This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39786.57 5295.80 2587.35 2497.62 6294.20 92
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25395.90 1585.01 5898.23 2797.49 13
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EGC-MVSNET74.79 27669.99 31689.19 6394.89 3787.00 1191.89 3486.28 2291.09 3982.23 40095.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26793.92 10078.26 13194.20 18989.63 247
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26792.41 15278.26 13193.62 20390.71 224
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
AUN-MVS81.18 19578.78 22888.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33192.38 15376.29 15893.63 20290.65 228
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
PLCcopyleft73.85 1682.09 18080.31 20787.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28972.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
CANet83.79 15082.85 16586.63 10286.17 25372.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27094.65 7280.58 10693.24 20994.83 72
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
EPNet80.37 20978.41 23586.23 11176.75 35473.28 13687.18 11177.45 30976.24 13168.14 36588.93 23665.41 25293.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 24077.07 12673.76 34192.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30689.28 24385.15 5497.09 8193.99 103
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27192.93 14079.52 11993.03 21493.93 107
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 12085.60 26176.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
PCF-MVS74.62 1582.15 17980.92 20085.84 12289.43 17472.30 15580.53 24491.82 11657.36 32887.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16683.52 18392.13 10461.82 28783.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17684.50 16093.37 5878.76 10884.07 22478.72 36080.39 12595.13 6073.82 18492.98 21691.04 215
tttt051781.07 19679.58 21985.52 12888.99 18566.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38494.16 9479.36 12195.13 15595.93 42
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
LF4IMVS82.75 16781.93 17985.19 13282.08 30380.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
EIA-MVS82.19 17781.23 19685.10 13487.95 20869.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32366.84 25192.29 22889.11 257
v1086.54 9487.10 8884.84 13788.16 20663.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
iter_conf_final80.36 21078.88 22584.79 13986.29 24866.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38794.51 8179.83 11394.30 18693.50 132
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19286.65 12490.62 15054.66 33881.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
MAR-MVS80.24 21478.74 23084.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30878.50 36173.79 19490.53 20761.59 29890.87 25985.49 300
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu81.55 19080.49 20584.70 14491.58 12573.24 13884.21 16291.67 12062.86 27880.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 298
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13486.14 13177.70 30761.64 29285.02 19891.62 16777.75 14586.24 28582.79 8187.07 30793.91 109
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
v886.22 10086.83 9584.36 15187.82 21062.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-SCA-FT80.64 20379.41 22084.34 15383.93 28769.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27793.15 13377.45 14486.39 31790.22 237
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15486.56 23873.35 13485.46 14077.30 31161.81 28884.51 20890.88 19277.36 15186.21 28782.72 8286.97 31193.38 133
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
thisisatest053079.07 22477.33 24584.26 15687.13 22664.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38293.57 11875.47 16594.28 18794.62 74
v119284.57 12884.69 13384.21 15787.75 21262.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29294.27 8486.26 4088.77 28589.03 261
v114484.54 13084.72 13184.00 16087.67 21562.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16785.19 14677.42 31062.27 28684.47 21191.33 17476.43 16785.91 29383.14 7287.14 30594.33 90
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
v192192084.23 13984.37 14283.79 16687.64 21761.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
