This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20596.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7299.84 399.72 2
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20896.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8599.81 899.70 3
FC-MVSNet-test95.32 8195.88 5993.62 15998.49 5881.77 23495.90 6998.32 2493.93 5697.53 4297.56 7688.48 18199.40 4692.91 9099.83 599.68 4
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19596.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8999.83 599.68 4
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4299.84 399.66 6
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14499.23 493.45 8299.57 1495.34 3099.89 299.63 9
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19496.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7799.82 799.62 10
FIs94.90 9795.35 8393.55 16298.28 6981.76 23595.33 9098.14 4993.05 7697.07 6397.18 11187.65 19599.29 7091.72 11999.69 1499.61 11
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26693.12 7397.94 2798.54 2581.19 27199.63 695.48 2499.69 1499.60 12
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 14199.73 1399.59 13
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15199.60 995.43 2799.53 3899.57 14
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
ANet_high94.83 10096.28 3790.47 27396.65 17073.16 35094.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 15099.68 1899.53 15
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 8099.74 1299.50 17
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12999.69 1499.42 19
v1094.68 10695.27 8992.90 18796.57 17680.15 25494.65 11597.57 11090.68 14197.43 4898.00 5188.18 18599.15 8494.84 3299.55 3799.41 20
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
v894.65 10795.29 8792.74 19296.65 17079.77 26994.59 11697.17 14391.86 10397.47 4797.93 5588.16 18699.08 9494.32 3999.47 4399.38 22
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13999.76 1099.38 22
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 5099.49 4299.36 24
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 24199.45 2795.52 2299.66 2199.36 24
WR-MVS93.49 14693.72 14192.80 19197.57 12380.03 26090.14 27395.68 22493.70 6196.62 8695.39 22287.21 20399.04 10287.50 22299.64 2499.33 26
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20897.84 8894.91 4096.80 7895.78 20290.42 16099.41 3991.60 12399.58 3399.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19390.10 16899.41 3991.60 12399.58 3399.26 30
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19390.10 16899.33 6890.11 16499.66 2199.26 30
Baseline_NR-MVSNet94.47 11395.09 9792.60 20198.50 5780.82 25092.08 21296.68 18093.82 5996.29 9998.56 2490.10 16897.75 25690.10 16699.66 2199.24 32
v192192093.26 15393.61 14892.19 21296.04 22578.31 29591.88 22497.24 13985.17 24696.19 10996.19 18186.76 21399.05 9994.18 4398.84 13399.22 33
v119293.49 14693.78 13992.62 19996.16 21179.62 27191.83 22897.22 14186.07 22796.10 11296.38 16887.22 20299.02 10494.14 4498.88 12899.22 33
v124093.29 15193.71 14292.06 21996.01 22677.89 30191.81 22997.37 12385.12 24896.69 8396.40 16386.67 21599.07 9894.51 3598.76 14699.22 33
dcpmvs_293.96 13495.01 9990.82 26597.60 12074.04 34593.68 15498.85 789.80 15897.82 2997.01 12691.14 14599.21 7890.56 14598.59 16499.19 36
v14419293.20 15893.54 15292.16 21696.05 22178.26 29691.95 21797.14 14584.98 25295.96 11596.11 18587.08 20699.04 10293.79 5198.84 13399.17 37
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19290.14 16599.34 6392.11 10599.64 2499.16 38
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21795.93 6794.84 25694.86 4198.49 1598.74 1681.45 26599.60 994.69 3399.39 5899.15 39
v2v48293.29 15193.63 14692.29 20896.35 19478.82 28991.77 23196.28 20088.45 18695.70 13396.26 17886.02 22398.90 11893.02 8698.81 14199.14 40
v114493.50 14593.81 13692.57 20296.28 20179.61 27291.86 22796.96 15886.95 21795.91 11996.32 17287.65 19598.96 11293.51 6198.88 12899.13 41
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16296.71 899.42 3393.99 4799.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
patch_mono-292.46 18092.72 17291.71 22996.65 17078.91 28788.85 31097.17 14383.89 26592.45 25496.76 14189.86 17297.09 29290.24 15998.59 16499.12 43
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2599.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15599.05 9986.43 24399.60 2699.10 47
VPA-MVSNet95.14 8995.67 7093.58 16197.76 10683.15 21894.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17499.59 2899.08 48
TransMVSNet (Re)95.27 8796.04 5292.97 18198.37 6581.92 23395.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19799.23 8699.08 48
SSC-MVS90.16 23492.96 16281.78 36897.88 9948.48 40090.75 25187.69 34796.02 3196.70 8297.63 7285.60 22997.80 24885.73 25198.60 16399.06 50
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21496.72 14794.23 7199.42 3391.99 11099.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32385.87 17692.42 19894.69 26293.67 6496.13 11095.84 19791.20 14198.86 12693.78 5298.23 19999.03 52
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13795.10 4699.40 4693.47 6599.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13796.61 15394.93 5499.41 3993.78 5299.15 9899.00 54
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12696.87 13495.26 3799.45 2792.77 9199.21 9099.00 54
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12993.56 7999.37 5794.29 4199.42 5298.99 56
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 19195.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 26090.17 16299.42 5298.99 56
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14296.68 14994.50 6699.42 3393.10 8399.26 8298.99 56
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3499.53 3898.99 56
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16797.22 14184.37 19693.73 15195.26 24584.45 25995.76 12698.00 5191.85 12497.21 28595.62 1897.82 23198.98 60
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32285.98 17392.44 19694.69 26293.70 6196.12 11195.81 19891.24 13898.86 12693.76 5598.22 20198.98 60
MM95.22 9487.21 13894.31 13190.92 32694.48 4692.80 24197.52 8185.27 23099.49 2496.58 899.57 3598.97 62
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 15196.36 17095.68 2199.44 2994.41 3899.28 7998.97 62
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26996.24 2596.28 10196.36 17082.88 24999.35 6088.19 20799.52 4198.96 64
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13596.25 1499.00 10693.10 8399.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18194.15 13695.44 23783.25 27095.51 13998.05 4692.54 11197.19 28895.55 2197.46 24898.94 66
