This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted by
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3296.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7496.50 10999.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2499.08 1097.87 16299.67 296.47 9899.92 597.88 4399.98 299.85 3
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3196.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26699.90 1498.64 2699.90 2499.82 6
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4895.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
test_fmvs397.38 11797.56 10296.84 18598.63 15492.81 19797.60 8799.61 1390.87 28998.76 7099.66 394.03 18097.90 36999.24 699.68 8399.81 8
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4799.22 899.22 3398.96 6197.35 4299.92 597.79 4999.93 1199.79 10
test_vis3_rt97.04 13196.98 13697.23 15798.44 18195.88 8096.82 13299.67 690.30 29899.27 2999.33 2794.04 17996.03 38897.14 7397.83 30999.78 11
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3499.67 299.73 399.65 599.15 399.86 2497.22 6899.92 1599.77 12
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3695.62 15699.35 2599.37 1997.38 4199.90 1498.59 2899.91 1899.77 12
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3298.43 3298.89 5498.83 7594.30 17499.81 3797.87 4499.91 1899.77 12
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 12099.05 1399.01 4498.65 9295.37 14299.90 1497.57 5899.91 1899.77 12
ANet_high98.31 3198.94 696.41 21399.33 5489.64 26397.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5999.98 299.77 12
MM97.62 12093.30 18696.39 15692.61 36097.90 5296.76 22898.64 9390.46 25499.81 3799.16 999.94 899.76 17
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
MVS_030496.62 16296.40 17297.28 15197.91 23592.30 21096.47 15489.74 38397.52 7195.38 28998.63 9492.76 20899.81 3799.28 499.93 1199.75 19
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4399.33 599.30 2799.00 5597.27 4699.92 597.64 5799.92 1599.75 19
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3899.05 1399.17 3598.79 7695.47 13999.89 1897.95 4299.91 1899.75 19
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9891.43 23796.37 16099.11 4994.19 21099.01 4499.25 3196.30 10899.38 22999.00 1499.88 2799.73 22
Anonymous2023121198.55 2098.76 1397.94 9998.79 13294.37 14798.84 1199.15 4399.37 399.67 799.43 1595.61 13599.72 8898.12 3599.86 3199.73 22
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4998.04 4898.62 7698.66 8993.75 18899.78 4897.23 6799.84 4099.73 22
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4699.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5798.31 3699.02 4398.74 8297.68 3099.61 15897.77 5099.85 3899.70 26
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5199.36 499.29 2899.06 5297.27 4699.93 397.71 5399.91 1899.70 26
SSC-MVS95.92 19197.03 13492.58 34799.28 5878.39 38296.68 14695.12 33298.90 1999.11 3998.66 8991.36 24199.68 12495.00 17999.16 21499.67 28
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8292.51 20596.57 14999.15 4393.68 22798.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
patch_mono-296.59 16396.93 14095.55 25298.88 12387.12 31794.47 27499.30 2694.12 21396.65 23598.41 11594.98 15599.87 2295.81 12799.78 5699.66 30
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18298.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Baseline_NR-MVSNet97.72 9097.79 7397.50 13299.56 2193.29 18795.44 22498.86 11398.20 4298.37 10199.24 3294.69 16099.55 17495.98 11699.79 5399.65 33
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6598.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9697.71 6198.85 5799.10 4891.35 24299.83 3398.47 3099.90 2499.64 35
bld_raw_dy_0_6497.69 9297.61 9797.91 10099.54 2694.27 15498.06 5998.60 17396.60 10198.79 6498.95 6389.62 26799.84 3098.43 3299.91 1899.62 36
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2699.01 1699.63 1199.66 399.27 299.68 12497.75 5199.89 2699.62 36
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 11098.23 4099.48 1699.27 3098.47 1199.55 17496.52 9199.53 12599.60 38
XXY-MVS97.54 10697.70 8197.07 16899.46 3792.21 21497.22 11199.00 8394.93 18898.58 8198.92 6697.31 4499.41 22094.44 20199.43 16399.59 39
fmvsm_s_conf0.5_n97.62 9997.89 6296.80 18798.79 13291.44 23696.14 17999.06 6194.19 21098.82 6198.98 5896.22 11399.38 22998.98 1699.86 3199.58 40
WB-MVS95.50 20796.62 15692.11 35599.21 7677.26 39096.12 18095.40 32998.62 2698.84 5998.26 13991.08 24599.50 18793.37 23898.70 26799.58 40
dcpmvs_297.12 12897.99 5494.51 30299.11 9584.00 35897.75 7799.65 997.38 8099.14 3798.42 11495.16 14899.96 295.52 14199.78 5699.58 40
test_0728_THIRD96.62 9998.40 9898.28 13497.10 5499.71 10495.70 12899.62 9399.58 40
MSP-MVS97.45 11296.92 14299.03 599.26 6097.70 1897.66 8398.89 10295.65 15498.51 8596.46 28892.15 22699.81 3795.14 17098.58 27999.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
EI-MVSNet-UG-set97.32 12397.40 11297.09 16797.34 30192.01 22595.33 23697.65 26897.74 5798.30 11598.14 15295.04 15199.69 11997.55 5999.52 13099.58 40
v1097.55 10597.97 5596.31 21798.60 15889.64 26397.44 10099.02 7496.60 10198.72 7399.16 4393.48 19399.72 8898.76 2199.92 1599.58 40
test_fmvs296.38 17496.45 16996.16 22497.85 23991.30 23896.81 13399.45 1889.24 31098.49 8899.38 1888.68 28097.62 37498.83 1899.32 19299.57 47
MSC_two_6792asdad98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
No_MVS98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 14096.04 7598.07 5899.10 5195.96 13798.59 8098.69 8796.94 6799.81 3796.64 8699.58 10699.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet-Vis-set97.32 12397.39 11397.11 16397.36 29892.08 22395.34 23597.65 26897.74 5798.29 11698.11 15895.05 15099.68 12497.50 6199.50 13999.56 51
v897.60 10198.06 4796.23 21998.71 14389.44 26797.43 10298.82 13497.29 8498.74 7199.10 4893.86 18499.68 12498.61 2799.94 899.56 51
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8398.40 3399.07 4298.98 5896.89 7399.75 6897.19 7299.79 5399.55 53
WR-MVS96.90 14296.81 14797.16 15998.56 16492.20 21794.33 27798.12 23697.34 8198.20 12297.33 23592.81 20699.75 6894.79 18899.81 4899.54 54
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6598.67 2498.84 5998.45 11197.58 3699.88 2096.45 9499.86 3199.54 54
SixPastTwentyTwo97.49 10997.57 10197.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28399.89 1898.01 4099.76 5999.54 54
fmvsm_s_conf0.5_n_a97.65 9697.83 6997.13 16298.80 13092.51 20596.25 17099.06 6193.67 22898.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 57
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10299.75 6895.48 14599.52 13099.53 57
SDMVSNet97.97 5298.26 3997.11 16399.41 4392.21 21496.92 12798.60 17398.58 2898.78 6599.39 1697.80 2599.62 15194.98 18299.86 3199.52 59
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21398.58 2898.78 6599.39 1698.21 1499.56 17092.65 25299.86 3199.52 59
DPE-MVScopyleft97.64 9797.35 11698.50 5198.85 12696.18 6995.21 24498.99 8695.84 14698.78 6598.08 16096.84 7999.81 3793.98 22399.57 10999.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
VPNet97.26 12597.49 11096.59 19999.47 3690.58 25196.27 16698.53 18197.77 5498.46 9398.41 11594.59 16599.68 12494.61 19699.29 19899.52 59
v119296.83 14797.06 13296.15 22598.28 19389.29 26995.36 23298.77 14193.73 22498.11 13398.34 12293.02 20499.67 13098.35 3399.58 10699.50 63
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8397.57 6799.27 2999.22 3498.32 1299.50 18797.09 7599.75 6699.50 63
