This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 16099.44 299.83 4397.90 305
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
MVS_030496.62 16296.40 17297.28 15197.91 23592.30 21096.47 15489.74 38397.52 7195.38 28998.63 9492.76 20899.81 3799.28 499.93 1199.75 19
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4699.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
test_fmvs397.38 11797.56 10296.84 18598.63 15492.81 19797.60 8799.61 1390.87 28998.76 7099.66 394.03 18097.90 36999.24 699.68 8399.81 8
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12393.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14299.21 799.87 2998.69 230
MM97.62 12093.30 18696.39 15692.61 36097.90 5296.76 22898.64 9390.46 25499.81 3799.16 999.94 899.76 17
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
fmvsm_l_conf0.5_n97.68 9597.81 7197.27 15298.92 11992.71 20295.89 20099.41 2393.36 23599.00 4698.44 11396.46 10099.65 13899.09 1199.76 5999.45 86
fmvsm_l_conf0.5_n_a97.60 10197.76 7897.11 16398.92 11992.28 21195.83 20399.32 2493.22 24198.91 5398.49 10696.31 10799.64 14299.07 1299.76 5999.40 101
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8292.51 20596.57 14999.15 4393.68 22798.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9891.43 23796.37 16099.11 4994.19 21099.01 4499.25 3196.30 10899.38 22999.00 1499.88 2799.73 22
fmvsm_s_conf0.5_n_a97.65 9697.83 6997.13 16298.80 13092.51 20596.25 17099.06 6193.67 22898.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 57
fmvsm_s_conf0.5_n97.62 9997.89 6296.80 18798.79 13291.44 23696.14 17999.06 6194.19 21098.82 6198.98 5896.22 11399.38 22998.98 1699.86 3199.58 40
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3196.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
test_fmvs296.38 17496.45 16996.16 22497.85 23991.30 23896.81 13399.45 1889.24 31098.49 8899.38 1888.68 28097.62 37498.83 1899.32 19299.57 47
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3296.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4895.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
v1097.55 10597.97 5596.31 21798.60 15889.64 26397.44 10099.02 7496.60 10198.72 7399.16 4393.48 19399.72 8898.76 2199.92 1599.58 40
MVSFormer96.14 18296.36 17495.49 25597.68 27187.81 30398.67 1599.02 7496.50 10994.48 31096.15 30286.90 29899.92 598.73 2299.13 21898.74 223
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7496.50 10999.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6598.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
tt080597.44 11397.56 10297.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32797.17 5298.50 34698.67 2597.45 33196.48 358
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26699.90 1498.64 2699.90 2499.82 6
v897.60 10198.06 4796.23 21998.71 14389.44 26797.43 10298.82 13497.29 8498.74 7199.10 4893.86 18499.68 12498.61 2799.94 899.56 51
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3695.62 15699.35 2599.37 1997.38 4199.90 1498.59 2899.91 1899.77 12
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18298.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9697.71 6198.85 5799.10 4891.35 24299.83 3398.47 3099.90 2499.64 35
v124096.74 15297.02 13595.91 23698.18 20788.52 28395.39 23098.88 10893.15 24898.46 9398.40 11892.80 20799.71 10498.45 3199.49 14299.49 71
bld_raw_dy_0_6497.69 9297.61 9797.91 10099.54 2694.27 15498.06 5998.60 17396.60 10198.79 6498.95 6389.62 26799.84 3098.43 3299.91 1899.62 36
v119296.83 14797.06 13296.15 22598.28 19389.29 26995.36 23298.77 14193.73 22498.11 13398.34 12293.02 20499.67 13098.35 3399.58 10699.50 63
v192192096.72 15596.96 13995.99 22998.21 20188.79 28095.42 22698.79 13693.22 24198.19 12698.26 13992.68 21199.70 11298.34 3499.55 11899.49 71
Anonymous2023121198.55 2098.76 1397.94 9998.79 13294.37 14798.84 1199.15 4399.37 399.67 799.43 1595.61 13599.72 8898.12 3599.86 3199.73 22
v14419296.69 15896.90 14496.03 22898.25 19788.92 27595.49 22298.77 14193.05 25098.09 13698.29 13392.51 22199.70 11298.11 3699.56 11299.47 80
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21489.13 27496.81 13399.43 2086.97 33797.21 19198.92 6683.00 32697.13 37898.09 3798.94 24098.72 226
Anonymous2024052197.07 13097.51 10795.76 24199.35 5288.18 29197.78 7398.40 19797.11 8798.34 10799.04 5389.58 26999.79 4598.09 3799.93 1199.30 121
v114496.84 14497.08 13096.13 22698.42 18389.28 27095.41 22898.67 16394.21 20897.97 15198.31 12593.06 20099.65 13898.06 3999.62 9399.45 86
SixPastTwentyTwo97.49 10997.57 10197.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28399.89 1898.01 4099.76 5999.54 54
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16584.86 34895.91 19999.71 492.72 26197.67 16998.90 7087.44 29598.73 32397.96 4198.85 25197.96 301
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3899.05 1399.17 3598.79 7695.47 13999.89 1897.95 4299.91 1899.75 19
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2499.08 1097.87 16299.67 296.47 9899.92 597.88 4399.98 299.85 3
test_fmvs194.51 25894.60 24594.26 31295.91 34787.92 29895.35 23499.02 7486.56 34196.79 22398.52 10382.64 32897.00 38197.87 4498.71 26697.88 307
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3298.43 3298.89 5498.83 7594.30 17499.81 3797.87 4499.91 1899.77 12
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16699.11 4796.75 8399.86 2497.84 4699.36 17799.15 153
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 17196.28 17796.95 17599.41 4391.53 23397.65 8490.31 37998.89 2098.93 5099.36 2184.57 31699.92 597.81 4799.56 11299.39 105
v2v48296.78 15197.06 13295.95 23398.57 16288.77 28195.36 23298.26 21295.18 17697.85 16498.23 14392.58 21599.63 14697.80 4899.69 7999.45 86
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4799.22 899.22 3398.96 6197.35 4299.92 597.79 4999.93 1199.79 10
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5798.31 3699.02 4398.74 8297.68 3099.61 15897.77 5099.85 3899.70 26
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2699.01 1699.63 1199.66 399.27 299.68 12497.75 5199.89 2699.62 36
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6597.40 7999.37 2399.08 5198.79 699.47 19797.74 5299.71 7599.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_f95.82 19695.88 19795.66 24697.61 27993.21 19195.61 21898.17 22786.98 33698.42 9699.47 1190.46 25494.74 39197.71 5398.45 28599.03 178
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5199.36 499.29 2899.06 5297.27 4699.93 397.71 5399.91 1899.70 26
test_vis1_n95.67 20195.89 19695.03 27498.18 20789.89 26096.94 12699.28 2888.25 32498.20 12298.92 6686.69 30197.19 37797.70 5598.82 25598.00 300
EC-MVSNet97.90 7197.94 5897.79 10898.66 14995.14 12198.31 3999.66 897.57 6795.95 26897.01 25596.99 6499.82 3597.66 5699.64 9098.39 258
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4399.33 599.30 2799.00 5597.27 4699.92 597.64 5799.92 1599.75 19
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 12099.05 1399.01 4498.65 9295.37 14299.90 1497.57 5899.91 1899.77 12