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15596.57 15595.02 5099.41 3993.63 5699.11 10198.94 66
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 6099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18996.49 15794.56 6499.39 4993.57 5899.05 10698.93 68
X-MVStestdata90.70 21488.45 26197.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18926.89 39794.56 6499.39 4993.57 5899.05 10698.93 68
VPNet93.08 15993.76 14091.03 25598.60 3975.83 33191.51 23495.62 22591.84 10795.74 12997.10 11989.31 17698.32 20085.07 26299.06 10398.93 68
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3699.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 4099.38 5998.92 72
test111190.39 22590.61 22189.74 29298.04 8871.50 36195.59 8179.72 39089.41 16495.94 11798.14 3970.79 33398.81 13688.52 20499.32 6898.90 74
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4899.42 5298.89 75
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16395.15 22886.60 21799.50 2193.43 7196.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12996.28 17695.22 4099.42 3393.17 8199.06 10398.88 77
EI-MVSNet92.99 16293.26 16092.19 21292.12 33279.21 28292.32 20394.67 26491.77 11395.24 15995.85 19587.14 20598.49 18391.99 11098.26 19598.86 78
IterMVS-LS93.78 14094.28 12592.27 20996.27 20279.21 28291.87 22596.78 17391.77 11396.57 8997.07 12087.15 20498.74 15091.99 11099.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18896.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 3199.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4293.43 14893.58 14992.97 18195.34 26081.22 24492.67 18496.49 19387.25 21196.20 10796.37 16987.32 20198.85 12892.39 10298.21 20298.85 81
test_fmvs392.42 18192.40 18092.46 20793.80 30487.28 13693.86 14797.05 15276.86 33096.25 10298.66 1882.87 25091.26 37395.44 2696.83 27298.82 82
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15594.99 5299.36 5893.48 6499.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23388.41 18897.09 6198.08 4478.69 28598.87 12595.63 1799.53 3898.81 84
VDDNet94.03 13194.27 12793.31 17398.87 2182.36 22995.51 8691.78 31897.19 1296.32 9698.60 2284.24 23798.75 14787.09 23098.83 13898.81 84
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3799.34 6498.80 86
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21597.78 6391.21 14097.77 25391.06 13297.06 26198.80 86
WB-MVS89.44 25292.15 18481.32 36997.73 11048.22 40189.73 28687.98 34595.24 3696.05 11396.99 12785.18 23196.95 29782.45 28697.97 22398.78 88
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17495.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20399.04 11198.78 88
v14892.87 16793.29 15691.62 23396.25 20577.72 30491.28 24095.05 24989.69 15995.93 11896.04 18887.34 20098.38 19490.05 16797.99 22198.78 88
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15895.85 1899.12 9190.45 14799.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052192.86 16893.57 15090.74 26796.57 17675.50 33394.15 13695.60 22689.38 16595.90 12097.90 6180.39 27597.96 23292.60 9899.68 1898.75 92
KD-MVS_self_test94.10 12994.73 11092.19 21297.66 11879.49 27594.86 10897.12 14889.59 16296.87 7497.65 7090.40 16298.34 19989.08 19299.35 6198.75 92
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12295.63 2399.39 4993.31 7498.88 12898.75 92
lessismore_v093.87 15198.05 8583.77 20980.32 38897.13 6097.91 5977.49 29699.11 9392.62 9798.08 21398.74 95
K. test v393.37 14993.27 15993.66 15898.05 8582.62 22594.35 12686.62 35596.05 2997.51 4398.85 1276.59 31199.65 393.21 7998.20 20498.73 96
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
MVS_030493.92 13693.68 14494.64 11795.94 23185.83 17894.34 12788.14 34392.98 7791.09 28497.68 6786.73 21499.36 5896.64 799.59 2898.72 97
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15599.60 2698.72 97
SDMVSNet94.43 11495.02 9892.69 19497.93 9682.88 22391.92 22195.99 21693.65 6595.51 13998.63 2094.60 6396.48 31287.57 22199.35 6198.70 101
sd_testset93.94 13594.39 11992.61 20097.93 9683.24 21493.17 16995.04 25093.65 6595.51 13998.63 2094.49 6795.89 32981.72 29499.35 6198.70 101
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13595.04 4898.56 17792.77 9199.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17196.69 16784.37 19693.38 16395.13 24884.50 25895.40 14697.55 8091.77 12697.20 28695.59 1997.79 23298.69 104
test250685.42 31784.57 32087.96 32597.81 10366.53 37996.14 5856.35 40289.04 17293.55 21398.10 4242.88 40298.68 16388.09 21199.18 9498.67 105
ECVR-MVScopyleft90.12 23690.16 23090.00 28897.81 10372.68 35595.76 7578.54 39389.04 17295.36 15098.10 4270.51 33498.64 16887.10 22999.18 9498.67 105
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16596.25 20583.23 21592.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10398.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GBi-Net93.21 15692.96 16293.97 14495.40 25684.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26798.98 10786.74 23398.38 18398.65 107
test193.21 15692.96 16293.97 14495.40 25684.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26798.98 10786.74 23398.38 18398.65 107
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19895.99 6396.56 18892.38 8597.03 6798.53 2690.12 16698.98 10788.78 19999.16 9798.65 107
EPP-MVSNet93.91 13793.68 14494.59 12298.08 8285.55 18597.44 1294.03 27594.22 5094.94 17196.19 18182.07 26099.57 1487.28 22798.89 12698.65 107
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 18093.65 15595.23 24683.30 26895.13 16297.56 7692.22 11697.17 28995.51 2397.41 25098.64 112
IU-MVS98.51 5186.66 15496.83 17072.74 35595.83 12393.00 8799.29 7498.64 112
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14994.37 7099.32 6992.41 10199.05 10698.64 112
casdiffmvspermissive94.32 11994.80 10592.85 18996.05 22181.44 24192.35 20198.05 6491.53 12295.75 12896.80 13893.35 8798.49 18391.01 13598.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17997.12 11691.85 12499.40 4693.45 6798.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21895.59 20986.93 20998.95 11489.26 18698.51 17398.60 117
plane_prior597.81 9198.95 11489.26 18698.51 17398.60 117
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16796.39 16794.77 5899.42 3393.17 8199.44 5098.58 119
tttt051789.81 24688.90 25592.55 20397.00 14979.73 27095.03 10383.65 37789.88 15695.30 15394.79 24553.64 39099.39 4991.99 11098.79 14398.54 120
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6899.31 6998.53 121
test_vis3_rt90.40 22390.03 23491.52 23792.58 32088.95 10390.38 26597.72 10073.30 35097.79 3097.51 8477.05 30387.10 38889.03 19394.89 31798.50 122
