This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6299.70 34100.00 199.73 58100.00 199.89 3199.79 999.88 17399.98 1100.00 199.98 1
test_fmvs399.83 1299.93 299.53 15899.96 598.62 25699.67 48100.00 199.95 5100.00 199.95 1399.85 499.99 699.98 199.99 1399.98 1
test_vis1_n_192099.72 2299.88 699.27 22999.93 2397.84 30399.34 118100.00 199.99 199.99 799.82 6299.87 399.99 699.97 499.99 1399.97 3
test_f99.75 1899.88 699.37 20499.96 598.21 27999.51 86100.00 199.94 9100.00 199.93 1799.58 2599.94 6599.97 499.99 1399.97 3
test_fmvs299.72 2299.85 1299.34 21199.91 2798.08 29299.48 92100.00 199.90 1499.99 799.91 2499.50 3299.98 1199.98 199.99 1399.96 5
test_vis1_n99.68 3299.79 1899.36 20899.94 1698.18 28299.52 83100.00 199.86 29100.00 199.88 3698.99 8899.96 4299.97 499.96 5799.95 6
tmp_tt95.75 33795.42 33596.76 34689.90 38294.42 35798.86 23197.87 35578.01 37399.30 24699.69 13897.70 22695.89 37799.29 8498.14 35699.95 6
mvsany_test399.85 899.88 699.75 6099.95 1399.37 16399.53 8299.98 999.77 5699.99 799.95 1399.85 499.94 6599.95 899.98 3199.94 8
PS-MVSNAJss99.84 1099.82 1499.89 899.96 599.77 5099.68 4499.85 4099.95 599.98 1199.92 2199.28 5299.98 1199.75 24100.00 199.94 8
test_fmvs1_n99.68 3299.81 1599.28 22699.95 1397.93 30199.49 91100.00 199.82 4299.99 799.89 3199.21 6199.98 1199.97 499.98 3199.93 10
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 2999.88 3199.92 1299.98 1199.93 1799.94 199.98 1199.77 23100.00 199.92 11
UA-Net99.78 1699.76 2299.86 1899.72 12599.71 7699.91 399.95 1899.96 399.71 11899.91 2499.15 6799.97 2399.50 51100.00 199.90 12
RRT_MVS99.67 3899.59 5199.91 299.94 1699.88 1299.78 1199.27 28799.87 2699.91 3299.87 4098.04 20499.96 4299.68 2899.99 1399.90 12
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3499.86 3699.89 2099.98 1199.90 2799.94 199.98 1199.75 24100.00 199.90 12
EU-MVSNet99.39 10099.62 4298.72 29699.88 3996.44 33799.56 7999.85 4099.90 1499.90 3899.85 4998.09 20099.83 25199.58 3899.95 6899.90 12
test_djsdf99.84 1099.81 1599.91 299.94 1699.84 2499.77 1499.80 6499.73 5899.97 1499.92 2199.77 1199.98 1199.43 57100.00 199.90 12
CVMVSNet98.61 23698.88 20097.80 32799.58 17693.60 36299.26 14499.64 14799.66 8299.72 11399.67 15493.26 31199.93 8299.30 8199.81 17399.87 17
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1199.99 1100.00 199.98 1099.78 10100.00 199.92 10100.00 199.87 17
FC-MVSNet-test99.70 2699.65 3699.86 1899.88 3999.86 1899.72 2999.78 7599.90 1499.82 6799.83 5598.45 16399.87 18799.51 4999.97 4399.86 19
PS-CasMVS99.66 4099.58 5599.89 899.80 7399.85 1999.66 5299.73 9799.62 8999.84 6299.71 12598.62 13599.96 4299.30 8199.96 5799.86 19
anonymousdsp99.80 1499.77 2099.90 599.96 599.88 1299.73 2699.85 4099.70 6999.92 2999.93 1799.45 3399.97 2399.36 69100.00 199.85 21
UniMVSNet_ETH3D99.85 899.83 1399.90 599.89 3499.91 499.89 499.71 10999.93 1099.95 2099.89 3199.71 1499.96 4299.51 4999.97 4399.84 22
CP-MVSNet99.54 6599.43 8399.87 1599.76 10299.82 3599.57 7799.61 15999.54 10299.80 7799.64 16597.79 22399.95 5299.21 9199.94 7999.84 22
Test_1112_low_res98.95 20498.73 21499.63 12199.68 14899.15 20598.09 30599.80 6497.14 32499.46 20599.40 26196.11 28399.89 15999.01 11999.84 14799.84 22
ANet_high99.88 599.87 999.91 299.99 199.91 499.65 58100.00 199.90 14100.00 199.97 1199.61 2299.97 2399.75 24100.00 199.84 22
patch_mono-299.51 6899.46 7699.64 11499.70 13699.11 20899.04 20599.87 3399.71 6499.47 20199.79 8198.24 18799.98 1199.38 6499.96 5799.83 26
nrg03099.70 2699.66 3499.82 2799.76 10299.84 2499.61 6699.70 11599.93 1099.78 8699.68 14999.10 7399.78 28799.45 5599.96 5799.83 26
FIs99.65 4599.58 5599.84 2399.84 5099.85 1999.66 5299.75 8899.86 2999.74 10899.79 8198.27 18599.85 22299.37 6799.93 8799.83 26
v7n99.82 1399.80 1799.88 1299.96 599.84 2499.82 899.82 5399.84 3799.94 2299.91 2499.13 7299.96 4299.83 1899.99 1399.83 26
PEN-MVS99.66 4099.59 5199.89 899.83 5499.87 1599.66 5299.73 9799.70 6999.84 6299.73 11198.56 14599.96 4299.29 8499.94 7999.83 26
WR-MVS_H99.61 5499.53 6899.87 1599.80 7399.83 2999.67 4899.75 8899.58 10199.85 5999.69 13898.18 19699.94 6599.28 8699.95 6899.83 26
Anonymous2023121199.62 5299.57 5899.76 5199.61 16599.60 11399.81 999.73 9799.82 4299.90 3899.90 2797.97 21199.86 20599.42 6299.96 5799.80 32
APDe-MVS99.48 7399.36 9599.85 2099.55 19899.81 3899.50 8799.69 12198.99 18299.75 10099.71 12598.79 11199.93 8298.46 16299.85 14299.80 32
DTE-MVSNet99.68 3299.61 4699.88 1299.80 7399.87 1599.67 4899.71 10999.72 6299.84 6299.78 8898.67 12999.97 2399.30 8199.95 6899.80 32
XXY-MVS99.71 2599.67 3399.81 3099.89 3499.72 7499.59 7299.82 5399.39 12899.82 6799.84 5499.38 4099.91 12499.38 6499.93 8799.80 32
1112_ss99.05 18298.84 20599.67 9599.66 15499.29 17998.52 27299.82 5397.65 29899.43 21199.16 31096.42 27399.91 12499.07 11599.84 14799.80 32
LTVRE_ROB99.19 199.88 599.87 999.88 1299.91 2799.90 799.96 199.92 1999.90 1499.97 1499.87 4099.81 899.95 5299.54 4499.99 1399.80 32
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvs199.48 7399.65 3698.97 26799.54 19997.16 32399.11 19199.98 999.78 5299.96 1699.81 6798.72 12399.97 2399.95 899.97 4399.79 38
bld_raw_dy_0_6499.70 2699.65 3699.85 2099.95 1399.77 5099.66 5299.71 10999.95 599.91 3299.77 9598.35 176100.00 199.54 4499.99 1399.79 38
PMMVS299.48 7399.45 7899.57 14799.76 10298.99 22098.09 30599.90 2598.95 18799.78 8699.58 20699.57 2699.93 8299.48 5299.95 6899.79 38
MSC_two_6792asdad99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
No_MVS99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
dcpmvs_299.61 5499.64 4099.53 15899.79 8398.82 23799.58 7499.97 1199.95 599.96 1699.76 9998.44 16499.99 699.34 7299.96 5799.78 41
CHOSEN 1792x268899.39 10099.30 10899.65 10799.88 3999.25 18898.78 24899.88 3198.66 22099.96 1699.79 8197.45 24099.93 8299.34 7299.99 1399.78 41
test_vis1_rt99.45 8399.46 7699.41 19199.71 12898.63 25598.99 21899.96 1599.03 18099.95 2099.12 31698.75 11899.84 23699.82 2099.82 16499.77 45
IU-MVS99.69 14099.77 5099.22 30097.50 30699.69 12497.75 22299.70 21999.77 45
test_0728_THIRD99.18 15699.62 15299.61 19198.58 14299.91 12497.72 22499.80 17899.77 45
test_0728_SECOND99.83 2599.70 13699.79 4499.14 17999.61 15999.92 10297.88 20799.72 21499.77 45
MSP-MVS99.04 18598.79 21299.81 3099.78 9099.73 7099.35 11799.57 18998.54 23499.54 18398.99 33396.81 26499.93 8296.97 27699.53 27299.77 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.74 2199.70 2599.85 2099.93 2399.83 2999.76 1899.81 6299.96 399.91 3299.81 6798.60 13999.94 6599.58 3899.98 3199.77 45
DPE-MVScopyleft99.14 16698.92 19599.82 2799.57 18699.77 5098.74 25199.60 17198.55 23199.76 9399.69 13898.23 19199.92 10296.39 30899.75 19699.76 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Baseline_NR-MVSNet99.49 7199.37 9299.82 2799.91 2799.84 2498.83 23699.86 3699.68 7499.65 13899.88 3697.67 23099.87 18799.03 11799.86 13899.76 51
OurMVSNet-221017-099.75 1899.71 2499.84 2399.96 599.83 2999.83 699.85 4099.80 4799.93 2599.93 1798.54 14899.93 8299.59 3599.98 3199.76 51
