This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
test_fmvs399.12 4099.41 1498.25 21599.76 3095.07 26599.05 6499.94 197.78 15899.82 1299.84 298.56 4099.71 22999.96 199.96 1599.97 1
test_f98.67 10198.87 5998.05 23299.72 4295.59 24498.51 11399.81 1496.30 25599.78 1599.82 496.14 19198.63 36699.82 399.93 3199.95 2
test_fmvs298.70 9098.97 5397.89 24099.54 8394.05 29098.55 10599.92 596.78 23599.72 1999.78 896.60 17499.67 24899.91 299.90 5599.94 3
PS-MVSNAJss99.46 1299.49 1099.35 6999.90 498.15 12999.20 4499.65 3399.48 2699.92 499.71 1698.07 7399.96 1199.53 17100.00 199.93 4
test_vis3_rt99.14 3599.17 3099.07 11799.78 2598.38 10998.92 7599.94 197.80 15699.91 599.67 2097.15 14198.91 36199.76 899.56 19599.92 5
test_djsdf99.52 999.51 999.53 3499.86 1498.74 8299.39 1699.56 5699.11 6199.70 2399.73 1499.00 1599.97 499.26 3099.98 999.89 6
RRT_MVS99.09 4298.94 5499.55 2399.87 1298.82 7899.48 998.16 30199.49 2599.59 3799.65 2494.79 24299.95 1799.45 2199.96 1599.88 7
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 1999.71 2199.27 4999.90 699.74 1299.68 299.97 499.55 1699.99 599.88 7
jajsoiax99.58 699.61 799.48 5199.87 1298.61 9299.28 3699.66 3299.09 7199.89 899.68 1899.53 499.97 499.50 1899.99 599.87 9
EU-MVSNet97.66 20198.50 10595.13 33799.63 6285.84 36598.35 13198.21 29798.23 12599.54 4199.46 5595.02 23199.68 24598.24 9199.87 6399.87 9
UA-Net99.47 1199.40 1599.70 299.49 10099.29 1999.80 399.72 2099.82 399.04 12799.81 598.05 7699.96 1198.85 5599.99 599.86 11
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 899.98 199.99 199.96 199.77 1100.00 199.81 5100.00 199.85 12
mvsany_test398.87 6698.92 5698.74 16699.38 12596.94 21298.58 10299.10 21196.49 24699.96 299.81 598.18 6599.45 31998.97 4999.79 10099.83 13
anonymousdsp99.51 1099.47 1299.62 699.88 999.08 6399.34 1999.69 2498.93 8699.65 3299.72 1598.93 1999.95 1799.11 39100.00 199.82 14
ANet_high99.57 799.67 599.28 8399.89 698.09 13399.14 5399.93 399.82 399.93 399.81 599.17 1299.94 2699.31 27100.00 199.82 14
PS-CasMVS99.40 1899.33 2199.62 699.71 4499.10 6099.29 3299.53 6899.53 2399.46 5599.41 6698.23 5899.95 1798.89 5499.95 1999.81 16
FC-MVSNet-test99.27 2599.25 2699.34 7299.77 2798.37 11199.30 3199.57 4999.61 1899.40 6799.50 4997.12 14299.85 11099.02 4699.94 2799.80 17
test_vis1_n_192098.40 13698.92 5696.81 30599.74 3590.76 34898.15 14899.91 698.33 11599.89 899.55 4095.07 23099.88 7199.76 899.93 3199.79 18
CP-MVSNet99.21 3299.09 4299.56 2199.65 5798.96 7099.13 5499.34 13499.42 3499.33 8199.26 8997.01 15099.94 2698.74 6299.93 3199.79 18
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 4299.90 299.86 1099.78 899.58 399.95 1799.00 4799.95 1999.78 20
CVMVSNet96.25 27997.21 22393.38 35399.10 18680.56 37997.20 24298.19 30096.94 22899.00 13299.02 13689.50 30299.80 17096.36 22099.59 18399.78 20
Anonymous2023121199.27 2599.27 2599.26 8899.29 14398.18 12699.49 899.51 7299.70 799.80 1399.68 1896.84 15799.83 14099.21 3599.91 4899.77 22
PEN-MVS99.41 1799.34 2099.62 699.73 3699.14 5299.29 3299.54 6599.62 1699.56 3899.42 6398.16 6999.96 1198.78 5899.93 3199.77 22
WR-MVS_H99.33 2399.22 2899.65 599.71 4499.24 2599.32 2299.55 6099.46 2999.50 5199.34 7797.30 13199.93 3198.90 5299.93 3199.77 22
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1699.11 5999.90 199.78 1699.63 1399.78 1599.67 2099.48 699.81 16399.30 2999.97 1299.77 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
patch_mono-298.51 12698.63 8898.17 22199.38 12594.78 27097.36 22999.69 2498.16 13598.49 21099.29 8497.06 14599.97 498.29 9099.91 4899.76 26
nrg03099.40 1899.35 1899.54 2799.58 6599.13 5598.98 7199.48 8399.68 899.46 5599.26 8998.62 3699.73 22199.17 3899.92 4299.76 26
FIs99.14 3599.09 4299.29 8199.70 5098.28 11799.13 5499.52 7199.48 2699.24 10199.41 6696.79 16399.82 15098.69 6799.88 6099.76 26
v7n99.53 899.57 899.41 6099.88 998.54 10099.45 1099.61 3899.66 1099.68 2799.66 2298.44 4699.95 1799.73 1099.96 1599.75 29
APDe-MVS98.99 5098.79 6899.60 1199.21 15899.15 4798.87 7899.48 8397.57 17399.35 7899.24 9497.83 8999.89 6297.88 11499.70 14499.75 29
bld_raw_dy_0_6499.07 4599.00 4999.29 8199.85 1698.18 12699.11 5799.40 11099.33 4399.38 7199.44 6095.21 22599.97 499.31 2799.98 999.73 31
DTE-MVSNet99.43 1599.35 1899.66 499.71 4499.30 1799.31 2699.51 7299.64 1199.56 3899.46 5598.23 5899.97 498.78 5899.93 3199.72 32
MSC_two_6792asdad99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
No_MVS99.32 7898.43 29898.37 11198.86 25399.89 6297.14 15199.60 17999.71 33
PMMVS298.07 16998.08 16398.04 23399.41 12294.59 27994.59 34699.40 11097.50 17998.82 16998.83 18896.83 15999.84 12697.50 13499.81 8499.71 33
Baseline_NR-MVSNet98.98 5398.86 6299.36 6499.82 2198.55 9797.47 22399.57 4999.37 3899.21 10499.61 3096.76 16699.83 14098.06 10299.83 7799.71 33
XXY-MVS99.14 3599.15 3799.10 11199.76 3097.74 17298.85 8199.62 3598.48 11099.37 7499.49 5298.75 2799.86 9898.20 9499.80 9599.71 33
test_0728_THIRD98.17 13299.08 11899.02 13697.89 8699.88 7197.07 15799.71 13999.70 38
MSP-MVS98.40 13698.00 16999.61 999.57 6999.25 2498.57 10399.35 12897.55 17699.31 8997.71 30194.61 24599.88 7196.14 23399.19 26099.70 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
mvsmamba99.24 3199.15 3799.49 4899.83 1998.85 7499.41 1399.55 6099.54 2299.40 6799.52 4795.86 20899.91 4799.32 2699.95 1999.70 38
dcpmvs_298.78 7899.11 3997.78 24799.56 7693.67 30899.06 6299.86 1199.50 2499.66 2999.26 8997.21 13999.99 298.00 10799.91 4899.68 41
test_0728_SECOND99.60 1199.50 9399.23 2698.02 16499.32 14199.88 7196.99 16399.63 16999.68 41
OurMVSNet-221017-099.37 2199.31 2399.53 3499.91 398.98 6599.63 699.58 4299.44 3199.78 1599.76 1096.39 18299.92 3999.44 2299.92 4299.68 41
CHOSEN 1792x268897.49 21297.14 22898.54 18999.68 5396.09 23396.50 27699.62 3591.58 34098.84 16598.97 15492.36 28299.88 7196.76 18699.95 1999.67 44
IU-MVS99.49 10099.15 4798.87 24892.97 32599.41 6496.76 18699.62 17299.66 45
test_241102_TWO99.30 15498.03 14099.26 9699.02 13697.51 11999.88 7196.91 16999.60 17999.66 45
DPE-MVScopyleft98.59 11398.26 14299.57 1699.27 14699.15 4797.01 25099.39 11397.67 16499.44 5998.99 14897.53 11699.89 6295.40 26399.68 15299.66 45
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TransMVSNet (Re)99.44 1399.47 1299.36 6499.80 2298.58 9599.27 3899.57 4999.39 3699.75 1899.62 2899.17 1299.83 14099.06 4299.62 17299.66 45
EI-MVSNet-UG-set98.69 9398.71 7698.62 17499.10 18696.37 22597.23 23898.87 24899.20 5499.19 10698.99 14897.30 13199.85 11098.77 6199.79 10099.65 49
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 1899.64 1199.84 1199.83 399.50 599.87 8999.36 2499.92 4299.64 50
EI-MVSNet-Vis-set98.68 9898.70 7998.63 17399.09 18996.40 22497.23 23898.86 25399.20 5499.18 11098.97 15497.29 13399.85 11098.72 6499.78 10599.64 50