PM-MVS80.20 21579.00 22483.78 16788.17 20586.66 1581.31 23466.81 37469.64 22088.33 13590.19 21364.58 25583.63 31571.99 20690.03 27281.06 358
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16886.02 25771.56 16884.73 15277.11 31462.44 28384.00 22590.68 19976.42 16885.89 29583.14 7287.11 30693.81 116
V4283.47 15883.37 15583.75 16883.16 29663.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
v14419284.24 13884.41 14083.71 17087.59 21861.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
v124084.30 13584.51 13783.65 17187.65 21661.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17383.94 28673.90 13183.35 18886.10 23358.97 31483.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
canonicalmvs85.50 11086.14 10583.58 17487.97 20767.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
Effi-MVS+83.90 14984.01 14783.57 17587.22 22465.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29892.17 186
AdaColmapbinary83.66 15283.69 15283.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 314
FA-MVS(test-final)83.13 16483.02 16283.43 17786.16 25566.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25492.50 15074.94 17291.30 24991.72 199
Anonymous2024052986.20 10187.13 8783.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
FE-MVS79.98 22078.86 22683.36 17986.47 23966.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36593.60 11463.93 27891.50 24690.04 243
PAPM_NR83.23 16183.19 15883.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
casdiffmvspermissive85.21 11585.85 11183.31 18186.17 25362.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a81.46 19180.87 20183.25 18283.73 29073.21 13983.00 19985.59 24258.22 32082.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
TAMVS78.08 23876.36 25383.23 18390.62 15272.87 14179.08 26680.01 29761.72 29081.35 27186.92 27063.96 26088.78 25150.61 35793.01 21588.04 272
iter_conf0578.81 22977.35 24483.21 18482.98 30060.75 28084.09 16688.34 19863.12 27684.25 22289.48 22531.41 39294.51 8176.64 15395.83 13294.38 88
VDD-MVS84.23 13984.58 13583.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
EI-MVSNet82.61 16882.42 17483.20 18583.25 29463.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
CDS-MVSNet77.32 24675.40 26283.06 18789.00 18472.48 15277.90 28282.17 28160.81 30278.94 30183.49 31559.30 28788.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline85.20 11685.93 10783.02 18886.30 24762.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
新几何182.95 19193.96 5578.56 8480.24 29555.45 33583.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 345
xiu_mvs_v1_base_debu80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base_debi80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
DPM-MVS80.10 21879.18 22382.88 19590.71 15169.74 18078.87 27090.84 14360.29 30875.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 297
ET-MVSNet_ETH3D75.28 26772.77 28882.81 19683.03 29968.11 19877.09 29376.51 31960.67 30577.60 31380.52 34638.04 38391.15 18770.78 21390.68 26489.17 256
eth_miper_zixun_eth80.84 19980.22 21182.71 19781.41 31260.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25792.31 15675.23 16891.61 24394.85 71
MVP-Stereo75.81 26473.51 28082.71 19789.35 17573.62 13280.06 24885.20 24760.30 30773.96 34087.94 24957.89 29989.45 23752.02 35174.87 38085.06 304
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
FIs85.35 11386.27 10282.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
FC-MVSNet-test85.93 10687.05 9082.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
QAPM82.59 16982.59 17182.58 20086.44 24066.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30088.85 264
pmmvs-eth3d78.42 23677.04 24782.57 20287.44 22074.41 12880.86 24279.67 29855.68 33484.69 20690.31 21060.91 27585.42 30062.20 29091.59 24487.88 276
HyFIR lowres test75.12 27072.66 29082.50 20391.44 13365.19 22572.47 34087.31 21146.79 36980.29 28684.30 30752.70 32492.10 16351.88 35686.73 31290.22 237
Fast-Effi-MVS+81.04 19780.57 20282.46 20487.50 21963.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29491.51 207
jason77.42 24575.75 25982.43 20587.10 22969.27 18677.99 28081.94 28351.47 35677.84 30885.07 29960.32 27989.00 24570.74 21589.27 28089.03 261
jason: jason.
