This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39673.86 5286.31 1978.84 1994.03 5384.64 104
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
IU-MVS86.12 5360.90 14580.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
v7n79.37 5680.41 5276.28 9078.67 16155.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28680.56 13472.28 6778.67 28578.14 246
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
test9_res72.12 6991.37 9377.40 254
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31269.91 27270.73 7391.60 8984.56 111
v1075.69 8676.20 8774.16 11474.44 22248.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
agg_prior270.70 7590.93 10878.55 240
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
v875.07 9675.64 9473.35 12773.42 23547.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
v124073.06 12573.14 12772.84 14574.74 21547.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
v119273.40 11673.42 12073.32 12974.65 21948.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
v192192072.96 13172.98 13272.89 14474.67 21647.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
v114473.29 11973.39 12173.01 13674.12 22748.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
v14419272.99 12973.06 13072.77 14674.58 22047.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 30562.04 12770.69 19769.85 25439.46 32769.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_s_conf0.5_n66.34 22065.27 22869.57 19568.20 29559.14 16471.66 18056.48 33140.92 31767.78 28479.46 25761.23 16366.90 30067.39 10074.32 32082.66 169
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
BP-MVS67.38 102
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
fmvsm_s_conf0.1_n66.60 21565.54 22569.77 19268.99 28759.15 16272.12 16856.74 33040.72 32168.25 28280.14 24861.18 16666.92 29967.34 10474.40 31783.23 152
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 17072.02 17071.50 23363.53 10278.58 13071.39 33365.98 11878.53 16767.30 10580.18 26989.23 29
v2v48272.55 14172.58 13972.43 15672.92 24846.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26261.17 13974.00 15557.18 32540.77 31968.83 27680.88 23463.11 14167.61 29266.94 10774.72 31282.33 178
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28161.16 14073.34 15856.83 32840.96 31668.36 27980.08 24962.84 14267.57 29366.90 10974.50 31681.78 186
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 30861.38 13570.03 20469.15 25938.59 33468.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
MVS_Test69.84 16870.71 16567.24 23067.49 30443.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
V4271.06 15370.83 16471.72 16467.25 30647.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20278.35 16737.69 33874.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38583.73 7865.40 11886.33 19585.22 87
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
diffmvspermissive67.42 20667.50 20367.20 23162.26 34145.21 27364.87 27677.04 18648.21 25971.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 298
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 16174.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
ambc70.10 18777.74 17250.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
lessismore_v072.75 14779.60 14156.83 17857.37 32183.80 7289.01 9847.45 26678.74 16564.39 12586.49 19482.69 168
tt080576.12 8378.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
baseline73.10 12273.96 11270.51 17771.46 25846.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
EGC-MVSNET64.77 23361.17 26675.60 9886.90 4274.47 3084.04 3568.62 2630.60 3981.13 40091.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
CANet73.00 12871.84 14976.48 8775.82 20161.28 13774.81 14080.37 13063.17 10862.43 32380.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37681.15 12063.95 13087.93 16889.51 25
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25580.98 12763.62 13590.77 11678.58 239
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25579.23 15563.62 13589.13 15180.92 200
c3_l69.82 16969.89 17069.61 19466.24 31643.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 303
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22471.31 18771.32 23858.22 14375.40 18170.44 33658.16 19475.85 20562.51 14379.81 27388.48 44
