This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3599.87 3199.99 16100.00 1
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21699.98 1299.99 399.98 1399.91 2899.68 2699.93 9999.93 1999.99 1699.99 2
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 208100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24199.79 1299.97 19100.00 199.43 23699.94 1999.64 2899.94 8199.83 3399.99 1699.98 4
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22699.98 1299.99 399.98 1399.90 3399.88 899.92 12599.93 1999.99 1699.98 4
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 24099.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19899.98 1100.00 199.98 4
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28399.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
test_cas_vis1_n_192099.76 3399.86 1399.45 20099.93 2498.40 29699.30 14499.98 1299.94 2399.99 799.89 3899.80 1599.97 3599.96 999.97 5599.97 9
test_vis1_n_192099.72 3899.88 799.27 25699.93 2497.84 33499.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
test_f99.75 3499.88 799.37 22899.96 798.21 30899.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 8199.97 499.99 1699.97 9
test_fmvs299.72 3899.85 1799.34 23599.91 3098.08 32299.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
MVStest198.22 30698.09 30198.62 33299.04 36096.23 37899.20 17699.92 3499.44 14899.98 1399.87 5285.87 40199.67 37099.91 2499.57 28599.95 13
test_vis1_n99.68 4799.79 2999.36 23299.94 1898.18 31199.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5699.97 499.96 6899.95 13
tmp_tt95.75 37995.42 37396.76 39089.90 42894.42 40098.86 26397.87 39478.01 41999.30 27699.69 16597.70 24995.89 42199.29 10698.14 39799.95 13
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 8199.95 1299.98 4199.94 16
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 6099.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
ttmdpeth99.48 9199.55 7999.29 25099.76 11798.16 31399.33 13399.95 3099.79 7099.36 25599.89 3899.13 8899.77 32599.09 13699.64 26399.93 18
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23599.96 2599.99 399.97 2099.84 6999.58 3899.93 9999.92 2199.98 4199.93 18
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25299.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
test_fmvs1_n99.68 4799.81 2599.28 25399.95 1597.93 33199.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23599.96 2599.99 399.97 2099.84 6999.78 1799.92 12599.92 2199.99 1699.92 22
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13899.91 2899.15 8399.97 3599.50 70100.00 199.90 24
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
EU-MVSNet99.39 12299.62 5798.72 32899.88 4396.44 37299.56 8499.85 6099.90 3199.90 4999.85 6398.09 22399.83 27999.58 5899.95 8199.90 24
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8599.73 7899.97 2099.92 2599.77 1999.98 2199.43 78100.00 199.90 24
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20899.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21399.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
MM99.18 17999.05 18699.55 17199.35 29098.81 26299.05 22797.79 39599.99 399.48 22499.59 23296.29 30899.95 6699.94 1699.98 4199.88 28
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18899.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
CVMVSNet98.61 26498.88 22797.80 36999.58 19593.60 40699.26 15999.64 17599.66 10299.72 13399.67 18093.26 34399.93 9999.30 10399.81 19299.87 32
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8299.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 30199.86 34
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9799.90 3199.82 8299.83 7398.45 18599.87 21299.51 6899.97 5599.86 34
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 12099.62 11399.84 7799.71 15098.62 15899.96 5699.30 10399.96 6899.86 34
reproduce_monomvs97.40 33897.46 33297.20 38599.05 35791.91 41399.20 17699.18 33299.84 5599.86 7199.75 12780.67 40899.83 27999.69 4599.95 8199.85 37
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 6099.70 8999.92 4399.93 2199.45 4999.97 3599.36 91100.00 199.85 37
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13299.93 2599.95 3299.89 3899.71 2299.96 5699.51 6899.97 5599.84 39
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18799.54 12799.80 9399.64 19297.79 24599.95 6699.21 11499.94 9499.84 39
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34899.80 8597.14 36899.46 23099.40 29096.11 31199.89 18499.01 14399.84 16599.84 39
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3599.75 41100.00 199.84 39
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 23099.04 23299.87 5199.71 8499.47 22699.79 10098.24 20999.98 2199.38 8799.96 6899.83 43
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13799.93 2599.78 10399.68 17699.10 9099.78 31799.45 7699.96 6899.83 43
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 11099.86 4699.74 12799.79 10098.27 20799.85 24999.37 9099.93 10199.83 43
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7399.84 5599.94 3599.91 2899.13 8899.96 5699.83 3399.99 1699.83 43
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 12099.70 8999.84 7799.73 13598.56 16799.96 5699.29 10699.94 9499.83 43
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 11099.58 12699.85 7499.69 16598.18 21999.94 8199.28 10899.95 8199.83 43
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8299.82 6299.71 13899.72 14296.60 29399.98 2199.75 4199.23 34199.82 49
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18899.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 12099.82 6299.90 4999.90 3397.97 23399.86 23199.42 8399.96 6899.80 50
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14498.99 21599.75 11999.71 15098.79 13499.93 9998.46 19099.85 16099.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13299.72 8299.84 7799.78 11098.67 15299.97 3599.30 10399.95 8199.80 50
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7399.39 15999.82 8299.84 6999.38 5699.91 14799.38 8799.93 10199.80 50
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 31199.82 7397.65 34299.43 23699.16 34196.42 30099.91 14799.07 13999.84 16599.80 50
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6699.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs199.48 9199.65 5298.97 29799.54 22197.16 35799.11 21399.98 1299.78 7299.96 2499.81 8798.72 14699.97 3599.95 1299.97 5599.79 57
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24498.09 34899.90 4398.95 22199.78 10399.58 23599.57 4099.93 9999.48 7299.95 8199.79 57
MSC_two_6792asdad99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
No_MVS99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 26199.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9599.96 6899.78 59
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 28099.88 4998.66 26199.96 2499.79 10097.45 26399.93 9999.34 9599.99 1699.78 59
test_vis1_rt99.45 10499.46 9399.41 21799.71 14498.63 28298.99 24899.96 2599.03 21399.95 3299.12 34798.75 14199.84 26499.82 3799.82 18299.77 63
IU-MVS99.69 15699.77 5699.22 32597.50 35099.69 14597.75 25399.70 24199.77 63
test_0728_THIRD99.18 18999.62 17499.61 21998.58 16499.91 14797.72 25599.80 19999.77 63
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19899.61 18799.92 12597.88 23899.72 23699.77 63
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21598.54 27599.54 20698.99 36496.81 28899.93 9996.97 31299.53 29799.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28499.60 19898.55 27299.76 11499.69 16598.23 21399.92 12596.39 34899.75 21799.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26899.86 5499.68 9499.65 16099.88 4797.67 25399.87 21299.03 14199.86 15599.76 68
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 6099.80 6899.93 3899.93 2198.54 17099.93 9999.59 5599.98 4199.76 68