EI-MVSNet96.63 16196.93 14095.74 24297.26 30688.13 29495.29 24097.65 26896.99 8997.94 15498.19 14892.55 21699.58 16396.91 8199.56 11299.50 63
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6595.43 16797.41 18497.50 21897.98 1999.79 4595.58 14099.57 10999.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8697.02 4297.09 11999.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
IterMVS-LS96.92 14097.29 11995.79 24098.51 17188.13 29495.10 24798.66 16596.99 8998.46 9398.68 8892.55 21699.74 7796.91 8199.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6597.40 7999.37 2399.08 5198.79 699.47 19797.74 5299.71 7599.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test111194.53 25794.81 23493.72 32199.06 10281.94 37198.31 3983.87 39696.37 11498.49 8899.17 4281.49 33199.73 8396.64 8699.86 3199.49 71
IU-MVS99.22 6995.40 10398.14 23485.77 34998.36 10495.23 16299.51 13599.49 71
test_241102_TWO98.83 12696.11 12798.62 7698.24 14196.92 7199.72 8895.44 14999.49 14299.49 71
v192192096.72 15596.96 13995.99 22998.21 20188.79 28095.42 22698.79 13693.22 24198.19 12698.26 13992.68 21199.70 11298.34 3499.55 11899.49 71
v124096.74 15297.02 13595.91 23698.18 20788.52 28395.39 23098.88 10893.15 24898.46 9398.40 11892.80 20799.71 10498.45 3199.49 14299.49 71
ACMMPR97.95 5897.62 9598.94 1599.20 7897.56 2597.59 8998.83 12696.05 13097.46 18297.63 20896.77 8299.76 6295.61 13799.46 15199.49 71
MP-MVS-pluss97.69 9297.36 11598.70 3899.50 3496.84 4795.38 23198.99 8692.45 26798.11 13398.31 12597.25 4999.77 5796.60 8899.62 9399.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PGM-MVS97.88 7397.52 10698.96 1399.20 7897.62 2197.09 11999.06 6195.45 16497.55 17297.94 18097.11 5399.78 4894.77 19199.46 15199.48 77
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 14095.78 8495.66 21299.02 7498.11 4498.31 11397.69 20594.65 16499.85 2797.02 7899.71 7599.48 77
v14419296.69 15896.90 14496.03 22898.25 19788.92 27595.49 22298.77 14193.05 25098.09 13698.29 13392.51 22199.70 11298.11 3699.56 11299.47 80
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10298.49 3199.38 2299.14 4695.44 14199.84 3096.47 9399.80 5199.47 80
region2R97.92 6697.59 9998.92 2199.22 6997.55 2697.60 8798.84 12096.00 13597.22 18997.62 20996.87 7799.76 6295.48 14599.43 16399.46 82
DU-MVS97.79 8497.60 9898.36 6398.73 13895.78 8495.65 21498.87 11097.57 6798.31 11397.83 19094.69 16099.85 2797.02 7899.71 7599.46 82
NR-MVSNet97.96 5497.86 6598.26 7098.73 13895.54 9598.14 5498.73 14897.79 5399.42 2097.83 19094.40 17299.78 4895.91 12099.76 5999.46 82
mPP-MVS97.91 6997.53 10599.04 499.22 6997.87 1497.74 7998.78 14096.04 13297.10 20097.73 20296.53 9399.78 4895.16 16799.50 13999.46 82
fmvsm_l_conf0.5_n97.68 9597.81 7197.27 15298.92 11992.71 20295.89 20099.41 2393.36 23599.00 4698.44 11396.46 10099.65 13899.09 1199.76 5999.45 86
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5697.24 3997.45 9998.84 12095.76 14996.93 21797.43 22297.26 4899.79 4596.06 10799.53 12599.45 86
SMA-MVScopyleft97.48 11097.11 12798.60 4598.83 12796.67 5396.74 13998.73 14891.61 27998.48 9098.36 12096.53 9399.68 12495.17 16599.54 12199.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5296.84 4796.36 16198.79 13695.07 18197.88 15998.35 12197.24 5099.72 8896.05 10999.58 10699.45 86
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14897.69 6397.90 15797.96 17795.81 12899.82 3596.13 10699.61 9999.45 86
v114496.84 14497.08 13096.13 22698.42 18389.28 27095.41 22898.67 16394.21 20897.97 15198.31 12593.06 20099.65 13898.06 3999.62 9399.45 86
XVS97.96 5497.63 9398.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25097.64 20796.49 9699.72 8895.66 13399.37 17499.45 86
X-MVStestdata92.86 30190.83 32798.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25036.50 39796.49 9699.72 8895.66 13399.37 17499.45 86
v2v48296.78 15197.06 13295.95 23398.57 16288.77 28195.36 23298.26 21295.18 17697.85 16498.23 14392.58 21599.63 14697.80 4899.69 7999.45 86
MP-MVScopyleft97.64 9797.18 12599.00 999.32 5697.77 1797.49 9898.73 14896.27 11895.59 28397.75 19996.30 10899.78 4893.70 23399.48 14699.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
EU-MVSNet94.25 26494.47 25393.60 32498.14 21682.60 36697.24 11092.72 35785.08 35598.48 9098.94 6482.59 32998.76 32197.47 6399.53 12599.44 96
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6697.60 2298.09 5798.96 9395.75 15197.91 15698.06 16796.89 7399.76 6295.32 15799.57 10999.43 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
GST-MVS97.82 8197.49 11098.81 2799.23 6697.25 3897.16 11398.79 13695.96 13797.53 17397.40 22496.93 6999.77 5795.04 17699.35 18299.42 98
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7295.88 14397.88 15998.22 14698.15 1699.74 7796.50 9299.62 9399.42 98
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 13095.86 8395.92 19899.04 7197.51 7298.22 12197.81 19494.68 16299.78 4897.14 7399.75 6699.41 100
fmvsm_l_conf0.5_n_a97.60 10197.76 7897.11 16398.92 11992.28 21195.83 20399.32 2493.22 24198.91 5398.49 10696.31 10799.64 14299.07 1299.76 5999.40 101
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16292.10 22295.97 19299.18 3797.67 6699.00 4698.48 11097.64 3399.50 18796.96 8099.54 12199.40 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 4097.21 4197.15 11498.90 10196.58 10498.08 13897.87 18897.02 6299.76 6295.25 16099.59 10499.40 101
Skip Steuart: Steuart Systems R&D Blog.
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 16197.21 6999.76 5999.40 101
K. test v396.44 17196.28 17796.95 17599.41 4391.53 23397.65 8490.31 37998.89 2098.93 5099.36 2184.57 31699.92 597.81 4799.56 11299.39 105
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8697.55 2696.68 14698.83 12695.21 17398.36 10498.13 15498.13 1899.62 15196.04 11099.54 12199.39 105
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test250689.86 34089.16 34591.97 35698.95 11376.83 39198.54 2361.07 40496.20 12297.07 20699.16 4355.19 40199.69 11996.43 9599.83 4399.38 107
ECVR-MVScopyleft94.37 26394.48 25294.05 31798.95 11383.10 36298.31 3982.48 39796.20 12298.23 12099.16 4381.18 33499.66 13695.95 11799.83 4399.38 107
V4297.04 13197.16 12696.68 19698.59 16091.05 24196.33 16398.36 20294.60 19797.99 14798.30 12993.32 19599.62 15197.40 6499.53 12599.38 107
CP-MVS97.92 6697.56 10298.99 1098.99 11197.82 1597.93 6698.96 9396.11 12796.89 22097.45 22096.85 7899.78 4895.19 16399.63 9299.38 107
EG-PatchMatch MVS97.69 9297.79 7397.40 14599.06 10293.52 18095.96 19498.97 9294.55 20198.82 6198.76 8197.31 4499.29 25697.20 7199.44 15599.38 107
IS-MVSNet96.93 13996.68 15497.70 11499.25 6394.00 16298.57 2096.74 30298.36 3498.14 13197.98 17688.23 28599.71 10493.10 24899.72 7299.38 107
GeoE97.75 8797.70 8197.89 10298.88 12394.53 14097.10 11898.98 8995.75 15197.62 17097.59 21197.61 3599.77 5796.34 9899.44 15599.36 113
UGNet96.81 14996.56 16197.58 12296.64 32593.84 16897.75 7797.12 28796.47 11293.62 33298.88 7293.22 19899.53 17995.61 13799.69 7999.36 113
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDDNet96.98 13796.84 14597.41 14499.40 4693.26 18997.94 6595.31 33099.26 798.39 10099.18 3987.85 29299.62 15195.13 17299.09 22599.35 115
SR-MVS98.00 5197.66 8799.01 898.77 13697.93 1197.38 10498.83 12697.32 8298.06 14197.85 18996.65 8699.77 5795.00 17999.11 22299.32 116
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13297.31 3697.55 9298.92 9997.72 5998.25 11898.13 15497.10 5499.75 6895.44 14999.24 20699.32 116