test_241102_TWO99.54 20699.13 16999.76 9399.63 17598.32 18299.92 10297.85 21399.69 22399.75 54
DP-MVS99.48 7399.39 8799.74 6599.57 18699.62 10599.29 13799.61 15999.87 2699.74 10899.76 9998.69 12599.87 18798.20 18099.80 17899.75 54
tt080599.63 4699.57 5899.81 3099.87 4399.88 1299.58 7498.70 32999.72 6299.91 3299.60 19999.43 3499.81 27599.81 2199.53 27299.73 56
v1099.69 2999.69 2999.66 10299.81 6899.39 15899.66 5299.75 8899.60 9899.92 2999.87 4098.75 11899.86 20599.90 1199.99 1399.73 56
EI-MVSNet-UG-set99.48 7399.50 7099.42 18499.57 18698.65 25399.24 15199.46 23999.68 7499.80 7799.66 15898.99 8899.89 15999.19 9599.90 10199.72 58
Vis-MVSNetpermissive99.75 1899.74 2399.79 3899.88 3999.66 9399.69 4199.92 1999.67 7899.77 9199.75 10499.61 2299.98 1199.35 7199.98 3199.72 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HyFIR lowres test98.91 20798.64 22199.73 7499.85 4999.47 13398.07 30899.83 4898.64 22299.89 4299.60 19992.57 318100.00 199.33 7599.97 4399.72 58
EI-MVSNet-Vis-set99.47 8099.49 7199.42 18499.57 18698.66 25099.24 15199.46 23999.67 7899.79 8299.65 16398.97 9299.89 15999.15 10499.89 11099.71 61
v899.68 3299.69 2999.65 10799.80 7399.40 15699.66 5299.76 8399.64 8699.93 2599.85 4998.66 13199.84 23699.88 1599.99 1399.71 61
TransMVSNet (Re)99.78 1699.77 2099.81 3099.91 2799.85 1999.75 2199.86 3699.70 6999.91 3299.89 3199.60 2499.87 18799.59 3599.74 20399.71 61
test111197.74 29298.16 26896.49 35199.60 16789.86 38099.71 3391.21 37799.89 2099.88 4899.87 4093.73 30799.90 14299.56 4199.99 1399.70 64
VPA-MVSNet99.66 4099.62 4299.79 3899.68 14899.75 6299.62 6199.69 12199.85 3499.80 7799.81 6798.81 10699.91 12499.47 5399.88 11999.70 64
WR-MVS99.11 17398.93 19199.66 10299.30 28399.42 15198.42 28199.37 26599.04 17999.57 16999.20 30896.89 26299.86 20598.66 15499.87 13099.70 64
ACMH98.42 699.59 5699.54 6499.72 8099.86 4699.62 10599.56 7999.79 7098.77 21299.80 7799.85 4999.64 1899.85 22298.70 15099.89 11099.70 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs699.86 799.86 1199.83 2599.94 1699.90 799.83 699.91 2299.85 3499.94 2299.95 1399.73 1399.90 14299.65 3099.97 4399.69 68
HPM-MVS_fast99.43 8799.30 10899.80 3499.83 5499.81 3899.52 8399.70 11598.35 25699.51 19599.50 23699.31 4899.88 17398.18 18499.84 14799.69 68
LPG-MVS_test99.22 14399.05 16499.74 6599.82 6199.63 10399.16 17599.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
LGP-MVS_train99.74 6599.82 6199.63 10399.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
SteuartSystems-ACMMP99.30 12299.14 13499.76 5199.87 4399.66 9399.18 16699.60 17198.55 23199.57 16999.67 15499.03 8599.94 6597.01 27499.80 17899.69 68
Skip Steuart: Steuart Systems R&D Blog.
MG-MVS98.52 24898.39 24698.94 27099.15 30997.39 31898.18 29499.21 30398.89 19899.23 25499.63 17597.37 24599.74 30394.22 35399.61 25199.69 68
ACMMP_NAP99.28 12499.11 14399.79 3899.75 11399.81 3898.95 22499.53 21598.27 26599.53 18899.73 11198.75 11899.87 18797.70 22999.83 15599.68 74
HFP-MVS99.25 13199.08 15499.76 5199.73 12299.70 8399.31 12899.59 17798.36 25199.36 22899.37 26998.80 11099.91 12497.43 25099.75 19699.68 74
EI-MVSNet99.38 10299.44 8199.21 23999.58 17698.09 28999.26 14499.46 23999.62 8999.75 10099.67 15498.54 14899.85 22299.15 10499.92 9199.68 74
TranMVSNet+NR-MVSNet99.54 6599.47 7299.76 5199.58 17699.64 9999.30 13199.63 14999.61 9299.71 11899.56 21898.76 11699.96 4299.14 11099.92 9199.68 74
PVSNet_Blended_VisFu99.40 9699.38 8999.44 17899.90 3298.66 25098.94 22699.91 2297.97 28299.79 8299.73 11199.05 8399.97 2399.15 10499.99 1399.68 74
IterMVS-LS99.41 9499.47 7299.25 23599.81 6898.09 28998.85 23399.76 8399.62 8999.83 6699.64 16598.54 14899.97 2399.15 10499.99 1399.68 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MP-MVS-pluss99.14 16698.92 19599.80 3499.83 5499.83 2998.61 25799.63 14996.84 33199.44 20799.58 20698.81 10699.91 12497.70 22999.82 16499.67 80
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R99.23 13599.05 16499.77 4499.76 10299.70 8399.31 12899.59 17798.41 24599.32 23799.36 27398.73 12299.93 8297.29 25799.74 20399.67 80
XVS99.27 12899.11 14399.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31099.47 24798.47 15999.88 17397.62 23799.73 20899.67 80
v124099.56 6099.58 5599.51 16299.80 7399.00 21999.00 21399.65 14199.15 16799.90 3899.75 10499.09 7599.88 17399.90 1199.96 5799.67 80
X-MVStestdata96.09 33194.87 34099.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31061.30 38498.47 15999.88 17397.62 23799.73 20899.67 80
VPNet99.46 8199.37 9299.71 8599.82 6199.59 11599.48 9299.70 11599.81 4499.69 12499.58 20697.66 23499.86 20599.17 10099.44 28599.67 80
ACMMPR99.23 13599.06 16099.76 5199.74 11999.69 8699.31 12899.59 17798.36 25199.35 22999.38 26798.61 13799.93 8297.43 25099.75 19699.67 80
SixPastTwentyTwo99.42 9099.30 10899.76 5199.92 2699.67 9199.70 3499.14 30999.65 8499.89 4299.90 2796.20 28199.94 6599.42 6299.92 9199.67 80
HPM-MVScopyleft99.25 13199.07 15899.78 4199.81 6899.75 6299.61 6699.67 12897.72 29599.35 22999.25 29799.23 5999.92 10297.21 26899.82 16499.67 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v14419299.55 6399.54 6499.58 14199.78 9099.20 20099.11 19199.62 15299.18 15699.89 4299.72 11898.66 13199.87 18799.88 1599.97 4399.66 89
v192192099.56 6099.57 5899.55 15399.75 11399.11 20899.05 20399.61 15999.15 16799.88 4899.71 12599.08 7899.87 18799.90 1199.97 4399.66 89
v119299.57 5799.57 5899.57 14799.77 9899.22 19599.04 20599.60 17199.18 15699.87 5699.72 11899.08 7899.85 22299.89 1499.98 3199.66 89
PGM-MVS99.20 15099.01 17599.77 4499.75 11399.71 7699.16 17599.72 10697.99 28099.42 21399.60 19998.81 10699.93 8296.91 27999.74 20399.66 89
mPP-MVS99.19 15399.00 17899.76 5199.76 10299.68 8999.38 10999.54 20698.34 26099.01 28299.50 23698.53 15299.93 8297.18 26999.78 18899.66 89
CP-MVS99.23 13599.05 16499.75 6099.66 15499.66 9399.38 10999.62 15298.38 24999.06 28099.27 29298.79 11199.94 6597.51 24699.82 16499.66 89
EG-PatchMatch MVS99.57 5799.56 6399.62 13099.77 9899.33 17399.26 14499.76 8399.32 13699.80 7799.78 8899.29 5099.87 18799.15 10499.91 10099.66 89
UGNet99.38 10299.34 9799.49 16598.90 33898.90 23399.70 3499.35 26999.86 2998.57 32499.81 6798.50 15899.93 8299.38 6499.98 3199.66 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250694.73 34194.59 34395.15 35799.59 17185.90 38299.75 2174.01 38399.89 2099.71 11899.86 4779.00 38199.90 14299.52 4899.99 1399.65 97
ECVR-MVScopyleft97.73 29398.04 27396.78 34599.59 17190.81 37699.72 2990.43 37999.89 2099.86 5799.86 4793.60 30999.89 15999.46 5499.99 1399.65 97
h-mvs3398.61 23698.34 25299.44 17899.60 16798.67 24799.27 14299.44 24499.68 7499.32 23799.49 24092.50 321100.00 199.24 8896.51 37099.65 97
TSAR-MVS + MP.99.34 11599.24 12399.63 12199.82 6199.37 16399.26 14499.35 26998.77 21299.57 16999.70 13299.27 5599.88 17397.71 22699.75 19699.65 97
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MTAPA99.35 11099.20 12699.80 3499.81 6899.81 3899.33 12199.53 21599.27 14199.42 21399.63 17598.21 19299.95 5297.83 21799.79 18399.65 97
