This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5499.27 199.54 1
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
DTE-MVSNet89.98 4391.91 1384.21 15596.51 757.84 31288.93 8592.84 9091.92 396.16 396.23 1886.95 4895.99 1079.05 12098.57 1498.80 6
PEN-MVS90.03 4191.88 1484.48 14596.57 558.88 30288.95 8493.19 7291.62 496.01 696.16 2087.02 4795.60 3678.69 12398.72 898.97 3
PS-CasMVS90.06 3991.92 1184.47 14696.56 658.83 30589.04 8392.74 9391.40 596.12 496.06 2287.23 4595.57 3879.42 11898.74 599.00 2
CP-MVSNet89.27 5890.91 4084.37 14796.34 858.61 30888.66 9292.06 10990.78 695.67 795.17 4281.80 11295.54 4179.00 12198.69 998.95 4
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1790.65 790.33 9393.95 9784.50 7195.37 5180.87 10095.50 14394.53 79
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6186.15 2093.37 1095.10 1390.28 992.11 6195.03 4589.75 2094.93 6579.95 11098.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WR-MVS_H89.91 4691.31 2985.71 12496.32 962.39 25789.54 7493.31 6790.21 1095.57 995.66 2981.42 11695.90 1580.94 9998.80 298.84 5
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13581.66 6291.25 3894.13 3488.89 1188.83 12494.26 7777.55 15195.86 2284.88 5895.87 13095.24 58
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6993.16 13391.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_ETH3D89.12 6190.72 4384.31 15397.00 264.33 23289.67 6988.38 19988.84 1394.29 1897.57 390.48 1391.26 18472.57 20297.65 6097.34 15
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6788.83 2495.51 4487.16 2997.60 6492.73 156
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2988.75 1493.79 2894.43 6790.64 1087.16 2997.60 6492.73 156
test_040288.65 6589.58 5685.88 12092.55 8972.22 15684.01 16989.44 18688.63 1694.38 1795.77 2686.38 5893.59 11679.84 11195.21 15291.82 197
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18488.51 1790.11 9595.12 4490.98 688.92 24977.55 14097.07 8183.13 341
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 9188.22 1888.53 12997.64 283.45 8394.55 7886.02 4898.60 1296.67 27
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4888.20 1993.24 3994.02 9090.15 1695.67 3486.82 3397.34 7492.19 185
DP-MVS88.60 6689.01 6387.36 9191.30 13377.50 9787.55 10592.97 8687.95 2089.62 11092.87 12984.56 7093.89 10277.65 13896.62 9390.70 225
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7876.26 11689.65 7095.55 787.72 2193.89 2694.94 4791.62 393.44 12478.35 12698.76 395.61 48
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7785.17 3592.47 2595.05 1487.65 2293.21 4094.39 7290.09 1795.08 6186.67 3597.60 6494.18 95
Anonymous2023121188.40 6789.62 5584.73 14090.46 15465.27 22288.86 8693.02 8487.15 2393.05 4397.10 682.28 10292.02 16576.70 15097.99 4096.88 25
gg-mvs-nofinetune68.96 33169.11 32468.52 35276.12 37145.32 38483.59 18355.88 40286.68 2464.62 39197.01 730.36 40083.97 31844.78 38582.94 35676.26 380
test_one_060193.85 5873.27 13694.11 3586.57 2593.47 3894.64 5988.42 26
v7n90.13 3690.96 3887.65 8991.95 10971.06 17089.99 5993.05 8086.53 2694.29 1896.27 1782.69 9094.08 9586.25 4297.63 6197.82 8
VDDNet84.35 13585.39 12381.25 22295.13 3159.32 29585.42 14381.11 29186.41 2787.41 15296.21 1973.61 19790.61 20966.33 25796.85 8593.81 115
IS-MVSNet86.66 9486.82 9786.17 11592.05 10766.87 20991.21 3988.64 19686.30 2889.60 11392.59 13769.22 23594.91 6673.89 18297.89 4996.72 26
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7386.02 2993.12 4195.30 3684.94 6689.44 24174.12 17896.10 11894.45 82
Anonymous2024052986.20 10287.13 8883.42 17790.19 15964.55 23084.55 15790.71 14985.85 3189.94 10295.24 4082.13 10490.40 21369.19 23396.40 10495.31 55
SSC-MVS77.55 24681.64 18565.29 36690.46 15420.33 41173.56 33768.28 37185.44 3288.18 14094.64 5970.93 22881.33 33171.25 20892.03 23694.20 92
DVP-MVS++90.07 3891.09 3287.00 9591.55 12672.64 14496.19 294.10 3685.33 3393.49 3694.64 5981.12 11995.88 1787.41 2295.94 12692.48 168
test_0728_THIRD85.33 3393.75 3094.65 5687.44 4395.78 2887.41 2298.21 2992.98 150
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2485.21 3592.51 5595.13 4390.65 995.34 5288.06 898.15 3495.95 41
tt080588.09 7489.79 5182.98 18893.26 7263.94 23691.10 4189.64 18185.07 3690.91 8491.09 18189.16 2291.87 17082.03 8995.87 13093.13 142
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9994.03 8986.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 12182.70 16992.08 895.64 2386.25 1892.64 1893.33 6485.07 3689.99 9916.05 40686.57 5295.80 2587.35 2497.62 6294.20 92
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13294.02 5464.13 23384.38 16291.29 13484.88 3992.06 6393.84 10186.45 5593.73 10773.22 19398.66 1097.69 9
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6878.65 8389.15 8294.05 3884.68 4093.90 2494.11 8788.13 3496.30 484.51 6297.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MM87.64 8387.15 8789.09 6589.51 17176.39 11588.68 9186.76 22984.54 4183.58 23493.78 10473.36 20596.48 187.98 996.21 11294.41 86
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11584.26 4290.87 8793.92 9982.18 10389.29 24573.75 18594.81 17193.70 119
Gipumacopyleft84.44 13386.33 10278.78 25784.20 28773.57 13289.55 7290.44 15784.24 4384.38 21494.89 4876.35 17280.40 33876.14 15896.80 8982.36 350
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 12184.07 4492.00 6494.40 7186.63 5195.28 5588.59 598.31 2392.30 178
K. test v385.14 11984.73 13286.37 10791.13 14069.63 18285.45 14276.68 32084.06 4592.44 5796.99 862.03 27594.65 7280.58 10593.24 21194.83 72
ANet_high83.17 16585.68 11875.65 30281.24 32445.26 38579.94 25292.91 8783.83 4691.33 7496.88 1080.25 12985.92 29468.89 23795.89 12995.76 43
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14290.47 5193.69 5383.77 4794.11 2294.27 7490.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_TWO93.71 5283.77 4793.49 3694.27 7489.27 2195.84 2386.03 4697.82 5192.04 190
test_241102_ONE94.18 4672.65 14293.69 5383.62 4994.11 2293.78 10490.28 1495.50 46
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14890.54 4891.01 14283.61 5093.75 3094.65 5689.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072694.16 4972.56 14890.63 4593.90 4583.61 5093.75 3094.49 6489.76 18
pmmvs686.52 9688.06 7481.90 20992.22 10162.28 26084.66 15589.15 18983.54 5289.85 10397.32 488.08 3686.80 27870.43 21997.30 7696.62 28
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 7978.04 8992.84 1594.14 3383.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 150
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
WB-MVS76.06 26480.01 22064.19 36989.96 16720.58 41072.18 34668.19 37283.21 5486.46 17893.49 11170.19 23178.97 34565.96 25990.46 27193.02 147
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 6283.16 5591.06 8094.00 9188.26 3095.71 3287.28 2798.39 2092.55 165
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9683.09 5691.54 7094.25 7887.67 4195.51 4487.21 2898.11 3593.12 144
UniMVSNet_NR-MVSNet86.84 9087.06 9086.17 11592.86 8367.02 20682.55 21391.56 12483.08 5790.92 8291.82 16078.25 14393.99 9774.16 17698.35 2197.49 13
LFMVS80.15 21980.56 20678.89 25589.19 18155.93 32585.22 14673.78 34082.96 5884.28 22192.72 13557.38 30690.07 22663.80 28195.75 13890.68 226
