This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LTVRE_ROB86.10 193.04 393.44 291.82 2093.73 6085.72 3096.79 195.51 888.86 1295.63 896.99 884.81 6793.16 13291.10 197.53 7096.58 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MP-MVS-pluss90.81 2691.08 3389.99 4695.97 1379.88 7188.13 9994.51 1775.79 14092.94 4494.96 4788.36 2895.01 6390.70 298.40 1995.09 63
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP90.65 2891.07 3589.42 5995.93 1579.54 7689.95 6193.68 5277.65 11991.97 6594.89 4988.38 2795.45 4889.27 397.87 5093.27 138
ZNCC-MVS91.26 2091.34 2791.01 3095.73 2083.05 5292.18 2894.22 2480.14 8891.29 7693.97 9387.93 3895.87 1988.65 497.96 4594.12 99
MTAPA91.52 1491.60 1891.29 2696.59 486.29 1792.02 3091.81 11884.07 4492.00 6494.40 7286.63 5195.28 5588.59 598.31 2392.30 178
HPM-MVScopyleft92.13 792.20 991.91 1595.58 2584.67 4293.51 894.85 1482.88 5991.77 6893.94 9990.55 1295.73 3188.50 698.23 2795.33 54
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MSP-MVS89.08 6288.16 7391.83 1895.76 1786.14 2192.75 1693.90 4278.43 11189.16 11992.25 15172.03 22096.36 388.21 790.93 25792.98 152
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HPM-MVS_fast92.50 492.54 592.37 595.93 1585.81 2992.99 1294.23 2285.21 3592.51 5595.13 4490.65 995.34 5288.06 898.15 3495.95 41
MM89.09 6576.39 11588.68 9186.76 22584.54 4183.58 23293.78 10573.36 20396.48 187.98 996.21 11294.41 86
SMA-MVScopyleft90.31 3490.48 4689.83 5095.31 2979.52 7790.98 4393.24 6875.37 14792.84 4895.28 3885.58 6296.09 787.92 1097.76 5593.88 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_fmvsmconf0.01_n86.68 9286.52 9887.18 9285.94 25878.30 8586.93 11692.20 10265.94 25389.16 11993.16 11883.10 8489.89 22787.81 1194.43 18293.35 134
MVS_030486.35 9785.92 10887.66 8889.21 18073.16 14088.40 9683.63 26881.27 7480.87 27794.12 8771.49 22495.71 3287.79 1296.50 9994.11 100
HFP-MVS91.30 1991.39 2391.02 2995.43 2884.66 4392.58 2193.29 6681.99 6591.47 7193.96 9688.35 2995.56 3987.74 1397.74 5792.85 155
ACMMPR91.49 1591.35 2691.92 1495.74 1985.88 2692.58 2193.25 6781.99 6591.40 7294.17 8487.51 4295.87 1987.74 1397.76 5593.99 103
anonymousdsp89.73 4988.88 6692.27 789.82 16986.67 1490.51 5090.20 16669.87 21995.06 1196.14 2184.28 7293.07 13687.68 1596.34 10697.09 21
TSAR-MVS + MP.88.14 7287.82 7889.09 6595.72 2176.74 10892.49 2491.19 13567.85 24286.63 16894.84 5179.58 13295.96 1387.62 1694.50 17994.56 76
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SteuartSystems-ACMMP91.16 2391.36 2490.55 3793.91 5680.97 6691.49 3793.48 5782.82 6092.60 5493.97 9388.19 3196.29 587.61 1798.20 3194.39 87
Skip Steuart: Steuart Systems R&D Blog.
region2R91.44 1891.30 3091.87 1795.75 1885.90 2592.63 2093.30 6581.91 6790.88 8794.21 8087.75 3995.87 1987.60 1897.71 5893.83 112
APDe-MVScopyleft91.22 2191.92 1189.14 6492.97 8078.04 8992.84 1594.14 3183.33 5393.90 2495.73 2788.77 2596.41 287.60 1897.98 4292.98 152
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MSC_two_6792asdad88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
No_MVS88.81 6991.55 12777.99 9091.01 13996.05 887.45 2098.17 3292.40 173
DVP-MVS++90.07 3891.09 3287.00 9591.55 12772.64 14596.19 294.10 3485.33 3393.49 3694.64 6081.12 11795.88 1787.41 2295.94 12692.48 169
test_0728_THIRD85.33 3393.75 3094.65 5787.44 4395.78 2887.41 2298.21 2992.98 152
XVS91.54 1391.36 2492.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9994.03 9086.57 5295.80 2587.35 2497.62 6294.20 92
X-MVStestdata85.04 11982.70 16792.08 895.64 2386.25 1892.64 1893.33 6185.07 3689.99 9916.05 39786.57 5295.80 2587.35 2497.62 6294.20 92
ACMMPcopyleft91.91 1091.87 1592.03 1195.53 2685.91 2493.35 1194.16 2782.52 6292.39 5894.14 8589.15 2395.62 3587.35 2498.24 2694.56 76
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS91.67 1291.58 1991.96 1295.29 3087.62 993.38 993.36 5983.16 5591.06 8194.00 9288.26 3095.71 3287.28 2798.39 2092.55 167
mPP-MVS91.69 1191.47 2292.37 596.04 1288.48 792.72 1792.60 9383.09 5691.54 7094.25 7987.67 4195.51 4487.21 2898.11 3593.12 146
SR-MVS-dyc-post92.41 592.41 692.39 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6888.83 2495.51 4487.16 2997.60 6492.73 158
RE-MVS-def92.61 494.13 5188.95 592.87 1394.16 2788.75 1493.79 2894.43 6890.64 1087.16 2997.60 6492.73 158
GST-MVS90.96 2591.01 3690.82 3395.45 2782.73 5591.75 3593.74 4880.98 7991.38 7393.80 10387.20 4695.80 2587.10 3197.69 5993.93 107
test_fmvsmconf0.1_n86.18 10285.88 11087.08 9485.26 26678.25 8685.82 13591.82 11665.33 26688.55 12892.35 14882.62 9189.80 22986.87 3294.32 18593.18 143
SR-MVS92.23 692.34 791.91 1594.89 3787.85 892.51 2393.87 4588.20 1993.24 3994.02 9190.15 1695.67 3486.82 3397.34 7492.19 185
test_fmvsmconf_n85.88 10785.51 11886.99 9684.77 27378.21 8785.40 14391.39 12865.32 26787.72 14591.81 16282.33 9689.78 23086.68 3494.20 18992.99 151
APD-MVS_3200maxsize92.05 892.24 891.48 2193.02 7885.17 3592.47 2595.05 1387.65 2293.21 4094.39 7390.09 1795.08 6186.67 3597.60 6494.18 95
DVP-MVScopyleft90.06 3991.32 2886.29 10994.16 4972.56 14990.54 4891.01 13983.61 5093.75 3094.65 5789.76 1895.78 2886.42 3697.97 4390.55 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND86.79 10094.25 4572.45 15390.54 4894.10 3495.88 1786.42 3697.97 4392.02 191
PGM-MVS91.20 2290.95 3991.93 1395.67 2285.85 2790.00 5793.90 4280.32 8591.74 6994.41 7188.17 3295.98 1186.37 3897.99 4093.96 106
MP-MVScopyleft91.14 2490.91 4091.83 1896.18 1086.88 1392.20 2793.03 8082.59 6188.52 13094.37 7486.74 5095.41 5086.32 3998.21 2993.19 142
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVSFormer82.23 17581.57 18884.19 15985.54 26369.26 18791.98 3190.08 16971.54 19976.23 32085.07 29958.69 29294.27 8486.26 4088.77 28589.03 261
test_djsdf89.62 5089.01 6391.45 2292.36 9582.98 5391.98 3190.08 16971.54 19994.28 2096.54 1381.57 11294.27 8486.26 4096.49 10097.09 21
v7n90.13 3690.96 3887.65 8991.95 11071.06 17189.99 5993.05 7786.53 2694.29 1896.27 1782.69 8894.08 9586.25 4297.63 6197.82 8
SD-MVS88.96 6389.88 4986.22 11291.63 12177.07 10589.82 6493.77 4778.90 10492.88 4592.29 14986.11 5890.22 21486.24 4397.24 7791.36 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft88.93 6488.45 7190.38 4094.92 3585.85 2789.70 6691.27 13278.20 11386.69 16792.28 15080.36 12695.06 6286.17 4496.49 10090.22 237
TDRefinement93.52 293.39 393.88 195.94 1490.26 395.70 496.46 290.58 892.86 4796.29 1688.16 3394.17 9286.07 4598.48 1797.22 19
SED-MVS90.46 3391.64 1786.93 9794.18 4672.65 14390.47 5193.69 5083.77 4794.11 2294.27 7590.28 1495.84 2386.03 4697.92 4692.29 179
test_241102_TWO93.71 4983.77 4793.49 3694.27 7589.27 2195.84 2386.03 4697.82 5192.04 190
UA-Net91.49 1591.53 2091.39 2394.98 3482.95 5493.52 792.79 8888.22 1888.53 12997.64 283.45 8194.55 7886.02 4898.60 1296.67 27
mvsmamba87.87 7887.23 8689.78 5192.31 9976.51 11291.09 4291.87 11372.61 18692.16 6095.23 4166.01 24995.59 3786.02 4897.78 5397.24 17
IU-MVS94.18 4672.64 14590.82 14456.98 33089.67 10885.78 5097.92 4693.28 137
SF-MVS90.27 3590.80 4288.68 7492.86 8477.09 10491.19 4095.74 581.38 7392.28 5993.80 10386.89 4994.64 7385.52 5197.51 7194.30 91
LPG-MVS_test91.47 1791.68 1690.82 3394.75 4081.69 5990.00 5794.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
LGP-MVS_train90.82 3394.75 4081.69 5994.27 1982.35 6393.67 3394.82 5291.18 495.52 4285.36 5298.73 695.23 59
bld_raw_dy_0_6484.85 12384.44 13886.07 11793.73 6074.93 12588.57 9381.90 28470.44 21091.28 7795.18 4256.62 30689.28 24385.15 5497.09 8193.99 103
LCM-MVSNet95.70 196.40 193.61 298.67 185.39 3395.54 597.36 196.97 199.04 199.05 196.61 195.92 1485.07 5599.27 199.54 1
