This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
test_fmvsmvis_n_192098.08 4598.47 2696.93 17899.03 10793.29 18896.32 16599.65 995.59 15999.71 499.01 5497.66 3399.60 15899.44 299.83 4397.90 307
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4694.63 13696.70 14599.82 195.44 16799.64 1099.52 798.96 499.74 7699.38 399.86 3199.81 8
MVS_030496.62 16496.40 17497.28 15197.91 23492.30 21196.47 15589.74 39097.52 7195.38 29098.63 9392.76 21099.81 3699.28 499.93 1199.75 19
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4799.08 1099.42 2099.23 3396.53 9599.91 1399.27 599.93 1199.73 22
test_fmvs397.38 11697.56 10196.84 18698.63 15392.81 19897.60 8899.61 1390.87 29498.76 6999.66 394.03 18297.90 37899.24 699.68 8299.81 8
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8294.61 13796.18 17599.73 395.05 18399.60 1499.34 2598.68 899.72 8799.21 799.85 3899.76 17
test_fmvsm_n_192098.08 4598.29 3897.43 14098.88 12293.95 16496.17 17999.57 1495.66 15499.52 1598.71 8497.04 6299.64 14099.21 799.87 2998.69 228
MM96.87 14596.62 15797.62 11997.72 26893.30 18796.39 15792.61 36397.90 5296.76 22798.64 9290.46 25799.81 3699.16 999.94 899.76 17
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11594.60 13896.00 19099.64 1294.99 18699.43 1999.18 3998.51 1099.71 10299.13 1099.84 4099.67 28
fmvsm_l_conf0.5_n97.68 9497.81 7197.27 15298.92 11892.71 20395.89 20199.41 2493.36 23699.00 4698.44 11296.46 10299.65 13699.09 1199.76 5899.45 85
fmvsm_l_conf0.5_n_a97.60 10097.76 7897.11 16398.92 11892.28 21295.83 20499.32 2593.22 24298.91 5398.49 10596.31 10999.64 14099.07 1299.76 5899.40 100
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8192.51 20696.57 15099.15 4493.68 22898.89 5499.30 2896.42 10499.37 23499.03 1399.83 4399.66 30
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18499.09 9791.43 23896.37 16199.11 5094.19 21199.01 4499.25 3196.30 11099.38 22899.00 1499.88 2799.73 22
fmvsm_s_conf0.5_n_a97.65 9597.83 6997.13 16298.80 12992.51 20696.25 17199.06 6393.67 22998.64 7499.00 5596.23 11499.36 23798.99 1599.80 5199.53 56
fmvsm_s_conf0.5_n97.62 9897.89 6296.80 18898.79 13191.44 23796.14 18099.06 6394.19 21198.82 6198.98 5896.22 11599.38 22898.98 1699.86 3199.58 39
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3296.23 12299.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
test_fmvs296.38 17696.45 17196.16 22497.85 23891.30 23996.81 13499.45 1989.24 31798.49 8899.38 1888.68 28297.62 38398.83 1899.32 19299.57 46
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3396.91 9499.75 299.45 1395.82 12699.92 598.80 1999.96 499.89 1
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4995.83 14899.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
v1097.55 10497.97 5596.31 21798.60 15789.64 26397.44 10199.02 7796.60 10398.72 7299.16 4393.48 19599.72 8798.76 2199.92 1699.58 39
MVSFormer96.14 18496.36 17695.49 25597.68 27187.81 30598.67 1599.02 7796.50 11094.48 31196.15 30086.90 30299.92 598.73 2299.13 21898.74 221
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7796.50 11099.32 2699.44 1497.43 4199.92 598.73 2299.95 599.86 2
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6798.05 4799.61 1399.52 793.72 19199.88 2098.72 2499.88 2799.65 33
tt080597.44 11297.56 10197.11 16399.55 2396.36 6398.66 1895.66 32098.31 3697.09 20595.45 32597.17 5498.50 35498.67 2597.45 33496.48 367
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30597.99 4999.15 3699.35 2389.84 26999.90 1498.64 2699.90 2499.82 6
v897.60 10098.06 4796.23 21998.71 14289.44 26797.43 10398.82 13797.29 8698.74 7099.10 4893.86 18699.68 12298.61 2799.94 899.56 50
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3795.62 15799.35 2599.37 1997.38 4399.90 1498.59 2899.91 1999.77 12
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18198.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvsmamba98.16 3798.06 4798.44 5599.53 2895.87 8198.70 1398.94 9997.71 6198.85 5799.10 4891.35 24599.83 3298.47 3099.90 2499.64 35
v124096.74 15497.02 13695.91 23698.18 20688.52 28595.39 23198.88 11193.15 25098.46 9398.40 11792.80 20999.71 10298.45 3199.49 14299.49 70
v119296.83 14997.06 13396.15 22598.28 19289.29 26995.36 23398.77 14493.73 22498.11 13398.34 12193.02 20699.67 12898.35 3299.58 10599.50 62
v192192096.72 15796.96 14095.99 22998.21 20088.79 28295.42 22798.79 13993.22 24298.19 12698.26 13892.68 21399.70 11098.34 3399.55 11899.49 70
Anonymous2023121198.55 2098.76 1397.94 9998.79 13194.37 14898.84 1199.15 4499.37 399.67 799.43 1595.61 13799.72 8798.12 3499.86 3199.73 22
v14419296.69 16096.90 14596.03 22898.25 19688.92 27795.49 22398.77 14493.05 25298.09 13698.29 13292.51 22499.70 11098.11 3599.56 11199.47 79
test_fmvs1_n95.21 22495.28 21394.99 27998.15 21389.13 27596.81 13499.43 2186.97 34697.21 19198.92 6583.00 33097.13 38798.09 3698.94 24098.72 224
Anonymous2024052197.07 13197.51 10695.76 24199.35 5188.18 29397.78 7498.40 19997.11 8998.34 10799.04 5389.58 27199.79 4498.09 3699.93 1199.30 120
v114496.84 14697.08 13196.13 22698.42 18289.28 27095.41 22998.67 16694.21 20997.97 15198.31 12493.06 20299.65 13698.06 3899.62 9299.45 85
SixPastTwentyTwo97.49 10897.57 10097.26 15499.56 2192.33 21098.28 4296.97 29498.30 3899.45 1899.35 2388.43 28699.89 1898.01 3999.76 5899.54 53
test_vis1_n_192095.77 19996.41 17393.85 32098.55 16484.86 35095.91 20099.71 492.72 26497.67 16998.90 6987.44 29898.73 32997.96 4098.85 25197.96 303
WR-MVS_H98.65 1598.62 2298.75 3199.51 3096.61 5698.55 2299.17 3999.05 1399.17 3598.79 7595.47 14199.89 1897.95 4199.91 1999.75 19
UA-Net98.88 798.76 1399.22 299.11 9497.89 1399.47 399.32 2599.08 1097.87 16299.67 296.47 10099.92 597.88 4299.98 299.85 3
test_fmvs194.51 26094.60 24894.26 31495.91 35187.92 30095.35 23599.02 7786.56 35096.79 22298.52 10282.64 33297.00 39097.87 4398.71 26697.88 309
FC-MVSNet-test98.16 3798.37 3397.56 12299.49 3493.10 19398.35 3599.21 3398.43 3298.89 5498.83 7494.30 17699.81 3697.87 4399.91 1999.77 12
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5395.21 12098.04 5999.46 1897.32 8497.82 16699.11 4796.75 8599.86 2497.84 4599.36 17799.15 151
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
K. test v396.44 17396.28 17996.95 17699.41 4291.53 23497.65 8590.31 38598.89 2098.93 5099.36 2184.57 32099.92 597.81 4699.56 11199.39 104
v2v48296.78 15397.06 13395.95 23398.57 16188.77 28395.36 23398.26 21495.18 17797.85 16498.23 14292.58 21799.63 14497.80 4799.69 7899.45 85
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4899.22 899.22 3398.96 6197.35 4499.92 597.79 4899.93 1199.79 10
nrg03098.54 2198.62 2298.32 6599.22 6895.66 9197.90 6799.08 5998.31 3699.02 4398.74 8197.68 3099.61 15697.77 4999.85 3899.70 26
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2799.01 1699.63 1199.66 399.27 299.68 12297.75 5099.89 2699.62 36
ACMH93.61 998.44 2598.76 1397.51 12799.43 3993.54 18098.23 4699.05 6797.40 8099.37 2399.08 5198.79 699.47 19697.74 5199.71 7499.50 62
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_f95.82 19895.88 19995.66 24697.61 28193.21 19295.61 21998.17 22986.98 34598.42 9699.47 1190.46 25794.74 40097.71 5298.45 28799.03 176
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5299.36 499.29 2899.06 5297.27 4899.93 397.71 5299.91 1999.70 26
test_vis1_n95.67 20395.89 19895.03 27698.18 20689.89 26096.94 12799.28 2988.25 33398.20 12298.92 6586.69 30597.19 38697.70 5498.82 25598.00 301
EC-MVSNet97.90 7197.94 5897.79 10798.66 14895.14 12198.31 3999.66 897.57 6795.95 26997.01 25396.99 6699.82 3497.66 5599.64 8998.39 256