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21771.39 23649.17 25371.70 23278.07 28037.62 32379.21 15661.81 14689.15 14980.82 203
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 288
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
IterMVS-SCA-FT67.68 20166.07 22072.49 15573.34 23758.20 17263.80 28765.55 28048.10 26076.91 15282.64 21545.20 27378.84 16261.20 15377.89 29480.44 215
miper_ehance_all_eth68.36 19068.16 19568.98 20665.14 32743.34 28867.07 24878.92 15549.11 25476.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
iter_conf0567.34 20865.62 22472.50 15469.82 27647.06 25872.19 16776.86 18745.32 28472.86 21782.85 21020.53 39283.73 7861.13 15589.02 15486.70 65
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
DIV-MVS_self_test68.27 19468.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.43 21648.74 25975.38 21160.94 15789.81 13385.81 76
cl____68.26 19568.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.42 21748.74 25975.38 21160.92 15889.81 13385.80 80
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
cl2267.14 20966.51 21569.03 20563.20 33743.46 28766.88 25376.25 19249.22 25274.48 19477.88 28145.49 27277.40 19360.64 16084.59 22086.24 69
testf175.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16670.53 19881.23 10947.79 26564.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17578.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
Gipumacopyleft69.55 17372.83 13459.70 29763.63 33653.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32159.75 17291.55 9162.67 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
thisisatest053067.05 21265.16 23172.73 14973.10 24350.55 21471.26 18963.91 29550.22 24374.46 19580.75 23626.81 37580.25 14159.43 17486.50 19387.37 54
v14869.38 17769.39 17369.36 19769.14 28544.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
旧先验271.17 19045.11 28678.54 13161.28 32759.19 176
LF4IMVS67.50 20267.31 20668.08 22258.86 36261.93 12871.43 18375.90 19744.67 28972.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 301
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 18073.34 15884.67 5162.04 11572.19 22970.81 33465.90 12085.24 5658.64 17884.96 21481.95 183
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
miper_enhance_ethall65.86 22265.05 23868.28 22161.62 34542.62 29564.74 27777.97 17542.52 30473.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
FC-MVSNet-test73.32 11874.78 10168.93 20979.21 14936.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
canonicalmvs72.29 14473.38 12269.04 20474.23 22347.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 289
FIs72.56 13973.80 11468.84 21278.74 16037.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
MVSTER63.29 25061.60 26368.36 21759.77 35846.21 26660.62 31071.32 23841.83 30775.40 18179.12 26530.25 36475.85 20556.30 19579.81 27383.03 158
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
RPMNet65.77 22365.08 23767.84 22566.37 31348.24 23970.93 19386.27 1954.66 18461.35 32786.77 13833.29 33785.67 4755.93 19870.17 34669.62 322
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
miper_lstm_enhance61.97 26261.63 26262.98 26960.04 35245.74 27047.53 36770.95 24644.04 29173.06 21578.84 27039.72 30860.33 32855.82 20084.64 21982.88 161
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
EU-MVSNet60.82 27260.80 27160.86 29168.37 29241.16 30372.27 16468.27 26526.96 37969.08 26675.71 29532.09 34667.44 29455.59 20378.90 28273.97 281
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21370.56 26853.91 19678.29 9677.35 18248.85 25670.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
QAPM69.18 17969.26 17568.94 20871.61 25752.58 20480.37 7178.79 15949.63 24973.51 20885.14 17753.66 22879.12 15755.11 20675.54 30575.11 275
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 293
SSC-MVS61.79 26566.08 21948.89 34876.91 18410.00 40253.56 35047.37 36868.20 5876.56 16389.21 9054.13 22657.59 33954.75 20974.07 32179.08 234
jason64.47 23862.84 25569.34 19976.91 18459.20 15867.15 24765.67 27735.29 34965.16 30276.74 29044.67 27770.68 26554.74 21079.28 27978.14 246
jason: jason.
Baseline_NR-MVSNet70.62 15973.19 12662.92 27276.97 18234.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
无先验74.82 13970.94 24747.75 26676.85 20054.47 21372.09 300
testdata64.13 25585.87 5963.34 11961.80 30747.83 26476.42 17086.60 14848.83 25862.31 32354.46 21481.26 25866.74 341