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14695.09 4799.43 3292.99 8898.71 15198.50 122
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7599.25 8398.49 124
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13496.47 15895.37 3099.27 7493.78 5299.14 9998.48 125
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 18097.23 10691.33 13599.16 8393.25 7898.30 19298.46 126
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20696.25 17998.03 297.02 29592.08 10795.55 30098.45 127
baseline94.26 12294.80 10592.64 19696.08 21980.99 24793.69 15398.04 6890.80 13894.89 17496.32 17293.19 9298.48 18791.68 12198.51 17398.43 128
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12895.14 4299.51 2091.74 11899.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0588.94 26688.09 27691.50 23892.74 31976.97 31692.80 17995.92 21782.82 27993.65 21095.37 22449.41 39499.13 8890.82 13899.28 7998.40 130
tfpnnormal94.27 12094.87 10392.48 20597.71 11280.88 24994.55 12295.41 24093.70 6196.67 8497.72 6691.40 13498.18 21387.45 22399.18 9498.36 131
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17293.97 14493.28 28994.49 4596.24 10397.78 6387.99 19198.79 14088.92 19599.14 9998.34 132
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 14192.91 10298.72 15291.19 13099.42 5298.32 133
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22996.80 17289.66 16093.90 20495.44 21792.80 10698.72 15292.74 9398.52 17198.32 133
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16499.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23598.17 4590.72 13995.30 15396.47 15887.94 19296.98 29691.41 12897.61 24298.30 136
EPNet89.80 24788.25 26994.45 13083.91 39786.18 16993.87 14687.07 35391.16 13180.64 38694.72 24778.83 28398.89 12085.17 25598.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
iter_conf_final90.23 23289.32 24592.95 18394.65 28381.46 24094.32 13095.40 24285.61 23892.84 23995.37 22454.58 38799.13 8892.16 10498.94 12498.25 139
GeoE94.55 11094.68 11394.15 13797.23 13985.11 19094.14 13897.34 13088.71 18195.26 15695.50 21494.65 6199.12 9190.94 13698.40 17998.23 140
NCCC94.08 13093.54 15295.70 7596.49 18489.90 8392.39 20096.91 16490.64 14292.33 26394.60 25290.58 15998.96 11290.21 16197.70 23798.23 140
XXY-MVS92.58 17693.16 16190.84 26497.75 10779.84 26591.87 22596.22 20685.94 22995.53 13897.68 6792.69 10894.48 35183.21 27797.51 24498.21 142
CDPH-MVS92.67 17491.83 19395.18 9696.94 15288.46 11890.70 25497.07 15177.38 32592.34 26295.08 23392.67 10998.88 12185.74 25098.57 16698.20 143
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
new-patchmatchnet88.97 26490.79 21783.50 36394.28 29155.83 39885.34 36093.56 28486.18 22595.47 14295.73 20583.10 24696.51 31185.40 25498.06 21498.16 147
HQP4-MVS88.81 32198.61 17098.15 148
HQP-MVS92.09 19091.49 20193.88 15096.36 19184.89 19291.37 23697.31 13287.16 21288.81 32193.40 29084.76 23498.60 17286.55 24097.73 23498.14 149
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6899.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ambc92.98 18096.88 15683.01 22195.92 6896.38 19896.41 9297.48 8688.26 18497.80 24889.96 16998.93 12598.12 151
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
eth_miper_zixun_eth90.72 21390.61 22191.05 25492.04 33576.84 31886.91 33996.67 18185.21 24594.41 18793.92 27579.53 27998.26 20689.76 17397.02 26398.06 153
FMVSNet292.78 17092.73 17192.95 18395.40 25681.98 23294.18 13595.53 23588.63 18296.05 11397.37 9181.31 26798.81 13687.38 22698.67 15798.06 153
OMC-MVS94.22 12593.69 14395.81 6997.25 13891.27 6492.27 20797.40 12287.10 21594.56 18495.42 21893.74 7798.11 21886.62 23798.85 13298.06 153
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4898.68 15598.04 156
PC_three_145275.31 33995.87 12295.75 20492.93 10196.34 32187.18 22898.68 15598.04 156
c3_l91.32 20691.42 20291.00 25892.29 32576.79 31987.52 33096.42 19685.76 23394.72 18293.89 27782.73 25398.16 21590.93 13798.55 16798.04 156
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21696.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12398.12 20998.03 159
MVS_111021_HR93.63 14393.42 15594.26 13596.65 17086.96 14689.30 30096.23 20488.36 19093.57 21294.60 25293.45 8297.77 25390.23 16098.38 18398.03 159
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12394.85 5699.42 3393.49 6298.84 13398.00 161
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12395.40 2993.49 6298.84 13398.00 161
thisisatest053088.69 27387.52 28492.20 21196.33 19679.36 27792.81 17884.01 37686.44 22093.67 20992.68 30853.62 39199.25 7589.65 17698.45 17798.00 161
Vis-MVSNet (Re-imp)90.42 22290.16 23091.20 25197.66 11877.32 30994.33 12887.66 34891.20 12992.99 23495.13 23075.40 31698.28 20277.86 32999.19 9297.99 164
agg_prior287.06 23198.36 18897.98 165
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
MVSTER89.32 25488.75 25791.03 25590.10 36576.62 32190.85 24894.67 26482.27 28695.24 15995.79 19961.09 37698.49 18390.49 14698.26 19597.97 168
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7599.29 7497.95 169
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20793.12 9598.06 22186.28 24698.61 16197.95 169
test_prior94.61 11895.95 22987.23 13797.36 12898.68 16397.93 171
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9499.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet93.08 15992.50 17794.79 10893.87 30187.99 12595.07 10194.26 27290.64 14287.33 34697.67 6986.89 21198.49 18388.10 21098.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet92.38 18391.99 18893.52 16793.82 30383.46 21191.14 24297.00 15589.81 15786.47 35094.04 26987.90 19399.21 7889.50 17898.27 19497.90 174
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25795.22 22791.03 14799.25 7592.11 10598.69 15497.90 174
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25294.79 24593.56 7999.49 2493.47 6599.05 10697.89 176
testgi90.38 22691.34 20587.50 33197.49 12771.54 36089.43 29595.16 24788.38 18994.54 18594.68 24992.88 10493.09 36571.60 36997.85 23097.88 177
test_040295.73 6196.22 4094.26 13598.19 7685.77 17993.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12699.29 7497.88 177
miper_lstm_enhance89.90 24489.80 23990.19 28491.37 34977.50 30683.82 37495.00 25184.84 25593.05 23294.96 23776.53 31295.20 34589.96 16998.67 15797.86 179
MCST-MVS92.91 16492.51 17694.10 14097.52 12585.72 18191.36 23997.13 14780.33 30192.91 23894.24 26291.23 13998.72 15289.99 16897.93 22697.86 179
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19298.07 4592.02 12099.44 2993.38 7397.67 23997.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_fmvs290.62 21890.40 22791.29 24691.93 33885.46 18692.70 18396.48 19474.44 34394.91 17397.59 7475.52 31590.57 37593.44 6896.56 28097.84 182