MCST-MVS99.02 18898.81 20999.65 10799.58 17699.49 13198.58 26199.07 31298.40 24799.04 28199.25 29798.51 15799.80 28197.31 25699.51 27699.65 97
UniMVSNet_NR-MVSNet99.37 10599.25 12199.72 8099.47 23499.56 12298.97 22299.61 15999.43 12399.67 13299.28 29097.85 21999.95 5299.17 10099.81 17399.65 97
casdiffmvs_mvgpermissive99.68 3299.68 3299.69 9099.81 6899.59 11599.29 13799.90 2599.71 6499.79 8299.73 11199.54 2999.84 23699.36 6999.96 5799.65 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ZNCC-MVS99.22 14399.04 16999.77 4499.76 10299.73 7099.28 13999.56 19498.19 27099.14 26999.29 28998.84 10599.92 10297.53 24599.80 17899.64 105
v114499.54 6599.53 6899.59 13899.79 8399.28 18199.10 19399.61 15999.20 15499.84 6299.73 11198.67 12999.84 23699.86 1799.98 3199.64 105
v2v48299.50 6999.47 7299.58 14199.78 9099.25 18899.14 17999.58 18799.25 14599.81 7499.62 18298.24 18799.84 23699.83 1899.97 4399.64 105
K. test v398.87 21598.60 22499.69 9099.93 2399.46 13799.74 2394.97 37099.78 5299.88 4899.88 3693.66 30899.97 2399.61 3399.95 6899.64 105
DeepC-MVS98.90 499.62 5299.61 4699.67 9599.72 12599.44 14499.24 15199.71 10999.27 14199.93 2599.90 2799.70 1699.93 8298.99 12099.99 1399.64 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 8599.45 7899.40 19399.37 25898.64 25497.90 32799.59 17799.27 14199.92 2999.82 6299.74 1299.93 8299.55 4399.87 13099.63 110
SMA-MVScopyleft99.19 15399.00 17899.73 7499.46 23899.73 7099.13 18599.52 22097.40 31199.57 16999.64 16598.93 9599.83 25197.61 23999.79 18399.63 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
IterMVS-SCA-FT99.00 19499.16 13098.51 30399.75 11395.90 34598.07 30899.84 4699.84 3799.89 4299.73 11196.01 28599.99 699.33 75100.00 199.63 110
pm-mvs199.79 1599.79 1899.78 4199.91 2799.83 2999.76 1899.87 3399.73 5899.89 4299.87 4099.63 1999.87 18799.54 4499.92 9199.63 110
MP-MVScopyleft99.06 17998.83 20799.76 5199.76 10299.71 7699.32 12399.50 22898.35 25698.97 28499.48 24398.37 17499.92 10295.95 32799.75 19699.63 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DU-MVS99.33 11899.21 12599.71 8599.43 24599.56 12298.83 23699.53 21599.38 12999.67 13299.36 27397.67 23099.95 5299.17 10099.81 17399.63 110
NR-MVSNet99.40 9699.31 10399.68 9299.43 24599.55 12599.73 2699.50 22899.46 11599.88 4899.36 27397.54 23799.87 18798.97 12499.87 13099.63 110
IterMVS98.97 19899.16 13098.42 30799.74 11995.64 34898.06 31099.83 4899.83 4099.85 5999.74 10796.10 28499.99 699.27 87100.00 199.63 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EPP-MVSNet99.17 16199.00 17899.66 10299.80 7399.43 14899.70 3499.24 29699.48 10899.56 17699.77 9594.89 29399.93 8298.72 14999.89 11099.63 110
ACMMPcopyleft99.25 13199.08 15499.74 6599.79 8399.68 8999.50 8799.65 14198.07 27699.52 19099.69 13898.57 14399.92 10297.18 26999.79 18399.63 110
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DeepC-MVS_fast98.47 599.23 13599.12 14099.56 15099.28 28899.22 19598.99 21899.40 25799.08 17499.58 16699.64 16598.90 10199.83 25197.44 24999.75 19699.63 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DVP-MVS++99.38 10299.25 12199.77 4499.03 32899.77 5099.74 2399.61 15999.18 15699.76 9399.61 19199.00 8699.92 10297.72 22499.60 25499.62 121
PC_three_145297.56 30099.68 12799.41 25799.09 7597.09 37696.66 29499.60 25499.62 121
GeoE99.69 2999.66 3499.78 4199.76 10299.76 5899.60 7199.82 5399.46 11599.75 10099.56 21899.63 1999.95 5299.43 5799.88 11999.62 121
test_method91.72 34292.32 34589.91 35993.49 38170.18 38390.28 37299.56 19461.71 37695.39 37399.52 23193.90 30299.94 6598.76 14598.27 35199.62 121
GST-MVS99.16 16298.96 18999.75 6099.73 12299.73 7099.20 16199.55 20098.22 26799.32 23799.35 27898.65 13399.91 12496.86 28299.74 20399.62 121
new-patchmatchnet99.35 11099.57 5898.71 29899.82 6196.62 33598.55 26799.75 8899.50 10699.88 4899.87 4099.31 4899.88 17399.43 57100.00 199.62 121
CPTT-MVS98.74 22798.44 24199.64 11499.61 16599.38 16099.18 16699.55 20096.49 33599.27 24899.37 26997.11 25799.92 10295.74 33399.67 23499.62 121
MIMVSNet199.66 4099.62 4299.80 3499.94 1699.87 1599.69 4199.77 7899.78 5299.93 2599.89 3197.94 21299.92 10299.65 3099.98 3199.62 121
DeepPCF-MVS98.42 699.18 15799.02 17299.67 9599.22 29799.75 6297.25 35599.47 23698.72 21799.66 13699.70 13299.29 5099.63 34898.07 19299.81 17399.62 121
3Dnovator+98.92 399.35 11099.24 12399.67 9599.35 26399.47 13399.62 6199.50 22899.44 11899.12 27299.78 8898.77 11599.94 6597.87 21099.72 21499.62 121
DVP-MVScopyleft99.32 12099.17 12999.77 4499.69 14099.80 4299.14 17999.31 27899.16 16399.62 15299.61 19198.35 17699.91 12497.88 20799.72 21499.61 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 21598.59 22699.71 8599.50 21899.62 10599.01 21199.57 18996.80 33399.54 18399.63 17598.29 18399.91 12495.24 34299.71 21799.61 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC98.82 21998.57 23099.58 14199.21 29999.31 17698.61 25799.25 29398.65 22198.43 33099.26 29597.86 21799.81 27596.55 29999.27 30899.61 131
TAMVS99.49 7199.45 7899.63 12199.48 22899.42 15199.45 9899.57 18999.66 8299.78 8699.83 5597.85 21999.86 20599.44 5699.96 5799.61 131
HPM-MVS++copyleft98.96 20198.70 21999.74 6599.52 21099.71 7698.86 23199.19 30498.47 24198.59 32299.06 32398.08 20299.91 12496.94 27799.60 25499.60 135
V4299.56 6099.54 6499.63 12199.79 8399.46 13799.39 10799.59 17799.24 14799.86 5799.70 13298.55 14699.82 26099.79 2299.95 6899.60 135
HQP_MVS98.90 20998.68 22099.55 15399.58 17699.24 19298.80 24499.54 20698.94 18899.14 26999.25 29797.24 24999.82 26095.84 33099.78 18899.60 135
plane_prior599.54 20699.82 26095.84 33099.78 18899.60 135
TDRefinement99.72 2299.70 2599.77 4499.90 3299.85 1999.86 599.92 1999.69 7299.78 8699.92 2199.37 4299.88 17398.93 13299.95 6899.60 135
ACMH+98.40 899.50 6999.43 8399.71 8599.86 4699.76 5899.32 12399.77 7899.53 10499.77 9199.76 9999.26 5699.78 28797.77 21899.88 11999.60 135
ACMM98.09 1199.46 8199.38 8999.72 8099.80 7399.69 8699.13 18599.65 14198.99 18299.64 13999.72 11899.39 3699.86 20598.23 17799.81 17399.60 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDDNet98.97 19898.82 20899.42 18499.71 12898.81 23899.62 6198.68 33099.81 4499.38 22699.80 7194.25 30099.85 22298.79 14199.32 30099.59 142
casdiffmvspermissive99.63 4699.61 4699.67 9599.79 8399.59 11599.13 18599.85 4099.79 5099.76 9399.72 11899.33 4799.82 26099.21 9199.94 7999.59 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet (Re)99.37 10599.26 11999.68 9299.51 21299.58 11998.98 22199.60 17199.43 12399.70 12199.36 27397.70 22699.88 17399.20 9499.87 13099.59 142
DSMNet-mixed99.48 7399.65 3698.95 26999.71 12897.27 32099.50 8799.82 5399.59 10099.41 21999.85 4999.62 21100.00 199.53 4799.89 11099.59 142
3Dnovator99.15 299.43 8799.36 9599.65 10799.39 25399.42 15199.70 3499.56 19499.23 14999.35 22999.80 7199.17 6599.95 5298.21 17999.84 14799.59 142
SED-MVS99.40 9699.28 11599.77 4499.69 14099.82 3599.20 16199.54 20699.13 16999.82 6799.63 17598.91 9899.92 10297.85 21399.70 21999.58 147
