This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13298.76 1186.25 22497.56 3998.66 1895.73 1998.44 19297.35 298.99 11398.27 137
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15898.60 1485.68 23797.42 5098.30 3595.34 3398.39 19396.85 398.98 11498.19 142
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 11087.68 20698.45 1898.77 1594.20 7499.50 2196.70 599.40 5799.53 15
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16898.36 2285.61 24096.92 7398.02 4995.23 3998.38 19696.69 698.95 12398.09 150
MVS_030493.92 13893.68 14694.64 11695.94 23085.83 17894.34 12888.14 34592.98 7791.09 28597.68 6686.73 21699.36 5896.64 799.59 2998.72 96
MM94.41 11794.14 13295.22 9495.84 23487.21 13894.31 13190.92 32894.48 4692.80 24297.52 8085.27 23299.49 2496.58 899.57 3698.97 62
MVSFormer92.18 19192.23 18392.04 22094.74 27980.06 25897.15 1597.37 12688.98 17688.83 32092.79 30277.02 30899.60 996.41 996.75 27896.46 259
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12688.98 17698.26 2298.86 1093.35 8999.60 996.41 999.45 4799.66 6
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16887.75 13093.44 16298.49 1685.57 24198.27 2097.11 11694.11 7697.75 25896.26 1198.72 14896.89 241
v7n96.82 997.31 1095.33 8698.54 4786.81 14996.83 2398.07 6396.59 2098.46 1798.43 3292.91 10499.52 1996.25 1299.76 1099.65 8
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 11087.57 20898.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12486.96 21798.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7594.15 5198.93 399.07 588.07 19099.57 1495.86 1599.69 1499.46 18
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16998.07 6385.63 23997.08 6197.35 9690.86 15097.66 26595.70 1698.48 17697.74 192
fmvsm_s_conf0.1_n94.19 13094.41 12093.52 16897.22 14084.37 19793.73 15295.26 24684.45 26195.76 12698.00 5091.85 12697.21 28795.62 1797.82 23198.98 60
fmvsm_s_conf0.5_n94.00 13594.20 13193.42 17296.69 16684.37 19793.38 16495.13 24984.50 26095.40 14697.55 7991.77 12897.20 28895.59 1897.79 23298.69 103
fmvsm_l_conf0.5_n93.79 14193.81 13893.73 15796.16 21086.26 16792.46 19596.72 18181.69 29595.77 12597.11 11690.83 15297.82 24895.58 1997.99 22197.11 230
fmvsm_s_conf0.1_n_a94.26 12494.37 12393.95 14797.36 13385.72 18194.15 13695.44 23983.25 27395.51 13998.05 4592.54 11397.19 29095.55 2097.46 25098.94 66
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12391.25 13097.49 4498.14 3983.49 24499.45 2795.52 2199.66 2199.36 24
fmvsm_s_conf0.5_n_a94.02 13494.08 13593.84 15396.72 16585.73 18093.65 15695.23 24783.30 27195.13 16397.56 7592.22 11897.17 29195.51 2297.41 25298.64 111
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26793.12 7397.94 2798.54 2581.19 27599.63 695.48 2399.69 1499.60 12
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16698.32 2587.89 19996.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test_fmvs392.42 18392.40 18292.46 20793.80 30787.28 13693.86 14897.05 15576.86 33796.25 10298.66 1882.87 25391.26 38295.44 2596.83 27498.82 82
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8788.72 18298.81 698.86 1090.77 15399.60 995.43 2699.53 3999.57 14
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27196.48 2195.38 14793.63 28194.89 5797.94 23695.38 2796.92 27195.17 307
fmvsm_l_conf0.5_n_a93.59 14693.63 14893.49 17096.10 21685.66 18392.32 20496.57 19081.32 29895.63 13497.14 11390.19 16697.73 26195.37 2898.03 21797.07 231
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4296.95 1495.46 14499.23 493.45 8499.57 1495.34 2999.89 299.63 9
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18996.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 23094.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
v1094.68 10695.27 8992.90 18796.57 17580.15 25494.65 11697.57 11390.68 14397.43 4898.00 5088.18 18799.15 8494.84 3199.55 3899.41 20