ACMH96.65 799.25 2799.24 2799.26 8899.72 4298.38 10999.07 6199.55 6098.30 11899.65 3299.45 5999.22 999.76 20598.44 8299.77 10999.64 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DP-MVS98.93 5998.81 6799.28 8399.21 15898.45 10698.46 12199.33 13999.63 1399.48 5299.15 11497.23 13799.75 21297.17 14799.66 16399.63 53
test_fmvs1_n98.09 16798.28 13997.52 27199.68 5393.47 31198.63 9599.93 395.41 28199.68 2799.64 2691.88 28899.48 31399.82 399.87 6399.62 54
test111196.49 27296.82 24495.52 33199.42 12087.08 36299.22 4187.14 37599.11 6199.46 5599.58 3488.69 30699.86 9898.80 5799.95 1999.62 54
VPA-MVSNet99.30 2499.30 2499.28 8399.49 10098.36 11499.00 6899.45 9499.63 1399.52 4799.44 6098.25 5699.88 7199.09 4099.84 7099.62 54
LPG-MVS_test98.71 8798.46 11499.47 5499.57 6998.97 6698.23 13999.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
LGP-MVS_train99.47 5499.57 6998.97 6699.48 8396.60 24299.10 11699.06 12498.71 3099.83 14095.58 25999.78 10599.62 54
Test_1112_low_res96.99 25296.55 26398.31 21199.35 13695.47 25095.84 30999.53 6891.51 34296.80 31498.48 24691.36 29199.83 14096.58 19999.53 20499.62 54
v1098.97 5499.11 3998.55 18699.44 11496.21 23098.90 7699.55 6098.73 9699.48 5299.60 3296.63 17399.83 14099.70 1199.99 599.61 60
test_vis1_n98.31 14698.50 10597.73 25499.76 3094.17 28898.68 9299.91 696.31 25399.79 1499.57 3592.85 27799.42 32499.79 699.84 7099.60 61
v899.01 4899.16 3298.57 18199.47 10996.31 22898.90 7699.47 8999.03 7799.52 4799.57 3596.93 15399.81 16399.60 1299.98 999.60 61
EI-MVSNet98.40 13698.51 10398.04 23399.10 18694.73 27397.20 24298.87 24898.97 8299.06 12099.02 13696.00 19899.80 17098.58 7299.82 8099.60 61
SixPastTwentyTwo98.75 8398.62 9099.16 10299.83 1997.96 15299.28 3698.20 29899.37 3899.70 2399.65 2492.65 28099.93 3199.04 4499.84 7099.60 61
IterMVS-LS98.55 11998.70 7998.09 22599.48 10794.73 27397.22 24199.39 11398.97 8299.38 7199.31 8396.00 19899.93 3198.58 7299.97 1299.60 61
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HyFIR lowres test97.19 23696.60 26198.96 13499.62 6497.28 19495.17 32899.50 7494.21 30799.01 13198.32 26286.61 31899.99 297.10 15599.84 7099.60 61
ACMMP_NAP98.75 8398.48 11099.57 1699.58 6599.29 1997.82 18599.25 17396.94 22898.78 17299.12 11898.02 7799.84 12697.13 15399.67 15899.59 67
VPNet98.87 6698.83 6499.01 12999.70 5097.62 18098.43 12499.35 12899.47 2899.28 9099.05 13196.72 16999.82 15098.09 10099.36 23299.59 67
WR-MVS98.40 13698.19 14999.03 12799.00 20697.65 17796.85 26098.94 23598.57 10798.89 15398.50 24395.60 21499.85 11097.54 13199.85 6699.59 67
HPM-MVScopyleft98.79 7698.53 10199.59 1599.65 5799.29 1999.16 5099.43 10496.74 23798.61 19398.38 25498.62 3699.87 8996.47 21399.67 15899.59 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EG-PatchMatch MVS98.99 5099.01 4898.94 13699.50 9397.47 18598.04 16299.59 4098.15 13699.40 6799.36 7298.58 3999.76 20598.78 5899.68 15299.59 67
Vis-MVSNetpermissive99.34 2299.36 1799.27 8699.73 3698.26 11899.17 4999.78 1699.11 6199.27 9299.48 5398.82 2499.95 1798.94 5099.93 3199.59 67
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MP-MVS-pluss98.57 11498.23 14599.60 1199.69 5299.35 1297.16 24599.38 11594.87 29298.97 13898.99 14898.01 7899.88 7197.29 14299.70 14499.58 73
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
region2R98.69 9398.40 12299.54 2799.53 8699.17 3998.52 10999.31 14697.46 18798.44 21498.51 23997.83 8999.88 7196.46 21499.58 18899.58 73
ACMMPR98.70 9098.42 12099.54 2799.52 8899.14 5298.52 10999.31 14697.47 18298.56 20298.54 23597.75 9699.88 7196.57 20199.59 18399.58 73
PGM-MVS98.66 10298.37 12899.55 2399.53 8699.18 3898.23 13999.49 8197.01 22698.69 18298.88 17898.00 7999.89 6295.87 24599.59 18399.58 73
SteuartSystems-ACMMP98.79 7698.54 10099.54 2799.73 3699.16 4398.23 13999.31 14697.92 14798.90 15198.90 17198.00 7999.88 7196.15 23299.72 13499.58 73
Skip Steuart: Steuart Systems R&D Blog.
TranMVSNet+NR-MVSNet99.17 3399.07 4599.46 5699.37 13198.87 7398.39 12899.42 10799.42 3499.36 7699.06 12498.38 4999.95 1798.34 8799.90 5599.57 78
mPP-MVS98.64 10598.34 13299.54 2799.54 8399.17 3998.63 9599.24 17897.47 18298.09 23998.68 21397.62 10799.89 6296.22 22799.62 17299.57 78
PVSNet_Blended_VisFu98.17 16398.15 15598.22 21899.73 3695.15 26197.36 22999.68 2994.45 30298.99 13399.27 8796.87 15699.94 2697.13 15399.91 4899.57 78
1112_ss97.29 22896.86 24098.58 17999.34 13896.32 22796.75 26699.58 4293.14 32396.89 30997.48 31592.11 28599.86 9896.91 16999.54 20099.57 78
MTAPA98.88 6598.64 8799.61 999.67 5599.36 1198.43 12499.20 18498.83 9598.89 15398.90 17196.98 15299.92 3997.16 14899.70 14499.56 82
XVS98.72 8698.45 11599.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27698.63 22597.50 12099.83 14096.79 18299.53 20499.56 82
pm-mvs199.44 1399.48 1199.33 7699.80 2298.63 8999.29 3299.63 3499.30 4799.65 3299.60 3299.16 1499.82 15099.07 4199.83 7799.56 82
X-MVStestdata94.32 31292.59 33099.53 3499.46 11099.21 2898.65 9399.34 13498.62 10297.54 27645.85 37597.50 12099.83 14096.79 18299.53 20499.56 82
HPM-MVS_fast99.01 4898.82 6599.57 1699.71 4499.35 1299.00 6899.50 7497.33 19998.94 14798.86 18198.75 2799.82 15097.53 13299.71 13999.56 82
K. test v398.00 17397.66 19599.03 12799.79 2497.56 18199.19 4892.47 36599.62 1699.52 4799.66 2289.61 30099.96 1199.25 3299.81 8499.56 82
CP-MVS98.70 9098.42 12099.52 3999.36 13299.12 5798.72 8799.36 12397.54 17798.30 22398.40 25197.86 8899.89 6296.53 21099.72 13499.56 82
ZNCC-MVS98.68 9898.40 12299.54 2799.57 6999.21 2898.46 12199.29 16197.28 20598.11 23798.39 25298.00 7999.87 8996.86 17999.64 16699.55 89
v119298.60 11198.66 8498.41 20299.27 14695.88 23897.52 21799.36 12397.41 19299.33 8199.20 10096.37 18599.82 15099.57 1499.92 4299.55 89
v124098.55 11998.62 9098.32 20999.22 15695.58 24597.51 21999.45 9497.16 21999.45 5899.24 9496.12 19399.85 11099.60 1299.88 6099.55 89
UGNet98.53 12398.45 11598.79 15497.94 32696.96 21099.08 5898.54 28399.10 6896.82 31399.47 5496.55 17699.84 12698.56 7799.94 2799.55 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250692.39 33491.89 33793.89 34799.38 12582.28 37699.32 2266.03 38399.08 7398.77 17599.57 3566.26 38099.84 12698.71 6599.95 1999.54 93
ECVR-MVScopyleft96.42 27496.61 25995.85 32399.38 12588.18 35899.22 4186.00 37799.08 7399.36 7699.57 3588.47 31199.82 15098.52 7899.95 1999.54 93
v14419298.54 12198.57 9898.45 19899.21 15895.98 23597.63 20499.36 12397.15 22199.32 8799.18 10495.84 20999.84 12699.50 1899.91 4899.54 93
v192192098.54 12198.60 9598.38 20599.20 16295.76 24397.56 21399.36 12397.23 21499.38 7199.17 10896.02 19699.84 12699.57 1499.90 5599.54 93
MP-MVScopyleft98.46 13098.09 16099.54 2799.57 6999.22 2798.50 11599.19 18897.61 17097.58 27298.66 21897.40 12799.88 7194.72 27699.60 17999.54 93
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MIMVSNet199.38 2099.32 2299.55 2399.86 1499.19 3799.41 1399.59 4099.59 1999.71 2199.57 3597.12 14299.90 5299.21 3599.87 6399.54 93
