22777.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32790.07 22365.36 26696.45 10395.11 62
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32889.82 22863.58 28096.02 12194.87 67
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
FIs85.35 11386.27 10282.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052180.18 21681.25 19476.95 28583.15 29760.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 28977.44 34273.71 18697.55 6792.56 166
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
WB-MVS76.06 26180.01 21764.19 36089.96 16820.58 40172.18 34268.19 36783.21 5486.46 17693.49 11270.19 22978.97 33765.96 25790.46 26993.02 149
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27452.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
ab-mvs79.67 22280.56 20376.99 28488.48 19856.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33070.06 22295.03 16091.21 211
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34158.62 31295.03 16091.21 211
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26190.22 21466.86 24993.92 19592.27 181
JIA-IIPM69.41 32266.64 33777.70 27773.19 37871.24 17075.67 31465.56 37570.42 21165.18 37792.97 12633.64 39183.06 31653.52 34369.61 38978.79 367
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior492.95 127
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
VPNet80.25 21381.68 18275.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
mvs_anonymous78.13 23778.76 22976.23 29779.24 33750.31 36378.69 27284.82 25861.60 29383.09 24292.82 13173.89 19387.01 26968.33 24486.41 31691.37 208
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 24077.07 12673.76 34192.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchT70.52 31172.76 28963.79 36279.38 33533.53 39677.63 28665.37 37673.61 16571.77 35092.79 13444.38 36875.65 34964.53 27685.37 32482.18 342
FA-MVS(test-final)83.13 16483.02 16283.43 17786.16 25566.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25492.50 15074.94 17291.30 24991.72 199
LFMVS80.15 21780.56 20378.89 25389.19 18155.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30190.07 22363.80 27995.75 13890.68 226
casdiffmvspermissive85.21 11585.85 11183.31 18186.17 25362.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPMNet78.88 22778.28 23680.68 23279.58 33162.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 33995.56 3973.48 18982.91 34883.85 319
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
QAPM82.59 16982.59 17182.58 20086.44 24066.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30088.85 264
MG-MVS80.32 21280.94 19978.47 26288.18 20452.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
MVS_Test82.47 17283.22 15680.22 23882.62 30257.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 29992.40 173
dcpmvs_284.23 13985.14 12381.50 21788.61 19561.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
CR-MVSNet74.00 28273.04 28576.85 28979.58 33162.64 25282.58 21076.90 31550.50 36475.72 32692.38 14448.07 34284.07 31168.72 23982.91 34883.85 319
Patchmtry76.56 25677.46 24173.83 31079.37 33646.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34283.98 31263.36 28395.31 15090.92 218
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
Anonymous20240521180.51 20581.19 19778.49 26188.48 19857.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
TinyColmap81.25 19482.34 17577.99 27285.33 26560.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 291
baseline85.20 11685.93 10783.02 18886.30 24762.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20884.42 27968.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 281
FMVSNet572.10 29871.69 29873.32 31381.57 31053.02 34376.77 29878.37 30463.31 27476.37 31791.85 15836.68 38678.98 33647.87 37092.45 22487.95 274
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 322
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
MIMVSNet71.09 30771.59 29969.57 33687.23 22350.07 36478.91 26871.83 35260.20 31071.26 35291.76 16455.08 31876.09 34641.06 38687.02 31082.54 338
testdata79.54 24892.87 8272.34 15480.14 29659.91 31185.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 358
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13486.14 13177.70 30761.64 29285.02 19891.62 16777.75 14586.24 28582.79 8187.07 30793.91 109
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
WR-MVS83.56 15584.40 14181.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