EI-MVSNet-UG-set97.32 12397.40 11297.09 16797.34 30192.01 22595.33 23697.65 26897.74 5798.30 11598.14 15295.04 15199.69 11997.55 5999.52 13099.58 40
ANet_high98.31 3198.94 696.41 21399.33 5489.64 26397.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5999.98 299.77 12
CS-MVS98.09 4498.01 5298.32 6598.45 18096.69 5298.52 2699.69 598.07 4696.07 26497.19 24396.88 7599.86 2497.50 6199.73 6898.41 255
EI-MVSNet-Vis-set97.32 12397.39 11397.11 16397.36 29892.08 22395.34 23597.65 26897.74 5798.29 11698.11 15895.05 15099.68 12497.50 6199.50 13999.56 51
EU-MVSNet94.25 26494.47 25393.60 32498.14 21682.60 36697.24 11092.72 35785.08 35598.48 9098.94 6482.59 32998.76 32197.47 6399.53 12599.44 96
V4297.04 13197.16 12696.68 19698.59 16091.05 24196.33 16398.36 20294.60 19797.99 14798.30 12993.32 19599.62 15197.40 6499.53 12599.38 107
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6992.81 19797.55 9298.94 9697.10 8898.85 5798.88 7295.03 15299.67 13097.39 6599.65 8899.26 133
lessismore_v097.05 16999.36 5192.12 21984.07 39598.77 6998.98 5885.36 31099.74 7797.34 6699.37 17499.30 121
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4998.04 4898.62 7698.66 8993.75 18899.78 4897.23 6799.84 4099.73 22
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3499.67 299.73 399.65 599.15 399.86 2497.22 6899.92 1599.77 12
MVS_Test96.27 17796.79 15094.73 29296.94 32086.63 32596.18 17498.33 20694.94 18696.07 26498.28 13495.25 14699.26 26297.21 6997.90 30798.30 271
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 16197.21 6999.76 5999.40 101
EG-PatchMatch MVS97.69 9297.79 7397.40 14599.06 10293.52 18095.96 19498.97 9294.55 20198.82 6198.76 8197.31 4499.29 25697.20 7199.44 15599.38 107
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8398.40 3399.07 4298.98 5896.89 7399.75 6897.19 7299.79 5399.55 53
test_vis3_rt97.04 13196.98 13697.23 15798.44 18195.88 8096.82 13299.67 690.30 29899.27 2999.33 2794.04 17996.03 38897.14 7397.83 30999.78 11
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 13095.86 8395.92 19899.04 7197.51 7298.22 12197.81 19494.68 16299.78 4897.14 7399.75 6699.41 100
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8397.57 6799.27 2999.22 3498.32 1299.50 18797.09 7599.75 6699.50 63
baseline97.44 11397.78 7796.43 20998.52 16990.75 24996.84 13099.03 7296.51 10897.86 16398.02 17196.67 8599.36 23797.09 7599.47 14899.19 146
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 33997.63 27296.99 8998.36 10498.54 10287.94 28799.75 6897.07 7799.08 22699.27 132
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 14095.78 8495.66 21299.02 7498.11 4498.31 11397.69 20594.65 16499.85 2797.02 7899.71 7599.48 77
DU-MVS97.79 8497.60 9898.36 6398.73 13895.78 8495.65 21498.87 11097.57 6798.31 11397.83 19094.69 16099.85 2797.02 7899.71 7599.46 82
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16292.10 22295.97 19299.18 3797.67 6699.00 4698.48 11097.64 3399.50 18796.96 8099.54 12199.40 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet96.63 16196.93 14095.74 24297.26 30688.13 29495.29 24097.65 26896.99 8997.94 15498.19 14892.55 21699.58 16396.91 8199.56 11299.50 63
IterMVS-LS96.92 14097.29 11995.79 24098.51 17188.13 29495.10 24798.66 16596.99 8998.46 9398.68 8892.55 21699.74 7796.91 8199.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CS-MVS-test97.91 6997.84 6698.14 8298.52 16996.03 7798.38 3499.67 698.11 4495.50 28596.92 26196.81 8199.87 2296.87 8399.76 5998.51 248
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20186.83 32395.61 21899.26 2990.45 29698.17 12798.96 6184.43 31798.31 36096.74 8499.17 21397.90 305
iter_conf_final94.54 25693.91 27296.43 20997.23 30890.41 25596.81 13398.10 23793.87 22196.80 22297.89 18568.02 38799.72 8896.73 8599.77 5899.18 149
test111194.53 25794.81 23493.72 32199.06 10281.94 37198.31 3983.87 39696.37 11498.49 8899.17 4281.49 33199.73 8396.64 8699.86 3199.49 71
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 14096.04 7598.07 5899.10 5195.96 13798.59 8098.69 8796.94 6799.81 3796.64 8699.58 10699.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVS-pluss97.69 9297.36 11598.70 3899.50 3496.84 4795.38 23198.99 8692.45 26798.11 13398.31 12597.25 4999.77 5796.60 8899.62 9399.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 21596.07 18693.21 33396.29 33381.56 37294.60 27197.66 26693.30 23896.95 21698.91 6993.03 20399.38 22996.60 8897.30 33698.69 230
casdiffmvspermissive97.50 10897.81 7196.56 20398.51 17191.04 24295.83 20399.09 5697.23 8598.33 11098.30 12997.03 6199.37 23496.58 9099.38 17399.28 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 11098.23 4099.48 1699.27 3098.47 1199.55 17496.52 9199.53 12599.60 38
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7295.88 14397.88 15998.22 14698.15 1699.74 7796.50 9299.62 9399.42 98
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10298.49 3199.38 2299.14 4695.44 14199.84 3096.47 9399.80 5199.47 80
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6598.67 2498.84 5998.45 11197.58 3699.88 2096.45 9499.86 3199.54 54
test250689.86 34089.16 34591.97 35698.95 11376.83 39198.54 2361.07 40496.20 12297.07 20699.16 4355.19 40199.69 11996.43 9599.83 4399.38 107
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 5198.76 2396.79 22399.34 2596.61 8998.82 31496.38 9699.50 13996.98 338
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 26793.93 27195.05 27395.83 35186.46 32695.18 24597.65 26892.41 26897.94 15498.00 17572.39 37699.58 16396.36 9799.56 11299.12 163
GeoE97.75 8797.70 8197.89 10298.88 12394.53 14097.10 11898.98 8995.75 15197.62 17097.59 21197.61 3599.77 5796.34 9899.44 15599.36 113
canonicalmvs97.23 12697.21 12497.30 15097.65 27694.39 14597.84 7199.05 6597.42 7596.68 23193.85 35297.63 3499.33 24596.29 9998.47 28498.18 283
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
alignmvs96.01 18895.52 20997.50 13297.77 26194.71 13196.07 18396.84 29697.48 7396.78 22794.28 34985.50 30999.40 22296.22 10298.73 26598.40 256
tttt051793.31 29492.56 30195.57 24998.71 14387.86 30097.44 10087.17 39095.79 14897.47 18196.84 26564.12 39199.81 3796.20 10399.32 19299.02 181
iter_conf0593.65 28593.05 28495.46 25796.13 34487.45 31095.95 19698.22 21792.66 26297.04 20897.89 18563.52 39399.72 8896.19 10499.82 4799.21 141
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13595.72 8696.23 17299.02 7493.92 22098.62 7698.99 5797.69 2999.62 15196.18 10599.87 2999.15 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14897.69 6397.90 15797.96 17795.81 12899.82 3596.13 10699.61 9999.45 86
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5697.24 3997.45 9998.84 12095.76 14996.93 21797.43 22297.26 4899.79 4596.06 10799.53 12599.45 86
Patchmatch-RL test94.66 24994.49 25195.19 26698.54 16788.91 27692.57 33398.74 14791.46 28298.32 11197.75 19977.31 35498.81 31696.06 10799.61 9997.85 309
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5296.84 4796.36 16198.79 13695.07 18197.88 15998.35 12197.24 5099.72 8896.05 10999.58 10699.45 86