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1582.88 5991.77 6893.94 9890.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 6082.82 6092.60 5493.97 9288.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8382.59 6188.52 13094.37 7386.74 5095.41 5086.32 3998.21 2993.19 140
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2982.52 6292.39 5894.14 8489.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 2182.35 6393.67 3394.82 5191.18 495.52 4285.36 5298.73 695.23 59
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6981.99 6591.47 7193.96 9588.35 2995.56 3987.74 1397.74 5792.85 153
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 7081.99 6591.40 7294.17 8387.51 4295.87 1987.74 1397.76 5593.99 103
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6881.91 6790.88 8694.21 7987.75 3995.87 1987.60 1897.71 5893.83 111
ACMH76.49 1489.34 5591.14 3183.96 16092.50 9170.36 17689.55 7293.84 4981.89 6894.70 1395.44 3490.69 888.31 25983.33 7098.30 2493.20 139
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DU-MVS86.80 9186.99 9286.21 11393.24 7367.02 20683.16 19692.21 10481.73 6990.92 8291.97 15477.20 15593.99 9774.16 17698.35 2197.61 10
SixPastTwentyTwo87.20 8687.45 8386.45 10692.52 9069.19 18987.84 10388.05 20781.66 7094.64 1496.53 1465.94 25294.75 6983.02 7696.83 8795.41 51
ITE_SJBPF90.11 4590.72 14984.97 3790.30 16481.56 7190.02 9891.20 17882.40 9690.81 20273.58 18894.66 17694.56 76
EPP-MVSNet85.47 11385.04 12886.77 10191.52 12969.37 18491.63 3687.98 20981.51 7287.05 16191.83 15966.18 25095.29 5370.75 21496.89 8495.64 46
SF-MVS90.27 3590.80 4288.68 7492.86 8377.09 10491.19 4095.74 581.38 7392.28 5993.80 10286.89 4994.64 7385.52 5197.51 7194.30 91
MVS_030486.35 9885.92 11187.66 8889.21 18073.16 13988.40 9583.63 27181.27 7480.87 27894.12 8671.49 22695.71 3287.79 1296.50 9894.11 100
WR-MVS83.56 15784.40 14381.06 22793.43 6754.88 33478.67 27485.02 25681.24 7590.74 8991.56 16872.85 21091.08 19068.00 24798.04 3697.23 18
Anonymous20240521180.51 20881.19 19978.49 26388.48 19857.26 31776.63 30382.49 28181.21 7684.30 22092.24 15167.99 24186.24 28762.22 29195.13 15591.98 194
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7580.37 6891.91 3393.11 7681.10 7795.32 1097.24 572.94 20994.85 6785.07 5497.78 5397.26 16
NR-MVSNet86.00 10586.22 10485.34 13093.24 7364.56 22982.21 22590.46 15680.99 7888.42 13391.97 15477.56 15093.85 10372.46 20398.65 1197.61 10
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 5180.98 7991.38 7393.80 10287.20 4695.80 2587.10 3197.69 5993.93 106
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15890.31 5496.31 380.88 8085.12 19889.67 22284.47 7295.46 4782.56 8396.26 11193.77 117
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8881.34 6490.19 5693.08 7980.87 8191.13 7893.19 11586.22 5995.97 1282.23 8897.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EI-MVSNet-Vis-set85.12 12084.53 13986.88 9884.01 28972.76 14183.91 17485.18 25180.44 8288.75 12585.49 28880.08 13091.92 16782.02 9090.85 26395.97 39
UniMVSNet (Re)86.87 8886.98 9386.55 10493.11 7668.48 19383.80 17892.87 8880.37 8389.61 11291.81 16177.72 14894.18 9075.00 17198.53 1596.99 24
CSCG86.26 9986.47 10085.60 12690.87 14674.26 12887.98 10091.85 11780.35 8489.54 11688.01 24579.09 13692.13 16175.51 16495.06 15990.41 234
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4580.32 8591.74 6994.41 7088.17 3295.98 1186.37 3897.99 4093.96 105
EI-MVSNet-UG-set85.04 12184.44 14186.85 9983.87 29372.52 15083.82 17685.15 25280.27 8688.75 12585.45 29079.95 13291.90 16881.92 9390.80 26496.13 34
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13393.60 5880.16 8789.13 12193.44 11283.82 7790.98 19383.86 6895.30 15193.60 125
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2680.14 8891.29 7693.97 9287.93 3895.87 1988.65 497.96 4594.12 99
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11793.91 4480.07 8986.75 16693.26 11493.64 290.93 19584.60 6190.75 26593.97 104
VDD-MVS84.23 14184.58 13883.20 18491.17 13965.16 22583.25 19284.97 25979.79 9087.18 15494.27 7474.77 18590.89 19869.24 23096.54 9693.55 130
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10379.74 9187.50 15192.38 14381.42 11693.28 12983.07 7497.24 7791.67 202
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 4079.68 9292.09 6293.89 10083.80 7893.10 13682.67 8298.04 3693.64 123
TransMVSNet (Re)84.02 14785.74 11778.85 25691.00 14355.20 33382.29 22187.26 21579.65 9388.38 13595.52 3383.00 8786.88 27667.97 24896.60 9494.45 82
AllTest87.97 7787.40 8589.68 5391.59 12183.40 4889.50 7595.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
TestCases89.68 5391.59 12183.40 4895.44 1079.47 9488.00 14393.03 12182.66 9191.47 17770.81 21196.14 11594.16 96
HQP_MVS87.75 8287.43 8488.70 7393.45 6576.42 11389.45 7793.61 5679.44 9686.55 17192.95 12674.84 18295.22 5680.78 10295.83 13294.46 80
plane_prior289.45 7779.44 96
CS-MVS88.14 7287.67 8089.54 5889.56 17079.18 7890.47 5194.77 1679.37 9884.32 21789.33 22783.87 7694.53 7982.45 8494.89 16794.90 65
RPSCF88.00 7686.93 9491.22 2790.08 16189.30 489.68 6891.11 13979.26 9989.68 10794.81 5482.44 9487.74 26376.54 15388.74 29096.61 29
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6379.20 10093.83 2793.60 11090.81 792.96 13985.02 5698.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CNLPA83.55 15883.10 16384.90 13589.34 17683.87 4684.54 15988.77 19379.09 10183.54 23688.66 23874.87 18181.73 32966.84 25392.29 23089.11 259
Baseline_NR-MVSNet84.00 14885.90 11278.29 26891.47 13153.44 34282.29 22187.00 22779.06 10289.55 11495.72 2877.20 15586.14 29272.30 20498.51 1695.28 56
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3879.03 10392.87 4693.74 10690.60 1195.21 5882.87 7898.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SD-MVS88.96 6389.88 4986.22 11291.63 12077.07 10589.82 6493.77 5078.90 10492.88 4592.29 14886.11 6090.22 21786.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Vis-MVSNetpermissive86.86 8986.58 9887.72 8692.09 10577.43 10087.35 10992.09 10878.87 10584.27 22294.05 8878.35 14293.65 10980.54 10691.58 24792.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12192.78 9278.78 10692.51 5593.64 10988.13 3493.84 10584.83 5997.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
NCCC87.36 8486.87 9588.83 6892.32 9778.84 8286.58 12591.09 14078.77 10784.85 20690.89 18980.85 12295.29 5381.14 9795.32 14892.34 176
ETV-MVS84.31 13683.91 15285.52 12788.58 19670.40 17584.50 16193.37 6178.76 10884.07 22678.72 36480.39 12795.13 6073.82 18492.98 21891.04 215
Effi-MVS+83.90 15184.01 14983.57 17487.22 22665.61 22186.55 12692.40 9978.64 10981.34 27384.18 30983.65 8192.93 14174.22 17587.87 30292.17 186
FMVSNet184.55 13185.45 12281.85 21190.27 15861.05 27386.83 11888.27 20478.57 11089.66 10995.64 3075.43 17590.68 20669.09 23495.33 14793.82 112
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4578.43 11189.16 11992.25 15072.03 22296.36 388.21 790.93 25992.98 150
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
API-MVS82.28 17682.61 17281.30 22186.29 25069.79 17888.71 9087.67 21178.42 11282.15 25784.15 31077.98 14491.59 17565.39 26792.75 22282.51 349