test9_res88.16 20998.40 17997.83 183
VNet92.67 17492.96 16291.79 22596.27 20280.15 25491.95 21794.98 25292.19 9494.52 18696.07 18787.43 19997.39 27984.83 26498.38 18397.83 183
diffmvspermissive91.74 19591.93 19091.15 25393.06 31478.17 29788.77 31397.51 11786.28 22292.42 25693.96 27488.04 18997.46 27390.69 14396.67 27897.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet390.78 21290.32 22992.16 21693.03 31679.92 26492.54 18994.95 25386.17 22695.10 16496.01 19069.97 33698.75 14786.74 23398.38 18397.82 185
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 22195.46 21588.89 17998.98 10789.80 17198.82 13997.80 187
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26388.20 20698.66 15997.79 188
cl2289.02 26088.50 26090.59 27189.76 36776.45 32386.62 34994.03 27582.98 27792.65 24692.49 31072.05 32897.53 26888.93 19497.02 26397.78 189
Anonymous20240521192.58 17692.50 17792.83 19096.55 17883.22 21692.43 19791.64 32094.10 5295.59 13696.64 15181.88 26497.50 27085.12 25998.52 17197.77 190
cl____90.65 21690.56 22390.91 26291.85 33976.98 31586.75 34495.36 24385.53 24194.06 19694.89 23977.36 30197.98 23190.27 15798.98 11497.76 191
DIV-MVS_self_test90.65 21690.56 22390.91 26291.85 33976.99 31486.75 34495.36 24385.52 24394.06 19694.89 23977.37 30097.99 23090.28 15698.97 11997.76 191
test1294.43 13195.95 22986.75 15096.24 20389.76 31089.79 17398.79 14097.95 22597.75 193
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26395.70 1698.48 17697.74 194
train_agg92.71 17391.83 19395.35 8496.45 18789.46 9090.60 25796.92 16279.37 31090.49 29294.39 25891.20 14198.88 12188.66 20298.43 17897.72 195
IterMVS-SCA-FT91.65 19791.55 19791.94 22193.89 30079.22 28187.56 32793.51 28591.53 12295.37 14996.62 15278.65 28698.90 11891.89 11494.95 31697.70 196
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25487.06 14296.63 3197.28 13791.82 11094.34 19197.41 8890.60 15898.65 16792.47 10098.11 21097.70 196
PVSNet_BlendedMVS90.35 22889.96 23591.54 23694.81 27278.80 29190.14 27396.93 16079.43 30988.68 32895.06 23486.27 22098.15 21680.27 30698.04 21697.68 198
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14295.41 24089.94 15491.93 27192.13 31990.12 16698.97 11187.68 22097.48 24697.67 199
LFMVS91.33 20591.16 21091.82 22496.27 20279.36 27795.01 10485.61 36596.04 3094.82 17697.06 12172.03 32998.46 18884.96 26398.70 15397.65 200
UnsupCasMVSNet_eth90.33 22990.34 22890.28 27894.64 28480.24 25289.69 28895.88 21885.77 23293.94 20395.69 20681.99 26192.98 36684.21 27091.30 36897.62 201
CLD-MVS91.82 19391.41 20393.04 17896.37 18983.65 21086.82 34397.29 13584.65 25792.27 26489.67 35292.20 11897.85 24583.95 27299.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28593.73 28193.52 8199.55 1891.81 11699.45 4797.58 203
MDA-MVSNet-bldmvs91.04 20890.88 21391.55 23594.68 28180.16 25385.49 35892.14 31290.41 14994.93 17295.79 19985.10 23296.93 30085.15 25794.19 33697.57 204
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14798.84 13397.57 204
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14496.17 18493.42 8599.34 6389.30 18298.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet587.82 28686.56 30391.62 23392.31 32479.81 26893.49 15894.81 25983.26 26991.36 27796.93 13052.77 39297.49 27276.07 34498.03 21797.55 207
CL-MVSNet_self_test90.04 24289.90 23790.47 27395.24 26277.81 30286.60 35092.62 30385.64 23693.25 22593.92 27583.84 23996.06 32679.93 31498.03 21797.53 208
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24394.52 25593.95 7699.49 2493.62 5799.22 8997.51 209
QAPM92.88 16692.77 16793.22 17695.82 23683.31 21296.45 3997.35 12983.91 26493.75 20696.77 13989.25 17798.88 12184.56 26897.02 26397.49 210
Patchmtry90.11 23789.92 23690.66 26990.35 36277.00 31392.96 17492.81 29690.25 15194.74 18096.93 13067.11 34597.52 26985.17 25598.98 11497.46 211
EGC-MVSNET80.97 35075.73 36396.67 4298.85 2494.55 1596.83 2396.60 1842.44 3995.32 40098.25 3792.24 11598.02 22691.85 11599.21 9097.45 212
miper_ehance_all_eth90.48 22090.42 22690.69 26891.62 34676.57 32286.83 34296.18 20883.38 26794.06 19692.66 30982.20 25898.04 22289.79 17297.02 26397.45 212
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7597.31 1195.32 15296.77 13993.08 9799.20 8091.79 11798.16 20697.44 214
D2MVS89.93 24389.60 24490.92 26094.03 29778.40 29488.69 31594.85 25578.96 31793.08 23095.09 23274.57 31896.94 29888.19 20798.96 12197.41 215
PHI-MVS94.34 11893.80 13895.95 5995.65 24791.67 6294.82 10997.86 8587.86 19993.04 23394.16 26691.58 13098.78 14390.27 15798.96 12197.41 215
ITE_SJBPF95.95 5997.34 13593.36 4096.55 19191.93 10094.82 17695.39 22291.99 12197.08 29385.53 25397.96 22497.41 215
SD-MVS95.19 8895.73 6793.55 16296.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16395.42 2894.36 35592.72 9599.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 21190.85 21590.63 27095.63 24979.24 28089.81 28492.87 29589.90 15594.39 18896.40 16385.77 22495.27 34473.86 35699.05 10697.39 219
F-COLMAP92.28 18691.06 21195.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32794.04 26988.41 18398.55 17980.17 31095.99 29197.39 219
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22892.96 4389.48 29397.46 11885.14 24796.23 10495.42 21893.19 9298.08 22090.37 15198.76 14697.38 221
mvs_anonymous90.37 22791.30 20687.58 33092.17 33168.00 37489.84 28394.73 26183.82 26693.22 22797.40 8987.54 19797.40 27887.94 21695.05 31497.34 222
alignmvs93.26 15392.85 16694.50 12695.70 24387.45 13393.45 16095.76 22191.58 12095.25 15892.42 31581.96 26298.72 15291.61 12297.87 22997.33 223
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12196.14 21487.90 12693.36 16497.14 14585.53 24193.90 20495.45 21691.30 13798.59 17489.51 17798.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d91.54 20090.73 21993.99 14295.76 24187.86 12890.83 24993.98 27978.23 32294.02 19996.22 18082.62 25696.83 30386.57 23898.33 18997.29 225
testing383.66 33082.52 33587.08 33495.84 23565.84 38189.80 28577.17 39688.17 19390.84 28788.63 36230.95 40498.11 21884.05 27197.19 25797.28 226
IterMVS90.18 23390.16 23090.21 28293.15 31275.98 32887.56 32792.97 29486.43 22194.09 19396.40 16378.32 29097.43 27587.87 21794.69 32497.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
canonicalmvs94.59 10894.69 11194.30 13495.60 25187.03 14395.59 8198.24 3491.56 12195.21 16192.04 32194.95 5398.66 16591.45 12797.57 24397.20 228
test_fmvs1_n88.73 27288.38 26389.76 29192.06 33482.53 22692.30 20696.59 18671.14 36292.58 24995.41 22168.55 33989.57 38391.12 13195.66 29897.18 229
