This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9599.93 2099.99 1699.99 1
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11799.93 2099.99 1699.98 3
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 76100.00 199.89 3499.79 1699.88 19099.98 1100.00 199.98 3
test_fmvs399.83 1999.93 299.53 17599.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_cas_vis1_n_192099.76 3199.86 1299.45 19399.93 2698.40 28699.30 13599.98 1199.94 2499.99 799.89 3499.80 1599.97 3499.96 999.97 5699.97 7
test_vis1_n_192099.72 3699.88 699.27 24799.93 2697.84 32299.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
test_f99.75 3299.88 699.37 22199.96 798.21 29899.51 90100.00 199.94 24100.00 199.93 1799.58 3699.94 7899.97 499.99 1699.97 7
test_fmvs299.72 3699.85 1699.34 22899.91 3298.08 31199.48 96100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
test_vis1_n99.68 4699.79 2799.36 22599.94 1998.18 30199.52 86100.00 199.86 46100.00 199.88 4298.99 10299.96 5599.97 499.96 7199.95 11
tmp_tt95.75 35795.42 35596.76 36889.90 40394.42 38098.86 25197.87 37478.01 39599.30 26499.69 15297.70 24195.89 39999.29 10298.14 37899.95 11
mvsany_test399.85 1199.88 699.75 7599.95 1599.37 17999.53 8599.98 1199.77 7499.99 799.95 1399.85 1099.94 7899.95 1299.98 4199.94 13
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5399.95 2099.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5999.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9599.92 2299.98 4199.93 15
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1699.99 1699.93 15
test_fmvs1_n99.68 4699.81 2399.28 24499.95 1597.93 32099.49 95100.00 199.82 5999.99 799.89 3499.21 7599.98 2199.97 499.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5999.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11799.92 2299.99 1699.92 18
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4399.92 2899.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
UA-Net99.78 2799.76 3699.86 2599.72 14199.71 8499.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
RRT_MVS99.67 5299.59 6599.91 299.94 1999.88 1299.78 1299.27 30299.87 4299.91 4499.87 4798.04 21999.96 5599.68 4499.99 1699.90 20
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4899.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 20
EU-MVSNet99.39 11699.62 5698.72 31699.88 4596.44 35899.56 8199.85 5399.90 3099.90 5099.85 5698.09 21599.83 26999.58 5499.95 8499.90 20
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7999.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3199.88 4599.64 11199.12 19799.91 3299.98 1499.95 3199.67 16799.67 2799.99 899.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4599.66 10299.11 20199.91 3299.98 1499.96 2399.64 17999.60 3499.99 899.95 1299.99 1699.88 25
MM99.55 16998.81 25499.05 21697.79 37599.99 299.48 21799.59 21996.29 29999.95 6499.94 1699.98 4199.88 25
test_fmvsmvis_n_192099.84 1599.86 1299.81 4199.88 4599.55 13999.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
MVS_030499.17 17799.03 18799.59 15399.44 26098.90 24899.04 21995.32 39199.99 299.68 14399.57 23198.30 19799.97 3499.94 1699.98 4199.88 25
CVMVSNet98.61 25398.88 21797.80 34999.58 19293.60 38599.26 14999.64 16399.66 10099.72 12899.67 16793.26 33199.93 9599.30 9999.81 18899.87 30
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
SSC-MVS99.52 8299.42 9999.83 3499.86 5599.65 10899.52 8699.81 7599.87 4299.81 8899.79 9396.78 28199.99 899.83 3299.51 29199.86 32
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4599.86 1899.72 3099.78 9199.90 3099.82 8199.83 6698.45 17799.87 20499.51 6599.97 5699.86 32
PS-CasMVS99.66 5499.58 6999.89 1199.80 8799.85 1999.66 5399.73 11399.62 10799.84 7699.71 13998.62 14999.96 5599.30 9999.96 7199.86 32
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5399.70 8799.92 4199.93 1799.45 4799.97 3499.36 86100.00 199.85 35
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12599.93 2699.95 3199.89 3499.71 2299.96 5599.51 6599.97 5699.84 36
CP-MVSNet99.54 7999.43 9799.87 2199.76 11899.82 3599.57 7999.61 17599.54 12099.80 9299.64 17997.79 23899.95 6499.21 10999.94 9599.84 36
Test_1112_low_res98.95 22198.73 23199.63 13699.68 16499.15 22198.09 32799.80 7997.14 34699.46 22399.40 27896.11 30299.89 17699.01 13799.84 16299.84 36
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
patch_mono-299.51 8399.46 9099.64 12999.70 15299.11 22499.04 21999.87 4599.71 8299.47 21999.79 9398.24 20299.98 2199.38 8199.96 7199.83 40
nrg03099.70 4099.66 4899.82 3899.76 11899.84 2499.61 6899.70 13199.93 2699.78 10199.68 16399.10 8799.78 30599.45 7199.96 7199.83 40
FIs99.65 5999.58 6999.84 3199.84 6299.85 1999.66 5399.75 10499.86 4699.74 12399.79 9398.27 20099.85 23999.37 8499.93 10299.83 40
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6699.84 5499.94 3499.91 2499.13 8699.96 5599.83 3299.99 1699.83 40
PEN-MVS99.66 5499.59 6599.89 1199.83 6699.87 1599.66 5399.73 11399.70 8799.84 7699.73 12498.56 15999.96 5599.29 10299.94 9599.83 40
WR-MVS_H99.61 6899.53 8299.87 2199.80 8799.83 2999.67 4999.75 10499.58 11999.85 7399.69 15298.18 21199.94 7899.28 10499.95 8499.83 40
WB-MVS99.44 10099.32 11799.80 4699.81 8199.61 12499.47 9999.81 7599.82 5999.71 13399.72 13196.60 28599.98 2199.75 3999.23 33199.82 46
test_fmvsm_n_192099.84 1599.85 1699.83 3499.82 7399.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
Anonymous2023121199.62 6699.57 7299.76 6599.61 18199.60 12799.81 999.73 11399.82 5999.90 5099.90 2997.97 22699.86 22299.42 7899.96 7199.80 47
APDe-MVScopyleft99.48 8899.36 11099.85 2799.55 21499.81 4099.50 9199.69 13798.99 20199.75 11599.71 13998.79 12599.93 9598.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DTE-MVSNet99.68 4699.61 6099.88 1799.80 8799.87 1599.67 4999.71 12599.72 8099.84 7699.78 10198.67 14399.97 3499.30 9999.95 8499.80 47
XXY-MVS99.71 3999.67 4799.81 4199.89 4099.72 8299.59 7499.82 6699.39 14699.82 8199.84 6299.38 5499.91 14199.38 8199.93 10299.80 47
1112_ss99.05 19998.84 22299.67 11099.66 17099.29 19598.52 29499.82 6697.65 32099.43 22999.16 32796.42 29299.91 14199.07 13399.84 16299.80 47
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 3099.97 1999.87 4799.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs199.48 8899.65 5098.97 28799.54 21697.16 34499.11 20199.98 1199.78 7099.96 2399.81 7998.72 13799.97 3499.95 1299.97 5699.79 54
bld_raw_dy_0_6499.70 4099.65 5099.85 2799.95 1599.77 5499.66 5399.71 12599.95 2099.91 4499.77 10898.35 190100.00 199.54 6099.99 1699.79 54
PMMVS299.48 8899.45 9299.57 16399.76 11898.99 23698.09 32799.90 3798.95 20699.78 10199.58 22299.57 3899.93 9599.48 6899.95 8499.79 54
MSC_two_6792asdad99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
No_MVS99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
dcpmvs_299.61 6899.64 5499.53 17599.79 9998.82 25399.58 7699.97 1899.95 2099.96 2399.76 11298.44 17899.99 899.34 9099.96 7199.78 57
CHOSEN 1792x268899.39 11699.30 12499.65 12299.88 4599.25 20498.78 26899.88 4398.66 24199.96 2399.79 9397.45 25599.93 9599.34 9099.99 1699.78 57
test_vis1_rt99.45 9899.46 9099.41 20999.71 14498.63 27398.99 23699.96 2399.03 19999.95 3199.12 33398.75 13299.84 25499.82 3599.82 17999.77 61
IU-MVS99.69 15699.77 5499.22 31597.50 32899.69 14097.75 24099.70 23499.77 61
