This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
PS-CasMVS96.69 2097.43 594.49 12999.13 684.09 19596.61 2797.97 7597.91 598.64 1398.13 3495.24 3699.65 393.39 5999.84 399.72 2
CP-MVSNet96.19 4696.80 1794.38 13598.99 1483.82 19896.31 4597.53 11297.60 798.34 1997.52 6391.98 11699.63 693.08 7499.81 999.70 3
FC-MVSNet-test95.32 7595.88 5893.62 15898.49 5581.77 22095.90 6298.32 2093.93 5597.53 3997.56 6088.48 17799.40 4392.91 7999.83 699.68 4
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 18696.54 3098.05 6098.06 498.64 1398.25 3195.01 4899.65 392.95 7899.83 699.68 4
WR-MVS_H96.60 2597.05 1495.24 9599.02 1286.44 15996.78 2498.08 5397.42 998.48 1697.86 4991.76 12199.63 694.23 2699.84 399.66 6
test_djsdf96.62 2396.49 2897.01 3398.55 4191.77 6197.15 1397.37 12088.98 17298.26 2298.86 1093.35 8099.60 896.41 499.45 4399.66 6
v7n96.82 1097.31 1095.33 8998.54 4386.81 14896.83 2098.07 5696.59 2098.46 1798.43 2792.91 9499.52 1796.25 699.76 1199.65 8
UA-Net97.35 497.24 1197.69 598.22 7093.87 3198.42 698.19 3596.95 1495.46 13099.23 493.45 7599.57 1395.34 1299.89 299.63 9
DTE-MVSNet96.74 1797.43 594.67 11699.13 684.68 18596.51 3197.94 8198.14 398.67 1298.32 2995.04 4599.69 293.27 6599.82 899.62 10
FIs94.90 8995.35 7693.55 16198.28 6581.76 22195.33 8298.14 4493.05 7197.07 5397.18 8887.65 19199.29 7191.72 10999.69 1599.61 11
UniMVSNet_ETH3D97.13 697.72 395.35 8799.51 287.38 13497.70 897.54 11098.16 298.94 299.33 297.84 499.08 9990.73 12899.73 1499.59 12
PS-MVSNAJss96.01 5196.04 5295.89 6698.82 2488.51 11595.57 7597.88 8288.72 17898.81 698.86 1090.77 14599.60 895.43 1199.53 3599.57 13
anonymousdsp96.74 1796.42 2997.68 798.00 8894.03 2696.97 1797.61 10587.68 20298.45 1898.77 1594.20 6799.50 1996.70 399.40 5399.53 14
ANet_high94.83 9596.28 3790.47 26196.65 15873.16 32994.33 12298.74 896.39 2398.09 2598.93 893.37 7998.70 16790.38 13599.68 1899.53 14
Anonymous2023121196.60 2597.13 1295.00 10397.46 12386.35 16397.11 1698.24 3097.58 898.72 898.97 793.15 8699.15 8793.18 6899.74 1399.50 16
test_part194.39 11094.55 10793.92 14996.14 19982.86 21195.54 7698.09 5295.36 3698.27 2098.36 2875.91 29699.44 2493.41 5899.84 399.47 17
OurMVSNet-221017-096.80 1396.75 1896.96 3699.03 1191.85 5997.98 798.01 6994.15 5098.93 399.07 588.07 18499.57 1395.86 999.69 1599.46 18
pmmvs696.80 1397.36 995.15 9999.12 887.82 12996.68 2597.86 8396.10 2698.14 2499.28 397.94 398.21 21691.38 11999.69 1599.42 19
v1094.68 10195.27 8292.90 18396.57 16480.15 23994.65 10997.57 10890.68 13697.43 4398.00 4188.18 18199.15 8794.84 1599.55 3499.41 20
mvs_tets96.83 996.71 1997.17 2798.83 2392.51 5096.58 2997.61 10587.57 20598.80 798.90 996.50 1099.59 1296.15 799.47 3999.40 21
v894.65 10295.29 8092.74 18896.65 15879.77 25394.59 11097.17 14191.86 9797.47 4297.93 4488.16 18299.08 9994.32 2299.47 3999.38 22
TranMVSNet+NR-MVSNet96.07 5096.26 3895.50 8398.26 6787.69 13093.75 14097.86 8395.96 3097.48 4197.14 9095.33 3299.44 2490.79 12799.76 1199.38 22
nrg03096.32 4196.55 2695.62 7897.83 9688.55 11395.77 6698.29 2692.68 7398.03 2697.91 4695.13 4098.95 12293.85 3699.49 3899.36 24
WR-MVS93.49 13493.72 13092.80 18797.57 11680.03 24590.14 25895.68 21793.70 6096.62 7595.39 19887.21 19999.04 10787.50 20599.64 2399.33 25
jajsoiax96.59 2796.42 2997.12 2998.76 2892.49 5196.44 3797.42 11886.96 21498.71 1098.72 1795.36 3199.56 1695.92 899.45 4399.32 26
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2593.86 3299.07 298.98 497.01 1398.92 498.78 1495.22 3798.61 17996.85 299.77 1099.31 27
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UniMVSNet_NR-MVSNet95.35 7395.21 8395.76 7397.69 10888.59 11192.26 18897.84 8794.91 3896.80 6895.78 17590.42 15499.41 3691.60 11399.58 3199.29 28
DU-MVS95.28 7895.12 8795.75 7497.75 10188.59 11192.58 16897.81 9093.99 5296.80 6895.90 16590.10 16399.41 3691.60 11399.58 3199.26 29
NR-MVSNet95.28 7895.28 8195.26 9497.75 10187.21 13895.08 9397.37 12093.92 5797.65 3195.90 16590.10 16399.33 6790.11 15099.66 2199.26 29
Baseline_NR-MVSNet94.47 10995.09 8892.60 19698.50 5480.82 23592.08 19496.68 17693.82 5896.29 8998.56 2090.10 16397.75 25890.10 15299.66 2199.24 31
v192192093.26 14393.61 13592.19 20796.04 21078.31 27691.88 20897.24 13785.17 24096.19 9996.19 15486.76 21099.05 10494.18 2898.84 12599.22 32
v119293.49 13493.78 12892.62 19596.16 19779.62 25591.83 21497.22 13986.07 22696.10 10396.38 14287.22 19899.02 11094.14 2998.88 12099.22 32
v124093.29 14093.71 13192.06 21496.01 21177.89 28391.81 21597.37 12085.12 24396.69 7296.40 13786.67 21199.07 10394.51 1898.76 13999.22 32
v14419293.20 14893.54 13992.16 21196.05 20678.26 27791.95 20197.14 14284.98 24795.96 10696.11 15887.08 20299.04 10793.79 3798.84 12599.17 35
UniMVSNet (Re)95.32 7595.15 8595.80 7097.79 9988.91 10392.91 15998.07 5693.46 6596.31 8795.97 16490.14 15999.34 6292.11 9499.64 2399.16 36
SixPastTwentyTwo94.91 8895.21 8393.98 14498.52 4683.19 20595.93 6094.84 24394.86 3998.49 1598.74 1681.45 25599.60 894.69 1699.39 5499.15 37
v2v48293.29 14093.63 13492.29 20396.35 18178.82 27091.77 21796.28 19588.45 18495.70 12196.26 15186.02 21998.90 12693.02 7598.81 13399.14 38
v114493.50 13393.81 12692.57 19796.28 18779.61 25691.86 21396.96 15486.95 21595.91 11196.32 14687.65 19198.96 12093.51 4798.88 12099.13 39
HPM-MVScopyleft96.81 1296.62 2397.36 2498.89 1993.53 3997.51 998.44 1292.35 8295.95 10796.41 13696.71 899.42 2993.99 3399.36 5699.13 39
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVS-pluss96.08 4995.92 5796.57 4699.06 1091.21 6693.25 15198.32 2087.89 19596.86 6597.38 7195.55 2499.39 4895.47 1099.47 3999.11 41
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test96.38 4096.23 3996.84 4098.36 6292.13 5495.33 8298.25 2791.78 10597.07 5397.22 8696.38 1399.28 7392.07 9799.59 2799.11 41
LGP-MVS_train96.84 4098.36 6292.13 5498.25 2791.78 10597.07 5397.22 8696.38 1399.28 7392.07 9799.59 2799.11 41
MIMVSNet195.52 6695.45 7395.72 7599.14 589.02 10196.23 5096.87 16493.73 5997.87 2798.49 2490.73 14999.05 10486.43 22599.60 2599.10 44
VPA-MVSNet95.14 8295.67 6893.58 16097.76 10083.15 20694.58 11297.58 10793.39 6697.05 5698.04 3993.25 8298.51 19289.75 16099.59 2799.08 45
TransMVSNet (Re)95.27 8096.04 5292.97 17898.37 6181.92 21995.07 9496.76 17393.97 5497.77 2898.57 1995.72 1897.90 24088.89 17999.23 7999.08 45
RRT_test8_iter0588.21 26388.17 25888.33 30491.62 32466.82 35991.73 21896.60 18086.34 22194.14 17695.38 20047.72 37299.11 9591.78 10798.26 18999.06 47
MP-MVScopyleft96.14 4795.68 6797.51 1398.81 2594.06 2196.10 5397.78 9592.73 7293.48 19996.72 11994.23 6699.42 2991.99 9999.29 6899.05 48
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EI-MVSNet-UG-set94.35 11394.27 11994.59 12392.46 30885.87 17292.42 17894.69 25093.67 6496.13 10195.84 17091.20 13898.86 13493.78 3898.23 19599.03 49
ACMMPcopyleft96.61 2496.34 3497.43 1998.61 3493.88 3096.95 1898.18 3692.26 8596.33 8596.84 11095.10 4399.40 4393.47 5299.33 6099.02 50