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4499.33 599.30 2799.00 5597.27 4899.92 597.64 5699.92 1699.75 19
CP-MVSNet98.42 2698.46 2798.30 6899.46 3695.22 11898.27 4498.84 12399.05 1399.01 4498.65 9195.37 14499.90 1497.57 5799.91 1999.77 12
EI-MVSNet-UG-set97.32 12297.40 11197.09 16797.34 30392.01 22695.33 23797.65 26997.74 5798.30 11598.14 15195.04 15399.69 11797.55 5899.52 13099.58 39
ANet_high98.31 3198.94 696.41 21399.33 5389.64 26397.92 6699.56 1699.27 699.66 999.50 997.67 3199.83 3297.55 5899.98 299.77 12
CS-MVS98.09 4498.01 5298.32 6598.45 17996.69 5298.52 2699.69 598.07 4696.07 26597.19 24196.88 7799.86 2497.50 6099.73 6798.41 253
EI-MVSNet-Vis-set97.32 12297.39 11297.11 16397.36 30092.08 22495.34 23697.65 26997.74 5798.29 11698.11 15795.05 15299.68 12297.50 6099.50 13999.56 50
EU-MVSNet94.25 26694.47 25693.60 32698.14 21582.60 37097.24 11192.72 36085.08 36498.48 9098.94 6382.59 33398.76 32797.47 6299.53 12599.44 95
V4297.04 13297.16 12796.68 19798.59 15991.05 24296.33 16498.36 20494.60 19897.99 14798.30 12893.32 19799.62 14997.40 6399.53 12599.38 106
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6892.81 19897.55 9398.94 9997.10 9098.85 5798.88 7195.03 15499.67 12897.39 6499.65 8799.26 132
lessismore_v097.05 17099.36 5092.12 22084.07 40398.77 6898.98 5885.36 31499.74 7697.34 6599.37 17499.30 120
FIs97.93 6598.07 4597.48 13599.38 4892.95 19698.03 6199.11 5098.04 4898.62 7698.66 8893.75 19099.78 4797.23 6699.84 4099.73 22
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3599.67 299.73 399.65 599.15 399.86 2497.22 6799.92 1699.77 12
MVS_Test96.27 17996.79 15194.73 29496.94 32186.63 32796.18 17598.33 20894.94 18796.07 26598.28 13395.25 14899.26 26497.21 6897.90 31098.30 269
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 2098.85 2199.00 4699.20 3597.42 4299.59 15997.21 6899.76 5899.40 100
EG-PatchMatch MVS97.69 9297.79 7397.40 14499.06 10193.52 18195.96 19598.97 9594.55 20298.82 6198.76 8097.31 4699.29 25897.20 7099.44 15599.38 106
VPA-MVSNet98.27 3398.46 2797.70 11399.06 10193.80 16997.76 7799.00 8698.40 3399.07 4298.98 5896.89 7599.75 6797.19 7199.79 5399.55 52
test_vis3_rt97.04 13296.98 13797.23 15798.44 18095.88 8096.82 13399.67 690.30 30399.27 2999.33 2794.04 18196.03 39797.14 7297.83 31299.78 11
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 12995.86 8395.92 19999.04 7497.51 7298.22 12197.81 19294.68 16499.78 4797.14 7299.75 6599.41 99
pm-mvs198.47 2498.67 1897.86 10399.52 2994.58 13998.28 4299.00 8697.57 6799.27 2999.22 3498.32 1299.50 18697.09 7499.75 6599.50 62
baseline97.44 11297.78 7796.43 21098.52 16890.75 25096.84 13199.03 7596.51 10997.86 16398.02 17096.67 8799.36 23797.09 7499.47 14899.19 145
IterMVS-SCA-FT95.86 19696.19 18294.85 28797.68 27185.53 33892.42 34597.63 27396.99 9198.36 10498.54 10187.94 29099.75 6797.07 7699.08 22699.27 131
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 13995.78 8495.66 21399.02 7798.11 4498.31 11397.69 20394.65 16699.85 2797.02 7799.71 7499.48 76
DU-MVS97.79 8497.60 9798.36 6398.73 13795.78 8495.65 21598.87 11397.57 6798.31 11397.83 18894.69 16299.85 2797.02 7799.71 7499.46 81
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17598.57 16192.10 22395.97 19399.18 3897.67 6699.00 4698.48 10997.64 3499.50 18696.96 7999.54 12199.40 100
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EI-MVSNet96.63 16396.93 14195.74 24297.26 30888.13 29695.29 24197.65 26996.99 9197.94 15498.19 14792.55 21999.58 16196.91 8099.56 11199.50 62
IterMVS-LS96.92 14197.29 11895.79 24098.51 17088.13 29695.10 24898.66 16896.99 9198.46 9398.68 8792.55 21999.74 7696.91 8099.79 5399.50 62
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CS-MVS-test97.91 6997.84 6698.14 8298.52 16896.03 7798.38 3499.67 698.11 4495.50 28696.92 25996.81 8399.87 2296.87 8299.76 5898.51 246
test_cas_vis1_n_192095.34 21895.67 20594.35 31098.21 20086.83 32595.61 21999.26 3090.45 30198.17 12798.96 6184.43 32198.31 36896.74 8399.17 21397.90 307
test111194.53 25994.81 23793.72 32399.06 10181.94 37598.31 3983.87 40496.37 11598.49 8899.17 4281.49 33599.73 8296.64 8499.86 3199.49 70
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 13996.04 7598.07 5899.10 5295.96 13898.59 8098.69 8696.94 6999.81 3696.64 8499.58 10599.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MP-MVS-pluss97.69 9297.36 11498.70 3899.50 3396.84 4795.38 23298.99 8992.45 27098.11 13398.31 12497.25 5199.77 5696.60 8699.62 9299.48 76
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
mvs_anonymous95.36 21796.07 18893.21 33696.29 33681.56 37794.60 27297.66 26793.30 23996.95 21698.91 6893.03 20599.38 22896.60 8697.30 33998.69 228
casdiffmvspermissive97.50 10797.81 7196.56 20498.51 17091.04 24395.83 20499.09 5797.23 8798.33 11098.30 12897.03 6399.37 23496.58 8899.38 17399.28 127
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TransMVSNet (Re)98.38 2898.67 1897.51 12799.51 3093.39 18698.20 5198.87 11398.23 4099.48 1699.27 3098.47 1199.55 17396.52 8999.53 12599.60 37
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7595.88 14497.88 15998.22 14598.15 1699.74 7696.50 9099.62 9299.42 97
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10598.49 3199.38 2299.14 4695.44 14399.84 3096.47 9199.80 5199.47 79
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10095.87 8196.73 14399.05 6798.67 2498.84 5998.45 11097.58 3899.88 2096.45 9299.86 3199.54 53
MGCFI-Net97.20 12797.23 12297.08 16897.68 27193.71 17397.79 7399.09 5797.40 8096.59 23793.96 35097.67 3199.35 24196.43 9398.50 28498.17 283
test250689.86 34489.16 34991.97 36498.95 11276.83 39998.54 2361.07 41396.20 12397.07 20699.16 4355.19 40799.69 11796.43 9399.83 4399.38 106
Gipumacopyleft98.07 4798.31 3597.36 14699.76 796.28 6898.51 2799.10 5298.76 2396.79 22299.34 2596.61 9198.82 32096.38 9599.50 13996.98 347
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVSTER94.21 26993.93 27495.05 27595.83 35786.46 32895.18 24697.65 26992.41 27197.94 15498.00 17472.39 38099.58 16196.36 9699.56 11199.12 161
GeoE97.75 8797.70 8197.89 10198.88 12294.53 14097.10 11998.98 9295.75 15297.62 17097.59 20997.61 3799.77 5696.34 9799.44 15599.36 112
sasdasda97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
canonicalmvs97.23 12597.21 12497.30 14997.65 27794.39 14597.84 7099.05 6797.42 7596.68 23093.85 35397.63 3599.33 24696.29 9898.47 28598.18 281
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8299.42 2297.69 6398.92 5198.77 7897.80 2599.25 26696.27 10099.69 7898.76 219
alignmvs96.01 19095.52 21197.50 13197.77 26094.71 13196.07 18496.84 29797.48 7396.78 22694.28 34885.50 31399.40 22196.22 10298.73 26598.40 254
tttt051793.31 29792.56 30495.57 24998.71 14287.86 30297.44 10187.17 39895.79 14997.47 18196.84 26364.12 39499.81 3696.20 10399.32 19299.02 179
iter_conf0593.65 28893.05 28795.46 25796.13 34887.45 31295.95 19798.22 21992.66 26597.04 20897.89 18463.52 39699.72 8796.19 10499.82 4799.21 140
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13495.72 8696.23 17399.02 7793.92 22198.62 7698.99 5797.69 2999.62 14996.18 10599.87 2999.15 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA98.14 3997.84 6699.06 399.44 3897.90 1297.25 10998.73 15197.69 6397.90 15797.96 17695.81 13099.82 3496.13 10699.61 9899.45 85
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5597.24 3997.45 10098.84 12395.76 15096.93 21797.43 22097.26 5099.79 4496.06 10799.53 12599.45 85