lupinMVS76.37 25974.46 27182.09 20685.54 26369.26 18776.79 29780.77 29350.68 36376.23 32082.82 32458.69 29288.94 24669.85 22388.77 28588.07 270
DELS-MVS81.44 19281.25 19482.03 20784.27 28362.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20884.42 27968.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 281
pmmvs686.52 9588.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
MSLP-MVS++85.00 12186.03 10681.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 307
GBi-Net82.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
test182.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
FMVSNet184.55 12985.45 11981.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
v14882.31 17382.48 17381.81 21485.59 26259.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
c3_l81.64 18981.59 18681.79 21580.86 32059.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
PVSNet_BlendedMVS78.80 23077.84 23981.65 21684.43 27763.41 24079.49 25990.44 15461.70 29175.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
dcpmvs_284.23 13985.14 12381.50 21788.61 19561.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
BH-RMVSNet80.53 20480.22 21181.49 21887.19 22566.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29787.52 279
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 340
VDDNet84.35 13385.39 12081.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
MVSTER77.09 24875.70 26081.25 22075.27 36861.08 27277.49 29085.07 25060.78 30386.55 16988.68 23943.14 37490.25 21173.69 18790.67 26592.42 171
cl2278.97 22578.21 23781.24 22277.74 34459.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29190.88 19775.36 16792.03 23493.84 111
miper_ehance_all_eth80.34 21180.04 21681.24 22279.82 33058.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
PAPR78.84 22878.10 23881.07 22485.17 26860.22 28482.21 22490.57 15162.51 28075.32 33284.61 30474.99 17892.30 15759.48 30988.04 29690.68 226
WR-MVS83.56 15584.40 14181.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
cl____80.42 20780.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26690.16 21676.31 15795.80 13593.65 123
DIV-MVS_self_test80.43 20680.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26590.16 21676.32 15695.80 13593.66 121
BH-untuned80.96 19880.99 19880.84 22888.55 19768.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 339
MIMVSNet183.63 15384.59 13480.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
pmmvs474.92 27372.98 28680.73 23084.95 26971.71 16576.23 30877.59 30852.83 34677.73 31286.38 27456.35 30984.97 30457.72 31987.05 30885.51 299
cascas76.29 26074.81 26780.72 23184.47 27662.94 24673.89 33287.34 21055.94 33375.16 33476.53 37463.97 25991.16 18665.00 26990.97 25688.06 271
RPMNet78.88 22778.28 23680.68 23279.58 33162.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 33995.56 3973.48 18982.91 34883.85 319
miper_enhance_ethall77.83 23976.93 24880.51 23376.15 36058.01 30975.47 31988.82 18958.05 32283.59 23180.69 34264.41 25691.20 18473.16 19992.03 23492.33 177
thisisatest051573.00 29170.52 30880.46 23481.45 31159.90 28873.16 33974.31 33357.86 32376.08 32377.78 36437.60 38592.12 16265.00 26991.45 24789.35 252
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26190.22 21466.86 24993.92 19592.27 181
D2MVS76.84 25175.67 26180.34 23680.48 32662.16 26373.50 33584.80 25957.61 32682.24 25287.54 25751.31 33087.65 26270.40 22093.19 21191.23 210
MSDG80.06 21979.99 21880.25 23783.91 28868.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31486.41 289
MVS_Test82.47 17283.22 15680.22 23882.62 30257.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 29992.40 173
diffmvspermissive80.40 20880.48 20680.17 23979.02 34060.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CANet_DTU77.81 24177.05 24680.09 24081.37 31359.90 28883.26 19088.29 20069.16 22467.83 36883.72 31260.93 27489.47 23569.22 23089.70 27590.88 219
pm-mvs183.69 15184.95 12779.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
CMPMVSbinary59.41 2075.12 27073.57 27879.77 24275.84 36367.22 20381.21 23782.18 28050.78 36176.50 31687.66 25555.20 31682.99 31762.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_Blended76.49 25775.40 26279.76 24384.43 27763.41 24075.14 32190.44 15457.36 32875.43 32978.30 36269.11 23491.44 17860.68 30387.70 30184.42 310