SDMVSNet66.36 21967.85 19961.88 28073.04 24646.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32454.41 21584.67 21677.28 255
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13877.56 10363.57 29760.95 12256.62 35382.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18569.39 21281.29 10652.44 21364.53 30570.69 33560.33 17482.30 10354.27 21876.31 30080.75 206
patch_mono-262.73 25864.08 24258.68 30470.36 27255.87 18260.84 30864.11 29441.23 31264.04 31078.22 27660.00 17648.80 35454.17 21983.71 23271.37 305
ET-MVSNet_ETH3D63.32 24960.69 27271.20 17170.15 27455.66 18465.02 27564.32 29143.28 30368.99 26872.05 32825.46 38278.19 18254.16 22082.80 23979.74 224
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
lupinMVS63.36 24861.49 26468.97 20774.93 20959.19 15965.80 26564.52 29034.68 35463.53 31974.25 31143.19 28670.62 26653.88 22278.67 28577.10 259
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
CVMVSNet59.21 28558.44 28861.51 28373.94 22947.76 24971.31 18764.56 28926.91 38160.34 33570.44 33636.24 32967.65 29053.57 22468.66 35469.12 327
CANet_DTU64.04 24463.83 24464.66 25168.39 29142.97 29273.45 15774.50 20952.05 21854.78 36175.44 30043.99 28170.42 27053.49 22578.41 28880.59 212
D2MVS62.58 25961.05 26867.20 23163.85 33347.92 24556.29 33569.58 25639.32 32870.07 25578.19 27734.93 33272.68 24153.44 22683.74 23081.00 198
test_fmvs356.78 29755.99 30659.12 30153.96 38548.09 24258.76 32266.22 27327.54 37776.66 16068.69 35425.32 38451.31 34753.42 22773.38 32577.97 251
Anonymous2024052163.55 24666.07 22055.99 31666.18 31844.04 28168.77 22468.80 26046.99 27072.57 22185.84 17039.87 30750.22 35053.40 22892.23 8173.71 285
PM-MVS64.49 23763.61 24767.14 23376.68 18975.15 2768.49 22942.85 38051.17 23377.85 13980.51 23945.76 26966.31 30852.83 22976.35 29959.96 369
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 308
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
mvs_anonymous65.08 22965.49 22663.83 25963.79 33437.60 33566.52 25769.82 25543.44 29973.46 21086.08 16558.79 19071.75 25851.90 23275.63 30482.15 180
Patchmatch-RL test59.95 28059.12 28162.44 27572.46 25154.61 19159.63 31647.51 36741.05 31574.58 19374.30 31031.06 35865.31 30951.61 23379.85 27267.39 334
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
pmmvs671.82 14773.66 11766.31 24175.94 20042.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
IterMVS63.12 25262.48 25865.02 25066.34 31552.86 20163.81 28662.25 30146.57 27371.51 23980.40 24144.60 27866.82 30451.38 23675.47 30675.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
KD-MVS_self_test66.38 21867.51 20262.97 27061.76 34334.39 35658.11 32775.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
新几何169.99 18988.37 3471.34 5162.08 30443.85 29274.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 332
Anonymous2024052972.56 13973.79 11568.86 21176.89 18745.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33386.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
GA-MVS62.91 25461.66 26066.66 23967.09 30844.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32674.94 21850.60 24274.72 31280.57 213
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
WR-MVS71.20 15272.48 14167.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
ANet_high67.08 21069.94 16958.51 30657.55 36727.09 38258.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31250.10 24688.86 15683.46 143
TransMVSNet (Re)69.62 17171.63 15363.57 26276.51 19035.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
pm-mvs168.40 18969.85 17164.04 25873.10 24339.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
test_fmvs254.80 30754.11 31556.88 31351.76 38949.95 22356.70 33365.80 27626.22 38269.42 26265.25 36531.82 35049.98 35149.63 25070.36 34470.71 313
131459.83 28158.86 28462.74 27365.71 32144.78 27668.59 22672.63 22333.54 36161.05 33167.29 36143.62 28471.26 26249.49 25167.84 35972.19 299
WB-MVS60.04 27964.19 24147.59 35076.09 19610.22 40152.44 35546.74 36965.17 8474.07 20287.48 12553.48 22955.28 34249.36 25272.84 32877.28 255
CMPMVSbinary48.73 2061.54 26860.89 26963.52 26361.08 34751.55 20868.07 23468.00 26633.88 35665.87 29781.25 22937.91 32067.71 28949.32 25382.60 24171.31 307