v14896.58 16596.97 13795.42 25998.63 15487.57 30795.09 24897.90 25095.91 14298.24 11997.96 17793.42 19499.39 22696.04 11099.52 13099.29 127
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8697.55 2696.68 14698.83 12695.21 17398.36 10498.13 15498.13 1899.62 15196.04 11099.54 12199.39 105
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 11997.25 12197.74 11198.69 14794.50 14397.04 12295.61 32398.59 2798.51 8598.72 8392.54 21899.58 16396.02 11299.49 14299.12 163
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34097.47 27795.49 16398.06 14198.49 10687.94 28799.58 16396.02 11299.02 23399.23 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive96.04 18696.23 17895.46 25797.35 29988.03 29793.42 31699.08 5794.09 21696.66 23396.93 25993.85 18599.29 25696.01 11498.67 26999.06 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS97.36 12197.10 12898.14 8298.91 12196.77 4996.20 17398.63 17193.82 22298.54 8398.33 12393.98 18199.05 29395.99 11599.45 15498.61 239
Baseline_NR-MVSNet97.72 9097.79 7397.50 13299.56 2193.29 18795.44 22498.86 11398.20 4298.37 10199.24 3294.69 16099.55 17495.98 11699.79 5399.65 33
ECVR-MVScopyleft94.37 26394.48 25294.05 31798.95 11383.10 36298.31 3982.48 39796.20 12298.23 12099.16 4381.18 33499.66 13695.95 11799.83 4399.38 107
3Dnovator96.53 297.61 10097.64 9197.50 13297.74 26793.65 17798.49 2898.88 10896.86 9497.11 19998.55 10195.82 12499.73 8395.94 11899.42 16699.13 158
PatchT93.75 28093.57 27794.29 31195.05 36887.32 31496.05 18492.98 35397.54 7094.25 31398.72 8375.79 36299.24 26795.92 11995.81 35996.32 360
NR-MVSNet97.96 5497.86 6598.26 7098.73 13895.54 9598.14 5498.73 14897.79 5399.42 2097.83 19094.40 17299.78 4895.91 12099.76 5999.46 82
h-mvs3396.29 17695.63 20698.26 7098.50 17496.11 7396.90 12897.09 28896.58 10497.21 19198.19 14884.14 31899.78 4895.89 12196.17 35798.89 203
hse-mvs295.77 19795.09 21897.79 10897.84 24495.51 9795.66 21295.43 32896.58 10497.21 19196.16 30184.14 31899.54 17795.89 12196.92 33898.32 267
MSC_two_6792asdad98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
No_MVS98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
new-patchmatchnet95.67 20196.58 15992.94 34197.48 28880.21 37792.96 32598.19 22694.83 18998.82 6198.79 7693.31 19699.51 18695.83 12599.04 23299.12 163
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16597.41 7899.00 4699.19 3695.47 13999.73 8395.83 12599.76 5999.30 121
patch_mono-296.59 16396.93 14095.55 25298.88 12387.12 31794.47 27499.30 2694.12 21396.65 23598.41 11594.98 15599.87 2295.81 12799.78 5699.66 30
DVP-MVS++97.96 5497.90 5998.12 8497.75 26495.40 10399.03 798.89 10296.62 9998.62 7698.30 12996.97 6599.75 6895.70 12899.25 20399.21 141
test_0728_THIRD96.62 9998.40 9898.28 13497.10 5499.71 10495.70 12899.62 9399.58 40
EGC-MVSNET83.08 36277.93 36598.53 5099.57 2097.55 2698.33 3898.57 1794.71 39910.38 40098.90 7095.60 13699.50 18795.69 13099.61 9998.55 244
RPMNet94.68 24894.60 24594.90 28295.44 36188.15 29296.18 17498.86 11397.43 7494.10 31798.49 10679.40 34199.76 6295.69 13095.81 35996.81 349
TSAR-MVS + MP.97.42 11597.23 12398.00 9599.38 4995.00 12597.63 8698.20 22193.00 25298.16 12898.06 16795.89 11999.72 8895.67 13299.10 22499.28 128
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS97.96 5497.63 9398.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25097.64 20796.49 9699.72 8895.66 13399.37 17499.45 86
X-MVStestdata92.86 30190.83 32798.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25036.50 39796.49 9699.72 8895.66 13399.37 17499.45 86
3Dnovator+96.13 397.73 8897.59 9998.15 8198.11 22095.60 9298.04 6098.70 15798.13 4396.93 21798.45 11195.30 14599.62 15195.64 13598.96 23799.24 138
DELS-MVS96.17 18196.23 17895.99 22997.55 28490.04 25792.38 34198.52 18294.13 21296.55 24197.06 25094.99 15499.58 16395.62 13699.28 19998.37 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 6297.64 9198.83 2599.15 8697.50 2997.59 8998.84 12096.05 13097.49 17797.54 21497.07 5799.70 11295.61 13799.46 15199.30 121
ACMMPR97.95 5897.62 9598.94 1599.20 7897.56 2597.59 8998.83 12696.05 13097.46 18297.63 20896.77 8299.76 6295.61 13799.46 15199.49 71
UGNet96.81 14996.56 16197.58 12296.64 32593.84 16897.75 7797.12 28796.47 11293.62 33298.88 7293.22 19899.53 17995.61 13799.69 7999.36 113
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6595.43 16797.41 18497.50 21897.98 1999.79 4595.58 14099.57 10999.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dcpmvs_297.12 12897.99 5494.51 30299.11 9584.00 35897.75 7799.65 997.38 8099.14 3798.42 11495.16 14899.96 295.52 14199.78 5699.58 40
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.60 9199.76 6295.49 14299.20 20899.26 133
RE-MVS-def97.88 6498.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.94 6795.49 14299.20 20899.26 133
Anonymous2024052997.96 5498.04 4997.71 11398.69 14794.28 15397.86 7098.31 21098.79 2299.23 3298.86 7495.76 13099.61 15895.49 14299.36 17799.23 139
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6495.51 9796.74 13998.23 21695.92 14098.40 9898.28 13497.06 5899.71 10495.48 14599.52 13099.26 133
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10299.75 6895.48 14599.52 13099.53 57
region2R97.92 6697.59 9998.92 2199.22 6997.55 2697.60 8798.84 12096.00 13597.22 18997.62 20996.87 7799.76 6295.48 14599.43 16399.46 82
pmmvs-eth3d96.49 16896.18 18197.42 14398.25 19794.29 15094.77 26598.07 24489.81 30597.97 15198.33 12393.11 19999.08 29095.46 14899.84 4098.89 203
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12696.11 12799.08 4098.24 14197.87 2399.72 8895.44 14999.51 13599.14 156
test_241102_TWO98.83 12696.11 12798.62 7698.24 14196.92 7199.72 8895.44 14999.49 14299.49 71
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13297.31 3697.55 9298.92 9997.72 5998.25 11898.13 15497.10 5499.75 6895.44 14999.24 20699.32 116
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
c3_l95.20 22395.32 21094.83 28796.19 33886.43 32891.83 34998.35 20593.47 23297.36 18597.26 23988.69 27999.28 25895.41 15599.36 17798.78 217
mvsany_test396.21 17995.93 19497.05 16997.40 29694.33 14995.76 20694.20 34189.10 31199.36 2499.60 693.97 18297.85 37095.40 15698.63 27498.99 185
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6697.60 2298.09 5798.96 9395.75 15197.91 15698.06 16796.89 7399.76 6295.32 15799.57 10999.43 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
miper_lstm_enhance94.81 24094.80 23594.85 28596.16 34086.45 32791.14 36298.20 22193.49 23197.03 20997.37 23284.97 31399.26 26295.28 15899.56 11298.83 212
MSLP-MVS++96.42 17396.71 15295.57 24997.82 24790.56 25395.71 20798.84 12094.72 19296.71 23097.39 22894.91 15798.10 36795.28 15899.02 23398.05 295
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 4097.21 4197.15 11498.90 10196.58 10498.08 13897.87 18897.02 6299.76 6295.25 16099.59 10499.40 101