test20.0373.75 28474.59 27071.22 32681.11 31651.12 35970.15 35472.10 35070.42 21180.28 28891.50 17064.21 25874.72 35246.96 37494.58 17887.82 278
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
FE-MVS79.98 22078.86 22683.36 17986.47 23966.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36593.60 11463.93 27891.50 24690.04 243
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16785.19 14677.42 31062.27 28684.47 21191.33 17476.43 16785.91 29383.14 7287.14 30594.33 90
PC_three_145258.96 31590.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
USDC76.63 25476.73 25176.34 29483.46 29257.20 31680.02 25088.04 20552.14 35283.65 23091.25 17663.24 26486.65 27954.66 33894.11 19185.17 302
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
MVS-HIRNet61.16 35262.92 34955.87 37479.09 33835.34 39571.83 34357.98 39246.56 37159.05 39091.14 18049.95 33776.43 34538.74 38971.92 38455.84 393
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
新几何182.95 19193.96 5578.56 8480.24 29555.45 33583.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 345
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
v114484.54 13084.72 13184.00 16087.67 21562.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
XXY-MVS74.44 28076.19 25569.21 33884.61 27552.43 34871.70 34477.18 31360.73 30480.60 28090.96 18875.44 17269.35 36356.13 32688.33 29085.86 296
v119284.57 12884.69 13384.21 15787.75 21262.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15486.56 23873.35 13485.46 14077.30 31161.81 28884.51 20890.88 19277.36 15186.21 28782.72 8286.97 31193.38 133
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
test22293.31 7176.54 10979.38 26077.79 30652.59 34782.36 25190.84 19466.83 24591.69 24181.25 353
V4283.47 15883.37 15583.75 16883.16 29663.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19286.65 12490.62 15054.66 33881.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
VNet79.31 22380.27 20876.44 29287.92 20953.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16886.02 25771.56 16884.73 15277.11 31462.44 28384.00 22590.68 19976.42 16885.89 29583.14 7287.11 30693.81 116
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 298
v14882.31 17382.48 17381.81 21485.59 26259.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
v124084.30 13584.51 13783.65 17187.65 21661.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26793.92 10078.26 13194.20 18989.63 247
v14419284.24 13884.41 14083.71 17087.59 21861.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
FMVSNet378.80 23078.55 23279.57 24782.89 30156.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 32990.09 22265.95 25893.34 20591.72 199
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17383.94 28673.90 13183.35 18886.10 23358.97 31483.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
v192192084.23 13984.37 14283.79 16687.64 21761.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
DSMNet-mixed60.98 35461.61 35459.09 37372.88 38145.05 38074.70 32446.61 39926.20 39565.34 37690.32 20955.46 31463.12 38641.72 38581.30 36069.09 382
pmmvs-eth3d78.42 23677.04 24782.57 20287.44 22074.41 12880.86 24279.67 29855.68 33484.69 20690.31 21060.91 27585.42 30062.20 29091.59 24487.88 276
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
tttt051781.07 19679.58 21985.52 12888.99 18566.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38494.16 9479.36 12195.13 15595.93 42
IterMVS-SCA-FT80.64 20379.41 22084.34 15383.93 28769.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27793.15 13377.45 14486.39 31790.22 237
PM-MVS80.20 21579.00 22483.78 16788.17 20586.66 1581.31 23466.81 37469.64 22088.33 13590.19 21364.58 25583.63 31571.99 20690.03 27281.06 358
NP-MVS91.95 11074.55 12790.17 215
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
fmvsm_l_conf0.5_n_a81.46 19180.87 20183.25 18283.73 29073.21 13983.00 19985.59 24258.22 32082.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
testgi72.36 29574.61 26865.59 35480.56 32542.82 38668.29 35973.35 34166.87 24981.84 26189.93 21872.08 21866.92 37646.05 37792.54 22387.01 285
PCF-MVS74.62 1582.15 17980.92 20085.84 12289.43 17472.30 15580.53 24491.82 11657.36 32887.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
patch_mono-278.89 22679.39 22177.41 28184.78 27268.11 19875.60 31583.11 27260.96 30179.36 29689.89 22075.18 17672.97 35373.32 19292.30 22691.15 213
Vis-MVSNet (Re-imp)77.82 24077.79 24077.92 27388.82 18851.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30189.41 24057.22 32095.41 14493.05 148