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15696.16 21186.26 16792.46 19496.72 17881.69 29195.77 12597.11 11790.83 15097.82 24695.58 2097.99 22197.11 230
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16996.10 21785.66 18392.32 20396.57 18781.32 29395.63 13497.14 11490.19 16497.73 25995.37 2998.03 21797.07 231
ppachtmachnet_test88.61 27488.64 25888.50 31691.76 34170.99 36484.59 36792.98 29379.30 31492.38 25893.53 28879.57 27897.45 27486.50 24297.17 25897.07 231
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20590.95 6990.21 27095.43 23987.91 19693.74 20894.40 25792.88 10496.38 31790.39 14998.28 19397.07 231
HyFIR lowres test87.19 30385.51 31492.24 21097.12 14780.51 25185.03 36296.06 21166.11 38391.66 27492.98 30070.12 33599.14 8675.29 34895.23 31197.07 231
h-mvs3392.89 16591.99 18895.58 7796.97 15090.55 7693.94 14594.01 27889.23 16893.95 20196.19 18176.88 30799.14 8691.02 13395.71 29797.04 235
CANet_DTU89.85 24589.17 24791.87 22292.20 32980.02 26190.79 25095.87 21986.02 22882.53 37791.77 32480.01 27698.57 17685.66 25297.70 23797.01 236
MVS_Test92.57 17893.29 15690.40 27693.53 30775.85 32992.52 19096.96 15888.73 17992.35 26096.70 14890.77 15198.37 19892.53 9995.49 30296.99 237
LCM-MVSNet-Re94.20 12694.58 11693.04 17895.91 23283.13 21993.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29898.54 16996.96 238
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28991.92 12398.78 14389.11 19199.24 8596.92 239
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12494.66 28288.25 12092.05 21396.65 18289.62 16190.08 30191.23 33192.56 11098.60 17286.30 24596.27 28696.90 240
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11794.11 7497.75 25696.26 1198.72 14996.89 241
114514_t90.51 21989.80 23992.63 19898.00 9182.24 23093.40 16297.29 13565.84 38489.40 31494.80 24486.99 20798.75 14783.88 27398.61 16196.89 241
Effi-MVS+92.79 16992.74 16992.94 18595.10 26483.30 21394.00 14297.53 11491.36 12589.35 31590.65 34394.01 7598.66 16587.40 22595.30 30996.88 243
CMPMVSbinary68.83 2287.28 29985.67 31392.09 21888.77 37885.42 18790.31 26894.38 26870.02 37188.00 33793.30 29273.78 32294.03 35975.96 34696.54 28196.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
hse-mvs292.24 18891.20 20795.38 8396.16 21190.65 7592.52 19092.01 31689.23 16893.95 20192.99 29976.88 30798.69 16191.02 13396.03 28996.81 245
miper_enhance_ethall88.42 27687.87 27990.07 28588.67 37975.52 33285.10 36195.59 23075.68 33492.49 25189.45 35578.96 28297.88 23987.86 21897.02 26396.81 245
EIA-MVS92.35 18492.03 18693.30 17495.81 23883.97 20692.80 17998.17 4587.71 20389.79 30987.56 36891.17 14499.18 8287.97 21597.27 25496.77 247
MVP-Stereo90.07 24088.92 25393.54 16496.31 19886.49 15790.93 24795.59 23079.80 30391.48 27595.59 20980.79 27297.39 27978.57 32791.19 36996.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 24188.30 26595.32 8896.09 21890.52 7792.42 19892.05 31582.08 28888.45 33192.86 30165.76 35598.69 16188.91 19696.07 28896.75 249
PAPM_NR91.03 20990.81 21691.68 23196.73 16581.10 24693.72 15296.35 19988.19 19288.77 32592.12 32085.09 23397.25 28382.40 28793.90 33996.68 250
FA-MVS(test-final)91.81 19491.85 19291.68 23194.95 26779.99 26296.00 6293.44 28787.80 20094.02 19997.29 10277.60 29598.45 18988.04 21397.49 24596.61 251
UnsupCasMVSNet_bld88.50 27588.03 27789.90 28995.52 25378.88 28887.39 33194.02 27779.32 31393.06 23194.02 27180.72 27394.27 35675.16 34993.08 35396.54 252
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18389.69 8692.91 17697.68 10178.02 32392.79 24294.10 26790.85 14997.96 23284.76 26698.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs587.87 28487.14 29290.07 28593.26 31176.97 31688.89 30892.18 30973.71 34888.36 33293.89 27776.86 30996.73 30680.32 30596.81 27396.51 254
thres600view787.66 28987.10 29589.36 29996.05 22173.17 34992.72 18185.31 36891.89 10293.29 22090.97 33563.42 36798.39 19173.23 35996.99 26896.51 254
thres40087.20 30286.52 30589.24 30395.77 23972.94 35291.89 22286.00 36090.84 13592.61 24789.80 34763.93 36498.28 20271.27 37196.54 28196.51 254
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24692.61 30488.04 19594.61 18393.79 28088.08 18797.81 24789.41 17998.39 18296.50 257
YYNet188.17 28088.24 27087.93 32692.21 32873.62 34780.75 38388.77 33582.51 28494.99 17095.11 23182.70 25493.70 36083.33 27593.83 34096.48 258
MDA-MVSNet_test_wron88.16 28188.23 27187.93 32692.22 32773.71 34680.71 38488.84 33482.52 28394.88 17595.14 22982.70 25493.61 36183.28 27693.80 34196.46 259
MVSFormer92.18 18992.23 18192.04 22094.74 27780.06 25897.15 1597.37 12388.98 17488.83 31992.79 30477.02 30499.60 996.41 996.75 27696.46 259
jason89.17 25688.32 26491.70 23095.73 24280.07 25788.10 32093.22 29071.98 35890.09 30092.79 30478.53 28998.56 17787.43 22497.06 26196.46 259
jason: jason.
CHOSEN 1792x268887.19 30385.92 31291.00 25897.13 14679.41 27684.51 36895.60 22664.14 38790.07 30294.81 24278.26 29197.14 29173.34 35895.38 30796.46 259
Anonymous2023120688.77 27088.29 26690.20 28396.31 19878.81 29089.56 29193.49 28674.26 34592.38 25895.58 21282.21 25795.43 33972.07 36598.75 14896.34 263
旧先验196.20 20884.17 20394.82 25795.57 21389.57 17497.89 22896.32 264
DELS-MVS92.05 19192.16 18291.72 22894.44 28780.13 25687.62 32497.25 13887.34 21092.22 26593.18 29689.54 17598.73 15189.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft85.34 1590.40 22388.92 25394.85 10596.53 18290.02 8191.58 23396.48 19480.16 30286.14 35292.18 31785.73 22598.25 20776.87 33994.61 32696.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPR87.65 29086.77 30090.27 27992.85 31877.38 30888.56 31896.23 20476.82 33284.98 36189.75 35186.08 22297.16 29072.33 36493.35 34796.26 267
our_test_387.55 29387.59 28387.44 33291.76 34170.48 36583.83 37390.55 33079.79 30492.06 26992.17 31878.63 28895.63 33284.77 26594.73 32296.22 268
Fast-Effi-MVS+91.28 20790.86 21492.53 20495.45 25582.53 22689.25 30396.52 19285.00 25189.91 30588.55 36492.94 10098.84 12984.72 26795.44 30496.22 268
EPNet_dtu85.63 31584.37 32189.40 29886.30 39074.33 34291.64 23288.26 33984.84 25572.96 39589.85 34571.27 33297.69 26176.60 34197.62 24196.18 270
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17596.60 18485.08 25092.44 25593.62 28486.80 21296.35 31986.81 23298.25 19796.18 270
pmmvs488.95 26587.70 28292.70 19394.30 29085.60 18487.22 33392.16 31174.62 34289.75 31194.19 26477.97 29396.41 31582.71 28196.36 28596.09 272
MG-MVS89.54 24989.80 23988.76 30994.88 26872.47 35789.60 28992.44 30785.82 23189.48 31395.98 19182.85 25197.74 25881.87 29195.27 31096.08 273
ab-mvs92.40 18292.62 17491.74 22797.02 14881.65 23695.84 7195.50 23686.95 21792.95 23797.56 7690.70 15697.50 27079.63 31797.43 24996.06 274