test_241102_TWO99.54 23299.13 20299.76 11499.63 20398.32 20399.92 12597.85 24499.69 24599.75 71
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15199.61 18799.87 4399.74 12799.76 12298.69 14899.87 21298.20 20999.80 19999.75 71
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20899.68 14799.49 13599.80 9399.79 10099.01 10699.93 9998.24 20599.82 18299.73 73
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35999.72 8299.91 4699.60 22799.43 5099.81 30499.81 3899.53 29799.73 73
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 11099.60 12399.92 4399.87 5298.75 14199.86 23199.90 2599.99 1699.73 73
EI-MVSNet-UG-set99.48 9199.50 8699.42 21099.57 20598.65 27999.24 16699.46 26699.68 9499.80 9399.66 18598.99 10999.89 18499.19 11899.90 11699.72 76
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9499.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 35199.83 6898.64 26399.89 5399.60 22792.57 350100.00 199.33 9899.97 5599.72 76
EI-MVSNet-Vis-set99.47 9999.49 8899.42 21099.57 20598.66 27699.24 16699.46 26699.67 9899.79 9999.65 19098.97 11399.89 18499.15 12699.89 12699.71 79
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10599.64 10899.93 3899.85 6398.66 15499.84 26499.88 2999.99 1699.71 79
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21299.59 5599.74 22499.71 79
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
test111197.74 32498.16 29796.49 39599.60 18589.86 42599.71 3491.21 42199.89 3799.88 6299.87 5293.73 33999.90 16599.56 6099.99 1699.70 82
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14499.85 5299.80 9399.81 8798.81 12999.91 14799.47 7399.88 13599.70 82
WR-MVS99.11 19698.93 21899.66 11999.30 31099.42 16898.42 32299.37 29299.04 21299.57 19199.20 33996.89 28699.86 23198.66 18099.87 14799.70 82
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9198.77 25099.80 9399.85 6399.64 2899.85 24998.70 17699.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16599.65 5099.97 5599.69 88
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13798.35 29899.51 21999.50 26499.31 6499.88 19898.18 21399.84 16599.69 88
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19499.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
LGP-MVS_train99.74 8199.82 7299.63 11799.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18399.60 19898.55 27299.57 19199.67 18099.03 10599.94 8197.01 30999.80 19999.69 88
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS98.52 27798.39 27498.94 30199.15 33997.39 35298.18 33799.21 32898.89 23299.23 28499.63 20397.37 26899.74 33594.22 39799.61 27499.69 88
WBMVS97.50 33597.18 34198.48 34098.85 37995.89 38598.44 32199.52 24699.53 12999.52 21399.42 28580.10 41199.86 23199.24 11099.95 8199.68 94
MVS_030498.61 26498.30 28599.52 17997.88 41898.95 25098.76 28294.11 41799.84 5599.32 26699.57 24295.57 31999.95 6699.68 4799.98 4199.68 94
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25599.53 24198.27 30799.53 21199.73 13598.75 14199.87 21297.70 26099.83 17399.68 94
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14199.59 20498.36 29399.36 25599.37 29998.80 13399.91 14797.43 28299.75 21799.68 94
EI-MVSNet99.38 12499.44 9899.21 26699.58 19598.09 31999.26 15999.46 26699.62 11399.75 11999.67 18098.54 17099.85 24999.15 12699.92 10599.68 94
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14499.63 17799.61 11799.71 13899.56 24698.76 13999.96 5699.14 13299.92 10599.68 94
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20499.90 3698.66 27698.94 25799.91 3897.97 32499.79 9999.73 13599.05 10299.97 3599.15 12699.99 1699.68 94
IterMVS-LS99.41 11699.47 8999.25 26299.81 8098.09 31998.85 26599.76 10599.62 11399.83 8199.64 19298.54 17099.97 3599.15 12699.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29299.63 17796.84 37599.44 23299.58 23598.81 12999.91 14797.70 26099.82 18299.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14199.59 20498.41 28799.32 26699.36 30398.73 14599.93 9997.29 29099.74 22499.67 102
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34199.47 27598.47 18199.88 19897.62 26999.73 23099.67 102
v124099.56 7499.58 6999.51 18299.80 8699.00 24299.00 24399.65 16799.15 20099.90 4999.75 12799.09 9299.88 19899.90 2599.96 6899.67 102
X-MVStestdata96.09 37094.87 38299.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34161.30 43298.47 18199.88 19897.62 26999.73 23099.67 102
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13799.81 6599.69 14599.58 23597.66 25799.86 23199.17 12399.44 31199.67 102
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14199.59 20498.36 29399.35 25799.38 29698.61 16099.93 9997.43 28299.75 21799.67 102
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33799.65 10599.89 5399.90 3396.20 31099.94 8199.42 8399.92 10599.67 102
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15297.72 33999.35 25799.25 32899.23 7599.92 12597.21 30299.82 18299.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21399.62 18099.18 18999.89 5399.72 14298.66 15499.87 21299.88 2999.97 5599.66 111
v192192099.56 7499.57 7399.55 17199.75 12999.11 23099.05 22799.61 18799.15 20099.88 6299.71 15099.08 9599.87 21299.90 2599.97 5599.66 111
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23299.60 19899.18 18999.87 7099.72 14299.08 9599.85 24999.89 2899.98 4199.66 111
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19499.72 12997.99 32299.42 23999.60 22798.81 12999.93 9996.91 31599.74 22499.66 111
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23298.34 30299.01 31299.50 26498.53 17499.93 9997.18 30499.78 20999.66 111
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 18098.38 29199.06 31099.27 32398.79 13499.94 8197.51 27899.82 18299.66 111
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15999.76 10599.32 16899.80 9399.78 11099.29 6699.87 21299.15 12699.91 11599.66 111
UGNet99.38 12499.34 11899.49 18898.90 37298.90 25799.70 3599.35 29699.86 4698.57 35899.81 8798.50 18099.93 9999.38 8799.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8399.96 6899.65 119
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9199.97 1699.89 5399.89 3899.53 4599.99 899.36 9199.96 6899.65 119
test250694.73 38594.59 38695.15 40199.59 19085.90 42799.75 2274.01 42999.89 3799.71 13899.86 5979.00 41899.90 16599.52 6799.99 1699.65 119
ECVR-MVScopyleft97.73 32598.04 30496.78 38999.59 19090.81 42199.72 3090.43 42399.89 3799.86 7199.86 5993.60 34199.89 18499.46 7499.99 1699.65 119
h-mvs3398.61 26498.34 28099.44 20499.60 18598.67 27399.27 15799.44 27199.68 9499.32 26699.49 26892.50 353100.00 199.24 11096.51 41499.65 119
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15999.35 29698.77 25099.57 19199.70 15899.27 7199.88 19897.71 25799.75 21799.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13399.53 24199.27 17499.42 23999.63 20398.21 21499.95 6697.83 24899.79 20499.65 119
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29999.07 34198.40 28999.04 31199.25 32898.51 17999.80 31197.31 28999.51 30199.65 119
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25899.56 13798.97 25299.61 18799.43 15499.67 15399.28 32197.85 24199.95 6699.17 12399.81 19299.65 119
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15199.90 4399.71 8499.79 9999.73 13599.54 4399.84 26499.36 9199.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15399.56 22098.19 31299.14 29999.29 32098.84 12899.92 12597.53 27799.80 19999.64 129
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21699.61 18799.20 18799.84 7799.73 13598.67 15299.84 26499.86 3299.98 4199.64 129
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19899.58 21399.25 17899.81 8999.62 21098.24 20999.84 26499.83 3399.97 5599.64 129
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41299.78 7299.88 6299.88 4793.66 34099.97 3599.61 5399.95 8199.64 129