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 4983.19 21895.93 6794.84 25794.86 4198.49 1598.74 1681.45 26999.60 994.69 3299.39 5899.15 39
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6498.84 12894.64 3399.53 3998.99 56
v124093.29 15393.71 14492.06 21996.01 22577.89 30291.81 23097.37 12685.12 25096.69 8396.40 16286.67 21799.07 9794.51 3498.76 14599.22 33
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 12098.03 7290.42 15096.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 5191.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
v894.65 10795.29 8792.74 19296.65 16979.77 26994.59 11797.17 14691.86 10397.47 4797.93 5488.16 18899.08 9394.32 3899.47 4399.38 22
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4893.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10894.46 4796.29 9996.94 12893.56 8199.37 5794.29 4099.42 5298.99 56
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16196.78 2798.08 6097.42 998.48 1697.86 6191.76 13099.63 694.23 4199.84 399.66 6
v192192093.26 15593.61 15092.19 21296.04 22478.31 29591.88 22597.24 14285.17 24896.19 10996.19 18086.76 21599.05 9894.18 4298.84 13299.22 33
v119293.49 14893.78 14192.62 19996.16 21079.62 27191.83 22997.22 14486.07 22996.10 11296.38 16787.22 20499.02 10394.14 4398.88 12799.22 33
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
No_MVS95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15598.45 498.22 3993.26 7197.54 4097.36 9393.12 9799.38 5593.88 4798.68 15598.04 154
test_0728_THIRD93.26 7197.40 5297.35 9694.69 6199.34 6393.88 4799.42 5298.89 75
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
v14419293.20 16093.54 15492.16 21696.05 22078.26 29691.95 21897.14 14884.98 25495.96 11596.11 18487.08 20899.04 10193.79 5098.84 13299.17 37
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7892.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
EI-MVSNet-UG-set94.35 12094.27 12994.59 12192.46 33185.87 17692.42 19994.69 26393.67 6496.13 11095.84 19691.20 14398.86 12593.78 5198.23 19999.03 52
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 8192.35 8895.57 13796.61 15294.93 5699.41 3993.78 5199.15 9899.00 54
EI-MVSNet-Vis-set94.36 11994.28 12794.61 11792.55 32885.98 17392.44 19794.69 26393.70 6196.12 11195.81 19791.24 14098.86 12593.76 5498.22 20198.98 60
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 8192.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24494.52 25393.95 7899.49 2493.62 5699.22 8997.51 207
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19196.49 15694.56 6699.39 4993.57 5799.05 10698.93 68
X-MVStestdata90.70 21788.45 26397.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19126.89 40694.56 6699.39 4993.57 5799.05 10698.93 68
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 10097.79 9886.48 22097.42 5097.51 8394.47 7199.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v114493.50 14793.81 13892.57 20296.28 20079.61 27291.86 22896.96 16186.95 21895.91 11996.32 17187.65 19798.96 11193.51 6098.88 12799.13 41
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12294.85 5899.42 3393.49 6198.84 13298.00 159
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7593.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25394.79 24393.56 8199.49 2493.47 6499.05 10697.89 174
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4492.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17485.23 24694.75 18197.12 11591.85 12699.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
test_fmvs290.62 22190.40 23091.29 24691.93 34785.46 18792.70 18496.48 19774.44 35294.91 17597.59 7375.52 31990.57 38493.44 6796.56 28297.84 180
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15395.20 9797.00 15891.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND94.88 10498.55 4586.72 15295.20 9798.22 3999.38 5593.44 6799.31 6998.53 120