OPU-MVS99.29 22499.12 31499.44 14499.20 16199.40 26199.00 8698.84 37396.54 30099.60 25499.58 147
EPNet98.13 27897.77 29399.18 24494.57 38097.99 29499.24 15197.96 35299.74 5797.29 36299.62 18293.13 31399.97 2398.59 15699.83 15599.58 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet99.03 18698.85 20399.55 15399.80 7399.25 18899.73 2699.15 30899.37 13099.61 15899.71 12594.73 29699.81 27597.70 22999.88 11999.58 147
ACMP97.51 1499.05 18298.84 20599.67 9599.78 9099.55 12598.88 22999.66 13297.11 32699.47 20199.60 19999.07 8099.89 15996.18 31799.85 14299.58 147
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
SR-MVS99.19 15399.00 17899.74 6599.51 21299.72 7499.18 16699.60 17198.85 20199.47 20199.58 20698.38 17399.92 10296.92 27899.54 27099.57 152
lessismore_v099.64 11499.86 4699.38 16090.66 37899.89 4299.83 5594.56 29899.97 2399.56 4199.92 9199.57 152
pmmvs599.19 15399.11 14399.42 18499.76 10298.88 23498.55 26799.73 9798.82 20599.72 11399.62 18296.56 26799.82 26099.32 7799.95 6899.56 154
APD-MVS_3200maxsize99.31 12199.16 13099.74 6599.53 20599.75 6299.27 14299.61 15999.19 15599.57 16999.64 16598.76 11699.90 14297.29 25799.62 24499.56 154
CDPH-MVS98.56 24498.20 26399.61 13399.50 21899.46 13798.32 28699.41 25095.22 35299.21 25999.10 32098.34 17999.82 26095.09 34599.66 23799.56 154
Anonymous2024052199.44 8599.42 8599.49 16599.89 3498.96 22599.62 6199.76 8399.85 3499.82 6799.88 3696.39 27699.97 2399.59 3599.98 3199.55 157
our_test_398.85 21799.09 15298.13 31999.66 15494.90 35597.72 33399.58 18799.07 17699.64 13999.62 18298.19 19499.93 8298.41 16499.95 6899.55 157
YYNet198.95 20498.99 18398.84 28699.64 15897.14 32598.22 29399.32 27498.92 19399.59 16499.66 15897.40 24299.83 25198.27 17499.90 10199.55 157
MDA-MVSNet_test_wron98.95 20498.99 18398.85 28499.64 15897.16 32398.23 29299.33 27298.93 19199.56 17699.66 15897.39 24499.83 25198.29 17299.88 11999.55 157
MVSFormer99.41 9499.44 8199.31 22199.57 18698.40 26899.77 1499.80 6499.73 5899.63 14399.30 28698.02 20699.98 1199.43 5799.69 22399.55 157
jason99.16 16299.11 14399.32 21899.75 11398.44 26598.26 29099.39 26098.70 21899.74 10899.30 28698.54 14899.97 2398.48 16199.82 16499.55 157
jason: jason.
CDS-MVSNet99.22 14399.13 13699.50 16499.35 26399.11 20898.96 22399.54 20699.46 11599.61 15899.70 13296.31 27899.83 25199.34 7299.88 11999.55 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
COLMAP_ROBcopyleft98.06 1299.45 8399.37 9299.70 8999.83 5499.70 8399.38 10999.78 7599.53 10499.67 13299.78 8899.19 6399.86 20597.32 25599.87 13099.55 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
iter_conf_final98.75 22598.54 23499.40 19399.33 27698.75 24299.26 14499.59 17799.80 4799.76 9399.58 20690.17 34799.92 10299.37 6799.97 4399.54 165
SR-MVS-dyc-post99.27 12899.11 14399.73 7499.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.41 16899.91 12497.27 26099.61 25199.54 165
RE-MVS-def99.13 13699.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.57 14397.27 26099.61 25199.54 165
SD-MVS99.01 19299.30 10898.15 31899.50 21899.40 15698.94 22699.61 15999.22 15399.75 10099.82 6299.54 2995.51 37897.48 24799.87 13099.54 165
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CNVR-MVS98.99 19798.80 21199.56 15099.25 29399.43 14898.54 27099.27 28798.58 22898.80 30699.43 25598.53 15299.70 31497.22 26799.59 25899.54 165
MVS_111021_HR99.12 17099.02 17299.40 19399.50 21899.11 20897.92 32499.71 10998.76 21599.08 27699.47 24799.17 6599.54 35897.85 21399.76 19499.54 165
v14899.40 9699.41 8699.39 19799.76 10298.94 22699.09 19799.59 17799.17 16199.81 7499.61 19198.41 16899.69 32099.32 7799.94 7999.53 171
iter_conf0598.46 25698.23 25999.15 24799.04 32797.99 29499.10 19399.61 15999.79 5099.76 9399.58 20687.88 35799.92 10299.31 8099.97 4399.53 171
diffmvspermissive99.34 11599.32 10299.39 19799.67 15398.77 24198.57 26599.81 6299.61 9299.48 20099.41 25798.47 15999.86 20598.97 12499.90 10199.53 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 4699.62 4299.66 10299.80 7399.62 10599.44 10199.80 6499.71 6499.72 11399.69 13899.15 6799.83 25199.32 7799.94 7999.53 171
HQP4-MVS98.15 33999.70 31499.53 171
GBi-Net99.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
test199.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
FMVSNet199.66 4099.63 4199.73 7499.78 9099.77 5099.68 4499.70 11599.67 7899.82 6799.83 5598.98 9099.90 14299.24 8899.97 4399.53 171
HQP-MVS98.36 26598.02 27599.39 19799.31 27998.94 22697.98 31799.37 26597.45 30898.15 33998.83 34996.67 26599.70 31494.73 34799.67 23499.53 171
QAPM98.40 26397.99 27699.65 10799.39 25399.47 13399.67 4899.52 22091.70 36698.78 30999.80 7198.55 14699.95 5294.71 34999.75 19699.53 171
F-COLMAP98.74 22798.45 24099.62 13099.57 18699.47 13398.84 23499.65 14196.31 33998.93 28899.19 30997.68 22999.87 18796.52 30199.37 29599.53 171
MVSTER98.47 25598.22 26199.24 23799.06 32498.35 27399.08 20099.46 23999.27 14199.75 10099.66 15888.61 35599.85 22299.14 11099.92 9199.52 182
PVSNet_BlendedMVS99.03 18699.01 17599.09 25699.54 19997.99 29498.58 26199.82 5397.62 29999.34 23299.71 12598.52 15599.77 29597.98 19899.97 4399.52 182
OPM-MVS99.26 13099.13 13699.63 12199.70 13699.61 11198.58 26199.48 23398.50 23799.52 19099.63 17599.14 7099.76 29797.89 20699.77 19299.51 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest99.21 14899.07 15899.63 12199.78 9099.64 9999.12 18999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
TestCases99.63 12199.78 9099.64 9999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
BH-RMVSNet98.41 26198.14 26999.21 23999.21 29998.47 26298.60 25998.26 34898.35 25698.93 28899.31 28497.20 25499.66 33994.32 35199.10 31799.51 184
USDC98.96 20198.93 19199.05 26299.54 19997.99 29497.07 36199.80 6498.21 26899.75 10099.77 9598.43 16599.64 34797.90 20599.88 11999.51 184
test9_res95.10 34499.44 28599.50 189
train_agg98.35 26897.95 28099.57 14799.35 26399.35 17098.11 30399.41 25094.90 35697.92 34998.99 33398.02 20699.85 22295.38 34099.44 28599.50 189
agg_prior294.58 35099.46 28499.50 189
VDD-MVS99.20 15099.11 14399.44 17899.43 24598.98 22199.50 8798.32 34799.80 4799.56 17699.69 13896.99 26099.85 22298.99 12099.73 20899.50 189
MDA-MVSNet-bldmvs99.06 17999.05 16499.07 26099.80 7397.83 30498.89 22899.72 10699.29 13799.63 14399.70 13296.47 27199.89 15998.17 18699.82 16499.50 189
KD-MVS_self_test99.63 4699.59 5199.76 5199.84 5099.90 799.37 11399.79 7099.83 4099.88 4899.85 4998.42 16799.90 14299.60 3499.73 20899.49 194
SF-MVS99.10 17698.93 19199.62 13099.58 17699.51 12999.13 18599.65 14197.97 28299.42 21399.61 19198.86 10399.87 18796.45 30699.68 22899.49 194
Anonymous2024052999.42 9099.34 9799.65 10799.53 20599.60 11399.63 6099.39 26099.47 11299.76 9399.78 8898.13 19899.86 20598.70 15099.68 22899.49 194
WTY-MVS98.59 24198.37 24899.26 23299.43 24598.40 26898.74 25199.13 31198.10 27399.21 25999.24 30294.82 29499.90 14297.86 21198.77 33499.49 194