TR-MVS76.77 25375.79 25879.72 24486.10 25665.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32582.65 334
VPA-MVSNet83.47 15884.73 12979.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
IB-MVS62.13 1971.64 30168.97 32379.66 24680.80 32262.26 26173.94 33176.90 31563.27 27568.63 36476.79 37233.83 39091.84 17059.28 31087.26 30384.88 305
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
FMVSNet378.80 23078.55 23279.57 24782.89 30156.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 32990.09 22265.95 25893.34 20591.72 199
testdata79.54 24892.87 8272.34 15480.14 29659.91 31185.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 358
GA-MVS75.83 26374.61 26879.48 24981.87 30559.25 29473.42 33682.88 27468.68 23079.75 29181.80 33550.62 33389.46 23666.85 25085.64 32289.72 246
test_yl78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
MDA-MVSNet-bldmvs77.47 24476.90 24979.16 25279.03 33964.59 22866.58 36775.67 32473.15 17788.86 12288.99 23566.94 24381.23 32664.71 27288.22 29591.64 203
LFMVS80.15 21780.56 20378.89 25389.19 18155.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30190.07 22363.80 27995.75 13890.68 226
TransMVSNet (Re)84.02 14585.74 11478.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
Gipumacopyleft84.44 13186.33 10178.78 25584.20 28473.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33176.14 15996.80 9082.36 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re83.48 15785.06 12478.75 25685.94 25855.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
OpenMVS_ROBcopyleft70.19 1777.77 24277.46 24178.71 25784.39 28061.15 27181.18 23882.52 27762.45 28283.34 23787.37 26066.20 24788.66 25364.69 27385.02 33086.32 290
IterMVS76.91 25076.34 25478.64 25880.91 31864.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28384.46 30868.61 24085.15 32987.42 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PS-MVSNAJ77.04 24976.53 25278.56 25987.09 23061.40 26775.26 32087.13 21661.25 29774.38 33977.22 37076.94 15990.94 19264.63 27484.83 33683.35 327
xiu_mvs_v2_base77.19 24776.75 25078.52 26087.01 23261.30 26975.55 31887.12 21961.24 29874.45 33778.79 35977.20 15390.93 19364.62 27584.80 33783.32 328
Anonymous20240521180.51 20581.19 19778.49 26188.48 19857.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
MG-MVS80.32 21280.94 19978.47 26288.18 20452.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
baseline269.77 31966.89 33378.41 26379.51 33358.09 30776.23 30869.57 36357.50 32764.82 38177.45 36746.02 35088.44 25453.08 34477.83 37188.70 265
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27452.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
Baseline_NR-MVSNet84.00 14685.90 10978.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
PatchMatch-RL74.48 27873.22 28378.27 26787.70 21385.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34053.86 34183.82 34271.48 378
CHOSEN 1792x268872.45 29470.56 30778.13 26890.02 16763.08 24568.72 35883.16 27142.99 38475.92 32485.46 28957.22 30385.18 30349.87 36181.67 35586.14 292
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33070.06 22295.03 16091.21 211
BH-w/o76.57 25576.07 25778.10 26986.88 23565.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32677.62 369
1112_ss74.82 27573.74 27678.04 27189.57 17060.04 28576.49 30487.09 22054.31 33973.66 34279.80 35260.25 28086.76 27858.37 31384.15 34187.32 282
TinyColmap81.25 19482.34 17577.99 27285.33 26560.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 291
Vis-MVSNet (Re-imp)77.82 24077.79 24077.92 27388.82 18851.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30189.41 24057.22 32095.41 14493.05 148
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32889.82 22863.58 28096.02 12194.87 67
thres40075.14 26874.23 27377.86 27586.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25392.66 163
thres600view775.97 26275.35 26477.85 27687.01 23251.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35689.05 24455.03 33692.24 23092.66 163
JIA-IIPM69.41 32266.64 33777.70 27773.19 37871.24 17075.67 31465.56 37570.42 21165.18 37792.97 12633.64 39183.06 31653.52 34369.61 38978.79 367
test111178.53 23478.85 22777.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32790.07 22365.36 26696.45 10395.11 62
miper_lstm_enhance76.45 25876.10 25677.51 27976.72 35560.97 27764.69 37185.04 25263.98 27383.20 23988.22 24456.67 30578.79 33973.22 19393.12 21292.78 157