MSP-MVS95.34 8094.63 11797.48 1498.67 3394.05 2396.41 4398.18 4491.26 12895.12 16495.15 22686.60 21999.50 2193.43 7096.81 27598.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20696.61 3297.97 8097.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8898.22 3992.36 8794.11 19498.07 4492.02 12299.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14595.21 9598.10 5791.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
test_241102_TWO98.10 5791.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19596.51 3597.94 8698.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9396.13 2694.74 18297.23 10591.33 13799.16 8393.25 7798.30 19298.46 125
K. test v393.37 15193.27 16193.66 15998.05 8482.62 22694.35 12786.62 35896.05 2997.51 4398.85 1276.59 31599.65 393.21 7898.20 20498.73 95
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16597.11 1998.24 3597.58 898.72 898.97 793.15 9699.15 8493.18 7999.74 1299.50 17
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7592.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 6092.67 8195.08 16896.39 16694.77 6099.42 3393.17 8099.44 5098.58 118
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 10192.59 8295.47 14296.68 14894.50 6899.42 3393.10 8299.26 8298.99 56
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11298.03 7290.82 13997.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20996.31 5097.53 11797.60 798.34 1997.52 8091.98 12499.63 693.08 8499.81 899.70 3
v2v48293.29 15393.63 14892.29 20896.35 19378.82 28991.77 23296.28 20388.45 18895.70 13396.26 17786.02 22598.90 11893.02 8598.81 14099.14 40
IU-MVS98.51 5086.66 15596.83 17372.74 36495.83 12393.00 8699.29 7498.64 111
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6395.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19696.54 3498.05 6798.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
FC-MVSNet-test95.32 8195.88 5993.62 16098.49 5781.77 23595.90 6998.32 2593.93 5697.53 4297.56 7588.48 18399.40 4692.91 8999.83 599.68 4
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18797.33 13490.05 15596.77 8096.85 13495.04 4898.56 17892.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2891.40 12695.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
CNVR-MVS94.58 11094.29 12695.46 8296.94 15189.35 9691.81 23096.80 17589.66 16293.90 20695.44 21692.80 10898.72 15192.74 9298.52 17198.32 132
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14898.02 7487.35 21096.22 10597.99 5294.48 7099.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SD-MVS95.19 8895.73 6793.55 16396.62 17388.88 10794.67 11498.05 6791.26 12897.25 5896.40 16295.42 2894.36 36392.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
EU-MVSNet87.39 30086.71 30489.44 29893.40 31176.11 32894.93 10890.00 33457.17 40295.71 13297.37 9064.77 36597.68 26492.67 9594.37 33494.52 333
lessismore_v093.87 15198.05 8483.77 21080.32 39697.13 6097.91 5877.49 30099.11 9292.62 9698.08 21398.74 94
Anonymous2024052192.86 17093.57 15290.74 26796.57 17575.50 33594.15 13695.60 22989.38 16795.90 12097.90 6080.39 27997.96 23492.60 9799.68 1898.75 91
MVS_Test92.57 18093.29 15890.40 27893.53 31075.85 33192.52 19196.96 16188.73 18192.35 26196.70 14790.77 15398.37 20092.53 9895.49 30596.99 237
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25687.06 14296.63 3197.28 14091.82 11094.34 19397.41 8790.60 16098.65 16792.47 9998.11 21097.70 194
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8398.56 1591.84 10796.36 9496.68 14894.37 7299.32 6992.41 10099.05 10698.64 111
V4293.43 15093.58 15192.97 18295.34 26281.22 24492.67 18596.49 19687.25 21296.20 10796.37 16887.32 20398.85 12792.39 10198.21 20298.85 81
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16696.25 20483.23 21692.66 18698.19 4293.06 7597.49 4497.15 11294.78 5998.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HPM-MVS++copyleft95.02 9294.39 12196.91 3797.88 9893.58 3794.09 14096.99 16091.05 13492.40 25895.22 22591.03 14999.25 7592.11 10398.69 15397.90 172