Patchmatch-RL test94.66 25294.49 25495.19 26798.54 16688.91 27892.57 33898.74 15091.46 28698.32 11197.75 19777.31 35898.81 32296.06 10799.61 9897.85 311
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5196.84 4796.36 16298.79 13995.07 18297.88 15998.35 12097.24 5299.72 8796.05 10999.58 10599.45 85
v14896.58 16796.97 13895.42 25998.63 15387.57 30995.09 24997.90 25195.91 14398.24 11997.96 17693.42 19699.39 22596.04 11099.52 13099.29 126
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8597.55 2696.68 14698.83 12995.21 17498.36 10498.13 15398.13 1899.62 14996.04 11099.54 12199.39 104
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
VDD-MVS97.37 11897.25 12097.74 11098.69 14694.50 14397.04 12395.61 32498.59 2798.51 8598.72 8292.54 22199.58 16196.02 11299.49 14299.12 161
IterMVS95.42 21695.83 20094.20 31597.52 28783.78 36292.41 34697.47 27895.49 16498.06 14198.49 10587.94 29099.58 16196.02 11299.02 23399.23 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive96.04 18896.23 18095.46 25797.35 30188.03 29993.42 31799.08 5994.09 21796.66 23396.93 25793.85 18799.29 25896.01 11498.67 26999.06 173
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PM-MVS97.36 12097.10 12998.14 8298.91 12096.77 4996.20 17498.63 17493.82 22298.54 8398.33 12293.98 18399.05 29995.99 11599.45 15498.61 237
Baseline_NR-MVSNet97.72 9097.79 7397.50 13199.56 2193.29 18895.44 22598.86 11698.20 4298.37 10199.24 3294.69 16299.55 17395.98 11699.79 5399.65 33
ECVR-MVScopyleft94.37 26594.48 25594.05 31998.95 11283.10 36598.31 3982.48 40696.20 12398.23 12099.16 4381.18 33899.66 13495.95 11799.83 4399.38 106
3Dnovator96.53 297.61 9997.64 9197.50 13197.74 26693.65 17898.49 2898.88 11196.86 9697.11 19998.55 10095.82 12699.73 8295.94 11899.42 16699.13 156
PatchT93.75 28393.57 27994.29 31395.05 37787.32 31696.05 18592.98 35697.54 7094.25 31498.72 8275.79 36699.24 27095.92 11995.81 36896.32 369
NR-MVSNet97.96 5497.86 6598.26 7098.73 13795.54 9598.14 5498.73 15197.79 5399.42 2097.83 18894.40 17499.78 4795.91 12099.76 5899.46 81
h-mvs3396.29 17895.63 20898.26 7098.50 17396.11 7396.90 12997.09 28996.58 10597.21 19198.19 14784.14 32299.78 4795.89 12196.17 36598.89 201
hse-mvs295.77 19995.09 22197.79 10797.84 24395.51 9795.66 21395.43 32996.58 10597.21 19196.16 29984.14 32299.54 17695.89 12196.92 34298.32 265
MSC_two_6792asdad98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
No_MVS98.22 7597.75 26395.34 11098.16 23399.75 6795.87 12399.51 13599.57 46
new-patchmatchnet95.67 20396.58 16192.94 34597.48 29080.21 38592.96 32798.19 22894.83 19098.82 6198.79 7593.31 19899.51 18595.83 12599.04 23299.12 161
FMVSNet197.95 5898.08 4497.56 12299.14 9293.67 17498.23 4698.66 16897.41 7999.00 4699.19 3695.47 14199.73 8295.83 12599.76 5899.30 120
patch_mono-296.59 16596.93 14195.55 25298.88 12287.12 31994.47 27599.30 2794.12 21496.65 23598.41 11494.98 15799.87 2295.81 12799.78 5699.66 30
DVP-MVS++97.96 5497.90 5998.12 8497.75 26395.40 10399.03 798.89 10596.62 10198.62 7698.30 12896.97 6799.75 6795.70 12899.25 20399.21 140
test_0728_THIRD96.62 10198.40 9898.28 13397.10 5699.71 10295.70 12899.62 9299.58 39
EGC-MVSNET83.08 37277.93 37598.53 5099.57 2097.55 2698.33 3898.57 1814.71 40810.38 40998.90 6995.60 13899.50 18695.69 13099.61 9898.55 242
RPMNet94.68 25194.60 24894.90 28495.44 36988.15 29496.18 17598.86 11697.43 7494.10 31898.49 10579.40 34599.76 6195.69 13095.81 36896.81 358
TSAR-MVS + MP.97.42 11497.23 12298.00 9599.38 4895.00 12597.63 8798.20 22393.00 25498.16 12898.06 16695.89 12199.72 8795.67 13299.10 22499.28 127
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVS97.96 5497.63 9398.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25197.64 20596.49 9899.72 8795.66 13399.37 17499.45 85
X-MVStestdata92.86 30490.83 33198.94 1599.15 8597.66 1997.77 7598.83 12997.42 7596.32 25136.50 40696.49 9899.72 8795.66 13399.37 17499.45 85
3Dnovator+96.13 397.73 8897.59 9898.15 8198.11 21995.60 9298.04 5998.70 16098.13 4396.93 21798.45 11095.30 14799.62 14995.64 13598.96 23799.24 137
DELS-MVS96.17 18396.23 18095.99 22997.55 28690.04 25792.38 34898.52 18494.13 21396.55 24297.06 24894.99 15699.58 16195.62 13699.28 19998.37 258
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HFP-MVS97.94 6297.64 9198.83 2599.15 8597.50 2997.59 9098.84 12396.05 13197.49 17797.54 21297.07 5999.70 11095.61 13799.46 15199.30 120
ACMMPR97.95 5897.62 9598.94 1599.20 7797.56 2597.59 9098.83 12996.05 13197.46 18297.63 20696.77 8499.76 6195.61 13799.46 15199.49 70
UGNet96.81 15196.56 16397.58 12196.64 32693.84 16897.75 7897.12 28896.47 11393.62 33498.88 7193.22 20099.53 17895.61 13799.69 7899.36 112
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4197.46 3198.57 2099.05 6795.43 16897.41 18497.50 21697.98 1999.79 4495.58 14099.57 10899.50 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
dcpmvs_297.12 12997.99 5494.51 30499.11 9484.00 36097.75 7899.65 997.38 8299.14 3798.42 11395.16 15099.96 295.52 14199.78 5699.58 39
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.60 9399.76 6195.49 14299.20 20899.26 132
RE-MVS-def97.88 6498.81 12798.05 997.55 9398.86 11697.77 5498.20 12298.07 16196.94 6995.49 14299.20 20899.26 132
Anonymous2024052997.96 5498.04 4997.71 11298.69 14694.28 15497.86 6998.31 21298.79 2299.23 3298.86 7395.76 13299.61 15695.49 14299.36 17799.23 138
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6395.51 9796.74 13998.23 21895.92 14198.40 9898.28 13397.06 6099.71 10295.48 14599.52 13099.26 132
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.25 7399.23 6595.49 10196.74 13998.89 10599.75 6795.48 14599.52 13099.53 56
region2R97.92 6697.59 9898.92 2199.22 6897.55 2697.60 8898.84 12396.00 13697.22 18997.62 20796.87 7999.76 6195.48 14599.43 16399.46 81
pmmvs-eth3d96.49 17096.18 18397.42 14298.25 19694.29 15194.77 26698.07 24589.81 31197.97 15198.33 12293.11 20199.08 29695.46 14899.84 4098.89 201
SED-MVS97.94 6297.90 5998.07 8699.22 6895.35 10896.79 13698.83 12996.11 12899.08 4098.24 14097.87 2399.72 8795.44 14999.51 13599.14 154
test_241102_TWO98.83 12996.11 12898.62 7698.24 14096.92 7399.72 8795.44 14999.49 14299.49 70
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13197.31 3697.55 9398.92 10297.72 5998.25 11898.13 15397.10 5699.75 6795.44 14999.24 20699.32 115
xiu_mvs_v1_base_debu95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
xiu_mvs_v1_base95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
xiu_mvs_v1_base_debi95.62 20595.96 19394.60 29898.01 22488.42 28693.99 29798.21 22092.98 25595.91 27194.53 34196.39 10599.72 8795.43 15298.19 29795.64 378
c3_l95.20 22595.32 21294.83 28996.19 34186.43 33091.83 35798.35 20793.47 23397.36 18597.26 23788.69 28199.28 26095.41 15599.36 17798.78 215
mvsany_test396.21 18195.93 19697.05 17097.40 29894.33 15095.76 20794.20 34389.10 31899.36 2499.60 693.97 18497.85 37995.40 15698.63 27498.99 183
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6597.60 2298.09 5798.96 9695.75 15297.91 15698.06 16696.89 7599.76 6195.32 15799.57 10899.43 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
miper_lstm_enhance94.81 24394.80 23894.85 28796.16 34386.45 32991.14 37198.20 22393.49 23297.03 20997.37 23084.97 31799.26 26495.28 15899.56 11198.83 210
MSLP-MVS++96.42 17596.71 15395.57 24997.82 24690.56 25495.71 20898.84 12394.72 19396.71 22997.39 22694.91 15998.10 37695.28 15899.02 23398.05 296
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 3997.21 4197.15 11598.90 10496.58 10598.08 13897.87 18697.02 6499.76 6195.25 16099.59 10399.40 100
Skip Steuart: Steuart Systems R&D Blog.