ACMMPcopyleft98.75 8398.50 10599.52 3999.56 7699.16 4398.87 7899.37 11997.16 21998.82 16999.01 14597.71 9899.87 8996.29 22499.69 14799.54 93
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SMA-MVScopyleft98.40 13698.03 16799.51 4399.16 17599.21 2898.05 16099.22 18194.16 30898.98 13499.10 12197.52 11899.79 18396.45 21599.64 16699.53 100
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS98.71 8798.44 11799.51 4399.49 10099.16 4398.52 10999.31 14697.47 18298.58 19998.50 24397.97 8399.85 11096.57 20199.59 18399.53 100
UniMVSNet_NR-MVSNet98.86 6998.68 8299.40 6299.17 17398.74 8297.68 19899.40 11099.14 6099.06 12098.59 23196.71 17099.93 3198.57 7499.77 10999.53 100
GST-MVS98.61 11098.30 13799.52 3999.51 9099.20 3498.26 13799.25 17397.44 19098.67 18498.39 25297.68 9999.85 11096.00 23799.51 20999.52 103
TDRefinement99.42 1699.38 1699.55 2399.76 3099.33 1699.68 599.71 2199.38 3799.53 4599.61 3098.64 3399.80 17098.24 9199.84 7099.52 103
v114498.60 11198.66 8498.41 20299.36 13295.90 23797.58 21199.34 13497.51 17899.27 9299.15 11496.34 18799.80 17099.47 2099.93 3199.51 105
v2v48298.56 11598.62 9098.37 20699.42 12095.81 24197.58 21199.16 19997.90 14999.28 9099.01 14595.98 20299.79 18399.33 2599.90 5599.51 105
CPTT-MVS97.84 19097.36 21499.27 8699.31 13998.46 10598.29 13499.27 16794.90 29197.83 25698.37 25594.90 23399.84 12693.85 30499.54 20099.51 105
DU-MVS98.82 7298.63 8899.39 6399.16 17598.74 8297.54 21599.25 17398.84 9499.06 12098.76 20196.76 16699.93 3198.57 7499.77 10999.50 108
NR-MVSNet98.95 5798.82 6599.36 6499.16 17598.72 8799.22 4199.20 18499.10 6899.72 1998.76 20196.38 18499.86 9898.00 10799.82 8099.50 108
casdiffmvs_mvgpermissive99.12 4099.16 3298.99 13199.43 11997.73 17498.00 16899.62 3599.22 5199.55 4099.22 9798.93 1999.75 21298.66 6999.81 8499.50 108
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMH+96.62 999.08 4499.00 4999.33 7699.71 4498.83 7698.60 9999.58 4299.11 6199.53 4599.18 10498.81 2599.67 24896.71 19399.77 10999.50 108
DVP-MVS++98.90 6398.70 7999.51 4398.43 29899.15 4799.43 1199.32 14198.17 13299.26 9699.02 13698.18 6599.88 7197.07 15799.45 22199.49 112
PC_three_145293.27 32199.40 6798.54 23598.22 6197.00 37395.17 26599.45 22199.49 112
GeoE99.05 4698.99 5299.25 9199.44 11498.35 11598.73 8699.56 5698.42 11198.91 15098.81 19398.94 1899.91 4798.35 8699.73 12799.49 112
h-mvs3397.77 19397.33 21899.10 11199.21 15897.84 16198.35 13198.57 28299.11 6198.58 19999.02 13688.65 30999.96 1198.11 9796.34 35699.49 112
IterMVS-SCA-FT97.85 18998.18 15096.87 30199.27 14691.16 34795.53 31799.25 17399.10 6899.41 6499.35 7393.10 27099.96 1198.65 7099.94 2799.49 112
new-patchmatchnet98.35 14298.74 7197.18 28699.24 15192.23 33296.42 28199.48 8398.30 11899.69 2599.53 4597.44 12599.82 15098.84 5699.77 10999.49 112
APD-MVScopyleft98.10 16597.67 19299.42 5899.11 18498.93 7197.76 19199.28 16494.97 28998.72 18198.77 19997.04 14699.85 11093.79 30599.54 20099.49 112
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EPP-MVSNet98.30 14798.04 16699.07 11799.56 7697.83 16299.29 3298.07 30599.03 7798.59 19799.13 11792.16 28499.90 5296.87 17799.68 15299.49 112
DeepC-MVS97.60 498.97 5498.93 5599.10 11199.35 13697.98 14898.01 16799.46 9197.56 17599.54 4199.50 4998.97 1699.84 12698.06 10299.92 4299.49 112
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMM96.08 1298.91 6198.73 7299.48 5199.55 8099.14 5298.07 15799.37 11997.62 16899.04 12798.96 15798.84 2399.79 18397.43 13699.65 16499.49 112
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DVP-MVScopyleft98.77 8198.52 10299.52 3999.50 9399.21 2898.02 16498.84 25797.97 14399.08 11899.02 13697.61 10899.88 7196.99 16399.63 16999.48 122
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SR-MVS98.71 8798.43 11899.57 1699.18 17299.35 1298.36 13099.29 16198.29 12198.88 15798.85 18497.53 11699.87 8996.14 23399.31 24099.48 122
TSAR-MVS + MP.98.63 10798.49 10999.06 12399.64 6097.90 15698.51 11398.94 23596.96 22799.24 10198.89 17797.83 8999.81 16396.88 17699.49 21799.48 122
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
VDDNet98.21 15897.95 17299.01 12999.58 6597.74 17299.01 6697.29 32599.67 998.97 13899.50 4990.45 29599.80 17097.88 11499.20 25799.48 122
IterMVS97.73 19598.11 15996.57 30999.24 15190.28 34995.52 31999.21 18298.86 9199.33 8199.33 7993.11 26999.94 2698.49 8099.94 2799.48 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IS-MVSNet98.19 16097.90 17899.08 11599.57 6997.97 14999.31 2698.32 29399.01 7998.98 13499.03 13591.59 28999.79 18395.49 26199.80 9599.48 122
ACMP95.32 1598.41 13498.09 16099.36 6499.51 9098.79 8097.68 19899.38 11595.76 27198.81 17198.82 19198.36 5099.82 15094.75 27399.77 10999.48 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 17397.63 19899.10 11199.24 15198.17 12896.89 25998.73 27495.66 27297.92 24897.70 30397.17 14099.66 25996.18 23199.23 25399.47 129
3Dnovator+97.89 398.69 9398.51 10399.24 9398.81 24398.40 10799.02 6599.19 18898.99 8098.07 24099.28 8597.11 14499.84 12696.84 18099.32 23899.47 129
HPM-MVS++copyleft98.10 16597.64 19799.48 5199.09 18999.13 5597.52 21798.75 27197.46 18796.90 30897.83 29696.01 19799.84 12695.82 24999.35 23499.46 131
V4298.78 7898.78 6998.76 16099.44 11497.04 20798.27 13699.19 18897.87 15199.25 10099.16 11096.84 15799.78 19499.21 3599.84 7099.46 131
APD-MVS_3200maxsize98.84 7098.61 9499.53 3499.19 16599.27 2298.49 11699.33 13998.64 9899.03 13098.98 15297.89 8699.85 11096.54 20999.42 22599.46 131
UniMVSNet (Re)98.87 6698.71 7699.35 6999.24 15198.73 8597.73 19499.38 11598.93 8699.12 11298.73 20496.77 16499.86 9898.63 7199.80 9599.46 131
SR-MVS-dyc-post98.81 7498.55 9999.57 1699.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.49 12399.86 9896.56 20599.39 22899.45 135
RE-MVS-def98.58 9799.20 16299.38 898.48 11999.30 15498.64 9898.95 14198.96 15797.75 9696.56 20599.39 22899.45 135
HQP_MVS97.99 17697.67 19298.93 13799.19 16597.65 17797.77 18999.27 16798.20 12997.79 25997.98 28694.90 23399.70 23294.42 28599.51 20999.45 135
plane_prior599.27 16799.70 23294.42 28599.51 20999.45 135
lessismore_v098.97 13399.73 3697.53 18386.71 37699.37 7499.52 4789.93 29899.92 3998.99 4899.72 13499.44 139
TAMVS98.24 15698.05 16598.80 15299.07 19397.18 20297.88 17898.81 26296.66 24199.17 11199.21 9894.81 23999.77 20096.96 16799.88 6099.44 139
DeepPCF-MVS96.93 598.32 14498.01 16899.23 9598.39 30398.97 6695.03 33299.18 19296.88 23199.33 8198.78 19798.16 6999.28 34396.74 18899.62 17299.44 139
3Dnovator98.27 298.81 7498.73 7299.05 12498.76 24897.81 16799.25 3999.30 15498.57 10798.55 20499.33 7997.95 8499.90 5297.16 14899.67 15899.44 139
MVSFormer98.26 15398.43 11897.77 24898.88 23193.89 30299.39 1699.56 5699.11 6198.16 23198.13 27393.81 26199.97 499.26 3099.57 19299.43 143
jason97.45 21697.35 21597.76 25199.24 15193.93 29895.86 30698.42 28994.24 30698.50 20998.13 27394.82 23799.91 4797.22 14599.73 12799.43 143
jason: jason.