test_0728_THIRD99.18 17599.62 16999.61 20698.58 15699.91 14197.72 24299.80 19399.77 61
test_0728_SECOND99.83 3499.70 15299.79 4699.14 18799.61 17599.92 11797.88 22599.72 22999.77 61
MSP-MVS99.04 20298.79 22999.81 4199.78 10699.73 7799.35 12199.57 20598.54 25499.54 20098.99 35096.81 28099.93 9596.97 29599.53 28799.77 61
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.74 3599.70 3999.85 2799.93 2699.83 2999.76 1999.81 7599.96 1899.91 4499.81 7998.60 15399.94 7899.58 5499.98 4199.77 61
DPE-MVScopyleft99.14 18398.92 21299.82 3899.57 20299.77 5498.74 27199.60 18798.55 25199.76 10899.69 15298.23 20699.92 11796.39 32799.75 21199.76 67
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Baseline_NR-MVSNet99.49 8699.37 10799.82 3899.91 3299.84 2498.83 25699.86 4899.68 9299.65 15599.88 4297.67 24599.87 20499.03 13599.86 15399.76 67
OurMVSNet-221017-099.75 3299.71 3899.84 3199.96 799.83 2999.83 699.85 5399.80 6599.93 3799.93 1798.54 16299.93 9599.59 5199.98 4199.76 67
test_241102_TWO99.54 22299.13 18899.76 10899.63 19098.32 19699.92 11797.85 23199.69 23899.75 70
DP-MVS99.48 8899.39 10299.74 8099.57 20299.62 11899.29 14299.61 17599.87 4299.74 12399.76 11298.69 13999.87 20498.20 19899.80 19399.75 70
tt080599.63 6099.57 7299.81 4199.87 5299.88 1299.58 7698.70 34799.72 8099.91 4499.60 21499.43 4899.81 29399.81 3699.53 28799.73 72
v1099.69 4399.69 4399.66 11799.81 8199.39 17499.66 5399.75 10499.60 11699.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 72
EI-MVSNet-UG-set99.48 8899.50 8499.42 20299.57 20298.65 27199.24 15799.46 25599.68 9299.80 9299.66 17298.99 10299.89 17699.19 11399.90 11699.72 74
Vis-MVSNetpermissive99.75 3299.74 3799.79 5299.88 4599.66 10299.69 4299.92 2999.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 4199.72 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test98.91 22498.64 23799.73 8999.85 5999.47 14898.07 33099.83 6198.64 24399.89 5499.60 21492.57 338100.00 199.33 9399.97 5699.72 74
EI-MVSNet-Vis-set99.47 9599.49 8599.42 20299.57 20298.66 26899.24 15799.46 25599.67 9699.79 9799.65 17798.97 10699.89 17699.15 12199.89 12599.71 77
v899.68 4699.69 4399.65 12299.80 8799.40 17299.66 5399.76 9999.64 10499.93 3799.85 5698.66 14599.84 25499.88 2999.99 1699.71 77
TransMVSNet (Re)99.78 2799.77 3399.81 4199.91 3299.85 1999.75 2299.86 4899.70 8799.91 4499.89 3499.60 3499.87 20499.59 5199.74 21899.71 77
test111197.74 31098.16 28596.49 37399.60 18389.86 40399.71 3491.21 39999.89 3699.88 6299.87 4793.73 32799.90 15999.56 5799.99 1699.70 80
VPA-MVSNet99.66 5499.62 5699.79 5299.68 16499.75 6899.62 6399.69 13799.85 5199.80 9299.81 7998.81 12099.91 14199.47 6999.88 13499.70 80
WR-MVS99.11 19098.93 20899.66 11799.30 30299.42 16698.42 30399.37 28199.04 19899.57 18699.20 32596.89 27899.86 22298.66 17299.87 14599.70 80
ACMH98.42 699.59 7099.54 7899.72 9599.86 5599.62 11899.56 8199.79 8598.77 23299.80 9299.85 5699.64 2899.85 23998.70 16899.89 12599.70 80
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs699.86 999.86 1299.83 3499.94 1999.90 799.83 699.91 3299.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5699.69 84
HPM-MVS_fast99.43 10399.30 12499.80 4699.83 6699.81 4099.52 8699.70 13198.35 27699.51 21299.50 25399.31 6299.88 19098.18 20299.84 16299.69 84
LPG-MVS_test99.22 15999.05 18099.74 8099.82 7399.63 11699.16 18399.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
LGP-MVS_train99.74 8099.82 7399.63 11699.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
SteuartSystems-ACMMP99.30 13899.14 15099.76 6599.87 5299.66 10299.18 17299.60 18798.55 25199.57 18699.67 16799.03 9999.94 7897.01 29399.80 19399.69 84
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS98.52 26598.39 26398.94 29099.15 32997.39 33998.18 31699.21 31898.89 21799.23 27299.63 19097.37 26099.74 32194.22 37599.61 26699.69 84
ACMMP_NAP99.28 14099.11 15999.79 5299.75 12999.81 4098.95 24399.53 23198.27 28599.53 20599.73 12498.75 13299.87 20497.70 24799.83 17099.68 90
HFP-MVS99.25 14799.08 17099.76 6599.73 13899.70 9199.31 13299.59 19398.36 27199.36 24699.37 28698.80 12499.91 14197.43 26899.75 21199.68 90
EI-MVSNet99.38 11899.44 9599.21 25799.58 19298.09 30899.26 14999.46 25599.62 10799.75 11599.67 16798.54 16299.85 23999.15 12199.92 10699.68 90
TranMVSNet+NR-MVSNet99.54 7999.47 8699.76 6599.58 19299.64 11199.30 13599.63 16599.61 11099.71 13399.56 23598.76 13099.96 5599.14 12799.92 10699.68 90
PVSNet_Blended_VisFu99.40 11299.38 10499.44 19699.90 3898.66 26898.94 24599.91 3297.97 30299.79 9799.73 12499.05 9799.97 3499.15 12199.99 1699.68 90
IterMVS-LS99.41 11099.47 8699.25 25399.81 8198.09 30898.85 25399.76 9999.62 10799.83 8099.64 17998.54 16299.97 3499.15 12199.99 1699.68 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.14 18398.92 21299.80 4699.83 6699.83 2998.61 27799.63 16596.84 35399.44 22599.58 22298.81 12099.91 14197.70 24799.82 17999.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R99.23 15199.05 18099.77 5899.76 11899.70 9199.31 13299.59 19398.41 26599.32 25599.36 29098.73 13699.93 9597.29 27599.74 21899.67 96
XVS99.27 14499.11 15999.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32899.47 26498.47 17399.88 19097.62 25599.73 22399.67 96
v124099.56 7499.58 6999.51 17999.80 8799.00 23599.00 23199.65 15799.15 18699.90 5099.75 11799.09 8999.88 19099.90 2599.96 7199.67 96
X-MVStestdata96.09 35194.87 36099.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32861.30 40698.47 17399.88 19097.62 25599.73 22399.67 96
VPNet99.46 9699.37 10799.71 10099.82 7399.59 12999.48 9699.70 13199.81 6299.69 14099.58 22297.66 24999.86 22299.17 11899.44 30199.67 96
ACMMPR99.23 15199.06 17699.76 6599.74 13599.69 9599.31 13299.59 19398.36 27199.35 24799.38 28498.61 15199.93 9597.43 26899.75 21199.67 96
SixPastTwentyTwo99.42 10699.30 12499.76 6599.92 3199.67 10099.70 3599.14 32699.65 10299.89 5499.90 2996.20 30199.94 7899.42 7899.92 10699.67 96
HPM-MVScopyleft99.25 14799.07 17499.78 5599.81 8199.75 6899.61 6899.67 14497.72 31799.35 24799.25 31499.23 7399.92 11797.21 28699.82 17999.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14419299.55 7799.54 7899.58 15799.78 10699.20 21699.11 20199.62 16899.18 17599.89 5499.72 13198.66 14599.87 20499.88 2999.97 5699.66 105
v192192099.56 7499.57 7299.55 16999.75 12999.11 22499.05 21699.61 17599.15 18699.88 6299.71 13999.08 9299.87 20499.90 2599.97 5699.66 105
v119299.57 7199.57 7299.57 16399.77 11499.22 21199.04 21999.60 18799.18 17599.87 7099.72 13199.08 9299.85 23999.89 2899.98 4199.66 105
PGM-MVS99.20 16699.01 19299.77 5899.75 12999.71 8499.16 18399.72 12297.99 30099.42 23199.60 21498.81 12099.93 9596.91 29899.74 21899.66 105
mPP-MVS99.19 16999.00 19599.76 6599.76 11899.68 9899.38 11399.54 22298.34 28099.01 30099.50 25398.53 16699.93 9597.18 28899.78 20399.66 105
CP-MVS99.23 15199.05 18099.75 7599.66 17099.66 10299.38 11399.62 16898.38 26999.06 29899.27 30998.79 12599.94 7897.51 26499.82 17999.66 105
EG-PatchMatch MVS99.57 7199.56 7799.62 14599.77 11499.33 18999.26 14999.76 9999.32 15499.80 9299.78 10199.29 6499.87 20499.15 12199.91 11599.66 105
UGNet99.38 11899.34 11299.49 18298.90 35898.90 24899.70 3599.35 28599.86 4698.57 34399.81 7998.50 17299.93 9599.38 8199.98 4199.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