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17798.07 6393.46 6796.31 9795.97 19190.14 16799.34 6392.11 10399.64 2499.16 38
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19598.13 5390.69 14293.75 20896.25 17898.03 297.02 29992.08 10595.55 30398.45 126
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 9098.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
tttt051789.81 24888.90 25792.55 20397.00 14879.73 27095.03 10483.65 38289.88 15895.30 15394.79 24353.64 39399.39 4991.99 10898.79 14298.54 119
EI-MVSNet92.99 16493.26 16292.19 21292.12 34079.21 28292.32 20494.67 26591.77 11395.24 15995.85 19487.14 20798.49 18591.99 10898.26 19598.86 78
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9992.73 7893.48 21696.72 14694.23 7399.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
IterMVS-LS93.78 14294.28 12792.27 20996.27 20179.21 28291.87 22696.78 17691.77 11396.57 8997.07 11987.15 20698.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT91.65 19991.55 19991.94 22193.89 30379.22 28187.56 32993.51 28691.53 12395.37 14996.62 15178.65 29098.90 11891.89 11294.95 32097.70 194
EGC-MVSNET80.97 35775.73 37396.67 4298.85 2494.55 1596.83 2396.60 1872.44 4085.32 40998.25 3792.24 11798.02 22891.85 11399.21 9097.45 210
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28693.73 27993.52 8399.55 1891.81 11499.45 4797.58 201
LS3D96.11 4795.83 6396.95 3694.75 27894.20 1997.34 1397.98 7897.31 1195.32 15296.77 13893.08 9999.20 8091.79 11598.16 20697.44 212
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 16098.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
FIs94.90 9795.35 8393.55 16398.28 6881.76 23695.33 9098.14 5293.05 7697.07 6297.18 11087.65 19799.29 7091.72 11799.69 1499.61 11
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9390.91 7096.42 4297.95 8396.69 1791.78 27398.85 1291.77 12895.49 34391.72 11799.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
baseline94.26 12494.80 10592.64 19696.08 21880.99 24793.69 15498.04 7190.80 14094.89 17696.32 17193.19 9498.48 18991.68 11998.51 17398.43 127
alignmvs93.26 15592.85 16894.50 12595.70 24387.45 13393.45 16195.76 22491.58 12095.25 15892.42 31381.96 26598.72 15191.61 12097.87 22997.33 221
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20997.84 9194.91 4096.80 7895.78 20190.42 16299.41 3991.60 12199.58 3499.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18997.81 9493.99 5396.80 7895.90 19290.10 17099.41 3991.60 12199.58 3499.26 30
EG-PatchMatch MVS94.54 11294.67 11594.14 13897.87 10086.50 15792.00 21796.74 18088.16 19596.93 7297.61 7293.04 10197.90 23791.60 12198.12 20998.03 157
MGCFI-Net94.44 11594.67 11593.75 15695.56 25385.47 18695.25 9498.24 3591.53 12395.04 16992.21 31594.94 5598.54 18191.56 12497.66 24097.24 225
test_040295.73 6196.22 4094.26 13598.19 7585.77 17993.24 16797.24 14296.88 1697.69 3397.77 6494.12 7599.13 8891.54 12599.29 7497.88 175
sasdasda94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
XVG-OURS94.72 10394.12 13396.50 4798.00 9094.23 1891.48 23698.17 4890.72 14195.30 15396.47 15787.94 19496.98 30091.41 12897.61 24398.30 135
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8896.10 2798.14 2499.28 397.94 398.21 21191.38 12999.69 1499.42 19
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12498.05 6790.45 14996.31 9796.76 14092.91 10498.72 15191.19 13099.42 5298.32 132
test_fmvs1_n88.73 27588.38 26589.76 29392.06 34282.53 22792.30 20796.59 18971.14 37192.58 25095.41 22068.55 34389.57 39291.12 13195.66 30197.18 229
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11792.42 8493.41 21797.78 6291.21 14297.77 25591.06 13297.06 26398.80 85
h-mvs3392.89 16791.99 19095.58 7796.97 14990.55 7693.94 14694.01 27989.23 17093.95 20396.19 18076.88 31199.14 8691.02 13395.71 30097.04 235