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16683.52 18392.13 10461.82 28783.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
iter_conf_final80.36 21078.88 22584.79 13986.29 24866.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38794.51 8179.83 11394.30 18693.50 132
iter_conf0578.81 22977.35 24483.21 18482.98 30060.75 28084.09 16688.34 19863.12 27684.25 22289.48 22531.41 39294.51 8176.64 15395.83 13294.38 88
MSLP-MVS++85.00 12186.03 10681.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 307
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
DIV-MVS_self_test80.43 20680.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26590.16 21676.32 15695.80 13593.66 121
cl____80.42 20780.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26690.16 21676.31 15795.80 13593.65 123
IterMVS76.91 25076.34 25478.64 25880.91 31864.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28384.46 30868.61 24085.15 32987.42 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
MDA-MVSNet-bldmvs77.47 24476.90 24979.16 25279.03 33964.59 22866.58 36775.67 32473.15 17788.86 12288.99 23566.94 24381.23 32664.71 27288.22 29591.64 203
EPNet80.37 20978.41 23586.23 11176.75 35473.28 13687.18 11177.45 30976.24 13168.14 36588.93 23665.41 25293.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Anonymous2023120671.38 30571.88 29769.88 33386.31 24654.37 33370.39 35274.62 32952.57 34876.73 31588.76 23759.94 28272.06 35544.35 38193.23 21083.23 330
EU-MVSNet75.12 27074.43 27277.18 28383.11 29859.48 29285.71 13882.43 27939.76 39085.64 18988.76 23744.71 36787.88 26073.86 18385.88 32184.16 315
MVSTER77.09 24875.70 26081.25 22075.27 36861.08 27277.49 29085.07 25060.78 30386.55 16988.68 23943.14 37490.25 21173.69 18790.67 26592.42 171
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32366.84 25192.29 22889.11 257
BH-RMVSNet80.53 20480.22 21181.49 21887.19 22566.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29787.52 279
CL-MVSNet_self_test76.81 25277.38 24375.12 30486.90 23451.34 35573.20 33880.63 29468.30 23481.80 26488.40 24266.92 24480.90 32755.35 33394.90 16693.12 146
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
miper_lstm_enhance76.45 25876.10 25677.51 27976.72 35560.97 27764.69 37185.04 25263.98 27383.20 23988.22 24456.67 30578.79 33973.22 19393.12 21292.78 157
UnsupCasMVSNet_eth71.63 30272.30 29569.62 33576.47 35752.70 34670.03 35580.97 29159.18 31379.36 29688.21 24560.50 27669.12 36458.33 31577.62 37487.04 284
tpm67.95 32868.08 32967.55 34678.74 34243.53 38475.60 31567.10 37354.92 33772.23 34888.10 24642.87 37575.97 34752.21 35080.95 36283.15 331
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
MVP-Stereo75.81 26473.51 28082.71 19789.35 17573.62 13280.06 24885.20 24760.30 30773.96 34087.94 24957.89 29989.45 23752.02 35174.87 38085.06 304
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
new-patchmatchnet70.10 31573.37 28260.29 37081.23 31516.95 40359.54 38074.62 32962.93 27780.97 27387.93 25062.83 26971.90 35655.24 33495.01 16392.00 192
PAPM_NR83.23 16183.19 15883.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
test_fmvs375.72 26575.20 26577.27 28275.01 37169.47 18478.93 26784.88 25746.67 37087.08 15787.84 25250.44 33571.62 35777.42 14688.53 28890.72 223
LF4IMVS82.75 16781.93 17985.19 13282.08 30380.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
FPMVS72.29 29772.00 29673.14 31588.63 19485.00 3674.65 32567.39 36871.94 19877.80 31087.66 25550.48 33475.83 34849.95 35979.51 36358.58 392
CMPMVSbinary59.41 2075.12 27073.57 27879.77 24275.84 36367.22 20381.21 23782.18 28050.78 36176.50 31687.66 25555.20 31682.99 31762.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
D2MVS76.84 25175.67 26180.34 23680.48 32662.16 26373.50 33584.80 25957.61 32682.24 25287.54 25751.31 33087.65 26270.40 22093.19 21191.23 210
canonicalmvs85.50 11086.14 10583.58 17487.97 20767.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
CANet83.79 15082.85 16586.63 10286.17 25372.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
OpenMVS_ROBcopyleft70.19 1777.77 24277.46 24178.71 25784.39 28061.15 27181.18 23882.52 27762.45 28283.34 23787.37 26066.20 24788.66 25364.69 27385.02 33086.32 290
thisisatest053079.07 22477.33 24584.26 15687.13 22664.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38293.57 11875.47 16594.28 18794.62 74
diffmvspermissive80.40 20880.48 20680.17 23979.02 34060.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