NCCC97.86 18497.47 20999.05 12498.61 27798.07 13996.98 25298.90 24397.63 16797.04 29997.93 29195.99 20199.66 25995.31 26498.82 29599.43 143
Anonymous2024052198.69 9398.87 5998.16 22399.77 2795.11 26499.08 5899.44 9899.34 4299.33 8199.55 4094.10 25899.94 2699.25 3299.96 1599.42 146
MVS_111021_HR98.25 15598.08 16398.75 16299.09 18997.46 18695.97 29899.27 16797.60 17197.99 24698.25 26598.15 7199.38 33096.87 17799.57 19299.42 146
COLMAP_ROBcopyleft96.50 1098.99 5098.85 6399.41 6099.58 6599.10 6098.74 8499.56 5699.09 7199.33 8199.19 10198.40 4899.72 22895.98 23999.76 12099.42 146
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
SED-MVS98.91 6198.72 7499.49 4899.49 10099.17 3998.10 15499.31 14698.03 14099.66 2999.02 13698.36 5099.88 7196.91 16999.62 17299.41 149
OPU-MVS98.82 14898.59 28198.30 11698.10 15498.52 23898.18 6598.75 36594.62 27799.48 21899.41 149
our_test_397.39 22097.73 18996.34 31398.70 26189.78 35194.61 34598.97 23496.50 24599.04 12798.85 18495.98 20299.84 12697.26 14499.67 15899.41 149
casdiffmvspermissive98.95 5799.00 4998.81 15099.38 12597.33 19197.82 18599.57 4999.17 5999.35 7899.17 10898.35 5399.69 23698.46 8199.73 12799.41 149
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
YYNet197.60 20597.67 19297.39 28099.04 20193.04 31895.27 32598.38 29297.25 20898.92 14998.95 16195.48 22099.73 22196.99 16398.74 29799.41 149
MDA-MVSNet_test_wron97.60 20597.66 19597.41 27999.04 20193.09 31495.27 32598.42 28997.26 20798.88 15798.95 16195.43 22199.73 22197.02 16098.72 29999.41 149
GBi-Net98.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
test198.65 10398.47 11299.17 9998.90 22598.24 12099.20 4499.44 9898.59 10498.95 14199.55 4094.14 25499.86 9897.77 12099.69 14799.41 149
FMVSNet199.17 3399.17 3099.17 9999.55 8098.24 12099.20 4499.44 9899.21 5299.43 6099.55 4097.82 9299.86 9898.42 8499.89 5999.41 149
test_fmvs197.72 19697.94 17497.07 29298.66 27492.39 32897.68 19899.81 1495.20 28599.54 4199.44 6091.56 29099.41 32599.78 799.77 10999.40 158
iter_conf_final97.10 24196.65 25898.45 19898.53 28996.08 23498.30 13399.11 20998.10 13798.85 16298.95 16179.38 36099.87 8998.68 6899.91 4899.40 158
iter_conf0596.54 26896.07 27497.92 23797.90 32994.50 28097.87 18199.14 20597.73 16098.89 15398.95 16175.75 37099.87 8998.50 7999.92 4299.40 158
KD-MVS_self_test99.25 2799.18 2999.44 5799.63 6299.06 6498.69 9199.54 6599.31 4599.62 3699.53 4597.36 12999.86 9899.24 3499.71 13999.39 161
v14898.45 13198.60 9598.00 23599.44 11494.98 26697.44 22599.06 21698.30 11899.32 8798.97 15496.65 17299.62 27298.37 8599.85 6699.39 161
test20.0398.78 7898.77 7098.78 15799.46 11097.20 20097.78 18799.24 17899.04 7699.41 6498.90 17197.65 10299.76 20597.70 12599.79 10099.39 161
CDPH-MVS97.26 22996.66 25699.07 11799.00 20698.15 12996.03 29699.01 23091.21 34697.79 25997.85 29596.89 15599.69 23692.75 32599.38 23199.39 161
EPNet96.14 28195.44 29098.25 21590.76 38095.50 24997.92 17494.65 35398.97 8292.98 36698.85 18489.12 30499.87 8995.99 23899.68 15299.39 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CNVR-MVS98.17 16397.87 18099.07 11798.67 26998.24 12097.01 25098.93 23797.25 20897.62 26898.34 25997.27 13499.57 28996.42 21699.33 23799.39 161
DeepC-MVS_fast96.85 698.30 14798.15 15598.75 16298.61 27797.23 19697.76 19199.09 21397.31 20298.75 17898.66 21897.56 11299.64 26796.10 23699.55 19899.39 161
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SF-MVS98.53 12398.27 14199.32 7899.31 13998.75 8198.19 14399.41 10896.77 23698.83 16698.90 17197.80 9399.82 15095.68 25599.52 20799.38 168
test9_res93.28 31699.15 26599.38 168
OPM-MVS98.56 11598.32 13699.25 9199.41 12298.73 8597.13 24799.18 19297.10 22298.75 17898.92 16798.18 6599.65 26496.68 19599.56 19599.37 170
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
agg_prior292.50 33099.16 26399.37 170
AllTest98.44 13298.20 14799.16 10299.50 9398.55 9798.25 13899.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
TestCases99.16 10299.50 9398.55 9799.58 4296.80 23398.88 15799.06 12497.65 10299.57 28994.45 28399.61 17799.37 170
MDA-MVSNet-bldmvs97.94 17797.91 17798.06 23099.44 11494.96 26796.63 27299.15 20498.35 11398.83 16699.11 11994.31 25199.85 11096.60 19898.72 29999.37 170
MVSTER96.86 25696.55 26397.79 24697.91 32894.21 28697.56 21398.87 24897.49 18199.06 12099.05 13180.72 35299.80 17098.44 8299.82 8099.37 170
pmmvs597.64 20297.49 20698.08 22899.14 18095.12 26396.70 26999.05 21993.77 31598.62 19198.83 18893.23 26699.75 21298.33 8999.76 12099.36 176
Anonymous2023120698.21 15898.21 14698.20 21999.51 9095.43 25298.13 14999.32 14196.16 25898.93 14898.82 19196.00 19899.83 14097.32 14199.73 12799.36 176
train_agg97.10 24196.45 26699.07 11798.71 25798.08 13795.96 30099.03 22491.64 33895.85 33697.53 31196.47 17999.76 20593.67 30699.16 26399.36 176
PVSNet_BlendedMVS97.55 20997.53 20397.60 26298.92 22193.77 30696.64 27199.43 10494.49 29897.62 26899.18 10496.82 16099.67 24894.73 27499.93 3199.36 176
Anonymous2024052998.93 5998.87 5999.12 10799.19 16598.22 12599.01 6698.99 23399.25 5099.54 4199.37 6997.04 14699.80 17097.89 11199.52 20799.35 180
F-COLMAP97.30 22696.68 25399.14 10599.19 16598.39 10897.27 23799.30 15492.93 32696.62 31998.00 28495.73 21199.68 24592.62 32898.46 31299.35 180
ppachtmachnet_test97.50 21097.74 18796.78 30798.70 26191.23 34694.55 34799.05 21996.36 25099.21 10498.79 19696.39 18299.78 19496.74 18899.82 8099.34 182
VDD-MVS98.56 11598.39 12599.07 11799.13 18298.07 13998.59 10097.01 33099.59 1999.11 11399.27 8794.82 23799.79 18398.34 8799.63 16999.34 182
testgi98.32 14498.39 12598.13 22499.57 6995.54 24697.78 18799.49 8197.37 19699.19 10697.65 30598.96 1799.49 31096.50 21298.99 28499.34 182
diffmvspermissive98.22 15798.24 14498.17 22199.00 20695.44 25196.38 28399.58 4297.79 15798.53 20798.50 24396.76 16699.74 21797.95 11099.64 16699.34 182
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 18097.60 20098.75 16299.31 13997.17 20397.62 20599.35 12898.72 9798.76 17798.68 21392.57 28199.74 21797.76 12495.60 36399.34 182
baseline98.96 5699.02 4798.76 16099.38 12597.26 19598.49 11699.50 7498.86 9199.19 10699.06 12498.23 5899.69 23698.71 6599.76 12099.33 187
MG-MVS96.77 26096.61 25997.26 28498.31 30793.06 31595.93 30398.12 30496.45 24897.92 24898.73 20493.77 26399.39 32891.19 34699.04 27799.33 187
HQP4-MVS95.56 34199.54 29899.32 189
CDS-MVSNet97.69 19897.35 21598.69 16798.73 25297.02 20996.92 25898.75 27195.89 26898.59 19798.67 21592.08 28699.74 21796.72 19199.81 8499.32 189
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
HQP-MVS97.00 25196.49 26598.55 18698.67 26996.79 21696.29 28799.04 22296.05 26195.55 34296.84 33293.84 25999.54 29892.82 32299.26 25099.32 189
RPSCF98.62 10998.36 12999.42 5899.65 5799.42 798.55 10599.57 4997.72 16298.90 15199.26 8996.12 19399.52 30495.72 25299.71 13999.32 189
MVP-Stereo98.08 16897.92 17698.57 18198.96 21396.79 21697.90 17799.18 19296.41 24998.46 21298.95 16195.93 20599.60 27996.51 21198.98 28699.31 193
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
SD-MVS98.40 13698.68 8297.54 26998.96 21397.99 14597.88 17899.36 12398.20 12999.63 3599.04 13398.76 2695.33 37696.56 20599.74 12499.31 193