OurMVSNet-221017-090.01 4289.74 5290.83 3293.16 7680.37 6891.91 3393.11 7381.10 7795.32 1097.24 572.94 20794.85 6785.07 5597.78 5397.26 16
ACMM79.39 990.65 2890.99 3789.63 5595.03 3383.53 4789.62 7193.35 6079.20 10093.83 2793.60 11190.81 792.96 13885.02 5798.45 1892.41 172
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
RRT_MVS88.30 7087.83 7789.70 5293.62 6475.70 12192.36 2689.06 18877.34 12293.63 3595.83 2565.40 25395.90 1585.01 5898.23 2797.49 13
3Dnovator+83.92 289.97 4589.66 5390.92 3191.27 13681.66 6291.25 3894.13 3288.89 1188.83 12494.26 7877.55 14995.86 2284.88 5995.87 13095.24 58
OPM-MVS89.80 4789.97 4889.27 6194.76 3979.86 7286.76 12292.78 8978.78 10692.51 5593.64 11088.13 3493.84 10484.83 6097.55 6794.10 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CNVR-MVS87.81 8187.68 7988.21 8192.87 8277.30 10385.25 14491.23 13377.31 12487.07 15891.47 17182.94 8694.71 7084.67 6196.27 11092.62 165
XVG-OURS-SEG-HR89.59 5189.37 5790.28 4294.47 4285.95 2386.84 11893.91 4180.07 8986.75 16493.26 11593.64 290.93 19384.60 6290.75 26393.97 105
DPE-MVScopyleft90.53 3291.08 3388.88 6793.38 6978.65 8389.15 8294.05 3684.68 4093.90 2494.11 8888.13 3496.30 484.51 6397.81 5291.70 201
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_fmvsmvis_n_192085.22 11485.36 12184.81 13885.80 26076.13 11985.15 14792.32 9961.40 29491.33 7490.85 19383.76 7886.16 28984.31 6493.28 20892.15 187
mvs_tets89.78 4889.27 5991.30 2593.51 6584.79 4089.89 6390.63 14970.00 21894.55 1596.67 1187.94 3793.59 11584.27 6595.97 12395.52 49
DeepC-MVS82.31 489.15 6089.08 6289.37 6093.64 6379.07 7988.54 9494.20 2573.53 16689.71 10694.82 5285.09 6395.77 3084.17 6698.03 3893.26 139
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jajsoiax89.41 5388.81 6891.19 2893.38 6984.72 4189.70 6690.29 16369.27 22294.39 1696.38 1586.02 6093.52 11983.96 6795.92 12895.34 53
v1086.54 9487.10 8884.84 13788.16 20663.28 24386.64 12592.20 10275.42 14692.81 5094.50 6474.05 19194.06 9683.88 6896.28 10897.17 20
XVG-OURS89.18 5988.83 6790.23 4394.28 4486.11 2285.91 13293.60 5580.16 8789.13 12193.44 11383.82 7590.98 19183.86 6995.30 15193.60 126
9.1489.29 5891.84 11788.80 8895.32 1175.14 14991.07 8092.89 12987.27 4493.78 10583.69 7097.55 67
ACMH76.49 1489.34 5591.14 3183.96 16292.50 9270.36 17789.55 7293.84 4681.89 6894.70 1395.44 3490.69 888.31 25783.33 7198.30 2493.20 141
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.1_n82.17 17881.59 18683.94 16486.87 23671.57 16785.19 14677.42 31062.27 28684.47 21191.33 17476.43 16785.91 29383.14 7287.14 30594.33 90
fmvsm_s_conf0.5_n81.91 18681.30 19383.75 16886.02 25771.56 16884.73 15277.11 31462.44 28384.00 22590.68 19976.42 16885.89 29583.14 7287.11 30693.81 116
v886.22 10086.83 9584.36 15187.82 21062.35 25986.42 12891.33 13076.78 12892.73 5294.48 6673.41 20093.72 10783.10 7495.41 14497.01 23
PS-MVSNAJss88.31 6987.90 7689.56 5793.31 7177.96 9287.94 10291.97 10970.73 20894.19 2196.67 1176.94 15994.57 7683.07 7596.28 10896.15 33
CPTT-MVS89.39 5488.98 6590.63 3695.09 3286.95 1292.09 2992.30 10079.74 9187.50 14992.38 14481.42 11493.28 12883.07 7597.24 7791.67 202
SixPastTwentyTwo87.20 8587.45 8386.45 10692.52 9169.19 19087.84 10488.05 20481.66 7094.64 1496.53 1465.94 25094.75 6983.02 7796.83 8895.41 51
fmvsm_l_conf0.5_n82.06 18181.54 18983.60 17383.94 28673.90 13183.35 18886.10 23358.97 31483.80 22890.36 20774.23 18886.94 27382.90 7890.22 27089.94 244
ACMP79.16 1090.54 3190.60 4590.35 4194.36 4380.98 6589.16 8194.05 3679.03 10392.87 4693.74 10790.60 1195.21 5882.87 7998.76 394.87 67
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
v124084.30 13584.51 13783.65 17187.65 21661.26 27082.85 20491.54 12267.94 24090.68 9090.65 20271.71 22293.64 10982.84 8094.78 17296.07 36
fmvsm_s_conf0.1_n_a82.58 17081.93 17984.50 14687.68 21473.35 13486.14 13177.70 30761.64 29285.02 19891.62 16777.75 14586.24 28582.79 8187.07 30793.91 109
fmvsm_s_conf0.5_n_a82.21 17681.51 19084.32 15486.56 23873.35 13485.46 14077.30 31161.81 28884.51 20890.88 19277.36 15186.21 28782.72 8286.97 31193.38 133
XVG-ACMP-BASELINE89.98 4389.84 5090.41 3994.91 3684.50 4489.49 7693.98 3879.68 9292.09 6293.89 10183.80 7693.10 13582.67 8398.04 3693.64 124
EC-MVSNet88.01 7588.32 7287.09 9389.28 17772.03 15990.31 5496.31 380.88 8085.12 19689.67 22384.47 7095.46 4782.56 8496.26 11193.77 118
CS-MVS88.14 7287.67 8089.54 5889.56 17179.18 7890.47 5194.77 1579.37 9884.32 21589.33 22983.87 7494.53 7982.45 8594.89 16794.90 65
v119284.57 12884.69 13384.21 15787.75 21262.88 24783.02 19891.43 12569.08 22589.98 10190.89 19072.70 21193.62 11382.41 8694.97 16496.13 34
v192192084.23 13984.37 14283.79 16687.64 21761.71 26582.91 20291.20 13467.94 24090.06 9690.34 20872.04 21993.59 11582.32 8794.91 16596.07 36
test_fmvsm_n_192083.60 15482.89 16485.74 12485.22 26777.74 9584.12 16590.48 15259.87 31286.45 17791.12 18175.65 17185.89 29582.28 8890.87 25993.58 127
APD-MVScopyleft89.54 5289.63 5489.26 6292.57 8981.34 6490.19 5693.08 7680.87 8191.13 7993.19 11686.22 5795.97 1282.23 8997.18 7990.45 233
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
tt080588.09 7489.79 5182.98 18993.26 7363.94 23791.10 4189.64 17885.07 3690.91 8591.09 18289.16 2291.87 16982.03 9095.87 13093.13 144
EI-MVSNet-Vis-set85.12 11884.53 13686.88 9884.01 28572.76 14283.91 17385.18 24880.44 8288.75 12585.49 28880.08 12891.92 16682.02 9190.85 26195.97 39
ZD-MVS92.22 10280.48 6791.85 11471.22 20490.38 9192.98 12486.06 5996.11 681.99 9296.75 91
fmvsm_l_conf0.5_n_a81.46 19180.87 20183.25 18283.73 29073.21 13983.00 19985.59 24258.22 32082.96 24390.09 21772.30 21586.65 27981.97 9389.95 27489.88 245
EI-MVSNet-UG-set85.04 11984.44 13886.85 9983.87 28972.52 15183.82 17585.15 24980.27 8688.75 12585.45 29079.95 13091.90 16781.92 9490.80 26296.13 34
v14419284.24 13884.41 14083.71 17087.59 21861.57 26682.95 20191.03 13867.82 24389.80 10490.49 20573.28 20493.51 12081.88 9594.89 16796.04 38
v114484.54 13084.72 13184.00 16087.67 21562.55 25482.97 20090.93 14270.32 21489.80 10490.99 18573.50 19793.48 12181.69 9694.65 17795.97 39
train_agg85.98 10585.28 12288.07 8392.34 9679.70 7483.94 17090.32 15865.79 25684.49 20990.97 18681.93 10693.63 11081.21 9796.54 9790.88 219
NCCC87.36 8386.87 9488.83 6892.32 9878.84 8286.58 12691.09 13778.77 10784.85 20490.89 19080.85 12095.29 5381.14 9895.32 14892.34 176
v2v48284.09 14284.24 14483.62 17287.13 22661.40 26782.71 20789.71 17672.19 19589.55 11491.41 17270.70 22893.20 13081.02 9993.76 19796.25 32
WR-MVS_H89.91 4691.31 2985.71 12596.32 962.39 25789.54 7493.31 6490.21 1095.57 995.66 2981.42 11495.90 1580.94 10098.80 298.84 5
LS3D90.60 3090.34 4791.38 2489.03 18384.23 4593.58 694.68 1690.65 790.33 9393.95 9884.50 6995.37 5180.87 10195.50 14394.53 79
test9_res80.83 10296.45 10390.57 229
HQP_MVS87.75 8287.43 8488.70 7393.45 6676.42 11389.45 7793.61 5379.44 9686.55 16992.95 12774.84 18095.22 5680.78 10395.83 13294.46 80
plane_prior593.61 5395.22 5680.78 10395.83 13294.46 80
PHI-MVS86.38 9685.81 11288.08 8288.44 20077.34 10189.35 8093.05 7773.15 17784.76 20587.70 25478.87 13694.18 9080.67 10596.29 10792.73 158
K. test v385.14 11784.73 12986.37 10791.13 14169.63 18385.45 14176.68 31884.06 4592.44 5796.99 862.03 27094.65 7280.58 10693.24 20994.83 72
Vis-MVSNetpermissive86.86 8886.58 9787.72 8692.09 10677.43 10087.35 10992.09 10578.87 10584.27 22094.05 8978.35 14093.65 10880.54 10791.58 24592.08 189
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