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16699.71 13299.27 17499.93 3899.90 3399.70 2499.93 9998.99 14499.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 10699.45 9599.40 21999.37 28498.64 28197.90 37199.59 20499.27 17499.92 4399.82 8099.74 2099.93 9999.55 6299.87 14799.63 134
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26299.73 7899.13 20499.52 24697.40 35599.57 19199.64 19298.93 11699.83 27997.61 27199.79 20499.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT99.00 22199.16 15298.51 33899.75 12995.90 38498.07 35199.84 6699.84 5599.89 5399.73 13596.01 31399.99 899.33 98100.00 199.63 134
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21299.54 6399.92 10599.63 134
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13699.50 25598.35 29898.97 31499.48 27198.37 19699.92 12595.95 36899.75 21799.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DU-MVS99.33 14099.21 14799.71 10199.43 27099.56 13798.83 26899.53 24199.38 16099.67 15399.36 30397.67 25399.95 6699.17 12399.81 19299.63 134
NR-MVSNet99.40 11899.31 12599.68 10999.43 27099.55 14099.73 2799.50 25599.46 14399.88 6299.36 30397.54 26099.87 21298.97 14899.87 14799.63 134
IterMVS98.97 22599.16 15298.42 34399.74 13595.64 38898.06 35399.83 6899.83 6099.85 7499.74 13196.10 31299.99 899.27 109100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32199.48 13699.56 19999.77 11994.89 32599.93 9998.72 17599.89 12699.63 134
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16798.07 31899.52 21399.69 16598.57 16599.92 12597.18 30499.79 20499.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31599.22 21598.99 24899.40 28499.08 20799.58 18899.64 19298.90 12499.83 27997.44 28199.75 21799.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.38 12499.25 14399.77 5999.03 36199.77 5699.74 2499.61 18799.18 18999.76 11499.61 21999.00 10799.92 12597.72 25599.60 27799.62 145
PC_three_145297.56 34499.68 14899.41 28699.09 9297.09 42096.66 33199.60 27799.62 145
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7399.46 14399.75 11999.56 24699.63 3099.95 6699.43 7899.88 13599.62 145
test_method91.72 38692.32 38989.91 40493.49 42770.18 43090.28 41899.56 22061.71 42295.39 41799.52 25993.90 33499.94 8198.76 17198.27 39099.62 145
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17699.55 22698.22 30999.32 26699.35 30898.65 15699.91 14796.86 31899.74 22499.62 145
new-patchmatchnet99.35 13299.57 7398.71 33099.82 7296.62 36998.55 30599.75 11099.50 13399.88 6299.87 5299.31 6499.88 19899.43 78100.00 199.62 145
CPTT-MVS98.74 25398.44 26999.64 13299.61 18399.38 18099.18 18399.55 22696.49 37999.27 27899.37 29997.11 28099.92 12595.74 37599.67 25699.62 145
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 10099.78 7299.93 3899.89 3897.94 23499.92 12599.65 5099.98 4199.62 145
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32699.75 6997.25 39999.47 26398.72 25599.66 15899.70 15899.29 6699.63 38498.07 22399.81 19299.62 145
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 29099.47 15099.62 6499.50 25599.44 14899.12 30299.78 11098.77 13899.94 8197.87 24199.72 23699.62 145
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19899.31 30599.16 19699.62 17499.61 21998.35 19899.91 14797.88 23899.72 23699.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24299.62 11999.01 24099.57 21596.80 37799.54 20699.63 20398.29 20499.91 14795.24 38499.71 23999.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC98.82 24598.57 25699.58 15999.21 32899.31 19698.61 29299.25 31898.65 26298.43 36599.26 32697.86 23999.81 30496.55 33799.27 33699.61 155
TAMVS99.49 8999.45 9599.63 13999.48 25299.42 16899.45 10999.57 21599.66 10299.78 10399.83 7397.85 24199.86 23199.44 7799.96 6899.61 155
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23499.71 8598.86 26399.19 33198.47 28398.59 35599.06 35498.08 22599.91 14796.94 31399.60 27799.60 159
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20499.24 18099.86 7199.70 15898.55 16899.82 28999.79 3999.95 8199.60 159
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27699.54 23298.94 22299.14 29999.25 32897.24 27299.82 28995.84 37299.78 20999.60 159
plane_prior599.54 23299.82 28995.84 37299.78 20999.60 159
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19898.93 15699.95 8199.60 159
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13699.77 10099.53 12999.77 11199.76 12299.26 7299.78 31797.77 24999.88 13599.60 159
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20499.65 16798.99 21599.64 16199.72 14299.39 5299.86 23198.23 20699.81 19299.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet98.97 22598.82 23599.42 21099.71 14498.81 26299.62 6498.68 36099.81 6599.38 25399.80 9094.25 33299.85 24998.79 16699.32 32899.59 166
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20499.85 6099.79 7099.76 11499.72 14299.33 6399.82 28999.21 11499.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23699.58 13498.98 25199.60 19899.43 15499.70 14299.36 30397.70 24999.88 19899.20 11799.87 14799.59 166
DSMNet-mixed99.48 9199.65 5298.95 30099.71 14497.27 35499.50 9699.82 7399.59 12599.41 24599.85 6399.62 33100.00 199.53 6699.89 12699.59 166
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27999.42 16899.70 3599.56 22099.23 18299.35 25799.80 9099.17 8199.95 6698.21 20899.84 16599.59 166
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17699.54 23299.13 20299.82 8299.63 20398.91 12199.92 12597.85 24499.70 24199.58 171
OPU-MVS99.29 25099.12 34499.44 16199.20 17699.40 29099.00 10798.84 41696.54 33899.60 27799.58 171
EPNet98.13 31097.77 32599.18 27194.57 42697.99 32599.24 16697.96 39099.74 7797.29 39999.62 21093.13 34599.97 3598.59 18499.83 17399.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33699.37 16199.61 18099.71 15094.73 32899.81 30497.70 26099.88 13599.58 171
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 26199.66 15797.11 37099.47 22699.60 22799.07 9799.89 18496.18 35799.85 16099.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS99.19 17599.00 20299.74 8199.51 23699.72 8399.18 18399.60 19898.85 23699.47 22699.58 23598.38 19599.92 12596.92 31499.54 29599.57 176
lessismore_v099.64 13299.86 5399.38 18090.66 42299.89 5399.83 7394.56 33099.97 3599.56 6099.92 10599.57 176
pmmvs599.19 17599.11 16599.42 21099.76 11798.88 25898.55 30599.73 12098.82 24199.72 13399.62 21096.56 29499.82 28999.32 10099.95 8199.56 178
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15799.61 18799.19 18899.57 19199.64 19298.76 13999.90 16597.29 29099.62 26799.56 178
CDPH-MVS98.56 27398.20 29299.61 15199.50 24299.46 15498.32 32899.41 27795.22 39699.21 28999.10 35198.34 20099.82 28995.09 38899.66 25999.56 178
BP-MVS198.72 25698.46 26699.50 18499.53 22799.00 24299.34 12998.53 36999.65 10599.73 13199.38 29690.62 37599.96 5699.50 7099.86 15599.55 181
Anonymous2024052199.44 10699.42 10299.49 18899.89 3898.96 24999.62 6499.76 10599.85 5299.82 8299.88 4796.39 30399.97 3599.59 5599.98 4199.55 181
our_test_398.85 24399.09 17498.13 35799.66 17194.90 39897.72 37799.58 21399.07 20999.64 16199.62 21098.19 21799.93 9998.41 19299.95 8199.55 181
YYNet198.95 23198.99 20998.84 31899.64 17697.14 35998.22 33699.32 30198.92 22799.59 18699.66 18597.40 26599.83 27998.27 20299.90 11699.55 181
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31699.64 17697.16 35798.23 33599.33 29998.93 22599.56 19999.66 18597.39 26799.83 27998.29 20099.88 13599.55 181
MVSFormer99.41 11699.44 9899.31 24699.57 20598.40 29699.77 1699.80 8599.73 7899.63 16599.30 31798.02 22899.98 2199.43 7899.69 24599.55 181
jason99.16 18599.11 16599.32 24399.75 12998.44 29398.26 33399.39 28798.70 25899.74 12799.30 31798.54 17099.97 3598.48 18999.82 18299.55 181
jason: jason.