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ACMMPR96.46 3296.14 4597.41 2198.60 3593.82 3496.30 4797.96 7692.35 8295.57 12596.61 12694.93 5199.41 3693.78 3899.15 9199.00 51
PGM-MVS96.32 4195.94 5597.43 1998.59 3793.84 3395.33 8298.30 2391.40 11895.76 11696.87 10695.26 3599.45 2392.77 8099.21 8299.00 51
zzz-MVS96.47 3196.14 4597.47 1598.95 1694.05 2393.69 14297.62 10294.46 4596.29 8996.94 10093.56 7399.37 5694.29 2499.42 4798.99 53
MTAPA96.65 2296.38 3397.47 1598.95 1694.05 2395.88 6397.62 10294.46 4596.29 8996.94 10093.56 7399.37 5694.29 2499.42 4798.99 53
pm-mvs195.43 7095.94 5593.93 14898.38 5985.08 18295.46 7997.12 14591.84 10197.28 4898.46 2595.30 3497.71 26090.17 14899.42 4798.99 53
mPP-MVS96.46 3296.05 5197.69 598.62 3294.65 1396.45 3597.74 9692.59 7695.47 12896.68 12194.50 6199.42 2993.10 7299.26 7598.99 53
TDRefinement97.68 397.60 497.93 299.02 1295.95 598.61 398.81 697.41 1097.28 4898.46 2594.62 5898.84 13794.64 1799.53 3598.99 53
EI-MVSNet-Vis-set94.36 11294.28 11794.61 11892.55 30785.98 17092.44 17694.69 25093.70 6096.12 10295.81 17191.24 13598.86 13493.76 4198.22 19798.98 58
ZNCC-MVS96.42 3696.20 4197.07 3098.80 2792.79 4896.08 5498.16 4391.74 10995.34 13596.36 14495.68 1999.44 2494.41 2199.28 7398.97 59
IS-MVSNet94.49 10894.35 11494.92 10598.25 6986.46 15897.13 1594.31 25796.24 2496.28 9296.36 14482.88 23999.35 5988.19 19199.52 3798.96 60
ACMM88.83 996.30 4396.07 5096.97 3598.39 5892.95 4694.74 10598.03 6590.82 13297.15 5196.85 10796.25 1599.00 11493.10 7299.33 6098.95 61
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
region2R96.41 3796.09 4897.38 2398.62 3293.81 3696.32 4497.96 7692.26 8595.28 13996.57 12895.02 4799.41 3693.63 4299.11 9698.94 62
SMA-MVScopyleft95.77 5995.54 7096.47 5198.27 6691.19 6795.09 9297.79 9486.48 21897.42 4597.51 6594.47 6399.29 7193.55 4699.29 6898.93 63
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVS96.49 2996.18 4297.44 1798.56 3893.99 2796.50 3297.95 7894.58 4194.38 17396.49 13094.56 5999.39 4893.57 4499.05 10198.93 63
X-MVStestdata90.70 20788.45 24997.44 1798.56 3893.99 2796.50 3297.95 7894.58 4194.38 17326.89 37294.56 5999.39 4893.57 4499.05 10198.93 63
VPNet93.08 14993.76 12991.03 24398.60 3575.83 31191.51 22195.62 21891.84 10195.74 11897.10 9289.31 17198.32 20785.07 24299.06 9898.93 63
APDe-MVS96.46 3296.64 2295.93 6197.68 10989.38 9796.90 1998.41 1692.52 7797.43 4397.92 4595.11 4299.50 1994.45 1999.30 6598.92 67
HPM-MVS_fast97.01 796.89 1597.39 2299.12 893.92 2997.16 1298.17 4093.11 7096.48 7997.36 7596.92 699.34 6294.31 2399.38 5598.92 67
test111190.39 21690.61 21089.74 27998.04 8471.50 34095.59 7279.72 36989.41 16095.94 10998.14 3370.79 31398.81 14488.52 18799.32 6298.90 69
test_0728_THIRD93.26 6897.40 4697.35 7894.69 5599.34 6293.88 3499.42 4798.89 70
MSP-MVS95.34 7494.63 10597.48 1498.67 2994.05 2396.41 3998.18 3691.26 12195.12 14695.15 20386.60 21399.50 1993.43 5796.81 26198.89 70
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
GST-MVS96.24 4495.99 5497.00 3498.65 3092.71 4995.69 7098.01 6992.08 9095.74 11896.28 14995.22 3799.42 2993.17 6999.06 9898.88 72
EI-MVSNet92.99 15393.26 14992.19 20792.12 31579.21 26592.32 18594.67 25291.77 10795.24 14395.85 16787.14 20198.49 19391.99 9998.26 18998.86 73
IterMVS-LS93.78 12994.28 11792.27 20496.27 18879.21 26591.87 20996.78 17091.77 10796.57 7897.07 9387.15 20098.74 15991.99 9999.03 10798.86 73
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH88.36 1296.59 2797.43 594.07 14298.56 3885.33 17996.33 4398.30 2394.66 4098.72 898.30 3097.51 598.00 23494.87 1499.59 2798.86 73
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
V4293.43 13693.58 13692.97 17895.34 24581.22 22992.67 16696.49 18887.25 20996.20 9796.37 14387.32 19798.85 13692.39 9398.21 19898.85 76
abl_697.31 597.12 1397.86 398.54 4395.32 796.61 2798.35 1995.81 3197.55 3697.44 6896.51 999.40 4394.06 3099.23 7998.85 76
SteuartSystems-ACMMP96.40 3896.30 3696.71 4298.63 3191.96 5795.70 6898.01 6993.34 6796.64 7496.57 12894.99 4999.36 5893.48 5199.34 5898.82 78
Skip Steuart: Steuart Systems R&D Blog.
VDDNet94.03 12594.27 11993.31 17098.87 2082.36 21595.51 7891.78 30497.19 1296.32 8698.60 1884.24 23098.75 15687.09 21398.83 13098.81 79
ACMMP_NAP96.21 4596.12 4796.49 5098.90 1891.42 6494.57 11398.03 6590.42 14396.37 8297.35 7895.68 1999.25 7794.44 2099.34 5898.80 80
RPSCF95.58 6594.89 9297.62 897.58 11596.30 495.97 5997.53 11292.42 7893.41 20097.78 5091.21 13797.77 25591.06 12197.06 25198.80 80
Anonymous2024052995.50 6795.83 6294.50 12797.33 12985.93 17195.19 9096.77 17296.64 1997.61 3598.05 3893.23 8398.79 14788.60 18699.04 10698.78 82
v14892.87 15893.29 14591.62 22596.25 19177.72 28691.28 22795.05 23689.69 15495.93 11096.04 16087.34 19698.38 20290.05 15397.99 21898.78 82
ACMP88.15 1395.71 6195.43 7596.54 4798.17 7391.73 6294.24 12498.08 5389.46 15996.61 7696.47 13195.85 1799.12 9390.45 13299.56 3398.77 84
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Anonymous2024052192.86 15993.57 13790.74 25496.57 16475.50 31394.15 12795.60 21989.38 16195.90 11297.90 4880.39 26497.96 23892.60 8799.68 1898.75 85
KD-MVS_self_test94.10 12394.73 9992.19 20797.66 11179.49 25894.86 10197.12 14589.59 15896.87 6497.65 5690.40 15798.34 20689.08 17599.35 5798.75 85
APD-MVS_3200maxsize96.82 1096.65 2197.32 2597.95 9293.82 3496.31 4598.25 2795.51 3596.99 6097.05 9595.63 2199.39 4893.31 6298.88 12098.75 85
Regformer-494.90 8994.67 10395.59 7992.78 30589.02 10192.39 18095.91 21094.50 4396.41 8095.56 18792.10 11299.01 11294.23 2698.14 20498.74 88
lessismore_v093.87 15398.05 8183.77 19980.32 36797.13 5297.91 4677.49 28299.11 9592.62 8698.08 21198.74 88
K. test v393.37 13793.27 14893.66 15798.05 8182.62 21394.35 12186.62 33596.05 2897.51 4098.85 1276.59 29499.65 393.21 6798.20 20098.73 90
MSC_two_6792asdad95.90 6496.54 16789.57 9096.87 16499.41 3694.06 3099.30 6598.72 91
No_MVS95.90 6496.54 16789.57 9096.87 16499.41 3694.06 3099.30 6598.72 91
ACMH+88.43 1196.48 3096.82 1695.47 8498.54 4389.06 10095.65 7198.61 996.10 2698.16 2397.52 6396.90 798.62 17890.30 14199.60 2598.72 91
OPM-MVS95.61 6495.45 7396.08 5498.49 5591.00 6992.65 16797.33 12990.05 14896.77 7096.85 10795.04 4598.56 18792.77 8099.06 9898.70 94
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test250685.42 29884.57 30087.96 30897.81 9766.53 36096.14 5156.35 37789.04 17093.55 19898.10 3542.88 37998.68 17188.09 19599.18 8798.67 95
ECVR-MVScopyleft90.12 22690.16 21890.00 27697.81 9772.68 33495.76 6778.54 37089.04 17095.36 13498.10 3570.51 31498.64 17787.10 21299.18 8798.67 95
GBi-Net93.21 14692.96 15193.97 14595.40 24184.29 18895.99 5696.56 18388.63 18095.10 14798.53 2181.31 25798.98 11586.74 21698.38 17498.65 97
test193.21 14692.96 15193.97 14595.40 24184.29 18895.99 5696.56 18388.63 18095.10 14798.53 2181.31 25798.98 11586.74 21698.38 17498.65 97
FMVSNet194.84 9495.13 8693.97 14597.60 11484.29 18895.99 5696.56 18392.38 7997.03 5798.53 2190.12 16098.98 11588.78 18199.16 9098.65 97