casdiffmvs_mvgpermissive86.72 9187.51 8284.36 15187.09 23065.22 22484.16 16394.23 2277.89 11691.28 7793.66 10984.35 7192.71 14480.07 10894.87 17095.16 61
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
V4283.47 15883.37 15583.75 16883.16 29663.33 24281.31 23490.23 16569.51 22190.91 8590.81 19574.16 18992.29 15880.06 10990.22 27095.62 47
MVS_Test82.47 17283.22 15680.22 23882.62 30257.75 31282.54 21391.96 11071.16 20582.89 24492.52 14277.41 15090.50 20880.04 11087.84 29992.40 173
COLMAP_ROBcopyleft83.01 391.97 991.95 1092.04 1093.68 6286.15 2093.37 1095.10 1290.28 992.11 6195.03 4689.75 2094.93 6579.95 11198.27 2595.04 64
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_040288.65 6589.58 5685.88 12192.55 9072.22 15784.01 16889.44 18388.63 1694.38 1795.77 2686.38 5693.59 11579.84 11295.21 15291.82 197
iter_conf_final80.36 21078.88 22584.79 13986.29 24866.36 21586.95 11586.25 23068.16 23682.09 25689.48 22536.59 38794.51 8179.83 11394.30 18693.50 132
EGC-MVSNET74.79 27669.99 31689.19 6394.89 3787.00 1191.89 3486.28 2291.09 3982.23 40095.98 2381.87 10989.48 23479.76 11495.96 12491.10 214
nrg03087.85 8088.49 7085.91 11990.07 16469.73 18187.86 10394.20 2574.04 15892.70 5394.66 5685.88 6191.50 17579.72 11597.32 7596.50 31
agg_prior279.68 11696.16 11490.22 237
DeepPCF-MVS81.24 587.28 8486.21 10490.49 3891.48 13184.90 3883.41 18692.38 9870.25 21589.35 11890.68 19982.85 8794.57 7679.55 11795.95 12592.00 192
test_prior283.37 18775.43 14584.58 20791.57 16881.92 10879.54 11896.97 84
lessismore_v085.95 11891.10 14270.99 17270.91 35891.79 6794.42 7061.76 27192.93 14079.52 11993.03 21493.93 107
PS-CasMVS90.06 3991.92 1184.47 14896.56 658.83 30389.04 8392.74 9091.40 596.12 496.06 2287.23 4595.57 3879.42 12098.74 599.00 2
tttt051781.07 19679.58 21985.52 12888.99 18566.45 21387.03 11475.51 32673.76 16288.32 13690.20 21237.96 38494.16 9479.36 12195.13 15595.93 42
DTE-MVSNet89.98 4391.91 1384.21 15796.51 757.84 31088.93 8592.84 8791.92 396.16 396.23 1886.95 4895.99 1079.05 12298.57 1498.80 6
CP-MVSNet89.27 5890.91 4084.37 14996.34 858.61 30688.66 9292.06 10690.78 695.67 795.17 4381.80 11095.54 4179.00 12398.69 998.95 4
ambc82.98 18990.55 15464.86 22788.20 9789.15 18689.40 11793.96 9671.67 22391.38 18278.83 12496.55 9692.71 161
PEN-MVS90.03 4191.88 1484.48 14796.57 558.88 30088.95 8493.19 6991.62 496.01 696.16 2087.02 4795.60 3678.69 12598.72 898.97 3
baseline85.20 11685.93 10783.02 18886.30 24762.37 25884.55 15693.96 3974.48 15587.12 15392.03 15482.30 9891.94 16578.39 12694.21 18894.74 73
DeepC-MVS_fast80.27 886.23 9985.65 11687.96 8591.30 13476.92 10687.19 11091.99 10870.56 20984.96 20090.69 19880.01 12995.14 5978.37 12795.78 13791.82 197
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH+77.89 1190.73 2791.50 2188.44 7693.00 7976.26 11689.65 7095.55 787.72 2193.89 2694.94 4891.62 393.44 12378.35 12898.76 395.61 48
MCST-MVS84.36 13283.93 14985.63 12691.59 12271.58 16683.52 18392.13 10461.82 28783.96 22689.75 22279.93 13193.46 12278.33 12994.34 18491.87 196
3Dnovator80.37 784.80 12484.71 13285.06 13586.36 24574.71 12688.77 8990.00 17175.65 14284.96 20093.17 11774.06 19091.19 18578.28 13091.09 25189.29 255
h-mvs3384.25 13782.76 16688.72 7191.82 11982.60 5684.00 16984.98 25571.27 20186.70 16590.55 20463.04 26793.92 10078.26 13194.20 18989.63 247
hse-mvs283.47 15881.81 18188.47 7591.03 14382.27 5782.61 20883.69 26671.27 20186.70 16586.05 28263.04 26792.41 15278.26 13193.62 20390.71 224
c3_l81.64 18981.59 18681.79 21580.86 32059.15 29778.61 27490.18 16768.36 23287.20 15187.11 26769.39 23191.62 17378.16 13394.43 18294.60 75
IterMVS-LS84.73 12584.98 12683.96 16287.35 22163.66 23883.25 19189.88 17376.06 13289.62 11092.37 14773.40 20292.52 14978.16 13394.77 17495.69 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet82.61 16882.42 17483.20 18583.25 29463.66 23883.50 18485.07 25076.06 13286.55 16985.10 29673.41 20090.25 21178.15 13590.67 26595.68 45
GeoE85.45 11285.81 11284.37 14990.08 16267.07 20585.86 13491.39 12872.33 19287.59 14790.25 21184.85 6692.37 15478.00 13691.94 23893.66 121
diffmvspermissive80.40 20880.48 20680.17 23979.02 34060.04 28577.54 28890.28 16466.65 25182.40 25087.33 26273.50 19787.35 26677.98 13789.62 27693.13 144
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
OMC-MVS88.19 7187.52 8190.19 4491.94 11281.68 6187.49 10893.17 7076.02 13488.64 12791.22 17784.24 7393.37 12677.97 13897.03 8395.52 49
casdiffmvspermissive85.21 11585.85 11183.31 18186.17 25362.77 25083.03 19793.93 4074.69 15388.21 13792.68 13782.29 9991.89 16877.87 13993.75 19995.27 57
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS-test87.00 8686.43 10088.71 7289.46 17377.46 9889.42 7995.73 677.87 11781.64 26787.25 26382.43 9394.53 7977.65 14096.46 10294.14 98
DP-MVS88.60 6689.01 6387.36 9191.30 13477.50 9787.55 10692.97 8387.95 2089.62 11092.87 13084.56 6893.89 10177.65 14096.62 9490.70 225
PMVScopyleft80.48 690.08 3790.66 4488.34 7996.71 392.97 190.31 5489.57 18188.51 1790.11 9595.12 4590.98 688.92 24777.55 14297.07 8283.13 332
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MSLP-MVS++85.00 12186.03 10681.90 20991.84 11771.56 16886.75 12393.02 8175.95 13787.12 15389.39 22777.98 14289.40 24177.46 14394.78 17284.75 307
IterMVS-SCA-FT80.64 20379.41 22084.34 15383.93 28769.66 18276.28 30781.09 29072.43 18786.47 17590.19 21360.46 27793.15 13377.45 14486.39 31790.22 237
CDPH-MVS86.17 10385.54 11788.05 8492.25 10075.45 12283.85 17492.01 10765.91 25586.19 17891.75 16583.77 7794.98 6477.43 14596.71 9293.73 119
test_fmvs375.72 26575.20 26577.27 28275.01 37169.47 18478.93 26784.88 25746.67 37087.08 15787.84 25250.44 33571.62 35777.42 14688.53 28890.72 223
BP-MVS77.30 147
HQP-MVS84.61 12784.06 14686.27 11091.19 13770.66 17384.77 14992.68 9173.30 17280.55 28290.17 21572.10 21694.61 7477.30 14794.47 18093.56 129
MVS_111021_LR84.28 13683.76 15185.83 12389.23 17983.07 5180.99 24083.56 26972.71 18486.07 18189.07 23481.75 11186.19 28877.11 14993.36 20488.24 268
CANet83.79 15082.85 16586.63 10286.17 25372.21 15883.76 17891.43 12577.24 12574.39 33887.45 25975.36 17495.42 4977.03 15092.83 21992.25 183
dcpmvs_284.23 13985.14 12381.50 21788.61 19561.98 26482.90 20393.11 7368.66 23192.77 5192.39 14378.50 13887.63 26376.99 15192.30 22694.90 65
Anonymous2023121188.40 6789.62 5584.73 14290.46 15565.27 22388.86 8693.02 8187.15 2393.05 4397.10 682.28 10092.02 16476.70 15297.99 4096.88 25
iter_conf0578.81 22977.35 24483.21 18482.98 30060.75 28084.09 16688.34 19863.12 27684.25 22289.48 22531.41 39294.51 8176.64 15395.83 13294.38 88
MVS_111021_HR84.63 12684.34 14385.49 13090.18 16175.86 12079.23 26587.13 21673.35 16985.56 19189.34 22883.60 8090.50 20876.64 15394.05 19390.09 242
RPSCF88.00 7686.93 9391.22 2790.08 16289.30 489.68 6891.11 13679.26 9989.68 10794.81 5582.44 9287.74 26176.54 15588.74 28796.61 29
DIV-MVS_self_test80.43 20680.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.38 24486.19 17889.22 23063.09 26590.16 21676.32 15695.80 13593.66 121
cl____80.42 20780.23 20981.02 22679.99 32859.25 29477.07 29487.02 22167.37 24586.18 18089.21 23163.08 26690.16 21676.31 15795.80 13593.65 123
AUN-MVS81.18 19578.78 22888.39 7790.93 14582.14 5882.51 21483.67 26764.69 27180.29 28685.91 28551.07 33192.38 15376.29 15893.63 20290.65 228
Gipumacopyleft84.44 13186.33 10178.78 25584.20 28473.57 13389.55 7290.44 15484.24 4384.38 21294.89 4976.35 17080.40 33176.14 15996.80 9082.36 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
miper_ehance_all_eth80.34 21180.04 21681.24 22279.82 33058.95 29977.66 28589.66 17765.75 25985.99 18585.11 29568.29 23891.42 18076.03 16092.03 23493.33 135