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
VNet98.42 13398.30 13798.79 15498.79 24797.29 19398.23 13998.66 27799.31 4598.85 16298.80 19494.80 24099.78 19498.13 9699.13 26899.31 193
test_prior98.95 13598.69 26697.95 15399.03 22499.59 28399.30 196
USDC97.41 21997.40 21097.44 27798.94 21593.67 30895.17 32899.53 6894.03 31298.97 13899.10 12195.29 22399.34 33395.84 24899.73 12799.30 196
FMVSNet298.49 12798.40 12298.75 16298.90 22597.14 20698.61 9899.13 20698.59 10499.19 10699.28 8594.14 25499.82 15097.97 10999.80 9599.29 198
XVG-OURS-SEG-HR98.49 12798.28 13999.14 10599.49 10098.83 7696.54 27499.48 8397.32 20199.11 11398.61 22999.33 899.30 33996.23 22698.38 31399.28 199
test1298.93 13798.58 28297.83 16298.66 27796.53 32195.51 21899.69 23699.13 26899.27 200
DSMNet-mixed97.42 21897.60 20096.87 30199.15 17991.46 33898.54 10799.12 20792.87 32897.58 27299.63 2796.21 19099.90 5295.74 25199.54 20099.27 200
N_pmnet97.63 20497.17 22498.99 13199.27 14697.86 15995.98 29793.41 36295.25 28399.47 5498.90 17195.63 21399.85 11096.91 16999.73 12799.27 200
ambc98.24 21798.82 24195.97 23698.62 9799.00 23299.27 9299.21 9896.99 15199.50 30996.55 20899.50 21699.26 203
LFMVS97.20 23596.72 25098.64 17098.72 25496.95 21198.93 7494.14 36099.74 698.78 17299.01 14584.45 33699.73 22197.44 13599.27 24799.25 204
FMVSNet596.01 28395.20 29898.41 20297.53 34696.10 23198.74 8499.50 7497.22 21798.03 24599.04 13369.80 37499.88 7197.27 14399.71 13999.25 204
BH-RMVSNet96.83 25796.58 26297.58 26498.47 29494.05 29096.67 27097.36 32196.70 24097.87 25297.98 28695.14 22899.44 32190.47 35298.58 31099.25 204
testf199.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
APD_test299.25 2799.16 3299.51 4399.89 699.63 398.71 8999.69 2498.90 8899.43 6099.35 7398.86 2199.67 24897.81 11799.81 8499.24 207
旧先验198.82 24197.45 18798.76 26898.34 25995.50 21999.01 28299.23 209
test22298.92 22196.93 21395.54 31698.78 26785.72 36696.86 31198.11 27694.43 24799.10 27399.23 209
XVG-ACMP-BASELINE98.56 11598.34 13299.22 9699.54 8398.59 9497.71 19599.46 9197.25 20898.98 13498.99 14897.54 11499.84 12695.88 24299.74 12499.23 209
FMVSNet397.50 21097.24 22198.29 21398.08 32195.83 24097.86 18298.91 24297.89 15098.95 14198.95 16187.06 31599.81 16397.77 12099.69 14799.23 209
无先验95.74 31198.74 27389.38 35799.73 22192.38 33299.22 213
tttt051795.64 29394.98 30297.64 26099.36 13293.81 30498.72 8790.47 37198.08 13998.67 18498.34 25973.88 37299.92 3997.77 12099.51 20999.20 214
pmmvs-eth3d98.47 12998.34 13298.86 14499.30 14297.76 17097.16 24599.28 16495.54 27499.42 6399.19 10197.27 13499.63 27097.89 11199.97 1299.20 214
MS-PatchMatch97.68 19997.75 18697.45 27698.23 31393.78 30597.29 23498.84 25796.10 26098.64 18898.65 22096.04 19599.36 33196.84 18099.14 26699.20 214
新几何198.91 14098.94 21597.76 17098.76 26887.58 36396.75 31598.10 27794.80 24099.78 19492.73 32699.00 28399.20 214
PHI-MVS98.29 15097.95 17299.34 7298.44 29799.16 4398.12 15199.38 11596.01 26498.06 24198.43 24997.80 9399.67 24895.69 25499.58 18899.20 214
Anonymous20240521197.90 17897.50 20599.08 11598.90 22598.25 11998.53 10896.16 34498.87 9099.11 11398.86 18190.40 29699.78 19497.36 13999.31 24099.19 219
CANet97.87 18397.76 18598.19 22097.75 33595.51 24896.76 26599.05 21997.74 15996.93 30298.21 26995.59 21599.89 6297.86 11699.93 3199.19 219
XVG-OURS98.53 12398.34 13299.11 10999.50 9398.82 7895.97 29899.50 7497.30 20399.05 12598.98 15299.35 799.32 33695.72 25299.68 15299.18 221
WTY-MVS96.67 26396.27 27297.87 24198.81 24394.61 27896.77 26497.92 31094.94 29097.12 29497.74 30091.11 29299.82 15093.89 30198.15 32499.18 221
Vis-MVSNet (Re-imp)97.46 21497.16 22598.34 20899.55 8096.10 23198.94 7398.44 28898.32 11798.16 23198.62 22788.76 30599.73 22193.88 30299.79 10099.18 221
TinyColmap97.89 18097.98 17097.60 26298.86 23394.35 28396.21 29199.44 9897.45 18999.06 12098.88 17897.99 8299.28 34394.38 28999.58 18899.18 221
testdata98.09 22598.93 21795.40 25398.80 26490.08 35497.45 28498.37 25595.26 22499.70 23293.58 30998.95 28899.17 225
lupinMVS97.06 24596.86 24097.65 25898.88 23193.89 30295.48 32097.97 30893.53 31898.16 23197.58 30993.81 26199.91 4796.77 18599.57 19299.17 225
Patchmtry97.35 22296.97 23398.50 19497.31 35496.47 22398.18 14498.92 24098.95 8598.78 17299.37 6985.44 33099.85 11095.96 24099.83 7799.17 225
sss97.21 23496.93 23498.06 23098.83 23895.22 25996.75 26698.48 28794.49 29897.27 29197.90 29292.77 27899.80 17096.57 20199.32 23899.16 228
CSCG98.68 9898.50 10599.20 9799.45 11398.63 8998.56 10499.57 4997.87 15198.85 16298.04 28397.66 10199.84 12696.72 19199.81 8499.13 229
MVS_111021_LR98.30 14798.12 15898.83 14799.16 17598.03 14396.09 29599.30 15497.58 17298.10 23898.24 26698.25 5699.34 33396.69 19499.65 16499.12 230
miper_lstm_enhance97.18 23797.16 22597.25 28598.16 31692.85 32095.15 33099.31 14697.25 20898.74 18098.78 19790.07 29799.78 19497.19 14699.80 9599.11 231
原ACMM198.35 20798.90 22596.25 22998.83 26192.48 33296.07 33398.10 27795.39 22299.71 22992.61 32998.99 28499.08 232
QAPM97.31 22596.81 24698.82 14898.80 24697.49 18499.06 6299.19 18890.22 35297.69 26599.16 11096.91 15499.90 5290.89 35099.41 22699.07 233
PAPM_NR96.82 25996.32 26998.30 21299.07 19396.69 22197.48 22198.76 26895.81 27096.61 32096.47 34094.12 25799.17 35090.82 35197.78 33399.06 234
eth_miper_zixun_eth97.23 23397.25 22097.17 28798.00 32492.77 32294.71 33999.18 19297.27 20698.56 20298.74 20391.89 28799.69 23697.06 15999.81 8499.05 235
D2MVS97.84 19097.84 18297.83 24399.14 18094.74 27296.94 25498.88 24695.84 26998.89 15398.96 15794.40 24999.69 23697.55 12999.95 1999.05 235
c3_l97.36 22197.37 21397.31 28198.09 32093.25 31395.01 33399.16 19997.05 22398.77 17598.72 20692.88 27599.64 26796.93 16899.76 12099.05 235
PLCcopyleft94.65 1696.51 26995.73 28098.85 14598.75 25097.91 15596.42 28199.06 21690.94 34995.59 33997.38 32194.41 24899.59 28390.93 34898.04 33199.05 235
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tfpnnormal98.90 6398.90 5898.91 14099.67 5597.82 16599.00 6899.44 9899.45 3099.51 5099.24 9498.20 6499.86 9895.92 24199.69 14799.04 239
CANet_DTU97.26 22997.06 23097.84 24297.57 34394.65 27796.19 29398.79 26597.23 21495.14 35198.24 26693.22 26799.84 12697.34 14099.84 7099.04 239
PM-MVS98.82 7298.72 7499.12 10799.64 6098.54 10097.98 17099.68 2997.62 16899.34 8099.18 10497.54 11499.77 20097.79 11999.74 12499.04 239
TSAR-MVS + GP.98.18 16197.98 17098.77 15998.71 25797.88 15796.32 28698.66 27796.33 25199.23 10398.51 23997.48 12499.40 32697.16 14899.46 21999.02 242
DIV-MVS_self_test97.02 24896.84 24297.58 26497.82 33394.03 29394.66 34299.16 19997.04 22498.63 18998.71 20788.69 30699.69 23697.00 16199.81 8499.01 243
GA-MVS95.86 28795.32 29597.49 27498.60 27994.15 28993.83 35997.93 30995.49 27696.68 31697.42 31983.21 34499.30 33996.22 22798.55 31199.01 243
OMC-MVS97.88 18297.49 20699.04 12698.89 23098.63 8996.94 25499.25 17395.02 28798.53 20798.51 23997.27 13499.47 31693.50 31299.51 20999.01 243
cl____97.02 24896.83 24397.58 26497.82 33394.04 29294.66 34299.16 19997.04 22498.63 18998.71 20788.68 30899.69 23697.00 16199.81 8499.00 246