EPNet_dtu72.87 29271.33 30477.49 28077.72 34560.55 28282.35 21875.79 32266.49 25258.39 39381.06 34153.68 32085.98 29153.55 34292.97 21785.95 294
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
patch_mono-278.89 22679.39 22177.41 28184.78 27268.11 19875.60 31583.11 27260.96 30179.36 29689.89 22075.18 17672.97 35373.32 19292.30 22691.15 213
test_fmvs375.72 26575.20 26577.27 28275.01 37169.47 18478.93 26784.88 25746.67 37087.08 15787.84 25250.44 33571.62 35777.42 14688.53 28890.72 223
EU-MVSNet75.12 27074.43 27277.18 28383.11 29859.48 29285.71 13882.43 27939.76 39085.64 18988.76 23744.71 36787.88 26073.86 18385.88 32184.16 315
ab-mvs79.67 22280.56 20376.99 28488.48 19856.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
Anonymous2024052180.18 21681.25 19476.95 28583.15 29760.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 28977.44 34273.71 18697.55 6792.56 166
PAPM71.77 30070.06 31476.92 28686.39 24153.97 33576.62 30286.62 22653.44 34363.97 38384.73 30357.79 30092.34 15539.65 38881.33 35984.45 309
ppachtmachnet_test74.73 27774.00 27576.90 28780.71 32356.89 31971.53 34678.42 30358.24 31979.32 29882.92 32357.91 29884.26 31065.60 26491.36 24889.56 248
Patchmatch-RL test74.48 27873.68 27776.89 28884.83 27166.54 21172.29 34169.16 36557.70 32486.76 16386.33 27645.79 35582.59 31869.63 22590.65 26781.54 349
CR-MVSNet74.00 28273.04 28576.85 28979.58 33162.64 25282.58 21076.90 31550.50 36475.72 32692.38 14448.07 34284.07 31168.72 23982.91 34883.85 319
tfpn200view974.86 27474.23 27376.74 29086.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25389.31 253
thres100view90075.45 26675.05 26676.66 29187.27 22251.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35688.80 24851.98 35290.99 25389.31 253
VNet79.31 22380.27 20876.44 29287.92 20953.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
Test_1112_low_res73.90 28373.08 28476.35 29390.35 15755.95 32273.40 33786.17 23250.70 36273.14 34385.94 28358.31 29485.90 29456.51 32383.22 34587.20 283
USDC76.63 25476.73 25176.34 29483.46 29257.20 31680.02 25088.04 20552.14 35283.65 23091.25 17663.24 26486.65 27954.66 33894.11 19185.17 302
test250674.12 28173.39 28176.28 29591.85 11544.20 38284.06 16748.20 39872.30 19381.90 25994.20 8127.22 39989.77 23164.81 27196.02 12194.87 67
CVMVSNet72.62 29371.41 30376.28 29583.25 29460.34 28383.50 18479.02 30237.77 39376.33 31885.10 29649.60 33887.41 26570.54 21877.54 37581.08 356
mvs_anonymous78.13 23778.76 22976.23 29779.24 33750.31 36378.69 27284.82 25861.60 29383.09 24292.82 13173.89 19387.01 26968.33 24486.41 31691.37 208
VPNet80.25 21381.68 18275.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
test_fmvs273.57 28572.80 28775.90 29972.74 38368.84 19377.07 29484.32 26345.14 37682.89 24484.22 30848.37 34070.36 36073.40 19187.03 30988.52 267
ANet_high83.17 16385.68 11575.65 30081.24 31445.26 37979.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34158.62 31295.03 16091.21 211
SCA73.32 28672.57 29275.58 30281.62 30955.86 32478.89 26971.37 35661.73 28974.93 33583.42 31760.46 27787.01 26958.11 31782.63 35383.88 316
131473.22 28872.56 29375.20 30380.41 32757.84 31081.64 23185.36 24451.68 35573.10 34476.65 37361.45 27285.19 30263.54 28179.21 36782.59 335
CL-MVSNet_self_test76.81 25277.38 24375.12 30486.90 23451.34 35573.20 33880.63 29468.30 23481.80 26488.40 24266.92 24480.90 32755.35 33394.90 16693.12 146
MVS73.21 28972.59 29175.06 30580.97 31760.81 27981.64 23185.92 23846.03 37471.68 35177.54 36568.47 23789.77 23155.70 32985.39 32374.60 375
HY-MVS64.64 1873.03 29072.47 29474.71 30683.36 29354.19 33482.14 22781.96 28256.76 33269.57 36186.21 28060.03 28184.83 30649.58 36382.65 35185.11 303
thres20072.34 29671.55 30274.70 30783.48 29151.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34888.20 25846.99 37389.29 27884.32 311
N_pmnet70.20 31368.80 32574.38 30880.91 31884.81 3959.12 38276.45 32055.06 33675.31 33382.36 32955.74 31254.82 39247.02 37287.24 30483.52 323
CostFormer69.98 31868.68 32673.87 30977.14 35050.72 36179.26 26274.51 33151.94 35470.97 35584.75 30245.16 36487.49 26455.16 33579.23 36683.40 326
Patchmtry76.56 25677.46 24173.83 31079.37 33646.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34283.98 31263.36 28395.31 15090.92 218