SDMVSNet99.77 3099.77 3399.76 6599.80 8799.65 10899.63 6199.86 4899.97 1699.89 5499.89 3499.52 4499.99 899.42 7899.96 7199.65 113
sd_testset99.78 2799.78 3199.80 4699.80 8799.76 6299.80 1099.79 8599.97 1699.89 5499.89 3499.53 4399.99 899.36 8699.96 7199.65 113
test250694.73 36294.59 36495.15 37999.59 18785.90 40599.75 2274.01 40599.89 3699.71 13399.86 5479.00 40199.90 15999.52 6499.99 1699.65 113
ECVR-MVScopyleft97.73 31198.04 29096.78 36799.59 18790.81 39999.72 3090.43 40199.89 3699.86 7199.86 5493.60 32999.89 17699.46 7099.99 1699.65 113
h-mvs3398.61 25398.34 26999.44 19699.60 18398.67 26599.27 14799.44 26099.68 9299.32 25599.49 25792.50 341100.00 199.24 10696.51 39299.65 113
TSAR-MVS + MP.99.34 13199.24 13999.63 13699.82 7399.37 17999.26 14999.35 28598.77 23299.57 18699.70 14699.27 6999.88 19097.71 24499.75 21199.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTAPA99.35 12699.20 14299.80 4699.81 8199.81 4099.33 12599.53 23199.27 16099.42 23199.63 19098.21 20799.95 6497.83 23599.79 19899.65 113
MCST-MVS99.02 20598.81 22699.65 12299.58 19299.49 14698.58 28399.07 33098.40 26799.04 29999.25 31498.51 17199.80 29997.31 27499.51 29199.65 113
UniMVSNet_NR-MVSNet99.37 12199.25 13799.72 9599.47 25199.56 13698.97 24099.61 17599.43 14199.67 14999.28 30797.85 23499.95 6499.17 11899.81 18899.65 113
casdiffmvs_mvgpermissive99.68 4699.68 4699.69 10599.81 8199.59 12999.29 14299.90 3799.71 8299.79 9799.73 12499.54 4199.84 25499.36 8699.96 7199.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS99.22 15999.04 18599.77 5899.76 11899.73 7799.28 14499.56 21098.19 29099.14 28799.29 30698.84 11999.92 11797.53 26399.80 19399.64 123
v114499.54 7999.53 8299.59 15399.79 9999.28 19799.10 20499.61 17599.20 17399.84 7699.73 12498.67 14399.84 25499.86 3199.98 4199.64 123
v2v48299.50 8499.47 8699.58 15799.78 10699.25 20499.14 18799.58 20399.25 16499.81 8899.62 19798.24 20299.84 25499.83 3299.97 5699.64 123
K. test v398.87 23198.60 24099.69 10599.93 2699.46 15299.74 2494.97 39299.78 7099.88 6299.88 4293.66 32899.97 3499.61 4999.95 8499.64 123
DeepC-MVS98.90 499.62 6699.61 6099.67 11099.72 14199.44 15999.24 15799.71 12599.27 16099.93 3799.90 2999.70 2499.93 9598.99 13899.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 10099.45 9299.40 21199.37 27798.64 27297.90 34999.59 19399.27 16099.92 4199.82 7399.74 2099.93 9599.55 5999.87 14599.63 128
SMA-MVScopyleft99.19 16999.00 19599.73 8999.46 25599.73 7799.13 19399.52 23697.40 33399.57 18699.64 17998.93 10999.83 26997.61 25799.79 19899.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT99.00 21199.16 14698.51 32499.75 12995.90 36898.07 33099.84 5999.84 5499.89 5499.73 12496.01 30499.99 899.33 93100.00 199.63 128
pm-mvs199.79 2699.79 2799.78 5599.91 3299.83 2999.76 1999.87 4599.73 7699.89 5499.87 4799.63 2999.87 20499.54 6099.92 10699.63 128
MP-MVScopyleft99.06 19698.83 22499.76 6599.76 11899.71 8499.32 12799.50 24498.35 27698.97 30299.48 26098.37 18899.92 11795.95 34799.75 21199.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DU-MVS99.33 13499.21 14199.71 10099.43 26499.56 13698.83 25699.53 23199.38 14799.67 14999.36 29097.67 24599.95 6499.17 11899.81 18899.63 128
NR-MVSNet99.40 11299.31 11999.68 10799.43 26499.55 13999.73 2799.50 24499.46 13399.88 6299.36 29097.54 25299.87 20498.97 14299.87 14599.63 128
IterMVS98.97 21599.16 14698.42 32899.74 13595.64 37198.06 33299.83 6199.83 5799.85 7399.74 12096.10 30399.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet99.17 17799.00 19599.66 11799.80 8799.43 16399.70 3599.24 31199.48 12699.56 19399.77 10894.89 31399.93 9598.72 16799.89 12599.63 128
ACMMPcopyleft99.25 14799.08 17099.74 8099.79 9999.68 9899.50 9199.65 15798.07 29699.52 20799.69 15298.57 15799.92 11797.18 28899.79 19899.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast98.47 599.23 15199.12 15699.56 16699.28 30799.22 21198.99 23699.40 27399.08 19399.58 18399.64 17998.90 11599.83 26997.44 26799.75 21199.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.38 11899.25 13799.77 5899.03 34899.77 5499.74 2499.61 17599.18 17599.76 10899.61 20699.00 10099.92 11797.72 24299.60 26999.62 139
PC_three_145297.56 32299.68 14399.41 27499.09 8997.09 39896.66 31399.60 26999.62 139
GeoE99.69 4399.66 4899.78 5599.76 11899.76 6299.60 7399.82 6699.46 13399.75 11599.56 23599.63 2999.95 6499.43 7399.88 13499.62 139
test_method91.72 36392.32 36689.91 38193.49 40270.18 40690.28 39499.56 21061.71 39895.39 39599.52 24893.90 32299.94 7898.76 16398.27 37399.62 139
GST-MVS99.16 17998.96 20699.75 7599.73 13899.73 7799.20 16799.55 21698.22 28799.32 25599.35 29598.65 14799.91 14196.86 30199.74 21899.62 139
new-patchmatchnet99.35 12699.57 7298.71 31899.82 7396.62 35698.55 28999.75 10499.50 12499.88 6299.87 4799.31 6299.88 19099.43 73100.00 199.62 139
CPTT-MVS98.74 24398.44 25899.64 12999.61 18199.38 17699.18 17299.55 21696.49 35799.27 26699.37 28697.11 27299.92 11795.74 35399.67 24999.62 139
MIMVSNet199.66 5499.62 5699.80 4699.94 1999.87 1599.69 4299.77 9499.78 7099.93 3799.89 3497.94 22799.92 11799.65 4699.98 4199.62 139
DeepPCF-MVS98.42 699.18 17399.02 18999.67 11099.22 31799.75 6897.25 37799.47 25298.72 23799.66 15399.70 14699.29 6499.63 36698.07 21099.81 18899.62 139
3Dnovator+98.92 399.35 12699.24 13999.67 11099.35 28299.47 14899.62 6399.50 24499.44 13699.12 29099.78 10198.77 12999.94 7897.87 22899.72 22999.62 139
DVP-MVScopyleft99.32 13699.17 14599.77 5899.69 15699.80 4499.14 18799.31 29499.16 18299.62 16999.61 20698.35 19099.91 14197.88 22599.72 22999.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 23198.59 24299.71 10099.50 23599.62 11899.01 22899.57 20596.80 35599.54 20099.63 19098.29 19899.91 14195.24 36299.71 23299.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC98.82 23598.57 24699.58 15799.21 31999.31 19298.61 27799.25 30898.65 24298.43 34999.26 31297.86 23299.81 29396.55 31899.27 32699.61 149
TAMVS99.49 8699.45 9299.63 13699.48 24599.42 16699.45 10399.57 20599.66 10099.78 10199.83 6697.85 23499.86 22299.44 7299.96 7199.61 149
HPM-MVS++copyleft98.96 21898.70 23599.74 8099.52 22799.71 8498.86 25199.19 32198.47 26198.59 34199.06 34098.08 21799.91 14196.94 29699.60 26999.60 153
V4299.56 7499.54 7899.63 13699.79 9999.46 15299.39 11199.59 19399.24 16699.86 7199.70 14698.55 16099.82 27899.79 3799.95 8499.60 153
HQP_MVS98.90 22698.68 23699.55 16999.58 19299.24 20898.80 26499.54 22298.94 20799.14 28799.25 31497.24 26499.82 27895.84 35099.78 20399.60 153
plane_prior599.54 22299.82 27895.84 35099.78 20399.60 153
TDRefinement99.72 3699.70 3999.77 5899.90 3899.85 1999.86 599.92 2999.69 9099.78 10199.92 2199.37 5699.88 19098.93 15099.95 8499.60 153
ACMH+98.40 899.50 8499.43 9799.71 10099.86 5599.76 6299.32 12799.77 9499.53 12299.77 10699.76 11299.26 7099.78 30597.77 23699.88 13499.60 153
ACMM98.09 1199.46 9699.38 10499.72 9599.80 8799.69 9599.13 19399.65 15798.99 20199.64 15699.72 13199.39 5099.86 22298.23 19599.81 18899.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet98.97 21598.82 22599.42 20299.71 14498.81 25499.62 6398.68 34899.81 6299.38 24499.80 8394.25 32099.85 23998.79 15999.32 31899.59 160