eth_miper_zixun_eth80.84 19980.22 21182.71 19781.41 31260.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25792.31 15675.23 16891.61 24394.85 71
PVSNet_Blended_VisFu81.55 19080.49 20584.70 14491.58 12573.24 13884.21 16291.67 12062.86 27880.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
AdaColmapbinary83.66 15283.69 15283.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 314
c3_l81.64 18981.59 18681.79 21580.86 32059.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
PVSNet_BlendedMVS78.80 23077.84 23981.65 21684.43 27763.41 24079.49 25990.44 15461.70 29175.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
mvsany_test365.48 34162.97 34873.03 31769.99 38876.17 11864.83 36943.71 40043.68 38180.25 28987.05 26952.83 32363.09 38751.92 35572.44 38279.84 365
TAMVS78.08 23876.36 25383.23 18390.62 15272.87 14179.08 26680.01 29761.72 29081.35 27186.92 27063.96 26088.78 25150.61 35793.01 21588.04 272
BH-untuned80.96 19880.99 19880.84 22888.55 19768.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 339
test_yl78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
pmmvs474.92 27372.98 28680.73 23084.95 26971.71 16576.23 30877.59 30852.83 34677.73 31286.38 27456.35 30984.97 30457.72 31987.05 30885.51 299
thres100view90075.45 26675.05 26676.66 29187.27 22251.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35688.80 24851.98 35290.99 25389.31 253
Patchmatch-RL test74.48 27873.68 27776.89 28884.83 27166.54 21172.29 34169.16 36557.70 32486.76 16386.33 27645.79 35582.59 31869.63 22590.65 26781.54 349
PLCcopyleft73.85 1682.09 18080.31 20787.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
thres600view775.97 26275.35 26477.85 27687.01 23251.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35689.05 24455.03 33692.24 23092.66 163
baseline173.26 28773.54 27972.43 32284.92 27047.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30881.63 32456.63 32279.04 36987.87 277
HY-MVS64.64 1873.03 29072.47 29474.71 30683.36 29354.19 33482.14 22781.96 28256.76 33269.57 36186.21 28060.03 28184.83 30649.58 36382.65 35185.11 303
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26792.41 15278.26 13193.62 20390.71 224
Test_1112_low_res73.90 28373.08 28476.35 29390.35 15755.95 32273.40 33786.17 23250.70 36273.14 34385.94 28358.31 29485.90 29456.51 32383.22 34587.20 283
DPM-MVS80.10 21879.18 22382.88 19590.71 15169.74 18078.87 27090.84 14360.29 30875.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 297
AUN-MVS81.18 19578.78 22888.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33192.38 15376.29 15893.63 20290.65 228
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
MDTV_nov1_ep1368.29 32878.03 34343.87 38374.12 32872.22 34952.17 35067.02 37085.54 28745.36 36080.85 32855.73 32784.42 339
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
CHOSEN 1792x268872.45 29470.56 30778.13 26890.02 16763.08 24568.72 35883.16 27142.99 38475.92 32485.46 28957.22 30385.18 30349.87 36181.67 35586.14 292
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28972.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
MDA-MVSNet_test_wron70.05 31770.44 30968.88 34073.84 37453.47 33958.93 38467.28 36958.43 31787.09 15685.40 29159.80 28567.25 37459.66 30883.54 34385.92 295
YYNet170.06 31670.44 30968.90 33973.76 37553.42 34158.99 38367.20 37058.42 31887.10 15585.39 29259.82 28467.32 37359.79 30783.50 34485.96 293
pmmvs570.73 31070.07 31372.72 31877.03 35252.73 34574.14 32775.65 32550.36 36572.17 34985.37 29355.42 31580.67 32952.86 34887.59 30284.77 306
UnsupCasMVSNet_bld69.21 32469.68 31867.82 34579.42 33451.15 35867.82 36375.79 32254.15 34077.47 31485.36 29459.26 28870.64 35948.46 36779.35 36581.66 347
miper_ehance_all_eth80.34 21180.04 21681.24 22279.82 33058.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
cl2278.97 22578.21 23781.24 22277.74 34459.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29190.88 19775.36 16792.03 23493.84 111
EI-MVSNet82.61 16882.42 17483.20 18583.25 29463.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
CVMVSNet72.62 29371.41 30376.28 29583.25 29460.34 28383.50 18479.02 30237.77 39376.33 31885.10 29649.60 33887.41 26570.54 21877.54 37581.08 356
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29294.27 8486.26 4088.77 28589.03 261
jason77.42 24575.75 25982.43 20587.10 22969.27 18677.99 28081.94 28351.47 35677.84 30885.07 29960.32 27989.00 24570.74 21589.27 28089.03 261
jason: jason.