testing371.53 30370.79 30573.77 31188.89 18741.86 38776.60 30359.12 38872.83 18180.97 27382.08 33219.80 40487.33 26765.12 26891.68 24292.13 188
test_vis3_rt71.42 30470.67 30673.64 31269.66 38970.46 17566.97 36689.73 17442.68 38688.20 13883.04 31943.77 36960.07 38865.35 26786.66 31390.39 235
FMVSNet572.10 29871.69 29873.32 31381.57 31053.02 34376.77 29878.37 30463.31 27476.37 31791.85 15836.68 38678.98 33647.87 37092.45 22487.95 274
tpm268.45 32766.83 33473.30 31478.93 34148.50 36779.76 25371.76 35347.50 36869.92 36083.60 31342.07 37688.40 25548.44 36879.51 36383.01 333
FPMVS72.29 29772.00 29673.14 31588.63 19485.00 3674.65 32567.39 36871.94 19877.80 31087.66 25550.48 33475.83 34849.95 35979.51 36358.58 392
MS-PatchMatch70.93 30970.22 31273.06 31681.85 30662.50 25573.82 33377.90 30552.44 34975.92 32481.27 33955.67 31381.75 32255.37 33277.70 37374.94 374
mvsany_test365.48 34162.97 34873.03 31769.99 38876.17 11864.83 36943.71 40043.68 38180.25 28987.05 26952.83 32363.09 38751.92 35572.44 38279.84 365
pmmvs570.73 31070.07 31372.72 31877.03 35252.73 34574.14 32775.65 32550.36 36572.17 34985.37 29355.42 31580.67 32952.86 34887.59 30284.77 306
our_test_371.85 29971.59 29972.62 31980.71 32353.78 33769.72 35671.71 35558.80 31678.03 30580.51 34756.61 30778.84 33862.20 29086.04 32085.23 301
ADS-MVSNet265.87 33963.64 34772.55 32073.16 37956.92 31867.10 36474.81 32849.74 36666.04 37282.97 32046.71 34577.26 34342.29 38369.96 38783.46 324
test_fmvs1_n70.94 30870.41 31172.53 32173.92 37366.93 20875.99 31284.21 26543.31 38379.40 29579.39 35543.47 37068.55 36869.05 23384.91 33382.10 343
baseline173.26 28773.54 27972.43 32284.92 27047.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30881.63 32456.63 32279.04 36987.87 277
PatchmatchNetpermissive69.71 32068.83 32472.33 32377.66 34653.60 33879.29 26169.99 36157.66 32572.53 34782.93 32246.45 34780.08 33360.91 30272.09 38383.31 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
tpmvs70.16 31469.56 31971.96 32474.71 37248.13 36879.63 25475.45 32765.02 26970.26 35881.88 33445.34 36185.68 29858.34 31475.39 37982.08 344
tpm cat166.76 33565.21 34271.42 32577.09 35150.62 36278.01 27973.68 34044.89 37768.64 36379.00 35745.51 35882.42 32149.91 36070.15 38681.23 355
test20.0373.75 28474.59 27071.22 32681.11 31651.12 35970.15 35472.10 35070.42 21180.28 28891.50 17064.21 25874.72 35246.96 37494.58 17887.82 278
test_vis1_n70.29 31269.99 31671.20 32775.97 36266.50 21276.69 30080.81 29244.22 37975.43 32977.23 36950.00 33668.59 36766.71 25382.85 35078.52 368
test_fmvs169.57 32169.05 32271.14 32869.15 39065.77 22173.98 33083.32 27042.83 38577.77 31178.27 36343.39 37368.50 36968.39 24384.38 34079.15 366
test_vis1_n_192071.30 30671.58 30170.47 32977.58 34759.99 28774.25 32684.22 26451.06 35874.85 33679.10 35655.10 31768.83 36668.86 23679.20 36882.58 336
test_vis1_rt65.64 34064.09 34470.31 33066.09 39570.20 17861.16 37881.60 28738.65 39172.87 34569.66 38552.84 32260.04 38956.16 32577.77 37280.68 360
KD-MVS_2432*160066.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
miper_refine_blended66.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
Anonymous2023120671.38 30571.88 29769.88 33386.31 24654.37 33370.39 35274.62 32952.57 34876.73 31588.76 23759.94 28272.06 35544.35 38193.23 21083.23 330
pmmvs362.47 34660.02 35969.80 33471.58 38664.00 23670.52 35158.44 39139.77 38966.05 37175.84 37527.10 40072.28 35446.15 37684.77 33873.11 376
UnsupCasMVSNet_eth71.63 30272.30 29569.62 33576.47 35752.70 34670.03 35580.97 29159.18 31379.36 29688.21 24560.50 27669.12 36458.33 31577.62 37487.04 284
MIMVSNet71.09 30771.59 29969.57 33687.23 22350.07 36478.91 26871.83 35260.20 31071.26 35291.76 16455.08 31876.09 34641.06 38687.02 31082.54 338
test_cas_vis1_n_192069.20 32569.12 32069.43 33773.68 37662.82 24970.38 35377.21 31246.18 37380.46 28578.95 35852.03 32665.53 38165.77 26377.45 37679.95 364
XXY-MVS74.44 28076.19 25569.21 33884.61 27552.43 34871.70 34477.18 31360.73 30480.60 28090.96 18875.44 17269.35 36356.13 32688.33 29085.86 296
YYNet170.06 31670.44 30968.90 33973.76 37553.42 34158.99 38367.20 37058.42 31887.10 15585.39 29259.82 28467.32 37359.79 30783.50 34485.96 293
MDA-MVSNet_test_wron70.05 31770.44 30968.88 34073.84 37453.47 33958.93 38467.28 36958.43 31787.09 15685.40 29159.80 28567.25 37459.66 30883.54 34385.92 295