baseline283.38 33281.54 34188.90 30691.38 34872.84 35488.78 31281.22 38578.97 31679.82 38887.56 36861.73 37497.80 24874.30 35490.05 37596.05 275
N_pmnet88.90 26787.25 28993.83 15494.40 28993.81 3584.73 36487.09 35279.36 31293.26 22392.43 31479.29 28191.68 37177.50 33597.22 25696.00 276
test_vis1_n_192089.45 25189.85 23888.28 32093.59 30676.71 32090.67 25597.78 9679.67 30790.30 29896.11 18576.62 31092.17 36990.31 15493.57 34495.96 277
GA-MVS87.70 28786.82 29890.31 27793.27 31077.22 31184.72 36692.79 29885.11 24989.82 30790.07 34466.80 34897.76 25584.56 26894.27 33395.96 277
test_yl90.11 23789.73 24291.26 24794.09 29579.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32098.03 22382.23 28896.87 27095.93 279
DCV-MVSNet90.11 23789.73 24291.26 24794.09 29579.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32098.03 22382.23 28896.87 27095.93 279
PM-MVS93.33 15092.67 17395.33 8696.58 17594.06 2192.26 20892.18 30985.92 23096.22 10596.61 15385.64 22895.99 32890.35 15298.23 19995.93 279
ET-MVSNet_ETH3D86.15 31284.27 32391.79 22593.04 31581.28 24287.17 33586.14 35879.57 30883.65 36988.66 36157.10 38298.18 21387.74 21995.40 30595.90 282
TAMVS90.16 23489.05 24993.49 16996.49 18486.37 16290.34 26792.55 30580.84 29992.99 23494.57 25481.94 26398.20 21073.51 35798.21 20295.90 282
baseline187.62 29187.31 28688.54 31494.71 28074.27 34393.10 17188.20 34186.20 22492.18 26693.04 29773.21 32395.52 33479.32 32185.82 38495.83 284
WTY-MVS86.93 30886.50 30788.24 32194.96 26674.64 33687.19 33492.07 31478.29 32188.32 33391.59 32878.06 29294.27 35674.88 35093.15 35195.80 285
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18597.73 11083.95 20792.14 21197.46 11878.85 31992.35 26094.98 23684.16 23899.08 9486.36 24496.77 27595.79 286
lupinMVS88.34 27887.31 28691.45 23994.74 27780.06 25887.23 33292.27 30871.10 36388.83 31991.15 33277.02 30498.53 18086.67 23696.75 27695.76 287
DP-MVS Recon92.31 18591.88 19193.60 16097.18 14386.87 14791.10 24497.37 12384.92 25392.08 26894.08 26888.59 18098.20 21083.50 27498.14 20895.73 288
FE-MVS89.06 25988.29 26691.36 24294.78 27479.57 27396.77 2890.99 32484.87 25492.96 23696.29 17460.69 37898.80 13980.18 30997.11 26095.71 289
CDS-MVSNet89.55 24888.22 27293.53 16595.37 25986.49 15789.26 30193.59 28279.76 30591.15 28292.31 31677.12 30298.38 19477.51 33497.92 22795.71 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
原ACMM192.87 18896.91 15584.22 20197.01 15476.84 33189.64 31294.46 25688.00 19098.70 15981.53 29698.01 22095.70 291
thisisatest051584.72 32382.99 33289.90 28992.96 31775.33 33484.36 36983.42 37877.37 32688.27 33486.65 37353.94 38998.72 15282.56 28397.40 25195.67 292
ETV-MVS92.99 16292.74 16993.72 15795.86 23486.30 16592.33 20297.84 8891.70 11892.81 24086.17 37892.22 11699.19 8188.03 21497.73 23495.66 293
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25396.17 20987.70 20495.26 15696.29 17492.54 11196.45 31481.77 29298.77 14595.66 293
PCF-MVS84.52 1789.12 25787.71 28193.34 17296.06 22085.84 17786.58 35197.31 13268.46 37793.61 21193.89 27787.51 19898.52 18167.85 38298.11 21095.66 293
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30696.39 19773.21 35193.27 22296.28 17682.16 25996.39 31677.55 33398.80 14295.62 296
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19594.53 28684.10 20495.70 7697.03 15382.44 28591.14 28396.42 16188.47 18298.38 19485.95 24897.47 24795.55 297
sss87.23 30086.82 29888.46 31893.96 29877.94 29886.84 34192.78 29977.59 32487.61 34391.83 32378.75 28491.92 37077.84 33094.20 33495.52 298
test_cas_vis1_n_192088.25 27988.27 26888.20 32292.19 33078.92 28689.45 29495.44 23775.29 34093.23 22695.65 20871.58 33090.23 37988.05 21293.55 34595.44 299
ADS-MVSNet284.01 32882.20 33889.41 29789.04 37576.37 32587.57 32590.98 32572.71 35684.46 36492.45 31168.08 34196.48 31270.58 37683.97 38695.38 300
ADS-MVSNet82.25 33981.55 34084.34 35889.04 37565.30 38287.57 32585.13 37272.71 35684.46 36492.45 31168.08 34192.33 36870.58 37683.97 38695.38 300
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27096.48 2195.38 14793.63 28394.89 5597.94 23495.38 2896.92 26995.17 302
tpm84.38 32684.08 32485.30 35090.47 36063.43 39089.34 29885.63 36477.24 32887.62 34295.03 23561.00 37797.30 28279.26 32291.09 37195.16 303
1112_ss88.42 27687.41 28591.45 23996.69 16780.99 24789.72 28796.72 17873.37 34987.00 34890.69 34177.38 29998.20 21081.38 29793.72 34295.15 304
BH-RMVSNet90.47 22190.44 22590.56 27295.21 26378.65 29389.15 30493.94 28088.21 19192.74 24494.22 26386.38 21897.88 23978.67 32695.39 30695.14 305
Test_1112_low_res87.50 29586.58 30290.25 28096.80 16477.75 30387.53 32996.25 20269.73 37386.47 35093.61 28575.67 31497.88 23979.95 31293.20 34995.11 306
MIMVSNet87.13 30586.54 30488.89 30796.05 22176.11 32694.39 12588.51 33781.37 29288.27 33496.75 14372.38 32695.52 33465.71 38795.47 30395.03 307
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27298.85 1291.77 12695.49 33691.72 11999.08 10295.02 308
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSLP-MVS++93.25 15593.88 13591.37 24196.34 19582.81 22493.11 17097.74 9889.37 16694.08 19495.29 22690.40 16296.35 31990.35 15298.25 19794.96 309
test_vis1_n89.01 26289.01 25189.03 30492.57 32182.46 22892.62 18796.06 21173.02 35390.40 29595.77 20374.86 31789.68 38190.78 14094.98 31594.95 310
MSDG90.82 21090.67 22091.26 24794.16 29283.08 22086.63 34896.19 20790.60 14491.94 27091.89 32289.16 17895.75 33180.96 30394.51 32794.95 310
test_fmvs187.59 29287.27 28888.54 31488.32 38081.26 24390.43 26495.72 22370.55 36891.70 27394.63 25068.13 34089.42 38490.59 14495.34 30894.94 312
Syy-MVS84.81 32284.93 31684.42 35791.71 34363.36 39185.89 35481.49 38381.03 29485.13 35881.64 38977.44 29795.00 34685.94 24994.12 33794.91 313
myMVS_eth3d79.62 35678.26 36083.72 36191.71 34361.25 39385.89 35481.49 38381.03 29485.13 35881.64 38932.12 40395.00 34671.17 37494.12 33794.91 313
无先验89.94 27995.75 22270.81 36698.59 17481.17 30194.81 315
mvsany_test389.11 25888.21 27391.83 22391.30 35090.25 7988.09 32178.76 39176.37 33396.43 9198.39 3383.79 24090.43 37886.57 23894.20 33494.80 316
thres100view90087.35 29886.89 29788.72 31096.14 21473.09 35193.00 17385.31 36892.13 9593.26 22390.96 33663.42 36798.28 20271.27 37196.54 28194.79 317
tfpn200view987.05 30686.52 30588.67 31195.77 23972.94 35291.89 22286.00 36090.84 13592.61 24789.80 34763.93 36498.28 20271.27 37196.54 28194.79 317
GSMVS94.75 319
sam_mvs166.64 35194.75 319
SCA87.43 29687.21 29088.10 32492.01 33671.98 35989.43 29588.11 34482.26 28788.71 32692.83 30278.65 28697.59 26679.61 31893.30 34894.75 319