pmmvs497.58 20897.28 21998.51 19298.84 23696.93 21395.40 32398.52 28593.60 31798.61 19398.65 22095.10 22999.60 27996.97 16699.79 10098.99 247
MVS_030497.64 20297.35 21598.52 19097.87 33196.69 22198.59 10098.05 30797.44 19093.74 36598.85 18493.69 26599.88 7198.11 9799.81 8498.98 248
EPNet_dtu94.93 30694.78 30795.38 33593.58 37787.68 36096.78 26395.69 35197.35 19889.14 37398.09 27988.15 31399.49 31094.95 27099.30 24398.98 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
114514_t96.50 27195.77 27898.69 16799.48 10797.43 18897.84 18499.55 6081.42 37196.51 32398.58 23295.53 21699.67 24893.41 31499.58 18898.98 248
PVSNet_Blended96.88 25596.68 25397.47 27598.92 22193.77 30694.71 33999.43 10490.98 34897.62 26897.36 32396.82 16099.67 24894.73 27499.56 19598.98 248
APD_test198.83 7198.66 8499.34 7299.78 2599.47 698.42 12699.45 9498.28 12398.98 13499.19 10197.76 9599.58 28796.57 20199.55 19898.97 252
PAPR95.29 29994.47 30897.75 25297.50 35095.14 26294.89 33698.71 27591.39 34495.35 34995.48 35694.57 24699.14 35384.95 36497.37 34198.97 252
EGC-MVSNET85.24 34180.54 34499.34 7299.77 2799.20 3499.08 5899.29 16112.08 37720.84 37899.42 6397.55 11399.85 11097.08 15699.72 13498.96 254
thisisatest053095.27 30094.45 30997.74 25399.19 16594.37 28297.86 18290.20 37297.17 21898.22 22797.65 30573.53 37399.90 5296.90 17499.35 23498.95 255
mvs_anonymous97.83 19298.16 15496.87 30198.18 31591.89 33497.31 23298.90 24397.37 19698.83 16699.46 5596.28 18899.79 18398.90 5298.16 32398.95 255
baseline195.96 28595.44 29097.52 27198.51 29293.99 29698.39 12896.09 34698.21 12698.40 22197.76 29986.88 31699.63 27095.42 26289.27 37498.95 255
CLD-MVS97.49 21297.16 22598.48 19599.07 19397.03 20894.71 33999.21 18294.46 30098.06 24197.16 32797.57 11199.48 31394.46 28299.78 10598.95 255
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MSLP-MVS++98.02 17198.14 15797.64 26098.58 28295.19 26097.48 22199.23 18097.47 18297.90 25098.62 22797.04 14698.81 36497.55 12999.41 22698.94 259
DELS-MVS98.27 15198.20 14798.48 19598.86 23396.70 22095.60 31599.20 18497.73 16098.45 21398.71 20797.50 12099.82 15098.21 9399.59 18398.93 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
cl2295.79 28995.39 29396.98 29596.77 36392.79 32194.40 35098.53 28494.59 29797.89 25198.17 27282.82 34899.24 34596.37 21899.03 27898.92 261
LS3D98.63 10798.38 12799.36 6497.25 35599.38 899.12 5699.32 14199.21 5298.44 21498.88 17897.31 13099.80 17096.58 19999.34 23698.92 261
CMPMVSbinary75.91 2396.29 27795.44 29098.84 14696.25 37098.69 8897.02 24999.12 20788.90 35997.83 25698.86 18189.51 30198.90 36291.92 33399.51 20998.92 261
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
LCM-MVSNet-Re98.64 10598.48 11099.11 10998.85 23598.51 10298.49 11699.83 1398.37 11299.69 2599.46 5598.21 6399.92 3994.13 29599.30 24398.91 264
DPM-MVS96.32 27695.59 28698.51 19298.76 24897.21 19994.54 34898.26 29591.94 33796.37 32797.25 32593.06 27299.43 32291.42 34298.74 29798.89 265
test_yl96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
DCV-MVSNet96.69 26196.29 27097.90 23898.28 30895.24 25797.29 23497.36 32198.21 12698.17 22997.86 29386.27 32099.55 29594.87 27198.32 31498.89 265
CS-MVS-test99.13 3899.09 4299.26 8899.13 18298.97 6699.31 2699.88 999.44 3198.16 23198.51 23998.64 3399.93 3198.91 5199.85 6698.88 268
UnsupCasMVSNet_bld97.30 22696.92 23698.45 19899.28 14496.78 21996.20 29299.27 16795.42 27898.28 22598.30 26393.16 26899.71 22994.99 26897.37 34198.87 269
Effi-MVS+98.02 17197.82 18398.62 17498.53 28997.19 20197.33 23199.68 2997.30 20396.68 31697.46 31798.56 4099.80 17096.63 19798.20 31998.86 270
test_040298.76 8298.71 7698.93 13799.56 7698.14 13198.45 12399.34 13499.28 4898.95 14198.91 16898.34 5499.79 18395.63 25699.91 4898.86 270
PatchmatchNetpermissive95.58 29495.67 28395.30 33697.34 35387.32 36197.65 20396.65 33995.30 28297.07 29798.69 21184.77 33399.75 21294.97 26998.64 30698.83 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_rt97.75 19497.72 19097.83 24398.81 24396.35 22697.30 23399.69 2494.61 29697.87 25298.05 28296.26 18998.32 36998.74 6298.18 32098.82 273
CL-MVSNet_self_test97.44 21797.22 22298.08 22898.57 28495.78 24294.30 35298.79 26596.58 24498.60 19598.19 27194.74 24499.64 26796.41 21798.84 29398.82 273
miper_ehance_all_eth97.06 24597.03 23197.16 28997.83 33293.06 31594.66 34299.09 21395.99 26598.69 18298.45 24892.73 27999.61 27896.79 18299.03 27898.82 273
MIMVSNet96.62 26696.25 27397.71 25599.04 20194.66 27699.16 5096.92 33697.23 21497.87 25299.10 12186.11 32499.65 26491.65 33799.21 25698.82 273
hse-mvs297.46 21497.07 22998.64 17098.73 25297.33 19197.45 22497.64 31899.11 6198.58 19997.98 28688.65 30999.79 18398.11 9797.39 34098.81 277
GSMVS98.81 277
sam_mvs184.74 33498.81 277
SCA96.41 27596.66 25695.67 32798.24 31188.35 35695.85 30896.88 33796.11 25997.67 26698.67 21593.10 27099.85 11094.16 29199.22 25498.81 277
Patchmatch-RL test97.26 22997.02 23297.99 23699.52 8895.53 24796.13 29499.71 2197.47 18299.27 9299.16 11084.30 33999.62 27297.89 11199.77 10998.81 277
AUN-MVS96.24 28095.45 28998.60 17798.70 26197.22 19897.38 22797.65 31695.95 26695.53 34697.96 29082.11 35199.79 18396.31 22297.44 33898.80 282
ITE_SJBPF98.87 14399.22 15698.48 10499.35 12897.50 17998.28 22598.60 23097.64 10599.35 33293.86 30399.27 24798.79 283
tpm94.67 30894.34 31295.66 32897.68 34288.42 35597.88 17894.90 35294.46 30096.03 33598.56 23478.66 36399.79 18395.88 24295.01 36698.78 284
Patchmatch-test96.55 26796.34 26897.17 28798.35 30493.06 31598.40 12797.79 31197.33 19998.41 21798.67 21583.68 34399.69 23695.16 26699.31 24098.77 285
DROMVSNet99.09 4299.05 4699.20 9799.28 14498.93 7199.24 4099.84 1299.08 7398.12 23698.37 25598.72 2999.90 5299.05 4399.77 10998.77 285
PMMVS96.51 26995.98 27598.09 22597.53 34695.84 23994.92 33598.84 25791.58 34096.05 33495.58 35395.68 21299.66 25995.59 25898.09 32798.76 287
test_method79.78 34279.50 34580.62 35880.21 38145.76 38370.82 37298.41 29131.08 37680.89 37797.71 30184.85 33297.37 37291.51 34180.03 37598.75 288
ab-mvs98.41 13498.36 12998.59 17899.19 16597.23 19699.32 2298.81 26297.66 16598.62 19199.40 6896.82 16099.80 17095.88 24299.51 20998.75 288
CHOSEN 280x42095.51 29795.47 28795.65 32998.25 31088.27 35793.25 36398.88 24693.53 31894.65 35497.15 32886.17 32299.93 3197.41 13799.93 3198.73 290
MVS_Test98.18 16198.36 12997.67 25698.48 29394.73 27398.18 14499.02 22797.69 16398.04 24499.11 11997.22 13899.56 29298.57 7498.90 29298.71 291
PVSNet93.40 1795.67 29195.70 28195.57 33098.83 23888.57 35492.50 36697.72 31392.69 33096.49 32696.44 34193.72 26499.43 32293.61 30799.28 24698.71 291
alignmvs97.35 22296.88 23998.78 15798.54 28798.09 13397.71 19597.69 31599.20 5497.59 27195.90 34988.12 31499.55 29598.18 9598.96 28798.70 293
ADS-MVSNet295.43 29894.98 30296.76 30898.14 31791.74 33597.92 17497.76 31290.23 35096.51 32398.91 16885.61 32799.85 11092.88 32096.90 34998.69 294
ADS-MVSNet95.24 30194.93 30596.18 31798.14 31790.10 35097.92 17497.32 32490.23 35096.51 32398.91 16885.61 32799.74 21792.88 32096.90 34998.69 294
MDTV_nov1_ep13_2view74.92 38197.69 19790.06 35597.75 26285.78 32693.52 31098.69 294