EPP-MVSNet96.84 14496.58 15997.65 11899.18 8193.78 17198.68 1496.34 30797.91 5197.30 18698.06 16788.46 28299.85 2793.85 22799.40 17199.32 116
ACMP92.54 1397.47 11197.10 12898.55 4999.04 10796.70 5196.24 17198.89 10293.71 22597.97 15197.75 19997.44 3899.63 14693.22 24599.70 7899.32 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3498.21 4199.25 3198.51 10598.21 1499.40 22294.79 18899.72 7299.32 116
Anonymous2024052197.07 13097.51 10795.76 24199.35 5288.18 29197.78 7398.40 19797.11 8798.34 10799.04 5389.58 26999.79 4598.09 3799.93 1199.30 121
HFP-MVS97.94 6297.64 9198.83 2599.15 8697.50 2997.59 8998.84 12096.05 13097.49 17797.54 21497.07 5799.70 11295.61 13799.46 15199.30 121
lessismore_v097.05 16999.36 5192.12 21984.07 39598.77 6998.98 5885.36 31099.74 7797.34 6699.37 17499.30 121
GBi-Net96.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
test196.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16597.41 7899.00 4699.19 3695.47 13999.73 8395.83 12599.76 5999.30 121
v14896.58 16596.97 13795.42 25998.63 15487.57 30795.09 24897.90 25095.91 14298.24 11997.96 17793.42 19499.39 22696.04 11099.52 13099.29 127
TSAR-MVS + MP.97.42 11597.23 12398.00 9599.38 4995.00 12597.63 8698.20 22193.00 25298.16 12898.06 16795.89 11999.72 8895.67 13299.10 22499.28 128
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
casdiffmvspermissive97.50 10897.81 7196.56 20398.51 17191.04 24295.83 20399.09 5697.23 8598.33 11098.30 12997.03 6199.37 23496.58 9099.38 17399.28 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP_MVS96.66 16096.33 17697.68 11798.70 14594.29 15096.50 15298.75 14596.36 11596.16 26196.77 27191.91 23699.46 20092.59 25499.20 20899.28 128
plane_prior598.75 14599.46 20092.59 25499.20 20899.28 128
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 33997.63 27296.99 8998.36 10498.54 10287.94 28799.75 6897.07 7799.08 22699.27 132
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6992.81 19797.55 9298.94 9697.10 8898.85 5798.88 7295.03 15299.67 13097.39 6599.65 8899.26 133
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.60 9199.76 6295.49 14299.20 20899.26 133
RE-MVS-def97.88 6498.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.94 6795.49 14299.20 20899.26 133
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6495.51 9796.74 13998.23 21695.92 14098.40 9898.28 13497.06 5899.71 10495.48 14599.52 13099.26 133
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
SF-MVS97.60 10197.39 11398.22 7598.93 11795.69 8897.05 12199.10 5195.32 17097.83 16597.88 18796.44 10199.72 8894.59 20099.39 17299.25 137
3Dnovator+96.13 397.73 8897.59 9998.15 8198.11 22095.60 9298.04 6098.70 15798.13 4396.93 21798.45 11195.30 14599.62 15195.64 13598.96 23799.24 138
Anonymous2024052997.96 5498.04 4997.71 11398.69 14794.28 15397.86 7098.31 21098.79 2299.23 3298.86 7495.76 13099.61 15895.49 14299.36 17799.23 139
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34097.47 27795.49 16398.06 14198.49 10687.94 28799.58 16396.02 11299.02 23399.23 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DVP-MVS++97.96 5497.90 5998.12 8497.75 26495.40 10399.03 798.89 10296.62 9998.62 7698.30 12996.97 6599.75 6895.70 12899.25 20399.21 141
PC_three_145287.24 33298.37 10197.44 22197.00 6396.78 38592.01 26099.25 20399.21 141
OPM-MVS97.54 10697.25 12198.41 5999.11 9596.61 5695.24 24298.46 18794.58 20098.10 13598.07 16297.09 5699.39 22695.16 16799.44 15599.21 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf0593.65 28593.05 28495.46 25796.13 34487.45 31095.95 19698.22 21792.66 26297.04 20897.89 18563.52 39399.72 8896.19 10499.82 4799.21 141
EPNet93.72 28192.62 30097.03 17287.61 40192.25 21296.27 16691.28 37096.74 9787.65 38897.39 22885.00 31299.64 14292.14 25999.48 14699.20 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
baseline97.44 11397.78 7796.43 20998.52 16990.75 24996.84 13099.03 7296.51 10897.86 16398.02 17196.67 8599.36 23797.09 7599.47 14899.19 146
APD-MVScopyleft97.00 13396.53 16598.41 5998.55 16596.31 6696.32 16498.77 14192.96 25797.44 18397.58 21395.84 12199.74 7791.96 26199.35 18299.19 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CNVR-MVS96.92 14096.55 16298.03 9398.00 22995.54 9594.87 26098.17 22794.60 19796.38 24797.05 25195.67 13399.36 23795.12 17399.08 22699.19 146
iter_conf_final94.54 25693.91 27296.43 20997.23 30890.41 25596.81 13398.10 23793.87 22196.80 22297.89 18568.02 38799.72 8896.73 8599.77 5899.18 149
NCCC96.52 16795.99 18998.10 8597.81 24895.68 8995.00 25698.20 22195.39 16895.40 28896.36 29493.81 18699.45 20493.55 23698.42 28799.17 150
CPTT-MVS96.69 15896.08 18598.49 5298.89 12296.64 5597.25 10898.77 14192.89 25896.01 26797.13 24592.23 22599.67 13092.24 25899.34 18599.17 150
RPSCF97.87 7497.51 10798.95 1499.15 8698.43 697.56 9199.06 6196.19 12498.48 9098.70 8694.72 15999.24 26794.37 20699.33 19099.17 150
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16699.11 4796.75 8399.86 2497.84 4699.36 17799.15 153
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS_111021_HR96.73 15496.54 16497.27 15298.35 18893.66 17693.42 31698.36 20294.74 19196.58 23796.76 27396.54 9298.99 30094.87 18499.27 20199.15 153
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13595.72 8696.23 17299.02 7493.92 22098.62 7698.99 5797.69 2999.62 15196.18 10599.87 2999.15 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12696.11 12799.08 4098.24 14197.87 2399.72 8895.44 14999.51 13599.14 156
OPU-MVS97.64 11998.01 22595.27 11396.79 13697.35 23396.97 6598.51 34591.21 27899.25 20399.14 156
HPM-MVS++copyleft96.99 13496.38 17398.81 2798.64 15097.59 2395.97 19298.20 22195.51 16295.06 29596.53 28494.10 17899.70 11294.29 20999.15 21599.13 158
MCST-MVS96.24 17895.80 19997.56 12398.75 13794.13 15894.66 26998.17 22790.17 30196.21 25896.10 30795.14 14999.43 20994.13 21698.85 25199.13 158
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20898.48 17791.52 23495.31 23898.45 18895.76 14997.48 17997.54 21489.53 27298.69 32894.43 20294.61 37499.13 158
3Dnovator96.53 297.61 10097.64 9197.50 13297.74 26793.65 17798.49 2898.88 10896.86 9497.11 19998.55 10195.82 12499.73 8395.94 11899.42 16699.13 158
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3998.34 3598.78 6598.52 10397.32 4399.45 20494.08 21799.67 8599.13 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
new-patchmatchnet95.67 20196.58 15992.94 34197.48 28880.21 37792.96 32598.19 22694.83 18998.82 6198.79 7693.31 19699.51 18695.83 12599.04 23299.12 163
VDD-MVS97.37 11997.25 12197.74 11198.69 14794.50 14397.04 12295.61 32398.59 2798.51 8598.72 8392.54 21899.58 16396.02 11299.49 14299.12 163
MVSTER94.21 26793.93 27195.05 27395.83 35186.46 32695.18 24597.65 26892.41 26897.94 15498.00 17572.39 37699.58 16396.36 9799.56 11299.12 163
testgi96.07 18496.50 16894.80 28899.26 6087.69 30695.96 19498.58 17895.08 18098.02 14696.25 29897.92 2097.60 37588.68 32898.74 26299.11 166
CDPH-MVS95.45 21394.65 24097.84 10698.28 19394.96 12693.73 30898.33 20685.03 35795.44 28696.60 28095.31 14499.44 20790.01 30899.13 21899.11 166
PVSNet_BlendedMVS95.02 23394.93 22595.27 26397.79 25787.40 31294.14 29098.68 16088.94 31594.51 30898.01 17393.04 20199.30 25289.77 31299.49 14299.11 166
DP-MVS97.87 7497.89 6297.81 10798.62 15694.82 12997.13 11798.79 13698.98 1798.74 7198.49 10695.80 12999.49 19295.04 17699.44 15599.11 166
agg_prior290.34 30598.90 24499.10 170