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PS-MVSNAJ64.27 24263.73 24665.90 24577.82 17151.42 20963.33 29272.33 22645.09 28761.60 32568.04 35662.39 14973.95 23249.07 25473.87 32372.34 296
xiu_mvs_v2_base64.43 23963.96 24365.85 24677.72 17351.32 21063.63 28972.31 22745.06 28861.70 32469.66 34462.56 14573.93 23349.06 25573.91 32272.31 297
thisisatest051560.48 27657.86 29268.34 21867.25 30646.42 26360.58 31162.14 30240.82 31863.58 31869.12 34726.28 37878.34 17648.83 25682.13 24480.26 217
OpenMVS_ROBcopyleft54.93 1763.23 25163.28 25063.07 26869.81 27745.34 27268.52 22867.14 26843.74 29670.61 24879.22 26247.90 26572.66 24248.75 25773.84 32471.21 309
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15573.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
VDDNet71.60 14973.13 12867.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
CR-MVSNet58.96 28658.49 28760.36 29466.37 31348.24 23970.93 19356.40 33332.87 36261.35 32786.66 14333.19 33863.22 32048.50 26170.17 34669.62 322
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 34981.49 11548.43 26281.85 24881.04 195
testdata267.30 29548.34 263
tfpnnormal66.48 21767.93 19662.16 27873.40 23636.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
test_vis1_n_192052.96 31653.50 31751.32 33459.15 36044.90 27556.13 33764.29 29230.56 37359.87 34060.68 37840.16 30547.47 36048.25 26562.46 37161.58 366
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24875.31 13481.11 11149.62 25066.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
testing358.28 29158.38 28958.00 30977.45 17726.12 38660.78 30943.00 37956.02 16770.18 25375.76 29413.27 40467.24 29748.02 26780.89 26080.65 210
FMVSNet267.48 20368.21 19365.29 24773.14 24038.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26174.60 22347.98 26886.11 19882.35 175
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 286
cascas64.59 23562.77 25670.05 18875.27 20550.02 22161.79 30171.61 23042.46 30563.68 31668.89 35149.33 25480.35 13847.82 27084.05 22779.78 223
VPA-MVSNet68.71 18570.37 16763.72 26076.13 19538.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
MSDG67.47 20567.48 20467.46 22870.70 26554.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29774.49 278
GBi-Net68.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
test168.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
FMVSNet365.00 23065.16 23164.52 25369.47 28237.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32174.44 22547.12 27385.37 20381.57 189
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ppachtmachnet_test60.26 27859.61 27962.20 27767.70 30244.33 27958.18 32660.96 30940.75 32065.80 29872.57 32441.23 29663.92 31646.87 27782.42 24278.33 241
test111164.62 23465.19 23062.93 27179.01 15629.91 37565.45 27054.41 34154.09 19671.47 24188.48 11137.02 32574.29 22846.83 27889.94 13184.58 110
MAR-MVS67.72 20066.16 21872.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29968.58 35557.01 21277.79 18846.68 27981.92 24674.42 279
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LFMVS67.06 21167.89 19764.56 25278.02 16738.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28275.22 21446.35 28089.63 13780.21 218
test250661.23 26960.85 27062.38 27678.80 15827.88 38167.33 24537.42 39354.23 19167.55 28888.68 10717.87 39774.39 22646.33 28189.41 14384.86 97
Syy-MVS54.13 31055.45 31050.18 33868.77 28823.59 39055.02 34344.55 37443.80 29358.05 34764.07 36746.22 26858.83 33346.16 28272.36 33168.12 330
BH-untuned69.39 17669.46 17269.18 20277.96 16956.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 314
MDA-MVSNet-bldmvs62.34 26161.73 25964.16 25461.64 34449.90 22448.11 36557.24 32453.31 20780.95 10679.39 25949.00 25761.55 32645.92 28480.05 27081.03 196
test_fmvs1_n52.70 31852.01 32554.76 31953.83 38650.36 21655.80 33965.90 27524.96 38565.39 30060.64 37927.69 37348.46 35645.88 28567.99 35765.46 346
TinyColmap67.98 19669.28 17464.08 25667.98 29946.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 291
test_cas_vis1_n_192050.90 33050.92 33450.83 33654.12 38447.80 24751.44 35854.61 33926.95 38063.95 31260.85 37737.86 32244.97 37045.53 28762.97 37059.72 370
test_yl65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
test_fmvs151.51 32850.86 33553.48 32449.72 39249.35 23254.11 34764.96 28524.64 38763.66 31759.61 38228.33 37248.45 35745.38 29067.30 36162.66 361