hse-mvs292.24 19091.20 20995.38 8396.16 21090.65 7592.52 19192.01 31889.23 17093.95 20392.99 29776.88 31198.69 16091.02 13396.03 29296.81 245
casdiffmvspermissive94.32 12294.80 10592.85 18996.05 22081.44 24192.35 20298.05 6791.53 12395.75 12896.80 13793.35 8998.49 18591.01 13598.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE94.55 11194.68 11494.15 13797.23 13885.11 19194.14 13897.34 13388.71 18395.26 15695.50 21394.65 6399.12 9090.94 13698.40 17998.23 138
c3_l91.32 20891.42 20491.00 25892.29 33376.79 32187.52 33296.42 19985.76 23594.72 18493.89 27582.73 25698.16 21790.93 13798.55 16798.04 154
iter_conf0588.94 26888.09 27991.50 23892.74 32476.97 31892.80 18095.92 22082.82 28293.65 21295.37 22349.41 39799.13 8890.82 13899.28 7998.40 129
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 15197.86 8895.96 3297.48 4697.14 11395.33 3499.44 2990.79 13999.76 1099.38 22
test_vis1_n89.01 26489.01 25389.03 30692.57 32782.46 22992.62 18896.06 21473.02 36290.40 29695.77 20274.86 32189.68 39090.78 14094.98 31994.95 317
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11598.16 298.94 299.33 297.84 499.08 9390.73 14199.73 1399.59 13
9.1494.81 10497.49 12694.11 13998.37 2187.56 20995.38 14796.03 18894.66 6299.08 9390.70 14298.97 119
diffmvspermissive91.74 19791.93 19291.15 25393.06 31778.17 29788.77 31497.51 12086.28 22392.42 25793.96 27288.04 19197.46 27590.69 14396.67 28097.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs187.59 29587.27 29188.54 31688.32 39081.26 24390.43 26595.72 22670.55 37791.70 27494.63 24868.13 34489.42 39390.59 14495.34 31194.94 321
dcpmvs_293.96 13695.01 9990.82 26597.60 11974.04 34793.68 15598.85 889.80 16097.82 2997.01 12591.14 14799.21 7890.56 14598.59 16499.19 36
MVSTER89.32 25688.75 25991.03 25590.10 37576.62 32390.85 24994.67 26582.27 28995.24 15995.79 19861.09 38098.49 18590.49 14698.26 19597.97 166
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12497.64 10696.94 1596.58 8897.32 10093.07 10098.72 15190.45 14798.84 13297.57 202
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13298.08 6089.46 16596.61 8796.47 15795.85 1899.12 9090.45 14799.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVS_111021_LR93.66 14493.28 16094.80 10796.25 20490.95 6990.21 27195.43 24187.91 19793.74 21094.40 25592.88 10696.38 32390.39 14998.28 19397.07 231
ANet_high94.83 10096.28 3790.47 27496.65 16973.16 35294.33 12998.74 1296.39 2498.09 2598.93 893.37 8898.70 15890.38 15099.68 1899.53 15
DeepPCF-MVS90.46 694.20 12893.56 15396.14 5295.96 22792.96 4389.48 29497.46 12185.14 24996.23 10495.42 21793.19 9498.08 22290.37 15198.76 14597.38 219
MSLP-MVS++93.25 15793.88 13791.37 24196.34 19482.81 22593.11 17197.74 10189.37 16894.08 19695.29 22490.40 16496.35 32590.35 15298.25 19794.96 316
PM-MVS93.33 15292.67 17595.33 8696.58 17494.06 2192.26 20992.18 31185.92 23296.22 10596.61 15285.64 23095.99 33490.35 15298.23 19995.93 282
test_vis1_n_192089.45 25389.85 24188.28 32293.59 30976.71 32290.67 25697.78 9979.67 31290.30 29996.11 18476.62 31492.17 37890.31 15493.57 35195.96 280
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16990.30 15599.60 2798.72 96
DIV-MVS_self_test90.65 21990.56 22690.91 26291.85 34876.99 31686.75 34795.36 24485.52 24494.06 19894.89 23777.37 30497.99 23290.28 15698.97 11997.76 189
cl____90.65 21990.56 22690.91 26291.85 34876.98 31786.75 34795.36 24485.53 24294.06 19894.89 23777.36 30597.98 23390.27 15798.98 11497.76 189
PHI-MVS94.34 12193.80 14095.95 5995.65 24791.67 6294.82 11097.86 8887.86 20093.04 23594.16 26491.58 13298.78 14290.27 15798.96 12197.41 213
patch_mono-292.46 18292.72 17491.71 22996.65 16978.91 28788.85 31197.17 14683.89 26792.45 25596.76 14089.86 17497.09 29590.24 15998.59 16499.12 43
MVS_111021_HR93.63 14593.42 15794.26 13596.65 16986.96 14789.30 30196.23 20788.36 19193.57 21494.60 25093.45 8497.77 25590.23 16098.38 18398.03 157