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 11997.70 8196.35 21498.14 21695.13 12296.54 15198.92 9995.94 13999.19 3498.08 16097.74 2895.06 38995.24 16199.54 12198.87 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 6995.40 10398.14 23485.77 34998.36 10495.23 16299.51 13599.49 71
CP-MVS97.92 6697.56 10298.99 1098.99 11197.82 1597.93 6698.96 9396.11 12796.89 22097.45 22096.85 7899.78 4895.19 16399.63 9299.38 107
LS3D97.77 8697.50 10998.57 4796.24 33497.58 2498.45 3198.85 11798.58 2897.51 17597.94 18095.74 13199.63 14695.19 16398.97 23698.51 248
SMA-MVScopyleft97.48 11097.11 12798.60 4598.83 12796.67 5396.74 13998.73 14891.61 27998.48 9098.36 12096.53 9399.68 12495.17 16599.54 12199.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet93.29 29592.79 29394.78 29095.44 36188.15 29296.18 17497.20 28284.94 36094.10 31798.57 9877.67 34999.39 22695.17 16595.81 35996.81 349
OPM-MVS97.54 10697.25 12198.41 5999.11 9596.61 5695.24 24298.46 18794.58 20098.10 13598.07 16297.09 5699.39 22695.16 16799.44 15599.21 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mPP-MVS97.91 6997.53 10599.04 499.22 6997.87 1497.74 7998.78 14096.04 13297.10 20097.73 20296.53 9399.78 4895.16 16799.50 13999.46 82
DIV-MVS_self_test94.73 24194.64 24195.01 27595.86 34987.00 31991.33 35698.08 24093.34 23697.10 20097.34 23484.02 32099.31 24995.15 16999.55 11898.72 226
cl____94.73 24194.64 24195.01 27595.85 35087.00 31991.33 35698.08 24093.34 23697.10 20097.33 23584.01 32199.30 25295.14 17099.56 11298.71 229
MSP-MVS97.45 11296.92 14299.03 599.26 6097.70 1897.66 8398.89 10295.65 15498.51 8596.46 28892.15 22699.81 3795.14 17098.58 27999.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDDNet96.98 13796.84 14597.41 14499.40 4693.26 18997.94 6595.31 33099.26 798.39 10099.18 3987.85 29299.62 15195.13 17299.09 22599.35 115
CANet95.86 19495.65 20596.49 20696.41 33190.82 24694.36 27698.41 19594.94 18692.62 35996.73 27492.68 21199.71 10495.12 17399.60 10298.94 191
CNVR-MVS96.92 14096.55 16298.03 9398.00 22995.54 9594.87 26098.17 22794.60 19796.38 24797.05 25195.67 13399.36 23795.12 17399.08 22699.19 146
eth_miper_zixun_eth94.89 23694.93 22594.75 29195.99 34686.12 33191.35 35598.49 18593.40 23397.12 19897.25 24086.87 30099.35 24195.08 17598.82 25598.78 217
GST-MVS97.82 8197.49 11098.81 2799.23 6697.25 3897.16 11398.79 13695.96 13797.53 17397.40 22496.93 6999.77 5795.04 17699.35 18299.42 98
DP-MVS97.87 7497.89 6297.81 10798.62 15694.82 12997.13 11798.79 13698.98 1798.74 7198.49 10695.80 12999.49 19295.04 17699.44 15599.11 166
D2MVS95.18 22495.17 21595.21 26597.76 26287.76 30594.15 28897.94 24889.77 30696.99 21297.68 20687.45 29499.14 28095.03 17899.81 4898.74 223
SSC-MVS95.92 19197.03 13492.58 34799.28 5878.39 38296.68 14695.12 33298.90 1999.11 3998.66 8991.36 24199.68 12495.00 17999.16 21499.67 28
SR-MVS98.00 5197.66 8799.01 898.77 13697.93 1197.38 10498.83 12697.32 8298.06 14197.85 18996.65 8699.77 5795.00 17999.11 22299.32 116
FMVSNet296.72 15596.67 15596.87 18297.96 23191.88 22797.15 11498.06 24595.59 15898.50 8798.62 9589.51 27399.65 13894.99 18199.60 10299.07 173
SDMVSNet97.97 5298.26 3997.11 16399.41 4392.21 21496.92 12798.60 17398.58 2898.78 6599.39 1697.80 2599.62 15194.98 18299.86 3199.52 59
miper_ehance_all_eth94.69 24694.70 23894.64 29395.77 35386.22 33091.32 35898.24 21591.67 27897.05 20796.65 27888.39 28499.22 27194.88 18398.34 28998.49 251
XVG-OURS-SEG-HR97.38 11797.07 13198.30 6899.01 11097.41 3494.66 26999.02 7495.20 17498.15 13097.52 21698.83 598.43 35194.87 18496.41 35399.07 173
MVS_111021_HR96.73 15496.54 16497.27 15298.35 18893.66 17693.42 31698.36 20294.74 19196.58 23796.76 27396.54 9298.99 30094.87 18499.27 20199.15 153
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14898.66 2598.56 8298.41 11596.84 7999.69 11994.82 18699.81 4898.64 234
MVS_111021_LR96.82 14896.55 16297.62 12098.27 19595.34 11093.81 30698.33 20694.59 19996.56 23996.63 27996.61 8998.73 32394.80 18799.34 18598.78 217
WR-MVS96.90 14296.81 14797.16 15998.56 16492.20 21794.33 27798.12 23697.34 8198.20 12297.33 23592.81 20699.75 6894.79 18899.81 4899.54 54
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3498.21 4199.25 3198.51 10598.21 1499.40 22294.79 18899.72 7299.32 116
thisisatest053092.71 30491.76 31295.56 25198.42 18388.23 28996.03 18687.35 38994.04 21796.56 23995.47 32664.03 39299.77 5794.78 19099.11 22298.68 233
PGM-MVS97.88 7397.52 10698.96 1399.20 7897.62 2197.09 11999.06 6195.45 16497.55 17297.94 18097.11 5399.78 4894.77 19199.46 15199.48 77
TSAR-MVS + GP.96.47 17096.12 18297.49 13597.74 26795.23 11594.15 28896.90 29593.26 23998.04 14496.70 27594.41 17198.89 30994.77 19199.14 21698.37 260
Syy-MVS92.09 31591.80 31192.93 34295.19 36582.65 36492.46 33691.35 36890.67 29391.76 36787.61 39185.64 30898.50 34694.73 19396.84 34297.65 318
VNet96.84 14496.83 14696.88 18198.06 22192.02 22496.35 16297.57 27497.70 6297.88 15997.80 19592.40 22399.54 17794.73 19398.96 23799.08 171
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5796.57 10798.07 14098.38 11996.22 11399.14 28094.71 19599.31 19598.52 247
VPNet97.26 12597.49 11096.59 19999.47 3690.58 25196.27 16698.53 18197.77 5498.46 9398.41 11594.59 16599.68 12494.61 19699.29 19899.52 59
GBi-Net96.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
test196.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
FMVSNet395.26 22194.94 22396.22 22196.53 32890.06 25695.99 19097.66 26694.11 21497.99 14797.91 18480.22 34099.63 14694.60 19799.44 15598.96 188
SF-MVS97.60 10197.39 11398.22 7598.93 11795.69 8897.05 12199.10 5195.32 17097.83 16597.88 18796.44 10199.72 8894.59 20099.39 17299.25 137
XXY-MVS97.54 10697.70 8197.07 16899.46 3792.21 21497.22 11199.00 8394.93 18898.58 8198.92 6697.31 4499.41 22094.44 20199.43 16399.59 39
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20898.48 17791.52 23495.31 23898.45 18895.76 14997.48 17997.54 21489.53 27298.69 32894.43 20294.61 37499.13 158
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8697.02 4297.09 11999.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
DeepPCF-MVS94.58 596.90 14296.43 17098.31 6797.48 28897.23 4092.56 33498.60 17392.84 25998.54 8397.40 22496.64 8898.78 31894.40 20599.41 17098.93 195
XVG-ACMP-BASELINE97.58 10497.28 12098.49 5299.16 8396.90 4696.39 15698.98 8995.05 18298.06 14198.02 17195.86 12099.56 17094.37 20699.64 9099.00 182
RPSCF97.87 7497.51 10798.95 1499.15 8698.43 697.56 9199.06 6196.19 12498.48 9098.70 8694.72 15999.24 26794.37 20699.33 19099.17 150
CSCG97.40 11697.30 11897.69 11698.95 11394.83 12897.28 10798.99 8696.35 11798.13 13295.95 31395.99 11799.66 13694.36 20899.73 6898.59 240
HPM-MVS++copyleft96.99 13496.38 17398.81 2798.64 15097.59 2395.97 19298.20 22195.51 16295.06 29596.53 28494.10 17899.70 11294.29 20999.15 21599.13 158
XVG-OURS97.12 12896.74 15198.26 7098.99 11197.45 3293.82 30499.05 6595.19 17598.32 11197.70 20495.22 14798.41 35294.27 21098.13 29898.93 195
jason94.39 26294.04 26795.41 26198.29 19187.85 30292.74 33196.75 30185.38 35495.29 29096.15 30288.21 28699.65 13894.24 21199.34 18598.74 223
jason: jason.