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13578.20 11386.69 16992.28 14980.36 12895.06 6286.17 4496.49 9990.22 237
AdaColmapbinary83.66 15483.69 15483.57 17490.05 16472.26 15586.29 13090.00 17478.19 11481.65 26787.16 26583.40 8494.24 8761.69 29894.76 17584.21 323
PAPM_NR83.23 16383.19 16083.33 17990.90 14565.98 21788.19 9790.78 14878.13 11580.87 27887.92 24973.49 20192.42 15270.07 22388.40 29291.60 204
casdiffmvs_mvgpermissive86.72 9287.51 8284.36 14987.09 23265.22 22384.16 16494.23 2477.89 11691.28 7793.66 10884.35 7392.71 14580.07 10794.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8786.43 10188.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26887.25 26382.43 9594.53 7977.65 13896.46 10194.14 98
plane_prior376.85 10777.79 11886.55 171
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5577.65 11991.97 6594.89 4888.38 2795.45 4889.27 397.87 5093.27 136
MSDG80.06 22179.99 22180.25 23983.91 29268.04 19977.51 29089.19 18877.65 11981.94 25983.45 31676.37 17186.31 28663.31 28686.59 31986.41 295
MIMVSNet183.63 15584.59 13780.74 23194.06 5362.77 25082.72 20784.53 26477.57 12190.34 9295.92 2476.88 16785.83 29961.88 29697.42 7293.62 124
RRT_MVS88.30 7087.83 7789.70 5293.62 6375.70 12192.36 2689.06 19177.34 12293.63 3595.83 2565.40 25795.90 1585.01 5798.23 2797.49 13
FC-MVSNet-test85.93 10787.05 9182.58 19992.25 9956.44 32385.75 13793.09 7877.33 12391.94 6694.65 5674.78 18493.41 12675.11 17098.58 1397.88 7
CNVR-MVS87.81 8187.68 7988.21 8192.87 8177.30 10385.25 14591.23 13677.31 12487.07 16091.47 17082.94 8894.71 7084.67 6096.27 11092.62 163
CANet83.79 15282.85 16786.63 10286.17 25472.21 15783.76 17991.43 12877.24 12574.39 34187.45 25975.36 17695.42 4977.03 14892.83 22192.25 183
UGNet82.78 16881.64 18586.21 11386.20 25376.24 11786.86 11685.68 24377.07 12673.76 34592.82 13069.64 23291.82 17269.04 23693.69 20290.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
tfpnnormal81.79 19082.95 16578.31 26688.93 18655.40 32980.83 24482.85 27876.81 12785.90 18894.14 8474.58 18886.51 28366.82 25495.68 14193.01 148
v886.22 10186.83 9684.36 14987.82 21162.35 25986.42 12791.33 13376.78 12892.73 5294.48 6573.41 20293.72 10883.10 7395.41 14497.01 23
LCM-MVSNet-Re83.48 15985.06 12778.75 25885.94 25955.75 32880.05 25094.27 2176.47 12996.09 594.54 6283.31 8589.75 23659.95 30894.89 16790.75 222
VPA-MVSNet83.47 16084.73 13279.69 24790.29 15757.52 31581.30 23788.69 19576.29 13087.58 15094.44 6680.60 12687.20 27066.60 25696.82 8894.34 89
EPNet80.37 21278.41 23786.23 11176.75 36473.28 13587.18 11177.45 31176.24 13168.14 37388.93 23465.41 25693.85 10369.47 22896.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EI-MVSNet82.61 17082.42 17683.20 18483.25 30363.66 23783.50 18585.07 25376.06 13286.55 17185.10 29673.41 20290.25 21478.15 13390.67 26795.68 45
IterMVS-LS84.73 12784.98 12983.96 16087.35 22363.66 23783.25 19289.88 17676.06 13289.62 11092.37 14673.40 20492.52 15078.16 13194.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OMC-MVS88.19 7187.52 8190.19 4491.94 11181.68 6187.49 10893.17 7376.02 13488.64 12791.22 17684.24 7593.37 12777.97 13697.03 8295.52 49
test_yl78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
DCV-MVSNet78.71 23478.51 23579.32 25284.32 28458.84 30378.38 27685.33 24875.99 13582.49 25086.57 27258.01 30090.02 22862.74 28892.73 22389.10 260
MSLP-MVS++85.00 12486.03 10881.90 20991.84 11671.56 16786.75 12293.02 8475.95 13787.12 15589.39 22577.98 14489.40 24477.46 14194.78 17284.75 314
plane_prior76.42 11387.15 11275.94 13895.03 160
FIs85.35 11586.27 10382.60 19891.86 11357.31 31685.10 14993.05 8075.83 13991.02 8193.97 9273.57 19892.91 14373.97 18198.02 3997.58 12
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9894.51 1875.79 14092.94 4494.96 4688.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
thres100view90075.45 26975.05 26976.66 29387.27 22451.88 35481.07 24073.26 34575.68 14183.25 24086.37 27545.54 36088.80 25051.98 35690.99 25589.31 255
3Dnovator80.37 784.80 12684.71 13585.06 13486.36 24774.71 12588.77 8990.00 17475.65 14284.96 20293.17 11674.06 19291.19 18678.28 12891.09 25389.29 257
FA-MVS(test-final)83.13 16683.02 16483.43 17686.16 25666.08 21688.00 9988.36 20075.55 14385.02 20092.75 13465.12 25892.50 15174.94 17291.30 25191.72 199
pm-mvs183.69 15384.95 13079.91 24390.04 16559.66 29282.43 21787.44 21275.52 14487.85 14595.26 3981.25 11885.65 30168.74 24096.04 12094.42 85
test_prior283.37 18875.43 14584.58 20991.57 16781.92 11079.54 11696.97 83
v1086.54 9587.10 8984.84 13688.16 20663.28 24386.64 12492.20 10575.42 14692.81 5094.50 6374.05 19394.06 9683.88 6796.28 10897.17 20
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 7175.37 14792.84 4895.28 3885.58 6496.09 787.92 1097.76 5593.88 109
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thres600view775.97 26575.35 26777.85 27887.01 23451.84 35580.45 24673.26 34575.20 14883.10 24386.31 27845.54 36089.05 24655.03 33892.24 23292.66 161
9.1489.29 5891.84 11688.80 8895.32 1275.14 14991.07 7992.89 12887.27 4493.78 10683.69 6997.55 67
wuyk23d75.13 27279.30 22562.63 37275.56 37475.18 12480.89 24273.10 34775.06 15094.76 1295.32 3587.73 4052.85 40234.16 40297.11 8059.85 399
RPMNet78.88 22978.28 23880.68 23479.58 34162.64 25282.58 21194.16 2974.80 15175.72 32992.59 13748.69 34395.56 3973.48 18982.91 35783.85 328
TSAR-MVS + GP.83.95 14982.69 17087.72 8689.27 17881.45 6383.72 18081.58 29074.73 15285.66 19086.06 28172.56 21592.69 14775.44 16695.21 15289.01 265
casdiffmvspermissive85.21 11785.85 11483.31 18086.17 25462.77 25083.03 19893.93 4374.69 15388.21 13892.68 13682.29 10191.89 16977.87 13793.75 20195.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Effi-MVS+-dtu85.82 10983.38 15693.14 387.13 22891.15 287.70 10488.42 19874.57 15483.56 23585.65 28678.49 14194.21 8872.04 20592.88 22094.05 102
baseline85.20 11885.93 11083.02 18786.30 24962.37 25884.55 15793.96 4174.48 15587.12 15592.03 15382.30 10091.94 16678.39 12494.21 18794.74 73
VNet79.31 22580.27 21176.44 29487.92 21053.95 33875.58 31984.35 26574.39 15682.23 25590.72 19672.84 21184.39 31260.38 30793.98 19390.97 216
BH-RMVSNet80.53 20780.22 21481.49 21987.19 22766.21 21577.79 28586.23 23474.21 15783.69 23188.50 23973.25 20790.75 20363.18 28787.90 30187.52 284
nrg03087.85 8088.49 7085.91 11890.07 16369.73 18087.86 10294.20 2774.04 15892.70 5394.66 5585.88 6391.50 17679.72 11397.32 7596.50 31
Vis-MVSNet (Re-imp)77.82 24377.79 24277.92 27588.82 18851.29 35983.28 19071.97 35474.04 15882.23 25589.78 22057.38 30689.41 24357.22 32295.41 14493.05 146
testdata179.62 25673.95 160
Patchmtry76.56 25977.46 24373.83 31279.37 34646.60 37882.41 21876.90 31773.81 16185.56 19392.38 14348.07 34683.98 31763.36 28595.31 15090.92 218
tttt051781.07 19979.58 22285.52 12788.99 18566.45 21387.03 11475.51 32873.76 16288.32 13790.20 21137.96 38894.16 9479.36 11995.13 15595.93 42
SDMVSNet81.90 18983.17 16178.10 27188.81 18962.45 25676.08 31386.05 23873.67 16383.41 23793.04 11982.35 9780.65 33670.06 22495.03 16091.21 211
sd_testset79.95 22381.39 19475.64 30388.81 18958.07 31076.16 31282.81 27973.67 16383.41 23793.04 11980.96 12177.65 34958.62 31495.03 16091.21 211