ppachtmachnet_test98.89 21299.12 14098.20 31799.66 15495.24 35297.63 33799.68 12499.08 17499.78 8699.62 18298.65 13399.88 17398.02 19399.96 5799.48 198
Anonymous2023120699.35 11099.31 10399.47 17199.74 11999.06 21899.28 13999.74 9399.23 14999.72 11399.53 22997.63 23699.88 17399.11 11299.84 14799.48 198
test_prior99.46 17399.35 26399.22 19599.39 26099.69 32099.48 198
test1299.54 15799.29 28599.33 17399.16 30798.43 33097.54 23799.82 26099.47 28299.48 198
VNet99.18 15799.06 16099.56 15099.24 29599.36 16799.33 12199.31 27899.67 7899.47 20199.57 21596.48 27099.84 23699.15 10499.30 30299.47 202
test20.0399.55 6399.54 6499.58 14199.79 8399.37 16399.02 20999.89 2799.60 9899.82 6799.62 18298.81 10699.89 15999.43 5799.86 13899.47 202
114514_t98.49 25398.11 27099.64 11499.73 12299.58 11999.24 15199.76 8389.94 36999.42 21399.56 21897.76 22599.86 20597.74 22399.82 16499.47 202
sss98.90 20998.77 21399.27 22999.48 22898.44 26598.72 25399.32 27497.94 28699.37 22799.35 27896.31 27899.91 12498.85 13499.63 24399.47 202
旧先验199.49 22399.29 17999.26 29099.39 26597.67 23099.36 29699.46 206
MVP-Stereo99.16 16299.08 15499.43 18299.48 22899.07 21699.08 20099.55 20098.63 22399.31 24199.68 14998.19 19499.78 28798.18 18499.58 25999.45 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
新几何199.52 16099.50 21899.22 19599.26 29095.66 34898.60 32199.28 29097.67 23099.89 15995.95 32799.32 30099.45 207
LFMVS98.46 25698.19 26699.26 23299.24 29598.52 26199.62 6196.94 36399.87 2699.31 24199.58 20691.04 33499.81 27598.68 15399.42 28999.45 207
testgi99.29 12399.26 11999.37 20499.75 11398.81 23898.84 23499.89 2798.38 24999.75 10099.04 32699.36 4599.86 20599.08 11499.25 30999.45 207
UnsupCasMVSNet_eth98.83 21898.57 23099.59 13899.68 14899.45 14298.99 21899.67 12899.48 10899.55 18199.36 27394.92 29299.86 20598.95 13096.57 36999.45 207
无先验98.01 31399.23 29795.83 34599.85 22295.79 33299.44 212
testdata99.42 18499.51 21298.93 22999.30 28196.20 34098.87 29899.40 26198.33 18199.89 15996.29 31299.28 30599.44 212
XVG-OURS-SEG-HR99.16 16298.99 18399.66 10299.84 5099.64 9998.25 29199.73 9798.39 24899.63 14399.43 25599.70 1699.90 14297.34 25498.64 34299.44 212
FMVSNet299.35 11099.28 11599.55 15399.49 22399.35 17099.45 9899.57 18999.44 11899.70 12199.74 10797.21 25199.87 18799.03 11799.94 7999.44 212
N_pmnet98.73 22998.53 23699.35 21099.72 12598.67 24798.34 28494.65 37198.35 25699.79 8299.68 14998.03 20599.93 8298.28 17399.92 9199.44 212
RPSCF99.18 15799.02 17299.64 11499.83 5499.85 1999.44 10199.82 5398.33 26199.50 19799.78 8897.90 21499.65 34596.78 28799.83 15599.44 212
原ACMM199.37 20499.47 23498.87 23699.27 28796.74 33498.26 33499.32 28297.93 21399.82 26095.96 32699.38 29399.43 218
test22299.51 21299.08 21597.83 33099.29 28395.21 35398.68 31699.31 28497.28 24899.38 29399.43 218
XVG-OURS99.21 14899.06 16099.65 10799.82 6199.62 10597.87 32899.74 9398.36 25199.66 13699.68 14999.71 1499.90 14296.84 28599.88 11999.43 218
CSCG99.37 10599.29 11399.60 13699.71 12899.46 13799.43 10399.85 4098.79 20999.41 21999.60 19998.92 9699.92 10298.02 19399.92 9199.43 218
TinyColmap98.97 19898.93 19199.07 26099.46 23898.19 28097.75 33299.75 8898.79 20999.54 18399.70 13298.97 9299.62 34996.63 29799.83 15599.41 222
Anonymous20240521198.75 22598.46 23999.63 12199.34 27199.66 9399.47 9597.65 35699.28 14099.56 17699.50 23693.15 31299.84 23698.62 15599.58 25999.40 223
XVG-ACMP-BASELINE99.23 13599.10 15199.63 12199.82 6199.58 11998.83 23699.72 10698.36 25199.60 16199.71 12598.92 9699.91 12497.08 27299.84 14799.40 223
MS-PatchMatch99.00 19498.97 18799.09 25699.11 31998.19 28098.76 25099.33 27298.49 23999.44 20799.58 20698.21 19299.69 32098.20 18099.62 24499.39 225
FMVSNet398.80 22198.63 22399.32 21899.13 31298.72 24599.10 19399.48 23399.23 14999.62 15299.64 16592.57 31899.86 20598.96 12699.90 10199.39 225
ambc99.20 24199.35 26398.53 25999.17 17199.46 23999.67 13299.80 7198.46 16299.70 31497.92 20399.70 21999.38 227
FMVSNet597.80 29097.25 30699.42 18498.83 34698.97 22399.38 10999.80 6498.87 19999.25 25099.69 13880.60 37699.91 12498.96 12699.90 10199.38 227
PAPM_NR98.36 26598.04 27399.33 21499.48 22898.93 22998.79 24799.28 28697.54 30398.56 32598.57 35997.12 25699.69 32094.09 35598.90 32999.38 227
EPNet_dtu97.62 29897.79 29297.11 34496.67 37792.31 36798.51 27398.04 35099.24 14795.77 37199.47 24793.78 30699.66 33998.98 12299.62 24499.37 230
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PHI-MVS99.11 17398.95 19099.59 13899.13 31299.59 11599.17 17199.65 14197.88 28899.25 25099.46 25098.97 9299.80 28197.26 26299.82 16499.37 230
PLCcopyleft97.35 1698.36 26597.99 27699.48 16999.32 27899.24 19298.50 27499.51 22495.19 35498.58 32398.96 34096.95 26199.83 25195.63 33499.25 30999.37 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tttt051797.62 29897.20 30798.90 28299.76 10297.40 31799.48 9294.36 37299.06 17899.70 12199.49 24084.55 37199.94 6598.73 14899.65 23999.36 233
pmmvs-eth3d99.48 7399.47 7299.51 16299.77 9899.41 15598.81 24199.66 13299.42 12799.75 10099.66 15899.20 6299.76 29798.98 12299.99 1399.36 233
PVSNet_095.53 1995.85 33695.31 33897.47 33498.78 35393.48 36395.72 36999.40 25796.18 34197.37 36097.73 37495.73 28799.58 35695.49 33781.40 37699.36 233
lupinMVS98.96 20198.87 20199.24 23799.57 18698.40 26898.12 30199.18 30598.28 26499.63 14399.13 31298.02 20699.97 2398.22 17899.69 22399.35 236
Vis-MVSNet (Re-imp)98.77 22398.58 22999.34 21199.78 9098.88 23499.61 6699.56 19499.11 17399.24 25399.56 21893.00 31699.78 28797.43 25099.89 11099.35 236
GA-MVS97.99 28697.68 29698.93 27399.52 21098.04 29397.19 35799.05 31598.32 26298.81 30498.97 33889.89 35199.41 36898.33 17099.05 31999.34 238
CANet99.11 17399.05 16499.28 22698.83 34698.56 25898.71 25599.41 25099.25 14599.23 25499.22 30497.66 23499.94 6599.19 9599.97 4399.33 239
Patchmtry98.78 22298.54 23499.49 16598.89 34199.19 20199.32 12399.67 12899.65 8499.72 11399.79 8191.87 32699.95 5298.00 19799.97 4399.33 239
PAPR97.56 30197.07 30999.04 26398.80 35098.11 28797.63 33799.25 29394.56 36198.02 34798.25 36997.43 24199.68 33090.90 36698.74 33899.33 239
testf199.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
APD_test299.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
CHOSEN 280x42098.41 26198.41 24498.40 30899.34 27195.89 34696.94 36399.44 24498.80 20899.25 25099.52 23193.51 31099.98 1198.94 13199.98 3199.32 242
baseline197.73 29397.33 30398.96 26899.30 28397.73 30899.40 10598.42 34399.33 13599.46 20599.21 30691.18 33299.82 26098.35 16891.26 37599.32 242
TAPA-MVS97.92 1398.03 28397.55 29999.46 17399.47 23499.44 14498.50 27499.62 15286.79 37099.07 27999.26 29598.26 18699.62 34997.28 25999.73 20899.31 246
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
LCM-MVSNet-Re99.28 12499.15 13399.67 9599.33 27699.76 5899.34 11899.97 1198.93 19199.91 3299.79 8198.68 12699.93 8296.80 28699.56 26199.30 247
TSAR-MVS + GP.99.12 17099.04 16999.38 20199.34 27199.16 20398.15 29799.29 28398.18 27199.63 14399.62 18299.18 6499.68 33098.20 18099.74 20399.30 247