casdiffmvspermissive99.63 6099.61 6099.67 11099.79 9999.59 12999.13 19399.85 5399.79 6899.76 10899.72 13199.33 6199.82 27899.21 10999.94 9599.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 12199.26 13599.68 10799.51 22999.58 13398.98 23999.60 18799.43 14199.70 13799.36 29097.70 24199.88 19099.20 11299.87 14599.59 160
DSMNet-mixed99.48 8899.65 5098.95 28999.71 14497.27 34199.50 9199.82 6699.59 11899.41 23799.85 5699.62 31100.00 199.53 6399.89 12599.59 160
3Dnovator99.15 299.43 10399.36 11099.65 12299.39 27299.42 16699.70 3599.56 21099.23 16899.35 24799.80 8399.17 7999.95 6498.21 19799.84 16299.59 160
SED-MVS99.40 11299.28 13199.77 5899.69 15699.82 3599.20 16799.54 22299.13 18899.82 8199.63 19098.91 11299.92 11797.85 23199.70 23499.58 165
OPU-MVS99.29 24299.12 33499.44 15999.20 16799.40 27899.00 10098.84 39596.54 31999.60 26999.58 165
EPNet98.13 29697.77 31199.18 26294.57 40197.99 31399.24 15797.96 37199.74 7597.29 38299.62 19793.13 33399.97 3498.59 17499.83 17099.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.03 20398.85 22099.55 16999.80 8799.25 20499.73 2799.15 32599.37 14899.61 17599.71 13994.73 31699.81 29397.70 24799.88 13499.58 165
ACMP97.51 1499.05 19998.84 22299.67 11099.78 10699.55 13998.88 24999.66 14897.11 34899.47 21999.60 21499.07 9499.89 17696.18 33699.85 15799.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS99.19 16999.00 19599.74 8099.51 22999.72 8299.18 17299.60 18798.85 22099.47 21999.58 22298.38 18799.92 11796.92 29799.54 28599.57 170
lessismore_v099.64 12999.86 5599.38 17690.66 40099.89 5499.83 6694.56 31899.97 3499.56 5799.92 10699.57 170
pmmvs599.19 16999.11 15999.42 20299.76 11898.88 25098.55 28999.73 11398.82 22499.72 12899.62 19796.56 28699.82 27899.32 9599.95 8499.56 172
APD-MVS_3200maxsize99.31 13799.16 14699.74 8099.53 22299.75 6899.27 14799.61 17599.19 17499.57 18699.64 17998.76 13099.90 15997.29 27599.62 25999.56 172
CDPH-MVS98.56 26198.20 28099.61 14899.50 23599.46 15298.32 30899.41 26695.22 37499.21 27799.10 33798.34 19399.82 27895.09 36699.66 25299.56 172
Anonymous2024052199.44 10099.42 9999.49 18299.89 4098.96 24199.62 6399.76 9999.85 5199.82 8199.88 4296.39 29599.97 3499.59 5199.98 4199.55 175
our_test_398.85 23399.09 16898.13 34199.66 17094.90 37897.72 35599.58 20399.07 19599.64 15699.62 19798.19 20999.93 9598.41 18299.95 8499.55 175
YYNet198.95 22198.99 20098.84 30699.64 17497.14 34698.22 31599.32 29098.92 21299.59 18199.66 17297.40 25799.83 26998.27 19299.90 11699.55 175
MDA-MVSNet_test_wron98.95 22198.99 20098.85 30499.64 17497.16 34498.23 31499.33 28898.93 21099.56 19399.66 17297.39 25999.83 26998.29 19099.88 13499.55 175
MVSFormer99.41 11099.44 9599.31 23899.57 20298.40 28699.77 1599.80 7999.73 7699.63 16099.30 30398.02 22199.98 2199.43 7399.69 23899.55 175
jason99.16 17999.11 15999.32 23599.75 12998.44 28398.26 31299.39 27698.70 23999.74 12399.30 30398.54 16299.97 3498.48 17999.82 17999.55 175
jason: jason.
CDS-MVSNet99.22 15999.13 15299.50 18199.35 28299.11 22498.96 24299.54 22299.46 13399.61 17599.70 14696.31 29799.83 26999.34 9099.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
COLMAP_ROBcopyleft98.06 1299.45 9899.37 10799.70 10499.83 6699.70 9199.38 11399.78 9199.53 12299.67 14999.78 10199.19 7799.86 22297.32 27399.87 14599.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
iter_conf_final98.75 24198.54 25099.40 21199.33 29598.75 26099.26 14999.59 19399.80 6599.76 10899.58 22290.17 36799.92 11799.37 8499.97 5699.54 183
SR-MVS-dyc-post99.27 14499.11 15999.73 8999.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.41 18299.91 14197.27 27899.61 26699.54 183
RE-MVS-def99.13 15299.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.57 15797.27 27899.61 26699.54 183
SD-MVS99.01 20999.30 12498.15 34099.50 23599.40 17298.94 24599.61 17599.22 17299.75 11599.82 7399.54 4195.51 40097.48 26599.87 14599.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.99 21498.80 22899.56 16699.25 31299.43 16398.54 29299.27 30298.58 24998.80 32499.43 27298.53 16699.70 33297.22 28599.59 27399.54 183
MVS_111021_HR99.12 18799.02 18999.40 21199.50 23599.11 22497.92 34699.71 12598.76 23599.08 29499.47 26499.17 7999.54 37897.85 23199.76 20999.54 183
v14899.40 11299.41 10199.39 21599.76 11898.94 24299.09 20999.59 19399.17 18099.81 8899.61 20698.41 18299.69 33899.32 9599.94 9599.53 189
iter_conf0598.46 27398.23 27699.15 26599.04 34797.99 31399.10 20499.61 17599.79 6899.76 10899.58 22287.88 37799.92 11799.31 9899.97 5699.53 189
diffmvspermissive99.34 13199.32 11799.39 21599.67 16998.77 25998.57 28799.81 7599.61 11099.48 21799.41 27498.47 17399.86 22298.97 14299.90 11699.53 189
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 6099.62 5699.66 11799.80 8799.62 11899.44 10599.80 7999.71 8299.72 12899.69 15299.15 8199.83 26999.32 9599.94 9599.53 189
HQP4-MVS98.15 35899.70 33299.53 189
GBi-Net99.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
test199.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
FMVSNet199.66 5499.63 5599.73 8999.78 10699.77 5499.68 4599.70 13199.67 9699.82 8199.83 6698.98 10499.90 15999.24 10699.97 5699.53 189
HQP-MVS98.36 28298.02 29299.39 21599.31 29898.94 24297.98 33999.37 28197.45 33098.15 35898.83 36696.67 28399.70 33294.73 36899.67 24999.53 189
QAPM98.40 28097.99 29399.65 12299.39 27299.47 14899.67 4999.52 23691.70 38898.78 32799.80 8398.55 16099.95 6494.71 37099.75 21199.53 189
F-COLMAP98.74 24398.45 25799.62 14599.57 20299.47 14898.84 25499.65 15796.31 36198.93 30699.19 32697.68 24499.87 20496.52 32099.37 31199.53 189
MVSTER98.47 27298.22 27899.24 25599.06 34498.35 29299.08 21299.46 25599.27 16099.75 11599.66 17288.61 37599.85 23999.14 12799.92 10699.52 200
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21697.99 31398.58 28399.82 6697.62 32199.34 25099.71 13998.52 16999.77 31397.98 21699.97 5699.52 200
OPM-MVS99.26 14699.13 15299.63 13699.70 15299.61 12498.58 28399.48 24998.50 25799.52 20799.63 19099.14 8499.76 31597.89 22499.77 20799.51 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 16499.07 17499.63 13699.78 10699.64 11199.12 19799.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
TestCases99.63 13699.78 10699.64 11199.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
BH-RMVSNet98.41 27898.14 28699.21 25799.21 31998.47 28098.60 27998.26 36798.35 27698.93 30699.31 30197.20 26999.66 35794.32 37399.10 33699.51 202
USDC98.96 21898.93 20899.05 28199.54 21697.99 31397.07 38399.80 7998.21 28899.75 11599.77 10898.43 17999.64 36597.90 22399.88 13499.51 202
test9_res95.10 36599.44 30199.50 207
train_agg98.35 28597.95 29799.57 16399.35 28299.35 18698.11 32599.41 26694.90 37897.92 36898.99 35098.02 22199.85 23995.38 36099.44 30199.50 207
agg_prior294.58 37199.46 30099.50 207
VDD-MVS99.20 16699.11 15999.44 19699.43 26498.98 23799.50 9198.32 36699.80 6599.56 19399.69 15296.99 27699.85 23998.99 13899.73 22399.50 207
MDA-MVSNet-bldmvs99.06 19699.05 18099.07 27999.80 8797.83 32398.89 24899.72 12299.29 15699.63 16099.70 14696.47 29099.89 17698.17 20499.82 17999.50 207
KD-MVS_self_test99.63 6099.59 6599.76 6599.84 6299.90 799.37 11799.79 8599.83 5799.88 6299.85 5698.42 18199.90 15999.60 5099.73 22399.49 212