SD-MVS97.37 11897.70 8196.35 21498.14 21595.13 12296.54 15298.92 10295.94 14099.19 3498.08 15997.74 2895.06 39895.24 16199.54 12198.87 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
IU-MVS99.22 6895.40 10398.14 23685.77 35898.36 10495.23 16299.51 13599.49 70
CP-MVS97.92 6697.56 10198.99 1098.99 11097.82 1597.93 6598.96 9696.11 12896.89 22097.45 21896.85 8099.78 4795.19 16399.63 9199.38 106
LS3D97.77 8697.50 10898.57 4796.24 33797.58 2498.45 3198.85 12098.58 2897.51 17597.94 17995.74 13399.63 14495.19 16398.97 23698.51 246
SMA-MVScopyleft97.48 10997.11 12898.60 4598.83 12696.67 5396.74 13998.73 15191.61 28398.48 9098.36 11996.53 9599.68 12295.17 16599.54 12199.45 85
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet93.29 29892.79 29694.78 29295.44 36988.15 29496.18 17597.20 28384.94 36994.10 31898.57 9777.67 35399.39 22595.17 16595.81 36896.81 358
OPM-MVS97.54 10597.25 12098.41 5999.11 9496.61 5695.24 24398.46 18994.58 20198.10 13598.07 16197.09 5899.39 22595.16 16799.44 15599.21 140
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mPP-MVS97.91 6997.53 10499.04 499.22 6897.87 1497.74 8098.78 14396.04 13397.10 20097.73 20096.53 9599.78 4795.16 16799.50 13999.46 81
DIV-MVS_self_test94.73 24494.64 24495.01 27795.86 35587.00 32191.33 36598.08 24193.34 23797.10 20097.34 23284.02 32499.31 25195.15 16999.55 11898.72 224
cl____94.73 24494.64 24495.01 27795.85 35687.00 32191.33 36598.08 24193.34 23797.10 20097.33 23384.01 32599.30 25495.14 17099.56 11198.71 227
MSP-MVS97.45 11196.92 14399.03 599.26 5997.70 1897.66 8498.89 10595.65 15598.51 8596.46 28692.15 22999.81 3695.14 17098.58 27999.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDDNet96.98 13896.84 14697.41 14399.40 4593.26 19097.94 6495.31 33199.26 798.39 10099.18 3987.85 29599.62 14995.13 17299.09 22599.35 114
CANet95.86 19695.65 20796.49 20796.41 33490.82 24794.36 27798.41 19794.94 18792.62 36396.73 27292.68 21399.71 10295.12 17399.60 10198.94 189
CNVR-MVS96.92 14196.55 16498.03 9398.00 22895.54 9594.87 26198.17 22994.60 19896.38 24897.05 24995.67 13599.36 23795.12 17399.08 22699.19 145
eth_miper_zixun_eth94.89 23994.93 22894.75 29395.99 35086.12 33391.35 36498.49 18793.40 23497.12 19897.25 23886.87 30499.35 24195.08 17598.82 25598.78 215
GST-MVS97.82 8197.49 10998.81 2799.23 6597.25 3897.16 11498.79 13995.96 13897.53 17397.40 22296.93 7199.77 5695.04 17699.35 18299.42 97
DP-MVS97.87 7497.89 6297.81 10698.62 15594.82 12997.13 11898.79 13998.98 1798.74 7098.49 10595.80 13199.49 19195.04 17699.44 15599.11 164
D2MVS95.18 22695.17 21795.21 26697.76 26187.76 30794.15 28997.94 24989.77 31296.99 21297.68 20487.45 29799.14 28495.03 17899.81 4898.74 221
SSC-MVS95.92 19397.03 13592.58 35499.28 5778.39 39096.68 14695.12 33398.90 1999.11 3998.66 8891.36 24499.68 12295.00 17999.16 21499.67 28
SR-MVS98.00 5197.66 8799.01 898.77 13597.93 1197.38 10598.83 12997.32 8498.06 14197.85 18796.65 8899.77 5695.00 17999.11 22299.32 115
FMVSNet296.72 15796.67 15696.87 18397.96 23091.88 22897.15 11598.06 24695.59 15998.50 8798.62 9489.51 27599.65 13694.99 18199.60 10199.07 171
SDMVSNet97.97 5298.26 3997.11 16399.41 4292.21 21596.92 12898.60 17698.58 2898.78 6499.39 1697.80 2599.62 14994.98 18299.86 3199.52 58
miper_ehance_all_eth94.69 24994.70 24194.64 29595.77 36186.22 33291.32 36798.24 21791.67 28197.05 20796.65 27688.39 28799.22 27494.88 18398.34 29198.49 249
XVG-OURS-SEG-HR97.38 11697.07 13298.30 6899.01 10997.41 3494.66 27099.02 7795.20 17598.15 13097.52 21498.83 598.43 35994.87 18496.41 35899.07 171
MVS_111021_HR96.73 15696.54 16697.27 15298.35 18793.66 17793.42 31798.36 20494.74 19296.58 23896.76 27196.54 9498.99 30694.87 18499.27 20199.15 151
test_040297.84 7797.97 5597.47 13699.19 7994.07 15996.71 14498.73 15198.66 2598.56 8298.41 11496.84 8199.69 11794.82 18699.81 4898.64 232
MVS_111021_LR96.82 15096.55 16497.62 11998.27 19495.34 11093.81 30798.33 20894.59 20096.56 24096.63 27796.61 9198.73 32994.80 18799.34 18598.78 215
WR-MVS96.90 14396.81 14897.16 15998.56 16392.20 21894.33 27898.12 23897.34 8398.20 12297.33 23392.81 20899.75 6794.79 18899.81 4899.54 53
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4695.22 11897.55 9399.20 3598.21 4199.25 3198.51 10498.21 1499.40 22194.79 18899.72 7199.32 115
thisisatest053092.71 30791.76 31595.56 25198.42 18288.23 29196.03 18787.35 39794.04 21896.56 24095.47 32464.03 39599.77 5694.78 19099.11 22298.68 231
PGM-MVS97.88 7397.52 10598.96 1399.20 7797.62 2197.09 12099.06 6395.45 16597.55 17297.94 17997.11 5599.78 4794.77 19199.46 15199.48 76
TSAR-MVS + GP.96.47 17296.12 18497.49 13497.74 26695.23 11594.15 28996.90 29693.26 24098.04 14496.70 27394.41 17398.89 31594.77 19199.14 21698.37 258
Syy-MVS92.09 31891.80 31492.93 34695.19 37482.65 36892.46 34291.35 37390.67 29891.76 37187.61 40085.64 31298.50 35494.73 19396.84 34697.65 323
VNet96.84 14696.83 14796.88 18298.06 22092.02 22596.35 16397.57 27597.70 6297.88 15997.80 19392.40 22699.54 17694.73 19398.96 23799.08 169
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11399.08 5996.57 10898.07 14098.38 11896.22 11599.14 28494.71 19599.31 19598.52 245
VPNet97.26 12497.49 10996.59 20099.47 3590.58 25296.27 16798.53 18397.77 5498.46 9398.41 11494.59 16799.68 12294.61 19699.29 19899.52 58
GBi-Net96.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
test196.99 13596.80 14997.56 12297.96 23093.67 17498.23 4698.66 16895.59 15997.99 14799.19 3689.51 27599.73 8294.60 19799.44 15599.30 120
FMVSNet395.26 22394.94 22696.22 22196.53 33190.06 25695.99 19197.66 26794.11 21597.99 14797.91 18380.22 34499.63 14494.60 19799.44 15598.96 186
SF-MVS97.60 10097.39 11298.22 7598.93 11695.69 8897.05 12299.10 5295.32 17197.83 16597.88 18596.44 10399.72 8794.59 20099.39 17299.25 136
XXY-MVS97.54 10597.70 8197.07 16999.46 3692.21 21597.22 11299.00 8694.93 18998.58 8198.92 6597.31 4699.41 21994.44 20199.43 16399.59 38
UnsupCasMVSNet_eth95.91 19495.73 20496.44 20998.48 17691.52 23595.31 23998.45 19095.76 15097.48 17997.54 21289.53 27498.69 33594.43 20294.61 38399.13 156
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8597.02 4297.09 12099.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
LGP-MVS_train98.74 3499.15 8597.02 4299.02 7795.15 17898.34 10798.23 14297.91 2199.70 11094.41 20399.73 6799.50 62
DeepPCF-MVS94.58 596.90 14396.43 17298.31 6797.48 29097.23 4092.56 33998.60 17692.84 26198.54 8397.40 22296.64 9098.78 32494.40 20599.41 17098.93 193
XVG-ACMP-BASELINE97.58 10397.28 11998.49 5299.16 8296.90 4696.39 15798.98 9295.05 18398.06 14198.02 17095.86 12299.56 16894.37 20699.64 8999.00 180
RPSCF97.87 7497.51 10698.95 1499.15 8598.43 697.56 9299.06 6396.19 12598.48 9098.70 8594.72 16199.24 27094.37 20699.33 19099.17 148
CSCG97.40 11597.30 11797.69 11598.95 11294.83 12897.28 10898.99 8996.35 11898.13 13295.95 31195.99 11999.66 13494.36 20899.73 6798.59 238
HPM-MVS++copyleft96.99 13596.38 17598.81 2798.64 14997.59 2395.97 19398.20 22395.51 16395.06 29696.53 28294.10 18099.70 11094.29 20999.15 21599.13 156
XVG-OURS97.12 12996.74 15298.26 7098.99 11097.45 3293.82 30599.05 6795.19 17698.32 11197.70 20295.22 14998.41 36094.27 21098.13 30098.93 193
jason94.39 26494.04 27095.41 26198.29 19087.85 30492.74 33496.75 30285.38 36395.29 29196.15 30088.21 28999.65 13694.24 21199.34 18598.74 221
jason: jason.