PVSNet_Blended98.70 23298.59 22699.02 26499.54 19997.99 29497.58 34099.82 5395.70 34799.34 23298.98 33698.52 15599.77 29597.98 19899.83 15599.30 247
MVS_030498.88 21398.71 21699.39 19798.85 34498.91 23299.45 9899.30 28198.56 22997.26 36399.68 14996.18 28299.96 4299.17 10099.94 7999.29 250
MVS_111021_LR99.13 16899.03 17199.42 18499.58 17699.32 17597.91 32699.73 9798.68 21999.31 24199.48 24399.09 7599.66 33997.70 22999.77 19299.29 250
miper_lstm_enhance98.65 23598.60 22498.82 29199.20 30297.33 31997.78 33199.66 13299.01 18199.59 16499.50 23694.62 29799.85 22298.12 18999.90 10199.26 252
MVS95.72 33894.63 34298.99 26598.56 36197.98 30099.30 13198.86 32172.71 37597.30 36199.08 32198.34 17999.74 30389.21 36798.33 34999.26 252
MSLP-MVS++99.05 18299.09 15298.91 27699.21 29998.36 27298.82 24099.47 23698.85 20198.90 29499.56 21898.78 11399.09 37198.57 15799.68 22899.26 252
D2MVS99.22 14399.19 12799.29 22499.69 14098.74 24498.81 24199.41 25098.55 23199.68 12799.69 13898.13 19899.87 18798.82 13799.98 3199.24 255
test_yl98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
DCV-MVSNet98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
DPM-MVS98.28 27097.94 28499.32 21899.36 26199.11 20897.31 35398.78 32696.88 32998.84 30199.11 31997.77 22499.61 35394.03 35799.36 29699.23 258
CLD-MVS98.76 22498.57 23099.33 21499.57 18698.97 22397.53 34399.55 20096.41 33699.27 24899.13 31299.07 8099.78 28796.73 29099.89 11099.23 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
pmmvs499.13 16899.06 16099.36 20899.57 18699.10 21398.01 31399.25 29398.78 21199.58 16699.44 25498.24 18799.76 29798.74 14799.93 8799.22 260
OMC-MVS98.90 20998.72 21599.44 17899.39 25399.42 15198.58 26199.64 14797.31 31699.44 20799.62 18298.59 14099.69 32096.17 31899.79 18399.22 260
EGC-MVSNET89.05 34385.52 34699.64 11499.89 3499.78 4799.56 7999.52 22024.19 37749.96 37899.83 5599.15 6799.92 10297.71 22699.85 14299.21 262
eth_miper_zixun_eth98.68 23398.71 21698.60 30099.10 32096.84 33297.52 34599.54 20698.94 18899.58 16699.48 24396.25 28099.76 29798.01 19699.93 8799.21 262
c3_l98.72 23098.71 21698.72 29699.12 31497.22 32297.68 33699.56 19498.90 19599.54 18399.48 24396.37 27799.73 30697.88 20799.88 11999.21 262
CMPMVSbinary77.52 2398.50 25198.19 26699.41 19198.33 36699.56 12299.01 21199.59 17795.44 34999.57 16999.80 7195.64 28899.46 36796.47 30599.92 9199.21 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Effi-MVS+99.06 17998.97 18799.34 21199.31 27998.98 22198.31 28799.91 2298.81 20698.79 30798.94 34299.14 7099.84 23698.79 14198.74 33899.20 266
DELS-MVS99.34 11599.30 10899.48 16999.51 21299.36 16798.12 30199.53 21599.36 13299.41 21999.61 19199.22 6099.87 18799.21 9199.68 22899.20 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DROMVSNet99.69 2999.69 2999.68 9299.71 12899.91 499.76 1899.96 1599.86 2999.51 19599.39 26599.57 2699.93 8299.64 3299.86 13899.20 266
CANet_DTU98.91 20798.85 20399.09 25698.79 35198.13 28498.18 29499.31 27899.48 10898.86 29999.51 23396.56 26799.95 5299.05 11699.95 6899.19 269
alignmvs98.28 27097.96 27999.25 23599.12 31498.93 22999.03 20898.42 34399.64 8698.72 31397.85 37390.86 33999.62 34998.88 13399.13 31499.19 269
DIV-MVS_self_test98.54 24698.42 24398.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.87 30399.78 28797.97 20099.89 11099.18 271
MSDG99.08 17798.98 18699.37 20499.60 16799.13 20697.54 34199.74 9398.84 20499.53 18899.55 22599.10 7399.79 28497.07 27399.86 13899.18 271
cl____98.54 24698.41 24498.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.85 30499.78 28797.97 20099.89 11099.17 273
PM-MVS99.36 10899.29 11399.58 14199.83 5499.66 9398.95 22499.86 3698.85 20199.81 7499.73 11198.40 17299.92 10298.36 16799.83 15599.17 273
thisisatest053097.45 30396.95 31398.94 27099.68 14897.73 30899.09 19794.19 37498.61 22699.56 17699.30 28684.30 37299.93 8298.27 17499.54 27099.16 275
PatchmatchNetpermissive97.65 29797.80 29097.18 34298.82 34992.49 36699.17 17198.39 34598.12 27298.79 30799.58 20690.71 34199.89 15997.23 26699.41 29099.16 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tfpnnormal99.43 8799.38 8999.60 13699.87 4399.75 6299.59 7299.78 7599.71 6499.90 3899.69 13898.85 10499.90 14297.25 26599.78 18899.15 277
CS-MVS-test99.68 3299.70 2599.64 11499.57 18699.83 2999.78 1199.97 1199.92 1299.50 19799.38 26799.57 2699.95 5299.69 2799.90 10199.15 277
mvs_anonymous99.28 12499.39 8798.94 27099.19 30497.81 30599.02 20999.55 20099.78 5299.85 5999.80 7198.24 18799.86 20599.57 4099.50 27899.15 277
ab-mvs99.33 11899.28 11599.47 17199.57 18699.39 15899.78 1199.43 24798.87 19999.57 16999.82 6298.06 20399.87 18798.69 15299.73 20899.15 277
MIMVSNet98.43 25998.20 26399.11 25399.53 20598.38 27199.58 7498.61 33498.96 18699.33 23499.76 9990.92 33699.81 27597.38 25399.76 19499.15 277
GSMVS99.14 282
sam_mvs190.81 34099.14 282
SCA98.11 27998.36 24997.36 33799.20 30292.99 36498.17 29698.49 34198.24 26699.10 27599.57 21596.01 28599.94 6596.86 28299.62 24499.14 282
LS3D99.24 13499.11 14399.61 13398.38 36499.79 4499.57 7799.68 12499.61 9299.15 26799.71 12598.70 12499.91 12497.54 24399.68 22899.13 285
Patchmatch-RL test98.60 23898.36 24999.33 21499.77 9899.07 21698.27 28999.87 3398.91 19499.74 10899.72 11890.57 34399.79 28498.55 15899.85 14299.11 286
test_040299.22 14399.14 13499.45 17699.79 8399.43 14899.28 13999.68 12499.54 10299.40 22499.56 21899.07 8099.82 26096.01 32299.96 5799.11 286
APD_test199.36 10899.28 11599.61 13399.89 3499.89 1099.32 12399.74 9399.18 15699.69 12499.75 10498.41 16899.84 23697.85 21399.70 21999.10 288
MVS_Test99.28 12499.31 10399.19 24299.35 26398.79 24099.36 11699.49 23299.17 16199.21 25999.67 15498.78 11399.66 33999.09 11399.66 23799.10 288
AdaColmapbinary98.60 23898.35 25199.38 20199.12 31499.22 19598.67 25699.42 24997.84 29298.81 30499.27 29297.32 24799.81 27595.14 34399.53 27299.10 288
FPMVS96.32 32795.50 33498.79 29299.60 16798.17 28398.46 28098.80 32597.16 32396.28 36799.63 17582.19 37399.09 37188.45 36998.89 33099.10 288
Patchmatch-test98.10 28097.98 27898.48 30599.27 29096.48 33699.40 10599.07 31298.81 20699.23 25499.57 21590.11 34899.87 18796.69 29199.64 24199.09 292
tpm97.15 30996.95 31397.75 32998.91 33794.24 35899.32 12397.96 35297.71 29698.29 33399.32 28286.72 36699.92 10298.10 19196.24 37299.09 292
PMMVS98.49 25398.29 25799.11 25398.96 33598.42 26797.54 34199.32 27497.53 30498.47 32998.15 37097.88 21699.82 26097.46 24899.24 31199.09 292
cl2297.56 30197.28 30498.40 30898.37 36596.75 33397.24 35699.37 26597.31 31699.41 21999.22 30487.30 35899.37 36997.70 22999.62 24499.08 295
ADS-MVSNet297.78 29197.66 29898.12 32099.14 31095.36 35099.22 15898.75 32796.97 32798.25 33599.64 16590.90 33799.94 6596.51 30299.56 26199.08 295
ADS-MVSNet97.72 29697.67 29797.86 32599.14 31094.65 35699.22 15898.86 32196.97 32798.25 33599.64 16590.90 33799.84 23696.51 30299.56 26199.08 295
pmmvs398.08 28197.80 29098.91 27699.41 25197.69 31097.87 32899.66 13295.87 34399.50 19799.51 23390.35 34599.97 2398.55 15899.47 28299.08 295