alignmvs83.94 14883.98 14883.80 16587.80 21167.88 20184.54 15891.42 12773.27 17588.41 13387.96 24872.33 21490.83 19876.02 16194.11 19192.69 162
PC_three_145258.96 31590.06 9691.33 17480.66 12393.03 13775.78 16295.94 12692.48 169
canonicalmvs85.50 11086.14 10583.58 17487.97 20767.13 20487.55 10694.32 1873.44 16888.47 13187.54 25786.45 5491.06 19075.76 16393.76 19792.54 168
CSCG86.26 9886.47 9985.60 12790.87 14774.26 12987.98 10191.85 11480.35 8489.54 11688.01 24779.09 13492.13 16075.51 16495.06 15990.41 234
thisisatest053079.07 22477.33 24584.26 15687.13 22664.58 22983.66 18175.95 32168.86 22885.22 19587.36 26138.10 38293.57 11875.47 16594.28 18794.62 74
TSAR-MVS + GP.83.95 14782.69 16887.72 8689.27 17881.45 6383.72 17981.58 28874.73 15285.66 18886.06 28172.56 21392.69 14675.44 16695.21 15289.01 263
cl2278.97 22578.21 23781.24 22277.74 34459.01 29877.46 29187.13 21665.79 25684.32 21585.10 29658.96 29190.88 19775.36 16792.03 23493.84 111
eth_miper_zixun_eth80.84 19980.22 21182.71 19781.41 31260.98 27677.81 28390.14 16867.31 24686.95 16187.24 26464.26 25792.31 15675.23 16891.61 24394.85 71
v14882.31 17382.48 17381.81 21485.59 26259.66 29081.47 23386.02 23672.85 18088.05 14090.65 20270.73 22790.91 19575.15 16991.79 23994.87 67
FC-MVSNet-test85.93 10687.05 9082.58 20092.25 10056.44 32185.75 13693.09 7577.33 12391.94 6694.65 5774.78 18293.41 12575.11 17098.58 1397.88 7
UniMVSNet (Re)86.87 8786.98 9286.55 10493.11 7768.48 19483.80 17792.87 8580.37 8389.61 11291.81 16277.72 14694.18 9075.00 17198.53 1596.99 24
FA-MVS(test-final)83.13 16483.02 16283.43 17786.16 25566.08 21788.00 10088.36 19775.55 14385.02 19892.75 13565.12 25492.50 15074.94 17291.30 24991.72 199
OPU-MVS88.27 8091.89 11377.83 9390.47 5191.22 17781.12 11794.68 7174.48 17395.35 14692.29 179
DELS-MVS81.44 19281.25 19482.03 20784.27 28362.87 24876.47 30592.49 9570.97 20681.64 26783.83 31175.03 17792.70 14574.29 17492.22 23290.51 232
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+83.90 14984.01 14783.57 17587.22 22465.61 22286.55 12792.40 9678.64 10981.34 27284.18 30983.65 7992.93 14074.22 17587.87 29892.17 186
UniMVSNet_NR-MVSNet86.84 8987.06 8986.17 11592.86 8467.02 20682.55 21291.56 12183.08 5790.92 8391.82 16178.25 14193.99 9774.16 17698.35 2197.49 13
DU-MVS86.80 9086.99 9186.21 11393.24 7467.02 20683.16 19592.21 10181.73 6990.92 8391.97 15577.20 15393.99 9774.16 17698.35 2197.61 10
testf189.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
APD_test289.30 5689.12 6089.84 4888.67 19285.64 3190.61 4693.17 7086.02 2993.12 4195.30 3684.94 6489.44 23874.12 17896.10 11894.45 82
LF4IMVS82.75 16781.93 17985.19 13282.08 30380.15 7085.53 13988.76 19168.01 23785.58 19087.75 25371.80 22186.85 27574.02 18093.87 19688.58 266
FIs85.35 11386.27 10282.60 19991.86 11457.31 31485.10 14893.05 7775.83 13991.02 8293.97 9373.57 19692.91 14273.97 18198.02 3997.58 12
IS-MVSNet86.66 9386.82 9686.17 11592.05 10866.87 20991.21 3988.64 19386.30 2889.60 11392.59 13869.22 23394.91 6673.89 18297.89 4996.72 26
EU-MVSNet75.12 27074.43 27277.18 28383.11 29859.48 29285.71 13882.43 27939.76 39085.64 18988.76 23744.71 36787.88 26073.86 18385.88 32184.16 315
ETV-MVS84.31 13483.91 15085.52 12888.58 19670.40 17684.50 16093.37 5878.76 10884.07 22478.72 36080.39 12595.13 6073.82 18492.98 21691.04 215
APD_test188.40 6787.91 7589.88 4789.50 17286.65 1689.98 6091.91 11284.26 4290.87 8893.92 10082.18 10189.29 24273.75 18594.81 17193.70 120
Anonymous2024052180.18 21681.25 19476.95 28583.15 29760.84 27882.46 21585.99 23768.76 22986.78 16293.73 10859.13 28977.44 34273.71 18697.55 6792.56 166
MVSTER77.09 24875.70 26081.25 22075.27 36861.08 27277.49 29085.07 25060.78 30386.55 16988.68 23943.14 37490.25 21173.69 18790.67 26592.42 171
ITE_SJBPF90.11 4590.72 15084.97 3790.30 16181.56 7190.02 9891.20 17982.40 9490.81 19973.58 18894.66 17694.56 76
RPMNet78.88 22778.28 23680.68 23279.58 33162.64 25282.58 21094.16 2774.80 15175.72 32692.59 13848.69 33995.56 3973.48 18982.91 34883.85 319
EG-PatchMatch MVS84.08 14384.11 14583.98 16192.22 10272.61 14882.20 22687.02 22172.63 18588.86 12291.02 18478.52 13791.11 18873.41 19091.09 25188.21 269
test_fmvs273.57 28572.80 28775.90 29972.74 38368.84 19377.07 29484.32 26345.14 37682.89 24484.22 30848.37 34070.36 36073.40 19187.03 30988.52 267
patch_mono-278.89 22679.39 22177.41 28184.78 27268.11 19875.60 31583.11 27260.96 30179.36 29689.89 22075.18 17672.97 35373.32 19292.30 22691.15 213
miper_lstm_enhance76.45 25876.10 25677.51 27976.72 35560.97 27764.69 37185.04 25263.98 27383.20 23988.22 24456.67 30578.79 33973.22 19393.12 21292.78 157
xiu_mvs_v1_base_debu80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
xiu_mvs_v1_base_debi80.84 19980.14 21382.93 19288.31 20171.73 16279.53 25687.17 21365.43 26279.59 29282.73 32676.94 15990.14 21973.22 19388.33 29086.90 286
TranMVSNet+NR-MVSNet87.86 7988.76 6985.18 13394.02 5464.13 23484.38 16191.29 13184.88 3992.06 6393.84 10286.45 5493.73 10673.22 19398.66 1097.69 9
TAPA-MVS77.73 1285.71 10984.83 12888.37 7888.78 19179.72 7387.15 11293.50 5669.17 22385.80 18789.56 22480.76 12192.13 16073.21 19895.51 14293.25 140
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_enhance_ethall77.83 23976.93 24880.51 23376.15 36058.01 30975.47 31988.82 18958.05 32283.59 23180.69 34264.41 25691.20 18473.16 19992.03 23492.33 177
旧先验281.73 22956.88 33186.54 17484.90 30572.81 200
114514_t83.10 16582.54 17284.77 14192.90 8169.10 19286.65 12490.62 15054.66 33881.46 26990.81 19576.98 15894.38 8372.62 20196.18 11390.82 221
UniMVSNet_ETH3D89.12 6190.72 4384.31 15597.00 264.33 23389.67 6988.38 19688.84 1394.29 1897.57 390.48 1391.26 18372.57 20297.65 6097.34 15
NR-MVSNet86.00 10486.22 10385.34 13193.24 7464.56 23082.21 22490.46 15380.99 7888.42 13291.97 15577.56 14893.85 10272.46 20398.65 1197.61 10
Baseline_NR-MVSNet84.00 14685.90 10978.29 26691.47 13253.44 34082.29 22087.00 22479.06 10289.55 11495.72 2877.20 15386.14 29072.30 20498.51 1695.28 56
Effi-MVS+-dtu85.82 10883.38 15493.14 387.13 22691.15 287.70 10588.42 19574.57 15483.56 23385.65 28678.49 13994.21 8872.04 20592.88 21894.05 102
PM-MVS80.20 21579.00 22483.78 16788.17 20586.66 1581.31 23466.81 37469.64 22088.33 13590.19 21364.58 25583.63 31571.99 20690.03 27281.06 358
EIA-MVS82.19 17781.23 19685.10 13487.95 20869.17 19183.22 19493.33 6170.42 21178.58 30379.77 35477.29 15294.20 8971.51 20788.96 28391.93 195
SSC-MVS77.55 24381.64 18365.29 35790.46 15520.33 40273.56 33468.28 36685.44 3288.18 13994.64 6070.93 22681.33 32571.25 20892.03 23494.20 92
DPM-MVS80.10 21879.18 22382.88 19590.71 15169.74 18078.87 27090.84 14360.29 30875.64 32885.92 28467.28 24193.11 13471.24 20991.79 23985.77 297
OpenMVScopyleft76.72 1381.98 18482.00 17881.93 20884.42 27968.22 19688.50 9589.48 18266.92 24881.80 26491.86 15772.59 21290.16 21671.19 21091.25 25087.40 281
AllTest87.97 7787.40 8589.68 5391.59 12283.40 4889.50 7595.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
TestCases89.68 5391.59 12283.40 4895.44 979.47 9488.00 14193.03 12282.66 8991.47 17670.81 21196.14 11594.16 96
ET-MVSNet_ETH3D75.28 26772.77 28882.81 19683.03 29968.11 19877.09 29376.51 31960.67 30577.60 31380.52 34638.04 38391.15 18770.78 21390.68 26489.17 256
EPP-MVSNet85.47 11185.04 12586.77 10191.52 13069.37 18591.63 3687.98 20681.51 7287.05 15991.83 16066.18 24895.29 5370.75 21496.89 8595.64 46
jason77.42 24575.75 25982.43 20587.10 22969.27 18677.99 28081.94 28351.47 35677.84 30885.07 29960.32 27989.00 24570.74 21589.27 28089.03 261
jason: jason.