CVMVSNet92.33 31392.79 29690.95 37097.26 30875.84 40295.29 24192.33 36581.86 38096.27 25598.19 14781.44 33698.46 35894.23 21298.29 29498.55 242
EIA-MVS96.04 18895.77 20396.85 18497.80 25192.98 19596.12 18199.16 4094.65 19693.77 32991.69 38295.68 13499.67 12894.18 21398.85 25197.91 306
ET-MVSNet_ETH3D91.12 33089.67 34295.47 25696.41 33489.15 27391.54 36190.23 38689.07 31986.78 40192.84 36669.39 38999.44 20694.16 21496.61 35597.82 313
cl2293.25 29992.84 29594.46 30694.30 38686.00 33491.09 37396.64 30790.74 29595.79 27696.31 29478.24 35098.77 32594.15 21598.34 29198.62 235
MCST-MVS96.24 18095.80 20197.56 12298.75 13694.13 15894.66 27098.17 22990.17 30696.21 25996.10 30595.14 15199.43 20894.13 21698.85 25199.13 156
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7597.35 3597.96 6299.16 4098.34 3598.78 6498.52 10297.32 4599.45 20394.08 21799.67 8499.13 156
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous20240521196.34 17795.98 19297.43 14098.25 19693.85 16796.74 13994.41 34197.72 5998.37 10198.03 16987.15 30199.53 17894.06 21899.07 22898.92 196
Effi-MVS+-dtu96.81 15196.09 18698.99 1096.90 32398.69 496.42 15698.09 24095.86 14695.15 29495.54 32294.26 17799.81 3694.06 21898.51 28398.47 250
ambc96.56 20498.23 19991.68 23397.88 6898.13 23798.42 9698.56 9994.22 17899.04 30094.05 22099.35 18298.95 187
our_test_394.20 27194.58 25193.07 33896.16 34381.20 38090.42 38096.84 29790.72 29697.14 19697.13 24390.47 25699.11 29194.04 22198.25 29598.91 197
pmmvs594.63 25494.34 26195.50 25497.63 28088.34 28994.02 29597.13 28787.15 34295.22 29397.15 24287.50 29699.27 26393.99 22299.26 20298.88 205
DPE-MVScopyleft97.64 9697.35 11598.50 5198.85 12596.18 6995.21 24598.99 8995.84 14798.78 6498.08 15996.84 8199.81 3693.98 22399.57 10899.52 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ppachtmachnet_test94.49 26194.84 23493.46 32996.16 34382.10 37290.59 37897.48 27790.53 30097.01 21197.59 20991.01 24999.36 23793.97 22499.18 21298.94 189
tfpnnormal97.72 9097.97 5596.94 17799.26 5992.23 21497.83 7298.45 19098.25 3999.13 3898.66 8896.65 8899.69 11793.92 22599.62 9298.91 197
LFMVS95.32 22094.88 23296.62 19898.03 22191.47 23697.65 8590.72 38199.11 997.89 15898.31 12479.20 34699.48 19493.91 22699.12 22198.93 193
EPP-MVSNet96.84 14696.58 16197.65 11799.18 8093.78 17198.68 1496.34 30897.91 5197.30 18698.06 16688.46 28599.85 2793.85 22799.40 17199.32 115
Fast-Effi-MVS+-dtu96.44 17396.12 18497.39 14597.18 31194.39 14595.46 22498.73 15196.03 13594.72 30494.92 33596.28 11399.69 11793.81 22897.98 30598.09 286
PHI-MVS96.96 13996.53 16798.25 7397.48 29096.50 5996.76 13898.85 12093.52 23196.19 26196.85 26295.94 12099.42 21093.79 22999.43 16398.83 210
miper_enhance_ethall93.14 30192.78 29894.20 31593.65 39585.29 34289.97 38497.85 25485.05 36596.15 26494.56 34085.74 31099.14 28493.74 23098.34 29198.17 283
DeepC-MVS_fast94.34 796.74 15496.51 16997.44 13997.69 27094.15 15796.02 18898.43 19393.17 24997.30 18697.38 22895.48 14099.28 26093.74 23099.34 18598.88 205
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
AUN-MVS93.95 28092.69 30097.74 11097.80 25195.38 10595.57 22295.46 32891.26 29092.64 36196.10 30574.67 36999.55 17393.72 23296.97 34198.30 269
MP-MVScopyleft97.64 9697.18 12699.00 999.32 5597.77 1797.49 9998.73 15196.27 11995.59 28497.75 19796.30 11099.78 4793.70 23399.48 14699.45 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PVSNet_Blended_VisFu95.95 19295.80 20196.42 21199.28 5790.62 25195.31 23999.08 5988.40 33096.97 21598.17 15092.11 23199.78 4793.64 23499.21 20798.86 208
lupinMVS93.77 28193.28 28495.24 26497.68 27187.81 30592.12 35196.05 31184.52 37294.48 31195.06 33186.90 30299.63 14493.62 23599.13 21898.27 273
NCCC96.52 16995.99 19198.10 8597.81 24795.68 8995.00 25798.20 22395.39 16995.40 28996.36 29293.81 18899.45 20393.55 23698.42 28999.17 148
test_vis1_rt94.03 27793.65 27795.17 26995.76 36293.42 18493.97 30098.33 20884.68 37093.17 34895.89 31392.53 22394.79 39993.50 23794.97 37997.31 339
WB-MVS95.50 20996.62 15792.11 36399.21 7577.26 39896.12 18195.40 33098.62 2698.84 5998.26 13891.08 24899.50 18693.37 23898.70 26799.58 39
ETV-MVS96.13 18595.90 19796.82 18797.76 26193.89 16595.40 23098.95 9895.87 14595.58 28591.00 38896.36 10899.72 8793.36 23998.83 25496.85 354
FA-MVS(test-final)94.91 23894.89 23194.99 27997.51 28888.11 29898.27 4495.20 33292.40 27296.68 23098.60 9583.44 32799.28 26093.34 24098.53 28097.59 328
MDA-MVSNet_test_wron94.73 24494.83 23694.42 30797.48 29085.15 34590.28 38295.87 31792.52 26797.48 17997.76 19491.92 23899.17 28193.32 24196.80 35098.94 189
YYNet194.73 24494.84 23494.41 30897.47 29485.09 34790.29 38195.85 31892.52 26797.53 17397.76 19491.97 23599.18 27793.31 24296.86 34598.95 187
pmmvs494.82 24294.19 26696.70 19597.42 29792.75 20292.09 35396.76 30186.80 34895.73 28197.22 23989.28 27898.89 31593.28 24399.14 21698.46 252
CANet_DTU94.65 25394.21 26595.96 23195.90 35289.68 26293.92 30297.83 25893.19 24590.12 38495.64 31988.52 28499.57 16793.27 24499.47 14898.62 235
ACMP92.54 1397.47 11097.10 12998.55 4999.04 10696.70 5196.24 17298.89 10593.71 22597.97 15197.75 19797.44 4099.63 14493.22 24599.70 7799.32 115
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Effi-MVS+96.19 18296.01 18996.71 19497.43 29692.19 21996.12 18199.10 5295.45 16593.33 34594.71 33897.23 5399.56 16893.21 24697.54 32898.37 258
MDA-MVSNet-bldmvs95.69 20195.67 20595.74 24298.48 17688.76 28492.84 32997.25 28196.00 13697.59 17197.95 17891.38 24399.46 19993.16 24796.35 36098.99 183
IS-MVSNet96.93 14096.68 15597.70 11399.25 6294.00 16298.57 2096.74 30398.36 3498.14 13197.98 17588.23 28899.71 10293.10 24899.72 7199.38 106
9.1496.69 15498.53 16796.02 18898.98 9293.23 24197.18 19497.46 21796.47 10099.62 14992.99 24999.32 192
MS-PatchMatch94.83 24194.91 23094.57 30196.81 32487.10 32094.23 28497.34 28088.74 32597.14 19697.11 24591.94 23798.23 37292.99 24997.92 30898.37 258
Patchmtry95.03 23594.59 25096.33 21594.83 38090.82 24796.38 16097.20 28396.59 10497.49 17798.57 9777.67 35399.38 22892.95 25199.62 9298.80 213
sd_testset97.97 5298.12 4197.51 12799.41 4293.44 18397.96 6298.25 21598.58 2898.78 6499.39 1698.21 1499.56 16892.65 25299.86 3199.52 58
Fast-Effi-MVS+95.49 21095.07 22296.75 19297.67 27592.82 19794.22 28598.60 17691.61 28393.42 34392.90 36496.73 8699.70 11092.60 25397.89 31197.74 319
HQP_MVS96.66 16296.33 17897.68 11698.70 14494.29 15196.50 15398.75 14896.36 11696.16 26296.77 26991.91 23999.46 19992.59 25499.20 20899.28 127
plane_prior598.75 14899.46 19992.59 25499.20 20899.28 127
mvsany_test193.47 29393.03 28994.79 29194.05 39292.12 22090.82 37690.01 38985.02 36797.26 18898.28 13393.57 19397.03 38892.51 25695.75 37395.23 384
GA-MVS92.83 30592.15 30994.87 28696.97 31887.27 31790.03 38396.12 31091.83 28094.05 32194.57 33976.01 36598.97 31292.46 25797.34 33798.36 263
iter_conf05_1193.77 28193.29 28395.24 26496.54 32889.14 27491.55 36095.02 33490.16 30793.21 34793.94 35187.37 29999.56 16892.24 25899.56 11197.03 345
bld_raw_dy_0_6495.16 22995.16 21895.15 27096.54 32889.06 27696.63 14999.54 1789.68 31398.72 7294.50 34488.64 28399.38 22892.24 25899.93 1197.03 345
CPTT-MVS96.69 16096.08 18798.49 5298.89 12196.64 5597.25 10998.77 14492.89 26096.01 26897.13 24392.23 22899.67 12892.24 25899.34 18599.17 148
EPNet93.72 28492.62 30397.03 17387.61 41192.25 21396.27 16791.28 37596.74 9987.65 39797.39 22685.00 31699.64 14092.14 26199.48 14699.20 144
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PC_three_145287.24 34198.37 10197.44 21997.00 6596.78 39492.01 26299.25 20399.21 140
APD-MVScopyleft97.00 13496.53 16798.41 5998.55 16496.31 6696.32 16598.77 14492.96 25997.44 18397.58 21195.84 12399.74 7691.96 26399.35 18299.19 145