SF-MVS99.10 19398.93 20899.62 14599.58 19299.51 14499.13 19399.65 15797.97 30299.42 23199.61 20698.86 11799.87 20496.45 32599.68 24399.49 212
Anonymous2024052999.42 10699.34 11299.65 12299.53 22299.60 12799.63 6199.39 27699.47 13099.76 10899.78 10198.13 21399.86 22298.70 16899.68 24399.49 212
WTY-MVS98.59 25898.37 26599.26 25099.43 26498.40 28698.74 27199.13 32898.10 29399.21 27799.24 31994.82 31499.90 15997.86 22998.77 35399.49 212
ppachtmachnet_test98.89 22999.12 15698.20 33999.66 17095.24 37597.63 35999.68 14099.08 19399.78 10199.62 19798.65 14799.88 19098.02 21199.96 7199.48 216
Anonymous2023120699.35 12699.31 11999.47 18899.74 13599.06 23499.28 14499.74 10999.23 16899.72 12899.53 24697.63 25199.88 19099.11 12999.84 16299.48 216
test_prior99.46 19099.35 28299.22 21199.39 27699.69 33899.48 216
test1299.54 17499.29 30499.33 18999.16 32498.43 34997.54 25299.82 27899.47 29899.48 216
VNet99.18 17399.06 17699.56 16699.24 31499.36 18399.33 12599.31 29499.67 9699.47 21999.57 23196.48 28999.84 25499.15 12199.30 32099.47 220
test20.0399.55 7799.54 7899.58 15799.79 9999.37 17999.02 22699.89 3999.60 11699.82 8199.62 19798.81 12099.89 17699.43 7399.86 15399.47 220
114514_t98.49 27098.11 28799.64 12999.73 13899.58 13399.24 15799.76 9989.94 39199.42 23199.56 23597.76 24099.86 22297.74 24199.82 17999.47 220
sss98.90 22698.77 23099.27 24799.48 24598.44 28398.72 27399.32 29097.94 30699.37 24599.35 29596.31 29799.91 14198.85 15299.63 25899.47 220
旧先验199.49 24099.29 19599.26 30599.39 28297.67 24599.36 31299.46 224
MVP-Stereo99.16 17999.08 17099.43 20099.48 24599.07 23299.08 21299.55 21698.63 24499.31 25999.68 16398.19 20999.78 30598.18 20299.58 27499.45 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何199.52 17799.50 23599.22 21199.26 30595.66 37098.60 34099.28 30797.67 24599.89 17695.95 34799.32 31899.45 225
LFMVS98.46 27398.19 28399.26 25099.24 31498.52 27999.62 6396.94 38399.87 4299.31 25999.58 22291.04 35499.81 29398.68 17199.42 30599.45 225
testgi99.29 13999.26 13599.37 22199.75 12998.81 25498.84 25499.89 3998.38 26999.75 11599.04 34399.36 5999.86 22299.08 13299.25 32799.45 225
UnsupCasMVSNet_eth98.83 23498.57 24699.59 15399.68 16499.45 15798.99 23699.67 14499.48 12699.55 19899.36 29094.92 31299.86 22298.95 14896.57 39199.45 225
无先验98.01 33599.23 31295.83 36799.85 23995.79 35299.44 230
testdata99.42 20299.51 22998.93 24599.30 29796.20 36298.87 31699.40 27898.33 19599.89 17696.29 33199.28 32399.44 230
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11799.84 6299.64 11198.25 31399.73 11398.39 26899.63 16099.43 27299.70 2499.90 15997.34 27298.64 36399.44 230
FMVSNet299.35 12699.28 13199.55 16999.49 24099.35 18699.45 10399.57 20599.44 13699.70 13799.74 12097.21 26699.87 20499.03 13599.94 9599.44 230
N_pmnet98.73 24598.53 25299.35 22799.72 14198.67 26598.34 30694.65 39398.35 27699.79 9799.68 16398.03 22099.93 9598.28 19199.92 10699.44 230
RPSCF99.18 17399.02 18999.64 12999.83 6699.85 1999.44 10599.82 6698.33 28199.50 21499.78 10197.90 22999.65 36396.78 30699.83 17099.44 230
原ACMM199.37 22199.47 25198.87 25299.27 30296.74 35698.26 35399.32 29997.93 22899.82 27895.96 34699.38 30999.43 236
test22299.51 22999.08 23197.83 35299.29 29895.21 37598.68 33599.31 30197.28 26399.38 30999.43 236
XVG-OURS99.21 16499.06 17699.65 12299.82 7399.62 11897.87 35099.74 10998.36 27199.66 15399.68 16399.71 2299.90 15996.84 30499.88 13499.43 236
CSCG99.37 12199.29 12999.60 15199.71 14499.46 15299.43 10799.85 5398.79 22899.41 23799.60 21498.92 11099.92 11798.02 21199.92 10699.43 236
TinyColmap98.97 21598.93 20899.07 27999.46 25598.19 29997.75 35499.75 10498.79 22899.54 20099.70 14698.97 10699.62 36796.63 31699.83 17099.41 240
Anonymous20240521198.75 24198.46 25699.63 13699.34 29099.66 10299.47 9997.65 37699.28 15999.56 19399.50 25393.15 33299.84 25498.62 17399.58 27499.40 241
XVG-ACMP-BASELINE99.23 15199.10 16799.63 13699.82 7399.58 13398.83 25699.72 12298.36 27199.60 17899.71 13998.92 11099.91 14197.08 29199.84 16299.40 241
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33998.19 29998.76 27099.33 28898.49 25999.44 22599.58 22298.21 20799.69 33898.20 19899.62 25999.39 243
FMVSNet398.80 23798.63 23999.32 23599.13 33298.72 26399.10 20499.48 24999.23 16899.62 16999.64 17992.57 33899.86 22298.96 14499.90 11699.39 243
ambc99.20 25999.35 28298.53 27799.17 17799.46 25599.67 14999.80 8398.46 17699.70 33297.92 22199.70 23499.38 245
FMVSNet597.80 30897.25 32499.42 20298.83 36598.97 23999.38 11399.80 7998.87 21899.25 26899.69 15280.60 39699.91 14198.96 14499.90 11699.38 245
PAPM_NR98.36 28298.04 29099.33 23199.48 24598.93 24598.79 26799.28 30197.54 32598.56 34498.57 37797.12 27199.69 33894.09 37798.90 34899.38 245
EPNet_dtu97.62 31697.79 31097.11 36696.67 39892.31 39098.51 29598.04 36999.24 16695.77 39399.47 26493.78 32699.66 35798.98 14099.62 25999.37 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS99.11 19098.95 20799.59 15399.13 33299.59 12999.17 17799.65 15797.88 31099.25 26899.46 26798.97 10699.80 29997.26 28099.82 17999.37 248
PLCcopyleft97.35 1698.36 28297.99 29399.48 18699.32 29799.24 20898.50 29699.51 24095.19 37698.58 34298.96 35796.95 27799.83 26995.63 35499.25 32799.37 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051797.62 31697.20 32598.90 30299.76 11897.40 33899.48 9694.36 39499.06 19799.70 13799.49 25784.55 39199.94 7898.73 16699.65 25499.36 251
pmmvs-eth3d99.48 8899.47 8699.51 17999.77 11499.41 17198.81 26199.66 14899.42 14599.75 11599.66 17299.20 7699.76 31598.98 14099.99 1699.36 251
PVSNet_095.53 1995.85 35695.31 35897.47 35698.78 37293.48 38695.72 39199.40 27396.18 36397.37 38097.73 39395.73 30699.58 37495.49 35781.40 39899.36 251
testing396.48 34395.63 35399.01 28499.23 31697.81 32498.90 24799.10 32998.72 23797.84 37497.92 39172.44 40399.85 23997.21 28699.33 31699.35 254
lupinMVS98.96 21898.87 21899.24 25599.57 20298.40 28698.12 32399.18 32298.28 28499.63 16099.13 32998.02 22199.97 3498.22 19699.69 23899.35 254
Vis-MVSNet (Re-imp)98.77 23998.58 24599.34 22899.78 10698.88 25099.61 6899.56 21099.11 19299.24 27199.56 23593.00 33699.78 30597.43 26899.89 12599.35 254
GA-MVS97.99 30497.68 31498.93 29399.52 22798.04 31297.19 37999.05 33398.32 28298.81 32298.97 35589.89 37199.41 38898.33 18899.05 33899.34 257
CANet99.11 19099.05 18099.28 24498.83 36598.56 27698.71 27599.41 26699.25 16499.23 27299.22 32197.66 24999.94 7899.19 11399.97 5699.33 258
Patchmtry98.78 23898.54 25099.49 18298.89 36199.19 21799.32 12799.67 14499.65 10299.72 12899.79 9391.87 34699.95 6498.00 21599.97 5699.33 258
PAPR97.56 31997.07 32799.04 28298.80 36998.11 30697.63 35999.25 30894.56 38398.02 36698.25 38797.43 25699.68 34890.90 38898.74 35799.33 258
testf199.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
APD_test299.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
CHOSEN 280x42098.41 27898.41 26198.40 32999.34 29095.89 36996.94 38599.44 26098.80 22799.25 26899.52 24893.51 33099.98 2198.94 14999.98 4199.32 261
baseline197.73 31197.33 32198.96 28899.30 30297.73 32899.40 10998.42 36199.33 15399.46 22399.21 32391.18 35299.82 27898.35 18691.26 39799.32 261
dmvs_re98.69 24998.48 25499.31 23899.55 21499.42 16699.54 8498.38 36499.32 15498.72 33198.71 37296.76 28299.21 39096.01 34199.35 31499.31 265