PVSNet97.47 1598.42 26098.44 24198.35 31099.46 23896.26 33996.70 36699.34 27197.68 29799.00 28399.13 31297.40 24299.72 30897.59 24199.68 22899.08 295
MVS-HIRNet97.86 28798.22 26196.76 34699.28 28891.53 37298.38 28392.60 37699.13 16999.31 24199.96 1297.18 25599.68 33098.34 16999.83 15599.07 300
PMVScopyleft92.94 2198.82 21998.81 20998.85 28499.84 5097.99 29499.20 16199.47 23699.71 6499.42 21399.82 6298.09 20099.47 36593.88 35999.85 14299.07 300
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft99.57 5799.59 5199.49 16599.98 399.71 7699.72 2999.84 4699.81 4499.94 2299.78 8898.91 9899.71 31298.41 16499.95 6899.05 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
canonicalmvs99.02 18899.00 17899.09 25699.10 32098.70 24699.61 6699.66 13299.63 8898.64 31897.65 37599.04 8499.54 35898.79 14198.92 32799.04 303
hse-mvs298.52 24898.30 25699.16 24599.29 28598.60 25798.77 24999.02 31699.68 7499.32 23799.04 32692.50 32199.85 22299.24 8897.87 36199.03 304
CL-MVSNet_self_test98.71 23198.56 23399.15 24799.22 29798.66 25097.14 35899.51 22498.09 27599.54 18399.27 29296.87 26399.74 30398.43 16398.96 32499.03 304
AUN-MVS97.82 28997.38 30299.14 25099.27 29098.53 25998.72 25399.02 31698.10 27397.18 36599.03 33089.26 35399.85 22297.94 20297.91 35999.03 304
MDTV_nov1_ep13_2view91.44 37399.14 17997.37 31399.21 25991.78 32896.75 28899.03 304
ITE_SJBPF99.38 20199.63 16099.44 14499.73 9798.56 22999.33 23499.53 22998.88 10299.68 33096.01 32299.65 23999.02 308
UnsupCasMVSNet_bld98.55 24598.27 25899.40 19399.56 19799.37 16397.97 32099.68 12497.49 30799.08 27699.35 27895.41 29199.82 26097.70 22998.19 35499.01 309
miper_ehance_all_eth98.59 24198.59 22698.59 30198.98 33497.07 32697.49 34699.52 22098.50 23799.52 19099.37 26996.41 27599.71 31297.86 21199.62 24499.00 310
CS-MVS99.67 3899.70 2599.58 14199.53 20599.84 2499.79 1099.96 1599.90 1499.61 15899.41 25799.51 3199.95 5299.66 2999.89 11098.96 311
CNLPA98.57 24398.34 25299.28 22699.18 30699.10 21398.34 28499.41 25098.48 24098.52 32698.98 33697.05 25899.78 28795.59 33599.50 27898.96 311
new_pmnet98.88 21398.89 19998.84 28699.70 13697.62 31198.15 29799.50 22897.98 28199.62 15299.54 22798.15 19799.94 6597.55 24299.84 14798.95 313
PCF-MVS96.03 1896.73 31995.86 33099.33 21499.44 24299.16 20396.87 36499.44 24486.58 37198.95 28699.40 26194.38 29999.88 17387.93 37099.80 17898.95 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PatchMatch-RL98.68 23398.47 23899.30 22399.44 24299.28 18198.14 29999.54 20697.12 32599.11 27399.25 29797.80 22299.70 31496.51 30299.30 30298.93 315
Fast-Effi-MVS+99.02 18898.87 20199.46 17399.38 25699.50 13099.04 20599.79 7097.17 32298.62 31998.74 35499.34 4699.95 5298.32 17199.41 29098.92 316
ET-MVSNet_ETH3D96.78 31796.07 32698.91 27699.26 29297.92 30297.70 33596.05 36797.96 28592.37 37698.43 36587.06 36099.90 14298.27 17497.56 36498.91 317
EIA-MVS99.12 17099.01 17599.45 17699.36 26199.62 10599.34 11899.79 7098.41 24598.84 30198.89 34698.75 11899.84 23698.15 18899.51 27698.89 318
CostFormer96.71 32096.79 31996.46 35298.90 33890.71 37799.41 10498.68 33094.69 36098.14 34399.34 28186.32 36899.80 28197.60 24098.07 35898.88 319
DP-MVS Recon98.50 25198.23 25999.31 22199.49 22399.46 13798.56 26699.63 14994.86 35898.85 30099.37 26997.81 22199.59 35596.08 31999.44 28598.88 319
test0.0.03 197.37 30696.91 31698.74 29597.72 37397.57 31297.60 33997.36 36298.00 27899.21 25998.02 37190.04 34999.79 28498.37 16695.89 37398.86 321
BH-untuned98.22 27698.09 27198.58 30299.38 25697.24 32198.55 26798.98 31997.81 29399.20 26498.76 35397.01 25999.65 34594.83 34698.33 34998.86 321
HY-MVS98.23 998.21 27797.95 28098.99 26599.03 32898.24 27599.61 6698.72 32896.81 33298.73 31299.51 23394.06 30199.86 20596.91 27998.20 35298.86 321
miper_enhance_ethall98.03 28397.94 28498.32 31298.27 36796.43 33896.95 36299.41 25096.37 33899.43 21198.96 34094.74 29599.69 32097.71 22699.62 24498.83 324
FE-MVS97.85 28897.42 30199.15 24799.44 24298.75 24299.77 1498.20 34995.85 34499.33 23499.80 7188.86 35499.88 17396.40 30799.12 31598.81 325
Effi-MVS+-dtu99.07 17898.92 19599.52 16098.89 34199.78 4799.15 17799.66 13299.34 13398.92 29199.24 30297.69 22899.98 1198.11 19099.28 30598.81 325
EPMVS96.53 32396.32 32197.17 34398.18 37092.97 36599.39 10789.95 38098.21 26898.61 32099.59 20486.69 36799.72 30896.99 27599.23 31398.81 325
FA-MVS(test-final)98.52 24898.32 25499.10 25599.48 22898.67 24799.77 1498.60 33697.35 31499.63 14399.80 7193.07 31499.84 23697.92 20399.30 30298.78 328
MVEpermissive92.54 2296.66 32196.11 32598.31 31499.68 14897.55 31397.94 32295.60 36999.37 13090.68 37798.70 35596.56 26798.61 37586.94 37599.55 26598.77 329
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tpm296.35 32696.22 32396.73 34898.88 34391.75 37099.21 16098.51 33993.27 36397.89 35199.21 30684.83 37099.70 31496.04 32198.18 35598.75 330
LF4IMVS99.01 19298.92 19599.27 22999.71 12899.28 18198.59 26099.77 7898.32 26299.39 22599.41 25798.62 13599.84 23696.62 29899.84 14798.69 331
thisisatest051596.98 31396.42 32098.66 29999.42 25097.47 31497.27 35494.30 37397.24 31899.15 26798.86 34885.01 36999.87 18797.10 27199.39 29298.63 332
Fast-Effi-MVS+-dtu99.20 15099.12 14099.43 18299.25 29399.69 8699.05 20399.82 5399.50 10698.97 28499.05 32498.98 9099.98 1198.20 18099.24 31198.62 333
PAPM95.61 33994.71 34198.31 31499.12 31496.63 33496.66 36798.46 34290.77 36896.25 36898.68 35693.01 31599.69 32081.60 37697.86 36298.62 333
JIA-IIPM98.06 28297.92 28698.50 30498.59 36097.02 32798.80 24498.51 33999.88 2597.89 35199.87 4091.89 32599.90 14298.16 18797.68 36398.59 335
dp96.86 31597.07 30996.24 35498.68 35990.30 37999.19 16598.38 34697.35 31498.23 33799.59 20487.23 35999.82 26096.27 31398.73 34098.59 335
OpenMVScopyleft98.12 1098.23 27597.89 28999.26 23299.19 30499.26 18599.65 5899.69 12191.33 36798.14 34399.77 9598.28 18499.96 4295.41 33999.55 26598.58 337
baseline296.83 31696.28 32298.46 30699.09 32296.91 33098.83 23693.87 37597.23 31996.23 37098.36 36688.12 35699.90 14296.68 29298.14 35698.57 338
TESTMET0.1,196.24 32995.84 33197.41 33698.24 36893.84 36197.38 34995.84 36898.43 24297.81 35598.56 36079.77 37799.89 15997.77 21898.77 33498.52 339
xiu_mvs_v1_base_debu99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
xiu_mvs_v1_base99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
xiu_mvs_v1_base_debi99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
KD-MVS_2432*160095.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
miper_refine_blended95.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
CR-MVSNet98.35 26898.20 26398.83 28899.05 32598.12 28599.30 13199.67 12897.39 31299.16 26599.79 8191.87 32699.91 12498.78 14498.77 33498.44 345
RPMNet98.60 23898.53 23698.83 28899.05 32598.12 28599.30 13199.62 15299.86 2999.16 26599.74 10792.53 32099.92 10298.75 14698.77 33498.44 345
tpmrst97.73 29398.07 27296.73 34898.71 35792.00 36899.10 19398.86 32198.52 23598.92 29199.54 22791.90 32499.82 26098.02 19399.03 32198.37 347