MS-PatchMatch88.05 28287.75 28088.95 30593.28 30977.93 29987.88 32392.49 30675.42 33792.57 25093.59 28680.44 27494.24 35881.28 29892.75 35694.69 322
PatchmatchNetpermissive85.22 31884.64 31886.98 33689.51 37269.83 37190.52 25987.34 35178.87 31887.22 34792.74 30666.91 34796.53 30981.77 29286.88 38294.58 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet87.39 29786.71 30189.44 29693.40 30876.11 32694.93 10790.00 33257.17 39395.71 13297.37 9164.77 36197.68 26292.67 9694.37 33094.52 324
PVSNet76.22 2082.89 33682.37 33684.48 35693.96 29864.38 38878.60 38688.61 33671.50 36084.43 36686.36 37774.27 31994.60 35069.87 37893.69 34394.46 325
PVSNet_Blended88.74 27188.16 27590.46 27594.81 27278.80 29186.64 34796.93 16074.67 34188.68 32889.18 35986.27 22098.15 21680.27 30696.00 29094.44 326
CNLPA91.72 19691.20 20793.26 17596.17 21091.02 6791.14 24295.55 23390.16 15290.87 28693.56 28786.31 21994.40 35479.92 31697.12 25994.37 327
cascas87.02 30786.28 30989.25 30291.56 34776.45 32384.33 37096.78 17371.01 36486.89 34985.91 37981.35 26696.94 29883.09 27895.60 29994.35 328
DPM-MVS89.35 25388.40 26292.18 21596.13 21684.20 20286.96 33896.15 21075.40 33887.36 34591.55 32983.30 24498.01 22782.17 29096.62 27994.32 329
MAR-MVS90.32 23088.87 25694.66 11594.82 27191.85 5794.22 13494.75 26080.91 29687.52 34488.07 36786.63 21697.87 24276.67 34096.21 28794.25 330
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet87.89 28387.12 29490.22 28191.01 35378.93 28492.52 19092.81 29673.08 35289.10 31696.93 13067.11 34597.64 26588.80 19892.70 35794.08 331
RPMNet90.31 23190.14 23390.81 26691.01 35378.93 28492.52 19098.12 5191.91 10189.10 31696.89 13368.84 33899.41 3990.17 16292.70 35794.08 331
MDTV_nov1_ep13_2view42.48 40488.45 31967.22 38083.56 37166.80 34872.86 36294.06 333
test-LLR83.58 33183.17 33084.79 35489.68 36966.86 37783.08 37584.52 37383.07 27582.85 37584.78 38362.86 37093.49 36282.85 27994.86 31894.03 334
test-mter81.21 34880.01 35584.79 35489.68 36966.86 37783.08 37584.52 37373.85 34782.85 37584.78 38343.66 39993.49 36282.85 27994.86 31894.03 334
新几何193.17 17797.16 14487.29 13594.43 26767.95 37891.29 27894.94 23886.97 20898.23 20881.06 30297.75 23393.98 336
test22296.95 15185.27 18988.83 31193.61 28165.09 38690.74 28994.85 24184.62 23697.36 25293.91 337
PMMVS281.31 34683.44 32874.92 37790.52 35946.49 40369.19 39185.23 37184.30 26287.95 33894.71 24876.95 30684.36 39464.07 38898.09 21293.89 338
Patchmatch-test86.10 31386.01 31086.38 34490.63 35774.22 34489.57 29086.69 35485.73 23489.81 30892.83 30265.24 35991.04 37477.82 33295.78 29693.88 339
Patchmatch-RL test88.81 26988.52 25989.69 29495.33 26179.94 26386.22 35392.71 30078.46 32095.80 12494.18 26566.25 35395.33 34289.22 18898.53 17093.78 340
test0.0.03 182.48 33881.47 34285.48 34889.70 36873.57 34884.73 36481.64 38283.07 27588.13 33686.61 37462.86 37089.10 38666.24 38690.29 37493.77 341
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 26094.58 28581.21 24591.10 24493.41 28877.03 32993.41 21593.99 27383.23 24597.80 24879.93 31494.80 32193.74 342
testdata91.03 25596.87 15782.01 23194.28 27171.55 35992.46 25395.42 21885.65 22797.38 28182.64 28297.27 25493.70 343
test_vis1_rt85.58 31684.58 31988.60 31387.97 38186.76 14985.45 35993.59 28266.43 38187.64 34189.20 35879.33 28085.38 39281.59 29589.98 37693.66 344
IB-MVS77.21 1983.11 33381.05 34489.29 30091.15 35175.85 32985.66 35786.00 36079.70 30682.02 38186.61 37448.26 39598.39 19177.84 33092.22 36293.63 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
xiu_mvs_v1_base91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
tpmrst82.85 33782.93 33382.64 36587.65 38258.99 39690.14 27387.90 34675.54 33683.93 36891.63 32766.79 35095.36 34081.21 30081.54 39293.57 349
PatchT87.51 29488.17 27485.55 34790.64 35666.91 37692.02 21586.09 35992.20 9389.05 31897.16 11264.15 36396.37 31889.21 18992.98 35593.37 350
CostFormer83.09 33482.21 33785.73 34689.27 37467.01 37590.35 26686.47 35670.42 36983.52 37293.23 29561.18 37596.85 30277.21 33788.26 38093.34 351
thres20085.85 31485.18 31587.88 32894.44 28772.52 35689.08 30586.21 35788.57 18591.44 27688.40 36564.22 36298.00 22868.35 38095.88 29593.12 352
KD-MVS_2432*160082.17 34180.75 34886.42 34282.04 39970.09 36881.75 38090.80 32782.56 28190.37 29689.30 35642.90 40096.11 32474.47 35292.55 35993.06 353
miper_refine_blended82.17 34180.75 34886.42 34282.04 39970.09 36881.75 38090.80 32782.56 28190.37 29689.30 35642.90 40096.11 32474.47 35292.55 35993.06 353
HY-MVS82.50 1886.81 30985.93 31189.47 29593.63 30577.93 29994.02 14191.58 32175.68 33483.64 37093.64 28277.40 29897.42 27671.70 36892.07 36493.05 355
EPMVS81.17 34980.37 35183.58 36285.58 39365.08 38590.31 26871.34 39877.31 32785.80 35491.30 33059.38 37992.70 36779.99 31182.34 39192.96 356
tpmvs84.22 32783.97 32584.94 35287.09 38765.18 38391.21 24188.35 33882.87 27885.21 35690.96 33665.24 35996.75 30579.60 32085.25 38592.90 357
BH-untuned90.68 21590.90 21290.05 28795.98 22779.57 27390.04 27694.94 25487.91 19694.07 19593.00 29887.76 19497.78 25279.19 32395.17 31292.80 358
AdaColmapbinary91.63 19891.36 20492.47 20695.56 25286.36 16392.24 21096.27 20188.88 17889.90 30692.69 30791.65 12998.32 20077.38 33697.64 24092.72 359
CVMVSNet85.16 31984.72 31786.48 34092.12 33270.19 36692.32 20388.17 34256.15 39490.64 29195.85 19567.97 34396.69 30788.78 19990.52 37392.56 360
tpm281.46 34580.35 35284.80 35389.90 36665.14 38490.44 26185.36 36765.82 38582.05 38092.44 31357.94 38196.69 30770.71 37588.49 37992.56 360
PAPM81.91 34480.11 35487.31 33393.87 30172.32 35884.02 37293.22 29069.47 37476.13 39389.84 34672.15 32797.23 28453.27 39589.02 37792.37 362
TESTMET0.1,179.09 35878.04 36182.25 36687.52 38464.03 38983.08 37580.62 38770.28 37080.16 38783.22 38644.13 39890.56 37679.95 31293.36 34692.15 363
DSMNet-mixed82.21 34081.56 33984.16 35989.57 37170.00 37090.65 25677.66 39554.99 39583.30 37397.57 7577.89 29490.50 37766.86 38595.54 30191.97 364
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33795.60 22680.88 29787.83 33988.62 36391.04 14698.81 13682.51 28594.38 32991.93 365
PS-MVSNAJ88.86 26888.99 25288.48 31794.88 26874.71 33586.69 34695.60 22680.88 29787.83 33987.37 37190.77 15198.82 13182.52 28494.37 33091.93 365
tpm cat180.61 35379.46 35684.07 36088.78 37765.06 38689.26 30188.23 34062.27 39081.90 38289.66 35362.70 37295.29 34371.72 36780.60 39391.86 367
dp79.28 35778.62 35981.24 37085.97 39256.45 39786.91 33985.26 37072.97 35481.45 38589.17 36056.01 38695.45 33873.19 36076.68 39491.82 368
dmvs_re84.69 32483.94 32686.95 33792.24 32682.93 22289.51 29287.37 35084.38 26185.37 35585.08 38272.44 32586.59 38968.05 38191.03 37291.33 369