EPP-MVSNet93.91 12793.68 13394.59 12398.08 7885.55 17797.44 1094.03 26294.22 4994.94 15596.19 15482.07 25099.57 1387.28 21098.89 11898.65 97
IU-MVS98.51 4786.66 15396.83 16772.74 33495.83 11493.00 7699.29 6898.64 101
xxxxxxxxxxxxxcwj95.03 8394.93 9095.33 8997.46 12388.05 12392.04 19698.42 1587.63 20396.36 8396.68 12194.37 6499.32 6892.41 9199.05 10198.64 101
SF-MVS95.88 5695.88 5895.87 6798.12 7589.65 8995.58 7498.56 1191.84 10196.36 8396.68 12194.37 6499.32 6892.41 9199.05 10198.64 101
casdiffmvs94.32 11594.80 9592.85 18596.05 20681.44 22692.35 18398.05 6091.53 11695.75 11796.80 11193.35 8098.49 19391.01 12498.32 18398.64 101
ETH3D-3000-0.194.86 9294.55 10795.81 6897.61 11389.72 8794.05 13198.37 1788.09 19195.06 15195.85 16792.58 10299.10 9790.33 14098.99 10898.62 105
TSAR-MVS + MP.94.96 8794.75 9795.57 8198.86 2188.69 10796.37 4096.81 16885.23 23894.75 16397.12 9191.85 11899.40 4393.45 5398.33 18198.62 105
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
Regformer-394.28 11694.23 12194.46 13192.78 30586.28 16592.39 18094.70 24993.69 6395.97 10595.56 18791.34 13098.48 19793.45 5398.14 20498.62 105
HQP_MVS94.26 11893.93 12495.23 9697.71 10588.12 12194.56 11497.81 9091.74 10993.31 20395.59 18286.93 20598.95 12289.26 17098.51 16298.60 108
plane_prior597.81 9098.95 12289.26 17098.51 16298.60 108
CP-MVS96.44 3596.08 4997.54 1198.29 6494.62 1496.80 2298.08 5392.67 7595.08 15096.39 14194.77 5499.42 2993.17 6999.44 4598.58 110
tttt051789.81 23788.90 24392.55 19897.00 14279.73 25495.03 9683.65 35889.88 15295.30 13794.79 22453.64 36699.39 4891.99 9998.79 13698.54 111
test117296.79 1596.52 2797.60 998.03 8594.87 1096.07 5598.06 5995.76 3296.89 6396.85 10794.85 5299.42 2993.35 6198.81 13398.53 112
test_0728_SECOND94.88 10798.55 4186.72 15095.20 8898.22 3299.38 5493.44 5599.31 6398.53 112
SR-MVS96.70 1996.42 2997.54 1198.05 8194.69 1196.13 5298.07 5695.17 3796.82 6796.73 11895.09 4499.43 2892.99 7798.71 14298.50 114
test_241102_TWO98.10 4991.95 9297.54 3797.25 8395.37 2899.35 5993.29 6399.25 7698.49 115
HFP-MVS96.39 3996.17 4497.04 3198.51 4793.37 4096.30 4797.98 7292.35 8295.63 12296.47 13195.37 2899.27 7593.78 3899.14 9298.48 116
#test#95.89 5495.51 7197.04 3198.51 4793.37 4095.14 9197.98 7289.34 16395.63 12296.47 13195.37 2899.27 7591.99 9999.14 9298.48 116
3Dnovator+92.74 295.86 5795.77 6596.13 5396.81 15490.79 7496.30 4797.82 8996.13 2594.74 16497.23 8591.33 13199.16 8693.25 6698.30 18698.46 118
XVG-OURS-SEG-HR95.38 7295.00 8996.51 4898.10 7794.07 2092.46 17598.13 4590.69 13593.75 19196.25 15298.03 297.02 28892.08 9695.55 28798.45 119
RRT_MVS91.36 19690.05 22395.29 9389.21 35288.15 12092.51 17494.89 24186.73 21795.54 12695.68 17961.82 35199.30 7094.91 1399.13 9598.43 120
baseline94.26 11894.80 9592.64 19296.08 20480.99 23293.69 14298.04 6490.80 13394.89 15896.32 14693.19 8498.48 19791.68 11198.51 16298.43 120
DPE-MVScopyleft95.89 5495.88 5895.92 6397.93 9389.83 8693.46 14798.30 2392.37 8097.75 2996.95 9995.14 3999.51 1891.74 10899.28 7398.41 122
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
tfpnnormal94.27 11794.87 9392.48 20197.71 10580.88 23494.55 11695.41 23093.70 6096.67 7397.72 5391.40 12998.18 22087.45 20699.18 8798.36 123
VDD-MVS94.37 11194.37 11394.40 13497.49 12086.07 16993.97 13593.28 27494.49 4496.24 9397.78 5087.99 18798.79 14788.92 17799.14 9298.34 124
XVG-ACMP-BASELINE95.68 6295.34 7796.69 4398.40 5793.04 4394.54 11898.05 6090.45 14296.31 8796.76 11492.91 9498.72 16191.19 12099.42 4798.32 125
CNVR-MVS94.58 10494.29 11695.46 8596.94 14589.35 9891.81 21596.80 16989.66 15593.90 18895.44 19492.80 9898.72 16192.74 8298.52 16098.32 125
COLMAP_ROBcopyleft91.06 596.75 1696.62 2397.13 2898.38 5994.31 1796.79 2398.32 2096.69 1796.86 6597.56 6095.48 2598.77 15590.11 15099.44 4598.31 127
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS94.72 9994.12 12296.50 4998.00 8894.23 1891.48 22298.17 4090.72 13495.30 13796.47 13187.94 18896.98 28991.41 11897.61 23798.30 128
Regformer-294.86 9294.55 10795.77 7292.83 30389.98 8291.87 20996.40 19194.38 4796.19 9995.04 21092.47 10799.04 10793.49 4898.31 18498.28 129
EPNet89.80 23888.25 25494.45 13283.91 37386.18 16793.87 13787.07 33391.16 12580.64 36194.72 22578.83 27198.89 12885.17 23598.89 11898.28 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ETH3D cwj APD-0.1693.99 12693.38 14495.80 7096.82 15289.92 8392.72 16398.02 6784.73 25193.65 19595.54 18991.68 12399.22 8188.78 18198.49 16598.26 131
GeoE94.55 10594.68 10294.15 13997.23 13185.11 18194.14 12897.34 12888.71 17995.26 14095.50 19094.65 5799.12 9390.94 12598.40 16998.23 132
Regformer-194.55 10594.33 11595.19 9792.83 30388.54 11491.87 20995.84 21493.99 5295.95 10795.04 21092.00 11498.79 14793.14 7198.31 18498.23 132
NCCC94.08 12493.54 13995.70 7796.49 17289.90 8592.39 18096.91 16090.64 13792.33 24194.60 22890.58 15398.96 12090.21 14797.70 23298.23 132
XXY-MVS92.58 16893.16 15090.84 25297.75 10179.84 24991.87 20996.22 20185.94 22895.53 12797.68 5492.69 10094.48 34083.21 25897.51 23998.21 135
CDPH-MVS92.67 16591.83 17995.18 9896.94 14588.46 11690.70 24097.07 14877.38 30992.34 24095.08 20892.67 10198.88 12985.74 23198.57 15498.20 136
new-patchmatchnet88.97 25090.79 20683.50 34194.28 27655.83 37585.34 33593.56 27086.18 22495.47 12895.73 17783.10 23796.51 30485.40 23498.06 21298.16 137
HQP4-MVS88.81 30098.61 17998.15 138
ETH3 D test640091.91 18491.25 19593.89 15196.59 16284.41 18792.10 19397.72 9878.52 30391.82 25093.78 25888.70 17599.13 9183.61 25498.39 17298.14 139
HQP-MVS92.09 18191.49 18993.88 15296.36 17884.89 18391.37 22397.31 13087.16 21088.81 30093.40 26684.76 22798.60 18186.55 22297.73 22898.14 139
DVP-MVScopyleft95.82 5896.18 4294.72 11498.51 4786.69 15195.20 8897.00 15191.85 9897.40 4697.35 7895.58 2299.34 6293.44 5599.31 6398.13 141
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
ambc92.98 17796.88 14983.01 21095.92 6196.38 19396.41 8097.48 6688.26 18097.80 25189.96 15598.93 11798.12 142
testtj94.81 9694.42 11196.01 5597.23 13190.51 7894.77 10497.85 8691.29 12094.92 15795.66 18091.71 12299.40 4388.07 19698.25 19298.11 143
eth_miper_zixun_eth90.72 20690.61 21091.05 24292.04 31776.84 29986.91 31896.67 17785.21 23994.41 17193.92 25279.53 26898.26 21389.76 15997.02 25398.06 144
FMVSNet292.78 16192.73 16092.95 18095.40 24181.98 21894.18 12695.53 22788.63 18096.05 10497.37 7281.31 25798.81 14487.38 20998.67 14898.06 144
OMC-MVS94.22 12093.69 13295.81 6897.25 13091.27 6592.27 18797.40 11987.10 21394.56 16895.42 19593.74 7198.11 22586.62 22098.85 12498.06 144
DVP-MVS++95.93 5396.34 3494.70 11596.54 16786.66 15398.45 498.22 3293.26 6897.54 3797.36 7593.12 8799.38 5493.88 3498.68 14698.04 147
PC_three_145275.31 32195.87 11395.75 17692.93 9396.34 31387.18 21198.68 14698.04 147
c3_l91.32 19891.42 19091.00 24692.29 31076.79 30087.52 30996.42 19085.76 23294.72 16693.89 25482.73 24298.16 22290.93 12698.55 15598.04 147