PatchT70.52 31472.76 29263.79 37179.38 34533.53 40577.63 28765.37 38373.61 16571.77 35492.79 13344.38 37275.65 35764.53 27885.37 33182.18 351
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6279.07 7988.54 9394.20 2773.53 16689.71 10694.82 5185.09 6595.77 3084.17 6598.03 3893.26 137
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MGCFI-Net85.04 12185.95 10982.31 20587.52 22063.59 23986.23 13193.96 4173.46 16788.07 14187.83 25186.46 5490.87 20076.17 15793.89 19692.47 170
VPNet80.25 21581.68 18475.94 30092.46 9247.98 37276.70 30181.67 28873.45 16884.87 20592.82 13074.66 18786.51 28361.66 29996.85 8593.33 133
sasdasda85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
canonicalmvs85.50 11186.14 10683.58 17287.97 20767.13 20387.55 10594.32 1973.44 16988.47 13187.54 25686.45 5591.06 19175.76 16293.76 19892.54 166
MVS_111021_HR84.63 12884.34 14585.49 12990.18 16075.86 12079.23 26687.13 21973.35 17185.56 19389.34 22683.60 8290.50 21176.64 15194.05 19290.09 242
tfpn200view974.86 27774.23 27676.74 29286.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25589.31 255
thres40075.14 27174.23 27677.86 27786.24 25152.12 35179.24 26473.87 33873.34 17281.82 26384.60 30546.02 35488.80 25051.98 35690.99 25592.66 161
HQP-NCC91.19 13684.77 15073.30 17480.55 283
ACMP_Plane91.19 13684.77 15073.30 17480.55 283
HQP-MVS84.61 12984.06 14886.27 11091.19 13670.66 17284.77 15092.68 9473.30 17480.55 28390.17 21472.10 21894.61 7477.30 14594.47 18093.56 128
alignmvs83.94 15083.98 15083.80 16387.80 21267.88 20084.54 15991.42 13073.27 17788.41 13487.96 24672.33 21690.83 20176.02 16094.11 19092.69 160
F-COLMAP84.97 12583.42 15589.63 5592.39 9383.40 4888.83 8791.92 11473.19 17880.18 29189.15 23177.04 15993.28 12965.82 26492.28 23192.21 184
MDA-MVSNet-bldmvs77.47 24776.90 25279.16 25479.03 34964.59 22766.58 37675.67 32673.15 17988.86 12288.99 23366.94 24581.23 33264.71 27488.22 29991.64 203
PHI-MVS86.38 9785.81 11588.08 8288.44 20077.34 10189.35 8093.05 8073.15 17984.76 20787.70 25378.87 13894.18 9080.67 10496.29 10792.73 156
Fast-Effi-MVS+-dtu82.54 17381.41 19385.90 11985.60 26276.53 11183.07 19789.62 18373.02 18179.11 30183.51 31480.74 12490.24 21668.76 23989.29 28190.94 217
v14882.31 17582.48 17581.81 21485.59 26359.66 29281.47 23486.02 23972.85 18288.05 14290.65 20170.73 22990.91 19775.15 16991.79 24194.87 67
testing371.53 30670.79 30873.77 31388.89 18741.86 39576.60 30559.12 39772.83 18380.97 27482.08 33319.80 41387.33 26965.12 27091.68 24492.13 188
FE-MVS79.98 22278.86 22883.36 17886.47 24166.45 21389.73 6584.74 26372.80 18484.22 22591.38 17244.95 36993.60 11563.93 28091.50 24890.04 243
BH-untuned80.96 20180.99 20180.84 23088.55 19768.23 19480.33 24888.46 19772.79 18586.55 17186.76 27174.72 18691.77 17361.79 29788.99 28582.52 348
MVS_111021_LR84.28 13883.76 15385.83 12289.23 17983.07 5180.99 24183.56 27272.71 18686.07 18389.07 23281.75 11386.19 29077.11 14793.36 20688.24 270
EG-PatchMatch MVS84.08 14584.11 14783.98 15992.22 10172.61 14782.20 22787.02 22472.63 18788.86 12291.02 18378.52 13991.11 18973.41 19091.09 25388.21 271
mvsmamba87.87 7887.23 8689.78 5192.31 9876.51 11291.09 4291.87 11672.61 18892.16 6095.23 4166.01 25195.59 3786.02 4897.78 5397.24 17
test111178.53 23678.85 22977.56 28092.22 10147.49 37482.61 20969.24 36972.43 18985.28 19694.20 8051.91 33190.07 22665.36 26896.45 10295.11 62
IterMVS-SCA-FT80.64 20679.41 22384.34 15183.93 29169.66 18176.28 30981.09 29272.43 18986.47 17790.19 21260.46 28293.15 13477.45 14286.39 32290.22 237
GBi-Net82.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
test182.02 18482.07 17881.85 21186.38 24461.05 27386.83 11888.27 20472.43 18986.00 18495.64 3063.78 26690.68 20665.95 26093.34 20793.82 112
FMVSNet281.31 19581.61 18780.41 23786.38 24458.75 30683.93 17386.58 23172.43 18987.65 14892.98 12363.78 26690.22 21766.86 25193.92 19492.27 181
GeoE85.45 11485.81 11584.37 14790.08 16167.07 20585.86 13591.39 13172.33 19487.59 14990.25 21084.85 6892.37 15578.00 13491.94 24093.66 120
test250674.12 28473.39 28476.28 29791.85 11444.20 38884.06 16848.20 40772.30 19581.90 26094.20 8027.22 40889.77 23464.81 27396.02 12194.87 67
ECVR-MVScopyleft78.44 23778.63 23377.88 27691.85 11448.95 36883.68 18169.91 36672.30 19584.26 22394.20 8051.89 33289.82 23163.58 28296.02 12194.87 67
v2v48284.09 14484.24 14683.62 17087.13 22861.40 26782.71 20889.71 17972.19 19789.55 11491.41 17170.70 23093.20 13181.02 9893.76 19896.25 32
DP-MVS Recon84.05 14683.22 15886.52 10591.73 11975.27 12383.23 19492.40 9972.04 19882.04 25888.33 24177.91 14693.95 9966.17 25895.12 15790.34 236
MG-MVS80.32 21480.94 20278.47 26488.18 20452.62 34982.29 22185.01 25772.01 19979.24 30092.54 14069.36 23493.36 12870.65 21689.19 28489.45 251
FPMVS72.29 30072.00 29973.14 31788.63 19485.00 3674.65 32867.39 37471.94 20077.80 31187.66 25450.48 33875.83 35649.95 36379.51 37258.58 401
MVSFormer82.23 17781.57 19084.19 15785.54 26669.26 18691.98 3190.08 17271.54 20176.23 32185.07 29958.69 29794.27 8486.26 4088.77 28889.03 263
test_djsdf89.62 5089.01 6391.45 2292.36 9482.98 5391.98 3190.08 17271.54 20194.28 2096.54 1381.57 11494.27 8486.26 4096.49 9997.09 21
h-mvs3384.25 13982.76 16888.72 7191.82 11882.60 5684.00 17084.98 25871.27 20386.70 16790.55 20363.04 27293.92 10078.26 12994.20 18889.63 249
hse-mvs283.47 16081.81 18388.47 7591.03 14282.27 5782.61 20983.69 26971.27 20386.70 16786.05 28263.04 27292.41 15378.26 12993.62 20590.71 224
TinyColmap81.25 19682.34 17777.99 27485.33 26860.68 28382.32 22088.33 20271.26 20586.97 16292.22 15277.10 15886.98 27462.37 29095.17 15486.31 297
ZD-MVS92.22 10180.48 6791.85 11771.22 20690.38 9192.98 12386.06 6196.11 681.99 9196.75 90
MVS_Test82.47 17483.22 15880.22 24082.62 31257.75 31482.54 21491.96 11371.16 20782.89 24692.52 14177.41 15290.50 21180.04 10987.84 30392.40 173
DELS-MVS81.44 19481.25 19682.03 20784.27 28662.87 24876.47 30792.49 9870.97 20881.64 26883.83 31175.03 17992.70 14674.29 17492.22 23490.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
save fliter93.75 5977.44 9986.31 12989.72 17870.80 209
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7077.96 9287.94 10191.97 11270.73 21094.19 2196.67 1176.94 16194.57 7683.07 7496.28 10896.15 33
DeepC-MVS_fast80.27 886.23 10085.65 11987.96 8591.30 13376.92 10687.19 11091.99 11170.56 21184.96 20290.69 19780.01 13195.14 5978.37 12595.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EIA-MVS82.19 17981.23 19885.10 13387.95 20969.17 19083.22 19593.33 6470.42 21278.58 30479.77 35677.29 15494.20 8971.51 20788.96 28691.93 195
test20.0373.75 28774.59 27371.22 33281.11 32651.12 36170.15 36272.10 35370.42 21280.28 28991.50 16964.21 26274.72 36046.96 37994.58 17887.82 282
JIA-IIPM69.41 32666.64 34377.70 27973.19 38871.24 16975.67 31665.56 38270.42 21265.18 38692.97 12533.64 39583.06 32153.52 34769.61 39878.79 376
v114484.54 13284.72 13484.00 15887.67 21662.55 25482.97 20190.93 14570.32 21589.80 10490.99 18473.50 19993.48 12281.69 9594.65 17795.97 39
DeepPCF-MVS81.24 587.28 8586.21 10590.49 3891.48 13084.90 3883.41 18792.38 10170.25 21689.35 11890.68 19882.85 8994.57 7679.55 11595.95 12592.00 192
KD-MVS_self_test81.93 18783.14 16278.30 26784.75 27752.75 34680.37 24789.42 18770.24 21790.26 9493.39 11374.55 18986.77 27968.61 24296.64 9295.38 52