CDS-MVSNet99.22 16599.13 15899.50 18499.35 29099.11 23098.96 25499.54 23299.46 14399.61 18099.70 15896.31 30699.83 27999.34 9599.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9799.53 12999.67 15399.78 11099.19 7999.86 23197.32 28899.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.41 19099.91 14797.27 29399.61 27499.54 190
RE-MVS-def99.13 15899.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.57 16597.27 29399.61 27499.54 190
SD-MVS99.01 21999.30 13098.15 35699.50 24299.40 17598.94 25799.61 18799.22 18699.75 11999.82 8099.54 4395.51 42397.48 27999.87 14799.54 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.99 22498.80 23899.56 16899.25 32199.43 16598.54 30899.27 31398.58 27098.80 33699.43 28398.53 17499.70 34797.22 30199.59 28199.54 190
MVS_111021_HR99.12 19399.02 19599.40 21999.50 24299.11 23097.92 36899.71 13298.76 25399.08 30699.47 27599.17 8199.54 39897.85 24499.76 21599.54 190
v14899.40 11899.41 10499.39 22299.76 11798.94 25199.09 22099.59 20499.17 19499.81 8999.61 21998.41 19099.69 35399.32 10099.94 9499.53 195
diffmvspermissive99.34 13799.32 12399.39 22299.67 17098.77 26798.57 30399.81 8299.61 11799.48 22499.41 28698.47 18199.86 23198.97 14899.90 11699.53 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8599.71 8499.72 13399.69 16599.15 8399.83 27999.32 10099.94 9499.53 195
HQP4-MVS98.15 37499.70 34799.53 195
GBi-Net99.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
test199.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13799.67 9899.82 8299.83 7398.98 11199.90 16599.24 11099.97 5599.53 195
HQP-MVS98.36 29398.02 30699.39 22299.31 30698.94 25197.98 36199.37 29297.45 35298.15 37498.83 38096.67 29199.70 34794.73 39099.67 25699.53 195
QAPM98.40 29197.99 30799.65 12599.39 27999.47 15099.67 5099.52 24691.70 41198.78 34099.80 9098.55 16899.95 6694.71 39299.75 21799.53 195
F-COLMAP98.74 25398.45 26899.62 14899.57 20599.47 15098.84 26699.65 16796.31 38398.93 31899.19 34097.68 25299.87 21296.52 33999.37 32199.53 195
MVSTER98.47 28498.22 29099.24 26499.06 35698.35 30299.08 22399.46 26699.27 17499.75 11999.66 18588.61 38899.85 24999.14 13299.92 10599.52 205
PVSNet_BlendedMVS99.03 21199.01 19899.09 28399.54 22197.99 32598.58 29999.82 7397.62 34399.34 26199.71 15098.52 17799.77 32597.98 22999.97 5599.52 205
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29999.48 26098.50 27999.52 21399.63 20399.14 8699.76 32897.89 23799.77 21399.51 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20899.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
TestCases99.63 13999.78 10599.64 11299.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
BH-RMVSNet98.41 28998.14 29899.21 26699.21 32898.47 29098.60 29498.26 38498.35 29898.93 31899.31 31597.20 27799.66 37594.32 39599.10 34699.51 207
USDC98.96 22898.93 21899.05 29199.54 22197.99 32597.07 40599.80 8598.21 31099.75 11999.77 11998.43 18799.64 38397.90 23699.88 13599.51 207
test9_res95.10 38799.44 31199.50 212
train_agg98.35 29697.95 31199.57 16599.35 29099.35 19098.11 34699.41 27794.90 40097.92 38498.99 36498.02 22899.85 24995.38 38299.44 31199.50 212
agg_prior294.58 39399.46 31099.50 212
VDD-MVS99.20 17299.11 16599.44 20499.43 27098.98 24599.50 9698.32 38399.80 6899.56 19999.69 16596.99 28499.85 24998.99 14499.73 23099.50 212
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28899.80 8697.83 33598.89 26099.72 12999.29 17099.63 16599.70 15896.47 29899.89 18498.17 21599.82 18299.50 212
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9199.83 6099.88 6299.85 6398.42 18999.90 16599.60 5499.73 23099.49 217
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20499.65 16797.97 32499.42 23999.61 21998.86 12699.87 21296.45 34699.68 25099.49 217
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28799.47 14099.76 11499.78 11098.13 22199.86 23198.70 17699.68 25099.49 217
WTY-MVS98.59 27098.37 27699.26 25999.43 27098.40 29698.74 28499.13 33998.10 31599.21 28999.24 33394.82 32699.90 16597.86 24298.77 36899.49 217
ppachtmachnet_test98.89 23999.12 16298.20 35599.66 17195.24 39497.63 38199.68 14799.08 20799.78 10399.62 21098.65 15699.88 19898.02 22499.96 6899.48 221
Anonymous2023120699.35 13299.31 12599.47 19499.74 13599.06 24099.28 15399.74 11699.23 18299.72 13399.53 25797.63 25999.88 19899.11 13499.84 16599.48 221
test_prior99.46 19799.35 29099.22 21599.39 28799.69 35399.48 221
test1299.54 17699.29 31299.33 19399.16 33598.43 36597.54 26099.82 28999.47 30899.48 221
VNet99.18 17999.06 18299.56 16899.24 32399.36 18799.33 13399.31 30599.67 9899.47 22699.57 24296.48 29799.84 26499.15 12699.30 33099.47 225
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23899.89 4599.60 12399.82 8299.62 21098.81 12999.89 18499.43 7899.86 15599.47 225
114514_t98.49 28298.11 30099.64 13299.73 13899.58 13499.24 16699.76 10589.94 41499.42 23999.56 24697.76 24899.86 23197.74 25499.82 18299.47 225
sss98.90 23698.77 24099.27 25699.48 25298.44 29398.72 28699.32 30197.94 32899.37 25499.35 30896.31 30699.91 14798.85 15899.63 26699.47 225
旧先验199.49 24799.29 19999.26 31599.39 29497.67 25399.36 32299.46 229
MVP-Stereo99.16 18599.08 17699.43 20899.48 25299.07 23899.08 22399.55 22698.63 26499.31 27199.68 17698.19 21799.78 31798.18 21399.58 28399.45 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何199.52 17999.50 24299.22 21599.26 31595.66 39298.60 35499.28 32197.67 25399.89 18495.95 36899.32 32899.45 230
LFMVS98.46 28598.19 29599.26 25999.24 32398.52 28999.62 6496.94 40499.87 4399.31 27199.58 23591.04 36699.81 30498.68 17999.42 31599.45 230
testgi99.29 14599.26 14199.37 22899.75 12998.81 26298.84 26699.89 4598.38 29199.75 11999.04 35799.36 6199.86 23199.08 13899.25 33799.45 230
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24899.67 15299.48 13699.55 20499.36 30394.92 32499.86 23198.95 15496.57 41399.45 230
无先验98.01 35799.23 32295.83 38999.85 24995.79 37499.44 235
testdata99.42 21099.51 23698.93 25499.30 30896.20 38498.87 32899.40 29098.33 20299.89 18496.29 35299.28 33399.44 235
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33499.73 12098.39 29099.63 16599.43 28399.70 2499.90 16597.34 28798.64 37999.44 235
FMVSNet299.35 13299.28 13799.55 17199.49 24799.35 19099.45 10999.57 21599.44 14899.70 14299.74 13197.21 27499.87 21299.03 14199.94 9499.44 235
N_pmnet98.73 25598.53 26299.35 23499.72 14198.67 27398.34 32694.65 41398.35 29899.79 9999.68 17698.03 22799.93 9998.28 20199.92 10599.44 235
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7398.33 30399.50 22199.78 11097.90 23699.65 38196.78 32499.83 17399.44 235
原ACMM199.37 22899.47 25898.87 26099.27 31396.74 37898.26 36999.32 31297.93 23599.82 28995.96 36799.38 31999.43 241
test22299.51 23699.08 23797.83 37499.29 30995.21 39798.68 34899.31 31597.28 27199.38 31999.43 241
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37299.74 11698.36 29399.66 15899.68 17699.71 2299.90 16596.84 32199.88 13599.43 241