MG-MVS80.32 21280.94 19978.47 26288.18 20452.62 34782.29 22085.01 25472.01 19779.24 29992.54 14169.36 23293.36 12770.65 21689.19 28189.45 249
QAPM82.59 16982.59 17182.58 20086.44 24066.69 21089.94 6290.36 15767.97 23984.94 20292.58 14072.71 21092.18 15970.63 21787.73 30088.85 264
CVMVSNet72.62 29371.41 30376.28 29583.25 29460.34 28383.50 18479.02 30237.77 39376.33 31885.10 29649.60 33887.41 26570.54 21877.54 37581.08 356
pmmvs686.52 9588.06 7481.90 20992.22 10262.28 26084.66 15489.15 18683.54 5289.85 10397.32 488.08 3686.80 27670.43 21997.30 7696.62 28
D2MVS76.84 25175.67 26180.34 23680.48 32662.16 26373.50 33584.80 25957.61 32682.24 25287.54 25751.31 33087.65 26270.40 22093.19 21191.23 210
PAPM_NR83.23 16183.19 15883.33 18090.90 14665.98 21888.19 9890.78 14578.13 11580.87 27787.92 25173.49 19992.42 15170.07 22188.40 28991.60 204
SDMVSNet81.90 18783.17 15978.10 26988.81 18962.45 25676.08 31186.05 23573.67 16383.41 23593.04 12082.35 9580.65 33070.06 22295.03 16091.21 211
lupinMVS76.37 25974.46 27182.09 20685.54 26369.26 18776.79 29780.77 29350.68 36376.23 32082.82 32458.69 29288.94 24669.85 22388.77 28588.07 270
PVSNet_Blended_VisFu81.55 19080.49 20584.70 14491.58 12573.24 13884.21 16291.67 12062.86 27880.94 27587.16 26567.27 24292.87 14369.82 22488.94 28487.99 273
Patchmatch-RL test74.48 27873.68 27776.89 28884.83 27166.54 21172.29 34169.16 36557.70 32486.76 16386.33 27645.79 35582.59 31869.63 22590.65 26781.54 349
EPNet80.37 20978.41 23586.23 11176.75 35473.28 13687.18 11177.45 30976.24 13168.14 36588.93 23665.41 25293.85 10269.47 22696.12 11791.55 206
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS83.18 16282.64 16984.79 13989.05 18267.82 20277.93 28192.52 9468.33 23385.07 19781.54 33882.06 10392.96 13869.35 22797.91 4893.57 128
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
原ACMM184.60 14592.81 8774.01 13091.50 12362.59 27982.73 24790.67 20176.53 16694.25 8669.24 22895.69 14085.55 298
VDD-MVS84.23 13984.58 13583.20 18591.17 14065.16 22683.25 19184.97 25679.79 9087.18 15294.27 7574.77 18390.89 19669.24 22896.54 9793.55 131
CANet_DTU77.81 24177.05 24680.09 24081.37 31359.90 28883.26 19088.29 20069.16 22467.83 36883.72 31260.93 27489.47 23569.22 23089.70 27590.88 219
Anonymous2024052986.20 10187.13 8783.42 17890.19 16064.55 23184.55 15690.71 14685.85 3189.94 10295.24 4082.13 10290.40 21069.19 23196.40 10595.31 55
FMVSNet184.55 12985.45 11981.85 21190.27 15961.05 27386.83 11988.27 20178.57 11089.66 10995.64 3075.43 17390.68 20369.09 23295.33 14793.82 113
test_fmvs1_n70.94 30870.41 31172.53 32173.92 37366.93 20875.99 31284.21 26543.31 38379.40 29579.39 35543.47 37068.55 36869.05 23384.91 33382.10 343
UGNet82.78 16681.64 18386.21 11386.20 25276.24 11786.86 11785.68 24077.07 12673.76 34192.82 13169.64 23091.82 17169.04 23493.69 20090.56 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ANet_high83.17 16385.68 11575.65 30081.24 31445.26 37979.94 25192.91 8483.83 4691.33 7496.88 1080.25 12785.92 29268.89 23595.89 12995.76 43
test_vis1_n_192071.30 30671.58 30170.47 32977.58 34759.99 28774.25 32684.22 26451.06 35874.85 33679.10 35655.10 31768.83 36668.86 23679.20 36882.58 336
Fast-Effi-MVS+-dtu82.54 17181.41 19185.90 12085.60 26176.53 11183.07 19689.62 18073.02 17979.11 30083.51 31480.74 12290.24 21368.76 23789.29 27890.94 217
pm-mvs183.69 15184.95 12779.91 24190.04 16659.66 29082.43 21687.44 20975.52 14487.85 14395.26 3981.25 11685.65 29968.74 23896.04 12094.42 85
CR-MVSNet74.00 28273.04 28576.85 28979.58 33162.64 25282.58 21076.90 31550.50 36475.72 32692.38 14448.07 34284.07 31168.72 23982.91 34883.85 319
KD-MVS_self_test81.93 18583.14 16078.30 26584.75 27452.75 34480.37 24689.42 18470.24 21690.26 9493.39 11474.55 18786.77 27768.61 24096.64 9395.38 52
IterMVS76.91 25076.34 25478.64 25880.91 31864.03 23576.30 30679.03 30164.88 27083.11 24089.16 23259.90 28384.46 30868.61 24085.15 32987.42 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testdata79.54 24892.87 8272.34 15480.14 29659.91 31185.47 19391.75 16567.96 24085.24 30168.57 24292.18 23381.06 358
test_fmvs169.57 32169.05 32271.14 32869.15 39065.77 22173.98 33083.32 27042.83 38577.77 31178.27 36343.39 37368.50 36968.39 24384.38 34079.15 366
mvs_anonymous78.13 23778.76 22976.23 29779.24 33750.31 36378.69 27284.82 25861.60 29383.09 24292.82 13173.89 19387.01 26968.33 24486.41 31691.37 208
WR-MVS83.56 15584.40 14181.06 22593.43 6854.88 33278.67 27385.02 25381.24 7590.74 8991.56 16972.85 20891.08 18968.00 24598.04 3697.23 18
TransMVSNet (Re)84.02 14585.74 11478.85 25491.00 14455.20 33182.29 22087.26 21279.65 9388.38 13495.52 3383.00 8586.88 27467.97 24696.60 9594.45 82
无先验82.81 20585.62 24158.09 32191.41 18167.95 24784.48 308
Fast-Effi-MVS+81.04 19780.57 20282.46 20487.50 21963.22 24478.37 27789.63 17968.01 23781.87 26082.08 33282.31 9792.65 14767.10 24888.30 29491.51 207
FMVSNet281.31 19381.61 18580.41 23586.38 24258.75 30483.93 17286.58 22772.43 18787.65 14692.98 12463.78 26190.22 21466.86 24993.92 19592.27 181
GA-MVS75.83 26374.61 26879.48 24981.87 30559.25 29473.42 33682.88 27468.68 23079.75 29181.80 33550.62 33389.46 23666.85 25085.64 32289.72 246
CNLPA83.55 15683.10 16184.90 13689.34 17683.87 4684.54 15888.77 19079.09 10183.54 23488.66 24074.87 17981.73 32366.84 25192.29 22889.11 257
tfpnnormal81.79 18882.95 16378.31 26488.93 18655.40 32780.83 24382.85 27576.81 12785.90 18694.14 8574.58 18686.51 28166.82 25295.68 14193.01 150
test_vis1_n70.29 31269.99 31671.20 32775.97 36266.50 21276.69 30080.81 29244.22 37975.43 32977.23 36950.00 33668.59 36766.71 25382.85 35078.52 368
VPA-MVSNet83.47 15884.73 12979.69 24590.29 15857.52 31381.30 23688.69 19276.29 13087.58 14894.44 6780.60 12487.20 26866.60 25496.82 8994.34 89
VDDNet84.35 13385.39 12081.25 22095.13 3159.32 29385.42 14281.11 28986.41 2787.41 15096.21 1973.61 19590.61 20666.33 25596.85 8693.81 116
DP-MVS Recon84.05 14483.22 15686.52 10591.73 12075.27 12383.23 19392.40 9672.04 19682.04 25788.33 24377.91 14493.95 9966.17 25695.12 15790.34 236
WB-MVS76.06 26180.01 21764.19 36089.96 16820.58 40172.18 34268.19 36783.21 5486.46 17693.49 11270.19 22978.97 33765.96 25790.46 26993.02 149
GBi-Net82.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
test182.02 18282.07 17681.85 21186.38 24261.05 27386.83 11988.27 20172.43 18786.00 18295.64 3063.78 26190.68 20365.95 25893.34 20593.82 113
FMVSNet378.80 23078.55 23279.57 24782.89 30156.89 31981.76 22885.77 23969.04 22686.00 18290.44 20651.75 32990.09 22265.95 25893.34 20591.72 199
新几何182.95 19193.96 5578.56 8480.24 29555.45 33583.93 22791.08 18371.19 22588.33 25665.84 26193.07 21381.95 345
F-COLMAP84.97 12283.42 15389.63 5592.39 9483.40 4888.83 8791.92 11173.19 17680.18 29089.15 23377.04 15793.28 12865.82 26292.28 22992.21 184
test_cas_vis1_n_192069.20 32569.12 32069.43 33773.68 37662.82 24970.38 35377.21 31246.18 37380.46 28578.95 35852.03 32665.53 38165.77 26377.45 37679.95 364
ppachtmachnet_test74.73 27774.00 27576.90 28780.71 32356.89 31971.53 34678.42 30358.24 31979.32 29882.92 32357.91 29884.26 31065.60 26491.36 24889.56 248
API-MVS82.28 17482.61 17081.30 21986.29 24869.79 17988.71 9087.67 20878.42 11282.15 25584.15 31077.98 14291.59 17465.39 26592.75 22082.51 340
test111178.53 23478.85 22777.56 27892.22 10247.49 37282.61 20869.24 36472.43 18785.28 19494.20 8151.91 32790.07 22365.36 26696.45 10395.11 62