JIA-IIPM85.08 32083.04 33191.19 25287.56 38386.14 17089.40 29784.44 37588.98 17482.20 37897.95 5456.82 38496.15 32276.55 34283.45 38891.30 370
TR-MVS87.70 28787.17 29189.27 30194.11 29479.26 27988.69 31591.86 31781.94 28990.69 29089.79 34982.82 25297.42 27672.65 36391.98 36591.14 371
131486.46 31186.33 30886.87 33891.65 34574.54 33891.94 21994.10 27474.28 34484.78 36387.33 37283.03 24895.00 34678.72 32591.16 37091.06 372
new_pmnet81.22 34781.01 34681.86 36790.92 35570.15 36784.03 37180.25 38970.83 36585.97 35389.78 35067.93 34484.65 39367.44 38391.90 36690.78 373
PatchMatch-RL89.18 25588.02 27892.64 19695.90 23392.87 4588.67 31791.06 32380.34 30090.03 30391.67 32683.34 24394.42 35376.35 34394.84 32090.64 374
API-MVS91.52 20191.61 19691.26 24794.16 29286.26 16794.66 11494.82 25791.17 13092.13 26791.08 33490.03 17197.06 29479.09 32497.35 25390.45 375
BH-w/o87.21 30187.02 29687.79 32994.77 27577.27 31087.90 32293.21 29281.74 29089.99 30488.39 36683.47 24296.93 30071.29 37092.43 36189.15 376
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22096.47 2293.40 21797.46 8795.31 3595.47 33786.18 24798.78 14489.11 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 34381.02 34585.34 34987.46 38571.04 36294.74 11167.56 39996.44 2379.43 38998.99 645.24 39696.15 32267.18 38492.17 36388.85 378
CHOSEN 280x42080.04 35577.97 36286.23 34590.13 36474.53 33972.87 38989.59 33366.38 38276.29 39285.32 38156.96 38395.36 34069.49 37994.72 32388.79 379
pmmvs380.83 35178.96 35886.45 34187.23 38677.48 30784.87 36382.31 38063.83 38885.03 36089.50 35449.66 39393.10 36473.12 36195.10 31388.78 380
test_f86.65 31087.13 29385.19 35190.28 36386.11 17186.52 35291.66 31969.76 37295.73 13197.21 11069.51 33781.28 39589.15 19094.40 32888.17 381
PMMVS83.00 33581.11 34388.66 31283.81 39886.44 16082.24 37985.65 36361.75 39182.07 37985.64 38079.75 27791.59 37275.99 34593.09 35287.94 382
mvsany_test183.91 32982.93 33386.84 33986.18 39185.93 17481.11 38275.03 39770.80 36788.57 33094.63 25083.08 24787.38 38780.39 30486.57 38387.21 383
dmvs_testset78.23 36078.99 35775.94 37691.99 33755.34 39988.86 30978.70 39282.69 28081.64 38479.46 39175.93 31385.74 39148.78 39782.85 39086.76 384
MVS84.98 32184.30 32287.01 33591.03 35277.69 30591.94 21994.16 27359.36 39284.23 36787.50 37085.66 22696.80 30471.79 36693.05 35486.54 385
MVEpermissive59.87 2373.86 36272.65 36577.47 37587.00 38974.35 34161.37 39360.93 40167.27 37969.69 39686.49 37681.24 27072.33 39756.45 39483.45 38885.74 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND83.24 36485.06 39571.03 36394.99 10665.55 40074.09 39475.51 39444.57 39794.46 35259.57 39287.54 38184.24 387
FPMVS84.50 32583.28 32988.16 32396.32 19794.49 1685.76 35685.47 36683.09 27485.20 35794.26 26163.79 36686.58 39063.72 38991.88 36783.40 388
E-PMN80.72 35280.86 34780.29 37285.11 39468.77 37372.96 38881.97 38187.76 20283.25 37483.01 38762.22 37389.17 38577.15 33894.31 33282.93 389
EMVS80.35 35480.28 35380.54 37184.73 39669.07 37272.54 39080.73 38687.80 20081.66 38381.73 38862.89 36989.84 38075.79 34794.65 32582.71 390
PVSNet_070.34 2174.58 36172.96 36479.47 37390.63 35766.24 38073.26 38783.40 37963.67 38978.02 39078.35 39372.53 32489.59 38256.68 39360.05 39782.57 391
test_method50.44 36348.94 36654.93 37939.68 40212.38 40628.59 39490.09 3316.82 39741.10 39978.41 39254.41 38870.69 39850.12 39651.26 39881.72 392
MVS-HIRNet78.83 35980.60 35073.51 37893.07 31347.37 40287.10 33678.00 39468.94 37577.53 39197.26 10371.45 33194.62 34963.28 39088.74 37878.55 393
wuyk23d87.83 28590.79 21778.96 37490.46 36188.63 11092.72 18190.67 32991.65 11998.68 1197.64 7196.06 1577.53 39659.84 39199.41 5670.73 394
DeepMVS_CXcopyleft53.83 38070.38 40164.56 38748.52 40433.01 39665.50 39774.21 39556.19 38546.64 39938.45 39970.07 39550.30 395
tmp_tt37.97 36444.33 36718.88 38111.80 40321.54 40563.51 39245.66 4054.23 39851.34 39850.48 39659.08 38022.11 40044.50 39868.35 39613.00 396
test1239.49 36612.01 3691.91 3822.87 4041.30 40782.38 3781.34 4071.36 4002.84 4016.56 3992.45 4050.97 4012.73 4005.56 3993.47 397
testmvs9.02 36711.42 3701.81 3832.77 4051.13 40879.44 3851.90 4061.18 4012.65 4026.80 3981.95 4060.87 4022.62 4013.45 4003.44 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.35 36531.13 3680.00 3840.00 4060.00 4090.00 39595.58 2320.00 4020.00 40391.15 33293.43 840.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.56 36810.09 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40290.77 1510.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.56 36810.08 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40390.69 3410.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS61.25 39374.55 351
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 406
eth-test0.00 406
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17895.79 19992.76 10799.39 4988.72 20198.40 179
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12396.48 1098.95 114
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14796.03 18994.66 6099.08 9490.70 14298.97 119
save fliter97.46 13088.05 12492.04 21497.08 15087.63 206
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
test_part298.21 7589.41 9396.72 81
sam_mvs66.41 352
MTGPAbinary97.62 105
test_post190.21 2705.85 40165.36 35796.00 32779.61 318
test_post6.07 40065.74 35695.84 330
patchmatchnet-post91.71 32566.22 35497.59 266
MTMP94.82 10954.62 403
gm-plane-assit87.08 38859.33 39571.22 36183.58 38597.20 28673.95 355
TEST996.45 18789.46 9090.60 25796.92 16279.09 31590.49 29294.39 25891.31 13698.88 121
test_896.37 18989.14 10090.51 26096.89 16579.37 31090.42 29494.36 26091.20 14198.82 131
agg_prior96.20 20888.89 10696.88 16690.21 29998.78 143
test_prior489.91 8290.74 252
test_prior290.21 27089.33 16790.77 28894.81 24290.41 16188.21 20598.55 167
旧先验290.00 27868.65 37692.71 24596.52 31085.15 257
新几何290.02 277
原ACMM289.34 298
testdata298.03 22380.24 308
segment_acmp92.14 119
testdata188.96 30788.44 187
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 209
plane_prior495.59 209
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 12091.74 115
plane_prior197.38 132
plane_prior88.12 12293.01 17288.98 17498.06 214
n20.00 408
nn0.00 408
door-mid92.13 313
test1196.65 182
door91.26 322
HQP5-MVS84.89 192
HQP-NCC96.36 19191.37 23687.16 21288.81 321
ACMP_Plane96.36 19191.37 23687.16 21288.81 321
BP-MVS86.55 240
HQP3-MVS97.31 13297.73 234
HQP2-MVS84.76 234
NP-MVS96.82 16287.10 14193.40 290
MDTV_nov1_ep1383.88 32789.42 37361.52 39288.74 31487.41 34973.99 34684.96 36294.01 27265.25 35895.53 33378.02 32893.16 350
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 157