CVMVSNet92.33 31092.79 29390.95 36297.26 30675.84 39495.29 24092.33 36281.86 37196.27 25498.19 14881.44 33298.46 35094.23 21298.29 29298.55 244
EIA-MVS96.04 18695.77 20196.85 18397.80 25292.98 19496.12 18099.16 3994.65 19593.77 32791.69 37895.68 13299.67 13094.18 21398.85 25197.91 304
ET-MVSNet_ETH3D91.12 32689.67 33895.47 25696.41 33189.15 27391.54 35290.23 38089.07 31286.78 39292.84 36369.39 38599.44 20794.16 21496.61 35097.82 311
cl2293.25 29692.84 29294.46 30494.30 37686.00 33291.09 36496.64 30690.74 29095.79 27596.31 29678.24 34698.77 31994.15 21598.34 28998.62 237
MCST-MVS96.24 17895.80 19997.56 12398.75 13794.13 15894.66 26998.17 22790.17 30196.21 25896.10 30795.14 14999.43 20994.13 21698.85 25199.13 158
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3998.34 3598.78 6598.52 10397.32 4399.45 20494.08 21799.67 8599.13 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 17595.98 19097.43 14198.25 19793.85 16796.74 13994.41 33997.72 5998.37 10198.03 17087.15 29799.53 17994.06 21899.07 22898.92 198
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32494.26 17599.81 3794.06 21898.51 28398.47 252
ambc96.56 20398.23 20091.68 23297.88 6998.13 23598.42 9698.56 10094.22 17699.04 29494.05 22099.35 18298.95 189
our_test_394.20 26994.58 24893.07 33596.16 34081.20 37490.42 37196.84 29690.72 29197.14 19697.13 24590.47 25399.11 28694.04 22198.25 29398.91 199
pmmvs594.63 25194.34 25895.50 25497.63 27888.34 28794.02 29497.13 28687.15 33395.22 29297.15 24487.50 29399.27 26193.99 22299.26 20298.88 207
DPE-MVScopyleft97.64 9797.35 11698.50 5198.85 12696.18 6995.21 24498.99 8695.84 14698.78 6598.08 16096.84 7999.81 3793.98 22399.57 10999.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ppachtmachnet_test94.49 25994.84 23193.46 32796.16 34082.10 36890.59 36997.48 27690.53 29597.01 21197.59 21191.01 24699.36 23793.97 22499.18 21298.94 191
tfpnnormal97.72 9097.97 5596.94 17699.26 6092.23 21397.83 7298.45 18898.25 3999.13 3898.66 8996.65 8699.69 11993.92 22599.62 9398.91 199
LFMVS95.32 21894.88 22996.62 19798.03 22291.47 23597.65 8490.72 37699.11 997.89 15898.31 12579.20 34299.48 19593.91 22699.12 22198.93 195
EPP-MVSNet96.84 14496.58 15997.65 11899.18 8193.78 17198.68 1496.34 30797.91 5197.30 18698.06 16788.46 28299.85 2793.85 22799.40 17199.32 116
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14697.18 31094.39 14595.46 22398.73 14896.03 13494.72 30394.92 33796.28 11199.69 11993.81 22897.98 30398.09 285
PHI-MVS96.96 13896.53 16598.25 7397.48 28896.50 5996.76 13898.85 11793.52 23096.19 26096.85 26495.94 11899.42 21193.79 22999.43 16398.83 212
miper_enhance_ethall93.14 29892.78 29594.20 31393.65 38585.29 34089.97 37597.85 25385.05 35696.15 26394.56 34285.74 30699.14 28093.74 23098.34 28998.17 284
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 14097.69 27094.15 15796.02 18798.43 19193.17 24797.30 18697.38 23095.48 13899.28 25893.74 23099.34 18598.88 207
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS93.95 27892.69 29797.74 11197.80 25295.38 10595.57 22195.46 32791.26 28592.64 35796.10 30774.67 36599.55 17493.72 23296.97 33798.30 271
MP-MVScopyleft97.64 9797.18 12599.00 999.32 5697.77 1797.49 9898.73 14896.27 11895.59 28397.75 19996.30 10899.78 4893.70 23399.48 14699.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 19095.80 19996.42 21199.28 5890.62 25095.31 23899.08 5788.40 32196.97 21598.17 15192.11 22899.78 4893.64 23499.21 20798.86 210
lupinMVS93.77 27993.28 28195.24 26497.68 27187.81 30392.12 34496.05 31084.52 36394.48 31095.06 33386.90 29899.63 14693.62 23599.13 21898.27 275
NCCC96.52 16795.99 18998.10 8597.81 24895.68 8995.00 25698.20 22195.39 16895.40 28896.36 29493.81 18699.45 20493.55 23698.42 28799.17 150
test_vis1_rt94.03 27593.65 27595.17 26895.76 35493.42 18393.97 29998.33 20684.68 36193.17 34595.89 31592.53 22094.79 39093.50 23794.97 37097.31 333
WB-MVS95.50 20796.62 15692.11 35599.21 7677.26 39096.12 18095.40 32998.62 2698.84 5998.26 13991.08 24599.50 18793.37 23898.70 26799.58 40
ETV-MVS96.13 18395.90 19596.82 18697.76 26293.89 16595.40 22998.95 9595.87 14495.58 28491.00 38496.36 10699.72 8893.36 23998.83 25496.85 345
FA-MVS(test-final)94.91 23594.89 22894.99 27797.51 28688.11 29698.27 4495.20 33192.40 26996.68 23198.60 9683.44 32399.28 25893.34 24098.53 28097.59 323
MDA-MVSNet_test_wron94.73 24194.83 23394.42 30597.48 28885.15 34390.28 37395.87 31692.52 26497.48 17997.76 19691.92 23599.17 27793.32 24196.80 34698.94 191
YYNet194.73 24194.84 23194.41 30697.47 29285.09 34590.29 37295.85 31792.52 26497.53 17397.76 19691.97 23299.18 27393.31 24296.86 34198.95 189
pmmvs494.82 23994.19 26396.70 19497.42 29592.75 20192.09 34696.76 30086.80 33995.73 28097.22 24189.28 27698.89 30993.28 24399.14 21698.46 254
CANet_DTU94.65 25094.21 26295.96 23195.90 34889.68 26293.92 30197.83 25793.19 24390.12 37895.64 32188.52 28199.57 16993.27 24499.47 14898.62 237
ACMP92.54 1397.47 11197.10 12898.55 4999.04 10796.70 5196.24 17198.89 10293.71 22597.97 15197.75 19997.44 3899.63 14693.22 24599.70 7899.32 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 18096.01 18796.71 19397.43 29492.19 21896.12 18099.10 5195.45 16493.33 34394.71 34097.23 5199.56 17093.21 24697.54 32598.37 260
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24298.48 17788.76 28292.84 32697.25 28096.00 13597.59 17197.95 17991.38 24099.46 20093.16 24796.35 35498.99 185
IS-MVSNet96.93 13996.68 15497.70 11499.25 6394.00 16298.57 2096.74 30298.36 3498.14 13197.98 17688.23 28599.71 10493.10 24899.72 7299.38 107
9.1496.69 15398.53 16896.02 18798.98 8993.23 24097.18 19497.46 21996.47 9899.62 15192.99 24999.32 192
MS-PatchMatch94.83 23894.91 22794.57 29996.81 32387.10 31894.23 28397.34 27988.74 31897.14 19697.11 24791.94 23498.23 36392.99 24997.92 30598.37 260
Patchmtry95.03 23294.59 24796.33 21594.83 37090.82 24696.38 15997.20 28296.59 10397.49 17798.57 9877.67 34999.38 22992.95 25199.62 9398.80 215
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21398.58 2898.78 6599.39 1698.21 1499.56 17092.65 25299.86 3199.52 59
Fast-Effi-MVS+95.49 20895.07 21996.75 19197.67 27492.82 19694.22 28498.60 17391.61 27993.42 34192.90 36296.73 8499.70 11292.60 25397.89 30897.74 314
HQP_MVS96.66 16096.33 17697.68 11798.70 14594.29 15096.50 15298.75 14596.36 11596.16 26196.77 27191.91 23699.46 20092.59 25499.20 20899.28 128
plane_prior598.75 14599.46 20092.59 25499.20 20899.28 128
mvsany_test193.47 29093.03 28694.79 28994.05 38292.12 21990.82 36790.01 38285.02 35897.26 18898.28 13493.57 19197.03 37992.51 25695.75 36495.23 375
GA-MVS92.83 30292.15 30694.87 28496.97 31787.27 31590.03 37496.12 30991.83 27794.05 32094.57 34176.01 36198.97 30692.46 25797.34 33498.36 265
CPTT-MVS96.69 15896.08 18598.49 5298.89 12296.64 5597.25 10898.77 14192.89 25896.01 26797.13 24592.23 22599.67 13092.24 25899.34 18599.17 150
EPNet93.72 28192.62 30097.03 17287.61 40192.25 21296.27 16691.28 37096.74 9787.65 38897.39 22885.00 31299.64 14292.14 25999.48 14699.20 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PC_three_145287.24 33298.37 10197.44 22197.00 6396.78 38592.01 26099.25 20399.21 141