VNet96.84 14496.83 14696.88 18198.06 22192.02 22496.35 16297.57 27497.70 6297.88 15997.80 19592.40 22399.54 17794.73 19398.96 23799.08 171
CHOSEN 1792x268894.10 27193.41 28096.18 22399.16 8390.04 25792.15 34398.68 16079.90 38196.22 25797.83 19087.92 29199.42 21189.18 32099.65 8899.08 171
XVG-OURS-SEG-HR97.38 11797.07 13198.30 6899.01 11097.41 3494.66 26999.02 7495.20 17498.15 13097.52 21698.83 598.43 35194.87 18496.41 35399.07 173
FMVSNet296.72 15596.67 15596.87 18297.96 23191.88 22797.15 11498.06 24595.59 15898.50 8798.62 9589.51 27399.65 13894.99 18199.60 10299.07 173
diffmvspermissive96.04 18696.23 17895.46 25797.35 29988.03 29793.42 31699.08 5794.09 21696.66 23396.93 25993.85 18599.29 25696.01 11498.67 26999.06 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HQP4-MVS92.87 34999.23 26999.06 175
HQP-MVS95.17 22694.58 24896.92 17897.85 23992.47 20794.26 27898.43 19193.18 24492.86 35095.08 33190.33 25799.23 26990.51 30098.74 26299.05 177
test_f95.82 19695.88 19795.66 24697.61 27993.21 19195.61 21898.17 22786.98 33698.42 9699.47 1190.46 25494.74 39197.71 5398.45 28599.03 178
FMVSNet593.39 29292.35 30296.50 20595.83 35190.81 24897.31 10598.27 21192.74 26096.27 25498.28 13462.23 39499.67 13090.86 28599.36 17799.03 178
HyFIR lowres test93.72 28192.65 29896.91 18098.93 11791.81 23091.23 36098.52 18282.69 36996.46 24496.52 28680.38 33999.90 1490.36 30498.79 25799.03 178
tttt051793.31 29492.56 30195.57 24998.71 14387.86 30097.44 10087.17 39095.79 14897.47 18196.84 26564.12 39199.81 3796.20 10399.32 19299.02 181
test9_res91.29 27498.89 24799.00 182
test20.0396.58 16596.61 15796.48 20798.49 17591.72 23195.68 21197.69 26396.81 9598.27 11797.92 18394.18 17798.71 32690.78 28999.66 8799.00 182
XVG-ACMP-BASELINE97.58 10497.28 12098.49 5299.16 8396.90 4696.39 15698.98 8995.05 18298.06 14198.02 17195.86 12099.56 17094.37 20699.64 9099.00 182
mvsany_test396.21 17995.93 19497.05 16997.40 29694.33 14995.76 20694.20 34189.10 31199.36 2499.60 693.97 18297.85 37095.40 15698.63 27498.99 185
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24298.48 17788.76 28292.84 32697.25 28096.00 13597.59 17197.95 17991.38 24099.46 20093.16 24796.35 35498.99 185
Vis-MVSNet (Re-imp)95.11 22794.85 23095.87 23899.12 9489.17 27197.54 9794.92 33496.50 10996.58 23797.27 23883.64 32299.48 19588.42 33199.67 8598.97 187
FMVSNet395.26 22194.94 22396.22 22196.53 32890.06 25695.99 19097.66 26694.11 21497.99 14797.91 18480.22 34099.63 14694.60 19799.44 15598.96 188
ambc96.56 20398.23 20091.68 23297.88 6998.13 23598.42 9698.56 10094.22 17699.04 29494.05 22099.35 18298.95 189
YYNet194.73 24194.84 23194.41 30697.47 29285.09 34590.29 37295.85 31792.52 26497.53 17397.76 19691.97 23299.18 27393.31 24296.86 34198.95 189
ppachtmachnet_test94.49 25994.84 23193.46 32796.16 34082.10 36890.59 36997.48 27690.53 29597.01 21197.59 21191.01 24699.36 23793.97 22499.18 21298.94 191
CANet95.86 19495.65 20596.49 20696.41 33190.82 24694.36 27698.41 19594.94 18692.62 35996.73 27492.68 21199.71 10495.12 17399.60 10298.94 191
Anonymous2023120695.27 22095.06 22195.88 23798.72 14089.37 26895.70 20897.85 25388.00 32796.98 21497.62 20991.95 23399.34 24389.21 31999.53 12598.94 191
MDA-MVSNet_test_wron94.73 24194.83 23394.42 30597.48 28885.15 34390.28 37395.87 31692.52 26497.48 17997.76 19691.92 23599.17 27793.32 24196.80 34698.94 191
LFMVS95.32 21894.88 22996.62 19798.03 22291.47 23597.65 8490.72 37699.11 997.89 15898.31 12579.20 34299.48 19593.91 22699.12 22198.93 195
XVG-OURS97.12 12896.74 15198.26 7098.99 11197.45 3293.82 30499.05 6595.19 17598.32 11197.70 20495.22 14798.41 35294.27 21098.13 29898.93 195
DeepPCF-MVS94.58 596.90 14296.43 17098.31 6797.48 28897.23 4092.56 33498.60 17392.84 25998.54 8397.40 22496.64 8898.78 31894.40 20599.41 17098.93 195
Anonymous20240521196.34 17595.98 19097.43 14198.25 19793.85 16796.74 13994.41 33997.72 5998.37 10198.03 17087.15 29799.53 17994.06 21899.07 22898.92 198
our_test_394.20 26994.58 24893.07 33596.16 34081.20 37490.42 37196.84 29690.72 29197.14 19697.13 24590.47 25399.11 28694.04 22198.25 29398.91 199
tfpnnormal97.72 9097.97 5596.94 17699.26 6092.23 21397.83 7298.45 18898.25 3999.13 3898.66 8996.65 8699.69 11993.92 22599.62 9398.91 199
AllTest97.20 12796.92 14298.06 8899.08 9996.16 7097.14 11699.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
TestCases98.06 8899.08 9996.16 7099.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
h-mvs3396.29 17695.63 20698.26 7098.50 17496.11 7396.90 12897.09 28896.58 10497.21 19198.19 14884.14 31899.78 4895.89 12196.17 35798.89 203
pmmvs-eth3d96.49 16896.18 18197.42 14398.25 19794.29 15094.77 26598.07 24489.81 30597.97 15198.33 12393.11 19999.08 29095.46 14899.84 4098.89 203
train_agg95.46 21294.66 23997.88 10397.84 24495.23 11593.62 31098.39 19887.04 33493.78 32595.99 30994.58 16699.52 18291.76 26998.90 24498.89 203
test1297.46 13897.61 27994.07 15997.78 25993.57 33593.31 19699.42 21198.78 25898.89 203
pmmvs594.63 25194.34 25895.50 25497.63 27888.34 28794.02 29497.13 28687.15 33395.22 29297.15 24487.50 29399.27 26193.99 22299.26 20298.88 207
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 14097.69 27094.15 15796.02 18798.43 19193.17 24797.30 18697.38 23095.48 13899.28 25893.74 23099.34 18598.88 207
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS97.37 11997.70 8196.35 21498.14 21695.13 12296.54 15198.92 9995.94 13999.19 3498.08 16097.74 2895.06 38995.24 16199.54 12198.87 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
PMMVS293.66 28494.07 26692.45 35197.57 28180.67 37686.46 38796.00 31293.99 21897.10 20097.38 23089.90 26497.82 37188.76 32599.47 14898.86 210
PVSNet_Blended_VisFu95.95 19095.80 19996.42 21199.28 5890.62 25095.31 23899.08 5788.40 32196.97 21598.17 15192.11 22899.78 4893.64 23499.21 20798.86 210
miper_lstm_enhance94.81 24094.80 23594.85 28596.16 34086.45 32791.14 36298.20 22193.49 23197.03 20997.37 23284.97 31399.26 26295.28 15899.56 11298.83 212
PHI-MVS96.96 13896.53 16598.25 7397.48 28896.50 5996.76 13898.85 11793.52 23096.19 26096.85 26495.94 11899.42 21193.79 22999.43 16398.83 212
QAPM95.88 19395.57 20896.80 18797.90 23791.84 22998.18 5398.73 14888.41 32096.42 24598.13 15494.73 15899.75 6888.72 32698.94 24098.81 214
Patchmtry95.03 23294.59 24796.33 21594.83 37090.82 24696.38 15997.20 28296.59 10397.49 17798.57 9877.67 34999.38 22992.95 25199.62 9398.80 215
test_prior97.46 13897.79 25794.26 15598.42 19499.34 24398.79 216
eth_miper_zixun_eth94.89 23694.93 22594.75 29195.99 34686.12 33191.35 35598.49 18593.40 23397.12 19897.25 24086.87 30099.35 24195.08 17598.82 25598.78 217
c3_l95.20 22395.32 21094.83 28796.19 33886.43 32891.83 34998.35 20593.47 23297.36 18597.26 23988.69 27999.28 25895.41 15599.36 17798.78 217
MVS_111021_LR96.82 14896.55 16297.62 12098.27 19595.34 11093.81 30698.33 20694.59 19996.56 23996.63 27996.61 8998.73 32394.80 18799.34 18598.78 217
F-COLMAP95.30 21994.38 25798.05 9298.64 15096.04 7595.61 21898.66 16589.00 31493.22 34496.40 29292.90 20599.35 24187.45 34597.53 32698.77 220
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
D2MVS95.18 22495.17 21595.21 26597.76 26287.76 30594.15 28897.94 24889.77 30696.99 21297.68 20687.45 29499.14 28095.03 17899.81 4898.74 223
MVSFormer96.14 18296.36 17495.49 25597.68 27187.81 30398.67 1599.02 7496.50 10994.48 31096.15 30286.90 29899.92 598.73 2299.13 21898.74 223
jason94.39 26294.04 26795.41 26198.29 19187.85 30292.74 33196.75 30185.38 35495.29 29096.15 30288.21 28699.65 13894.24 21199.34 18598.74 223
jason: jason.