thres20072.34 29971.55 30574.70 30983.48 29651.60 35675.02 32473.71 34170.14 21878.56 30580.57 34746.20 35288.20 26046.99 37889.29 28184.32 320
mvs_tets89.78 4889.27 5991.30 2593.51 6484.79 4089.89 6390.63 15270.00 21994.55 1596.67 1187.94 3793.59 11684.27 6495.97 12395.52 49
anonymousdsp89.73 4988.88 6692.27 789.82 16886.67 1490.51 5090.20 16969.87 22095.06 1196.14 2184.28 7493.07 13787.68 1596.34 10597.09 21
PM-MVS80.20 21779.00 22783.78 16588.17 20586.66 1581.31 23566.81 38069.64 22188.33 13690.19 21264.58 25983.63 32071.99 20690.03 27481.06 367
V4283.47 16083.37 15783.75 16683.16 30663.33 24281.31 23590.23 16869.51 22290.91 8490.81 19474.16 19192.29 15980.06 10890.22 27295.62 47
jajsoiax89.41 5388.81 6891.19 2893.38 6884.72 4189.70 6690.29 16669.27 22394.39 1696.38 1586.02 6293.52 12083.96 6695.92 12895.34 53
TAPA-MVS77.73 1285.71 11084.83 13188.37 7888.78 19179.72 7387.15 11293.50 5969.17 22485.80 18989.56 22380.76 12392.13 16173.21 19895.51 14293.25 138
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CANet_DTU77.81 24477.05 24980.09 24281.37 32359.90 29083.26 19188.29 20369.16 22567.83 37683.72 31260.93 27989.47 23869.22 23289.70 27890.88 219
v119284.57 13084.69 13684.21 15587.75 21362.88 24783.02 19991.43 12869.08 22689.98 10190.89 18972.70 21393.62 11482.41 8594.97 16496.13 34
FMVSNet378.80 23278.55 23479.57 24982.89 31156.89 32181.76 22985.77 24269.04 22786.00 18490.44 20551.75 33390.09 22565.95 26093.34 20791.72 199
ab-mvs79.67 22480.56 20676.99 28688.48 19856.93 31984.70 15486.06 23768.95 22880.78 28093.08 11875.30 17784.62 30956.78 32390.90 26089.43 253
thisisatest053079.07 22677.33 24784.26 15487.13 22864.58 22883.66 18275.95 32368.86 22985.22 19787.36 26138.10 38693.57 11975.47 16594.28 18694.62 74
Anonymous2024052180.18 21881.25 19676.95 28783.15 30760.84 28082.46 21685.99 24068.76 23086.78 16493.73 10759.13 29477.44 35073.71 18697.55 6792.56 164
GA-MVS75.83 26674.61 27179.48 25181.87 31559.25 29673.42 33982.88 27768.68 23179.75 29281.80 33650.62 33789.46 23966.85 25285.64 32989.72 246
dcpmvs_284.23 14185.14 12681.50 21888.61 19561.98 26482.90 20493.11 7668.66 23292.77 5192.39 14278.50 14087.63 26576.99 14992.30 22894.90 65
c3_l81.64 19181.59 18881.79 21580.86 33059.15 29978.61 27590.18 17068.36 23387.20 15387.11 26769.39 23391.62 17478.16 13194.43 18294.60 75
CLD-MVS83.18 16482.64 17184.79 13889.05 18267.82 20177.93 28292.52 9768.33 23485.07 19981.54 34082.06 10592.96 13969.35 22997.91 4893.57 127
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CL-MVSNet_self_test76.81 25577.38 24575.12 30686.90 23651.34 35773.20 34180.63 29668.30 23581.80 26588.40 24066.92 24680.90 33355.35 33594.90 16693.12 144
testing9169.94 32268.99 32772.80 32083.81 29445.89 38171.57 35173.64 34368.24 23670.77 36277.82 36834.37 39384.44 31153.64 34587.00 31588.07 273
PLCcopyleft73.85 1682.09 18280.31 21087.45 9090.86 14780.29 6985.88 13490.65 15168.17 23776.32 32086.33 27673.12 20892.61 14961.40 30190.02 27589.44 252
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
Fast-Effi-MVS+81.04 20080.57 20582.46 20387.50 22163.22 24478.37 27889.63 18268.01 23881.87 26182.08 33382.31 9992.65 14867.10 25088.30 29891.51 207
LF4IMVS82.75 16981.93 18185.19 13182.08 31380.15 7085.53 14088.76 19468.01 23885.58 19287.75 25271.80 22386.85 27774.02 18093.87 19788.58 268
QAPM82.59 17182.59 17382.58 19986.44 24266.69 21089.94 6290.36 16067.97 24084.94 20492.58 13972.71 21292.18 16070.63 21787.73 30488.85 266
v192192084.23 14184.37 14483.79 16487.64 21861.71 26582.91 20391.20 13767.94 24190.06 9690.34 20772.04 22193.59 11682.32 8694.91 16596.07 36
v124084.30 13784.51 14083.65 16987.65 21761.26 27082.85 20591.54 12567.94 24190.68 9090.65 20171.71 22493.64 11082.84 7994.78 17296.07 36
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13867.85 24386.63 17094.84 5079.58 13495.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v14419284.24 14084.41 14283.71 16887.59 21961.57 26682.95 20291.03 14167.82 24489.80 10490.49 20473.28 20693.51 12181.88 9494.89 16796.04 38
DIV-MVS_self_test80.43 20980.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.38 24586.19 18089.22 22863.09 27090.16 21976.32 15495.80 13593.66 120
cl____80.42 21080.23 21281.02 22879.99 33859.25 29677.07 29687.02 22467.37 24686.18 18289.21 22963.08 27190.16 21976.31 15595.80 13593.65 122
testing9969.27 32868.15 33472.63 32283.29 30245.45 38371.15 35371.08 36067.34 24770.43 36377.77 37032.24 39684.35 31353.72 34486.33 32388.10 272
eth_miper_zixun_eth80.84 20280.22 21482.71 19681.41 32260.98 27677.81 28490.14 17167.31 24886.95 16387.24 26464.26 26192.31 15775.23 16891.61 24594.85 71
EMVS61.10 36360.81 36561.99 37465.96 40655.86 32653.10 39858.97 39967.06 24956.89 40363.33 40040.98 38167.03 38454.79 33986.18 32563.08 396
OpenMVScopyleft76.72 1381.98 18682.00 18081.93 20884.42 28268.22 19588.50 9489.48 18566.92 25081.80 26591.86 15672.59 21490.16 21971.19 21091.25 25287.40 286
testgi72.36 29874.61 27165.59 36380.56 33542.82 39368.29 36873.35 34466.87 25181.84 26289.93 21772.08 22066.92 38546.05 38292.54 22587.01 290
E-PMN61.59 36061.62 36361.49 37666.81 40355.40 32953.77 39760.34 39666.80 25258.90 40065.50 39940.48 38366.12 38855.72 33086.25 32462.95 397
diffmvspermissive80.40 21180.48 20980.17 24179.02 35060.04 28777.54 28990.28 16766.65 25382.40 25287.33 26273.50 19987.35 26877.98 13589.62 27993.13 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPNet_dtu72.87 29571.33 30777.49 28277.72 35560.55 28482.35 21975.79 32466.49 25458.39 40281.06 34353.68 32485.98 29353.55 34692.97 21985.95 300
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf0.01_n86.68 9386.52 9987.18 9285.94 25978.30 8586.93 11592.20 10565.94 25589.16 11993.16 11783.10 8689.89 23087.81 1194.43 18293.35 132
baseline173.26 29073.54 28272.43 32684.92 27347.79 37379.89 25374.00 33665.93 25678.81 30386.28 27956.36 31281.63 33056.63 32479.04 37887.87 281
CDPH-MVS86.17 10485.54 12088.05 8492.25 9975.45 12283.85 17592.01 11065.91 25786.19 18091.75 16483.77 7994.98 6477.43 14396.71 9193.73 118
cl2278.97 22778.21 23981.24 22477.74 35459.01 30077.46 29287.13 21965.79 25884.32 21785.10 29658.96 29690.88 19975.36 16792.03 23693.84 110
train_agg85.98 10685.28 12588.07 8392.34 9579.70 7483.94 17190.32 16165.79 25884.49 21190.97 18581.93 10893.63 11181.21 9696.54 9690.88 219
test_892.09 10578.87 8183.82 17690.31 16365.79 25884.36 21590.96 18781.93 10893.44 124
miper_ehance_all_eth80.34 21380.04 21981.24 22479.82 34058.95 30177.66 28689.66 18065.75 26185.99 18785.11 29568.29 24091.42 18176.03 15992.03 23693.33 133
BH-w/o76.57 25876.07 26078.10 27186.88 23765.92 21877.63 28786.33 23265.69 26280.89 27779.95 35368.97 23890.74 20453.01 35185.25 33377.62 378
MAR-MVS80.24 21678.74 23284.73 14086.87 23878.18 8885.75 13787.81 21065.67 26377.84 30978.50 36573.79 19690.53 21061.59 30090.87 26185.49 307
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v1_base_debu80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
xiu_mvs_v1_base80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