PMMVS255.64 36159.27 36044.74 37864.30 39912.32 40440.60 39149.79 39753.19 34465.06 38084.81 30153.60 32149.76 39532.68 39589.41 27772.15 377
CostFormer69.98 31868.68 32673.87 30977.14 35050.72 36179.26 26274.51 33151.94 35470.97 35584.75 30245.16 36487.49 26455.16 33579.23 36683.40 326
PAPM71.77 30070.06 31476.92 28686.39 24153.97 33576.62 30286.62 22653.44 34363.97 38384.73 30357.79 30092.34 15539.65 38881.33 35984.45 309
PAPR78.84 22878.10 23881.07 22485.17 26860.22 28482.21 22490.57 15162.51 28075.32 33284.61 30474.99 17892.30 15759.48 30988.04 29690.68 226
tfpn200view974.86 27474.23 27376.74 29086.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25389.31 253
thres40075.14 26874.23 27377.86 27586.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25392.66 163
HyFIR lowres test75.12 27072.66 29082.50 20391.44 13365.19 22572.47 34087.31 21146.79 36980.29 28684.30 30752.70 32492.10 16351.88 35686.73 31290.22 237
test_fmvs273.57 28572.80 28775.90 29972.74 38368.84 19377.07 29484.32 26345.14 37682.89 24484.22 30848.37 34070.36 36073.40 19187.03 30988.52 267
Effi-MVS+83.90 14984.01 14783.57 17587.22 22465.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29892.17 186
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 340
DELS-MVS81.44 19281.25 19482.03 20784.27 28362.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet_DTU77.81 24177.05 24680.09 24081.37 31359.90 28883.26 19088.29 20069.16 22467.83 36883.72 31260.93 27489.47 23569.22 23089.70 27590.88 219
tpm268.45 32766.83 33473.30 31478.93 34148.50 36779.76 25371.76 35347.50 36869.92 36083.60 31342.07 37688.40 25548.44 36879.51 36383.01 333
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 12085.60 26176.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
CDS-MVSNet77.32 24675.40 26283.06 18789.00 18472.48 15277.90 28282.17 28160.81 30278.94 30183.49 31559.30 28788.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MSDG80.06 21979.99 21880.25 23783.91 28868.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31486.41 289
SCA73.32 28672.57 29275.58 30281.62 30955.86 32478.89 26971.37 35661.73 28974.93 33583.42 31760.46 27787.01 26958.11 31782.63 35383.88 316
Patchmatch-test65.91 33867.38 33061.48 36875.51 36543.21 38568.84 35763.79 37862.48 28172.80 34683.42 31744.89 36659.52 39048.27 36986.45 31581.70 346
test_vis3_rt71.42 30470.67 30673.64 31269.66 38970.46 17566.97 36689.73 17442.68 38688.20 13883.04 31943.77 36960.07 38865.35 26786.66 31390.39 235
ADS-MVSNet265.87 33963.64 34772.55 32073.16 37956.92 31867.10 36474.81 32849.74 36666.04 37282.97 32046.71 34577.26 34342.29 38369.96 38783.46 324
ADS-MVSNet61.90 34862.19 35261.03 36973.16 37936.42 39467.10 36461.75 38349.74 36666.04 37282.97 32046.71 34563.21 38542.29 38369.96 38783.46 324
PatchmatchNetpermissive69.71 32068.83 32472.33 32377.66 34653.60 33879.29 26169.99 36157.66 32572.53 34782.93 32246.45 34780.08 33360.91 30272.09 38383.31 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ppachtmachnet_test74.73 27774.00 27576.90 28780.71 32356.89 31971.53 34678.42 30358.24 31979.32 29882.92 32357.91 29884.26 31065.60 26491.36 24889.56 248
cdsmvs_eth3d_5k20.81 36427.75 3670.00 3840.00 4060.00 4090.00 39585.44 2430.00 4020.00 40382.82 32481.46 1130.00 4030.00 4020.00 4010.00 399
lupinMVS76.37 25974.46 27182.09 20685.54 26369.26 18776.79 29780.77 29350.68 36376.23 32082.82 32458.69 29288.94 24669.85 22388.77 28588.07 270
xiu_mvs_v1_base_debu80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base_debi80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
N_pmnet70.20 31368.80 32574.38 30880.91 31884.81 3959.12 38276.45 32055.06 33675.31 33382.36 32955.74 31254.82 39247.02 37287.24 30483.52 323