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21489.13 27496.81 13399.43 2086.97 33797.21 19198.92 6683.00 32697.13 37898.09 3798.94 24098.72 226
DIV-MVS_self_test94.73 24194.64 24195.01 27595.86 34987.00 31991.33 35698.08 24093.34 23697.10 20097.34 23484.02 32099.31 24995.15 16999.55 11898.72 226
旧先验197.80 25293.87 16697.75 26097.04 25293.57 19198.68 26898.72 226
cl____94.73 24194.64 24195.01 27595.85 35087.00 31991.33 35698.08 24093.34 23697.10 20097.33 23584.01 32199.30 25295.14 17099.56 11298.71 229
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12393.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14299.21 799.87 2998.69 230
mvs_anonymous95.36 21596.07 18693.21 33396.29 33381.56 37294.60 27197.66 26693.30 23896.95 21698.91 6993.03 20399.38 22996.60 8897.30 33698.69 230
OMC-MVS96.48 16996.00 18897.91 10098.30 19096.01 7894.86 26198.60 17391.88 27697.18 19497.21 24296.11 11599.04 29490.49 30299.34 18598.69 230
thisisatest053092.71 30491.76 31295.56 25198.42 18388.23 28996.03 18687.35 38994.04 21796.56 23995.47 32664.03 39299.77 5794.78 19099.11 22298.68 233
TAMVS95.49 20894.94 22397.16 15998.31 18993.41 18495.07 25196.82 29891.09 28797.51 17597.82 19389.96 26399.42 21188.42 33199.44 15598.64 234
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14898.66 2598.56 8298.41 11596.84 7999.69 11994.82 18699.81 4898.64 234
MVP-Stereo95.69 19995.28 21196.92 17898.15 21493.03 19395.64 21798.20 22190.39 29796.63 23697.73 20291.63 23899.10 28891.84 26697.31 33598.63 236
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
cl2293.25 29692.84 29294.46 30494.30 37686.00 33291.09 36496.64 30690.74 29095.79 27596.31 29678.24 34698.77 31994.15 21598.34 28998.62 237
CANet_DTU94.65 25094.21 26295.96 23195.90 34889.68 26293.92 30197.83 25793.19 24390.12 37895.64 32188.52 28199.57 16993.27 24499.47 14898.62 237
PM-MVS97.36 12197.10 12898.14 8298.91 12196.77 4996.20 17398.63 17193.82 22298.54 8398.33 12393.98 18199.05 29395.99 11599.45 15498.61 239
CSCG97.40 11697.30 11897.69 11698.95 11394.83 12897.28 10798.99 8696.35 11798.13 13295.95 31395.99 11799.66 13694.36 20899.73 6898.59 240
CLD-MVS95.47 21195.07 21996.69 19598.27 19592.53 20491.36 35498.67 16391.22 28695.78 27794.12 35095.65 13498.98 30290.81 28799.72 7298.57 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UnsupCasMVSNet_bld94.72 24594.26 25996.08 22798.62 15690.54 25493.38 31898.05 24690.30 29897.02 21096.80 27089.54 27099.16 27888.44 33096.18 35698.56 242
N_pmnet95.18 22494.23 26098.06 8897.85 23996.55 5892.49 33591.63 36789.34 30898.09 13697.41 22390.33 25799.06 29291.58 27199.31 19598.56 242
testing389.72 34288.26 35094.10 31697.66 27584.30 35694.80 26288.25 38794.66 19495.07 29492.51 36941.15 40499.43 20991.81 26798.44 28698.55 244
EGC-MVSNET83.08 36277.93 36598.53 5099.57 2097.55 2698.33 3898.57 1794.71 39910.38 40098.90 7095.60 13699.50 18795.69 13099.61 9998.55 244
CVMVSNet92.33 31092.79 29390.95 36297.26 30675.84 39495.29 24092.33 36281.86 37196.27 25498.19 14881.44 33298.46 35094.23 21298.29 29298.55 244
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5796.57 10798.07 14098.38 11996.22 11399.14 28094.71 19599.31 19598.52 247
CS-MVS-test97.91 6997.84 6698.14 8298.52 16996.03 7798.38 3499.67 698.11 4495.50 28596.92 26196.81 8199.87 2296.87 8399.76 5998.51 248
LS3D97.77 8697.50 10998.57 4796.24 33497.58 2498.45 3198.85 11798.58 2897.51 17597.94 18095.74 13199.63 14695.19 16398.97 23698.51 248
CL-MVSNet_self_test95.04 23094.79 23695.82 23997.51 28689.79 26191.14 36296.82 29893.05 25096.72 22996.40 29290.82 24999.16 27891.95 26298.66 27198.50 250
miper_ehance_all_eth94.69 24694.70 23894.64 29395.77 35386.22 33091.32 35898.24 21591.67 27897.05 20796.65 27888.39 28499.22 27194.88 18398.34 28998.49 251
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32494.26 17599.81 3794.06 21898.51 28398.47 252
USDC94.56 25494.57 25094.55 30097.78 26086.43 32892.75 32998.65 17085.96 34596.91 21997.93 18290.82 24998.74 32290.71 29499.59 10498.47 252
pmmvs494.82 23994.19 26396.70 19497.42 29592.75 20192.09 34696.76 30086.80 33995.73 28097.22 24189.28 27698.89 30993.28 24399.14 21698.46 254
CS-MVS98.09 4498.01 5298.32 6598.45 18096.69 5298.52 2699.69 598.07 4696.07 26497.19 24396.88 7599.86 2497.50 6199.73 6898.41 255
alignmvs96.01 18895.52 20997.50 13297.77 26194.71 13196.07 18396.84 29697.48 7396.78 22794.28 34985.50 30999.40 22296.22 10298.73 26598.40 256
CDS-MVSNet94.88 23794.12 26597.14 16197.64 27793.57 17893.96 30097.06 29090.05 30296.30 25396.55 28286.10 30399.47 19790.10 30799.31 19598.40 256
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
WTY-MVS93.55 28893.00 28895.19 26697.81 24887.86 30093.89 30296.00 31289.02 31394.07 31995.44 32886.27 30299.33 24587.69 33996.82 34498.39 258
EC-MVSNet97.90 7197.94 5897.79 10898.66 14995.14 12198.31 3999.66 897.57 6795.95 26897.01 25596.99 6499.82 3597.66 5699.64 9098.39 258
Effi-MVS+96.19 18096.01 18796.71 19397.43 29492.19 21896.12 18099.10 5195.45 16493.33 34394.71 34097.23 5199.56 17093.21 24697.54 32598.37 260
MS-PatchMatch94.83 23894.91 22794.57 29996.81 32387.10 31894.23 28397.34 27988.74 31897.14 19697.11 24791.94 23498.23 36392.99 24997.92 30598.37 260
TSAR-MVS + GP.96.47 17096.12 18297.49 13597.74 26795.23 11594.15 28896.90 29593.26 23998.04 14496.70 27594.41 17198.89 30994.77 19199.14 21698.37 260
DELS-MVS96.17 18196.23 17895.99 22997.55 28490.04 25792.38 34198.52 18294.13 21296.55 24197.06 25094.99 15499.58 16395.62 13699.28 19998.37 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
sss94.22 26593.72 27495.74 24297.71 26989.95 25993.84 30396.98 29288.38 32293.75 32895.74 31787.94 28798.89 30991.02 28198.10 29998.37 260
GA-MVS92.83 30292.15 30694.87 28496.97 31787.27 31590.03 37496.12 30991.83 27794.05 32094.57 34176.01 36198.97 30692.46 25797.34 33498.36 265
ITE_SJBPF97.85 10598.64 15096.66 5498.51 18495.63 15597.22 18997.30 23795.52 13798.55 34290.97 28298.90 24498.34 266
hse-mvs295.77 19795.09 21897.79 10897.84 24495.51 9795.66 21295.43 32896.58 10497.21 19196.16 30184.14 31899.54 17795.89 12196.92 33898.32 267
LCM-MVSNet-Re97.33 12297.33 11797.32 14998.13 21993.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30699.06 23198.32 267
BH-RMVSNet94.56 25494.44 25694.91 28097.57 28187.44 31193.78 30796.26 30893.69 22696.41 24696.50 28792.10 22999.00 29885.96 35297.71 31698.31 269
MG-MVS94.08 27394.00 26894.32 30997.09 31485.89 33393.19 32395.96 31492.52 26494.93 30197.51 21789.54 27098.77 31987.52 34497.71 31698.31 269
AUN-MVS93.95 27892.69 29797.74 11197.80 25295.38 10595.57 22195.46 32791.26 28592.64 35796.10 30774.67 36599.55 17493.72 23296.97 33798.30 271
MVS_Test96.27 17796.79 15094.73 29296.94 32086.63 32596.18 17498.33 20694.94 18696.07 26498.28 13495.25 14699.26 26297.21 6997.90 30798.30 271