MSDG97.71 19797.52 20498.28 21498.91 22496.82 21594.42 34999.37 11997.65 16698.37 22298.29 26497.40 12799.33 33594.09 29699.22 25498.68 297
mvsany_test197.60 20597.54 20297.77 24897.72 33695.35 25495.36 32497.13 32894.13 30999.71 2199.33 7997.93 8599.30 33997.60 12898.94 28998.67 298
CS-MVS99.13 3899.10 4199.24 9399.06 19799.15 4799.36 1899.88 999.36 4198.21 22898.46 24798.68 3299.93 3199.03 4599.85 6698.64 299
miper_enhance_ethall96.01 28395.74 27996.81 30596.41 36892.27 33193.69 36198.89 24591.14 34798.30 22397.35 32490.58 29499.58 28796.31 22299.03 27898.60 300
Effi-MVS+-dtu98.26 15397.90 17899.35 6998.02 32399.49 598.02 16499.16 19998.29 12197.64 26797.99 28596.44 18199.95 1796.66 19698.93 29098.60 300
new_pmnet96.99 25296.76 24897.67 25698.72 25494.89 26895.95 30298.20 29892.62 33198.55 20498.54 23594.88 23699.52 30493.96 29999.44 22498.59 302
EIA-MVS98.00 17397.74 18798.80 15298.72 25498.09 13398.05 16099.60 3997.39 19496.63 31895.55 35497.68 9999.80 17096.73 19099.27 24798.52 303
PatchMatch-RL97.24 23296.78 24798.61 17699.03 20497.83 16296.36 28499.06 21693.49 32097.36 29097.78 29795.75 21099.49 31093.44 31398.77 29698.52 303
ET-MVSNet_ETH3D94.30 31493.21 32497.58 26498.14 31794.47 28194.78 33893.24 36494.72 29489.56 37295.87 35078.57 36599.81 16396.91 16997.11 34898.46 305
canonicalmvs98.34 14398.26 14298.58 17998.46 29597.82 16598.96 7299.46 9199.19 5897.46 28395.46 35798.59 3899.46 31898.08 10198.71 30198.46 305
tt080598.69 9398.62 9098.90 14299.75 3499.30 1799.15 5296.97 33298.86 9198.87 16197.62 30898.63 3598.96 35899.41 2398.29 31698.45 307
TAPA-MVS96.21 1196.63 26595.95 27698.65 16998.93 21798.09 13396.93 25699.28 16483.58 36998.13 23597.78 29796.13 19299.40 32693.52 31099.29 24598.45 307
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BH-untuned96.83 25796.75 24997.08 29098.74 25193.33 31296.71 26898.26 29596.72 23898.44 21497.37 32295.20 22699.47 31691.89 33497.43 33998.44 309
pmmvs395.03 30494.40 31096.93 29797.70 34092.53 32595.08 33197.71 31488.57 36097.71 26398.08 28079.39 35999.82 15096.19 22999.11 27298.43 310
DP-MVS Recon97.33 22496.92 23698.57 18199.09 18997.99 14596.79 26299.35 12893.18 32297.71 26398.07 28195.00 23299.31 33793.97 29899.13 26898.42 311
Fast-Effi-MVS+-dtu98.27 15198.09 16098.81 15098.43 29898.11 13297.61 20799.50 7498.64 9897.39 28897.52 31398.12 7299.95 1796.90 17498.71 30198.38 312
LF4IMVS97.90 17897.69 19198.52 19099.17 17397.66 17697.19 24499.47 8996.31 25397.85 25598.20 27096.71 17099.52 30494.62 27799.72 13498.38 312
Fast-Effi-MVS+97.67 20097.38 21298.57 18198.71 25797.43 18897.23 23899.45 9494.82 29396.13 33096.51 33798.52 4299.91 4796.19 22998.83 29498.37 314
test0.0.03 194.51 30993.69 31896.99 29496.05 37193.61 31094.97 33493.49 36196.17 25697.57 27494.88 36582.30 34999.01 35793.60 30894.17 37098.37 314
FE-MVS95.66 29294.95 30497.77 24898.53 28995.28 25699.40 1596.09 34693.11 32497.96 24799.26 8979.10 36299.77 20092.40 33198.71 30198.27 316
baseline293.73 32392.83 32996.42 31297.70 34091.28 34496.84 26189.77 37393.96 31492.44 36795.93 34879.14 36199.77 20092.94 31896.76 35398.21 317
thisisatest051594.12 31893.16 32596.97 29698.60 27992.90 31993.77 36090.61 37094.10 31096.91 30595.87 35074.99 37199.80 17094.52 28099.12 27198.20 318
EPMVS93.72 32493.27 32395.09 33896.04 37287.76 35998.13 14985.01 37894.69 29596.92 30398.64 22378.47 36799.31 33795.04 26796.46 35598.20 318
dp93.47 32693.59 32093.13 35596.64 36481.62 37897.66 20196.42 34292.80 32996.11 33198.64 22378.55 36699.59 28393.31 31592.18 37398.16 320
CNLPA97.17 23896.71 25198.55 18698.56 28598.05 14296.33 28598.93 23796.91 23097.06 29897.39 32094.38 25099.45 31991.66 33699.18 26298.14 321
HY-MVS95.94 1395.90 28695.35 29497.55 26897.95 32594.79 26998.81 8396.94 33592.28 33595.17 35098.57 23389.90 29999.75 21291.20 34597.33 34598.10 322
CostFormer93.97 32093.78 31794.51 34197.53 34685.83 36697.98 17095.96 34889.29 35894.99 35398.63 22578.63 36499.62 27294.54 27996.50 35498.09 323
FA-MVS(test-final)96.99 25296.82 24497.50 27398.70 26194.78 27099.34 1996.99 33195.07 28698.48 21199.33 7988.41 31299.65 26496.13 23598.92 29198.07 324
AdaColmapbinary97.14 24096.71 25198.46 19798.34 30597.80 16896.95 25398.93 23795.58 27396.92 30397.66 30495.87 20799.53 30090.97 34799.14 26698.04 325
KD-MVS_2432*160092.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
miper_refine_blended92.87 33191.99 33495.51 33291.37 37889.27 35294.07 35498.14 30295.42 27897.25 29296.44 34167.86 37699.24 34591.28 34396.08 36098.02 326
TESTMET0.1,192.19 33891.77 33893.46 35196.48 36782.80 37594.05 35691.52 36994.45 30294.00 36294.88 36566.65 37999.56 29295.78 25098.11 32698.02 326
PCF-MVS92.86 1894.36 31193.00 32898.42 20198.70 26197.56 18193.16 36499.11 20979.59 37297.55 27597.43 31892.19 28399.73 22179.85 37399.45 22197.97 329
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVScopyleft96.65 797.09 24396.68 25398.32 20998.32 30697.16 20498.86 8099.37 11989.48 35696.29 32999.15 11496.56 17599.90 5292.90 31999.20 25797.89 330
Gipumacopyleft99.03 4799.16 3298.64 17099.94 298.51 10299.32 2299.75 1999.58 2198.60 19599.62 2898.22 6199.51 30897.70 12599.73 12797.89 330
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PVSNet_089.98 2191.15 34090.30 34393.70 34997.72 33684.34 37390.24 36997.42 31990.20 35393.79 36393.09 37290.90 29398.89 36386.57 36272.76 37697.87 332
test-LLR93.90 32193.85 31594.04 34496.53 36584.62 37094.05 35692.39 36696.17 25694.12 35995.07 35982.30 34999.67 24895.87 24598.18 32097.82 333
test-mter92.33 33691.76 33994.04 34496.53 36584.62 37094.05 35692.39 36694.00 31394.12 35995.07 35965.63 38299.67 24895.87 24598.18 32097.82 333
tpm293.09 33092.58 33194.62 34097.56 34486.53 36397.66 20195.79 35086.15 36594.07 36198.23 26875.95 36899.53 30090.91 34996.86 35297.81 335
CR-MVSNet96.28 27895.95 27697.28 28397.71 33894.22 28498.11 15298.92 24092.31 33496.91 30599.37 6985.44 33099.81 16397.39 13897.36 34397.81 335
RPMNet97.02 24896.93 23497.30 28297.71 33894.22 28498.11 15299.30 15499.37 3896.91 30599.34 7786.72 31799.87 8997.53 13297.36 34397.81 335
tpmrst95.07 30395.46 28893.91 34697.11 35784.36 37297.62 20596.96 33394.98 28896.35 32898.80 19485.46 32999.59 28395.60 25796.23 35897.79 338
PAPM91.88 33990.34 34296.51 31098.06 32292.56 32492.44 36797.17 32686.35 36490.38 37196.01 34686.61 31899.21 34870.65 37695.43 36497.75 339
FPMVS93.44 32792.23 33297.08 29099.25 15097.86 15995.61 31497.16 32792.90 32793.76 36498.65 22075.94 36995.66 37479.30 37497.49 33697.73 340
MAR-MVS96.47 27395.70 28198.79 15497.92 32799.12 5798.28 13598.60 28192.16 33695.54 34596.17 34594.77 24399.52 30489.62 35598.23 31797.72 341
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ETV-MVS98.03 17097.86 18198.56 18598.69 26698.07 13997.51 21999.50 7498.10 13797.50 28095.51 35598.41 4799.88 7196.27 22599.24 25297.71 342
thres600view794.45 31093.83 31696.29 31499.06 19791.53 33797.99 16994.24 35898.34 11497.44 28595.01 36179.84 35599.67 24884.33 36598.23 31797.66 343
thres40094.14 31793.44 32196.24 31698.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32897.66 343