EG-PatchMatch MVS94.54 10794.67 10394.14 14097.87 9586.50 15592.00 19996.74 17488.16 19096.93 6297.61 5893.04 9197.90 24091.60 11398.12 20798.03 150
MVS_111021_HR93.63 13293.42 14394.26 13796.65 15886.96 14689.30 28296.23 19988.36 18793.57 19794.60 22893.45 7597.77 25590.23 14598.38 17498.03 150
SR-MVS-dyc-post96.84 896.60 2597.56 1098.07 7995.27 896.37 4098.12 4695.66 3397.00 5897.03 9694.85 5299.42 2993.49 4898.84 12598.00 152
RE-MVS-def96.66 2098.07 7995.27 896.37 4098.12 4695.66 3397.00 5897.03 9695.40 2793.49 4898.84 12598.00 152
thisisatest053088.69 25787.52 26892.20 20696.33 18379.36 26092.81 16184.01 35786.44 21993.67 19492.68 28453.62 36799.25 7789.65 16298.45 16698.00 152
Vis-MVSNet (Re-imp)90.42 21490.16 21891.20 23997.66 11177.32 29194.33 12287.66 32891.20 12392.99 21895.13 20575.40 29898.28 20977.86 30799.19 8597.99 155
agg_prior287.06 21498.36 18097.98 156
AllTest94.88 9194.51 11096.00 5698.02 8692.17 5295.26 8598.43 1390.48 14095.04 15296.74 11692.54 10497.86 24685.11 24098.98 10997.98 156
TestCases96.00 5698.02 8692.17 5298.43 1390.48 14095.04 15296.74 11692.54 10497.86 24685.11 24098.98 10997.98 156
MVSTER89.32 24388.75 24591.03 24390.10 34276.62 30190.85 23594.67 25282.27 27395.24 14395.79 17261.09 35498.49 19390.49 13198.26 18997.97 159
SED-MVS96.00 5296.41 3294.76 11298.51 4786.97 14495.21 8698.10 4991.95 9297.63 3297.25 8396.48 1199.35 5993.29 6399.29 6897.95 160
OPU-MVS95.15 9996.84 15189.43 9495.21 8695.66 18093.12 8798.06 22786.28 22898.61 15197.95 160
test_prior393.29 14092.85 15494.61 11895.95 21487.23 13690.21 25497.36 12589.33 16490.77 26494.81 22090.41 15598.68 17188.21 18998.55 15597.93 162
test_prior94.61 11895.95 21487.23 13697.36 12598.68 17197.93 162
DeepC-MVS91.39 495.43 7095.33 7895.71 7697.67 11090.17 8093.86 13898.02 6787.35 20796.22 9597.99 4294.48 6299.05 10492.73 8399.68 1897.93 162
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
UGNet93.08 14992.50 16694.79 11193.87 28687.99 12595.07 9494.26 25990.64 13787.33 32397.67 5586.89 20898.49 19388.10 19498.71 14297.91 165
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CANet92.38 17391.99 17593.52 16593.82 28883.46 20191.14 22997.00 15189.81 15386.47 32794.04 24687.90 18999.21 8289.50 16498.27 18897.90 166
HPM-MVS++copyleft95.02 8494.39 11296.91 3897.88 9493.58 3894.09 13096.99 15391.05 12692.40 23595.22 20291.03 14399.25 7792.11 9498.69 14597.90 166
testgi90.38 21791.34 19387.50 31497.49 12071.54 33989.43 27795.16 23588.38 18694.54 16994.68 22792.88 9693.09 35471.60 34697.85 22597.88 168
test_040295.73 6096.22 4094.26 13798.19 7285.77 17493.24 15297.24 13796.88 1697.69 3097.77 5294.12 6899.13 9191.54 11699.29 6897.88 168
miper_lstm_enhance89.90 23589.80 22790.19 27291.37 32877.50 28883.82 35095.00 23784.84 24993.05 21694.96 21476.53 29595.20 33689.96 15598.67 14897.86 170
MCST-MVS92.91 15592.51 16594.10 14197.52 11885.72 17591.36 22697.13 14480.33 28492.91 22194.24 23991.23 13698.72 16189.99 15497.93 22197.86 170
Vis-MVSNetpermissive95.50 6795.48 7295.56 8298.11 7689.40 9695.35 8098.22 3292.36 8194.11 17798.07 3792.02 11399.44 2493.38 6097.67 23497.85 172
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test9_res88.16 19398.40 16997.83 173
VNet92.67 16592.96 15191.79 21996.27 18880.15 23991.95 20194.98 23892.19 8894.52 17096.07 15987.43 19597.39 27784.83 24498.38 17497.83 173
diffmvs91.74 18691.93 17791.15 24193.06 29878.17 27888.77 29397.51 11586.28 22292.42 23493.96 25188.04 18597.46 27190.69 13096.67 26697.82 175
FMVSNet390.78 20590.32 21792.16 21193.03 30079.92 24892.54 16994.95 23986.17 22595.10 14796.01 16269.97 31698.75 15686.74 21698.38 17497.82 175
CPTT-MVS94.74 9894.12 12296.60 4598.15 7493.01 4495.84 6497.66 10089.21 16993.28 20695.46 19288.89 17498.98 11589.80 15798.82 13197.80 177
cl2289.02 24788.50 24890.59 25989.76 34476.45 30386.62 32894.03 26282.98 26692.65 22792.49 28672.05 30997.53 26688.93 17697.02 25397.78 178
Anonymous20240521192.58 16892.50 16692.83 18696.55 16683.22 20492.43 17791.64 30594.10 5195.59 12496.64 12481.88 25497.50 26885.12 23998.52 16097.77 179
cl____90.65 20990.56 21290.91 25091.85 31976.98 29786.75 32395.36 23385.53 23594.06 18194.89 21777.36 28697.98 23790.27 14398.98 10997.76 180
DIV-MVS_self_test90.65 20990.56 21290.91 25091.85 31976.99 29686.75 32395.36 23385.52 23794.06 18194.89 21777.37 28597.99 23690.28 14298.97 11397.76 180
test1294.43 13395.95 21486.75 14996.24 19889.76 28889.79 16798.79 14797.95 22097.75 182
train_agg92.71 16491.83 17995.35 8796.45 17489.46 9290.60 24296.92 15879.37 29390.49 26994.39 23591.20 13898.88 12988.66 18598.43 16797.72 183
IterMVS-SCA-FT91.65 18891.55 18591.94 21693.89 28579.22 26487.56 30693.51 27191.53 11695.37 13396.62 12578.65 27398.90 12691.89 10494.95 30197.70 184
3Dnovator92.54 394.80 9794.90 9194.47 13095.47 23987.06 14196.63 2697.28 13591.82 10494.34 17597.41 6990.60 15298.65 17692.47 8998.11 20897.70 184
PVSNet_BlendedMVS90.35 21989.96 22491.54 22894.81 25678.80 27290.14 25896.93 15679.43 29288.68 30795.06 20986.27 21698.15 22380.27 28598.04 21497.68 186
Effi-MVS+-dtu93.90 12892.60 16497.77 494.74 26196.67 394.00 13395.41 23089.94 14991.93 24992.13 29690.12 16098.97 11987.68 20397.48 24097.67 187
LFMVS91.33 19791.16 19991.82 21896.27 18879.36 26095.01 9785.61 34696.04 2994.82 16097.06 9472.03 31098.46 19984.96 24398.70 14497.65 188
agg_prior192.60 16791.76 18295.10 10196.20 19388.89 10490.37 24996.88 16279.67 29090.21 27494.41 23391.30 13398.78 15188.46 18898.37 17997.64 189
UnsupCasMVSNet_eth90.33 22090.34 21690.28 26694.64 26880.24 23789.69 27295.88 21185.77 23193.94 18795.69 17881.99 25192.98 35584.21 25191.30 34697.62 190
CLD-MVS91.82 18591.41 19193.04 17596.37 17683.65 20086.82 32297.29 13384.65 25292.27 24289.67 33292.20 11097.85 24883.95 25299.47 3997.62 190
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MDA-MVSNet-bldmvs91.04 20090.88 20291.55 22794.68 26680.16 23885.49 33492.14 29890.41 14494.93 15695.79 17285.10 22596.93 29285.15 23794.19 31897.57 192
DP-MVS95.62 6395.84 6194.97 10497.16 13688.62 11094.54 11897.64 10196.94 1596.58 7797.32 8193.07 9098.72 16190.45 13298.84 12597.57 192
APD-MVScopyleft95.00 8594.69 10095.93 6197.38 12690.88 7294.59 11097.81 9089.22 16895.46 13096.17 15793.42 7899.34 6289.30 16698.87 12397.56 194
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
FMVSNet587.82 27086.56 28591.62 22592.31 30979.81 25293.49 14694.81 24683.26 25991.36 25596.93 10252.77 36897.49 27076.07 32298.03 21597.55 195
CL-MVSNet_self_test90.04 23289.90 22690.47 26195.24 24777.81 28486.60 32992.62 28885.64 23493.25 21093.92 25283.84 23296.06 31879.93 29298.03 21597.53 196
DROMVSNet95.44 6995.62 6994.89 10696.93 14787.69 13096.48 3499.14 393.93 5592.77 22494.52 23193.95 7099.49 2293.62 4399.22 8197.51 197
QAPM92.88 15792.77 15693.22 17395.82 22083.31 20296.45 3597.35 12783.91 25693.75 19196.77 11289.25 17298.88 12984.56 24897.02 25397.49 198
Patchmtry90.11 22789.92 22590.66 25690.35 34077.00 29592.96 15792.81 28190.25 14694.74 16496.93 10267.11 32297.52 26785.17 23598.98 10997.46 199