TR-MVS76.77 25375.79 25879.72 24486.10 25665.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32582.65 334
test_f64.31 34565.85 33859.67 37166.54 39462.24 26257.76 38570.96 35740.13 38884.36 21382.09 33146.93 34451.67 39461.99 29381.89 35465.12 386
testing371.53 30370.79 30573.77 31188.89 18741.86 38776.60 30359.12 38872.83 18180.97 27382.08 33219.80 40487.33 26765.12 26891.68 24292.13 188
Fast-Effi-MVS+81.04 19780.57 20282.46 20487.50 21963.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29491.51 207
tpmvs70.16 31469.56 31971.96 32474.71 37248.13 36879.63 25475.45 32765.02 26970.26 35881.88 33445.34 36185.68 29858.34 31475.39 37982.08 344
GA-MVS75.83 26374.61 26879.48 24981.87 30559.25 29473.42 33682.88 27468.68 23079.75 29181.80 33550.62 33389.46 23666.85 25085.64 32289.72 246
patchmatchnet-post81.71 33645.93 35387.01 269
WTY-MVS67.91 32968.35 32766.58 35180.82 32148.12 36965.96 36872.60 34553.67 34271.20 35381.68 33758.97 29069.06 36548.57 36681.67 35582.55 337
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MS-PatchMatch70.93 30970.22 31273.06 31681.85 30662.50 25573.82 33377.90 30552.44 34975.92 32481.27 33955.67 31381.75 32255.37 33277.70 37374.94 374
PatchMatch-RL74.48 27873.22 28378.27 26787.70 21385.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34053.86 34183.82 34271.48 378
EPNet_dtu72.87 29271.33 30477.49 28077.72 34560.55 28282.35 21875.79 32266.49 25258.39 39381.06 34153.68 32085.98 29153.55 34292.97 21785.95 294
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall77.83 23976.93 24880.51 23376.15 36058.01 30975.47 31988.82 18958.05 32283.59 23180.69 34264.41 25691.20 18473.16 19992.03 23492.33 177
KD-MVS_2432*160066.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
miper_refine_blended66.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
thres20072.34 29671.55 30274.70 30783.48 29151.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34888.20 25846.99 37389.29 27884.32 311
ET-MVSNet_ETH3D75.28 26772.77 28882.81 19683.03 29968.11 19877.09 29376.51 31960.67 30577.60 31380.52 34638.04 38391.15 18770.78 21390.68 26489.17 256
our_test_371.85 29971.59 29972.62 31980.71 32353.78 33769.72 35671.71 35558.80 31678.03 30580.51 34756.61 30778.84 33862.20 29086.04 32085.23 301
tpmrst66.28 33766.69 33665.05 35872.82 38239.33 38878.20 27870.69 35953.16 34567.88 36780.36 34848.18 34174.75 35158.13 31670.79 38581.08 356
sss66.92 33167.26 33165.90 35377.23 34951.10 36064.79 37071.72 35452.12 35370.13 35980.18 34957.96 29765.36 38250.21 35881.01 36181.25 353
EPMVS62.47 34662.63 35062.01 36470.63 38738.74 39074.76 32352.86 39553.91 34167.71 36980.01 35039.40 38066.60 37755.54 33168.81 39180.68 360
BH-w/o76.57 25576.07 25778.10 26986.88 23565.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32677.62 369
1112_ss74.82 27573.74 27678.04 27189.57 17060.04 28576.49 30487.09 22054.31 33973.66 34279.80 35260.25 28086.76 27858.37 31384.15 34187.32 282
ab-mvs-re6.65 3668.87 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40379.80 3520.00 4070.00 4030.00 4020.00 4010.00 399
EIA-MVS82.19 17781.23 19685.10 13487.95 20869.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
test_fmvs1_n70.94 30870.41 31172.53 32173.92 37366.93 20875.99 31284.21 26543.31 38379.40 29579.39 35543.47 37068.55 36869.05 23384.91 33382.10 343
test_vis1_n_192071.30 30671.58 30170.47 32977.58 34759.99 28774.25 32684.22 26451.06 35874.85 33679.10 35655.10 31768.83 36668.86 23679.20 36882.58 336
tpm cat166.76 33565.21 34271.42 32577.09 35150.62 36278.01 27973.68 34044.89 37768.64 36379.00 35745.51 35882.42 32149.91 36070.15 38681.23 355