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CL-MVSNet_self_test95.04 23394.79 23995.82 23997.51 28889.79 26191.14 37196.82 29993.05 25296.72 22896.40 29090.82 25299.16 28291.95 26498.66 27198.50 248
test_prior293.33 32194.21 20994.02 32396.25 29693.64 19291.90 26598.96 237
test-LLR89.97 34289.90 34090.16 37494.24 38874.98 40389.89 38589.06 39192.02 27589.97 38590.77 39073.92 37298.57 34791.88 26697.36 33596.92 349
test-mter87.92 36287.17 36390.16 37494.24 38874.98 40389.89 38589.06 39186.44 35189.97 38590.77 39054.96 40998.57 34791.88 26697.36 33596.92 349
MVP-Stereo95.69 20195.28 21396.92 17998.15 21393.03 19495.64 21898.20 22390.39 30296.63 23697.73 20091.63 24199.10 29491.84 26897.31 33898.63 234
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testing389.72 34688.26 35594.10 31897.66 27684.30 35894.80 26388.25 39594.66 19595.07 29592.51 37241.15 41399.43 20891.81 26998.44 28898.55 242
1112_ss94.12 27293.42 28196.23 21998.59 15990.85 24694.24 28398.85 12085.49 35992.97 35294.94 33386.01 30899.64 14091.78 27097.92 30898.20 279
train_agg95.46 21494.66 24297.88 10297.84 24395.23 11593.62 31198.39 20087.04 34393.78 32795.99 30794.58 16899.52 18191.76 27198.90 24498.89 201
LF4IMVS96.07 18695.63 20897.36 14698.19 20395.55 9495.44 22598.82 13792.29 27395.70 28296.55 28092.63 21698.69 33591.75 27299.33 19097.85 311
N_pmnet95.18 22694.23 26398.06 8897.85 23896.55 5892.49 34091.63 37189.34 31598.09 13697.41 22190.33 26099.06 29891.58 27399.31 19598.56 240
AllTest97.20 12796.92 14398.06 8899.08 9896.16 7097.14 11799.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
TestCases98.06 8899.08 9896.16 7099.16 4094.35 20697.78 16798.07 16195.84 12399.12 28891.41 27499.42 16698.91 197
test9_res91.29 27698.89 24799.00 180
xiu_mvs_v2_base94.22 26794.63 24692.99 34397.32 30684.84 35192.12 35197.84 25691.96 27794.17 31693.43 35596.07 11899.71 10291.27 27797.48 33194.42 388
PS-MVSNAJ94.10 27394.47 25693.00 34297.35 30184.88 34991.86 35697.84 25691.96 27794.17 31692.50 37395.82 12699.71 10291.27 27797.48 33194.40 389
tpm91.08 33290.85 33091.75 36695.33 37278.09 39195.03 25691.27 37688.75 32493.53 33897.40 22271.24 38299.30 25491.25 27993.87 38797.87 310
OPU-MVS97.64 11898.01 22495.27 11396.79 13697.35 23196.97 6798.51 35391.21 28099.25 20399.14 154
ZD-MVS98.43 18195.94 7998.56 18290.72 29696.66 23397.07 24795.02 15599.74 7691.08 28198.93 242
tpmrst90.31 33790.61 33589.41 37894.06 39172.37 40995.06 25393.69 34688.01 33592.32 36696.86 26177.45 35598.82 32091.04 28287.01 40197.04 344
sss94.22 26793.72 27695.74 24297.71 26989.95 25993.84 30496.98 29388.38 33193.75 33095.74 31587.94 29098.89 31591.02 28398.10 30198.37 258
ITE_SJBPF97.85 10498.64 14996.66 5498.51 18695.63 15697.22 18997.30 23595.52 13998.55 35090.97 28498.90 24498.34 264
Test_1112_low_res93.53 29292.86 29395.54 25398.60 15788.86 28092.75 33298.69 16182.66 37992.65 36096.92 25984.75 31899.56 16890.94 28597.76 31598.19 280
TESTMET0.1,187.20 36886.57 36889.07 37993.62 39672.84 40889.89 38587.01 39985.46 36189.12 39190.20 39356.00 40497.72 38290.91 28696.92 34296.64 362
FMVSNet593.39 29592.35 30596.50 20695.83 35790.81 24997.31 10698.27 21392.74 26396.27 25598.28 13362.23 39799.67 12890.86 28799.36 17799.03 176
PatchmatchNetpermissive91.98 32191.87 31192.30 36094.60 38379.71 38695.12 24793.59 35189.52 31493.61 33597.02 25177.94 35199.18 27790.84 28894.57 38598.01 300
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CLD-MVS95.47 21395.07 22296.69 19698.27 19492.53 20591.36 36398.67 16691.22 29195.78 27894.12 34995.65 13698.98 30890.81 28999.72 7198.57 239
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
cascas91.89 32291.35 31993.51 32894.27 38785.60 33788.86 39398.61 17579.32 39292.16 36791.44 38489.22 27998.12 37590.80 29097.47 33396.82 357
test20.0396.58 16796.61 15996.48 20898.49 17491.72 23295.68 21297.69 26496.81 9798.27 11797.92 18294.18 17998.71 33290.78 29199.66 8699.00 180
test_yl94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
DCV-MVSNet94.40 26294.00 27195.59 24796.95 31989.52 26594.75 26795.55 32696.18 12696.79 22296.14 30281.09 33999.18 27790.75 29297.77 31398.07 289
EPMVS89.26 35088.55 35291.39 36892.36 40479.11 38995.65 21579.86 40788.60 32793.12 34996.53 28270.73 38698.10 37690.75 29289.32 39896.98 347
旧先验293.35 32077.95 39795.77 28098.67 33990.74 295
USDC94.56 25794.57 25394.55 30297.78 25986.43 33092.75 33298.65 17385.96 35496.91 21997.93 18190.82 25298.74 32890.71 29699.59 10398.47 250
OpenMVScopyleft94.22 895.48 21295.20 21596.32 21697.16 31291.96 22797.74 8098.84 12387.26 34094.36 31398.01 17293.95 18599.67 12890.70 29798.75 26197.35 338
Patchmatch-test93.60 29093.25 28594.63 29696.14 34787.47 31196.04 18694.50 34093.57 23096.47 24496.97 25476.50 36198.61 34490.67 29898.41 29097.81 315
thisisatest051590.43 33689.18 34894.17 31797.07 31685.44 33989.75 38987.58 39688.28 33293.69 33391.72 38165.27 39399.58 16190.59 29998.67 26997.50 333
DP-MVS Recon95.55 20895.13 21996.80 18898.51 17093.99 16394.60 27298.69 16190.20 30595.78 27896.21 29892.73 21298.98 30890.58 30098.86 25097.42 335
TinyColmap96.00 19196.34 17794.96 28197.90 23687.91 30194.13 29298.49 18794.41 20498.16 12897.76 19496.29 11298.68 33890.52 30199.42 16698.30 269
BP-MVS90.51 302
HQP-MVS95.17 22894.58 25196.92 17997.85 23892.47 20894.26 27998.43 19393.18 24692.86 35495.08 32990.33 26099.23 27290.51 30298.74 26299.05 175
OMC-MVS96.48 17196.00 19097.91 10098.30 18996.01 7894.86 26298.60 17691.88 27997.18 19497.21 24096.11 11799.04 30090.49 30499.34 18598.69 228
ab-mvs96.59 16596.59 16096.60 19998.64 14992.21 21598.35 3597.67 26594.45 20396.99 21298.79 7594.96 15899.49 19190.39 30599.07 22898.08 287
HyFIR lowres test93.72 28492.65 30196.91 18198.93 11691.81 23191.23 36998.52 18482.69 37896.46 24596.52 28480.38 34399.90 1490.36 30698.79 25799.03 176
agg_prior290.34 30798.90 24499.10 168
LCM-MVSNet-Re97.33 12197.33 11697.32 14898.13 21893.79 17096.99 12599.65 996.74 9999.47 1798.93 6496.91 7499.84 3090.11 30899.06 23198.32 265
CDS-MVSNet94.88 24094.12 26897.14 16197.64 27993.57 17993.96 30197.06 29190.05 30896.30 25496.55 28086.10 30799.47 19690.10 30999.31 19598.40 254
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CDPH-MVS95.45 21594.65 24397.84 10598.28 19294.96 12693.73 30998.33 20885.03 36695.44 28796.60 27895.31 14699.44 20690.01 31099.13 21899.11 164
baseline193.14 30192.64 30294.62 29797.34 30387.20 31896.67 14893.02 35594.71 19496.51 24395.83 31481.64 33498.60 34690.00 31188.06 40098.07 289
TAPA-MVS93.32 1294.93 23794.23 26397.04 17298.18 20694.51 14195.22 24498.73 15181.22 38596.25 25795.95 31193.80 18998.98 30889.89 31298.87 24897.62 325
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PMMVS92.39 31091.08 32596.30 21893.12 39992.81 19890.58 37995.96 31579.17 39391.85 37092.27 37490.29 26498.66 34089.85 31396.68 35497.43 334
PVSNet_BlendedMVS95.02 23694.93 22895.27 26397.79 25687.40 31494.14 29198.68 16388.94 32294.51 30998.01 17293.04 20399.30 25489.77 31499.49 14299.11 164
PVSNet_Blended93.96 27893.65 27794.91 28297.79 25687.40 31491.43 36298.68 16384.50 37394.51 30994.48 34593.04 20399.30 25489.77 31498.61 27698.02 299
MSDG95.33 21995.13 21995.94 23597.40 29891.85 22991.02 37498.37 20395.30 17296.31 25395.99 30794.51 17198.38 36389.59 31697.65 32597.60 327
PMVScopyleft89.60 1796.71 15996.97 13895.95 23399.51 3097.81 1697.42 10497.49 27697.93 5095.95 26998.58 9696.88 7796.91 39189.59 31699.36 17793.12 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_post194.98 25810.37 41076.21 36499.04 30089.47 318