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 6098.79 24699.41 24599.60 22798.92 11999.92 12598.02 22499.92 10599.43 241
GDP-MVS98.81 24798.57 25699.50 18499.53 22799.12 22999.28 15399.86 5499.53 12999.57 19199.32 31290.88 37199.98 2199.46 7499.74 22499.42 245
RRT-MVS99.08 20099.00 20299.33 23899.27 31798.65 27999.62 6499.93 3299.66 10299.67 15399.82 8095.27 32399.93 9998.64 18299.09 34799.41 246
TinyColmap98.97 22598.93 21899.07 28899.46 26298.19 30997.75 37699.75 11098.79 24699.54 20699.70 15898.97 11399.62 38596.63 33599.83 17399.41 246
Anonymous20240521198.75 25298.46 26699.63 13999.34 29999.66 10399.47 10597.65 39699.28 17399.56 19999.50 26493.15 34499.84 26498.62 18399.58 28399.40 248
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26899.72 12998.36 29399.60 18399.71 15098.92 11999.91 14797.08 30799.84 16599.40 248
MS-PatchMatch99.00 22198.97 21399.09 28399.11 34998.19 30998.76 28299.33 29998.49 28199.44 23299.58 23598.21 21499.69 35398.20 20999.62 26799.39 250
FMVSNet398.80 24898.63 24999.32 24399.13 34298.72 27099.10 21699.48 26099.23 18299.62 17499.64 19292.57 35099.86 23198.96 15099.90 11699.39 250
ambc99.20 26899.35 29098.53 28799.17 18899.46 26699.67 15399.80 9098.46 18499.70 34797.92 23499.70 24199.38 252
FMVSNet597.80 32297.25 33999.42 21098.83 38198.97 24799.38 12099.80 8598.87 23399.25 28099.69 16580.60 41099.91 14798.96 15099.90 11699.38 252
PAPM_NR98.36 29398.04 30499.33 23899.48 25298.93 25498.79 27999.28 31297.54 34798.56 35998.57 39297.12 27999.69 35394.09 39998.90 36399.38 252
EPNet_dtu97.62 33097.79 32497.11 38896.67 42392.31 41198.51 31298.04 38899.24 18095.77 41599.47 27593.78 33899.66 37598.98 14699.62 26799.37 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS99.11 19698.95 21699.59 15699.13 34299.59 13099.17 18899.65 16797.88 33299.25 28099.46 27898.97 11399.80 31197.26 29599.82 18299.37 255
PLCcopyleft97.35 1698.36 29397.99 30799.48 19299.32 30599.24 21298.50 31399.51 25195.19 39898.58 35698.96 37196.95 28599.83 27995.63 37699.25 33799.37 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051797.62 33097.20 34098.90 31399.76 11797.40 35199.48 10294.36 41499.06 21199.70 14299.49 26884.55 40499.94 8198.73 17499.65 26199.36 258
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27399.66 15799.42 15899.75 11999.66 18599.20 7899.76 32898.98 14699.99 1699.36 258
PVSNet_095.53 1995.85 37895.31 37897.47 37798.78 38993.48 40795.72 41499.40 28496.18 38597.37 39697.73 41095.73 31599.58 39395.49 37981.40 42299.36 258
testing396.48 36095.63 37199.01 29499.23 32597.81 33698.90 25999.10 34098.72 25597.84 39097.92 40872.44 42499.85 24997.21 30299.33 32699.35 261
lupinMVS98.96 22898.87 22899.24 26499.57 20598.40 29698.12 34499.18 33298.28 30699.63 16599.13 34398.02 22899.97 3598.22 20799.69 24599.35 261
Vis-MVSNet (Re-imp)98.77 25098.58 25599.34 23599.78 10598.88 25899.61 7099.56 22099.11 20699.24 28399.56 24693.00 34899.78 31797.43 28299.89 12699.35 261
GA-MVS97.99 31897.68 32898.93 30499.52 23498.04 32397.19 40199.05 34498.32 30498.81 33498.97 36989.89 38499.41 40998.33 19899.05 35099.34 264
CANet99.11 19699.05 18699.28 25398.83 38198.56 28698.71 28899.41 27799.25 17899.23 28499.22 33597.66 25799.94 8199.19 11899.97 5599.33 265
Patchmtry98.78 24998.54 26199.49 18898.89 37599.19 22199.32 13699.67 15299.65 10599.72 13399.79 10091.87 35899.95 6698.00 22899.97 5599.33 265
PAPR97.56 33397.07 34399.04 29298.80 38598.11 31797.63 38199.25 31894.56 40598.02 38298.25 40297.43 26499.68 36590.90 41098.74 37299.33 265
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
CHOSEN 280x42098.41 28998.41 27298.40 34499.34 29995.89 38596.94 40799.44 27198.80 24599.25 28099.52 25993.51 34299.98 2198.94 15599.98 4199.32 268
baseline197.73 32597.33 33698.96 29899.30 31097.73 34099.40 11598.42 37699.33 16799.46 23099.21 33791.18 36499.82 28998.35 19691.26 42199.32 268
dmvs_re98.69 26098.48 26499.31 24699.55 21999.42 16899.54 8798.38 38099.32 16898.72 34498.71 38796.76 29099.21 41196.01 36299.35 32499.31 272
TAPA-MVS97.92 1398.03 31597.55 33199.46 19799.47 25899.44 16198.50 31399.62 18086.79 41599.07 30999.26 32698.26 20899.62 38597.28 29299.73 23099.31 272
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30499.76 6399.34 12999.97 1998.93 22599.91 4699.79 10098.68 14999.93 9996.80 32399.56 28699.30 274
TSAR-MVS + GP.99.12 19399.04 19299.38 22599.34 29999.16 22498.15 34099.29 30998.18 31399.63 16599.62 21099.18 8099.68 36598.20 20999.74 22499.30 274
PVSNet_Blended98.70 25998.59 25299.02 29399.54 22197.99 32597.58 38499.82 7395.70 39199.34 26198.98 36798.52 17799.77 32597.98 22999.83 17399.30 274
MVS_111021_LR99.13 19199.03 19499.42 21099.58 19599.32 19597.91 37099.73 12098.68 25999.31 27199.48 27199.09 9299.66 37597.70 26099.77 21399.29 277
dongtai89.37 38788.91 39090.76 40399.19 33377.46 42895.47 41687.82 42792.28 40994.17 42098.82 38271.22 42695.54 42263.85 42297.34 40899.27 278
dmvs_testset97.27 34296.83 35298.59 33599.46 26297.55 34599.25 16596.84 40598.78 24897.24 40097.67 41197.11 28098.97 41586.59 42098.54 38399.27 278
miper_lstm_enhance98.65 26398.60 25098.82 32399.20 33197.33 35397.78 37599.66 15799.01 21499.59 18699.50 26494.62 32999.85 24998.12 21899.90 11699.26 280
MVS95.72 38094.63 38598.99 29598.56 40197.98 33099.30 14498.86 35072.71 42197.30 39899.08 35298.34 20099.74 33589.21 41198.33 38799.26 280
MSLP-MVS++99.05 20799.09 17498.91 30799.21 32898.36 30198.82 27299.47 26398.85 23698.90 32499.56 24698.78 13699.09 41398.57 18599.68 25099.26 280
D2MVS99.22 16599.19 14999.29 25099.69 15698.74 26998.81 27399.41 27798.55 27299.68 14899.69 16598.13 22199.87 21298.82 16299.98 4199.24 283
test_yl98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
DCV-MVSNet98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 283
DPM-MVS98.28 29997.94 31599.32 24399.36 28799.11 23097.31 39798.78 35696.88 37398.84 33199.11 35097.77 24699.61 39094.03 40199.36 32299.23 287
CLD-MVS98.76 25198.57 25699.33 23899.57 20598.97 24797.53 38799.55 22696.41 38099.27 27899.13 34399.07 9799.78 31796.73 32799.89 12699.23 287
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs499.13 19199.06 18299.36 23299.57 20599.10 23598.01 35799.25 31898.78 24899.58 18899.44 28298.24 20999.76 32898.74 17399.93 10199.22 289
mvsmamba99.08 20098.95 21699.45 20099.36 28799.18 22399.39 11798.81 35499.37 16199.35 25799.70 15896.36 30599.94 8198.66 18099.59 28199.22 289
OMC-MVS98.90 23698.72 24299.44 20499.39 27999.42 16898.58 29999.64 17597.31 36099.44 23299.62 21098.59 16299.69 35396.17 35899.79 20499.22 289
EGC-MVSNET89.05 38885.52 39199.64 13299.89 3899.78 5199.56 8499.52 24624.19 42349.96 42499.83 7399.15 8399.92 12597.71 25799.85 16099.21 292
eth_miper_zixun_eth98.68 26198.71 24398.60 33499.10 35196.84 36697.52 38999.54 23298.94 22299.58 18899.48 27196.25 30999.76 32898.01 22799.93 10199.21 292
c3_l98.72 25698.71 24398.72 32899.12 34497.22 35697.68 38099.56 22098.90 22999.54 20699.48 27196.37 30499.73 33897.88 23899.88 13599.21 292