APD-MVScopyleft97.00 13396.53 16598.41 5998.55 16596.31 6696.32 16498.77 14192.96 25797.44 18397.58 21395.84 12199.74 7791.96 26199.35 18299.19 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CL-MVSNet_self_test95.04 23094.79 23695.82 23997.51 28689.79 26191.14 36296.82 29893.05 25096.72 22996.40 29290.82 24999.16 27891.95 26298.66 27198.50 250
test_prior293.33 32094.21 20894.02 32196.25 29893.64 19091.90 26398.96 237
test-LLR89.97 33889.90 33690.16 36694.24 37874.98 39589.89 37689.06 38492.02 27289.97 37990.77 38673.92 36898.57 33991.88 26497.36 33296.92 340
test-mter87.92 35587.17 35690.16 36694.24 37874.98 39589.89 37689.06 38486.44 34289.97 37990.77 38654.96 40298.57 33991.88 26497.36 33296.92 340
MVP-Stereo95.69 19995.28 21196.92 17898.15 21493.03 19395.64 21798.20 22190.39 29796.63 23697.73 20291.63 23899.10 28891.84 26697.31 33598.63 236
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testing389.72 34288.26 35094.10 31697.66 27584.30 35694.80 26288.25 38794.66 19495.07 29492.51 36941.15 40499.43 20991.81 26798.44 28698.55 244
1112_ss94.12 27093.42 27996.23 21998.59 16090.85 24594.24 28298.85 11785.49 35092.97 34894.94 33586.01 30499.64 14291.78 26897.92 30598.20 281
train_agg95.46 21294.66 23997.88 10397.84 24495.23 11593.62 31098.39 19887.04 33493.78 32595.99 30994.58 16699.52 18291.76 26998.90 24498.89 203
LF4IMVS96.07 18495.63 20697.36 14798.19 20495.55 9495.44 22498.82 13492.29 27095.70 28196.55 28292.63 21498.69 32891.75 27099.33 19097.85 309
N_pmnet95.18 22494.23 26098.06 8897.85 23996.55 5892.49 33591.63 36789.34 30898.09 13697.41 22390.33 25799.06 29291.58 27199.31 19598.56 242
AllTest97.20 12796.92 14298.06 8899.08 9996.16 7097.14 11699.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
TestCases98.06 8899.08 9996.16 7099.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
test9_res91.29 27498.89 24799.00 182
xiu_mvs_v2_base94.22 26594.63 24392.99 33997.32 30484.84 34992.12 34497.84 25591.96 27494.17 31593.43 35396.07 11699.71 10491.27 27597.48 32894.42 379
PS-MVSNAJ94.10 27194.47 25393.00 33897.35 29984.88 34791.86 34897.84 25591.96 27494.17 31592.50 37095.82 12499.71 10491.27 27597.48 32894.40 380
tpm91.08 32890.85 32691.75 35895.33 36478.09 38395.03 25591.27 37188.75 31793.53 33697.40 22471.24 37899.30 25291.25 27793.87 37897.87 308
OPU-MVS97.64 11998.01 22595.27 11396.79 13697.35 23396.97 6598.51 34591.21 27899.25 20399.14 156
ZD-MVS98.43 18295.94 7998.56 18090.72 29196.66 23397.07 24995.02 15399.74 7791.08 27998.93 242
tpmrst90.31 33390.61 33189.41 36994.06 38172.37 40095.06 25293.69 34388.01 32692.32 36296.86 26377.45 35198.82 31491.04 28087.01 39297.04 337
sss94.22 26593.72 27495.74 24297.71 26989.95 25993.84 30396.98 29288.38 32293.75 32895.74 31787.94 28798.89 30991.02 28198.10 29998.37 260
ITE_SJBPF97.85 10598.64 15096.66 5498.51 18495.63 15597.22 18997.30 23795.52 13798.55 34290.97 28298.90 24498.34 266
Test_1112_low_res93.53 28992.86 29095.54 25398.60 15888.86 27892.75 32998.69 15882.66 37092.65 35696.92 26184.75 31499.56 17090.94 28397.76 31298.19 282
TESTMET0.1,187.20 35886.57 36089.07 37093.62 38672.84 39989.89 37687.01 39185.46 35289.12 38490.20 38856.00 40097.72 37390.91 28496.92 33896.64 353
FMVSNet593.39 29292.35 30296.50 20595.83 35190.81 24897.31 10598.27 21192.74 26096.27 25498.28 13462.23 39499.67 13090.86 28599.36 17799.03 178
PatchmatchNetpermissive91.98 31891.87 30892.30 35394.60 37379.71 37895.12 24693.59 34889.52 30793.61 33397.02 25377.94 34799.18 27390.84 28694.57 37698.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 21195.07 21996.69 19598.27 19592.53 20491.36 35498.67 16391.22 28695.78 27794.12 35095.65 13498.98 30290.81 28799.72 7298.57 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 31991.35 31693.51 32694.27 37785.60 33588.86 38498.61 17279.32 38392.16 36391.44 38089.22 27798.12 36690.80 28897.47 33096.82 348
test20.0396.58 16596.61 15796.48 20798.49 17591.72 23195.68 21197.69 26396.81 9598.27 11797.92 18394.18 17798.71 32690.78 28999.66 8799.00 182
test_yl94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
DCV-MVSNet94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
EPMVS89.26 34588.55 34891.39 36092.36 39479.11 38195.65 21479.86 39888.60 31993.12 34696.53 28470.73 38298.10 36790.75 29089.32 38996.98 338
旧先验293.35 31977.95 38895.77 27998.67 33290.74 293
USDC94.56 25494.57 25094.55 30097.78 26086.43 32892.75 32998.65 17085.96 34596.91 21997.93 18290.82 24998.74 32290.71 29499.59 10498.47 252
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21697.16 31191.96 22697.74 7998.84 12087.26 33194.36 31298.01 17393.95 18399.67 13090.70 29598.75 26197.35 332
Patchmatch-test93.60 28793.25 28294.63 29496.14 34387.47 30996.04 18594.50 33893.57 22996.47 24396.97 25676.50 35798.61 33690.67 29698.41 28897.81 313
thisisatest051590.43 33289.18 34494.17 31597.07 31585.44 33789.75 38087.58 38888.28 32393.69 33191.72 37765.27 39099.58 16390.59 29798.67 26997.50 327
DP-MVS Recon95.55 20695.13 21696.80 18798.51 17193.99 16394.60 27198.69 15890.20 30095.78 27796.21 30092.73 21098.98 30290.58 29898.86 25097.42 329
TinyColmap96.00 18996.34 17594.96 27997.90 23787.91 29994.13 29198.49 18594.41 20398.16 12897.76 19696.29 11098.68 33190.52 29999.42 16698.30 271
BP-MVS90.51 300
HQP-MVS95.17 22694.58 24896.92 17897.85 23992.47 20794.26 27898.43 19193.18 24492.86 35095.08 33190.33 25799.23 26990.51 30098.74 26299.05 177
OMC-MVS96.48 16996.00 18897.91 10098.30 19096.01 7894.86 26198.60 17391.88 27697.18 19497.21 24296.11 11599.04 29490.49 30299.34 18598.69 230
ab-mvs96.59 16396.59 15896.60 19898.64 15092.21 21498.35 3597.67 26494.45 20296.99 21298.79 7694.96 15699.49 19290.39 30399.07 22898.08 286
HyFIR lowres test93.72 28192.65 29896.91 18098.93 11791.81 23091.23 36098.52 18282.69 36996.46 24496.52 28680.38 33999.90 1490.36 30498.79 25799.03 178
agg_prior290.34 30598.90 24499.10 170
LCM-MVSNet-Re97.33 12297.33 11797.32 14998.13 21993.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30699.06 23198.32 267
CDS-MVSNet94.88 23794.12 26597.14 16197.64 27793.57 17893.96 30097.06 29090.05 30296.30 25396.55 28286.10 30399.47 19790.10 30799.31 19598.40 256
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 21394.65 24097.84 10698.28 19394.96 12693.73 30898.33 20685.03 35795.44 28696.60 28095.31 14499.44 20790.01 30899.13 21899.11 166
baseline193.14 29892.64 29994.62 29597.34 30187.20 31696.67 14893.02 35294.71 19396.51 24295.83 31681.64 33098.60 33890.00 30988.06 39198.07 288
TAPA-MVS93.32 1294.93 23494.23 26097.04 17198.18 20794.51 14195.22 24398.73 14881.22 37696.25 25695.95 31393.80 18798.98 30289.89 31098.87 24897.62 320
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 30791.08 32196.30 21893.12 38992.81 19790.58 37095.96 31479.17 38491.85 36692.27 37190.29 26198.66 33389.85 31196.68 34997.43 328
PVSNet_BlendedMVS95.02 23394.93 22595.27 26397.79 25787.40 31294.14 29098.68 16088.94 31594.51 30898.01 17393.04 20199.30 25289.77 31299.49 14299.11 166
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25787.40 31291.43 35398.68 16084.50 36494.51 30894.48 34693.04 20199.30 25289.77 31298.61 27698.02 298
MSDG95.33 21795.13 21695.94 23597.40 29691.85 22891.02 36598.37 20195.30 17196.31 25295.99 30994.51 16998.38 35589.59 31497.65 32297.60 322