SCA93.38 29693.52 28092.96 34496.24 33781.40 37993.24 32394.00 34491.58 28594.57 30796.97 25487.94 29099.42 21089.47 31897.66 32498.06 293
tpmvs90.79 33590.87 32990.57 37392.75 40376.30 40095.79 20693.64 35091.04 29391.91 36996.26 29577.19 35998.86 31989.38 32089.85 39796.56 365
Anonymous2023120695.27 22295.06 22495.88 23798.72 13989.37 26895.70 20997.85 25488.00 33696.98 21497.62 20791.95 23699.34 24489.21 32199.53 12598.94 189
CHOSEN 1792x268894.10 27393.41 28296.18 22399.16 8290.04 25792.15 35098.68 16379.90 39096.22 25897.83 18887.92 29499.42 21089.18 32299.65 8799.08 169
114514_t93.96 27893.22 28696.19 22299.06 10190.97 24595.99 19198.94 9973.88 40293.43 34296.93 25792.38 22799.37 23489.09 32399.28 19998.25 275
pmmvs390.00 34088.90 35093.32 33094.20 39085.34 34091.25 36892.56 36478.59 39493.82 32695.17 32867.36 39298.69 33589.08 32498.03 30495.92 373
testdata95.70 24598.16 21190.58 25297.72 26380.38 38895.62 28397.02 25192.06 23498.98 30889.06 32598.52 28197.54 330
MDTV_nov1_ep1391.28 32194.31 38573.51 40794.80 26393.16 35486.75 34993.45 34197.40 22276.37 36298.55 35088.85 32696.43 357
PMMVS293.66 28794.07 26992.45 35897.57 28380.67 38386.46 39696.00 31393.99 21997.10 20097.38 22889.90 26797.82 38088.76 32799.47 14898.86 208
QAPM95.88 19595.57 21096.80 18897.90 23691.84 23098.18 5398.73 15188.41 32996.42 24698.13 15394.73 16099.75 6788.72 32898.94 24098.81 212
CHOSEN 280x42089.98 34189.19 34792.37 35995.60 36681.13 38186.22 39797.09 28981.44 38487.44 39893.15 35673.99 37099.47 19688.69 32999.07 22896.52 366
testgi96.07 18696.50 17094.80 29099.26 5987.69 30895.96 19598.58 18095.08 18198.02 14696.25 29697.92 2097.60 38488.68 33098.74 26299.11 164
CostFormer89.75 34589.25 34391.26 36994.69 38278.00 39395.32 23891.98 36881.50 38390.55 37896.96 25671.06 38498.89 31588.59 33192.63 39196.87 352
UnsupCasMVSNet_bld94.72 24894.26 26296.08 22798.62 15590.54 25593.38 31998.05 24790.30 30397.02 21096.80 26889.54 27299.16 28288.44 33296.18 36498.56 240
TAMVS95.49 21094.94 22697.16 15998.31 18893.41 18595.07 25296.82 29991.09 29297.51 17597.82 19189.96 26699.42 21088.42 33399.44 15598.64 232
Vis-MVSNet (Re-imp)95.11 23094.85 23395.87 23899.12 9389.17 27197.54 9894.92 33696.50 11096.58 23897.27 23683.64 32699.48 19488.42 33399.67 8498.97 185
EPNet_dtu91.39 32990.75 33293.31 33190.48 40882.61 36994.80 26392.88 35793.39 23581.74 40594.90 33681.36 33799.11 29188.28 33598.87 24898.21 278
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
JIA-IIPM91.79 32390.69 33395.11 27193.80 39490.98 24494.16 28891.78 37096.38 11490.30 38299.30 2872.02 38198.90 31488.28 33590.17 39695.45 382
新几何197.25 15598.29 19094.70 13397.73 26277.98 39694.83 30396.67 27592.08 23399.45 20388.17 33798.65 27397.61 326
testdata299.46 19987.84 338
FE-MVS92.95 30392.22 30795.11 27197.21 31088.33 29098.54 2393.66 34989.91 31096.21 25998.14 15170.33 38799.50 18687.79 33998.24 29697.51 331
无先验93.20 32497.91 25080.78 38699.40 22187.71 34097.94 305
WTY-MVS93.55 29193.00 29195.19 26797.81 24787.86 30293.89 30396.00 31389.02 32094.07 32095.44 32686.27 30699.33 24687.69 34196.82 34898.39 256
原ACMM196.58 20198.16 21192.12 22098.15 23585.90 35693.49 33996.43 28792.47 22599.38 22887.66 34298.62 27598.23 276
BH-untuned94.69 24994.75 24094.52 30397.95 23387.53 31094.07 29497.01 29293.99 21997.10 20095.65 31892.65 21598.95 31387.60 34396.74 35197.09 342
PAPM_NR94.61 25594.17 26795.96 23198.36 18691.23 24095.93 19897.95 24892.98 25593.42 34394.43 34690.53 25598.38 36387.60 34396.29 36298.27 273
testing9989.21 35188.04 35792.70 35295.78 36081.00 38292.65 33792.03 36693.20 24489.90 38790.08 39655.25 40599.14 28487.54 34595.95 36797.97 302
DPM-MVS93.68 28692.77 29996.42 21197.91 23492.54 20491.17 37097.47 27884.99 36893.08 35094.74 33789.90 26799.00 30487.54 34598.09 30297.72 320
MG-MVS94.08 27594.00 27194.32 31197.09 31585.89 33593.19 32595.96 31592.52 26794.93 30297.51 21589.54 27298.77 32587.52 34797.71 31998.31 267
F-COLMAP95.30 22194.38 26098.05 9298.64 14996.04 7595.61 21998.66 16889.00 32193.22 34696.40 29092.90 20799.35 24187.45 34897.53 32998.77 218
PatchMatch-RL94.61 25593.81 27597.02 17498.19 20395.72 8693.66 31097.23 28288.17 33494.94 30195.62 32091.43 24298.57 34787.36 34997.68 32296.76 360
testing1188.93 35387.63 36192.80 34995.87 35481.49 37892.48 34191.54 37291.62 28288.27 39590.24 39255.12 40899.11 29187.30 35096.28 36397.81 315
IB-MVS85.98 2088.63 35686.95 36693.68 32595.12 37684.82 35290.85 37590.17 38787.55 33988.48 39491.34 38558.01 39899.59 15987.24 35193.80 38896.63 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing9189.67 34788.55 35293.04 33995.90 35281.80 37692.71 33693.71 34593.71 22590.18 38390.15 39457.11 39999.22 27487.17 35296.32 36198.12 285
dp88.08 36088.05 35688.16 38592.85 40168.81 41194.17 28792.88 35785.47 36091.38 37496.14 30268.87 39098.81 32286.88 35383.80 40496.87 352
131492.38 31192.30 30692.64 35395.42 37185.15 34595.86 20296.97 29485.40 36290.62 37693.06 36291.12 24797.80 38186.74 35495.49 37694.97 386
CNLPA95.04 23394.47 25696.75 19297.81 24795.25 11494.12 29397.89 25294.41 20494.57 30795.69 31690.30 26398.35 36686.72 35598.76 26096.64 362
baseline289.65 34888.44 35493.25 33395.62 36582.71 36793.82 30585.94 40188.89 32387.35 39992.54 37171.23 38399.33 24686.01 35694.60 38497.72 320
BH-RMVSNet94.56 25794.44 25994.91 28297.57 28387.44 31393.78 30896.26 30993.69 22796.41 24796.50 28592.10 23299.00 30485.96 35797.71 31998.31 267
E-PMN89.52 34989.78 34188.73 38093.14 39877.61 39483.26 40092.02 36794.82 19193.71 33193.11 35775.31 36796.81 39285.81 35896.81 34991.77 399
API-MVS95.09 23295.01 22595.31 26296.61 32794.02 16196.83 13297.18 28595.60 15895.79 27694.33 34794.54 17098.37 36585.70 35998.52 28193.52 393
AdaColmapbinary95.11 23094.62 24796.58 20197.33 30594.45 14494.92 25998.08 24193.15 25093.98 32595.53 32394.34 17599.10 29485.69 36098.61 27696.20 372
ADS-MVSNet291.47 32890.51 33694.36 30995.51 36785.63 33695.05 25495.70 31983.46 37692.69 35896.84 26379.15 34799.41 21985.66 36190.52 39498.04 297
ADS-MVSNet90.95 33490.26 33893.04 33995.51 36782.37 37195.05 25493.41 35283.46 37692.69 35896.84 26379.15 34798.70 33385.66 36190.52 39498.04 297
MDTV_nov1_ep13_2view57.28 41394.89 26080.59 38794.02 32378.66 34985.50 36397.82 313
WAC-MVS79.32 38785.41 364
OpenMVS_ROBcopyleft91.80 1493.64 28993.05 28795.42 25997.31 30791.21 24195.08 25196.68 30681.56 38296.88 22196.41 28890.44 25999.25 26685.39 36597.67 32395.80 376
KD-MVS_2432*160088.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
miper_refine_blended88.93 35387.74 35892.49 35588.04 40981.99 37389.63 39095.62 32291.35 28895.06 29693.11 35756.58 40198.63 34285.19 36695.07 37796.85 354
PVSNet86.72 1991.10 33190.97 32891.49 36797.56 28578.04 39287.17 39594.60 33984.65 37192.34 36592.20 37687.37 29998.47 35785.17 36897.69 32197.96 303
PLCcopyleft91.02 1694.05 27692.90 29297.51 12798.00 22895.12 12394.25 28298.25 21586.17 35291.48 37395.25 32791.01 24999.19 27685.02 36996.69 35398.22 277
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
gm-plane-assit91.79 40571.40 41081.67 38190.11 39598.99 30684.86 370
CMPMVSbinary73.10 2392.74 30691.39 31896.77 19193.57 39794.67 13494.21 28697.67 26580.36 38993.61 33596.60 27882.85 33197.35 38584.86 37098.78 25898.29 272
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
new_pmnet92.34 31291.69 31694.32 31196.23 33989.16 27292.27 34992.88 35784.39 37595.29 29196.35 29385.66 31196.74 39584.53 37297.56 32797.05 343
tpm cat188.01 36187.33 36290.05 37794.48 38476.28 40194.47 27594.35 34273.84 40389.26 39095.61 32173.64 37498.30 36984.13 37386.20 40295.57 381
MAR-MVS94.21 26993.03 28997.76 10996.94 32197.44 3396.97 12697.15 28687.89 33892.00 36892.73 36992.14 23099.12 28883.92 37497.51 33096.73 361