TinyColmap96.00 18996.34 17594.96 27997.90 23787.91 29994.13 29198.49 18594.41 20398.16 12897.76 19696.29 11098.68 33190.52 29999.42 16698.30 271
CMPMVSbinary73.10 2392.74 30391.39 31596.77 19093.57 38794.67 13494.21 28597.67 26480.36 38093.61 33396.60 28082.85 32797.35 37684.86 36598.78 25898.29 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
lupinMVS93.77 27993.28 28195.24 26497.68 27187.81 30392.12 34496.05 31084.52 36394.48 31095.06 33386.90 29899.63 14693.62 23599.13 21898.27 275
PAPM_NR94.61 25294.17 26495.96 23198.36 18791.23 23995.93 19797.95 24792.98 25393.42 34194.43 34790.53 25298.38 35587.60 34196.29 35598.27 275
114514_t93.96 27693.22 28396.19 22299.06 10290.97 24495.99 19098.94 9673.88 39393.43 34096.93 25992.38 22499.37 23489.09 32199.28 19998.25 277
原ACMM196.58 20098.16 21292.12 21998.15 23385.90 34793.49 33796.43 28992.47 22299.38 22987.66 34098.62 27598.23 278
PLCcopyleft91.02 1694.05 27492.90 28997.51 12898.00 22995.12 12394.25 28198.25 21386.17 34391.48 36995.25 32991.01 24699.19 27285.02 36496.69 34898.22 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
EPNet_dtu91.39 32590.75 32893.31 32990.48 39882.61 36594.80 26292.88 35493.39 23481.74 39694.90 33881.36 33399.11 28688.28 33398.87 24898.21 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
1112_ss94.12 27093.42 27996.23 21998.59 16090.85 24594.24 28298.85 11785.49 35092.97 34894.94 33586.01 30499.64 14291.78 26897.92 30598.20 281
Test_1112_low_res93.53 28992.86 29095.54 25398.60 15888.86 27892.75 32998.69 15882.66 37092.65 35696.92 26184.75 31499.56 17090.94 28397.76 31298.19 282
canonicalmvs97.23 12697.21 12497.30 15097.65 27694.39 14597.84 7199.05 6597.42 7596.68 23193.85 35297.63 3499.33 24596.29 9998.47 28498.18 283
miper_enhance_ethall93.14 29892.78 29594.20 31393.65 38585.29 34089.97 37597.85 25385.05 35696.15 26394.56 34285.74 30699.14 28093.74 23098.34 28998.17 284
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14697.18 31094.39 14595.46 22398.73 14896.03 13494.72 30394.92 33796.28 11199.69 11993.81 22897.98 30398.09 285
ab-mvs96.59 16396.59 15896.60 19898.64 15092.21 21498.35 3597.67 26494.45 20296.99 21298.79 7694.96 15699.49 19290.39 30399.07 22898.08 286
PAPR92.22 31191.27 31895.07 27295.73 35688.81 27991.97 34797.87 25285.80 34890.91 37192.73 36691.16 24398.33 35979.48 38295.76 36398.08 286
test_yl94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
DCV-MVSNet94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
baseline193.14 29892.64 29994.62 29597.34 30187.20 31696.67 14893.02 35294.71 19396.51 24295.83 31681.64 33098.60 33890.00 30988.06 39198.07 288
MIMVSNet93.42 29192.86 29095.10 27198.17 21088.19 29098.13 5593.69 34392.07 27195.04 29898.21 14780.95 33799.03 29781.42 37898.06 30198.07 288
GSMVS98.06 292
sam_mvs177.80 34898.06 292
SCA93.38 29393.52 27892.96 34096.24 33481.40 37393.24 32194.00 34291.58 28194.57 30696.97 25687.94 28799.42 21189.47 31697.66 32198.06 292
MSLP-MVS++96.42 17396.71 15295.57 24997.82 24790.56 25395.71 20798.84 12094.72 19296.71 23097.39 22894.91 15798.10 36795.28 15899.02 23398.05 295
ADS-MVSNet291.47 32490.51 33294.36 30795.51 35985.63 33495.05 25395.70 31883.46 36792.69 35496.84 26579.15 34399.41 22085.66 35690.52 38598.04 296
ADS-MVSNet90.95 33090.26 33493.04 33695.51 35982.37 36795.05 25393.41 34983.46 36792.69 35496.84 26579.15 34398.70 32785.66 35690.52 38598.04 296
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25787.40 31291.43 35398.68 16084.50 36494.51 30894.48 34693.04 20199.30 25289.77 31298.61 27698.02 298
PatchmatchNetpermissive91.98 31891.87 30892.30 35394.60 37379.71 37895.12 24693.59 34889.52 30793.61 33397.02 25377.94 34799.18 27390.84 28694.57 37698.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n95.67 20195.89 19695.03 27498.18 20789.89 26096.94 12699.28 2888.25 32498.20 12298.92 6686.69 30197.19 37797.70 5598.82 25598.00 300
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16584.86 34895.91 19999.71 492.72 26197.67 16998.90 7087.44 29598.73 32397.96 4198.85 25197.96 301
PVSNet86.72 1991.10 32790.97 32491.49 35997.56 28378.04 38487.17 38694.60 33784.65 36292.34 36192.20 37287.37 29698.47 34985.17 36397.69 31897.96 301
无先验93.20 32297.91 24980.78 37799.40 22287.71 33897.94 303
EIA-MVS96.04 18695.77 20196.85 18397.80 25292.98 19496.12 18099.16 3994.65 19593.77 32791.69 37895.68 13299.67 13094.18 21398.85 25197.91 304
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 16099.44 299.83 4397.90 305
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20186.83 32395.61 21899.26 2990.45 29698.17 12798.96 6184.43 31798.31 36096.74 8499.17 21397.90 305
test_fmvs194.51 25894.60 24594.26 31295.91 34787.92 29895.35 23499.02 7486.56 34196.79 22398.52 10382.64 32897.00 38197.87 4498.71 26697.88 307
tpm91.08 32890.85 32691.75 35895.33 36478.09 38395.03 25591.27 37188.75 31793.53 33697.40 22471.24 37899.30 25291.25 27793.87 37897.87 308
Patchmatch-RL test94.66 24994.49 25195.19 26698.54 16788.91 27692.57 33398.74 14791.46 28298.32 11197.75 19977.31 35498.81 31696.06 10799.61 9997.85 309
LF4IMVS96.07 18495.63 20697.36 14798.19 20495.55 9495.44 22498.82 13492.29 27095.70 28196.55 28292.63 21498.69 32891.75 27099.33 19097.85 309
ET-MVSNet_ETH3D91.12 32689.67 33895.47 25696.41 33189.15 27391.54 35290.23 38089.07 31286.78 39292.84 36369.39 38599.44 20794.16 21496.61 35097.82 311
MDTV_nov1_ep13_2view57.28 40494.89 25980.59 37894.02 32178.66 34585.50 35897.82 311
Patchmatch-test93.60 28793.25 28294.63 29496.14 34387.47 30996.04 18594.50 33893.57 22996.47 24396.97 25676.50 35798.61 33690.67 29698.41 28897.81 313
Fast-Effi-MVS+95.49 20895.07 21996.75 19197.67 27492.82 19694.22 28498.60 17391.61 27993.42 34192.90 36296.73 8499.70 11292.60 25397.89 30897.74 314
DPM-MVS93.68 28392.77 29696.42 21197.91 23592.54 20391.17 36197.47 27784.99 35993.08 34794.74 33989.90 26499.00 29887.54 34398.09 30097.72 315
baseline289.65 34388.44 34993.25 33195.62 35782.71 36393.82 30485.94 39388.89 31687.35 39092.54 36871.23 37999.33 24586.01 35194.60 37597.72 315
test22298.17 21093.24 19092.74 33197.61 27375.17 39194.65 30596.69 27690.96 24898.66 27197.66 317
Syy-MVS92.09 31591.80 31192.93 34295.19 36582.65 36492.46 33691.35 36890.67 29391.76 36787.61 39185.64 30898.50 34694.73 19396.84 34297.65 318
myMVS_eth3d87.16 35985.61 36391.82 35795.19 36579.32 37992.46 33691.35 36890.67 29391.76 36787.61 39141.96 40398.50 34682.66 37596.84 34297.65 318
TAPA-MVS93.32 1294.93 23494.23 26097.04 17198.18 20794.51 14195.22 24398.73 14881.22 37696.25 25695.95 31393.80 18798.98 30289.89 31098.87 24897.62 320
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