EGC-MVSNET80.97 32775.73 33996.67 4498.85 2294.55 1596.83 2096.60 1802.44 3745.32 37598.25 3192.24 10898.02 23291.85 10599.21 8297.45 200
miper_ehance_all_eth90.48 21290.42 21590.69 25591.62 32476.57 30286.83 32196.18 20383.38 25894.06 18192.66 28582.20 24898.04 22889.79 15897.02 25397.45 200
LS3D96.11 4895.83 6296.95 3794.75 25994.20 1997.34 1197.98 7297.31 1195.32 13696.77 11293.08 8999.20 8391.79 10698.16 20297.44 202
D2MVS89.93 23489.60 23290.92 24894.03 28278.40 27588.69 29594.85 24278.96 30093.08 21495.09 20774.57 29996.94 29088.19 19198.96 11597.41 203
PHI-MVS94.34 11493.80 12795.95 5895.65 23291.67 6394.82 10297.86 8387.86 19693.04 21794.16 24391.58 12598.78 15190.27 14398.96 11597.41 203
ITE_SJBPF95.95 5897.34 12893.36 4296.55 18691.93 9494.82 16095.39 19891.99 11597.08 28685.53 23397.96 21997.41 203
SD-MVS95.19 8195.73 6693.55 16196.62 16188.88 10694.67 10798.05 6091.26 12197.25 5096.40 13795.42 2694.36 34492.72 8499.19 8597.40 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 20490.85 20490.63 25795.63 23479.24 26389.81 27092.87 28089.90 15194.39 17296.40 13785.77 22095.27 33573.86 33399.05 10197.39 207
F-COLMAP92.28 17691.06 20095.95 5897.52 11891.90 5893.53 14597.18 14083.98 25588.70 30694.04 24688.41 17998.55 18980.17 28895.99 27897.39 207
DeepPCF-MVS90.46 694.20 12193.56 13896.14 5295.96 21392.96 4589.48 27697.46 11685.14 24196.23 9495.42 19593.19 8498.08 22690.37 13698.76 13997.38 209
mvs_anonymous90.37 21891.30 19487.58 31392.17 31468.00 35389.84 26994.73 24883.82 25793.22 21197.40 7087.54 19397.40 27687.94 19995.05 30097.34 210
alignmvs93.26 14392.85 15494.50 12795.70 22887.45 13293.45 14895.76 21591.58 11495.25 14292.42 29281.96 25298.72 16191.61 11297.87 22497.33 211
DeepC-MVS_fast89.96 793.73 13093.44 14294.60 12296.14 19987.90 12693.36 15097.14 14285.53 23593.90 18895.45 19391.30 13398.59 18389.51 16398.62 15097.31 212
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d91.54 19190.73 20893.99 14395.76 22587.86 12890.83 23693.98 26678.23 30694.02 18496.22 15382.62 24596.83 29586.57 22198.33 18197.29 213
bset_n11_16_dypcd89.99 23389.15 23692.53 19994.75 25981.34 22784.19 34687.56 32985.13 24293.77 19092.46 28772.82 30599.01 11292.46 9099.21 8297.23 214
IterMVS90.18 22490.16 21890.21 27093.15 29675.98 30887.56 30692.97 27986.43 22094.09 17896.40 13778.32 27797.43 27387.87 20094.69 30897.23 214
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
canonicalmvs94.59 10394.69 10094.30 13695.60 23687.03 14395.59 7298.24 3091.56 11595.21 14592.04 29894.95 5098.66 17491.45 11797.57 23897.20 216
ppachtmachnet_test88.61 25888.64 24688.50 30091.76 32170.99 34384.59 34292.98 27879.30 29792.38 23693.53 26479.57 26797.45 27286.50 22497.17 24997.07 217
MVS_111021_LR93.66 13193.28 14794.80 11096.25 19190.95 7090.21 25495.43 22987.91 19393.74 19394.40 23492.88 9696.38 30990.39 13498.28 18797.07 217
HyFIR lowres test87.19 28685.51 29692.24 20597.12 14080.51 23685.03 33796.06 20666.11 35891.66 25292.98 27670.12 31599.14 8975.29 32695.23 29797.07 217
h-mvs3392.89 15691.99 17595.58 8096.97 14390.55 7693.94 13694.01 26589.23 16693.95 18596.19 15476.88 29199.14 8991.02 12295.71 28497.04 220
CANet_DTU89.85 23689.17 23591.87 21792.20 31380.02 24690.79 23795.87 21286.02 22782.53 35191.77 30380.01 26598.57 18685.66 23297.70 23297.01 221
MVS_Test92.57 17093.29 14590.40 26493.53 29075.85 30992.52 17096.96 15488.73 17792.35 23896.70 12090.77 14598.37 20592.53 8895.49 28996.99 222
LCM-MVSNet-Re94.20 12194.58 10693.04 17595.91 21783.13 20793.79 13999.19 292.00 9198.84 598.04 3993.64 7299.02 11081.28 27798.54 15896.96 223
CSCG94.69 10094.75 9794.52 12697.55 11787.87 12795.01 9797.57 10892.68 7396.20 9793.44 26591.92 11798.78 15189.11 17499.24 7896.92 224
Fast-Effi-MVS+-dtu92.77 16292.16 17094.58 12594.66 26788.25 11892.05 19596.65 17889.62 15690.08 27791.23 31092.56 10398.60 18186.30 22796.27 27396.90 225
114514_t90.51 21189.80 22792.63 19498.00 8882.24 21693.40 14997.29 13365.84 35989.40 29294.80 22386.99 20398.75 15683.88 25398.61 15196.89 226
Effi-MVS+92.79 16092.74 15892.94 18195.10 24983.30 20394.00 13397.53 11291.36 11989.35 29390.65 32294.01 6998.66 17487.40 20895.30 29596.88 227
CMPMVSbinary68.83 2287.28 28285.67 29592.09 21388.77 35685.42 17890.31 25294.38 25670.02 34788.00 31593.30 26873.78 30394.03 34875.96 32496.54 26896.83 228
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
hse-mvs292.24 17891.20 19695.38 8696.16 19790.65 7592.52 17092.01 30289.23 16693.95 18592.99 27576.88 29198.69 16991.02 12296.03 27696.81 229
miper_enhance_ethall88.42 26087.87 26390.07 27388.67 35775.52 31285.10 33695.59 22375.68 31692.49 23189.45 33578.96 27097.88 24287.86 20197.02 25396.81 229
EIA-MVS92.35 17492.03 17393.30 17195.81 22283.97 19692.80 16298.17 4087.71 20089.79 28787.56 34691.17 14199.18 8587.97 19897.27 24696.77 231
MVP-Stereo90.07 23088.92 24193.54 16396.31 18586.49 15690.93 23495.59 22379.80 28691.48 25395.59 18280.79 26197.39 27778.57 30591.19 34796.76 232
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AUN-MVS90.05 23188.30 25295.32 9296.09 20390.52 7792.42 17892.05 30182.08 27588.45 30992.86 27765.76 33298.69 16988.91 17896.07 27596.75 233
PAPM_NR91.03 20190.81 20591.68 22496.73 15681.10 23193.72 14196.35 19488.19 18988.77 30492.12 29785.09 22697.25 28182.40 26793.90 31996.68 234
UnsupCasMVSNet_bld88.50 25988.03 26189.90 27795.52 23878.88 26987.39 31094.02 26479.32 29693.06 21594.02 24880.72 26294.27 34575.16 32793.08 33196.54 235
TAPA-MVS88.58 1092.49 17191.75 18394.73 11396.50 17189.69 8892.91 15997.68 9978.02 30792.79 22394.10 24490.85 14497.96 23884.76 24698.16 20296.54 235
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
pmmvs587.87 26887.14 27590.07 27393.26 29476.97 29888.89 29092.18 29573.71 32988.36 31093.89 25476.86 29396.73 29880.32 28496.81 26196.51 237
thres600view787.66 27387.10 27789.36 28696.05 20673.17 32892.72 16385.31 34991.89 9693.29 20590.97 31463.42 34498.39 20073.23 33696.99 25896.51 237
thres40087.20 28586.52 28789.24 29095.77 22372.94 33191.89 20686.00 34190.84 13092.61 22889.80 32763.93 34198.28 20971.27 34896.54 26896.51 237
TSAR-MVS + GP.93.07 15192.41 16895.06 10295.82 22090.87 7390.97 23392.61 28988.04 19294.61 16793.79 25788.08 18397.81 25089.41 16598.39 17296.50 240
YYNet188.17 26488.24 25587.93 30992.21 31273.62 32680.75 35888.77 31882.51 27194.99 15495.11 20682.70 24393.70 34983.33 25693.83 32096.48 241
MDA-MVSNet_test_wron88.16 26588.23 25687.93 30992.22 31173.71 32580.71 35988.84 31782.52 27094.88 15995.14 20482.70 24393.61 35083.28 25793.80 32196.46 242
MVSFormer92.18 17992.23 16992.04 21594.74 26180.06 24397.15 1397.37 12088.98 17288.83 29892.79 28077.02 28899.60 896.41 496.75 26496.46 242
jason89.17 24588.32 25191.70 22395.73 22780.07 24288.10 30093.22 27571.98 33790.09 27692.79 28078.53 27698.56 18787.43 20797.06 25196.46 242
jason: jason.