CMPMVSbinary77.52 2398.50 28098.19 29599.41 21798.33 40999.56 13799.01 24099.59 20495.44 39399.57 19199.80 9095.64 31699.46 40896.47 34499.92 10599.21 292
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Effi-MVS+99.06 20498.97 21399.34 23599.31 30698.98 24598.31 32999.91 3898.81 24398.79 33898.94 37399.14 8699.84 26498.79 16698.74 37299.20 296
DELS-MVS99.34 13799.30 13099.48 19299.51 23699.36 18798.12 34499.53 24199.36 16499.41 24599.61 21999.22 7699.87 21299.21 11499.68 25099.20 296
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21999.39 29499.57 4099.93 9999.64 5299.86 15599.20 296
CANet_DTU98.91 23498.85 23099.09 28398.79 38798.13 31498.18 33799.31 30599.48 13698.86 32999.51 26196.56 29499.95 6699.05 14099.95 8199.19 299
alignmvs98.28 29997.96 31099.25 26299.12 34498.93 25499.03 23598.42 37699.64 10898.72 34497.85 40990.86 37299.62 38598.88 15799.13 34399.19 299
DIV-MVS_self_test98.54 27598.42 27198.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.87 33599.78 31797.97 23199.89 12699.18 301
MSDG99.08 20098.98 21299.37 22899.60 18599.13 22797.54 38599.74 11698.84 23999.53 21199.55 25399.10 9099.79 31497.07 30899.86 15599.18 301
cl____98.54 27598.41 27298.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.85 33699.78 31797.97 23199.89 12699.17 303
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25599.86 5498.85 23699.81 8999.73 13598.40 19499.92 12598.36 19599.83 17399.17 303
thisisatest053097.45 33696.95 34798.94 30199.68 16497.73 34099.09 22094.19 41698.61 26899.56 19999.30 31784.30 40599.93 9998.27 20299.54 29599.16 305
PatchmatchNetpermissive97.65 32997.80 32297.18 38698.82 38492.49 41099.17 18898.39 37998.12 31498.79 33899.58 23590.71 37499.89 18497.23 30099.41 31699.16 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9799.71 8499.90 4999.69 16598.85 12799.90 16597.25 29999.78 20999.15 307
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 22199.38 29699.57 4099.95 6699.69 4599.90 11699.15 307
mvs_anonymous99.28 14699.39 10698.94 30199.19 33397.81 33699.02 23899.55 22699.78 7299.85 7499.80 9098.24 20999.86 23199.57 5999.50 30499.15 307
ab-mvs99.33 14099.28 13799.47 19499.57 20599.39 17899.78 1499.43 27498.87 23399.57 19199.82 8098.06 22699.87 21298.69 17899.73 23099.15 307
MIMVSNet98.43 28798.20 29299.11 28099.53 22798.38 30099.58 7998.61 36598.96 21999.33 26399.76 12290.92 36899.81 30497.38 28599.76 21599.15 307
GSMVS99.14 312
sam_mvs190.81 37399.14 312
SCA98.11 31198.36 27797.36 38099.20 33192.99 40898.17 33998.49 37398.24 30899.10 30599.57 24296.01 31399.94 8196.86 31899.62 26799.14 312
LS3D99.24 15699.11 16599.61 15198.38 40799.79 4899.57 8299.68 14799.61 11799.15 29799.71 15098.70 14799.91 14797.54 27599.68 25099.13 315
Patchmatch-RL test98.60 26798.36 27799.33 23899.77 11399.07 23898.27 33199.87 5198.91 22899.74 12799.72 14290.57 37799.79 31498.55 18699.85 16099.11 316
test_040299.22 16599.14 15699.45 20099.79 9899.43 16599.28 15399.68 14799.54 12799.40 25099.56 24699.07 9799.82 28996.01 36299.96 6899.11 316
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13699.74 11699.18 18999.69 14599.75 12798.41 19099.84 26497.85 24499.70 24199.10 318
balanced_conf0399.50 8599.50 8699.50 18499.42 27599.49 14799.52 8999.75 11099.86 4699.78 10399.71 15098.20 21699.90 16599.39 8699.88 13599.10 318
MVS_Test99.28 14699.31 12599.19 26999.35 29098.79 26599.36 12799.49 25999.17 19499.21 28999.67 18098.78 13699.66 37599.09 13699.66 25999.10 318
AdaColmapbinary98.60 26798.35 27999.38 22599.12 34499.22 21598.67 28999.42 27697.84 33698.81 33499.27 32397.32 27099.81 30495.14 38699.53 29799.10 318
FPMVS96.32 36495.50 37298.79 32499.60 18598.17 31298.46 32098.80 35597.16 36796.28 41199.63 20382.19 40699.09 41388.45 41398.89 36499.10 318
WB-MVSnew98.34 29898.14 29898.96 29898.14 41697.90 33398.27 33197.26 40398.63 26498.80 33698.00 40797.77 24699.90 16597.37 28698.98 35599.09 323
Syy-MVS98.17 30997.85 32199.15 27498.50 40498.79 26598.60 29499.21 32897.89 33096.76 40696.37 42995.47 32199.57 39499.10 13598.73 37599.09 323
myMVS_eth3d95.63 38194.73 38398.34 34898.50 40496.36 37498.60 29499.21 32897.89 33096.76 40696.37 42972.10 42599.57 39494.38 39498.73 37599.09 323
Patchmatch-test98.10 31297.98 30998.48 34099.27 31796.48 37199.40 11599.07 34198.81 24399.23 28499.57 24290.11 38199.87 21296.69 32899.64 26399.09 323
tpm97.15 34496.95 34797.75 37198.91 37194.24 40199.32 13697.96 39097.71 34098.29 36899.32 31286.72 39899.92 12598.10 22296.24 41699.09 323
PMMVS98.49 28298.29 28799.11 28098.96 36998.42 29597.54 38599.32 30197.53 34898.47 36398.15 40497.88 23899.82 28997.46 28099.24 33999.09 323
cl2297.56 33397.28 33798.40 34498.37 40896.75 36797.24 40099.37 29297.31 36099.41 24599.22 33587.30 39099.37 41097.70 26099.62 26799.08 329
ADS-MVSNet297.78 32397.66 33098.12 35899.14 34095.36 39199.22 17398.75 35796.97 37198.25 37099.64 19290.90 36999.94 8196.51 34099.56 28699.08 329
ADS-MVSNet97.72 32897.67 32997.86 36799.14 34094.65 39999.22 17398.86 35096.97 37198.25 37099.64 19290.90 36999.84 26496.51 34099.56 28699.08 329
pmmvs398.08 31397.80 32298.91 30799.41 27797.69 34297.87 37299.66 15795.87 38799.50 22199.51 26190.35 37999.97 3598.55 18699.47 30899.08 329
PVSNet97.47 1598.42 28898.44 26998.35 34699.46 26296.26 37796.70 41099.34 29897.68 34199.00 31399.13 34397.40 26599.72 34097.59 27399.68 25099.08 329
MVS-HIRNet97.86 31998.22 29096.76 39099.28 31591.53 41798.38 32492.60 42099.13 20299.31 27199.96 1597.18 27899.68 36598.34 19799.83 17399.07 334
PMVScopyleft92.94 2198.82 24598.81 23698.85 31699.84 6197.99 32599.20 17699.47 26399.71 8499.42 23999.82 8098.09 22399.47 40693.88 40399.85 16099.07 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVSMamba_PlusPlus99.55 7799.58 6999.47 19499.68 16499.40 17599.52 8999.70 13799.92 2899.77 11199.86 5998.28 20599.96 5699.54 6399.90 11699.05 336
Gipumacopyleft99.57 7199.59 6699.49 18899.98 399.71 8599.72 3099.84 6699.81 6599.94 3599.78 11098.91 12199.71 34498.41 19299.95 8199.05 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
sasdasda99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
canonicalmvs99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
MGCFI-Net99.02 21399.01 19899.06 29099.11 34998.60 28499.63 6199.67 15299.63 11098.58 35697.65 41299.07 9799.57 39498.85 15898.92 35999.03 340
hse-mvs298.52 27798.30 28599.16 27299.29 31298.60 28498.77 28199.02 34599.68 9499.32 26699.04 35792.50 35399.85 24999.24 11097.87 40499.03 340
CL-MVSNet_self_test98.71 25898.56 26099.15 27499.22 32698.66 27697.14 40299.51 25198.09 31799.54 20699.27 32396.87 28799.74 33598.43 19198.96 35699.03 340
AUN-MVS97.82 32197.38 33599.14 27799.27 31798.53 28798.72 28699.02 34598.10 31597.18 40299.03 36189.26 38699.85 24997.94 23397.91 40299.03 340
MDTV_nov1_ep13_2view91.44 41899.14 19897.37 35799.21 28991.78 36096.75 32599.03 340