新几何197.25 15598.29 19194.70 13397.73 26177.98 38794.83 30296.67 27792.08 23099.45 20488.17 33598.65 27397.61 321
MSDG95.33 21795.13 21695.94 23597.40 29691.85 22891.02 36598.37 20195.30 17196.31 25295.99 30994.51 16998.38 35589.59 31497.65 32297.60 322
FA-MVS(test-final)94.91 23594.89 22894.99 27797.51 28688.11 29698.27 4495.20 33192.40 26996.68 23198.60 9683.44 32399.28 25893.34 24098.53 28097.59 323
testdata95.70 24598.16 21290.58 25197.72 26280.38 37995.62 28297.02 25392.06 23198.98 30289.06 32398.52 28197.54 324
FE-MVS92.95 30092.22 30495.11 26997.21 30988.33 28898.54 2393.66 34689.91 30496.21 25898.14 15270.33 38399.50 18787.79 33798.24 29497.51 325
DSMNet-mixed92.19 31291.83 30993.25 33196.18 33983.68 36196.27 16693.68 34576.97 39092.54 36099.18 3989.20 27898.55 34283.88 37098.60 27897.51 325
thisisatest051590.43 33289.18 34494.17 31597.07 31585.44 33789.75 38087.58 38888.28 32393.69 33191.72 37765.27 39099.58 16390.59 29798.67 26997.50 327
PMMVS92.39 30791.08 32196.30 21893.12 38992.81 19790.58 37095.96 31479.17 38491.85 36692.27 37190.29 26198.66 33389.85 31196.68 34997.43 328
DP-MVS Recon95.55 20695.13 21696.80 18798.51 17193.99 16394.60 27198.69 15890.20 30095.78 27796.21 30092.73 21098.98 30290.58 29898.86 25097.42 329
thres600view792.03 31791.43 31493.82 31998.19 20484.61 35196.27 16690.39 37796.81 9596.37 24893.11 35573.44 37499.49 19280.32 38197.95 30497.36 330
thres40091.68 32291.00 32293.71 32298.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31397.36 330
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21697.16 31191.96 22697.74 7998.84 12087.26 33194.36 31298.01 17393.95 18399.67 13090.70 29598.75 26197.35 332
test_vis1_rt94.03 27593.65 27595.17 26895.76 35493.42 18393.97 29998.33 20684.68 36193.17 34595.89 31592.53 22094.79 39093.50 23794.97 37097.31 333
test0.0.03 190.11 33489.21 34192.83 34393.89 38386.87 32291.74 35088.74 38692.02 27294.71 30491.14 38373.92 36894.48 39283.75 37392.94 38097.16 334
BH-untuned94.69 24694.75 23794.52 30197.95 23487.53 30894.07 29397.01 29193.99 21897.10 20095.65 32092.65 21398.95 30787.60 34196.74 34797.09 335
new_pmnet92.34 30991.69 31394.32 30996.23 33689.16 27292.27 34292.88 35484.39 36695.29 29096.35 29585.66 30796.74 38684.53 36797.56 32497.05 336
tpmrst90.31 33390.61 33189.41 36994.06 38172.37 40095.06 25293.69 34388.01 32692.32 36296.86 26377.45 35198.82 31491.04 28087.01 39297.04 337
EPMVS89.26 34588.55 34891.39 36092.36 39479.11 38195.65 21479.86 39888.60 31993.12 34696.53 28470.73 38298.10 36790.75 29089.32 38996.98 338
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 5198.76 2396.79 22399.34 2596.61 8998.82 31496.38 9699.50 13996.98 338
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test-LLR89.97 33889.90 33690.16 36694.24 37874.98 39589.89 37689.06 38492.02 27289.97 37990.77 38673.92 36898.57 33991.88 26497.36 33296.92 340
test-mter87.92 35587.17 35690.16 36694.24 37874.98 39589.89 37689.06 38486.44 34289.97 37990.77 38654.96 40298.57 33991.88 26497.36 33296.92 340
PCF-MVS89.43 1892.12 31490.64 33096.57 20297.80 25293.48 18189.88 37998.45 18874.46 39296.04 26695.68 31990.71 25199.31 24973.73 39199.01 23596.91 342
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CostFormer89.75 34189.25 33991.26 36194.69 37278.00 38595.32 23791.98 36481.50 37490.55 37496.96 25871.06 38098.89 30988.59 32992.63 38296.87 343
dp88.08 35388.05 35188.16 37692.85 39168.81 40294.17 28692.88 35485.47 35191.38 37096.14 30468.87 38698.81 31686.88 34883.80 39596.87 343
KD-MVS_2432*160088.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
miper_refine_blended88.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
ETV-MVS96.13 18395.90 19596.82 18697.76 26293.89 16595.40 22998.95 9595.87 14495.58 28491.00 38496.36 10699.72 8893.36 23998.83 25496.85 345
cascas91.89 31991.35 31693.51 32694.27 37785.60 33588.86 38498.61 17279.32 38392.16 36391.44 38089.22 27798.12 36690.80 28897.47 33096.82 348
CR-MVSNet93.29 29592.79 29394.78 29095.44 36188.15 29296.18 17497.20 28284.94 36094.10 31798.57 9877.67 34999.39 22695.17 16595.81 35996.81 349
RPMNet94.68 24894.60 24594.90 28295.44 36188.15 29296.18 17498.86 11397.43 7494.10 31798.49 10679.40 34199.76 6295.69 13095.81 35996.81 349
PatchMatch-RL94.61 25293.81 27397.02 17398.19 20495.72 8693.66 30997.23 28188.17 32594.94 30095.62 32291.43 23998.57 33987.36 34697.68 31996.76 351
MAR-MVS94.21 26793.03 28697.76 11096.94 32097.44 3396.97 12597.15 28587.89 32992.00 36492.73 36692.14 22799.12 28383.92 36997.51 32796.73 352
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TESTMET0.1,187.20 35886.57 36089.07 37093.62 38672.84 39989.89 37687.01 39185.46 35289.12 38490.20 38856.00 40097.72 37390.91 28496.92 33896.64 353
CNLPA95.04 23094.47 25396.75 19197.81 24895.25 11494.12 29297.89 25194.41 20394.57 30695.69 31890.30 26098.35 35886.72 35098.76 26096.64 353
IB-MVS85.98 2088.63 34986.95 35993.68 32395.12 36784.82 35090.85 36690.17 38187.55 33088.48 38691.34 38158.01 39599.59 16187.24 34793.80 37996.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs90.79 33190.87 32590.57 36592.75 39376.30 39295.79 20593.64 34791.04 28891.91 36596.26 29777.19 35598.86 31389.38 31889.85 38896.56 356
CHOSEN 280x42089.98 33789.19 34392.37 35295.60 35881.13 37586.22 38897.09 28881.44 37587.44 38993.15 35473.99 36699.47 19788.69 32799.07 22896.52 357
tt080597.44 11397.56 10297.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32797.17 5298.50 34698.67 2597.45 33196.48 358
HY-MVS91.43 1592.58 30591.81 31094.90 28296.49 32988.87 27797.31 10594.62 33685.92 34690.50 37596.84 26585.05 31199.40 22283.77 37295.78 36296.43 359
PatchT93.75 28093.57 27794.29 31195.05 36887.32 31496.05 18492.98 35397.54 7094.25 31398.72 8375.79 36299.24 26795.92 11995.81 35996.32 360
dmvs_re92.08 31691.27 31894.51 30297.16 31192.79 20095.65 21492.64 35994.11 21492.74 35390.98 38583.41 32494.44 39380.72 38094.07 37796.29 361
tpm288.47 35087.69 35490.79 36394.98 36977.34 38895.09 24891.83 36577.51 38989.40 38296.41 29067.83 38898.73 32383.58 37492.60 38396.29 361
AdaColmapbinary95.11 22794.62 24496.58 20097.33 30394.45 14494.92 25898.08 24093.15 24893.98 32395.53 32594.34 17399.10 28885.69 35598.61 27696.20 363
pmmvs390.00 33688.90 34693.32 32894.20 38085.34 33891.25 35992.56 36178.59 38593.82 32495.17 33067.36 38998.69 32889.08 32298.03 30295.92 364
thres100view90091.76 32191.26 32093.26 33098.21 20184.50 35296.39 15690.39 37796.87 9396.33 24993.08 35973.44 37499.42 21178.85 38597.74 31395.85 365
tfpn200view991.55 32391.00 32293.21 33398.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31395.85 365
OpenMVS_ROBcopyleft91.80 1493.64 28693.05 28495.42 25997.31 30591.21 24095.08 25096.68 30581.56 37396.88 22196.41 29090.44 25699.25 26485.39 36097.67 32095.80 367