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DSMNet-mixed92.19 31591.83 31293.25 33396.18 34283.68 36396.27 16793.68 34876.97 39992.54 36499.18 3989.20 28098.55 35083.88 37598.60 27897.51 331
EMVS89.06 35289.22 34488.61 38193.00 40077.34 39682.91 40190.92 37894.64 19792.63 36291.81 38076.30 36397.02 38983.83 37696.90 34491.48 400
HY-MVS91.43 1592.58 30891.81 31394.90 28496.49 33288.87 27997.31 10694.62 33885.92 35590.50 37996.84 26385.05 31599.40 22183.77 37795.78 37196.43 368
test0.0.03 190.11 33889.21 34592.83 34893.89 39386.87 32491.74 35888.74 39492.02 27594.71 30591.14 38773.92 37294.48 40183.75 37892.94 38997.16 341
tpm288.47 35787.69 36090.79 37194.98 37877.34 39695.09 24991.83 36977.51 39889.40 38996.41 28867.83 39198.73 32983.58 37992.60 39296.29 370
myMVS_eth3d87.16 36985.61 37291.82 36595.19 37479.32 38792.46 34291.35 37390.67 29891.76 37187.61 40041.96 41298.50 35482.66 38096.84 34697.65 323
MVS-HIRNet88.40 35890.20 33982.99 38797.01 31760.04 41293.11 32685.61 40284.45 37488.72 39399.09 5084.72 31998.23 37282.52 38196.59 35690.69 402
UWE-MVS87.57 36586.72 36790.13 37695.21 37373.56 40691.94 35583.78 40588.73 32693.00 35192.87 36555.22 40699.25 26681.74 38297.96 30697.59 328
BH-w/o92.14 31691.94 31092.73 35197.13 31485.30 34192.46 34295.64 32189.33 31694.21 31592.74 36889.60 27098.24 37181.68 38394.66 38294.66 387
MIMVSNet93.42 29492.86 29395.10 27398.17 20988.19 29298.13 5593.69 34692.07 27495.04 29998.21 14680.95 34199.03 30381.42 38498.06 30398.07 289
TR-MVS92.54 30992.20 30893.57 32796.49 33286.66 32693.51 31594.73 33789.96 30994.95 30093.87 35290.24 26598.61 34481.18 38594.88 38095.45 382
dmvs_re92.08 31991.27 32294.51 30497.16 31292.79 20195.65 21592.64 36294.11 21592.74 35790.98 38983.41 32894.44 40280.72 38694.07 38696.29 370
thres600view792.03 32091.43 31793.82 32198.19 20384.61 35396.27 16790.39 38296.81 9796.37 24993.11 35773.44 37899.49 19180.32 38797.95 30797.36 336
WB-MVSnew91.50 32791.29 32092.14 36294.85 37980.32 38493.29 32288.77 39388.57 32894.03 32292.21 37592.56 21898.28 37080.21 38897.08 34097.81 315
PAPR92.22 31491.27 32295.07 27495.73 36488.81 28191.97 35497.87 25385.80 35790.91 37592.73 36991.16 24698.33 36779.48 38995.76 37298.08 287
MVS90.02 33989.20 34692.47 35794.71 38186.90 32395.86 20296.74 30364.72 40490.62 37692.77 36792.54 22198.39 36279.30 39095.56 37592.12 397
gg-mvs-nofinetune88.28 35986.96 36592.23 36192.84 40284.44 35598.19 5274.60 40999.08 1087.01 40099.47 1156.93 40098.23 37278.91 39195.61 37494.01 391
thres100view90091.76 32491.26 32493.26 33298.21 20084.50 35496.39 15790.39 38296.87 9596.33 25093.08 36173.44 37899.42 21078.85 39297.74 31695.85 374
tfpn200view991.55 32691.00 32693.21 33698.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31695.85 374
thres40091.68 32591.00 32693.71 32498.02 22284.35 35695.70 20990.79 37996.26 12095.90 27492.13 37773.62 37599.42 21078.85 39297.74 31697.36 336
thres20091.00 33390.42 33792.77 35097.47 29483.98 36194.01 29691.18 37795.12 18095.44 28791.21 38673.93 37199.31 25177.76 39597.63 32695.01 385
wuyk23d93.25 29995.20 21587.40 38696.07 34995.38 10597.04 12394.97 33595.33 17099.70 698.11 15798.14 1791.94 40477.76 39599.68 8274.89 404
test_method66.88 37366.13 37669.11 38962.68 41225.73 41549.76 40396.04 31214.32 40764.27 40891.69 38273.45 37788.05 40676.06 39766.94 40693.54 392
testing22287.35 36685.50 37392.93 34695.79 35982.83 36692.40 34790.10 38892.80 26288.87 39289.02 39748.34 41198.70 33375.40 39896.74 35197.27 340
ETVMVS87.62 36485.75 37193.22 33596.15 34683.26 36492.94 32890.37 38491.39 28790.37 38088.45 39851.93 41098.64 34173.76 39996.38 35997.75 318
PCF-MVS89.43 1892.12 31790.64 33496.57 20397.80 25193.48 18289.88 38898.45 19074.46 40196.04 26795.68 31790.71 25499.31 25173.73 40099.01 23596.91 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet_081.89 2184.49 37183.21 37488.34 38295.76 36274.97 40583.49 39992.70 36178.47 39587.94 39686.90 40383.38 32996.63 39673.44 40166.86 40793.40 394
GG-mvs-BLEND90.60 37291.00 40684.21 35998.23 4672.63 41282.76 40384.11 40456.14 40396.79 39372.20 40292.09 39390.78 401
FPMVS89.92 34388.63 35193.82 32198.37 18596.94 4591.58 35993.34 35388.00 33690.32 38197.10 24670.87 38591.13 40571.91 40396.16 36693.39 395
MVEpermissive73.61 2286.48 37085.92 36988.18 38496.23 33985.28 34381.78 40275.79 40886.01 35382.53 40491.88 37992.74 21187.47 40771.42 40494.86 38191.78 398
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt57.23 37462.50 37741.44 39034.77 41349.21 41483.93 39860.22 41415.31 40671.11 40779.37 40570.09 38844.86 40964.76 40582.93 40530.25 405
PAPM87.64 36385.84 37093.04 33996.54 32884.99 34888.42 39495.57 32579.52 39183.82 40293.05 36380.57 34298.41 36062.29 40692.79 39095.71 377
dmvs_testset87.30 36786.99 36488.24 38396.71 32577.48 39594.68 26986.81 40092.64 26689.61 38887.01 40285.91 30993.12 40361.04 40788.49 39994.13 390
DeepMVS_CXcopyleft77.17 38890.94 40785.28 34374.08 41152.51 40580.87 40688.03 39975.25 36870.63 40859.23 40884.94 40375.62 403
test12312.59 37615.49 3793.87 3916.07 4142.55 41690.75 3772.59 4162.52 4095.20 41113.02 4084.96 4141.85 4115.20 4099.09 4087.23 406
testmvs12.33 37715.23 3803.64 3925.77 4152.23 41788.99 3923.62 4152.30 4105.29 41013.09 4074.52 4151.95 4105.16 4108.32 4096.75 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.22 37532.30 3780.00 3930.00 4160.00 4180.00 40498.10 2390.00 4110.00 41295.06 33197.54 390.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.98 37810.65 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41195.82 1260.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.91 37910.55 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41294.94 3330.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
FOURS199.59 1898.20 799.03 799.25 3198.96 1898.87 56
test_one_060199.05 10595.50 10098.87 11397.21 8898.03 14598.30 12896.93 71
eth-test20.00 416
eth-test0.00 416
test_241102_ONE99.22 6895.35 10898.83 12996.04 13399.08 4098.13 15397.87 2399.33 246
save fliter98.48 17694.71 13194.53 27498.41 19795.02 185
test072699.24 6395.51 9796.89 13098.89 10595.92 14198.64 7498.31 12497.06 60
GSMVS98.06 293
test_part299.03 10796.07 7498.08 138
sam_mvs177.80 35298.06 293
sam_mvs77.38 356
MTGPAbinary98.73 151
test_post10.87 40976.83 36099.07 297
patchmatchnet-post96.84 26377.36 35799.42 210
MTMP96.55 15174.60 409
TEST997.84 24395.23 11593.62 31198.39 20086.81 34793.78 32795.99 30794.68 16499.52 181
test_897.81 24795.07 12493.54 31498.38 20287.04 34393.71 33195.96 31094.58 16899.52 181
agg_prior97.80 25194.96 12698.36 20493.49 33999.53 178
test_prior495.38 10593.61 313
test_prior97.46 13797.79 25694.26 15598.42 19699.34 24498.79 214
新几何293.43 316
旧先验197.80 25193.87 16697.75 26197.04 25093.57 19398.68 26898.72 224
原ACMM292.82 330
test22298.17 20993.24 19192.74 33497.61 27475.17 40094.65 30696.69 27490.96 25198.66 27197.66 322
segment_acmp95.34 145
testdata192.77 33193.78 223
test1297.46 13797.61 28194.07 15997.78 26093.57 33793.31 19899.42 21098.78 25898.89 201
plane_prior798.70 14494.67 134
plane_prior698.38 18494.37 14891.91 239
plane_prior496.77 269
plane_prior394.51 14195.29 17396.16 262
plane_prior296.50 15396.36 116
plane_prior198.49 174
plane_prior94.29 15195.42 22794.31 20898.93 242
n20.00 417
nn0.00 417
door-mid98.17 229
test1198.08 241
door97.81 259
HQP5-MVS92.47 208
HQP-NCC97.85 23894.26 27993.18 24692.86 354
ACMP_Plane97.85 23894.26 27993.18 24692.86 354
HQP4-MVS92.87 35399.23 27299.06 173
HQP3-MVS98.43 19398.74 262
HQP2-MVS90.33 260
NP-MVS98.14 21593.72 17295.08 329
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 171