ITE_SJBPF99.38 22599.63 17899.44 16199.73 12098.56 27199.33 26399.53 25798.88 12599.68 36596.01 36299.65 26199.02 345
UnsupCasMVSNet_bld98.55 27498.27 28899.40 21999.56 21699.37 18397.97 36499.68 14797.49 35199.08 30699.35 30895.41 32299.82 28997.70 26098.19 39499.01 346
miper_ehance_all_eth98.59 27098.59 25298.59 33598.98 36797.07 36097.49 39099.52 24698.50 27999.52 21399.37 29996.41 30299.71 34497.86 24299.62 26799.00 347
testing9196.00 37395.32 37798.02 35998.76 39295.39 39098.38 32498.65 36498.82 24196.84 40596.71 42575.06 42199.71 34496.46 34598.23 39198.98 348
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 18099.41 28699.51 4799.95 6699.66 4899.89 12698.96 349
CNLPA98.57 27298.34 28099.28 25399.18 33699.10 23598.34 32699.41 27798.48 28298.52 36098.98 36797.05 28299.78 31795.59 37799.50 30498.96 349
UBG96.53 35895.95 36398.29 35398.87 37896.31 37698.48 31598.07 38798.83 24097.32 39796.54 42779.81 41399.62 38596.84 32198.74 37298.95 351
new_pmnet98.88 24098.89 22698.84 31899.70 15297.62 34398.15 34099.50 25597.98 32399.62 17499.54 25598.15 22099.94 8197.55 27499.84 16598.95 351
PCF-MVS96.03 1896.73 35495.86 36699.33 23899.44 26799.16 22496.87 40899.44 27186.58 41698.95 31699.40 29094.38 33199.88 19887.93 41499.80 19998.95 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
testing1196.05 37295.41 37497.97 36298.78 38995.27 39398.59 29798.23 38598.86 23596.56 40996.91 42275.20 42099.69 35397.26 29598.29 38998.93 354
PatchMatch-RL98.68 26198.47 26599.30 24999.44 26799.28 20198.14 34299.54 23297.12 36999.11 30399.25 32897.80 24499.70 34796.51 34099.30 33098.93 354
Fast-Effi-MVS+99.02 21398.87 22899.46 19799.38 28299.50 14699.04 23299.79 9197.17 36698.62 35298.74 38699.34 6299.95 6698.32 19999.41 31698.92 356
ET-MVSNet_ETH3D96.78 35296.07 36198.91 30799.26 32097.92 33297.70 37996.05 40997.96 32792.37 42198.43 39887.06 39299.90 16598.27 20297.56 40798.91 357
testing9995.86 37795.19 38097.87 36698.76 39295.03 39598.62 29198.44 37598.68 25996.67 40896.66 42674.31 42299.69 35396.51 34098.03 40198.90 358
ETVMVS96.14 36995.22 37998.89 31498.80 38598.01 32498.66 29098.35 38298.71 25797.18 40296.31 43174.23 42399.75 33296.64 33498.13 39998.90 358
EIA-MVS99.12 19399.01 19899.45 20099.36 28799.62 11999.34 12999.79 9198.41 28798.84 33198.89 37798.75 14199.84 26498.15 21799.51 30198.89 360
CostFormer96.71 35596.79 35496.46 39698.90 37290.71 42299.41 11498.68 36094.69 40498.14 37899.34 31186.32 40099.80 31197.60 27298.07 40098.88 361
DP-MVS Recon98.50 28098.23 28999.31 24699.49 24799.46 15498.56 30499.63 17794.86 40298.85 33099.37 29997.81 24399.59 39296.08 35999.44 31198.88 361
test0.0.03 197.37 34096.91 35098.74 32797.72 41997.57 34497.60 38397.36 40298.00 32099.21 28998.02 40590.04 38299.79 31498.37 19495.89 41898.86 363
BH-untuned98.22 30698.09 30198.58 33799.38 28297.24 35598.55 30598.98 34897.81 33799.20 29498.76 38597.01 28399.65 38194.83 38998.33 38798.86 363
HY-MVS98.23 998.21 30897.95 31198.99 29599.03 36198.24 30499.61 7098.72 35896.81 37698.73 34399.51 26194.06 33399.86 23196.91 31598.20 39298.86 363
miper_enhance_ethall98.03 31597.94 31598.32 34998.27 41096.43 37396.95 40699.41 27796.37 38299.43 23698.96 37194.74 32799.69 35397.71 25799.62 26798.83 366
FE-MVS97.85 32097.42 33499.15 27499.44 26798.75 26899.77 1698.20 38695.85 38899.33 26399.80 9088.86 38799.88 19896.40 34799.12 34498.81 367
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37599.78 5199.15 19699.66 15799.34 16598.92 32199.24 33397.69 25199.98 2198.11 21999.28 33398.81 367
EPMVS96.53 35896.32 35697.17 38798.18 41392.97 40999.39 11789.95 42498.21 31098.61 35399.59 23286.69 39999.72 34096.99 31099.23 34198.81 367
UWE-MVS96.21 36895.78 36897.49 37598.53 40293.83 40598.04 35493.94 41898.96 21998.46 36498.17 40379.86 41299.87 21296.99 31099.06 34898.78 370
FA-MVS(test-final)98.52 27798.32 28299.10 28299.48 25298.67 27399.77 1698.60 36797.35 35899.63 16599.80 9093.07 34699.84 26497.92 23499.30 33098.78 370
MVEpermissive92.54 2296.66 35696.11 36098.31 35199.68 16497.55 34597.94 36695.60 41199.37 16190.68 42298.70 38896.56 29498.61 41886.94 41999.55 29098.77 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MonoMVSNet98.23 30498.32 28297.99 36098.97 36896.62 36999.49 10098.42 37699.62 11399.40 25099.79 10095.51 32098.58 41997.68 26895.98 41798.76 373
tpm296.35 36396.22 35896.73 39298.88 37791.75 41599.21 17598.51 37193.27 40797.89 38699.21 33784.83 40399.70 34796.04 36198.18 39598.75 374
LF4IMVS99.01 21998.92 22299.27 25699.71 14499.28 20198.59 29799.77 10098.32 30499.39 25299.41 28698.62 15899.84 26496.62 33699.84 16598.69 375
thisisatest051596.98 34896.42 35598.66 33199.42 27597.47 34797.27 39894.30 41597.24 36299.15 29798.86 37985.01 40299.87 21297.10 30699.39 31898.63 376
kuosan85.65 38984.57 39288.90 40597.91 41777.11 42996.37 41387.62 42885.24 41885.45 42396.83 42369.94 42890.98 42445.90 42395.83 41998.62 377
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20899.25 32199.69 9699.05 22799.82 7399.50 13398.97 31499.05 35598.98 11199.98 2198.20 20999.24 33998.62 377
PAPM95.61 38294.71 38498.31 35199.12 34496.63 36896.66 41198.46 37490.77 41396.25 41298.68 38993.01 34799.69 35381.60 42197.86 40598.62 377
JIA-IIPM98.06 31497.92 31798.50 33998.59 40097.02 36198.80 27698.51 37199.88 4297.89 38699.87 5291.89 35799.90 16598.16 21697.68 40698.59 380
dp96.86 35097.07 34396.24 39898.68 39890.30 42499.19 18298.38 38097.35 35898.23 37299.59 23287.23 39199.82 28996.27 35398.73 37598.59 380
OpenMVScopyleft98.12 1098.23 30497.89 32099.26 25999.19 33399.26 20599.65 5999.69 14491.33 41298.14 37899.77 11998.28 20599.96 5695.41 38199.55 29098.58 382
baseline296.83 35196.28 35798.46 34299.09 35496.91 36498.83 26893.87 41997.23 36396.23 41498.36 39988.12 38999.90 16596.68 32998.14 39798.57 383
testing22295.60 38394.59 38698.61 33398.66 39997.45 34998.54 30897.90 39398.53 27696.54 41096.47 42870.62 42799.81 30495.91 37098.15 39698.56 384
TESTMET0.1,196.24 36695.84 36797.41 37998.24 41193.84 40497.38 39395.84 41098.43 28497.81 39198.56 39379.77 41499.89 18497.77 24998.77 36898.52 385
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
xiu_mvs_v1_base99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
KD-MVS_2432*160095.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
miper_refine_blended95.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
CR-MVSNet98.35 29698.20 29298.83 32099.05 35798.12 31599.30 14499.67 15297.39 35699.16 29599.79 10091.87 35899.91 14798.78 17098.77 36898.44 391
RPMNet98.60 26798.53 26298.83 32099.05 35798.12 31599.30 14499.62 18099.86 4699.16 29599.74 13192.53 35299.92 12598.75 17298.77 36898.44 391
tpmrst97.73 32598.07 30396.73 39298.71 39692.00 41299.10 21698.86 35098.52 27798.92 32199.54 25591.90 35699.82 28998.02 22499.03 35298.37 393
test-LLR97.15 34496.95 34797.74 37298.18 41395.02 39697.38 39396.10 40698.00 32097.81 39198.58 39090.04 38299.91 14797.69 26698.78 36698.31 394