PAPM87.64 35685.84 36293.04 33696.54 32784.99 34688.42 38595.57 32479.52 38283.82 39393.05 36180.57 33898.41 35262.29 39792.79 38195.71 368
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
tpm cat188.01 35487.33 35590.05 36894.48 37476.28 39394.47 27494.35 34073.84 39489.26 38395.61 32373.64 37098.30 36184.13 36886.20 39395.57 372
JIA-IIPM91.79 32090.69 32995.11 26993.80 38490.98 24394.16 28791.78 36696.38 11390.30 37799.30 2872.02 37798.90 30888.28 33390.17 38795.45 373
TR-MVS92.54 30692.20 30593.57 32596.49 32986.66 32493.51 31494.73 33589.96 30394.95 29993.87 35190.24 26298.61 33681.18 37994.88 37195.45 373
mvsany_test193.47 29093.03 28694.79 28994.05 38292.12 21990.82 36790.01 38285.02 35897.26 18898.28 13493.57 19197.03 37992.51 25695.75 36495.23 375
thres20091.00 32990.42 33392.77 34497.47 29283.98 35994.01 29591.18 37295.12 17995.44 28691.21 38273.93 36799.31 24977.76 38897.63 32395.01 376
131492.38 30892.30 30392.64 34695.42 36385.15 34395.86 20196.97 29385.40 35390.62 37293.06 36091.12 24497.80 37286.74 34995.49 36794.97 377
BH-w/o92.14 31391.94 30792.73 34597.13 31385.30 33992.46 33695.64 32089.33 30994.21 31492.74 36589.60 26898.24 36281.68 37794.66 37394.66 378
xiu_mvs_v2_base94.22 26594.63 24392.99 33997.32 30484.84 34992.12 34497.84 25591.96 27494.17 31593.43 35396.07 11699.71 10491.27 27597.48 32894.42 379
PS-MVSNAJ94.10 27194.47 25393.00 33897.35 29984.88 34791.86 34897.84 25591.96 27494.17 31592.50 37095.82 12499.71 10491.27 27597.48 32894.40 380
dmvs_testset87.30 35786.99 35788.24 37496.71 32477.48 38794.68 26886.81 39292.64 26389.61 38187.01 39385.91 30593.12 39461.04 39888.49 39094.13 381
gg-mvs-nofinetune88.28 35286.96 35892.23 35492.84 39284.44 35398.19 5274.60 40099.08 1087.01 39199.47 1156.93 39698.23 36378.91 38495.61 36594.01 382
test_method66.88 36366.13 36669.11 38062.68 40225.73 40649.76 39496.04 31114.32 39864.27 39991.69 37873.45 37388.05 39776.06 39066.94 39793.54 383
API-MVS95.09 22995.01 22295.31 26296.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34894.54 16898.37 35785.70 35498.52 28193.52 384
PVSNet_081.89 2184.49 36183.21 36488.34 37395.76 35474.97 39783.49 39092.70 35878.47 38687.94 38786.90 39483.38 32596.63 38773.44 39266.86 39893.40 385
FPMVS89.92 33988.63 34793.82 31998.37 18696.94 4591.58 35193.34 35088.00 32790.32 37697.10 24870.87 38191.13 39671.91 39496.16 35893.39 386
PMVScopyleft89.60 1796.71 15796.97 13795.95 23399.51 3197.81 1697.42 10397.49 27597.93 5095.95 26898.58 9796.88 7596.91 38289.59 31499.36 17793.12 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVS90.02 33589.20 34292.47 35094.71 37186.90 32195.86 20196.74 30264.72 39590.62 37292.77 36492.54 21898.39 35479.30 38395.56 36692.12 388
MVEpermissive73.61 2286.48 36085.92 36188.18 37596.23 33685.28 34181.78 39375.79 39986.01 34482.53 39591.88 37592.74 20987.47 39871.42 39594.86 37291.78 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN89.52 34489.78 33788.73 37193.14 38877.61 38683.26 39192.02 36394.82 19093.71 32993.11 35575.31 36396.81 38385.81 35396.81 34591.77 390
EMVS89.06 34689.22 34088.61 37293.00 39077.34 38882.91 39290.92 37394.64 19692.63 35891.81 37676.30 35997.02 38083.83 37196.90 34091.48 391
GG-mvs-BLEND90.60 36491.00 39684.21 35798.23 4672.63 40382.76 39484.11 39556.14 39996.79 38472.20 39392.09 38490.78 392
MVS-HIRNet88.40 35190.20 33582.99 37897.01 31660.04 40393.11 32485.61 39484.45 36588.72 38599.09 5084.72 31598.23 36382.52 37696.59 35190.69 393
DeepMVS_CXcopyleft77.17 37990.94 39785.28 34174.08 40252.51 39680.87 39788.03 39075.25 36470.63 39959.23 39984.94 39475.62 394
wuyk23d93.25 29695.20 21387.40 37796.07 34595.38 10597.04 12294.97 33395.33 16999.70 698.11 15898.14 1791.94 39577.76 38899.68 8374.89 395
tmp_tt57.23 36462.50 36741.44 38134.77 40349.21 40583.93 38960.22 40515.31 39771.11 39879.37 39670.09 38444.86 40064.76 39682.93 39630.25 396
test12312.59 36615.49 3693.87 3826.07 4042.55 40790.75 3682.59 4072.52 4005.20 40213.02 3994.96 4051.85 4025.20 4009.09 3997.23 397
testmvs12.33 36715.23 3703.64 3835.77 4052.23 40888.99 3833.62 4062.30 4015.29 40113.09 3984.52 4061.95 4015.16 4018.32 4006.75 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.22 36532.30 3680.00 3840.00 4060.00 4090.00 39598.10 2370.00 4020.00 40395.06 33397.54 370.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.98 36810.65 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40295.82 1240.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.91 36910.55 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.94 3350.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS79.32 37985.41 359
FOURS199.59 1898.20 799.03 799.25 3098.96 1898.87 56
test_one_060199.05 10695.50 10098.87 11097.21 8698.03 14598.30 12996.93 69
eth-test20.00 406
eth-test0.00 406
ZD-MVS98.43 18295.94 7998.56 18090.72 29196.66 23397.07 24995.02 15399.74 7791.08 27998.93 242
test_241102_ONE99.22 6995.35 10898.83 12696.04 13299.08 4098.13 15497.87 2399.33 245
9.1496.69 15398.53 16896.02 18798.98 8993.23 24097.18 19497.46 21996.47 9899.62 15192.99 24999.32 192
save fliter98.48 17794.71 13194.53 27398.41 19595.02 184
test072699.24 6495.51 9796.89 12998.89 10295.92 14098.64 7498.31 12597.06 58
test_part299.03 10896.07 7498.08 138
sam_mvs77.38 352
MTGPAbinary98.73 148
test_post194.98 25710.37 40176.21 36099.04 29489.47 316
test_post10.87 40076.83 35699.07 291
patchmatchnet-post96.84 26577.36 35399.42 211
MTMP96.55 15074.60 400
gm-plane-assit91.79 39571.40 40181.67 37290.11 38998.99 30084.86 365
TEST997.84 24495.23 11593.62 31098.39 19886.81 33893.78 32595.99 30994.68 16299.52 182
test_897.81 24895.07 12493.54 31398.38 20087.04 33493.71 32995.96 31294.58 16699.52 182
agg_prior97.80 25294.96 12698.36 20293.49 33799.53 179
test_prior495.38 10593.61 312
test_prior293.33 32094.21 20894.02 32196.25 29893.64 19091.90 26398.96 237
旧先验293.35 31977.95 38895.77 27998.67 33290.74 293
新几何293.43 315
原ACMM292.82 327
testdata299.46 20087.84 336
segment_acmp95.34 143
testdata192.77 32893.78 223
plane_prior798.70 14594.67 134
plane_prior698.38 18594.37 14791.91 236
plane_prior496.77 271
plane_prior394.51 14195.29 17296.16 261
plane_prior296.50 15296.36 115
plane_prior198.49 175
plane_prior94.29 15095.42 22694.31 20798.93 242
n20.00 408
nn0.00 408
door-mid98.17 227
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
HQP-NCC97.85 23994.26 27893.18 24492.86 350
ACMP_Plane97.85 23994.26 27893.18 24492.86 350
BP-MVS90.51 300
HQP3-MVS98.43 19198.74 262
HQP2-MVS90.33 257
NP-MVS98.14 21693.72 17295.08 331
MDTV_nov1_ep1391.28 31794.31 37573.51 39894.80 26293.16 35186.75 34093.45 33997.40 22476.37 35898.55 34288.85 32496.43 352
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 169