CHOSEN 1792x268887.19 28685.92 29491.00 24697.13 13979.41 25984.51 34395.60 21964.14 36290.07 27994.81 22078.26 27897.14 28573.34 33595.38 29496.46 242
Anonymous2023120688.77 25588.29 25390.20 27196.31 18578.81 27189.56 27593.49 27274.26 32592.38 23695.58 18582.21 24795.43 33072.07 34298.75 14196.34 246
旧先验196.20 19384.17 19394.82 24495.57 18689.57 16997.89 22396.32 247
DELS-MVS92.05 18292.16 17091.72 22294.44 27280.13 24187.62 30397.25 13687.34 20892.22 24393.18 27289.54 17098.73 16089.67 16198.20 20096.30 248
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PLCcopyleft85.34 1590.40 21588.92 24194.85 10896.53 17090.02 8191.58 22096.48 18980.16 28586.14 32992.18 29485.73 22198.25 21476.87 31794.61 31096.30 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PAPR87.65 27486.77 28290.27 26792.85 30277.38 29088.56 29896.23 19976.82 31584.98 33589.75 33186.08 21897.16 28472.33 34193.35 32596.26 250
our_test_387.55 27687.59 26787.44 31591.76 32170.48 34483.83 34990.55 31379.79 28792.06 24792.17 29578.63 27595.63 32384.77 24594.73 30696.22 251
Fast-Effi-MVS+91.28 19990.86 20392.53 19995.45 24082.53 21489.25 28596.52 18785.00 24689.91 28288.55 34292.94 9298.84 13784.72 24795.44 29196.22 251
EPNet_dtu85.63 29784.37 30189.40 28586.30 36774.33 32291.64 21988.26 32284.84 24972.96 37089.85 32571.27 31297.69 26176.60 31997.62 23696.18 253
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LF4IMVS92.72 16392.02 17494.84 10995.65 23291.99 5692.92 15896.60 18085.08 24592.44 23393.62 26086.80 20996.35 31186.81 21598.25 19296.18 253
pmmvs488.95 25187.70 26692.70 19094.30 27585.60 17687.22 31292.16 29774.62 32389.75 28994.19 24177.97 28096.41 30782.71 26296.36 27296.09 255
MG-MVS89.54 24089.80 22788.76 29594.88 25272.47 33689.60 27392.44 29285.82 23089.48 29195.98 16382.85 24097.74 25981.87 27195.27 29696.08 256
ab-mvs92.40 17292.62 16291.74 22197.02 14181.65 22295.84 6495.50 22886.95 21592.95 22097.56 6090.70 15097.50 26879.63 29597.43 24296.06 257
baseline283.38 30981.54 31888.90 29291.38 32772.84 33388.78 29281.22 36478.97 29979.82 36387.56 34661.73 35297.80 25174.30 33190.05 35296.05 258
N_pmnet88.90 25287.25 27293.83 15494.40 27493.81 3684.73 33987.09 33279.36 29593.26 20892.43 29179.29 26991.68 35977.50 31397.22 24896.00 259
mvs-test193.07 15191.80 18196.89 3994.74 26195.83 692.17 19195.41 23089.94 14989.85 28490.59 32390.12 16098.88 12987.68 20395.66 28595.97 260
GA-MVS87.70 27186.82 28090.31 26593.27 29377.22 29384.72 34192.79 28385.11 24489.82 28590.07 32466.80 32597.76 25784.56 24894.27 31695.96 261
test_yl90.11 22789.73 23091.26 23594.09 28079.82 25090.44 24692.65 28690.90 12893.19 21293.30 26873.90 30198.03 22982.23 26896.87 25995.93 262
DCV-MVSNet90.11 22789.73 23091.26 23594.09 28079.82 25090.44 24692.65 28690.90 12893.19 21293.30 26873.90 30198.03 22982.23 26896.87 25995.93 262
PM-MVS93.33 13892.67 16195.33 8996.58 16394.06 2192.26 18892.18 29585.92 22996.22 9596.61 12685.64 22495.99 32090.35 13798.23 19595.93 262
ET-MVSNet_ETH3D86.15 29484.27 30391.79 21993.04 29981.28 22887.17 31486.14 33879.57 29183.65 34388.66 34057.10 35998.18 22087.74 20295.40 29295.90 265
TAMVS90.16 22589.05 23893.49 16696.49 17286.37 16190.34 25192.55 29080.84 28292.99 21894.57 23081.94 25398.20 21773.51 33498.21 19895.90 265
baseline187.62 27587.31 27088.54 29994.71 26574.27 32393.10 15488.20 32486.20 22392.18 24493.04 27373.21 30495.52 32579.32 29985.82 35995.83 267
CS-MVS-test93.33 13893.53 14192.71 18995.74 22683.08 20894.55 11698.85 591.02 12789.30 29491.91 29991.79 11999.23 8090.23 14598.41 16895.82 268
WTY-MVS86.93 29186.50 28988.24 30594.96 25174.64 31687.19 31392.07 30078.29 30588.32 31191.59 30778.06 27994.27 34574.88 32893.15 32995.80 269
PVSNet_Blended_VisFu91.63 18991.20 19692.94 18197.73 10483.95 19792.14 19297.46 11678.85 30292.35 23894.98 21384.16 23199.08 9986.36 22696.77 26395.79 270
lupinMVS88.34 26287.31 27091.45 22994.74 26180.06 24387.23 31192.27 29471.10 34188.83 29891.15 31177.02 28898.53 19086.67 21996.75 26495.76 271
DP-MVS Recon92.31 17591.88 17893.60 15997.18 13586.87 14791.10 23197.37 12084.92 24892.08 24694.08 24588.59 17698.20 21783.50 25598.14 20495.73 272
CDS-MVSNet89.55 23988.22 25793.53 16495.37 24486.49 15689.26 28393.59 26979.76 28891.15 26092.31 29377.12 28798.38 20277.51 31297.92 22295.71 273
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
原ACMM192.87 18496.91 14884.22 19197.01 15076.84 31489.64 29094.46 23288.00 18698.70 16781.53 27598.01 21795.70 274
thisisatest051584.72 30382.99 31189.90 27792.96 30175.33 31484.36 34483.42 35977.37 31088.27 31286.65 35153.94 36598.72 16182.56 26497.40 24395.67 275
ETV-MVS92.99 15392.74 15893.72 15695.86 21986.30 16492.33 18497.84 8791.70 11292.81 22286.17 35692.22 10999.19 8488.03 19797.73 22895.66 276
TinyColmap92.00 18392.76 15789.71 28095.62 23577.02 29490.72 23996.17 20487.70 20195.26 14096.29 14892.54 10496.45 30681.77 27298.77 13895.66 276
PCF-MVS84.52 1789.12 24687.71 26593.34 16896.06 20585.84 17386.58 33097.31 13068.46 35293.61 19693.89 25487.51 19498.52 19167.85 35798.11 20895.66 276
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
USDC89.02 24789.08 23788.84 29495.07 25074.50 32088.97 28896.39 19273.21 33193.27 20796.28 14982.16 24996.39 30877.55 31198.80 13595.62 279
OpenMVScopyleft89.45 892.27 17792.13 17292.68 19194.53 27184.10 19495.70 6897.03 14982.44 27291.14 26196.42 13588.47 17898.38 20285.95 23097.47 24195.55 280
sss87.23 28386.82 28088.46 30293.96 28377.94 28086.84 32092.78 28477.59 30887.61 32091.83 30278.75 27291.92 35877.84 30894.20 31795.52 281
ADS-MVSNet284.01 30782.20 31589.41 28489.04 35376.37 30587.57 30490.98 30972.71 33584.46 33892.45 28868.08 31896.48 30570.58 35283.97 36195.38 282
ADS-MVSNet82.25 31681.55 31784.34 33789.04 35365.30 36287.57 30485.13 35372.71 33584.46 33892.45 28868.08 31892.33 35770.58 35283.97 36195.38 282
MVS_030490.96 20290.15 22193.37 16793.17 29587.06 14193.62 14492.43 29389.60 15782.25 35295.50 19082.56 24697.83 24984.41 25097.83 22695.22 284
tpm84.38 30584.08 30485.30 33190.47 33863.43 37089.34 28085.63 34577.24 31287.62 31995.03 21261.00 35597.30 28079.26 30091.09 34995.16 285
1112_ss88.42 26087.41 26991.45 22996.69 15780.99 23289.72 27196.72 17573.37 33087.00 32590.69 32077.38 28498.20 21781.38 27693.72 32295.15 286
BH-RMVSNet90.47 21390.44 21490.56 26095.21 24878.65 27489.15 28693.94 26788.21 18892.74 22594.22 24086.38 21497.88 24278.67 30495.39 29395.14 287
Test_1112_low_res87.50 27886.58 28490.25 26896.80 15577.75 28587.53 30896.25 19769.73 34886.47 32793.61 26175.67 29797.88 24279.95 29093.20 32795.11 288
MIMVSNet87.13 28886.54 28688.89 29396.05 20676.11 30694.39 12088.51 32081.37 27888.27 31296.75 11572.38 30795.52 32565.71 36295.47 29095.03 289
Gipumacopyleft95.31 7795.80 6493.81 15597.99 9190.91 7196.42 3897.95 7896.69 1791.78 25198.85 1291.77 12095.49 32791.72 10999.08 9795.02 290
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MSLP-MVS++93.25 14593.88 12591.37 23196.34 18282.81 21293.11 15397.74 9689.37 16294.08 17995.29 20190.40 15796.35 31190.35 13798.25 19294.96 291