ECVR-MVScopyleft64.82 23165.22 22963.60 26178.80 15831.14 37166.97 25056.47 33254.23 19169.94 25688.68 10737.23 32474.81 22145.28 29189.41 14384.86 97
PVSNet_BlendedMVS65.38 22564.30 23968.61 21569.81 27749.36 23065.60 26978.96 15345.50 27959.98 33678.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
PVSNet_Blended62.90 25561.64 26166.69 23869.81 27749.36 23061.23 30578.96 15342.04 30659.98 33668.86 35251.82 23778.20 18044.30 29277.77 29572.52 294
Anonymous20240521166.02 22166.89 21363.43 26574.22 22438.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
VPNet65.58 22467.56 20159.65 29879.72 13930.17 37460.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
Patchmtry60.91 27163.01 25454.62 32166.10 31926.27 38567.47 24056.40 33354.05 19772.04 23086.66 14333.19 33860.17 32943.69 29687.45 17477.42 253
PatchT53.35 31556.47 30243.99 36664.19 33217.46 39759.15 31743.10 37852.11 21754.74 36286.95 13229.97 36749.98 35143.62 29774.40 31764.53 355
IB-MVS49.67 1859.69 28256.96 29867.90 22368.19 29650.30 21861.42 30365.18 28347.57 26755.83 35767.15 36223.77 38879.60 15143.56 29879.97 27173.79 284
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
our_test_356.46 29856.51 30156.30 31467.70 30239.66 31655.36 34252.34 35340.57 32363.85 31369.91 34340.04 30658.22 33643.49 29975.29 31071.03 312
test_vis1_n51.27 32950.41 33953.83 32256.99 36950.01 22256.75 33260.53 31025.68 38359.74 34157.86 38329.40 36947.41 36143.10 30063.66 36864.08 356
PatchmatchNetpermissive54.60 30854.27 31455.59 31765.17 32639.08 31866.92 25151.80 35439.89 32558.39 34473.12 32131.69 35258.33 33543.01 30158.38 38369.38 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
pmmvs-eth3d64.41 24063.27 25167.82 22675.81 20260.18 15469.49 21062.05 30538.81 33374.13 20082.23 21943.76 28368.65 28242.53 30280.63 26674.63 277
LCM-MVSNet-Re69.10 18071.57 15661.70 28170.37 27134.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
VNet64.01 24565.15 23360.57 29273.28 23835.61 34857.60 32967.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
test-LLR50.43 33250.69 33749.64 34260.76 34841.87 29953.18 35145.48 37243.41 30049.41 37960.47 38029.22 37044.73 37242.09 30572.14 33462.33 364
test-mter48.56 33948.20 34449.64 34260.76 34841.87 29953.18 35145.48 37231.91 36849.41 37960.47 38018.34 39544.73 37242.09 30572.14 33462.33 364
MVS60.62 27559.97 27662.58 27468.13 29747.28 25568.59 22673.96 21132.19 36359.94 33868.86 35250.48 24677.64 19141.85 30775.74 30262.83 358
MIMVSNet166.57 21669.23 17658.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 33841.77 30889.58 14079.95 220
test_vis3_rt51.94 32651.04 33254.65 32046.32 39650.13 22044.34 37678.17 17123.62 38968.95 27062.81 37121.41 39038.52 38941.49 30972.22 33375.30 274
Vis-MVSNet (Re-imp)62.74 25763.21 25261.34 28672.19 25331.56 36867.31 24653.87 34253.60 20469.88 25883.37 20040.52 30370.98 26441.40 31086.78 18981.48 190
YYNet152.58 31953.50 31749.85 34054.15 38236.45 34140.53 38046.55 37138.09 33675.52 17973.31 32041.08 30043.88 37641.10 31171.14 34069.21 326
sd_testset63.55 24665.38 22758.07 30873.04 24638.83 32357.41 33065.44 28151.42 22768.93 27182.72 21363.76 13858.11 33741.05 31284.67 21677.28 255
MDA-MVSNet_test_wron52.57 32053.49 31949.81 34154.24 38136.47 34040.48 38146.58 37038.13 33575.47 18073.32 31941.05 30143.85 37740.98 31371.20 33969.10 328
1112_ss59.48 28358.99 28360.96 29077.84 17042.39 29761.42 30368.45 26437.96 33759.93 33967.46 35845.11 27565.07 31140.89 31471.81 33675.41 271
tpmvs55.84 30055.45 31057.01 31260.33 35133.20 36265.89 26259.29 31547.52 26856.04 35573.60 31631.05 35968.06 28840.64 31564.64 36569.77 320
TR-MVS64.59 23563.54 24867.73 22775.75 20350.83 21363.39 29170.29 25249.33 25171.55 23874.55 30650.94 24378.46 17040.43 31675.69 30373.89 283
test_post166.63 2552.08 39830.66 36259.33 33140.34 317
SCA58.57 29058.04 29160.17 29570.17 27341.07 30565.19 27353.38 34843.34 30261.00 33273.48 31745.20 27369.38 27640.34 31770.31 34570.05 317
baseline157.82 29458.36 29056.19 31569.17 28430.76 37362.94 29755.21 33646.04 27563.83 31478.47 27241.20 29763.68 31739.44 31968.99 35274.13 280
ab-mvs64.11 24365.13 23461.05 28871.99 25538.03 33267.59 23768.79 26149.08 25565.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
tpmrst50.15 33451.38 32946.45 35656.05 37324.77 38864.40 28349.98 35836.14 34553.32 36769.59 34535.16 33148.69 35539.24 32158.51 38265.89 343