test_vis3_rt71.42 30470.67 30673.64 31269.66 38970.46 17566.97 36689.73 17442.68 38688.20 13883.04 31943.77 36960.07 38865.35 26786.66 31390.39 235
testing371.53 30370.79 30573.77 31188.89 18741.86 38776.60 30359.12 38872.83 18180.97 27382.08 33219.80 40487.33 26765.12 26891.68 24292.13 188
thisisatest051573.00 29170.52 30880.46 23481.45 31159.90 28873.16 33974.31 33357.86 32376.08 32377.78 36437.60 38592.12 16265.00 26991.45 24789.35 252
cascas76.29 26074.81 26780.72 23184.47 27662.94 24673.89 33287.34 21055.94 33375.16 33476.53 37463.97 25991.16 18665.00 26990.97 25688.06 271
test250674.12 28173.39 28176.28 29591.85 11544.20 38284.06 16748.20 39872.30 19381.90 25994.20 8127.22 39989.77 23164.81 27196.02 12194.87 67
MDA-MVSNet-bldmvs77.47 24476.90 24979.16 25279.03 33964.59 22866.58 36775.67 32473.15 17788.86 12288.99 23566.94 24381.23 32664.71 27288.22 29591.64 203
OpenMVS_ROBcopyleft70.19 1777.77 24277.46 24178.71 25784.39 28061.15 27181.18 23882.52 27762.45 28283.34 23787.37 26066.20 24788.66 25364.69 27385.02 33086.32 290
PS-MVSNAJ77.04 24976.53 25278.56 25987.09 23061.40 26775.26 32087.13 21661.25 29774.38 33977.22 37076.94 15990.94 19264.63 27484.83 33683.35 327
xiu_mvs_v2_base77.19 24776.75 25078.52 26087.01 23261.30 26975.55 31887.12 21961.24 29874.45 33778.79 35977.20 15390.93 19364.62 27584.80 33783.32 328
PatchT70.52 31172.76 28963.79 36279.38 33533.53 39677.63 28665.37 37673.61 16571.77 35092.79 13444.38 36875.65 34964.53 27685.37 32482.18 342
Syy-MVS69.40 32370.03 31567.49 34781.72 30738.94 38971.00 34761.99 38061.38 29570.81 35672.36 38261.37 27379.30 33464.50 27785.18 32784.22 312
FE-MVS79.98 22078.86 22683.36 17986.47 23966.45 21389.73 6584.74 26072.80 18284.22 22391.38 17344.95 36593.60 11463.93 27891.50 24690.04 243
LFMVS80.15 21780.56 20378.89 25389.19 18155.93 32385.22 14573.78 33882.96 5884.28 21992.72 13657.38 30190.07 22363.80 27995.75 13890.68 226
ECVR-MVScopyleft78.44 23578.63 23177.88 27491.85 11548.95 36683.68 18069.91 36272.30 19384.26 22194.20 8151.89 32889.82 22863.58 28096.02 12194.87 67
131473.22 28872.56 29375.20 30380.41 32757.84 31081.64 23185.36 24451.68 35573.10 34476.65 37361.45 27285.19 30263.54 28179.21 36782.59 335
testdata286.43 28363.52 282
Patchmtry76.56 25677.46 24173.83 31079.37 33646.60 37682.41 21776.90 31573.81 16185.56 19192.38 14448.07 34283.98 31263.36 28395.31 15090.92 218
MSDG80.06 21979.99 21880.25 23783.91 28868.04 20077.51 28989.19 18577.65 11981.94 25883.45 31676.37 16986.31 28463.31 28486.59 31486.41 289
BH-RMVSNet80.53 20480.22 21181.49 21887.19 22566.21 21677.79 28486.23 23174.21 15783.69 22988.50 24173.25 20590.75 20063.18 28587.90 29787.52 279
test_yl78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
DCV-MVSNet78.71 23278.51 23379.32 25084.32 28158.84 30178.38 27585.33 24575.99 13582.49 24886.57 27258.01 29590.02 22562.74 28692.73 22189.10 258
TinyColmap81.25 19482.34 17577.99 27285.33 26560.68 28182.32 21988.33 19971.26 20386.97 16092.22 15377.10 15686.98 27262.37 28895.17 15486.31 291
Anonymous20240521180.51 20581.19 19778.49 26188.48 19857.26 31576.63 30182.49 27881.21 7684.30 21892.24 15267.99 23986.24 28562.22 28995.13 15591.98 194
our_test_371.85 29971.59 29972.62 31980.71 32353.78 33769.72 35671.71 35558.80 31678.03 30580.51 34756.61 30778.84 33862.20 29086.04 32085.23 301
pmmvs-eth3d78.42 23677.04 24782.57 20287.44 22074.41 12880.86 24279.67 29855.68 33484.69 20690.31 21060.91 27585.42 30062.20 29091.59 24487.88 276
CMPMVSbinary59.41 2075.12 27073.57 27879.77 24275.84 36367.22 20381.21 23782.18 28050.78 36176.50 31687.66 25555.20 31682.99 31762.17 29290.64 26889.09 260
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f64.31 34565.85 33859.67 37166.54 39462.24 26257.76 38570.96 35740.13 38884.36 21382.09 33146.93 34451.67 39461.99 29381.89 35465.12 386
MIMVSNet183.63 15384.59 13480.74 22994.06 5362.77 25082.72 20684.53 26177.57 12190.34 9295.92 2476.88 16585.83 29761.88 29497.42 7293.62 125
BH-untuned80.96 19880.99 19880.84 22888.55 19768.23 19580.33 24788.46 19472.79 18386.55 16986.76 27174.72 18491.77 17261.79 29588.99 28282.52 339
AdaColmapbinary83.66 15283.69 15283.57 17590.05 16572.26 15686.29 13090.00 17178.19 11481.65 26687.16 26583.40 8294.24 8761.69 29694.76 17584.21 314
VPNet80.25 21381.68 18275.94 29892.46 9347.98 37076.70 29981.67 28673.45 16784.87 20392.82 13174.66 18586.51 28161.66 29796.85 8693.33 135
MAR-MVS80.24 21478.74 23084.73 14286.87 23678.18 8885.75 13687.81 20765.67 26177.84 30878.50 36173.79 19490.53 20761.59 29890.87 25985.49 300
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft73.85 1682.09 18080.31 20787.45 9090.86 14880.29 6985.88 13390.65 14868.17 23576.32 31986.33 27673.12 20692.61 14861.40 29990.02 27389.44 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test-LLR67.21 33066.74 33568.63 34276.45 35855.21 32967.89 36067.14 37162.43 28465.08 37872.39 38043.41 37169.37 36161.00 30084.89 33481.31 351
test-mter65.00 34263.79 34668.63 34276.45 35855.21 32967.89 36067.14 37150.98 36065.08 37872.39 38028.27 39769.37 36161.00 30084.89 33481.31 351
PatchmatchNetpermissive69.71 32068.83 32472.33 32377.66 34653.60 33879.29 26169.99 36157.66 32572.53 34782.93 32246.45 34780.08 33360.91 30272.09 38383.31 329
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet_BlendedMVS78.80 23077.84 23981.65 21684.43 27763.41 24079.49 25990.44 15461.70 29175.43 32987.07 26869.11 23491.44 17860.68 30392.24 23090.11 241
PVSNet_Blended76.49 25775.40 26279.76 24384.43 27763.41 24075.14 32190.44 15457.36 32875.43 32978.30 36269.11 23491.44 17860.68 30387.70 30184.42 310
VNet79.31 22380.27 20876.44 29287.92 20953.95 33675.58 31784.35 26274.39 15682.23 25390.72 19772.84 20984.39 30960.38 30593.98 19490.97 216
LCM-MVSNet-Re83.48 15785.06 12478.75 25685.94 25855.75 32680.05 24994.27 1976.47 12996.09 594.54 6383.31 8389.75 23359.95 30694.89 16790.75 222
YYNet170.06 31670.44 30968.90 33973.76 37553.42 34158.99 38367.20 37058.42 31887.10 15585.39 29259.82 28467.32 37359.79 30783.50 34485.96 293
MDA-MVSNet_test_wron70.05 31770.44 30968.88 34073.84 37453.47 33958.93 38467.28 36958.43 31787.09 15685.40 29159.80 28567.25 37459.66 30883.54 34385.92 295
PAPR78.84 22878.10 23881.07 22485.17 26860.22 28482.21 22490.57 15162.51 28075.32 33284.61 30474.99 17892.30 15759.48 30988.04 29690.68 226
IB-MVS62.13 1971.64 30168.97 32379.66 24680.80 32262.26 26173.94 33176.90 31563.27 27568.63 36476.79 37233.83 39091.84 17059.28 31087.26 30384.88 305
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
PCF-MVS74.62 1582.15 17980.92 20085.84 12289.43 17472.30 15580.53 24491.82 11657.36 32887.81 14489.92 21977.67 14793.63 11058.69 31195.08 15891.58 205
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
sd_testset79.95 22181.39 19275.64 30188.81 18958.07 30876.16 31082.81 27673.67 16383.41 23593.04 12080.96 11977.65 34158.62 31295.03 16091.21 211
1112_ss74.82 27573.74 27678.04 27189.57 17060.04 28576.49 30487.09 22054.31 33973.66 34279.80 35260.25 28086.76 27858.37 31384.15 34187.32 282
tpmvs70.16 31469.56 31971.96 32474.71 37248.13 36879.63 25475.45 32765.02 26970.26 35881.88 33445.34 36185.68 29858.34 31475.39 37982.08 344
UnsupCasMVSNet_eth71.63 30272.30 29569.62 33576.47 35752.70 34670.03 35580.97 29159.18 31379.36 29688.21 24560.50 27669.12 36458.33 31577.62 37487.04 284