test-mter96.23 36795.73 36997.74 37298.18 41395.02 39697.38 39396.10 40697.90 32997.81 39198.58 39079.12 41799.91 14797.69 26698.78 36698.31 394
ETV-MVS99.18 17999.18 15099.16 27299.34 29999.28 20199.12 20899.79 9199.48 13698.93 31898.55 39499.40 5199.93 9998.51 18899.52 30098.28 396
PatchT98.45 28698.32 28298.83 32098.94 37098.29 30399.24 16698.82 35399.84 5599.08 30699.76 12291.37 36199.94 8198.82 16299.00 35498.26 397
xiu_mvs_v2_base99.02 21399.11 16598.77 32599.37 28498.09 31998.13 34399.51 25199.47 14099.42 23998.54 39599.38 5699.97 3598.83 16099.33 32698.24 398
IB-MVS95.41 2095.30 38494.46 38897.84 36898.76 39295.33 39297.33 39696.07 40896.02 38695.37 41897.41 41676.17 41999.96 5697.54 27595.44 42098.22 399
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat196.78 35296.98 34696.16 39998.85 37990.59 42399.08 22399.32 30192.37 40897.73 39599.46 27891.15 36599.69 35396.07 36098.80 36598.21 400
MAR-MVS98.24 30397.92 31799.19 26998.78 38999.65 10999.17 18899.14 33795.36 39498.04 38198.81 38397.47 26299.72 34095.47 38099.06 34898.21 400
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ99.00 22199.08 17698.76 32699.37 28498.10 31898.00 35999.51 25199.47 14099.41 24598.50 39799.28 6899.97 3598.83 16099.34 32598.20 402
cascas96.99 34796.82 35397.48 37697.57 42295.64 38896.43 41299.56 22091.75 41097.13 40497.61 41595.58 31898.63 41796.68 32999.11 34598.18 403
BH-w/o97.20 34397.01 34597.76 37099.08 35595.69 38798.03 35698.52 37095.76 39097.96 38398.02 40595.62 31799.47 40692.82 40597.25 41098.12 404
tpmvs97.39 33997.69 32796.52 39498.41 40691.76 41499.30 14498.94 34997.74 33897.85 38999.55 25392.40 35599.73 33896.25 35498.73 37598.06 405
thres600view796.60 35796.16 35997.93 36499.63 17896.09 38299.18 18397.57 39798.77 25098.72 34497.32 41787.04 39399.72 34088.57 41298.62 38097.98 406
thres40096.40 36195.89 36497.92 36599.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38497.98 406
TR-MVS97.44 33797.15 34298.32 34998.53 40297.46 34898.47 31697.91 39296.85 37498.21 37398.51 39696.42 30099.51 40492.16 40697.29 40997.98 406
131498.00 31797.90 31998.27 35498.90 37297.45 34999.30 14499.06 34394.98 39997.21 40199.12 34798.43 18799.67 37095.58 37898.56 38297.71 409
E-PMN97.14 34697.43 33396.27 39798.79 38791.62 41695.54 41599.01 34799.44 14898.88 32599.12 34792.78 34999.68 36594.30 39699.03 35297.50 410
gg-mvs-nofinetune95.87 37695.17 38197.97 36298.19 41296.95 36299.69 4289.23 42599.89 3796.24 41399.94 1981.19 40799.51 40493.99 40298.20 39297.44 411
DeepMVS_CXcopyleft97.98 36199.69 15696.95 36299.26 31575.51 42095.74 41698.28 40196.47 29899.62 38591.23 40997.89 40397.38 412
OpenMVS_ROBcopyleft97.31 1797.36 34196.84 35198.89 31499.29 31299.45 15998.87 26299.48 26086.54 41799.44 23299.74 13197.34 26999.86 23191.61 40799.28 33397.37 413
EMVS96.96 34997.28 33795.99 40098.76 39291.03 41995.26 41798.61 36599.34 16598.92 32198.88 37893.79 33799.66 37592.87 40499.05 35097.30 414
thres100view90096.39 36296.03 36297.47 37799.63 17895.93 38399.18 18397.57 39798.75 25498.70 34797.31 41887.04 39399.67 37087.62 41598.51 38496.81 415
tfpn200view996.30 36595.89 36497.53 37499.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38496.81 415
API-MVS98.38 29298.39 27498.35 34698.83 38199.26 20599.14 19899.18 33298.59 26998.66 34998.78 38498.61 16099.57 39494.14 39899.56 28696.21 417
thres20096.09 37095.68 37097.33 38299.48 25296.22 37998.53 31097.57 39798.06 31998.37 36796.73 42486.84 39799.61 39086.99 41898.57 38196.16 418
GG-mvs-BLEND97.36 38097.59 42096.87 36599.70 3588.49 42694.64 41997.26 41980.66 40999.12 41291.50 40896.50 41596.08 419
wuyk23d97.58 33299.13 15892.93 40299.69 15699.49 14799.52 8999.77 10097.97 32499.96 2499.79 10099.84 1299.94 8195.85 37199.82 18279.36 420
test12329.31 39033.05 39518.08 40625.93 43012.24 43197.53 38710.93 43111.78 42424.21 42550.08 43621.04 4298.60 42523.51 42432.43 42433.39 421
testmvs28.94 39133.33 39315.79 40726.03 4299.81 43296.77 40915.67 43011.55 42523.87 42650.74 43519.03 4308.53 42623.21 42533.07 42329.03 422
mmdepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
test_blank8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.88 39233.17 3940.00 4080.00 4310.00 4330.00 41999.62 1800.00 4260.00 42799.13 34399.82 130.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas16.61 39322.14 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 199.28 680.00 4270.00 4260.00 4250.00 423
sosnet-low-res8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
sosnet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
Regformer8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.26 40411.02 4070.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.16 3410.00 4310.00 4270.00 4260.00 4250.00 423
uanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS96.36 37495.20 385
FOURS199.83 6599.89 1099.74 2499.71 13299.69 9299.63 165
test_one_060199.63 17899.76 6399.55 22699.23 18299.31 27199.61 21998.59 162
eth-test20.00 431
eth-test0.00 431
ZD-MVS99.43 27099.61 12599.43 27496.38 38199.11 30399.07 35397.86 23999.92 12594.04 40099.49 306
test_241102_ONE99.69 15699.82 3799.54 23299.12 20599.82 8299.49 26898.91 12199.52 403
9.1498.64 24799.45 26698.81 27399.60 19897.52 34999.28 27799.56 24698.53 17499.83 27995.36 38399.64 263
save fliter99.53 22799.25 20898.29 33099.38 29199.07 209
test072699.69 15699.80 4699.24 16699.57 21599.16 19699.73 13199.65 19098.35 198
test_part299.62 18299.67 10199.55 204
sam_mvs90.52 378
MTGPAbinary99.53 241
test_post199.14 19851.63 43489.54 38599.82 28996.86 318
test_post52.41 43390.25 38099.86 231
patchmatchnet-post99.62 21090.58 37699.94 81
MTMP99.09 22098.59 368
gm-plane-assit97.59 42089.02 42693.47 40698.30 40099.84 26496.38 349
TEST999.35 29099.35 19098.11 34699.41 27794.83 40397.92 38498.99 36498.02 22899.85 249
test_899.34 29999.31 19698.08 35099.40 28494.90 40097.87 38898.97 36998.02 22899.84 264
agg_prior99.35 29099.36 18799.39 28797.76 39499.85 249
test_prior499.19 22198.00 359
test_prior297.95 36597.87 33398.05 38099.05 35597.90 23695.99 36599.49 306
旧先验297.94 36695.33 39598.94 31799.88 19896.75 325
新几何298.04 354
原ACMM297.92 368
testdata299.89 18495.99 365
segment_acmp98.37 196
testdata197.72 37797.86 335
plane_prior799.58 19599.38 180
plane_prior699.47 25899.26 20597.24 272
plane_prior499.25 328
plane_prior399.31 19698.36 29399.14 299
plane_prior298.80 27698.94 222
plane_prior199.51 236
plane_prior99.24 21298.42 32297.87 33399.71 239
n20.00 432
nn0.00 432
door-mid99.83 68
test1199.29 309
door99.77 100
HQP5-MVS98.94 251
HQP-NCC99.31 30697.98 36197.45 35298.15 374
ACMP_Plane99.31 30697.98 36197.45 35298.15 374
BP-MVS94.73 390
HQP3-MVS99.37 29299.67 256
HQP2-MVS96.67 291
NP-MVS99.40 27899.13 22798.83 380
MDTV_nov1_ep1397.73 32698.70 39790.83 42099.15 19698.02 38998.51 27898.82 33399.61 21990.98 36799.66 37596.89 31798.92 359
ACMMP++_ref99.94 94
ACMMP++99.79 204
Test By Simon98.41 190