xiu_mvs_v1_base_debi80.84 20280.14 21682.93 19188.31 20171.73 16179.53 25787.17 21665.43 26479.59 29382.73 32676.94 16190.14 22273.22 19388.33 29486.90 291
TEST992.34 9579.70 7483.94 17190.32 16165.41 26784.49 21190.97 18582.03 10693.63 111
test_fmvsmconf0.1_n86.18 10385.88 11387.08 9485.26 26978.25 8685.82 13691.82 11965.33 26888.55 12892.35 14782.62 9389.80 23286.87 3294.32 18593.18 141
test_fmvsmconf_n85.88 10885.51 12186.99 9684.77 27678.21 8785.40 14491.39 13165.32 26987.72 14791.81 16182.33 9889.78 23386.68 3494.20 18892.99 149
TR-MVS76.77 25675.79 26179.72 24686.10 25765.79 21977.14 29483.02 27665.20 27081.40 27182.10 33166.30 24890.73 20555.57 33285.27 33282.65 343
tpmvs70.16 31769.56 32271.96 32874.71 38248.13 37079.63 25575.45 32965.02 27170.26 36481.88 33545.34 36585.68 30058.34 31675.39 38882.08 353
IterMVS76.91 25376.34 25778.64 26080.91 32864.03 23476.30 30879.03 30364.88 27283.11 24289.16 23059.90 28884.46 31068.61 24285.15 33687.42 285
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AUN-MVS81.18 19878.78 23088.39 7790.93 14482.14 5882.51 21583.67 27064.69 27380.29 28785.91 28551.07 33592.38 15476.29 15693.63 20490.65 228
PatchMatch-RL74.48 28173.22 28678.27 26987.70 21485.26 3475.92 31570.09 36464.34 27476.09 32481.25 34265.87 25378.07 34853.86 34383.82 35171.48 387
testing22266.93 33865.30 35071.81 32983.38 29945.83 38272.06 34767.50 37364.12 27569.68 36776.37 38227.34 40783.00 32238.88 39488.38 29386.62 294
miper_lstm_enhance76.45 26176.10 25977.51 28176.72 36560.97 27764.69 38085.04 25563.98 27683.20 24188.22 24256.67 31078.79 34773.22 19393.12 21492.78 155
FMVSNet572.10 30171.69 30173.32 31581.57 32053.02 34576.77 30078.37 30663.31 27776.37 31891.85 15736.68 39078.98 34447.87 37592.45 22687.95 278
IB-MVS62.13 1971.64 30468.97 32879.66 24880.80 33262.26 26173.94 33476.90 31763.27 27868.63 37276.79 37833.83 39491.84 17159.28 31287.26 30784.88 312
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
iter_conf0578.81 23177.35 24683.21 18382.98 31060.75 28284.09 16788.34 20163.12 27984.25 22489.48 22431.41 39794.51 8176.64 15195.83 13294.38 88
new-patchmatchnet70.10 31873.37 28560.29 37981.23 32516.95 41259.54 38974.62 33162.93 28080.97 27487.93 24862.83 27471.90 36455.24 33695.01 16392.00 192
PVSNet_Blended_VisFu81.55 19280.49 20884.70 14291.58 12473.24 13784.21 16391.67 12362.86 28180.94 27687.16 26567.27 24492.87 14469.82 22688.94 28787.99 277
原ACMM184.60 14392.81 8674.01 12991.50 12662.59 28282.73 24990.67 20076.53 16894.25 8669.24 23095.69 14085.55 305
PAPR78.84 23078.10 24081.07 22685.17 27160.22 28682.21 22590.57 15462.51 28375.32 33584.61 30474.99 18092.30 15859.48 31188.04 30090.68 226
Patchmatch-test65.91 34767.38 33661.48 37775.51 37543.21 39268.84 36663.79 38662.48 28472.80 35083.42 31744.89 37059.52 39948.27 37486.45 32081.70 355
testing1167.38 33665.93 34471.73 33083.37 30046.60 37870.95 35669.40 36862.47 28566.14 37976.66 37931.22 39884.10 31549.10 36984.10 35084.49 316
OpenMVS_ROBcopyleft70.19 1777.77 24577.46 24378.71 25984.39 28361.15 27181.18 23982.52 28062.45 28683.34 23987.37 26066.20 24988.66 25564.69 27585.02 33886.32 296
fmvsm_s_conf0.5_n81.91 18881.30 19583.75 16686.02 25871.56 16784.73 15377.11 31662.44 28784.00 22790.68 19876.42 17085.89 29783.14 7187.11 31093.81 115
test-LLR67.21 33766.74 34168.63 35076.45 36855.21 33167.89 36967.14 37762.43 28865.08 38772.39 38943.41 37569.37 37061.00 30284.89 34281.31 360
test0.0.03 164.66 35364.36 35265.57 36475.03 38046.89 37764.69 38061.58 39462.43 28871.18 35877.54 37143.41 37568.47 37940.75 39282.65 36081.35 359
fmvsm_s_conf0.1_n82.17 18081.59 18883.94 16286.87 23871.57 16685.19 14777.42 31262.27 29084.47 21391.33 17376.43 16985.91 29583.14 7187.14 30994.33 90
MCST-MVS84.36 13483.93 15185.63 12591.59 12171.58 16583.52 18492.13 10761.82 29183.96 22889.75 22179.93 13393.46 12378.33 12794.34 18491.87 196
fmvsm_s_conf0.5_n_a82.21 17881.51 19284.32 15286.56 24073.35 13385.46 14177.30 31361.81 29284.51 21090.88 19177.36 15386.21 28982.72 8186.97 31693.38 131
SCA73.32 28972.57 29575.58 30481.62 31955.86 32678.89 27071.37 35961.73 29374.93 33883.42 31760.46 28287.01 27158.11 31982.63 36283.88 325
TAMVS78.08 24176.36 25683.23 18290.62 15172.87 14079.08 26780.01 29961.72 29481.35 27286.92 27063.96 26588.78 25350.61 36193.01 21788.04 276
PVSNet_BlendedMVS78.80 23277.84 24181.65 21784.43 28063.41 24079.49 26090.44 15761.70 29575.43 33287.07 26869.11 23691.44 17960.68 30592.24 23290.11 241
fmvsm_s_conf0.1_n_a82.58 17281.93 18184.50 14487.68 21573.35 13386.14 13277.70 30961.64 29685.02 20091.62 16677.75 14786.24 28782.79 8087.07 31193.91 108
mvs_anonymous78.13 24078.76 23176.23 29979.24 34750.31 36578.69 27384.82 26161.60 29783.09 24492.82 13073.89 19587.01 27168.33 24686.41 32191.37 208
test_fmvsmvis_n_192085.22 11685.36 12484.81 13785.80 26176.13 11985.15 14892.32 10261.40 29891.33 7490.85 19283.76 8086.16 29184.31 6393.28 21092.15 187
Syy-MVS69.40 32770.03 31867.49 35681.72 31738.94 39871.00 35461.99 38861.38 29970.81 36072.36 39161.37 27879.30 34264.50 27985.18 33484.22 321
myMVS_eth3d64.66 35363.89 35466.97 35881.72 31737.39 40171.00 35461.99 38861.38 29970.81 36072.36 39120.96 41279.30 34249.59 36685.18 33484.22 321
ETVMVS64.67 35263.34 35768.64 34983.44 29841.89 39469.56 36561.70 39361.33 30168.74 37075.76 38428.76 40379.35 34134.65 40186.16 32684.67 315
PS-MVSNAJ77.04 25276.53 25578.56 26187.09 23261.40 26775.26 32287.13 21961.25 30274.38 34277.22 37676.94 16190.94 19464.63 27684.83 34483.35 336
xiu_mvs_v2_base77.19 25076.75 25378.52 26287.01 23461.30 26975.55 32087.12 22261.24 30374.45 34078.79 36377.20 15590.93 19564.62 27784.80 34583.32 337
KD-MVS_2432*160066.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
miper_refine_blended66.87 34065.81 34670.04 33767.50 40147.49 37462.56 38479.16 30161.21 30477.98 30780.61 34525.29 41082.48 32553.02 34984.92 33980.16 371
patch_mono-278.89 22879.39 22477.41 28384.78 27568.11 19775.60 31783.11 27560.96 30679.36 29789.89 21975.18 17872.97 36173.32 19292.30 22891.15 213
CDS-MVSNet77.32 24975.40 26583.06 18689.00 18472.48 15177.90 28382.17 28460.81 30778.94 30283.49 31559.30 29288.76 25454.64 34192.37 22787.93 279
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSTER77.09 25175.70 26381.25 22275.27 37861.08 27277.49 29185.07 25360.78 30886.55 17188.68 23743.14 37890.25 21473.69 18790.67 26792.42 171
XXY-MVS74.44 28376.19 25869.21 34484.61 27852.43 35071.70 34977.18 31560.73 30980.60 28190.96 18775.44 17469.35 37256.13 32888.33 29485.86 302
ET-MVSNet_ETH3D75.28 27072.77 29182.81 19583.03 30968.11 19777.09 29576.51 32160.67 31077.60 31480.52 34838.04 38791.15 18870.78 21390.68 26689.17 258
dmvs_testset60.59 36662.54 36154.72 38577.26 35827.74 40874.05 33261.00 39560.48 31165.62 38467.03 39855.93 31568.23 38032.07 40569.46 39968.17 392
MVP-Stereo75.81 26773.51 28382.71 19689.35 17573.62 13180.06 24985.20 25060.30 31273.96 34387.94 24757.89 30489.45 24052.02 35574.87 38985.06 311
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_re66.81 34266.98 33866.28 36176.87 36358.68 30771.66 35072.24 35160.29 31369.52 36973.53 38852.38 32964.40 39344.90 38481.44 36775.76 381