TAPA-MVS97.92 1398.03 30197.55 31799.46 19099.47 25199.44 15998.50 29699.62 16886.79 39299.07 29799.26 31298.26 20199.62 36797.28 27799.73 22399.31 265
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet-Re99.28 14099.15 14999.67 11099.33 29599.76 6299.34 12299.97 1898.93 21099.91 4499.79 9398.68 14099.93 9596.80 30599.56 27699.30 267
TSAR-MVS + GP.99.12 18799.04 18599.38 21899.34 29099.16 21998.15 31999.29 29898.18 29199.63 16099.62 19799.18 7899.68 34898.20 19899.74 21899.30 267
PVSNet_Blended98.70 24898.59 24299.02 28399.54 21697.99 31397.58 36299.82 6695.70 36999.34 25098.98 35398.52 16999.77 31397.98 21699.83 17099.30 267
MVS_111021_LR99.13 18599.03 18799.42 20299.58 19299.32 19197.91 34899.73 11398.68 24099.31 25999.48 26099.09 8999.66 35797.70 24799.77 20799.29 270
dmvs_testset97.27 32696.83 33698.59 32199.46 25597.55 33399.25 15696.84 38498.78 23097.24 38397.67 39497.11 27298.97 39486.59 39898.54 36799.27 271
miper_lstm_enhance98.65 25298.60 24098.82 31199.20 32297.33 34097.78 35399.66 14899.01 20099.59 18199.50 25394.62 31799.85 23998.12 20799.90 11699.26 272
MVS95.72 35894.63 36398.99 28598.56 38097.98 31999.30 13598.86 33972.71 39797.30 38199.08 33898.34 19399.74 32189.21 38998.33 37199.26 272
MSLP-MVS++99.05 19999.09 16898.91 29699.21 31998.36 29198.82 26099.47 25298.85 22098.90 31299.56 23598.78 12799.09 39298.57 17599.68 24399.26 272
D2MVS99.22 15999.19 14399.29 24299.69 15698.74 26298.81 26199.41 26698.55 25199.68 14399.69 15298.13 21399.87 20498.82 15599.98 4199.24 275
test_yl98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
DCV-MVSNet98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
DPM-MVS98.28 28797.94 30199.32 23599.36 28099.11 22497.31 37598.78 34496.88 35198.84 31999.11 33697.77 23999.61 37194.03 37999.36 31299.23 278
CLD-MVS98.76 24098.57 24699.33 23199.57 20298.97 23997.53 36599.55 21696.41 35899.27 26699.13 32999.07 9499.78 30596.73 30999.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs499.13 18599.06 17699.36 22599.57 20299.10 22998.01 33599.25 30898.78 23099.58 18399.44 27198.24 20299.76 31598.74 16599.93 10299.22 280
OMC-MVS98.90 22698.72 23299.44 19699.39 27299.42 16698.58 28399.64 16397.31 33899.44 22599.62 19798.59 15499.69 33896.17 33799.79 19899.22 280
EGC-MVSNET89.05 36485.52 36799.64 12999.89 4099.78 4999.56 8199.52 23624.19 39949.96 40099.83 6699.15 8199.92 11797.71 24499.85 15799.21 282
eth_miper_zixun_eth98.68 25098.71 23398.60 32099.10 34096.84 35397.52 36799.54 22298.94 20799.58 18399.48 26096.25 30099.76 31598.01 21499.93 10299.21 282
c3_l98.72 24698.71 23398.72 31699.12 33497.22 34397.68 35899.56 21098.90 21499.54 20099.48 26096.37 29699.73 32497.88 22599.88 13499.21 282
CMPMVSbinary77.52 2398.50 26898.19 28399.41 20998.33 38799.56 13699.01 22899.59 19395.44 37199.57 18699.80 8395.64 30799.46 38796.47 32499.92 10699.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Effi-MVS+99.06 19698.97 20499.34 22899.31 29898.98 23798.31 30999.91 3298.81 22598.79 32598.94 35999.14 8499.84 25498.79 15998.74 35799.20 286
DELS-MVS99.34 13199.30 12499.48 18699.51 22999.36 18398.12 32399.53 23199.36 15099.41 23799.61 20699.22 7499.87 20499.21 10999.68 24399.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EC-MVSNet99.69 4399.69 4399.68 10799.71 14499.91 499.76 1999.96 2399.86 4699.51 21299.39 28299.57 3899.93 9599.64 4899.86 15399.20 286
CANet_DTU98.91 22498.85 22099.09 27598.79 37098.13 30398.18 31699.31 29499.48 12698.86 31799.51 25096.56 28699.95 6499.05 13499.95 8499.19 289
alignmvs98.28 28797.96 29699.25 25399.12 33498.93 24599.03 22398.42 36199.64 10498.72 33197.85 39290.86 35999.62 36798.88 15199.13 33399.19 289
DIV-MVS_self_test98.54 26398.42 26098.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.87 32399.78 30597.97 21899.89 12599.18 291
MSDG99.08 19498.98 20399.37 22199.60 18399.13 22297.54 36399.74 10998.84 22399.53 20599.55 24299.10 8799.79 30297.07 29299.86 15399.18 291
cl____98.54 26398.41 26198.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.85 32499.78 30597.97 21899.89 12599.17 293
PM-MVS99.36 12499.29 12999.58 15799.83 6699.66 10298.95 24399.86 4898.85 22099.81 8899.73 12498.40 18699.92 11798.36 18599.83 17099.17 293
thisisatest053097.45 32196.95 33198.94 29099.68 16497.73 32899.09 20994.19 39698.61 24799.56 19399.30 30384.30 39299.93 9598.27 19299.54 28599.16 295
PatchmatchNetpermissive97.65 31597.80 30897.18 36498.82 36892.49 38999.17 17798.39 36398.12 29298.79 32599.58 22290.71 36199.89 17697.23 28499.41 30699.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tfpnnormal99.43 10399.38 10499.60 15199.87 5299.75 6899.59 7499.78 9199.71 8299.90 5099.69 15298.85 11899.90 15997.25 28399.78 20399.15 297
CS-MVS-test99.68 4699.70 3999.64 12999.57 20299.83 2999.78 1299.97 1899.92 2899.50 21499.38 28499.57 3899.95 6499.69 4399.90 11699.15 297
mvs_anonymous99.28 14099.39 10298.94 29099.19 32497.81 32499.02 22699.55 21699.78 7099.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 297
ab-mvs99.33 13499.28 13199.47 18899.57 20299.39 17499.78 1299.43 26398.87 21899.57 18699.82 7398.06 21899.87 20498.69 17099.73 22399.15 297
MIMVSNet98.43 27698.20 28099.11 27299.53 22298.38 29099.58 7698.61 35298.96 20599.33 25299.76 11290.92 35699.81 29397.38 27199.76 20999.15 297
GSMVS99.14 302
sam_mvs190.81 36099.14 302
SCA98.11 29798.36 26697.36 35999.20 32292.99 38798.17 31898.49 35998.24 28699.10 29399.57 23196.01 30499.94 7896.86 30199.62 25999.14 302
LS3D99.24 15099.11 15999.61 14898.38 38599.79 4699.57 7999.68 14099.61 11099.15 28599.71 13998.70 13899.91 14197.54 26199.68 24399.13 305
Patchmatch-RL test98.60 25598.36 26699.33 23199.77 11499.07 23298.27 31199.87 4598.91 21399.74 12399.72 13190.57 36399.79 30298.55 17699.85 15799.11 306
test_040299.22 15999.14 15099.45 19399.79 9999.43 16399.28 14499.68 14099.54 12099.40 24299.56 23599.07 9499.82 27896.01 34199.96 7199.11 306
APD_test199.36 12499.28 13199.61 14899.89 4099.89 1099.32 12799.74 10999.18 17599.69 14099.75 11798.41 18299.84 25497.85 23199.70 23499.10 308
MVS_Test99.28 14099.31 11999.19 26099.35 28298.79 25799.36 12099.49 24899.17 18099.21 27799.67 16798.78 12799.66 35799.09 13199.66 25299.10 308
AdaColmapbinary98.60 25598.35 26899.38 21899.12 33499.22 21198.67 27699.42 26597.84 31498.81 32299.27 30997.32 26299.81 29395.14 36499.53 28799.10 308
FPMVS96.32 34795.50 35498.79 31299.60 18398.17 30298.46 30298.80 34397.16 34596.28 38999.63 19082.19 39399.09 39288.45 39198.89 34999.10 308
Syy-MVS98.17 29597.85 30799.15 26598.50 38298.79 25798.60 27999.21 31897.89 30896.76 38796.37 40495.47 31099.57 37599.10 13098.73 35999.09 312
myMVS_eth3d95.63 35994.73 36198.34 33398.50 38296.36 36098.60 27999.21 31897.89 30896.76 38796.37 40472.10 40499.57 37594.38 37298.73 35999.09 312
Patchmatch-test98.10 29897.98 29598.48 32699.27 30996.48 35799.40 10999.07 33098.81 22599.23 27299.57 23190.11 36899.87 20496.69 31099.64 25699.09 312
tpm97.15 32896.95 33197.75 35198.91 35794.24 38199.32 12797.96 37197.71 31898.29 35299.32 29986.72 38699.92 11798.10 20996.24 39499.09 312
PMMVS98.49 27098.29 27499.11 27298.96 35598.42 28597.54 36399.32 29097.53 32698.47 34898.15 38897.88 23199.82 27897.46 26699.24 32999.09 312