test_f43.79 35445.63 34938.24 37642.29 40038.58 32434.76 38947.68 36622.22 39267.34 29063.15 37031.82 35030.60 39439.19 32262.28 37245.53 388
CostFormer57.35 29656.14 30460.97 28963.76 33538.43 32567.50 23960.22 31137.14 34259.12 34376.34 29232.78 34171.99 25439.12 32369.27 35172.47 295
pmmvs460.78 27359.04 28266.00 24473.06 24557.67 17464.53 28160.22 31136.91 34365.96 29677.27 28639.66 30968.54 28338.87 32474.89 31171.80 302
gm-plane-assit62.51 33933.91 35937.25 34162.71 37272.74 24038.70 325
Test_1112_low_res58.78 28858.69 28559.04 30379.41 14338.13 33057.62 32866.98 27034.74 35259.62 34277.56 28442.92 28863.65 31838.66 32670.73 34275.35 273
thres600view761.82 26461.38 26563.12 26771.81 25634.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34772.42 24838.61 32783.46 23582.02 181
UnsupCasMVSNet_eth52.26 32253.29 32049.16 34555.08 37833.67 36050.03 36058.79 31637.67 33963.43 32174.75 30441.82 29445.83 36438.59 32859.42 37967.98 333
CL-MVSNet_self_test62.44 26063.40 24959.55 29972.34 25232.38 36456.39 33464.84 28651.21 23267.46 28981.01 23350.75 24463.51 31938.47 32988.12 16382.75 166
MDTV_nov1_ep1354.05 31665.54 32229.30 37759.00 31955.22 33535.96 34752.44 36875.98 29330.77 36159.62 33038.21 33073.33 326
BH-w/o64.81 23264.29 24066.36 24076.08 19854.71 18965.61 26875.23 20350.10 24571.05 24571.86 32954.33 22579.02 15938.20 33176.14 30165.36 347
TESTMET0.1,145.17 34844.93 35445.89 35856.02 37438.31 32653.18 35141.94 38627.85 37644.86 38856.47 38517.93 39641.50 38438.08 33268.06 35657.85 373
USDC62.80 25663.10 25361.89 27965.19 32443.30 28967.42 24174.20 21035.80 34872.25 22784.48 18445.67 27071.95 25537.95 33384.97 21170.42 316
E-PMN45.17 34845.36 35144.60 36350.07 39042.75 29338.66 38442.29 38446.39 27439.55 39351.15 39026.00 37945.37 36837.68 33476.41 29845.69 387
CDS-MVSNet64.33 24162.66 25769.35 19880.44 13458.28 17165.26 27265.66 27844.36 29067.30 29175.54 29743.27 28571.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MS-PatchMatch55.59 30354.89 31257.68 31069.18 28349.05 23361.00 30762.93 30035.98 34658.36 34568.93 35036.71 32766.59 30637.62 33663.30 36957.39 375
FPMVS59.43 28460.07 27557.51 31177.62 17671.52 4962.33 29950.92 35557.40 15569.40 26380.00 25039.14 31361.92 32537.47 33766.36 36239.09 392
EPMVS45.74 34546.53 34843.39 36754.14 38322.33 39455.02 34335.00 39634.69 35351.09 37370.20 34025.92 38042.04 38237.19 33855.50 38765.78 344
baseline255.57 30452.74 32164.05 25765.26 32344.11 28062.38 29854.43 34039.03 33151.21 37267.35 36033.66 33672.45 24737.14 33964.22 36775.60 268
EMVS44.61 35244.45 35745.10 36248.91 39343.00 29137.92 38541.10 39046.75 27238.00 39548.43 39326.42 37746.27 36337.11 34075.38 30846.03 386
XXY-MVS55.19 30557.40 29648.56 34964.45 33134.84 35451.54 35753.59 34438.99 33263.79 31579.43 25856.59 21445.57 36536.92 34171.29 33865.25 348
HyFIR lowres test63.01 25360.47 27370.61 17483.04 10254.10 19459.93 31572.24 22833.67 35969.00 26775.63 29638.69 31576.93 19736.60 34275.45 30780.81 205
EPNet_dtu58.93 28758.52 28660.16 29667.91 30047.70 25069.97 20558.02 31749.73 24847.28 38273.02 32238.14 31762.34 32236.57 34385.99 19970.43 315
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
KD-MVS_2432*160052.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
miper_refine_blended52.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
new-patchmatchnet52.89 31755.76 30844.26 36559.94 3566.31 40337.36 38750.76 35741.10 31364.28 30879.82 25244.77 27648.43 35836.24 34687.61 16978.03 248
JIA-IIPM54.03 31251.62 32661.25 28759.14 36155.21 18759.10 31847.72 36550.85 23550.31 37885.81 17120.10 39463.97 31536.16 34755.41 38864.55 354
WAC-MVS22.69 39236.10 348
PatchMatch-RL58.68 28957.72 29361.57 28276.21 19473.59 3961.83 30049.00 36247.30 26961.08 32968.97 34950.16 24859.01 33236.06 34968.84 35352.10 379
thres100view90061.17 27061.09 26761.39 28572.14 25435.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34772.09 25135.61 35081.73 25177.08 260
tfpn200view960.35 27759.97 27661.51 28370.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25177.08 260
thres40060.77 27459.97 27663.15 26670.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25182.02 181