tpmrst66.28 33766.69 33665.05 35872.82 38239.33 38878.20 27870.69 35953.16 34567.88 36780.36 34848.18 34174.75 35158.13 31670.79 38581.08 356
test_post178.85 2713.13 39845.19 36380.13 33258.11 317
SCA73.32 28672.57 29275.58 30281.62 30955.86 32478.89 26971.37 35661.73 28974.93 33583.42 31760.46 27787.01 26958.11 31782.63 35383.88 316
pmmvs474.92 27372.98 28680.73 23084.95 26971.71 16576.23 30877.59 30852.83 34677.73 31286.38 27456.35 30984.97 30457.72 31987.05 30885.51 299
Vis-MVSNet (Re-imp)77.82 24077.79 24077.92 27388.82 18851.29 35783.28 18971.97 35174.04 15882.23 25389.78 22157.38 30189.41 24057.22 32095.41 14493.05 148
ab-mvs79.67 22280.56 20376.99 28488.48 19856.93 31784.70 15386.06 23468.95 22780.78 27993.08 11975.30 17584.62 30756.78 32190.90 25889.43 251
baseline173.26 28773.54 27972.43 32284.92 27047.79 37179.89 25274.00 33465.93 25478.81 30286.28 27956.36 30881.63 32456.63 32279.04 36987.87 277
Test_1112_low_res73.90 28373.08 28476.35 29390.35 15755.95 32273.40 33786.17 23250.70 36273.14 34385.94 28358.31 29485.90 29456.51 32383.22 34587.20 283
TESTMET0.1,161.29 35160.32 35764.19 36072.06 38451.30 35667.89 36062.09 37945.27 37560.65 38769.01 38627.93 39864.74 38356.31 32481.65 35776.53 370
test_vis1_rt65.64 34064.09 34470.31 33066.09 39570.20 17861.16 37881.60 28738.65 39172.87 34569.66 38552.84 32260.04 38956.16 32577.77 37280.68 360
XXY-MVS74.44 28076.19 25569.21 33884.61 27552.43 34871.70 34477.18 31360.73 30480.60 28090.96 18875.44 17269.35 36356.13 32688.33 29085.86 296
MDTV_nov1_ep1368.29 32878.03 34343.87 38374.12 32872.22 34952.17 35067.02 37085.54 28745.36 36080.85 32855.73 32784.42 339
E-PMN61.59 35061.62 35361.49 36766.81 39355.40 32753.77 38860.34 38766.80 25058.90 39165.50 39040.48 37966.12 37955.72 32886.25 31862.95 388
MVS73.21 28972.59 29175.06 30580.97 31760.81 27981.64 23185.92 23846.03 37471.68 35177.54 36568.47 23789.77 23155.70 32985.39 32374.60 375
TR-MVS76.77 25375.79 25879.72 24486.10 25665.79 22077.14 29283.02 27365.20 26881.40 27082.10 33066.30 24690.73 20255.57 33085.27 32582.65 334
EPMVS62.47 34662.63 35062.01 36470.63 38738.74 39074.76 32352.86 39553.91 34167.71 36980.01 35039.40 38066.60 37755.54 33168.81 39180.68 360
MS-PatchMatch70.93 30970.22 31273.06 31681.85 30662.50 25573.82 33377.90 30552.44 34975.92 32481.27 33955.67 31381.75 32255.37 33277.70 37374.94 374
CL-MVSNet_self_test76.81 25277.38 24375.12 30486.90 23451.34 35573.20 33880.63 29468.30 23481.80 26488.40 24266.92 24480.90 32755.35 33394.90 16693.12 146
new-patchmatchnet70.10 31573.37 28260.29 37081.23 31516.95 40359.54 38074.62 32962.93 27780.97 27387.93 25062.83 26971.90 35655.24 33495.01 16392.00 192
CostFormer69.98 31868.68 32673.87 30977.14 35050.72 36179.26 26274.51 33151.94 35470.97 35584.75 30245.16 36487.49 26455.16 33579.23 36683.40 326
thres600view775.97 26275.35 26477.85 27687.01 23251.84 35380.45 24573.26 34275.20 14883.10 24186.31 27845.54 35689.05 24455.03 33692.24 23092.66 163
EMVS61.10 35360.81 35561.99 36565.96 39655.86 32453.10 38958.97 39067.06 24756.89 39463.33 39140.98 37767.03 37554.79 33786.18 31963.08 387
USDC76.63 25476.73 25176.34 29483.46 29257.20 31680.02 25088.04 20552.14 35283.65 23091.25 17663.24 26486.65 27954.66 33894.11 19185.17 302
CDS-MVSNet77.32 24675.40 26283.06 18789.00 18472.48 15277.90 28282.17 28160.81 30278.94 30183.49 31559.30 28788.76 25254.64 33992.37 22587.93 275
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
gm-plane-assit75.42 36744.97 38152.17 35072.36 38287.90 25954.10 340
PatchMatch-RL74.48 27873.22 28378.27 26787.70 21385.26 3475.92 31370.09 36064.34 27276.09 32281.25 34065.87 25178.07 34053.86 34183.82 34271.48 378
EPNet_dtu72.87 29271.33 30477.49 28077.72 34560.55 28282.35 21875.79 32266.49 25258.39 39381.06 34153.68 32085.98 29153.55 34292.97 21785.95 294
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM69.41 32266.64 33777.70 27773.19 37871.24 17075.67 31465.56 37570.42 21165.18 37792.97 12633.64 39183.06 31653.52 34369.61 38978.79 367
baseline269.77 31966.89 33378.41 26379.51 33358.09 30776.23 30869.57 36357.50 32764.82 38177.45 36746.02 35088.44 25453.08 34477.83 37188.70 265
KD-MVS_2432*160066.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
miper_refine_blended66.87 33265.81 33970.04 33167.50 39147.49 37262.56 37579.16 29961.21 29977.98 30680.61 34325.29 40182.48 31953.02 34584.92 33180.16 362
BH-w/o76.57 25576.07 25778.10 26986.88 23565.92 21977.63 28686.33 22865.69 26080.89 27679.95 35168.97 23690.74 20153.01 34785.25 32677.62 369
pmmvs570.73 31070.07 31372.72 31877.03 35252.73 34574.14 32775.65 32550.36 36572.17 34985.37 29355.42 31580.67 32952.86 34887.59 30284.77 306
WAC-MVS37.39 39252.61 349
tpm67.95 32868.08 32967.55 34678.74 34243.53 38475.60 31567.10 37354.92 33772.23 34888.10 24642.87 37575.97 34752.21 35080.95 36283.15 331
MVP-Stereo75.81 26473.51 28082.71 19789.35 17573.62 13280.06 24885.20 24760.30 30773.96 34087.94 24957.89 29989.45 23752.02 35174.87 38085.06 304
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
thres100view90075.45 26675.05 26676.66 29187.27 22251.88 35281.07 23973.26 34275.68 14183.25 23886.37 27545.54 35688.80 24851.98 35290.99 25389.31 253
tfpn200view974.86 27474.23 27376.74 29086.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25389.31 253
thres40075.14 26874.23 27377.86 27586.24 25052.12 34979.24 26373.87 33673.34 17081.82 26284.60 30546.02 35088.80 24851.98 35290.99 25392.66 163
mvsany_test365.48 34162.97 34873.03 31769.99 38876.17 11864.83 36943.71 40043.68 38180.25 28987.05 26952.83 32363.09 38751.92 35572.44 38279.84 365
HyFIR lowres test75.12 27072.66 29082.50 20391.44 13365.19 22572.47 34087.31 21146.79 36980.29 28684.30 30752.70 32492.10 16351.88 35686.73 31290.22 237
TAMVS78.08 23876.36 25383.23 18390.62 15272.87 14179.08 26680.01 29761.72 29081.35 27186.92 27063.96 26088.78 25150.61 35793.01 21588.04 272
sss66.92 33167.26 33165.90 35377.23 34951.10 36064.79 37071.72 35452.12 35370.13 35980.18 34957.96 29765.36 38250.21 35881.01 36181.25 353
FPMVS72.29 29772.00 29673.14 31588.63 19485.00 3674.65 32567.39 36871.94 19877.80 31087.66 25550.48 33475.83 34849.95 35979.51 36358.58 392
tpm cat166.76 33565.21 34271.42 32577.09 35150.62 36278.01 27973.68 34044.89 37768.64 36379.00 35745.51 35882.42 32149.91 36070.15 38681.23 355
CHOSEN 1792x268872.45 29470.56 30778.13 26890.02 16763.08 24568.72 35883.16 27142.99 38475.92 32485.46 28957.22 30385.18 30349.87 36181.67 35586.14 292
myMVS_eth3d64.66 34363.89 34566.97 34981.72 30737.39 39271.00 34761.99 38061.38 29570.81 35672.36 38220.96 40379.30 33449.59 36285.18 32784.22 312
HY-MVS64.64 1873.03 29072.47 29474.71 30683.36 29354.19 33482.14 22781.96 28256.76 33269.57 36186.21 28060.03 28184.83 30649.58 36382.65 35185.11 303
MDTV_nov1_ep13_2view27.60 40070.76 35046.47 37261.27 38545.20 36249.18 36483.75 321
PMMVS61.65 34960.38 35665.47 35665.40 39869.26 18763.97 37361.73 38436.80 39460.11 38868.43 38759.42 28666.35 37848.97 36578.57 37060.81 389
WTY-MVS67.91 32968.35 32766.58 35180.82 32148.12 36965.96 36872.60 34553.67 34271.20 35381.68 33758.97 29069.06 36548.57 36681.67 35582.55 337
UnsupCasMVSNet_bld69.21 32469.68 31867.82 34579.42 33451.15 35867.82 36375.79 32254.15 34077.47 31485.36 29459.26 28870.64 35948.46 36779.35 36581.66 347