cl2297.56 31997.28 32298.40 32998.37 38696.75 35497.24 37899.37 28197.31 33899.41 23799.22 32187.30 37899.37 38997.70 24799.62 25999.08 317
ADS-MVSNet297.78 30997.66 31698.12 34299.14 33095.36 37399.22 16498.75 34596.97 34998.25 35499.64 17990.90 35799.94 7896.51 32199.56 27699.08 317
ADS-MVSNet97.72 31497.67 31597.86 34799.14 33094.65 37999.22 16498.86 33996.97 34998.25 35499.64 17990.90 35799.84 25496.51 32199.56 27699.08 317
pmmvs398.08 29997.80 30898.91 29699.41 27097.69 33097.87 35099.66 14895.87 36599.50 21499.51 25090.35 36599.97 3498.55 17699.47 29899.08 317
PVSNet97.47 1598.42 27798.44 25898.35 33199.46 25596.26 36296.70 38899.34 28797.68 31999.00 30199.13 32997.40 25799.72 32697.59 25999.68 24399.08 317
MVS-HIRNet97.86 30598.22 27896.76 36899.28 30791.53 39598.38 30592.60 39899.13 18899.31 25999.96 1297.18 27099.68 34898.34 18799.83 17099.07 322
PMVScopyleft92.94 2198.82 23598.81 22698.85 30499.84 6297.99 31399.20 16799.47 25299.71 8299.42 23199.82 7398.09 21599.47 38593.88 38199.85 15799.07 322
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft99.57 7199.59 6599.49 18299.98 399.71 8499.72 3099.84 5999.81 6299.94 3499.78 10198.91 11299.71 33098.41 18299.95 8499.05 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
canonicalmvs99.02 20599.00 19599.09 27599.10 34098.70 26499.61 6899.66 14899.63 10698.64 33797.65 39599.04 9899.54 37898.79 15998.92 34699.04 325
hse-mvs298.52 26598.30 27399.16 26399.29 30498.60 27598.77 26999.02 33499.68 9299.32 25599.04 34392.50 34199.85 23999.24 10697.87 38399.03 326
CL-MVSNet_self_test98.71 24798.56 24999.15 26599.22 31798.66 26897.14 38099.51 24098.09 29599.54 20099.27 30996.87 27999.74 32198.43 18198.96 34399.03 326
AUN-MVS97.82 30797.38 32099.14 26999.27 30998.53 27798.72 27399.02 33498.10 29397.18 38599.03 34789.26 37399.85 23997.94 22097.91 38199.03 326
MDTV_nov1_ep13_2view91.44 39699.14 18797.37 33599.21 27791.78 34896.75 30799.03 326
ITE_SJBPF99.38 21899.63 17699.44 15999.73 11398.56 25099.33 25299.53 24698.88 11699.68 34896.01 34199.65 25499.02 330
UnsupCasMVSNet_bld98.55 26298.27 27599.40 21199.56 21399.37 17997.97 34299.68 14097.49 32999.08 29499.35 29595.41 31199.82 27897.70 24798.19 37699.01 331
miper_ehance_all_eth98.59 25898.59 24298.59 32198.98 35497.07 34797.49 36899.52 23698.50 25799.52 20799.37 28696.41 29499.71 33097.86 22999.62 25999.00 332
CS-MVS99.67 5299.70 3999.58 15799.53 22299.84 2499.79 1199.96 2399.90 3099.61 17599.41 27499.51 4599.95 6499.66 4599.89 12598.96 333
CNLPA98.57 26098.34 26999.28 24499.18 32699.10 22998.34 30699.41 26698.48 26098.52 34598.98 35397.05 27499.78 30595.59 35599.50 29498.96 333
new_pmnet98.88 23098.89 21698.84 30699.70 15297.62 33198.15 31999.50 24497.98 30199.62 16999.54 24498.15 21299.94 7897.55 26099.84 16298.95 335
PCF-MVS96.03 1896.73 33895.86 34999.33 23199.44 26099.16 21996.87 38699.44 26086.58 39398.95 30499.40 27894.38 31999.88 19087.93 39299.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL98.68 25098.47 25599.30 24199.44 26099.28 19798.14 32199.54 22297.12 34799.11 29199.25 31497.80 23799.70 33296.51 32199.30 32098.93 337
Fast-Effi-MVS+99.02 20598.87 21899.46 19099.38 27599.50 14599.04 21999.79 8597.17 34498.62 33898.74 37199.34 6099.95 6498.32 18999.41 30698.92 338
ET-MVSNet_ETH3D96.78 33696.07 34598.91 29699.26 31197.92 32197.70 35796.05 38897.96 30592.37 39898.43 38387.06 38099.90 15998.27 19297.56 38698.91 339
EIA-MVS99.12 18799.01 19299.45 19399.36 28099.62 11899.34 12299.79 8598.41 26598.84 31998.89 36398.75 13299.84 25498.15 20699.51 29198.89 340
CostFormer96.71 33996.79 33896.46 37498.90 35890.71 40099.41 10898.68 34894.69 38298.14 36299.34 29886.32 38899.80 29997.60 25898.07 38098.88 341
DP-MVS Recon98.50 26898.23 27699.31 23899.49 24099.46 15298.56 28899.63 16594.86 38098.85 31899.37 28697.81 23699.59 37396.08 33899.44 30198.88 341
test0.0.03 197.37 32496.91 33498.74 31597.72 39497.57 33297.60 36197.36 38298.00 29899.21 27798.02 38990.04 36999.79 30298.37 18495.89 39598.86 343
BH-untuned98.22 29398.09 28898.58 32399.38 27597.24 34298.55 28998.98 33797.81 31599.20 28298.76 37097.01 27599.65 36394.83 36798.33 37198.86 343
HY-MVS98.23 998.21 29497.95 29798.99 28599.03 34898.24 29499.61 6898.72 34696.81 35498.73 33099.51 25094.06 32199.86 22296.91 29898.20 37498.86 343
miper_enhance_ethall98.03 30197.94 30198.32 33498.27 38896.43 35996.95 38499.41 26696.37 36099.43 22998.96 35794.74 31599.69 33897.71 24499.62 25998.83 346
FE-MVS97.85 30697.42 31999.15 26599.44 26098.75 26099.77 1598.20 36895.85 36699.33 25299.80 8388.86 37499.88 19096.40 32699.12 33498.81 347
Effi-MVS+-dtu99.07 19598.92 21299.52 17798.89 36199.78 4999.15 18599.66 14899.34 15198.92 30999.24 31997.69 24399.98 2198.11 20899.28 32398.81 347
EPMVS96.53 34296.32 34097.17 36598.18 39192.97 38899.39 11189.95 40298.21 28898.61 33999.59 21986.69 38799.72 32696.99 29499.23 33198.81 347
FA-MVS(test-final)98.52 26598.32 27199.10 27499.48 24598.67 26599.77 1598.60 35497.35 33699.63 16099.80 8393.07 33499.84 25497.92 22199.30 32098.78 350
MVEpermissive92.54 2296.66 34096.11 34498.31 33699.68 16497.55 33397.94 34495.60 39099.37 14890.68 39998.70 37396.56 28698.61 39786.94 39799.55 28098.77 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tpm296.35 34696.22 34296.73 37098.88 36391.75 39399.21 16698.51 35793.27 38597.89 37099.21 32384.83 39099.70 33296.04 34098.18 37798.75 352
LF4IMVS99.01 20998.92 21299.27 24799.71 14499.28 19798.59 28299.77 9498.32 28299.39 24399.41 27498.62 14999.84 25496.62 31799.84 16298.69 353
thisisatest051596.98 33296.42 33998.66 31999.42 26997.47 33597.27 37694.30 39597.24 34099.15 28598.86 36585.01 38999.87 20497.10 29099.39 30898.63 354
Fast-Effi-MVS+-dtu99.20 16699.12 15699.43 20099.25 31299.69 9599.05 21699.82 6699.50 12498.97 30299.05 34198.98 10499.98 2198.20 19899.24 32998.62 355
PAPM95.61 36094.71 36298.31 33699.12 33496.63 35596.66 38998.46 36090.77 39096.25 39098.68 37493.01 33599.69 33881.60 39997.86 38498.62 355
JIA-IIPM98.06 30097.92 30398.50 32598.59 37997.02 34898.80 26498.51 35799.88 4197.89 37099.87 4791.89 34599.90 15998.16 20597.68 38598.59 357
dp96.86 33497.07 32796.24 37698.68 37890.30 40299.19 17198.38 36497.35 33698.23 35699.59 21987.23 37999.82 27896.27 33298.73 35998.59 357
OpenMVScopyleft98.12 1098.23 29297.89 30699.26 25099.19 32499.26 20199.65 5999.69 13791.33 38998.14 36299.77 10898.28 19999.96 5595.41 35999.55 28098.58 359
baseline296.83 33596.28 34198.46 32799.09 34296.91 35198.83 25693.87 39797.23 34196.23 39298.36 38488.12 37699.90 15996.68 31198.14 37898.57 360
TESTMET0.1,196.24 34995.84 35097.41 35898.24 38993.84 38497.38 37195.84 38998.43 26297.81 37598.56 37879.77 39799.89 17697.77 23698.77 35398.52 361
xiu_mvs_v1_base_debu99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base_debi99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
KD-MVS_2432*160095.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
miper_refine_blended95.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
CR-MVSNet98.35 28598.20 28098.83 30899.05 34598.12 30499.30 13599.67 14497.39 33499.16 28399.79 9391.87 34699.91 14198.78 16298.77 35398.44 367