test_cas_vis1_n_192069.20 32569.12 32069.43 33773.68 37662.82 24970.38 35377.21 31246.18 37380.46 28578.95 35852.03 32665.53 38165.77 26377.45 37679.95 364
xiu_mvs_v2_base77.19 24776.75 25078.52 26087.01 23261.30 26975.55 31887.12 21961.24 29874.45 33778.79 35977.20 15390.93 19364.62 27584.80 33783.32 328
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17684.50 16093.37 5878.76 10884.07 22478.72 36080.39 12595.13 6073.82 18492.98 21691.04 215
MAR-MVS80.24 21478.74 23084.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30878.50 36173.79 19490.53 20761.59 29890.87 25985.49 300
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended76.49 25775.40 26279.76 24384.43 27763.41 24075.14 32190.44 15457.36 32875.43 32978.30 36269.11 23491.44 17860.68 30387.70 30184.42 310
test_fmvs169.57 32169.05 32271.14 32869.15 39065.77 22173.98 33083.32 27042.83 38577.77 31178.27 36343.39 37368.50 36968.39 24384.38 34079.15 366
thisisatest051573.00 29170.52 30880.46 23481.45 31159.90 28873.16 33974.31 33357.86 32376.08 32377.78 36437.60 38592.12 16265.00 26991.45 24789.35 252
MVS73.21 28972.59 29175.06 30580.97 31760.81 27981.64 23185.92 23846.03 37471.68 35177.54 36568.47 23789.77 23155.70 32985.39 32374.60 375
test0.0.03 164.66 34364.36 34365.57 35575.03 37046.89 37564.69 37161.58 38562.43 28471.18 35477.54 36543.41 37168.47 37040.75 38782.65 35181.35 350
baseline269.77 31966.89 33378.41 26379.51 33358.09 30776.23 30869.57 36357.50 32764.82 38177.45 36746.02 35088.44 25453.08 34477.83 37188.70 265
dp60.70 35560.29 35861.92 36672.04 38538.67 39170.83 34964.08 37751.28 35760.75 38677.28 36836.59 38771.58 35847.41 37162.34 39375.52 373
test_vis1_n70.29 31269.99 31671.20 32775.97 36266.50 21276.69 30080.81 29244.22 37975.43 32977.23 36950.00 33668.59 36766.71 25382.85 35078.52 368
PS-MVSNAJ77.04 24976.53 25278.56 25987.09 23061.40 26775.26 32087.13 21661.25 29774.38 33977.22 37076.94 15990.94 19264.63 27484.83 33683.35 327
mvsany_test158.48 35856.47 36364.50 35965.90 39768.21 19756.95 38642.11 40138.30 39265.69 37477.19 37156.96 30459.35 39146.16 37558.96 39465.93 385
IB-MVS62.13 1971.64 30168.97 32379.66 24680.80 32262.26 26173.94 33176.90 31563.27 27568.63 36476.79 37233.83 39091.84 17059.28 31087.26 30384.88 305
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
131473.22 28872.56 29375.20 30380.41 32757.84 31081.64 23185.36 24451.68 35573.10 34476.65 37361.45 27285.19 30263.54 28179.21 36782.59 335
cascas76.29 26074.81 26780.72 23184.47 27662.94 24673.89 33287.34 21055.94 33375.16 33476.53 37463.97 25991.16 18665.00 26990.97 25688.06 271
pmmvs362.47 34660.02 35969.80 33471.58 38664.00 23670.52 35158.44 39139.77 38966.05 37175.84 37527.10 40072.28 35446.15 37684.77 33873.11 376
new_pmnet55.69 36057.66 36149.76 37775.47 36630.59 39759.56 37951.45 39643.62 38262.49 38475.48 37640.96 37849.15 39637.39 39172.52 38169.55 381
PVSNet58.17 2166.41 33665.63 34168.75 34181.96 30449.88 36562.19 37772.51 34751.03 35968.04 36675.34 37750.84 33274.77 35045.82 37882.96 34681.60 348
MVEpermissive40.22 2351.82 36250.47 36555.87 37462.66 40051.91 35131.61 39339.28 40240.65 38750.76 39674.98 37856.24 31044.67 39733.94 39464.11 39271.04 380
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_re66.81 33466.98 33266.28 35276.87 35358.68 30571.66 34572.24 34860.29 30869.52 36273.53 37952.38 32564.40 38444.90 37981.44 35875.76 372
test-LLR67.21 33066.74 33568.63 34276.45 35855.21 32967.89 36067.14 37162.43 28465.08 37872.39 38043.41 37169.37 36161.00 30084.89 33481.31 351
test-mter65.00 34263.79 34668.63 34276.45 35855.21 32967.89 36067.14 37150.98 36065.08 37872.39 38028.27 39769.37 36161.00 30084.89 33481.31 351
Syy-MVS69.40 32370.03 31567.49 34781.72 30738.94 38971.00 34761.99 38061.38 29570.81 35672.36 38261.37 27379.30 33464.50 27785.18 32784.22 312