PMVScopyleft89.60 1796.71 15796.97 13795.95 23399.51 3197.81 1697.42 10397.49 27597.93 5095.95 26898.58 9796.88 7596.91 38289.59 31499.36 17793.12 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 25710.37 40176.21 36099.04 29489.47 316
SCA93.38 29393.52 27892.96 34096.24 33481.40 37393.24 32194.00 34291.58 28194.57 30696.97 25687.94 28799.42 21189.47 31697.66 32198.06 292
tpmvs90.79 33190.87 32590.57 36592.75 39376.30 39295.79 20593.64 34791.04 28891.91 36596.26 29777.19 35598.86 31389.38 31889.85 38896.56 356
Anonymous2023120695.27 22095.06 22195.88 23798.72 14089.37 26895.70 20897.85 25388.00 32796.98 21497.62 20991.95 23399.34 24389.21 31999.53 12598.94 191
CHOSEN 1792x268894.10 27193.41 28096.18 22399.16 8390.04 25792.15 34398.68 16079.90 38196.22 25797.83 19087.92 29199.42 21189.18 32099.65 8899.08 171
114514_t93.96 27693.22 28396.19 22299.06 10290.97 24495.99 19098.94 9673.88 39393.43 34096.93 25992.38 22499.37 23489.09 32199.28 19998.25 277
pmmvs390.00 33688.90 34693.32 32894.20 38085.34 33891.25 35992.56 36178.59 38593.82 32495.17 33067.36 38998.69 32889.08 32298.03 30295.92 364
testdata95.70 24598.16 21290.58 25197.72 26280.38 37995.62 28297.02 25392.06 23198.98 30289.06 32398.52 28197.54 324
MDTV_nov1_ep1391.28 31794.31 37573.51 39894.80 26293.16 35186.75 34093.45 33997.40 22476.37 35898.55 34288.85 32496.43 352
PMMVS293.66 28494.07 26692.45 35197.57 28180.67 37686.46 38796.00 31293.99 21897.10 20097.38 23089.90 26497.82 37188.76 32599.47 14898.86 210
QAPM95.88 19395.57 20896.80 18797.90 23791.84 22998.18 5398.73 14888.41 32096.42 24598.13 15494.73 15899.75 6888.72 32698.94 24098.81 214
CHOSEN 280x42089.98 33789.19 34392.37 35295.60 35881.13 37586.22 38897.09 28881.44 37587.44 38993.15 35473.99 36699.47 19788.69 32799.07 22896.52 357
testgi96.07 18496.50 16894.80 28899.26 6087.69 30695.96 19498.58 17895.08 18098.02 14696.25 29897.92 2097.60 37588.68 32898.74 26299.11 166
CostFormer89.75 34189.25 33991.26 36194.69 37278.00 38595.32 23791.98 36481.50 37490.55 37496.96 25871.06 38098.89 30988.59 32992.63 38296.87 343
UnsupCasMVSNet_bld94.72 24594.26 25996.08 22798.62 15690.54 25493.38 31898.05 24690.30 29897.02 21096.80 27089.54 27099.16 27888.44 33096.18 35698.56 242
TAMVS95.49 20894.94 22397.16 15998.31 18993.41 18495.07 25196.82 29891.09 28797.51 17597.82 19389.96 26399.42 21188.42 33199.44 15598.64 234
Vis-MVSNet (Re-imp)95.11 22794.85 23095.87 23899.12 9489.17 27197.54 9794.92 33496.50 10996.58 23797.27 23883.64 32299.48 19588.42 33199.67 8598.97 187
EPNet_dtu91.39 32590.75 32893.31 32990.48 39882.61 36594.80 26292.88 35493.39 23481.74 39694.90 33881.36 33399.11 28688.28 33398.87 24898.21 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 32090.69 32995.11 26993.80 38490.98 24394.16 28791.78 36696.38 11390.30 37799.30 2872.02 37798.90 30888.28 33390.17 38795.45 373
新几何197.25 15598.29 19194.70 13397.73 26177.98 38794.83 30296.67 27792.08 23099.45 20488.17 33598.65 27397.61 321
testdata299.46 20087.84 336
FE-MVS92.95 30092.22 30495.11 26997.21 30988.33 28898.54 2393.66 34689.91 30496.21 25898.14 15270.33 38399.50 18787.79 33798.24 29497.51 325
无先验93.20 32297.91 24980.78 37799.40 22287.71 33897.94 303
WTY-MVS93.55 28893.00 28895.19 26697.81 24887.86 30093.89 30296.00 31289.02 31394.07 31995.44 32886.27 30299.33 24587.69 33996.82 34498.39 258
原ACMM196.58 20098.16 21292.12 21998.15 23385.90 34793.49 33796.43 28992.47 22299.38 22987.66 34098.62 27598.23 278
BH-untuned94.69 24694.75 23794.52 30197.95 23487.53 30894.07 29397.01 29193.99 21897.10 20095.65 32092.65 21398.95 30787.60 34196.74 34797.09 335
PAPM_NR94.61 25294.17 26495.96 23198.36 18791.23 23995.93 19797.95 24792.98 25393.42 34194.43 34790.53 25298.38 35587.60 34196.29 35598.27 275
DPM-MVS93.68 28392.77 29696.42 21197.91 23592.54 20391.17 36197.47 27784.99 35993.08 34794.74 33989.90 26499.00 29887.54 34398.09 30097.72 315
MG-MVS94.08 27394.00 26894.32 30997.09 31485.89 33393.19 32395.96 31492.52 26494.93 30197.51 21789.54 27098.77 31987.52 34497.71 31698.31 269
F-COLMAP95.30 21994.38 25798.05 9298.64 15096.04 7595.61 21898.66 16589.00 31493.22 34496.40 29292.90 20599.35 24187.45 34597.53 32698.77 220
PatchMatch-RL94.61 25293.81 27397.02 17398.19 20495.72 8693.66 30997.23 28188.17 32594.94 30095.62 32291.43 23998.57 33987.36 34697.68 31996.76 351
IB-MVS85.98 2088.63 34986.95 35993.68 32395.12 36784.82 35090.85 36690.17 38187.55 33088.48 38691.34 38158.01 39599.59 16187.24 34793.80 37996.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
dp88.08 35388.05 35188.16 37692.85 39168.81 40294.17 28692.88 35485.47 35191.38 37096.14 30468.87 38698.81 31686.88 34883.80 39596.87 343
131492.38 30892.30 30392.64 34695.42 36385.15 34395.86 20196.97 29385.40 35390.62 37293.06 36091.12 24497.80 37286.74 34995.49 36794.97 377
CNLPA95.04 23094.47 25396.75 19197.81 24895.25 11494.12 29297.89 25194.41 20394.57 30695.69 31890.30 26098.35 35886.72 35098.76 26096.64 353
baseline289.65 34388.44 34993.25 33195.62 35782.71 36393.82 30485.94 39388.89 31687.35 39092.54 36871.23 37999.33 24586.01 35194.60 37597.72 315
BH-RMVSNet94.56 25494.44 25694.91 28097.57 28187.44 31193.78 30796.26 30893.69 22696.41 24696.50 28792.10 22999.00 29885.96 35297.71 31698.31 269
E-PMN89.52 34489.78 33788.73 37193.14 38877.61 38683.26 39192.02 36394.82 19093.71 32993.11 35575.31 36396.81 38385.81 35396.81 34591.77 390
API-MVS95.09 22995.01 22295.31 26296.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34894.54 16898.37 35785.70 35498.52 28193.52 384
AdaColmapbinary95.11 22794.62 24496.58 20097.33 30394.45 14494.92 25898.08 24093.15 24893.98 32395.53 32594.34 17399.10 28885.69 35598.61 27696.20 363
ADS-MVSNet291.47 32490.51 33294.36 30795.51 35985.63 33495.05 25395.70 31883.46 36792.69 35496.84 26579.15 34399.41 22085.66 35690.52 38598.04 296
ADS-MVSNet90.95 33090.26 33493.04 33695.51 35982.37 36795.05 25393.41 34983.46 36792.69 35496.84 26579.15 34398.70 32785.66 35690.52 38598.04 296
MDTV_nov1_ep13_2view57.28 40494.89 25980.59 37894.02 32178.66 34585.50 35897.82 311
WAC-MVS79.32 37985.41 359
OpenMVS_ROBcopyleft91.80 1493.64 28693.05 28495.42 25997.31 30591.21 24095.08 25096.68 30581.56 37396.88 22196.41 29090.44 25699.25 26485.39 36097.67 32095.80 367
KD-MVS_2432*160088.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
miper_refine_blended88.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
PVSNet86.72 1991.10 32790.97 32491.49 35997.56 28378.04 38487.17 38694.60 33784.65 36292.34 36192.20 37287.37 29698.47 34985.17 36397.69 31897.96 301
PLCcopyleft91.02 1694.05 27492.90 28997.51 12898.00 22995.12 12394.25 28198.25 21386.17 34391.48 36995.25 32991.01 24699.19 27285.02 36496.69 34898.22 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 39571.40 40181.67 37290.11 38998.99 30084.86 365
CMPMVSbinary73.10 2392.74 30391.39 31596.77 19093.57 38794.67 13494.21 28597.67 26480.36 38093.61 33396.60 28082.85 32797.35 37684.86 36598.78 25898.29 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 30991.69 31394.32 30996.23 33689.16 27292.27 34292.88 35484.39 36695.29 29096.35 29585.66 30796.74 38684.53 36797.56 32497.05 336