MSDG90.82 20390.67 20991.26 23594.16 27783.08 20886.63 32796.19 20290.60 13991.94 24891.89 30089.16 17395.75 32280.96 28394.51 31194.95 292
无先验89.94 26495.75 21670.81 34498.59 18381.17 28094.81 293
thres100view90087.35 28186.89 27988.72 29696.14 19973.09 33093.00 15685.31 34992.13 8993.26 20890.96 31563.42 34498.28 20971.27 34896.54 26894.79 294
tfpn200view987.05 28986.52 28788.67 29795.77 22372.94 33191.89 20686.00 34190.84 13092.61 22889.80 32763.93 34198.28 20971.27 34896.54 26894.79 294
GSMVS94.75 296
sam_mvs166.64 32894.75 296
SCA87.43 27987.21 27388.10 30792.01 31871.98 33889.43 27788.11 32682.26 27488.71 30592.83 27878.65 27397.59 26479.61 29693.30 32694.75 296
MS-PatchMatch88.05 26687.75 26488.95 29193.28 29277.93 28187.88 30292.49 29175.42 31992.57 23093.59 26280.44 26394.24 34781.28 27792.75 33494.69 299
CS-MVS92.12 18092.62 16290.60 25894.57 27078.12 27992.00 19998.58 1087.75 19990.08 27791.88 30189.79 16799.10 9790.35 13798.60 15394.58 300
PatchmatchNetpermissive85.22 29984.64 29986.98 31889.51 34969.83 35090.52 24487.34 33178.87 30187.22 32492.74 28266.91 32496.53 30281.77 27286.88 35894.58 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EU-MVSNet87.39 28086.71 28389.44 28393.40 29176.11 30694.93 10090.00 31557.17 36895.71 12097.37 7264.77 33897.68 26292.67 8594.37 31394.52 302
PVSNet76.22 2082.89 31382.37 31384.48 33693.96 28364.38 36878.60 36188.61 31971.50 33984.43 34086.36 35574.27 30094.60 33969.87 35493.69 32394.46 303
PVSNet_Blended88.74 25688.16 26090.46 26394.81 25678.80 27286.64 32696.93 15674.67 32288.68 30789.18 33886.27 21698.15 22380.27 28596.00 27794.44 304
CNLPA91.72 18791.20 19693.26 17296.17 19691.02 6891.14 22995.55 22690.16 14790.87 26393.56 26386.31 21594.40 34379.92 29497.12 25094.37 305
cascas87.02 29086.28 29189.25 28991.56 32676.45 30384.33 34596.78 17071.01 34286.89 32685.91 35781.35 25696.94 29083.09 25995.60 28694.35 306
DPM-MVS89.35 24288.40 25092.18 21096.13 20284.20 19286.96 31796.15 20575.40 32087.36 32291.55 30883.30 23598.01 23382.17 27096.62 26794.32 307
MAR-MVS90.32 22188.87 24494.66 11794.82 25591.85 5994.22 12594.75 24780.91 27987.52 32188.07 34586.63 21297.87 24576.67 31896.21 27494.25 308
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CR-MVSNet87.89 26787.12 27690.22 26991.01 33178.93 26792.52 17092.81 28173.08 33289.10 29596.93 10267.11 32297.64 26388.80 18092.70 33594.08 309
RPMNet90.31 22290.14 22290.81 25391.01 33178.93 26792.52 17098.12 4691.91 9589.10 29596.89 10568.84 31799.41 3690.17 14892.70 33594.08 309
MDTV_nov1_ep13_2view42.48 37888.45 29967.22 35683.56 34566.80 32572.86 33994.06 311
test-LLR83.58 30883.17 30984.79 33489.68 34666.86 35783.08 35184.52 35483.07 26482.85 34984.78 36062.86 34793.49 35182.85 26094.86 30294.03 312
test-mter81.21 32580.01 33284.79 33489.68 34666.86 35783.08 35184.52 35473.85 32882.85 34984.78 36043.66 37693.49 35182.85 26094.86 30294.03 312
112190.26 22389.23 23393.34 16897.15 13887.40 13391.94 20394.39 25567.88 35491.02 26294.91 21686.91 20798.59 18381.17 28097.71 23194.02 314
新几何193.17 17497.16 13687.29 13594.43 25467.95 35391.29 25694.94 21586.97 20498.23 21581.06 28297.75 22793.98 315
test22296.95 14485.27 18088.83 29193.61 26865.09 36190.74 26694.85 21984.62 22997.36 24493.91 316
PMMVS281.31 32383.44 30774.92 35290.52 33746.49 37769.19 36685.23 35284.30 25487.95 31694.71 22676.95 29084.36 37064.07 36398.09 21093.89 317
Patchmatch-test86.10 29586.01 29286.38 32490.63 33574.22 32489.57 27486.69 33485.73 23389.81 28692.83 27865.24 33691.04 36177.82 31095.78 28393.88 318
Patchmatch-RL test88.81 25488.52 24789.69 28195.33 24679.94 24786.22 33192.71 28578.46 30495.80 11594.18 24266.25 33095.33 33389.22 17298.53 15993.78 319
test0.0.03 182.48 31581.47 31985.48 32889.70 34573.57 32784.73 33981.64 36383.07 26488.13 31486.61 35262.86 34789.10 36766.24 36190.29 35193.77 320
OpenMVS_ROBcopyleft85.12 1689.52 24189.05 23890.92 24894.58 26981.21 23091.10 23193.41 27377.03 31393.41 20093.99 25083.23 23697.80 25179.93 29294.80 30593.74 321
testdata91.03 24396.87 15082.01 21794.28 25871.55 33892.46 23295.42 19585.65 22397.38 27982.64 26397.27 24693.70 322
IB-MVS77.21 1983.11 31081.05 32189.29 28791.15 32975.85 30985.66 33386.00 34179.70 28982.02 35686.61 35248.26 37198.39 20077.84 30892.22 34093.63 323
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
xiu_mvs_v1_base_debu91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
xiu_mvs_v1_base91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
xiu_mvs_v1_base_debi91.47 19391.52 18691.33 23295.69 22981.56 22389.92 26596.05 20783.22 26091.26 25790.74 31791.55 12698.82 13989.29 16795.91 27993.62 324
tpmrst82.85 31482.93 31282.64 34387.65 35858.99 37390.14 25887.90 32775.54 31883.93 34291.63 30666.79 32795.36 33181.21 27981.54 36793.57 327
PatchT87.51 27788.17 25885.55 32790.64 33466.91 35592.02 19886.09 33992.20 8789.05 29797.16 8964.15 34096.37 31089.21 17392.98 33393.37 328
CostFormer83.09 31182.21 31485.73 32689.27 35167.01 35490.35 25086.47 33670.42 34583.52 34693.23 27161.18 35396.85 29477.21 31588.26 35693.34 329
thres20085.85 29685.18 29787.88 31194.44 27272.52 33589.08 28786.21 33788.57 18391.44 25488.40 34364.22 33998.00 23468.35 35695.88 28293.12 330
KD-MVS_2432*160082.17 31880.75 32586.42 32282.04 37570.09 34781.75 35690.80 31082.56 26890.37 27289.30 33642.90 37796.11 31674.47 32992.55 33793.06 331
miper_refine_blended82.17 31880.75 32586.42 32282.04 37570.09 34781.75 35690.80 31082.56 26890.37 27289.30 33642.90 37796.11 31674.47 32992.55 33793.06 331
HY-MVS82.50 1886.81 29285.93 29389.47 28293.63 28977.93 28194.02 13291.58 30675.68 31683.64 34493.64 25977.40 28397.42 27471.70 34592.07 34293.05 333
EPMVS81.17 32680.37 32883.58 34085.58 36965.08 36590.31 25271.34 37377.31 31185.80 33191.30 30959.38 35692.70 35679.99 28982.34 36692.96 334
tpmvs84.22 30683.97 30584.94 33287.09 36465.18 36391.21 22888.35 32182.87 26785.21 33290.96 31565.24 33696.75 29779.60 29885.25 36092.90 335
BH-untuned90.68 20890.90 20190.05 27595.98 21279.57 25790.04 26194.94 24087.91 19394.07 18093.00 27487.76 19097.78 25479.19 30195.17 29892.80 336
DWT-MVSNet_test80.74 32979.18 33485.43 32987.51 36166.87 35689.87 26886.01 34074.20 32680.86 36080.62 36648.84 37096.68 30181.54 27483.14 36592.75 337
AdaColmapbinary91.63 18991.36 19292.47 20295.56 23786.36 16292.24 19096.27 19688.88 17689.90 28392.69 28391.65 12498.32 20777.38 31497.64 23592.72 338
CVMVSNet85.16 30084.72 29886.48 32092.12 31570.19 34592.32 18588.17 32556.15 36990.64 26895.85 16767.97 32096.69 29988.78 18190.52 35092.56 339
tpm281.46 32280.35 32984.80 33389.90 34365.14 36490.44 24685.36 34865.82 36082.05 35592.44 29057.94 35896.69 29970.71 35188.49 35592.56 339
PAPM81.91 32180.11 33187.31 31693.87 28672.32 33784.02 34893.22 27569.47 34976.13 36889.84 32672.15 30897.23 28253.27 37089.02 35392.37 341
TESTMET0.1,179.09 33578.04 33782.25 34487.52 36064.03 36983.08 35180.62 36670.28 34680.16 36283.22 36344.13 37590.56 36279.95 29093.36 32492.15 342