test_vis1_rt46.70 34445.24 35251.06 33544.58 39751.04 21139.91 38267.56 26721.84 39351.94 37050.79 39133.83 33539.77 38635.25 35361.50 37462.38 363
MVP-Stereo61.56 26759.22 28068.58 21679.28 14660.44 15269.20 21571.57 23143.58 29856.42 35478.37 27439.57 31076.46 20434.86 35460.16 37768.86 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
TAMVS65.31 22663.75 24569.97 19082.23 11559.76 15766.78 25463.37 29845.20 28569.79 25979.37 26047.42 26772.17 25034.48 35585.15 21077.99 250
tpm cat154.02 31352.63 32258.19 30764.85 33039.86 31566.26 25957.28 32232.16 36456.90 35170.39 33832.75 34265.30 31034.29 35658.79 38069.41 324
pmmvs552.49 32152.58 32352.21 33154.99 37932.38 36455.45 34153.84 34332.15 36555.49 35974.81 30238.08 31857.37 34034.02 35774.40 31766.88 338
CHOSEN 1792x268858.09 29256.30 30363.45 26479.95 13750.93 21254.07 34865.59 27928.56 37561.53 32674.33 30941.09 29966.52 30733.91 35867.69 36072.92 290
myMVS_eth3d50.36 33350.52 33849.88 33968.77 28822.69 39255.02 34344.55 37443.80 29358.05 34764.07 36714.16 40358.83 33333.90 35972.36 33168.12 330
HY-MVS49.31 1957.96 29357.59 29459.10 30266.85 31236.17 34265.13 27465.39 28239.24 33054.69 36378.14 27844.28 28067.18 29833.75 36070.79 34173.95 282
tpm256.12 29954.64 31360.55 29366.24 31636.01 34368.14 23256.77 32933.60 36058.25 34675.52 29930.25 36474.33 22733.27 36169.76 35071.32 306
MDTV_nov1_ep13_2view18.41 39653.74 34931.57 36944.89 38729.90 36832.93 36271.48 304
tpm50.60 33152.42 32445.14 36165.18 32526.29 38460.30 31243.50 37637.41 34057.01 35079.09 26630.20 36642.32 38032.77 36366.36 36266.81 340
sss47.59 34248.32 34245.40 36056.73 37233.96 35845.17 37348.51 36332.11 36752.37 36965.79 36340.39 30441.91 38331.85 36461.97 37360.35 368
PMMVS44.69 35043.95 35846.92 35350.05 39153.47 19948.08 36642.40 38222.36 39144.01 39153.05 38842.60 29145.49 36631.69 36561.36 37541.79 390
thres20057.55 29557.02 29759.17 30067.89 30134.93 35258.91 32157.25 32350.24 24264.01 31171.46 33232.49 34371.39 26131.31 36679.57 27771.19 310
WTY-MVS49.39 33750.31 34046.62 35561.22 34632.00 36746.61 37049.77 35933.87 35754.12 36569.55 34641.96 29345.40 36731.28 36764.42 36662.47 362
UnsupCasMVSNet_bld50.01 33551.03 33346.95 35258.61 36332.64 36348.31 36353.27 34934.27 35560.47 33471.53 33141.40 29547.07 36230.68 36860.78 37661.13 367
PVSNet43.83 2151.56 32751.17 33052.73 32868.34 29338.27 32748.22 36453.56 34636.41 34454.29 36464.94 36634.60 33354.20 34630.34 36969.87 34865.71 345
test20.0355.74 30257.51 29550.42 33759.89 35732.09 36650.63 35949.01 36150.11 24465.07 30383.23 20745.61 27148.11 35930.22 37083.82 22971.07 311
FMVSNet555.08 30655.54 30953.71 32365.80 32033.50 36156.22 33652.50 35243.72 29761.06 33083.38 19925.46 38254.87 34330.11 37181.64 25672.75 292
gg-mvs-nofinetune55.75 30156.75 30052.72 32962.87 33828.04 38068.92 21841.36 38871.09 4150.80 37492.63 1220.74 39166.86 30229.97 37272.41 33063.25 357
dp44.09 35344.88 35541.72 37158.53 36423.18 39154.70 34642.38 38334.80 35144.25 39065.61 36424.48 38744.80 37129.77 37349.42 39157.18 376
PAPM61.79 26560.37 27466.05 24376.09 19641.87 29969.30 21376.79 19040.64 32253.80 36679.62 25644.38 27982.92 9429.64 37473.11 32773.36 287
testgi54.00 31456.86 29945.45 35958.20 36525.81 38749.05 36149.50 36045.43 28267.84 28381.17 23051.81 23943.20 37929.30 37579.41 27867.34 336
Patchmatch-test47.93 34049.96 34141.84 36957.42 36824.26 38948.75 36241.49 38739.30 32956.79 35273.48 31730.48 36333.87 39229.29 37672.61 32967.39 334
pmmvs346.71 34345.09 35351.55 33356.76 37148.25 23855.78 34039.53 39224.13 38850.35 37763.40 36915.90 40051.08 34829.29 37670.69 34355.33 378
mvsany_test343.76 35541.01 35952.01 33248.09 39457.74 17342.47 37823.85 40223.30 39064.80 30462.17 37427.12 37440.59 38529.17 37848.11 39257.69 374
dmvs_re49.91 33650.77 33647.34 35159.98 35338.86 32253.18 35153.58 34539.75 32655.06 36061.58 37636.42 32844.40 37429.15 37968.23 35558.75 372
N_pmnet52.06 32351.11 33154.92 31859.64 35971.03 5337.42 38661.62 30833.68 35857.12 34972.10 32537.94 31931.03 39329.13 38071.35 33762.70 359
Anonymous2023120654.13 31055.82 30749.04 34770.89 26135.96 34451.73 35650.87 35634.86 35062.49 32279.22 26242.52 29244.29 37527.95 38181.88 24766.88 338
CHOSEN 280x42041.62 35739.89 36246.80 35461.81 34251.59 20733.56 39035.74 39527.48 37837.64 39653.53 38623.24 38942.09 38127.39 38258.64 38146.72 385