IB-MVS91.63 1992.24 33790.90 34196.27 31597.22 35691.24 34594.36 35193.33 36392.37 33392.24 36894.58 36866.20 38199.89 6293.16 31794.63 36897.66 343
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs95.02 30595.25 29694.33 34296.39 36985.87 36498.08 15696.83 33895.46 27795.51 34798.69 21185.91 32599.53 30094.16 29196.23 35897.58 346
cascas94.79 30794.33 31396.15 32196.02 37392.36 33092.34 36899.26 17285.34 36795.08 35294.96 36492.96 27498.53 36794.41 28898.59 30997.56 347
PatchT96.65 26496.35 26797.54 26997.40 35195.32 25597.98 17096.64 34099.33 4396.89 30999.42 6384.32 33899.81 16397.69 12797.49 33697.48 348
TR-MVS95.55 29595.12 30096.86 30497.54 34593.94 29796.49 27796.53 34194.36 30597.03 30096.61 33694.26 25399.16 35186.91 36196.31 35797.47 349
JIA-IIPM95.52 29695.03 30197.00 29396.85 36194.03 29396.93 25695.82 34999.20 5494.63 35599.71 1683.09 34599.60 27994.42 28594.64 36797.36 350
BH-w/o95.13 30294.89 30695.86 32298.20 31491.31 34295.65 31397.37 32093.64 31696.52 32295.70 35293.04 27399.02 35588.10 35895.82 36297.24 351
tpm cat193.29 32893.13 32793.75 34897.39 35284.74 36997.39 22697.65 31683.39 37094.16 35898.41 25082.86 34799.39 32891.56 34095.35 36597.14 352
xiu_mvs_v1_base_debu97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
xiu_mvs_v1_base_debi97.86 18498.17 15196.92 29898.98 21093.91 29996.45 27899.17 19697.85 15398.41 21797.14 32998.47 4399.92 3998.02 10499.05 27496.92 353
PMVScopyleft91.26 2097.86 18497.94 17497.65 25899.71 4497.94 15498.52 10998.68 27698.99 8097.52 27899.35 7397.41 12698.18 37091.59 33999.67 15896.82 356
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
131495.74 29095.60 28596.17 31897.53 34692.75 32398.07 15798.31 29491.22 34594.25 35796.68 33595.53 21699.03 35491.64 33897.18 34696.74 357
MVS-HIRNet94.32 31295.62 28490.42 35798.46 29575.36 38096.29 28789.13 37495.25 28395.38 34899.75 1192.88 27599.19 34994.07 29799.39 22896.72 358
OpenMVS_ROBcopyleft95.38 1495.84 28895.18 29997.81 24598.41 30297.15 20597.37 22898.62 28083.86 36898.65 18798.37 25594.29 25299.68 24588.41 35798.62 30896.60 359
thres100view90094.19 31593.67 31995.75 32699.06 19791.35 34198.03 16394.24 35898.33 11597.40 28794.98 36379.84 35599.62 27283.05 36798.08 32896.29 360
tfpn200view994.03 31993.44 32195.78 32598.93 21791.44 33997.60 20894.29 35697.94 14597.10 29594.31 36979.67 35799.62 27283.05 36798.08 32896.29 360
MVS93.19 32992.09 33396.50 31196.91 35994.03 29398.07 15798.06 30668.01 37394.56 35696.48 33995.96 20499.30 33983.84 36696.89 35196.17 362
gg-mvs-nofinetune92.37 33591.20 34095.85 32395.80 37492.38 32999.31 2681.84 38099.75 591.83 36999.74 1268.29 37599.02 35587.15 36097.12 34796.16 363
xiu_mvs_v2_base97.16 23997.49 20696.17 31898.54 28792.46 32695.45 32198.84 25797.25 20897.48 28296.49 33898.31 5599.90 5296.34 22198.68 30496.15 364
PS-MVSNAJ97.08 24497.39 21196.16 32098.56 28592.46 32695.24 32798.85 25697.25 20897.49 28195.99 34798.07 7399.90 5296.37 21898.67 30596.12 365
E-PMN94.17 31694.37 31193.58 35096.86 36085.71 36790.11 37097.07 32998.17 13297.82 25897.19 32684.62 33598.94 35989.77 35497.68 33596.09 366
EMVS93.83 32294.02 31493.23 35496.83 36284.96 36889.77 37196.32 34397.92 14797.43 28696.36 34486.17 32298.93 36087.68 35997.73 33495.81 367
MVEpermissive83.40 2292.50 33391.92 33694.25 34398.83 23891.64 33692.71 36583.52 37995.92 26786.46 37695.46 35795.20 22695.40 37580.51 37298.64 30695.73 368
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
thres20093.72 32493.14 32695.46 33498.66 27491.29 34396.61 27394.63 35497.39 19496.83 31293.71 37179.88 35499.56 29282.40 37098.13 32595.54 369
API-MVS97.04 24796.91 23897.42 27897.88 33098.23 12498.18 14498.50 28697.57 17397.39 28896.75 33496.77 16499.15 35290.16 35399.02 28194.88 370
GG-mvs-BLEND94.76 33994.54 37692.13 33399.31 2680.47 38188.73 37491.01 37467.59 37898.16 37182.30 37194.53 36993.98 371
DeepMVS_CXcopyleft93.44 35298.24 31194.21 28694.34 35564.28 37491.34 37094.87 36789.45 30392.77 37777.54 37593.14 37193.35 372
tmp_tt78.77 34378.73 34678.90 35958.45 38274.76 38294.20 35378.26 38239.16 37586.71 37592.82 37380.50 35375.19 37886.16 36392.29 37286.74 373
wuyk23d96.06 28297.62 19991.38 35698.65 27698.57 9698.85 8196.95 33496.86 23299.90 699.16 11099.18 1198.40 36889.23 35699.77 10977.18 374
test12317.04 34620.11 3497.82 36010.25 3844.91 38494.80 3374.47 3854.93 37810.00 38024.28 3779.69 3833.64 37910.14 37712.43 37814.92 375
testmvs17.12 34520.53 3486.87 36112.05 3834.20 38593.62 3626.73 3844.62 37910.41 37924.33 3768.28 3843.56 3809.69 37815.07 37712.86 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k24.66 34432.88 3470.00 3620.00 3850.00 3860.00 37399.10 2110.00 3800.00 38197.58 30999.21 100.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas8.17 34710.90 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38098.07 730.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.12 34810.83 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38197.48 3150.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.73 3699.67 299.43 1199.54 6599.43 3399.26 96
test_one_060199.39 12499.20 3499.31 14698.49 10998.66 18699.02 13697.64 105
eth-test20.00 385
eth-test0.00 385
ZD-MVS99.01 20598.84 7599.07 21594.10 31098.05 24398.12 27596.36 18699.86 9892.70 32799.19 260
test_241102_ONE99.49 10099.17 3999.31 14697.98 14299.66 2998.90 17198.36 5099.48 313
9.1497.78 18499.07 19397.53 21699.32 14195.53 27598.54 20698.70 21097.58 11099.76 20594.32 29099.46 219
save fliter99.11 18497.97 14996.53 27599.02 22798.24 124
test072699.50 9399.21 2898.17 14799.35 12897.97 14399.26 9699.06 12497.61 108
test_part299.36 13299.10 6099.05 125
sam_mvs84.29 340
MTGPAbinary99.20 184
test_post197.59 21020.48 37983.07 34699.66 25994.16 291
test_post21.25 37883.86 34299.70 232
patchmatchnet-post98.77 19984.37 33799.85 110
MTMP97.93 17391.91 368
gm-plane-assit94.83 37581.97 37788.07 36294.99 36299.60 27991.76 335
TEST998.71 25798.08 13795.96 30099.03 22491.40 34395.85 33697.53 31196.52 17799.76 205
test_898.67 26998.01 14495.91 30599.02 22791.64 33895.79 33897.50 31496.47 17999.76 205
agg_prior98.68 26897.99 14599.01 23095.59 33999.77 200
test_prior497.97 14995.86 306
test_prior295.74 31196.48 24796.11 33197.63 30795.92 20694.16 29199.20 257
旧先验295.76 31088.56 36197.52 27899.66 25994.48 281
新几何295.93 303
原ACMM295.53 317
testdata299.79 18392.80 324
segment_acmp97.02 149
testdata195.44 32296.32 252
plane_prior799.19 16597.87 158
plane_prior698.99 20997.70 17594.90 233
plane_prior497.98 286
plane_prior397.78 16997.41 19297.79 259
plane_prior297.77 18998.20 129
plane_prior199.05 200
plane_prior97.65 17797.07 24896.72 23899.36 232
n20.00 386
nn0.00 386
door-mid99.57 49
test1198.87 248
door99.41 108
HQP5-MVS96.79 216
HQP-NCC98.67 26996.29 28796.05 26195.55 342
ACMP_Plane98.67 26996.29 28796.05 26195.55 342
BP-MVS92.82 322
HQP3-MVS99.04 22299.26 250
HQP2-MVS93.84 259
NP-MVS98.84 23697.39 19096.84 332
MDTV_nov1_ep1395.22 29797.06 35883.20 37497.74 19396.16 34494.37 30496.99 30198.83 18883.95 34199.53 30093.90 30097.95 332
ACMMP++_ref99.77 109
ACMMP++99.68 152
Test By Simon96.52 177