PVSNet58.17 2166.41 33665.63 34168.75 34181.96 30449.88 36562.19 37772.51 34751.03 35968.04 36675.34 37750.84 33274.77 35045.82 37882.96 34681.60 348
test-LLR67.21 33066.74 33568.63 34276.45 35855.21 32967.89 36067.14 37162.43 28465.08 37872.39 38043.41 37169.37 36161.00 30084.89 33481.31 351
test-mter65.00 34263.79 34668.63 34276.45 35855.21 32967.89 36067.14 37150.98 36065.08 37872.39 38028.27 39769.37 36161.00 30084.89 33481.31 351
gg-mvs-nofinetune68.96 32669.11 32168.52 34476.12 36145.32 37883.59 18255.88 39386.68 2464.62 38297.01 730.36 39483.97 31344.78 38082.94 34776.26 371
UnsupCasMVSNet_bld69.21 32469.68 31867.82 34579.42 33451.15 35867.82 36375.79 32254.15 34077.47 31485.36 29459.26 28870.64 35948.46 36779.35 36581.66 347
tpm67.95 32868.08 32967.55 34678.74 34243.53 38475.60 31567.10 37354.92 33772.23 34888.10 24642.87 37575.97 34752.21 35080.95 36283.15 331
Syy-MVS69.40 32370.03 31567.49 34781.72 30738.94 38971.00 34761.99 38061.38 29570.81 35672.36 38261.37 27379.30 33464.50 27785.18 32784.22 312
GG-mvs-BLEND67.16 34873.36 37746.54 37784.15 16455.04 39458.64 39261.95 39329.93 39583.87 31438.71 39076.92 37771.07 379
myMVS_eth3d64.66 34363.89 34566.97 34981.72 30737.39 39271.00 34761.99 38061.38 29570.81 35672.36 38220.96 40379.30 33449.59 36285.18 32784.22 312
CHOSEN 280x42059.08 35756.52 36266.76 35076.51 35664.39 23249.62 39059.00 38943.86 38055.66 39568.41 38835.55 38968.21 37243.25 38276.78 37867.69 384
WTY-MVS67.91 32968.35 32766.58 35180.82 32148.12 36965.96 36872.60 34553.67 34271.20 35381.68 33758.97 29069.06 36548.57 36681.67 35582.55 337
dmvs_re66.81 33466.98 33266.28 35276.87 35358.68 30571.66 34572.24 34860.29 30869.52 36273.53 37952.38 32564.40 38444.90 37981.44 35875.76 372
sss66.92 33167.26 33165.90 35377.23 34951.10 36064.79 37071.72 35452.12 35370.13 35980.18 34957.96 29765.36 38250.21 35881.01 36181.25 353
testgi72.36 29574.61 26865.59 35480.56 32542.82 38668.29 35973.35 34166.87 24981.84 26189.93 21872.08 21866.92 37646.05 37792.54 22387.01 285
test0.0.03 164.66 34364.36 34365.57 35575.03 37046.89 37564.69 37161.58 38562.43 28471.18 35477.54 36543.41 37168.47 37040.75 38782.65 35181.35 350
PMMVS61.65 34960.38 35665.47 35665.40 39869.26 18763.97 37361.73 38436.80 39460.11 38868.43 38759.42 28666.35 37848.97 36578.57 37060.81 389
SSC-MVS77.55 24381.64 18365.29 35790.46 15520.33 40273.56 33468.28 36685.44 3288.18 13994.64 6070.93 22681.33 32571.25 20892.03 23494.20 92
tpmrst66.28 33766.69 33665.05 35872.82 38239.33 38878.20 27870.69 35953.16 34567.88 36780.36 34848.18 34174.75 35158.13 31670.79 38581.08 356
mvsany_test158.48 35856.47 36364.50 35965.90 39768.21 19756.95 38642.11 40138.30 39265.69 37477.19 37156.96 30459.35 39146.16 37558.96 39465.93 385
WB-MVS76.06 26180.01 21764.19 36089.96 16820.58 40172.18 34268.19 36783.21 5486.46 17693.49 11270.19 22978.97 33765.96 25790.46 26993.02 149
TESTMET0.1,161.29 35160.32 35764.19 36072.06 38451.30 35667.89 36062.09 37945.27 37560.65 38769.01 38627.93 39864.74 38356.31 32481.65 35776.53 370
PatchT70.52 31172.76 28963.79 36279.38 33533.53 39677.63 28665.37 37673.61 16571.77 35092.79 13444.38 36875.65 34964.53 27685.37 32482.18 342
wuyk23d75.13 26979.30 22262.63 36375.56 36475.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39334.16 39397.11 8059.85 390
EPMVS62.47 34662.63 35062.01 36470.63 38738.74 39074.76 32352.86 39553.91 34167.71 36980.01 35039.40 38066.60 37755.54 33168.81 39180.68 360
EMVS61.10 35360.81 35561.99 36565.96 39655.86 32453.10 38958.97 39067.06 24756.89 39463.33 39140.98 37767.03 37554.79 33786.18 31963.08 387
dp60.70 35560.29 35861.92 36672.04 38538.67 39170.83 34964.08 37751.28 35760.75 38677.28 36836.59 38771.58 35847.41 37162.34 39375.52 373
E-PMN61.59 35061.62 35361.49 36766.81 39355.40 32753.77 38860.34 38766.80 25058.90 39165.50 39040.48 37966.12 37955.72 32886.25 31862.95 388
Patchmatch-test65.91 33867.38 33061.48 36875.51 36543.21 38568.84 35763.79 37862.48 28172.80 34683.42 31744.89 36659.52 39048.27 36986.45 31581.70 346
ADS-MVSNet61.90 34862.19 35261.03 36973.16 37936.42 39467.10 36461.75 38349.74 36666.04 37282.97 32046.71 34563.21 38542.29 38369.96 38783.46 324