tpm268.45 32766.83 33473.30 31478.93 34148.50 36779.76 25371.76 35347.50 36869.92 36083.60 31342.07 37688.40 25548.44 36879.51 36383.01 333
Patchmatch-test65.91 33867.38 33061.48 36875.51 36543.21 38568.84 35763.79 37862.48 28172.80 34683.42 31744.89 36659.52 39048.27 36986.45 31581.70 346
FMVSNet572.10 29871.69 29873.32 31381.57 31053.02 34376.77 29878.37 30463.31 27476.37 31791.85 15836.68 38678.98 33647.87 37092.45 22487.95 274
dp60.70 35560.29 35861.92 36672.04 38538.67 39170.83 34964.08 37751.28 35760.75 38677.28 36836.59 38771.58 35847.41 37162.34 39375.52 373
N_pmnet70.20 31368.80 32574.38 30880.91 31884.81 3959.12 38276.45 32055.06 33675.31 33382.36 32955.74 31254.82 39247.02 37287.24 30483.52 323
thres20072.34 29671.55 30274.70 30783.48 29151.60 35475.02 32273.71 33970.14 21778.56 30480.57 34546.20 34888.20 25846.99 37389.29 27884.32 311
test20.0373.75 28474.59 27071.22 32681.11 31651.12 35970.15 35472.10 35070.42 21180.28 28891.50 17064.21 25874.72 35246.96 37494.58 17887.82 278
mvsany_test158.48 35856.47 36364.50 35965.90 39768.21 19756.95 38642.11 40138.30 39265.69 37477.19 37156.96 30459.35 39146.16 37558.96 39465.93 385
pmmvs362.47 34660.02 35969.80 33471.58 38664.00 23670.52 35158.44 39139.77 38966.05 37175.84 37527.10 40072.28 35446.15 37684.77 33873.11 376
testgi72.36 29574.61 26865.59 35480.56 32542.82 38668.29 35973.35 34166.87 24981.84 26189.93 21872.08 21866.92 37646.05 37792.54 22387.01 285
PVSNet58.17 2166.41 33665.63 34168.75 34181.96 30449.88 36562.19 37772.51 34751.03 35968.04 36675.34 37750.84 33274.77 35045.82 37882.96 34681.60 348
dmvs_re66.81 33466.98 33266.28 35276.87 35358.68 30571.66 34572.24 34860.29 30869.52 36273.53 37952.38 32564.40 38444.90 37981.44 35875.76 372
gg-mvs-nofinetune68.96 32669.11 32168.52 34476.12 36145.32 37883.59 18255.88 39386.68 2464.62 38297.01 730.36 39483.97 31344.78 38082.94 34776.26 371
Anonymous2023120671.38 30571.88 29769.88 33386.31 24654.37 33370.39 35274.62 32952.57 34876.73 31588.76 23759.94 28272.06 35544.35 38193.23 21083.23 330
CHOSEN 280x42059.08 35756.52 36266.76 35076.51 35664.39 23249.62 39059.00 38943.86 38055.66 39568.41 38835.55 38968.21 37243.25 38276.78 37867.69 384
ADS-MVSNet265.87 33963.64 34772.55 32073.16 37956.92 31867.10 36474.81 32849.74 36666.04 37282.97 32046.71 34577.26 34342.29 38369.96 38783.46 324
ADS-MVSNet61.90 34862.19 35261.03 36973.16 37936.42 39467.10 36461.75 38349.74 36666.04 37282.97 32046.71 34563.21 38542.29 38369.96 38783.46 324
DSMNet-mixed60.98 35461.61 35459.09 37372.88 38145.05 38074.70 32446.61 39926.20 39565.34 37690.32 20955.46 31463.12 38641.72 38581.30 36069.09 382
MIMVSNet71.09 30771.59 29969.57 33687.23 22350.07 36478.91 26871.83 35260.20 31071.26 35291.76 16455.08 31876.09 34641.06 38687.02 31082.54 338
test0.0.03 164.66 34364.36 34365.57 35575.03 37046.89 37564.69 37161.58 38562.43 28471.18 35477.54 36543.41 37168.47 37040.75 38782.65 35181.35 350
PAPM71.77 30070.06 31476.92 28686.39 24153.97 33576.62 30286.62 22653.44 34363.97 38384.73 30357.79 30092.34 15539.65 38881.33 35984.45 309
MVS-HIRNet61.16 35262.92 34955.87 37479.09 33835.34 39571.83 34357.98 39246.56 37159.05 39091.14 18049.95 33776.43 34538.74 38971.92 38455.84 393
GG-mvs-BLEND67.16 34873.36 37746.54 37784.15 16455.04 39458.64 39261.95 39329.93 39583.87 31438.71 39076.92 37771.07 379
new_pmnet55.69 36057.66 36149.76 37775.47 36630.59 39759.56 37951.45 39643.62 38262.49 38475.48 37640.96 37849.15 39637.39 39172.52 38169.55 381
PVSNet_051.08 2256.10 35954.97 36459.48 37275.12 36953.28 34255.16 38761.89 38244.30 37859.16 38962.48 39254.22 31965.91 38035.40 39247.01 39559.25 391
wuyk23d75.13 26979.30 22262.63 36375.56 36475.18 12480.89 24173.10 34475.06 15094.76 1295.32 3587.73 4052.85 39334.16 39397.11 8059.85 390
MVEpermissive40.22 2351.82 36250.47 36555.87 37462.66 40051.91 35131.61 39339.28 40240.65 38750.76 39674.98 37856.24 31044.67 39733.94 39464.11 39271.04 380
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PMMVS255.64 36159.27 36044.74 37864.30 39912.32 40440.60 39149.79 39753.19 34465.06 38084.81 30153.60 32149.76 39532.68 39589.41 27772.15 377
dmvs_testset60.59 35662.54 35154.72 37677.26 34827.74 39974.05 32961.00 38660.48 30665.62 37567.03 38955.93 31168.23 37132.07 39669.46 39068.17 383
test_method30.46 36329.60 36633.06 37917.99 4023.84 40613.62 39473.92 3352.79 39718.29 39953.41 39428.53 39643.25 39822.56 39735.27 39752.11 394
tmp_tt20.25 36524.50 3687.49 3814.47 4038.70 40534.17 39225.16 4041.00 39932.43 39818.49 39639.37 3819.21 40021.64 39843.75 3964.57 396
DeepMVS_CXcopyleft24.13 38032.95 40129.49 39821.63 40512.07 39637.95 39745.07 39530.84 39319.21 39917.94 39933.06 39823.69 395
test1236.27 3688.08 3710.84 3821.11 4050.57 40762.90 3740.82 4060.54 4001.07 4022.75 4011.26 4050.30 4011.04 4001.26 4001.66 397
testmvs5.91 3697.65 3720.72 3831.20 4040.37 40859.14 3810.67 4070.49 4011.11 4012.76 4000.94 4060.24 4021.02 4011.47 3991.55 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k20.81 36427.75 3670.00 3840.00 4060.00 4090.00 39585.44 2430.00 4020.00 40382.82 32481.46 1130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.41 3678.55 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40276.94 1590.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re6.65 3668.87 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40379.80 3520.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
FOURS196.08 1187.41 1096.19 295.83 492.95 296.57 2
test_one_060193.85 5873.27 13794.11 3386.57 2593.47 3894.64 6088.42 26
eth-test20.00 406
eth-test0.00 406
test_241102_ONE94.18 4672.65 14393.69 5083.62 4994.11 2293.78 10590.28 1495.50 46
save fliter93.75 5977.44 9986.31 12989.72 17570.80 207
test072694.16 4972.56 14990.63 4593.90 4283.61 5093.75 3094.49 6589.76 18
GSMVS83.88 316
test_part293.86 5777.77 9492.84 48
sam_mvs146.11 34983.88 316
sam_mvs45.92 354
MTGPAbinary91.81 118
test_post3.10 39945.43 35977.22 344
patchmatchnet-post81.71 33645.93 35387.01 269
MTMP90.66 4433.14 403
TEST992.34 9679.70 7483.94 17090.32 15865.41 26584.49 20990.97 18682.03 10493.63 110
test_892.09 10678.87 8183.82 17590.31 16065.79 25684.36 21390.96 18881.93 10693.44 123
agg_prior91.58 12577.69 9690.30 16184.32 21593.18 131
test_prior478.97 8084.59 155
test_prior86.32 10890.59 15371.99 16092.85 8694.17 9292.80 156
新几何281.72 230
旧先验191.97 10971.77 16181.78 28591.84 15973.92 19293.65 20183.61 322
原ACMM282.26 223
test22293.31 7176.54 10979.38 26077.79 30652.59 34782.36 25190.84 19466.83 24591.69 24181.25 353
segment_acmp81.94 105
testdata179.62 25573.95 160
test1286.57 10390.74 14972.63 14790.69 14782.76 24679.20 13394.80 6895.32 14892.27 181
plane_prior793.45 6677.31 102
plane_prior692.61 8876.54 10974.84 180
plane_prior492.95 127
plane_prior376.85 10777.79 11886.55 169
plane_prior289.45 7779.44 96
plane_prior192.83 86
plane_prior76.42 11387.15 11275.94 13895.03 160
n20.00 408
nn0.00 408
door-mid74.45 332
test1191.46 124
door72.57 346
HQP5-MVS70.66 173
HQP-NCC91.19 13784.77 14973.30 17280.55 282
ACMP_Plane91.19 13784.77 14973.30 17280.55 282
HQP4-MVS80.56 28194.61 7493.56 129
HQP3-MVS92.68 9194.47 180
HQP2-MVS72.10 216
NP-MVS91.95 11074.55 12790.17 215
ACMMP++_ref95.74 139
ACMMP++97.35 73
Test By Simon79.09 134