tpm cat188.01 35487.33 35590.05 36894.48 37476.28 39394.47 27494.35 34073.84 39489.26 38395.61 32373.64 37098.30 36184.13 36886.20 39395.57 372
MAR-MVS94.21 26793.03 28697.76 11096.94 32097.44 3396.97 12597.15 28587.89 32992.00 36492.73 36692.14 22799.12 28383.92 36997.51 32796.73 352
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 31291.83 30993.25 33196.18 33983.68 36196.27 16693.68 34576.97 39092.54 36099.18 3989.20 27898.55 34283.88 37098.60 27897.51 325
EMVS89.06 34689.22 34088.61 37293.00 39077.34 38882.91 39290.92 37394.64 19692.63 35891.81 37676.30 35997.02 38083.83 37196.90 34091.48 391
HY-MVS91.43 1592.58 30591.81 31094.90 28296.49 32988.87 27797.31 10594.62 33685.92 34690.50 37596.84 26585.05 31199.40 22283.77 37295.78 36296.43 359
test0.0.03 190.11 33489.21 34192.83 34393.89 38386.87 32291.74 35088.74 38692.02 27294.71 30491.14 38373.92 36894.48 39283.75 37392.94 38097.16 334
tpm288.47 35087.69 35490.79 36394.98 36977.34 38895.09 24891.83 36577.51 38989.40 38296.41 29067.83 38898.73 32383.58 37492.60 38396.29 361
myMVS_eth3d87.16 35985.61 36391.82 35795.19 36579.32 37992.46 33691.35 36890.67 29391.76 36787.61 39141.96 40398.50 34682.66 37596.84 34297.65 318
MVS-HIRNet88.40 35190.20 33582.99 37897.01 31660.04 40393.11 32485.61 39484.45 36588.72 38599.09 5084.72 31598.23 36382.52 37696.59 35190.69 393
BH-w/o92.14 31391.94 30792.73 34597.13 31385.30 33992.46 33695.64 32089.33 30994.21 31492.74 36589.60 26898.24 36281.68 37794.66 37394.66 378
MIMVSNet93.42 29192.86 29095.10 27198.17 21088.19 29098.13 5593.69 34392.07 27195.04 29898.21 14780.95 33799.03 29781.42 37898.06 30198.07 288
TR-MVS92.54 30692.20 30593.57 32596.49 32986.66 32493.51 31494.73 33589.96 30394.95 29993.87 35190.24 26298.61 33681.18 37994.88 37195.45 373
dmvs_re92.08 31691.27 31894.51 30297.16 31192.79 20095.65 21492.64 35994.11 21492.74 35390.98 38583.41 32494.44 39380.72 38094.07 37796.29 361
thres600view792.03 31791.43 31493.82 31998.19 20484.61 35196.27 16690.39 37796.81 9596.37 24893.11 35573.44 37499.49 19280.32 38197.95 30497.36 330
PAPR92.22 31191.27 31895.07 27295.73 35688.81 27991.97 34797.87 25285.80 34890.91 37192.73 36691.16 24398.33 35979.48 38295.76 36398.08 286
MVS90.02 33589.20 34292.47 35094.71 37186.90 32195.86 20196.74 30264.72 39590.62 37292.77 36492.54 21898.39 35479.30 38395.56 36692.12 388
gg-mvs-nofinetune88.28 35286.96 35892.23 35492.84 39284.44 35398.19 5274.60 40099.08 1087.01 39199.47 1156.93 39698.23 36378.91 38495.61 36594.01 382
thres100view90091.76 32191.26 32093.26 33098.21 20184.50 35296.39 15690.39 37796.87 9396.33 24993.08 35973.44 37499.42 21178.85 38597.74 31395.85 365
tfpn200view991.55 32391.00 32293.21 33398.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31395.85 365
thres40091.68 32291.00 32293.71 32298.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31397.36 330
thres20091.00 32990.42 33392.77 34497.47 29283.98 35994.01 29591.18 37295.12 17995.44 28691.21 38273.93 36799.31 24977.76 38897.63 32395.01 376
wuyk23d93.25 29695.20 21387.40 37796.07 34595.38 10597.04 12294.97 33395.33 16999.70 698.11 15898.14 1791.94 39577.76 38899.68 8374.89 395
test_method66.88 36366.13 36669.11 38062.68 40225.73 40649.76 39496.04 31114.32 39864.27 39991.69 37873.45 37388.05 39776.06 39066.94 39793.54 383
PCF-MVS89.43 1892.12 31490.64 33096.57 20297.80 25293.48 18189.88 37998.45 18874.46 39296.04 26695.68 31990.71 25199.31 24973.73 39199.01 23596.91 342
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 36183.21 36488.34 37395.76 35474.97 39783.49 39092.70 35878.47 38687.94 38786.90 39483.38 32596.63 38773.44 39266.86 39893.40 385
GG-mvs-BLEND90.60 36491.00 39684.21 35798.23 4672.63 40382.76 39484.11 39556.14 39996.79 38472.20 39392.09 38490.78 392
FPMVS89.92 33988.63 34793.82 31998.37 18696.94 4591.58 35193.34 35088.00 32790.32 37697.10 24870.87 38191.13 39671.91 39496.16 35893.39 386
MVEpermissive73.61 2286.48 36085.92 36188.18 37596.23 33685.28 34181.78 39375.79 39986.01 34482.53 39591.88 37592.74 20987.47 39871.42 39594.86 37291.78 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 36462.50 36741.44 38134.77 40349.21 40583.93 38960.22 40515.31 39771.11 39879.37 39670.09 38444.86 40064.76 39682.93 39630.25 396
PAPM87.64 35685.84 36293.04 33696.54 32784.99 34688.42 38595.57 32479.52 38283.82 39393.05 36180.57 33898.41 35262.29 39792.79 38195.71 368
dmvs_testset87.30 35786.99 35788.24 37496.71 32477.48 38794.68 26886.81 39292.64 26389.61 38187.01 39385.91 30593.12 39461.04 39888.49 39094.13 381
DeepMVS_CXcopyleft77.17 37990.94 39785.28 34174.08 40252.51 39680.87 39788.03 39075.25 36470.63 39959.23 39984.94 39475.62 394
test12312.59 36615.49 3693.87 3826.07 4042.55 40790.75 3682.59 4072.52 4005.20 40213.02 3994.96 4051.85 4025.20 4009.09 3997.23 397
testmvs12.33 36715.23 3703.64 3835.77 4052.23 40888.99 3833.62 4062.30 4015.29 40113.09 3984.52 4061.95 4015.16 4018.32 4006.75 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.22 36532.30 3680.00 3840.00 4060.00 4090.00 39598.10 2370.00 4020.00 40395.06 33397.54 370.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.98 36810.65 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40295.82 1240.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.91 36910.55 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.94 3350.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
FOURS199.59 1898.20 799.03 799.25 3098.96 1898.87 56
test_one_060199.05 10695.50 10098.87 11097.21 8698.03 14598.30 12996.93 69
eth-test20.00 406
eth-test0.00 406
test_241102_ONE99.22 6995.35 10898.83 12696.04 13299.08 4098.13 15497.87 2399.33 245
save fliter98.48 17794.71 13194.53 27398.41 19595.02 184
test072699.24 6495.51 9796.89 12998.89 10295.92 14098.64 7498.31 12597.06 58
GSMVS98.06 292
test_part299.03 10896.07 7498.08 138
sam_mvs177.80 34898.06 292
sam_mvs77.38 352
MTGPAbinary98.73 148
test_post10.87 40076.83 35699.07 291
patchmatchnet-post96.84 26577.36 35399.42 211
MTMP96.55 15074.60 400
TEST997.84 24495.23 11593.62 31098.39 19886.81 33893.78 32595.99 30994.68 16299.52 182
test_897.81 24895.07 12493.54 31398.38 20087.04 33493.71 32995.96 31294.58 16699.52 182
agg_prior97.80 25294.96 12698.36 20293.49 33799.53 179
test_prior495.38 10593.61 312
test_prior97.46 13897.79 25794.26 15598.42 19499.34 24398.79 216
新几何293.43 315
旧先验197.80 25293.87 16697.75 26097.04 25293.57 19198.68 26898.72 226
原ACMM292.82 327
test22298.17 21093.24 19092.74 33197.61 27375.17 39194.65 30596.69 27690.96 24898.66 27197.66 317
segment_acmp95.34 143
testdata192.77 32893.78 223
test1297.46 13897.61 27994.07 15997.78 25993.57 33593.31 19699.42 21198.78 25898.89 203
plane_prior798.70 14594.67 134
plane_prior698.38 18594.37 14791.91 236
plane_prior496.77 271
plane_prior394.51 14195.29 17296.16 261
plane_prior296.50 15296.36 115
plane_prior198.49 175
plane_prior94.29 15095.42 22694.31 20798.93 242
n20.00 408
nn0.00 408
door-mid98.17 227
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
HQP-NCC97.85 23994.26 27893.18 24492.86 350
ACMP_Plane97.85 23994.26 27893.18 24492.86 350
HQP4-MVS92.87 34999.23 26999.06 175
HQP3-MVS98.43 19198.74 262
HQP2-MVS90.33 257
NP-MVS98.14 21693.72 17295.08 331
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 169