mvsany_test137.88 35935.74 36444.28 36447.28 39549.90 22436.54 38824.37 40119.56 39445.76 38453.46 38732.99 34037.97 39026.17 38335.52 39444.99 389
MIMVSNet54.39 30956.12 30549.20 34472.57 25030.91 37259.98 31448.43 36441.66 30855.94 35683.86 19341.19 29850.42 34926.05 38475.38 30866.27 342
ADS-MVSNet248.76 33847.25 34753.29 32755.90 37540.54 31147.34 36854.99 33831.41 37050.48 37572.06 32631.23 35554.26 34525.93 38555.93 38565.07 349
ADS-MVSNet44.62 35145.58 35041.73 37055.90 37520.83 39547.34 36839.94 39131.41 37050.48 37572.06 32631.23 35539.31 38725.93 38555.93 38565.07 349
test0.0.03 147.72 34148.31 34345.93 35755.53 37729.39 37646.40 37141.21 38943.41 30055.81 35867.65 35729.22 37043.77 37825.73 38769.87 34864.62 353
GG-mvs-BLEND52.24 33060.64 35029.21 37869.73 20942.41 38145.47 38552.33 38920.43 39368.16 28625.52 38865.42 36459.36 371
DSMNet-mixed43.18 35644.66 35638.75 37454.75 38028.88 37957.06 33127.42 39913.47 39547.27 38377.67 28338.83 31439.29 38825.32 38960.12 37848.08 383
MVS-HIRNet45.53 34647.29 34640.24 37262.29 34026.82 38356.02 33837.41 39429.74 37443.69 39281.27 22833.96 33455.48 34124.46 39056.79 38438.43 393
PVSNet_036.71 2241.12 35840.78 36142.14 36859.97 35440.13 31340.97 37942.24 38530.81 37244.86 38849.41 39240.70 30245.12 36923.15 39134.96 39541.16 391
new_pmnet37.55 36139.80 36330.79 37756.83 37016.46 39839.35 38330.65 39725.59 38445.26 38661.60 37524.54 38628.02 39621.60 39252.80 39047.90 384
dmvs_testset45.26 34747.51 34538.49 37559.96 35514.71 39958.50 32443.39 37741.30 31151.79 37156.48 38439.44 31149.91 35321.42 39355.35 38950.85 380
MVEpermissive27.91 2336.69 36235.64 36539.84 37343.37 39835.85 34619.49 39224.61 40024.68 38639.05 39462.63 37338.67 31627.10 39721.04 39447.25 39356.56 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
wuyk23d61.97 26266.25 21749.12 34658.19 36660.77 15066.32 25852.97 35055.93 17090.62 586.91 13373.07 5735.98 39120.63 39591.63 8750.62 381
PMMVS237.74 36040.87 36028.36 37842.41 3995.35 40424.61 39127.75 39832.15 36547.85 38170.27 33935.85 33029.51 39519.08 39667.85 35850.22 382
test_method19.26 36319.12 36719.71 3799.09 4021.91 4067.79 39453.44 3471.42 39710.27 39935.80 39417.42 39825.11 39812.44 39724.38 39732.10 394
tmp_tt11.98 36514.73 3683.72 3812.28 4034.62 40519.44 39314.50 4040.47 39921.55 3979.58 39725.78 3814.57 40011.61 39827.37 3961.96 396
DeepMVS_CXcopyleft11.83 38015.51 40113.86 40011.25 4055.76 39620.85 39826.46 39517.06 3999.22 3999.69 39913.82 39812.42 395
testmvs4.06 3695.28 3720.41 3820.64 4050.16 40842.54 3770.31 4070.26 4010.50 4021.40 4010.77 4050.17 4010.56 4000.55 4000.90 397
test1234.43 3685.78 3710.39 3830.97 4040.28 40746.33 3720.45 4060.31 4000.62 4011.50 4000.61 4060.11 4020.56 4000.63 3990.77 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k17.71 36423.62 3660.00 3840.00 4060.00 4090.00 39570.17 2530.00 4020.00 40374.25 31168.16 950.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.20 3676.93 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40262.39 1490.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re5.62 3667.50 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40367.46 3580.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
eth-test20.00 406
eth-test0.00 406
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
GSMVS70.05 317
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35370.05 317
sam_mvs31.21 357
MTGPAbinary80.63 123
test_post1.99 39930.91 36054.76 344
patchmatchnet-post68.99 34831.32 35469.38 276
MTMP84.83 3119.26 403
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
test_prior470.14 6377.57 102
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
新几何271.33 186
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 321
原ACMM274.78 143
test22287.30 3769.15 7367.85 23559.59 31441.06 31473.05 21685.72 17248.03 26480.65 26466.92 337
segment_acmp68.30 94
testdata168.34 23157.24 156
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior489.11 95
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 81
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 408
nn0.00 408
door-mid55.02 337
test1182.71 84
door52.91 351
HQP5-MVS58.80 167
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9563.07 12285.97 167
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145