RPMNet98.60 25598.53 25298.83 30899.05 34598.12 30499.30 13599.62 16899.86 4699.16 28399.74 12092.53 34099.92 11798.75 16498.77 35398.44 367
tpmrst97.73 31198.07 28996.73 37098.71 37692.00 39199.10 20498.86 33998.52 25598.92 30999.54 24491.90 34499.82 27898.02 21199.03 34098.37 369
test-LLR97.15 32896.95 33197.74 35298.18 39195.02 37697.38 37196.10 38598.00 29897.81 37598.58 37590.04 36999.91 14197.69 25398.78 35198.31 370
test-mter96.23 35095.73 35197.74 35298.18 39195.02 37697.38 37196.10 38597.90 30797.81 37598.58 37579.12 40099.91 14197.69 25398.78 35198.31 370
ETV-MVS99.18 17399.18 14499.16 26399.34 29099.28 19799.12 19799.79 8599.48 12698.93 30698.55 37999.40 4999.93 9598.51 17899.52 29098.28 372
PatchT98.45 27598.32 27198.83 30898.94 35698.29 29399.24 15798.82 34299.84 5499.08 29499.76 11291.37 34999.94 7898.82 15599.00 34298.26 373
xiu_mvs_v2_base99.02 20599.11 15998.77 31399.37 27798.09 30898.13 32299.51 24099.47 13099.42 23198.54 38099.38 5499.97 3498.83 15399.33 31698.24 374
IB-MVS95.41 2095.30 36194.46 36597.84 34898.76 37495.33 37497.33 37496.07 38796.02 36495.37 39697.41 39776.17 40299.96 5597.54 26195.44 39698.22 375
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat196.78 33696.98 33096.16 37798.85 36490.59 40199.08 21299.32 29092.37 38697.73 37999.46 26791.15 35399.69 33896.07 33998.80 35098.21 376
MAR-MVS98.24 29197.92 30399.19 26098.78 37299.65 10899.17 17799.14 32695.36 37298.04 36598.81 36897.47 25499.72 32695.47 35899.06 33798.21 376
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ99.00 21199.08 17098.76 31499.37 27798.10 30798.00 33799.51 24099.47 13099.41 23798.50 38299.28 6699.97 3498.83 15399.34 31598.20 378
cascas96.99 33196.82 33797.48 35597.57 39795.64 37196.43 39099.56 21091.75 38797.13 38697.61 39695.58 30998.63 39696.68 31199.11 33598.18 379
BH-w/o97.20 32797.01 32997.76 35099.08 34395.69 37098.03 33498.52 35695.76 36897.96 36798.02 38995.62 30899.47 38592.82 38397.25 38898.12 380
tpmvs97.39 32397.69 31396.52 37298.41 38491.76 39299.30 13598.94 33897.74 31697.85 37399.55 24292.40 34399.73 32496.25 33398.73 35998.06 381
thres600view796.60 34196.16 34397.93 34599.63 17696.09 36699.18 17297.57 37798.77 23298.72 33197.32 39887.04 38199.72 32688.57 39098.62 36497.98 382
thres40096.40 34495.89 34797.92 34699.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36897.98 382
TR-MVS97.44 32297.15 32698.32 33498.53 38197.46 33698.47 29897.91 37396.85 35298.21 35798.51 38196.42 29299.51 38392.16 38497.29 38797.98 382
131498.00 30397.90 30598.27 33898.90 35897.45 33799.30 13599.06 33294.98 37797.21 38499.12 33398.43 17999.67 35395.58 35698.56 36697.71 385
E-PMN97.14 33097.43 31896.27 37598.79 37091.62 39495.54 39299.01 33699.44 13698.88 31399.12 33392.78 33799.68 34894.30 37499.03 34097.50 386
gg-mvs-nofinetune95.87 35595.17 35997.97 34498.19 39096.95 34999.69 4289.23 40399.89 3696.24 39199.94 1681.19 39499.51 38393.99 38098.20 37497.44 387
DeepMVS_CXcopyleft97.98 34399.69 15696.95 34999.26 30575.51 39695.74 39498.28 38696.47 29099.62 36791.23 38797.89 38297.38 388
OpenMVS_ROBcopyleft97.31 1797.36 32596.84 33598.89 30399.29 30499.45 15798.87 25099.48 24986.54 39499.44 22599.74 12097.34 26199.86 22291.61 38599.28 32397.37 389
EMVS96.96 33397.28 32295.99 37898.76 37491.03 39795.26 39398.61 35299.34 15198.92 30998.88 36493.79 32599.66 35792.87 38299.05 33897.30 390
thres100view90096.39 34596.03 34697.47 35699.63 17695.93 36799.18 17297.57 37798.75 23698.70 33497.31 39987.04 38199.67 35387.62 39398.51 36896.81 391
tfpn200view996.30 34895.89 34797.53 35499.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36896.81 391
API-MVS98.38 28198.39 26398.35 33198.83 36599.26 20199.14 18799.18 32298.59 24898.66 33698.78 36998.61 15199.57 37594.14 37699.56 27696.21 393
thres20096.09 35195.68 35297.33 36199.48 24596.22 36398.53 29397.57 37798.06 29798.37 35196.73 40386.84 38599.61 37186.99 39698.57 36596.16 394
GG-mvs-BLEND97.36 35997.59 39596.87 35299.70 3588.49 40494.64 39797.26 40080.66 39599.12 39191.50 38696.50 39396.08 395
wuyk23d97.58 31899.13 15292.93 38099.69 15699.49 14699.52 8699.77 9497.97 30299.96 2399.79 9399.84 1299.94 7895.85 34999.82 17979.36 396
test12329.31 36533.05 37018.08 38225.93 40512.24 40797.53 36510.93 40711.78 40024.21 40150.08 41021.04 4058.60 40123.51 40032.43 40033.39 397
testmvs28.94 36633.33 36815.79 38326.03 4049.81 40896.77 38715.67 40611.55 40123.87 40250.74 40919.03 4068.53 40223.21 40133.07 39929.03 398
test_blank8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.88 36733.17 3690.00 3840.00 4060.00 4090.00 39599.62 1680.00 4020.00 40399.13 32999.82 130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas16.61 36822.14 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 199.28 660.00 4030.00 4020.00 4010.00 399
sosnet-low-res8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
sosnet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
Regformer8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.26 37711.02 3800.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.16 3270.00 4070.00 4030.00 4020.00 4010.00 399
uanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS96.36 36095.20 363
FOURS199.83 6699.89 1099.74 2499.71 12599.69 9099.63 160
test_one_060199.63 17699.76 6299.55 21699.23 16899.31 25999.61 20698.59 154
eth-test20.00 406
eth-test0.00 406
ZD-MVS99.43 26499.61 12499.43 26396.38 35999.11 29199.07 33997.86 23299.92 11794.04 37899.49 296
test_241102_ONE99.69 15699.82 3599.54 22299.12 19199.82 8199.49 25798.91 11299.52 382
9.1498.64 23799.45 25998.81 26199.60 18797.52 32799.28 26599.56 23598.53 16699.83 26995.36 36199.64 256
save fliter99.53 22299.25 20498.29 31099.38 28099.07 195
test072699.69 15699.80 4499.24 15799.57 20599.16 18299.73 12799.65 17798.35 190
test_part299.62 18099.67 10099.55 198
sam_mvs90.52 364
MTGPAbinary99.53 231
test_post199.14 18751.63 40889.54 37299.82 27896.86 301
test_post52.41 40790.25 36699.86 222
patchmatchnet-post99.62 19790.58 36299.94 78
MTMP99.09 20998.59 355
gm-plane-assit97.59 39589.02 40493.47 38498.30 38599.84 25496.38 328
TEST999.35 28299.35 18698.11 32599.41 26694.83 38197.92 36898.99 35098.02 22199.85 239
test_899.34 29099.31 19298.08 32999.40 27394.90 37897.87 37298.97 35598.02 22199.84 254
agg_prior99.35 28299.36 18399.39 27697.76 37899.85 239
test_prior499.19 21798.00 337
test_prior297.95 34397.87 31198.05 36499.05 34197.90 22995.99 34499.49 296
旧先验297.94 34495.33 37398.94 30599.88 19096.75 307
新几何298.04 333
原ACMM297.92 346
testdata299.89 17695.99 344
segment_acmp98.37 188
testdata197.72 35597.86 313
plane_prior799.58 19299.38 176
plane_prior699.47 25199.26 20197.24 264
plane_prior499.25 314
plane_prior399.31 19298.36 27199.14 287
plane_prior298.80 26498.94 207
plane_prior199.51 229
plane_prior99.24 20898.42 30397.87 31199.71 232
n20.00 408
nn0.00 408
door-mid99.83 61
test1199.29 298
door99.77 94
HQP5-MVS98.94 242
HQP-NCC99.31 29897.98 33997.45 33098.15 358
ACMP_Plane99.31 29897.98 33997.45 33098.15 358
BP-MVS94.73 368
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27199.13 22298.83 366
MDTV_nov1_ep1397.73 31298.70 37790.83 39899.15 18598.02 37098.51 25698.82 32199.61 20690.98 35599.66 35796.89 30098.92 346
ACMMP++_ref99.94 95
ACMMP++99.79 198
Test By Simon98.41 182