DPM-MVS80.10 22079.18 22682.88 19490.71 15069.74 17978.87 27190.84 14660.29 31375.64 33185.92 28467.28 24393.11 13571.24 20991.79 24185.77 303
MIMVSNet71.09 31071.59 30269.57 34287.23 22550.07 36678.91 26971.83 35560.20 31571.26 35691.76 16355.08 32276.09 35441.06 39187.02 31482.54 347
iter_conf05_1178.40 23977.29 24881.71 21685.55 26460.95 27877.22 29386.90 22860.10 31675.79 32881.73 33764.08 26394.47 8270.37 22193.92 19489.72 246
testdata79.54 25092.87 8172.34 15380.14 29859.91 31785.47 19591.75 16467.96 24285.24 30368.57 24492.18 23581.06 367
test_fmvsm_n_192083.60 15682.89 16685.74 12385.22 27077.74 9584.12 16690.48 15559.87 31886.45 17991.12 18075.65 17385.89 29782.28 8790.87 26193.58 126
UnsupCasMVSNet_eth71.63 30572.30 29869.62 34176.47 36752.70 34870.03 36380.97 29359.18 31979.36 29788.21 24360.50 28169.12 37358.33 31777.62 38387.04 289
fmvsm_l_conf0.5_n82.06 18381.54 19183.60 17183.94 29073.90 13083.35 18986.10 23658.97 32083.80 23090.36 20674.23 19086.94 27582.90 7790.22 27289.94 244
PC_three_145258.96 32190.06 9691.33 17380.66 12593.03 13875.78 16195.94 12692.48 168
our_test_371.85 30271.59 30272.62 32380.71 33353.78 33969.72 36471.71 35858.80 32278.03 30680.51 34956.61 31178.84 34662.20 29286.04 32785.23 308
MDA-MVSNet_test_wron70.05 32070.44 31268.88 34773.84 38453.47 34158.93 39367.28 37558.43 32387.09 15885.40 29159.80 29067.25 38359.66 31083.54 35285.92 301
YYNet170.06 31970.44 31268.90 34673.76 38553.42 34358.99 39267.20 37658.42 32487.10 15785.39 29259.82 28967.32 38259.79 30983.50 35385.96 299
ppachtmachnet_test74.73 28074.00 27876.90 28980.71 33356.89 32171.53 35278.42 30558.24 32579.32 29982.92 32357.91 30384.26 31465.60 26691.36 25089.56 250
fmvsm_l_conf0.5_n_a81.46 19380.87 20483.25 18183.73 29573.21 13883.00 20085.59 24558.22 32682.96 24590.09 21672.30 21786.65 28181.97 9289.95 27689.88 245
无先验82.81 20685.62 24458.09 32791.41 18267.95 24984.48 317
miper_enhance_ethall77.83 24276.93 25180.51 23576.15 37058.01 31175.47 32188.82 19258.05 32883.59 23380.69 34464.41 26091.20 18573.16 19992.03 23692.33 177
thisisatest051573.00 29470.52 31180.46 23681.45 32159.90 29073.16 34274.31 33557.86 32976.08 32577.78 36937.60 38992.12 16365.00 27191.45 24989.35 254
Patchmatch-RL test74.48 28173.68 28076.89 29084.83 27466.54 21172.29 34569.16 37057.70 33086.76 16586.33 27645.79 35982.59 32469.63 22790.65 26981.54 358
PatchmatchNetpermissive69.71 32468.83 32972.33 32777.66 35653.60 34079.29 26269.99 36557.66 33172.53 35182.93 32246.45 35180.08 34060.91 30472.09 39283.31 338
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
D2MVS76.84 25475.67 26480.34 23880.48 33662.16 26373.50 33884.80 26257.61 33282.24 25487.54 25651.31 33487.65 26470.40 22093.19 21391.23 210
baseline269.77 32366.89 33978.41 26579.51 34358.09 30976.23 31069.57 36757.50 33364.82 39077.45 37346.02 35488.44 25653.08 34877.83 38088.70 267
PVSNet_Blended76.49 26075.40 26579.76 24584.43 28063.41 24075.14 32390.44 15757.36 33475.43 33278.30 36669.11 23691.44 17960.68 30587.70 30584.42 319
PCF-MVS74.62 1582.15 18180.92 20385.84 12189.43 17472.30 15480.53 24591.82 11957.36 33487.81 14689.92 21877.67 14993.63 11158.69 31395.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
bld_raw_dy_0_6481.25 19681.17 20081.49 21985.55 26460.85 27986.36 12895.45 957.08 33690.81 8882.69 32965.85 25493.91 10170.37 22196.34 10589.72 246
IU-MVS94.18 4672.64 14490.82 14756.98 33789.67 10885.78 5097.92 4693.28 135
旧先验281.73 23056.88 33886.54 17684.90 30772.81 200
HY-MVS64.64 1873.03 29372.47 29774.71 30883.36 30154.19 33682.14 22881.96 28556.76 33969.57 36886.21 28060.03 28684.83 30849.58 36782.65 36085.11 310
cascas76.29 26374.81 27080.72 23384.47 27962.94 24673.89 33587.34 21355.94 34075.16 33776.53 38163.97 26491.16 18765.00 27190.97 25888.06 275
pmmvs-eth3d78.42 23877.04 25082.57 20187.44 22274.41 12780.86 24379.67 30055.68 34184.69 20890.31 20960.91 28085.42 30262.20 29291.59 24687.88 280
新几何182.95 19093.96 5578.56 8480.24 29755.45 34283.93 22991.08 18271.19 22788.33 25865.84 26393.07 21581.95 354
WB-MVSnew68.72 33269.01 32667.85 35383.22 30543.98 38974.93 32565.98 38155.09 34373.83 34479.11 35965.63 25571.89 36538.21 39885.04 33787.69 283
N_pmnet70.20 31668.80 33074.38 31080.91 32884.81 3959.12 39176.45 32255.06 34475.31 33682.36 33055.74 31654.82 40147.02 37787.24 30883.52 332
tpm67.95 33468.08 33567.55 35578.74 35243.53 39175.60 31767.10 37954.92 34572.23 35288.10 24442.87 37975.97 35552.21 35480.95 37183.15 340
UWE-MVS66.43 34465.56 34969.05 34584.15 28840.98 39673.06 34364.71 38454.84 34676.18 32379.62 35729.21 40280.50 33738.54 39789.75 27785.66 304
114514_t83.10 16782.54 17484.77 13992.90 8069.10 19186.65 12390.62 15354.66 34781.46 27090.81 19476.98 16094.38 8372.62 20196.18 11390.82 221
1112_ss74.82 27873.74 27978.04 27389.57 16960.04 28776.49 30687.09 22354.31 34873.66 34679.80 35460.25 28586.76 28058.37 31584.15 34987.32 287
UnsupCasMVSNet_bld69.21 32969.68 32167.82 35479.42 34451.15 36067.82 37275.79 32454.15 34977.47 31585.36 29459.26 29370.64 36848.46 37279.35 37481.66 356
EPMVS62.47 35662.63 36062.01 37370.63 39738.74 39974.76 32652.86 40453.91 35067.71 37780.01 35239.40 38466.60 38655.54 33368.81 40080.68 369
WTY-MVS67.91 33568.35 33266.58 36080.82 33148.12 37165.96 37772.60 34853.67 35171.20 35781.68 33958.97 29569.06 37448.57 37181.67 36482.55 346
PAPM71.77 30370.06 31776.92 28886.39 24353.97 33776.62 30486.62 23053.44 35263.97 39284.73 30357.79 30592.34 15639.65 39381.33 36884.45 318
PMMVS255.64 37159.27 37044.74 38764.30 40912.32 41340.60 40049.79 40653.19 35365.06 38984.81 30153.60 32549.76 40432.68 40489.41 28072.15 386
tpmrst66.28 34666.69 34265.05 36772.82 39239.33 39778.20 27970.69 36353.16 35467.88 37580.36 35048.18 34574.75 35958.13 31870.79 39481.08 365
pmmvs474.92 27672.98 28980.73 23284.95 27271.71 16476.23 31077.59 31052.83 35577.73 31386.38 27456.35 31384.97 30657.72 32187.05 31285.51 306
test22293.31 7076.54 10979.38 26177.79 30852.59 35682.36 25390.84 19366.83 24791.69 24381.25 362
Anonymous2023120671.38 30871.88 30069.88 33986.31 24854.37 33570.39 36074.62 33152.57 35776.73 31688.76 23559.94 28772.06 36344.35 38693.23 21283.23 339
MS-PatchMatch70.93 31270.22 31573.06 31881.85 31662.50 25573.82 33677.90 30752.44 35875.92 32681.27 34155.67 31781.75 32855.37 33477.70 38274.94 383
gm-plane-assit75.42 37744.97 38752.17 35972.36 39187.90 26154.10 342
MDTV_nov1_ep1368.29 33378.03 35343.87 39074.12 33172.22 35252.17 35967.02 37885.54 28745.36 36480.85 33455.73 32984.42 347
USDC76.63 25776.73 25476.34 29683.46 29757.20 31880.02 25188.04 20852.14 36183.65 23291.25 17563.24 26986.65 28154.66 34094.11 19085.17 309
sss66.92 33967.26 33765.90 36277.23 35951.10 36264.79 37971.72 35752.12 36270.13 36580.18 35157.96 30265.36 39150.21 36281.01 37081.25 362
CostFormer69.98 32168.68 33173.87 31177.14 36050.72 36379.26 26374.51 33351.94 36370.97 35984.75 30245.16 36887.49 26655.16 33779.23 37583.40 335
131473.22 29172.56 29675.20 30580.41 33757.84 31281.64 23285.36 24751.68 36473.10 34876.65 38061.45 27785.19 30463.54 28379.21 37682.59 344
jason77.42 24875.75 26282.43 20487.10 23169.27 18577.99 28181.94 28651.47 36577.84 30985.07 29960.32 28489.00 24770.74 21589.27 28389.03 263
jason: jason.