DSMNet-mixed82.21 31781.56 31684.16 33889.57 34870.00 34990.65 24177.66 37254.99 37083.30 34797.57 5977.89 28190.50 36366.86 36095.54 28891.97 343
xiu_mvs_v2_base89.00 24989.19 23488.46 30294.86 25474.63 31786.97 31695.60 21980.88 28087.83 31788.62 34191.04 14298.81 14482.51 26694.38 31291.93 344
PS-MVSNAJ88.86 25388.99 24088.48 30194.88 25274.71 31586.69 32595.60 21980.88 28087.83 31787.37 34990.77 14598.82 13982.52 26594.37 31391.93 344
tpm cat180.61 33179.46 33384.07 33988.78 35565.06 36689.26 28388.23 32362.27 36581.90 35789.66 33362.70 34995.29 33471.72 34480.60 36891.86 346
dp79.28 33478.62 33681.24 34685.97 36856.45 37486.91 31885.26 35172.97 33381.45 35989.17 33956.01 36395.45 32973.19 33776.68 36991.82 347
JIA-IIPM85.08 30183.04 31091.19 24087.56 35986.14 16889.40 27984.44 35688.98 17282.20 35397.95 4356.82 36196.15 31476.55 32083.45 36391.30 348
TR-MVS87.70 27187.17 27489.27 28894.11 27979.26 26288.69 29591.86 30381.94 27690.69 26789.79 32982.82 24197.42 27472.65 34091.98 34391.14 349
131486.46 29386.33 29086.87 31991.65 32374.54 31891.94 20394.10 26174.28 32484.78 33787.33 35083.03 23895.00 33778.72 30391.16 34891.06 350
new_pmnet81.22 32481.01 32381.86 34590.92 33370.15 34684.03 34780.25 36870.83 34385.97 33089.78 33067.93 32184.65 36967.44 35891.90 34490.78 351
PatchMatch-RL89.18 24488.02 26292.64 19295.90 21892.87 4788.67 29791.06 30880.34 28390.03 28091.67 30583.34 23494.42 34276.35 32194.84 30490.64 352
API-MVS91.52 19291.61 18491.26 23594.16 27786.26 16694.66 10894.82 24491.17 12492.13 24591.08 31390.03 16697.06 28779.09 30297.35 24590.45 353
BH-w/o87.21 28487.02 27887.79 31294.77 25877.27 29287.90 30193.21 27781.74 27789.99 28188.39 34483.47 23396.93 29271.29 34792.43 33989.15 354
PMVScopyleft87.21 1494.97 8695.33 7893.91 15098.97 1597.16 295.54 7695.85 21396.47 2193.40 20297.46 6795.31 3395.47 32886.18 22998.78 13789.11 355
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 32081.02 32285.34 33087.46 36271.04 34194.74 10567.56 37496.44 2279.43 36498.99 645.24 37396.15 31467.18 35992.17 34188.85 356
CHOSEN 280x42080.04 33377.97 33886.23 32590.13 34174.53 31972.87 36489.59 31666.38 35776.29 36785.32 35956.96 36095.36 33169.49 35594.72 30788.79 357
pmmvs380.83 32878.96 33586.45 32187.23 36377.48 28984.87 33882.31 36163.83 36385.03 33489.50 33449.66 36993.10 35373.12 33895.10 29988.78 358
PMMVS83.00 31281.11 32088.66 29883.81 37486.44 15982.24 35585.65 34461.75 36682.07 35485.64 35879.75 26691.59 36075.99 32393.09 33087.94 359
MVS84.98 30284.30 30287.01 31791.03 33077.69 28791.94 20394.16 26059.36 36784.23 34187.50 34885.66 22296.80 29671.79 34393.05 33286.54 360
MVEpermissive59.87 2373.86 33872.65 34177.47 35187.00 36674.35 32161.37 36860.93 37667.27 35569.69 37186.49 35481.24 26072.33 37256.45 36983.45 36385.74 361
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
GG-mvs-BLEND83.24 34285.06 37171.03 34294.99 9965.55 37574.09 36975.51 36944.57 37494.46 34159.57 36787.54 35784.24 362
FPMVS84.50 30483.28 30888.16 30696.32 18494.49 1685.76 33285.47 34783.09 26385.20 33394.26 23863.79 34386.58 36863.72 36491.88 34583.40 363
E-PMN80.72 33080.86 32480.29 34885.11 37068.77 35272.96 36381.97 36287.76 19883.25 34883.01 36462.22 35089.17 36677.15 31694.31 31582.93 364
EMVS80.35 33280.28 33080.54 34784.73 37269.07 35172.54 36580.73 36587.80 19781.66 35881.73 36562.89 34689.84 36475.79 32594.65 30982.71 365
PVSNet_070.34 2174.58 33772.96 34079.47 34990.63 33566.24 36173.26 36283.40 36063.67 36478.02 36578.35 36872.53 30689.59 36556.68 36860.05 37282.57 366
test_method50.44 33948.94 34254.93 35439.68 37812.38 38028.59 36990.09 3146.82 37241.10 37478.41 36754.41 36470.69 37350.12 37151.26 37381.72 367
MVS-HIRNet78.83 33680.60 32773.51 35393.07 29747.37 37687.10 31578.00 37168.94 35077.53 36697.26 8271.45 31194.62 33863.28 36588.74 35478.55 368
wuyk23d87.83 26990.79 20678.96 35090.46 33988.63 10992.72 16390.67 31291.65 11398.68 1197.64 5796.06 1677.53 37159.84 36699.41 5270.73 369
DeepMVS_CXcopyleft53.83 35570.38 37764.56 36748.52 37933.01 37165.50 37274.21 37056.19 36246.64 37438.45 37370.07 37050.30 370
tmp_tt37.97 34044.33 34318.88 35611.80 37921.54 37963.51 36745.66 3804.23 37351.34 37350.48 37159.08 35722.11 37544.50 37268.35 37113.00 371
test1239.49 34212.01 3451.91 3572.87 3801.30 38182.38 3541.34 3821.36 3752.84 3766.56 3742.45 3800.97 3762.73 3745.56 3743.47 372
testmvs9.02 34311.42 3461.81 3582.77 3811.13 38279.44 3601.90 3811.18 3762.65 3776.80 3731.95 3810.87 3772.62 3753.45 3753.44 373
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.35 34131.13 3440.00 3590.00 3820.00 3830.00 37095.58 2250.00 3770.00 37891.15 31193.43 770.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.56 34410.09 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37790.77 1450.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re7.56 34410.08 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37890.69 3200.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
FOURS199.21 394.68 1298.45 498.81 697.73 698.27 20
test_one_060198.26 6787.14 13998.18 3694.25 4896.99 6097.36 7595.13 40
eth-test20.00 382
eth-test0.00 382
ZD-MVS97.23 13190.32 7997.54 11084.40 25394.78 16295.79 17292.76 9999.39 4888.72 18498.40 169
test_241102_ONE98.51 4786.97 14498.10 4991.85 9897.63 3297.03 9696.48 1198.95 122
9.1494.81 9497.49 12094.11 12998.37 1787.56 20695.38 13296.03 16194.66 5699.08 9990.70 12998.97 113
save fliter97.46 12388.05 12392.04 19697.08 14787.63 203
test072698.51 4786.69 15195.34 8198.18 3691.85 9897.63 3297.37 7295.58 22
test_part298.21 7189.41 9596.72 71
sam_mvs66.41 329
MTGPAbinary97.62 102
test_post190.21 2545.85 37665.36 33496.00 31979.61 296
test_post6.07 37565.74 33395.84 321
patchmatchnet-post91.71 30466.22 33197.59 264
MTMP94.82 10254.62 378
gm-plane-assit87.08 36559.33 37271.22 34083.58 36297.20 28373.95 332
TEST996.45 17489.46 9290.60 24296.92 15879.09 29890.49 26994.39 23591.31 13298.88 129
test_896.37 17689.14 9990.51 24596.89 16179.37 29390.42 27194.36 23791.20 13898.82 139
agg_prior96.20 19388.89 10496.88 16290.21 27498.78 151
test_prior489.91 8490.74 238
test_prior290.21 25489.33 16490.77 26494.81 22090.41 15588.21 18998.55 155
旧先验290.00 26368.65 35192.71 22696.52 30385.15 237
新几何290.02 262
原ACMM289.34 280
testdata298.03 22980.24 287
segment_acmp92.14 111
testdata188.96 28988.44 185
plane_prior797.71 10588.68 108
plane_prior697.21 13488.23 11986.93 205
plane_prior495.59 182
plane_prior388.43 11790.35 14593.31 203
plane_prior294.56 11491.74 109
plane_prior197.38 126
plane_prior88.12 12193.01 15588.98 17298.06 212
n20.00 383
nn0.00 383
door-mid92.13 299
test1196.65 178
door91.26 307
HQP5-MVS84.89 183
HQP-NCC96.36 17891.37 22387.16 21088.81 300
ACMP_Plane96.36 17891.37 22387.16 21088.81 300
BP-MVS86.55 222
HQP3-MVS97.31 13097.73 228
HQP2-MVS84.76 227
NP-MVS96.82 15287.10 14093.40 266
MDTV_nov1_ep1383.88 30689.42 35061.52 37188.74 29487.41 33073.99 32784.96 33694.01 24965.25 33595.53 32478.02 30693.16 328
ACMMP++_ref98.82 131
ACMMP++99.25 76
Test By Simon90.61 151