new-patchmatchnet70.10 31573.37 28260.29 37081.23 31516.95 40359.54 38074.62 32962.93 27780.97 27387.93 25062.83 26971.90 35655.24 33495.01 16392.00 192
test_f64.31 34565.85 33859.67 37166.54 39462.24 26257.76 38570.96 35740.13 38884.36 21382.09 33146.93 34451.67 39461.99 29381.89 35465.12 386
PVSNet_051.08 2256.10 35954.97 36459.48 37275.12 36953.28 34255.16 38761.89 38244.30 37859.16 38962.48 39254.22 31965.91 38035.40 39247.01 39559.25 391
DSMNet-mixed60.98 35461.61 35459.09 37372.88 38145.05 38074.70 32446.61 39926.20 39565.34 37690.32 20955.46 31463.12 38641.72 38581.30 36069.09 382
MVS-HIRNet61.16 35262.92 34955.87 37479.09 33835.34 39571.83 34357.98 39246.56 37159.05 39091.14 18049.95 33776.43 34538.74 38971.92 38455.84 393
MVEpermissive40.22 2351.82 36250.47 36555.87 37462.66 40051.91 35131.61 39339.28 40240.65 38750.76 39674.98 37856.24 31044.67 39733.94 39464.11 39271.04 380
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
dmvs_testset60.59 35662.54 35154.72 37677.26 34827.74 39974.05 32961.00 38660.48 30665.62 37567.03 38955.93 31168.23 37132.07 39669.46 39068.17 383
new_pmnet55.69 36057.66 36149.76 37775.47 36630.59 39759.56 37951.45 39643.62 38262.49 38475.48 37640.96 37849.15 39637.39 39172.52 38169.55 381
PMMVS255.64 36159.27 36044.74 37864.30 39912.32 40440.60 39149.79 39753.19 34465.06 38084.81 30153.60 32149.76 39532.68 39589.41 27772.15 377
test_method30.46 36329.60 36633.06 37917.99 4023.84 40613.62 39473.92 3352.79 39718.29 39953.41 39428.53 39643.25 39822.56 39735.27 39752.11 394
DeepMVS_CXcopyleft24.13 38032.95 40129.49 39821.63 40512.07 39637.95 39745.07 39530.84 39319.21 39917.94 39933.06 39823.69 395
tmp_tt20.25 36524.50 3687.49 3814.47 4038.70 40534.17 39225.16 4041.00 39932.43 39818.49 39639.37 3819.21 40021.64 39843.75 3964.57 396
test1236.27 3688.08 3710.84 3821.11 4050.57 40762.90 3740.82 4060.54 4001.07 4022.75 4011.26 4050.30 4011.04 4001.26 4001.66 397
testmvs5.91 3697.65 3720.72 3831.20 4040.37 40859.14 3810.67 4070.49 4011.11 4012.76 4000.94 4060.24 4021.02 4011.47 3991.55 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k20.81 36427.75 3670.00 3840.00 4060.00 4090.00 39585.44 2430.00 4020.00 40382.82 32481.46 1130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.41 3678.55 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40276.94 1590.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re6.65 3668.87 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40379.80 3520.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS37.39 39252.61 349
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
PC_three_145258.96 31590.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 406
eth-test0.00 406
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
IU-MVS94.18 4672.64 14590.82 14456.98 33089.67 10885.78 5097.92 4693.28 137
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 316
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34983.88 316
sam_mvs45.92 354
MTGPAbinary91.81 118
test_post178.85 2713.13 39845.19 36380.13 33258.11 317
test_post3.10 39945.43 35977.22 344
patchmatchnet-post81.71 33645.93 35387.01 269
MTMP90.66 4433.14 403
gm-plane-assit75.42 36744.97 38152.17 35072.36 38287.90 25954.10 340
test9_res80.83 10296.45 10390.57 229
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior279.68 11696.16 11490.22 237
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
旧先验281.73 22956.88 33186.54 17484.90 30572.81 200
新几何281.72 230
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 322
无先验82.81 20585.62 24158.09 32191.41 18167.95 24784.48 308
原ACMM282.26 223
test22293.31 7176.54 10979.38 26077.79 30652.59 34782.36 25190.84 19466.83 24591.69 24181.25 353
testdata286.43 28363.52 282
segment_acmp81.94 105
testdata179.62 25573.95 160
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 408
nn0.00 408
door-mid74.45 332
test1191.46 124
door72.57 346
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
BP-MVS77.30 147
HQP4-MVS80.56 28194.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
NP-MVS91.95 11074.55 12790.17 215
MDTV_nov1_ep13_2view27.60 40070.76 35046.47 37261.27 38545.20 36249.18 36483.75 321
MDTV_nov1_ep1368.29 32878.03 34343.87 38374.12 32872.22 34952.17 35067.02 37085.54 28745.36 36080.85 32855.73 32784.42 339
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134