dp60.70 36560.29 36861.92 37572.04 39538.67 40070.83 35764.08 38551.28 36660.75 39577.28 37436.59 39171.58 36747.41 37662.34 40275.52 382
test_vis1_n_192071.30 30971.58 30470.47 33577.58 35759.99 28974.25 32984.22 26751.06 36774.85 33979.10 36055.10 32168.83 37568.86 23879.20 37782.58 345
PVSNet58.17 2166.41 34565.63 34868.75 34881.96 31449.88 36762.19 38672.51 35051.03 36868.04 37475.34 38650.84 33674.77 35845.82 38382.96 35581.60 357
test-mter65.00 35163.79 35568.63 35076.45 36855.21 33167.89 36967.14 37750.98 36965.08 38772.39 38928.27 40569.37 37061.00 30284.89 34281.31 360
CMPMVSbinary59.41 2075.12 27373.57 28179.77 24475.84 37367.22 20281.21 23882.18 28350.78 37076.50 31787.66 25455.20 32082.99 32362.17 29490.64 27089.09 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Test_1112_low_res73.90 28673.08 28776.35 29590.35 15655.95 32473.40 34086.17 23550.70 37173.14 34785.94 28358.31 29985.90 29656.51 32583.22 35487.20 288
lupinMVS76.37 26274.46 27482.09 20685.54 26669.26 18676.79 29980.77 29550.68 37276.23 32182.82 32458.69 29788.94 24869.85 22588.77 28888.07 273
CR-MVSNet74.00 28573.04 28876.85 29179.58 34162.64 25282.58 21176.90 31750.50 37375.72 32992.38 14348.07 34684.07 31668.72 24182.91 35783.85 328
pmmvs570.73 31370.07 31672.72 32177.03 36252.73 34774.14 33075.65 32750.36 37472.17 35385.37 29355.42 31980.67 33552.86 35287.59 30684.77 313
ADS-MVSNet265.87 34863.64 35672.55 32473.16 38956.92 32067.10 37374.81 33049.74 37566.04 38182.97 32046.71 34977.26 35142.29 38869.96 39683.46 333
ADS-MVSNet61.90 35862.19 36261.03 37873.16 38936.42 40367.10 37361.75 39149.74 37566.04 38182.97 32046.71 34963.21 39442.29 38869.96 39683.46 333
tpm268.45 33366.83 34073.30 31678.93 35148.50 36979.76 25471.76 35647.50 37769.92 36683.60 31342.07 38088.40 25748.44 37379.51 37283.01 342
HyFIR lowres test75.12 27372.66 29382.50 20291.44 13265.19 22472.47 34487.31 21446.79 37880.29 28784.30 30752.70 32892.10 16451.88 36086.73 31790.22 237
test_fmvs375.72 26875.20 26877.27 28475.01 38169.47 18378.93 26884.88 26046.67 37987.08 15987.84 25050.44 33971.62 36677.42 14488.53 29190.72 223
MVS-HIRNet61.16 36262.92 35955.87 38379.09 34835.34 40471.83 34857.98 40146.56 38059.05 39991.14 17949.95 34176.43 35338.74 39571.92 39355.84 402
MDTV_nov1_ep13_2view27.60 40970.76 35846.47 38161.27 39445.20 36649.18 36883.75 330
test_cas_vis1_n_192069.20 33069.12 32369.43 34373.68 38662.82 24970.38 36177.21 31446.18 38280.46 28678.95 36252.03 33065.53 39065.77 26577.45 38579.95 373
MVS73.21 29272.59 29475.06 30780.97 32760.81 28181.64 23285.92 24146.03 38371.68 35577.54 37168.47 23989.77 23455.70 33185.39 33074.60 384
TESTMET0.1,161.29 36160.32 36764.19 36972.06 39451.30 35867.89 36962.09 38745.27 38460.65 39669.01 39527.93 40664.74 39256.31 32681.65 36676.53 379
test_fmvs273.57 28872.80 29075.90 30172.74 39368.84 19277.07 29684.32 26645.14 38582.89 24684.22 30848.37 34470.36 36973.40 19187.03 31388.52 269
tpm cat166.76 34365.21 35171.42 33177.09 36150.62 36478.01 28073.68 34244.89 38668.64 37179.00 36145.51 36282.42 32749.91 36470.15 39581.23 364
PVSNet_051.08 2256.10 36954.97 37459.48 38175.12 37953.28 34455.16 39661.89 39044.30 38759.16 39862.48 40154.22 32365.91 38935.40 40047.01 40459.25 400
test_vis1_n70.29 31569.99 31971.20 33375.97 37266.50 21276.69 30280.81 29444.22 38875.43 33277.23 37550.00 34068.59 37666.71 25582.85 35978.52 377
CHOSEN 280x42059.08 36756.52 37266.76 35976.51 36664.39 23149.62 39959.00 39843.86 38955.66 40468.41 39735.55 39268.21 38143.25 38776.78 38767.69 393
mvsany_test365.48 35062.97 35873.03 31969.99 39876.17 11864.83 37843.71 40943.68 39080.25 29087.05 26952.83 32763.09 39651.92 35972.44 39179.84 374
new_pmnet55.69 37057.66 37149.76 38675.47 37630.59 40659.56 38851.45 40543.62 39162.49 39375.48 38540.96 38249.15 40537.39 39972.52 39069.55 390
test_fmvs1_n70.94 31170.41 31472.53 32573.92 38366.93 20875.99 31484.21 26843.31 39279.40 29679.39 35843.47 37468.55 37769.05 23584.91 34182.10 352
CHOSEN 1792x268872.45 29770.56 31078.13 27090.02 16663.08 24568.72 36783.16 27442.99 39375.92 32685.46 28957.22 30885.18 30549.87 36581.67 36486.14 298
test_fmvs169.57 32569.05 32571.14 33469.15 40065.77 22073.98 33383.32 27342.83 39477.77 31278.27 36743.39 37768.50 37868.39 24584.38 34879.15 375
test_vis3_rt71.42 30770.67 30973.64 31469.66 39970.46 17466.97 37589.73 17742.68 39588.20 13983.04 31943.77 37360.07 39765.35 26986.66 31890.39 235
MVEpermissive40.22 2351.82 37250.47 37555.87 38362.66 41051.91 35331.61 40239.28 41140.65 39650.76 40574.98 38756.24 31444.67 40633.94 40364.11 40171.04 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_f64.31 35565.85 34559.67 38066.54 40462.24 26257.76 39470.96 36140.13 39784.36 21582.09 33246.93 34851.67 40361.99 29581.89 36365.12 395
pmmvs362.47 35660.02 36969.80 34071.58 39664.00 23570.52 35958.44 40039.77 39866.05 38075.84 38327.10 40972.28 36246.15 38184.77 34673.11 385
EU-MVSNet75.12 27374.43 27577.18 28583.11 30859.48 29485.71 13982.43 28239.76 39985.64 19188.76 23544.71 37187.88 26273.86 18385.88 32884.16 324
test_vis1_rt65.64 34964.09 35370.31 33666.09 40570.20 17761.16 38781.60 28938.65 40072.87 34969.66 39452.84 32660.04 39856.16 32777.77 38180.68 369
mvsany_test158.48 36856.47 37364.50 36865.90 40768.21 19656.95 39542.11 41038.30 40165.69 38377.19 37756.96 30959.35 40046.16 38058.96 40365.93 394
CVMVSNet72.62 29671.41 30676.28 29783.25 30360.34 28583.50 18579.02 30437.77 40276.33 31985.10 29649.60 34287.41 26770.54 21877.54 38481.08 365
PMMVS61.65 35960.38 36665.47 36565.40 40869.26 18663.97 38261.73 39236.80 40360.11 39768.43 39659.42 29166.35 38748.97 37078.57 37960.81 398
DSMNet-mixed60.98 36461.61 36459.09 38272.88 39145.05 38674.70 32746.61 40826.20 40465.34 38590.32 20855.46 31863.12 39541.72 39081.30 36969.09 391
DeepMVS_CXcopyleft24.13 38932.95 41129.49 40721.63 41412.07 40537.95 40645.07 40430.84 39919.21 40817.94 40833.06 40723.69 404
test_method30.46 37329.60 37633.06 38817.99 4123.84 41513.62 40373.92 3372.79 40618.29 40853.41 40328.53 40443.25 40722.56 40635.27 40652.11 403
EGC-MVSNET74.79 27969.99 31989.19 6394.89 3787.00 1191.89 3486.28 2331.09 4072.23 40995.98 2381.87 11189.48 23779.76 11295.96 12491.10 214
tmp_tt20.25 37524.50 3787.49 3904.47 4138.70 41434.17 40125.16 4131.00 40832.43 40718.49 40539.37 3859.21 40921.64 40743.75 4054.57 405
test1236.27 3788.08 3810.84 3911.11 4150.57 41662.90 3830.82 4150.54 4091.07 4112.75 4101.26 4140.30 4101.04 4091.26 4091.66 406
testmvs5.91 3797.65 3820.72 3921.20 4140.37 41759.14 3900.67 4160.49 4101.11 4102.76 4090.94 4150.24 4111.02 4101.47 4081.55 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k20.81 37427.75 3770.00 3930.00 4160.00 4180.00 40485.44 2460.00 4110.00 41282.82 32481.46 1150.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.41 3778.55 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41176.94 1610.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re6.65 3768.87 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41279.80 3540.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS37.39 40152.61 353
MSC_two_6792asdad88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12677.99 9091.01 14296.05 887.45 2098.17 3292.40 173
eth-test20.00 416
eth-test0.00 416
OPU-MVS88.27 8091.89 11277.83 9390.47 5191.22 17681.12 11994.68 7174.48 17395.35 14692.29 179
test_0728_SECOND86.79 10094.25 4572.45 15290.54 4894.10 3695.88 1786.42 3697.97 4392.02 191
GSMVS83.88 325
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 35383.88 325
sam_mvs45.92 358
ambc82.98 18890.55 15364.86 22688.20 9689.15 18989.40 11793.96 9571.67 22591.38 18378.83 12296.55 9592.71 159
MTGPAbinary91.81 121
test_post178.85 2723.13 40745.19 36780.13 33958.11 319
test_post3.10 40845.43 36377.22 352
patchmatchnet-post81.71 33845.93 35787.01 271
GG-mvs-BLEND67.16 35773.36 38746.54 38084.15 16555.04 40358.64 40161.95 40229.93 40183.87 31938.71 39676.92 38671.07 388
MTMP90.66 4433.14 412
test9_res80.83 10196.45 10290.57 229
agg_prior279.68 11496.16 11490.22 237
agg_prior91.58 12477.69 9690.30 16484.32 21793.18 132
test_prior478.97 8084.59 156
test_prior86.32 10890.59 15271.99 15992.85 8994.17 9292.80 154
新几何281.72 231
旧先验191.97 10871.77 16081.78 28791.84 15873.92 19493.65 20383.61 331
原ACMM282.26 224
testdata286.43 28563.52 284
segment_acmp81.94 107
test1286.57 10390.74 14872.63 14690.69 15082.76 24879.20 13594.80 6895.32 14892.27 181
plane_prior793.45 6577.31 102
plane_prior692.61 8776.54 10974.84 182
plane_prior593.61 5695.22 5680.78 10295.83 13294.46 80
plane_prior492.95 126
plane_prior192.83 85
n20.00 417
nn0.00 417
door-mid74.45 334
lessismore_v085.95 11791.10 14170.99 17170.91 36291.79 6794.42 6961.76 27692.93 14179.52 11793.03 21693.93 106
test1191.46 127
door72.57 349
HQP5-MVS70.66 172
BP-MVS77.30 145
HQP4-MVS80.56 28294.61 7493.56 128
HQP3-MVS92.68 9494.47 180
HQP2-MVS72.10 218
NP-MVS91.95 10974.55 12690.17 214
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 136