myMVS_eth3d64.66 34363.89 34566.97 34981.72 30737.39 39271.00 34761.99 38061.38 29570.81 35672.36 38220.96 40379.30 33449.59 36285.18 32784.22 312
gm-plane-assit75.42 36744.97 38152.17 35072.36 38287.90 25954.10 340
test_vis1_rt65.64 34064.09 34470.31 33066.09 39570.20 17861.16 37881.60 28738.65 39172.87 34569.66 38552.84 32260.04 38956.16 32577.77 37280.68 360
TESTMET0.1,161.29 35160.32 35764.19 36072.06 38451.30 35667.89 36062.09 37945.27 37560.65 38769.01 38627.93 39864.74 38356.31 32481.65 35776.53 370
PMMVS61.65 34960.38 35665.47 35665.40 39869.26 18763.97 37361.73 38436.80 39460.11 38868.43 38759.42 28666.35 37848.97 36578.57 37060.81 389
CHOSEN 280x42059.08 35756.52 36266.76 35076.51 35664.39 23249.62 39059.00 38943.86 38055.66 39568.41 38835.55 38968.21 37243.25 38276.78 37867.69 384
dmvs_testset60.59 35662.54 35154.72 37677.26 34827.74 39974.05 32961.00 38660.48 30665.62 37567.03 38955.93 31168.23 37132.07 39669.46 39068.17 383
E-PMN61.59 35061.62 35361.49 36766.81 39355.40 32753.77 38860.34 38766.80 25058.90 39165.50 39040.48 37966.12 37955.72 32886.25 31862.95 388
EMVS61.10 35360.81 35561.99 36565.96 39655.86 32453.10 38958.97 39067.06 24756.89 39463.33 39140.98 37767.03 37554.79 33786.18 31963.08 387
PVSNet_051.08 2256.10 35954.97 36459.48 37275.12 36953.28 34255.16 38761.89 38244.30 37859.16 38962.48 39254.22 31965.91 38035.40 39247.01 39559.25 391
GG-mvs-BLEND67.16 34873.36 37746.54 37784.15 16455.04 39458.64 39261.95 39329.93 39583.87 31438.71 39076.92 37771.07 379
test_method30.46 36329.60 36633.06 37917.99 4023.84 40613.62 39473.92 3352.79 39718.29 39953.41 39428.53 39643.25 39822.56 39735.27 39752.11 394
DeepMVS_CXcopyleft24.13 38032.95 40129.49 39821.63 40512.07 39637.95 39745.07 39530.84 39319.21 39917.94 39933.06 39823.69 395
tmp_tt20.25 36524.50 3687.49 3814.47 4038.70 40534.17 39225.16 4041.00 39932.43 39818.49 39639.37 3819.21 40021.64 39843.75 3964.57 396
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39786.57 5295.80 2587.35 2497.62 6294.20 92
test_post178.85 2713.13 39845.19 36380.13 33258.11 317
test_post3.10 39945.43 35977.22 344
testmvs5.91 3697.65 3720.72 3831.20 4040.37 40859.14 3810.67 4070.49 4011.11 4012.76 4000.94 4060.24 4021.02 4011.47 3991.55 398
test1236.27 3688.08 3710.84 3821.11 4050.57 40762.90 3740.82 4060.54 4001.07 4022.75 4011.26 4050.30 4011.04 4001.26 4001.66 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.41 3678.55 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40276.94 1590.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS37.39 39252.61 349
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
eth-test20.00 406
eth-test0.00 406
IU-MVS94.18 4672.64 14590.82 14456.98 33089.67 10885.78 5097.92 4693.28 137
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
GSMVS83.88 316
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34983.88 316
sam_mvs45.92 354
MTGPAbinary91.81 118
MTMP90.66 4433.14 403
test9_res80.83 10296.45 10390.57 229
agg_prior279.68 11696.16 11490.22 237
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
旧先验281.73 22956.88 33186.54 17484.90 30572.81 200
新几何281.72 230
无先验82.81 20585.62 24158.09 32191.41 18167.95 24784.48 308
原ACMM282.26 223
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25573.95 160
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 408
nn0.00 408
door-mid74.45 332
test1191.46 124
door72.57 346
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP4-MVS80.56 28194.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
MDTV_nov1_ep13_2view27.60 40070.76 35046.47 37261.27 38545.20 36249.18 36483.75 321
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134