test-LLR97.15 30996.95 31397.74 33098.18 37095.02 35397.38 34996.10 36498.00 27897.81 35598.58 35790.04 34999.91 12497.69 23598.78 33298.31 348
test-mter96.23 33095.73 33297.74 33098.18 37095.02 35397.38 34996.10 36497.90 28797.81 35598.58 35779.12 38099.91 12497.69 23598.78 33298.31 348
ETV-MVS99.18 15799.18 12899.16 24599.34 27199.28 18199.12 18999.79 7099.48 10898.93 28898.55 36199.40 3599.93 8298.51 16099.52 27598.28 350
PatchT98.45 25898.32 25498.83 28898.94 33698.29 27499.24 15198.82 32499.84 3799.08 27699.76 9991.37 32999.94 6598.82 13799.00 32398.26 351
xiu_mvs_v2_base99.02 18899.11 14398.77 29399.37 25898.09 28998.13 30099.51 22499.47 11299.42 21398.54 36299.38 4099.97 2398.83 13599.33 29998.24 352
IB-MVS95.41 2095.30 34094.46 34497.84 32698.76 35595.33 35197.33 35296.07 36696.02 34295.37 37497.41 37776.17 38299.96 4297.54 24395.44 37498.22 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpm cat196.78 31796.98 31296.16 35598.85 34490.59 37899.08 20099.32 27492.37 36497.73 35999.46 25091.15 33399.69 32096.07 32098.80 33198.21 354
MAR-MVS98.24 27497.92 28699.19 24298.78 35399.65 9899.17 17199.14 30995.36 35098.04 34698.81 35197.47 23999.72 30895.47 33899.06 31898.21 354
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ99.00 19499.08 15498.76 29499.37 25898.10 28898.00 31599.51 22499.47 11299.41 21998.50 36499.28 5299.97 2398.83 13599.34 29898.20 356
cascas96.99 31296.82 31897.48 33397.57 37695.64 34896.43 36899.56 19491.75 36597.13 36697.61 37695.58 29098.63 37496.68 29299.11 31698.18 357
BH-w/o97.20 30897.01 31197.76 32899.08 32395.69 34798.03 31298.52 33895.76 34697.96 34898.02 37195.62 28999.47 36592.82 36197.25 36698.12 358
tpmvs97.39 30597.69 29596.52 35098.41 36391.76 36999.30 13198.94 32097.74 29497.85 35499.55 22592.40 32399.73 30696.25 31498.73 34098.06 359
thres600view796.60 32296.16 32497.93 32399.63 16096.09 34399.18 16697.57 35798.77 21298.72 31397.32 37887.04 36199.72 30888.57 36898.62 34397.98 360
thres40096.40 32495.89 32897.92 32499.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34697.98 360
TR-MVS97.44 30497.15 30898.32 31298.53 36297.46 31598.47 27697.91 35496.85 33098.21 33898.51 36396.42 27399.51 36392.16 36297.29 36597.98 360
131498.00 28597.90 28898.27 31698.90 33897.45 31699.30 13199.06 31494.98 35597.21 36499.12 31698.43 16599.67 33595.58 33698.56 34597.71 363
E-PMN97.14 31197.43 30096.27 35398.79 35191.62 37195.54 37099.01 31899.44 11898.88 29599.12 31692.78 31799.68 33094.30 35299.03 32197.50 364
gg-mvs-nofinetune95.87 33595.17 33997.97 32298.19 36996.95 32899.69 4189.23 38199.89 2096.24 36999.94 1681.19 37499.51 36393.99 35898.20 35297.44 365
DeepMVS_CXcopyleft97.98 32199.69 14096.95 32899.26 29075.51 37495.74 37298.28 36896.47 27199.62 34991.23 36597.89 36097.38 366
OpenMVS_ROBcopyleft97.31 1797.36 30796.84 31798.89 28399.29 28599.45 14298.87 23099.48 23386.54 37299.44 20799.74 10797.34 24699.86 20591.61 36399.28 30597.37 367
EMVS96.96 31497.28 30495.99 35698.76 35591.03 37495.26 37198.61 33499.34 13398.92 29198.88 34793.79 30599.66 33992.87 36099.05 31997.30 368
thres100view90096.39 32596.03 32797.47 33499.63 16095.93 34499.18 16697.57 35798.75 21698.70 31597.31 37987.04 36199.67 33587.62 37198.51 34696.81 369
tfpn200view996.30 32895.89 32897.53 33299.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34696.81 369
API-MVS98.38 26498.39 24698.35 31098.83 34699.26 18599.14 17999.18 30598.59 22798.66 31798.78 35298.61 13799.57 35794.14 35499.56 26196.21 371
thres20096.09 33195.68 33397.33 33999.48 22896.22 34098.53 27197.57 35798.06 27798.37 33296.73 38386.84 36599.61 35386.99 37498.57 34496.16 372
GG-mvs-BLEND97.36 33797.59 37496.87 33199.70 3488.49 38294.64 37597.26 38080.66 37599.12 37091.50 36496.50 37196.08 373
wuyk23d97.58 30099.13 13692.93 35899.69 14099.49 13199.52 8399.77 7897.97 28299.96 1699.79 8199.84 699.94 6595.85 32999.82 16479.36 374
test12329.31 34433.05 34918.08 36025.93 38412.24 38497.53 34310.93 38511.78 37824.21 37950.08 38821.04 3838.60 37923.51 37732.43 37833.39 375
testmvs28.94 34533.33 34715.79 36126.03 3839.81 38596.77 36515.67 38411.55 37923.87 38050.74 38719.03 3848.53 38023.21 37833.07 37729.03 376
test_blank8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.88 34633.17 3480.00 3620.00 3850.00 3860.00 37399.62 1520.00 3800.00 38199.13 31299.82 70.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas16.61 34722.14 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 199.28 520.00 3810.00 3790.00 3790.00 377
sosnet-low-res8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
sosnet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
Regformer8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.26 35611.02 3590.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.16 3100.00 3850.00 3810.00 3790.00 3790.00 377
uanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.83 5499.89 1099.74 2399.71 10999.69 7299.63 143
test_one_060199.63 16099.76 5899.55 20099.23 14999.31 24199.61 19198.59 140
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.43 24599.61 11199.43 24796.38 33799.11 27399.07 32297.86 21799.92 10294.04 35699.49 280
test_241102_ONE99.69 14099.82 3599.54 20699.12 17299.82 6799.49 24098.91 9899.52 362
9.1498.64 22199.45 24198.81 24199.60 17197.52 30599.28 24799.56 21898.53 15299.83 25195.36 34199.64 241
save fliter99.53 20599.25 18898.29 28899.38 26499.07 176
test072699.69 14099.80 4299.24 15199.57 18999.16 16399.73 11299.65 16398.35 176
test_part299.62 16499.67 9199.55 181
sam_mvs90.52 344
MTGPAbinary99.53 215
test_post199.14 17951.63 38689.54 35299.82 26096.86 282
test_post52.41 38590.25 34699.86 205
patchmatchnet-post99.62 18290.58 34299.94 65
MTMP99.09 19798.59 337
gm-plane-assit97.59 37489.02 38193.47 36298.30 36799.84 23696.38 309
TEST999.35 26399.35 17098.11 30399.41 25094.83 35997.92 34998.99 33398.02 20699.85 222
test_899.34 27199.31 17698.08 30799.40 25794.90 35697.87 35398.97 33898.02 20699.84 236
agg_prior99.35 26399.36 16799.39 26097.76 35899.85 222
test_prior499.19 20198.00 315
test_prior297.95 32197.87 28998.05 34599.05 32497.90 21495.99 32499.49 280
旧先验297.94 32295.33 35198.94 28799.88 17396.75 288
新几何298.04 311
原ACMM297.92 324
testdata299.89 15995.99 324
segment_acmp98.37 174
testdata197.72 33397.86 291
plane_prior799.58 17699.38 160
plane_prior699.47 23499.26 18597.24 249
plane_prior499.25 297
plane_prior399.31 17698.36 25199.14 269
plane_prior298.80 24498.94 188
plane_prior199.51 212
plane_prior99.24 19298.42 28197.87 28999.71 217
n20.00 386
nn0.00 386
door-mid99.83 48
test1199.29 283
door99.77 78
HQP5-MVS98.94 226
HQP-NCC99.31 27997.98 31797.45 30898.15 339
ACMP_Plane99.31 27997.98 31797.45 30898.15 339
BP-MVS94.73 347
HQP3-MVS99.37 26599.67 234
HQP2-MVS96.67 265
NP-MVS99.40 25299.13 20698.83 349
MDTV_nov1_ep1397.73 29498.70 35890.83 37599.15 17798.02 35198.51 23698.82 30399.61 19190.98 33599.66 33996.89 28198.92 327
ACMMP++_ref99.94 79
ACMMP++99.79 183
Test By Simon98.41 168