NCCC94.08 13293.54 15495.70 7596.49 18389.90 8392.39 20196.91 16790.64 14492.33 26494.60 25090.58 16198.96 11190.21 16197.70 23798.23 138
pm-mvs195.43 7395.94 5593.93 14898.38 6285.08 19295.46 8797.12 15191.84 10797.28 5698.46 3095.30 3697.71 26290.17 16299.42 5298.99 56
RPMNet90.31 23490.14 23690.81 26691.01 36378.93 28492.52 19198.12 5491.91 10189.10 31796.89 13268.84 34299.41 3990.17 16292.70 36694.08 340
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 10197.37 12693.92 5897.65 3495.90 19290.10 17099.33 6890.11 16499.66 2199.26 30
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16499.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Baseline_NR-MVSNet94.47 11495.09 9792.60 20198.50 5680.82 25092.08 21396.68 18393.82 5996.29 9998.56 2490.10 17097.75 25890.10 16699.66 2199.24 32
v14892.87 16993.29 15891.62 23396.25 20477.72 30691.28 24195.05 25089.69 16195.93 11896.04 18787.34 20298.38 19690.05 16797.99 22198.78 87
MCST-MVS92.91 16692.51 17894.10 14097.52 12485.72 18191.36 24097.13 15080.33 30692.91 24094.24 26091.23 14198.72 15189.99 16897.93 22697.86 177
miper_lstm_enhance89.90 24689.80 24290.19 28691.37 35977.50 30883.82 38395.00 25284.84 25793.05 23494.96 23576.53 31695.20 35289.96 16998.67 15797.86 177
ambc92.98 18196.88 15583.01 22295.92 6896.38 20196.41 9297.48 8588.26 18697.80 25089.96 16998.93 12498.12 149
CPTT-MVS94.74 10294.12 13396.60 4398.15 7793.01 4295.84 7197.66 10589.21 17393.28 22395.46 21488.89 18198.98 10689.80 17198.82 13897.80 185
miper_ehance_all_eth90.48 22390.42 22990.69 26891.62 35576.57 32486.83 34596.18 21183.38 27094.06 19892.66 30782.20 26198.04 22489.79 17297.02 26597.45 210
eth_miper_zixun_eth90.72 21690.61 22491.05 25492.04 34376.84 32086.91 34296.67 18485.21 24794.41 18993.92 27379.53 28498.26 20889.76 17397.02 26598.06 151
VPA-MVSNet95.14 8995.67 7093.58 16297.76 10583.15 21994.58 11997.58 11293.39 6897.05 6598.04 4793.25 9298.51 18489.75 17499.59 2999.08 48
DELS-MVS92.05 19392.16 18491.72 22894.44 28880.13 25687.62 32697.25 14187.34 21192.22 26693.18 29489.54 17798.73 15089.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest053088.69 27687.52 28792.20 21196.33 19579.36 27792.81 17984.01 38186.44 22193.67 21192.68 30653.62 39499.25 7589.65 17698.45 17798.00 159
DeepC-MVS_fast89.96 793.73 14393.44 15694.60 12096.14 21387.90 12693.36 16597.14 14885.53 24293.90 20695.45 21591.30 13998.59 17489.51 17798.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet92.38 18591.99 19093.52 16893.82 30683.46 21291.14 24397.00 15889.81 15986.47 35494.04 26787.90 19599.21 7889.50 17898.27 19497.90 172
TSAR-MVS + GP.93.07 16392.41 18195.06 9995.82 23690.87 7290.97 24792.61 30688.04 19694.61 18593.79 27888.08 18997.81 24989.41 17998.39 18296.50 257
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11797.81 9489.22 17295.46 14496.17 18393.42 8799.34 6389.30 18298.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
xiu_mvs_v1_base_debu91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base_debi91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
HQP_MVS94.26 12493.93 13695.23 9397.71 11188.12 12294.56 12197.81 9491.74 11593.31 22095.59 20886.93 21198.95 11489.26 18698.51 17398.60 116
plane_prior597.81 9498.95 11489.26 18698.51 17398.60 116
Patchmatch-RL test88.81 27288.52 26189.69 29695.33 26379.94 26386.22 35992.71 30278.46 32695.80 12494.18 26366.25 35795.33 34989.22 18898.53 17093.78 349
PatchT87.51 29788.17 27785.55 35490.64 36666.91 38192.02 21686.09 36292.20 9389.05 31997.16 11164.15 36796.37 32489.21 18992.98 36493.37 359
test_f86.65 31387.13 29685.19 35890.28 37386.11 17186.52 35591.66 32169.76 38195.73 13197.21 10969.51 34181.28 40489.15 19094.40 33288.17 390
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10597.57 11392.68 7996.20 10793.44 28791.92 12598.78 14289.11 19199.24 8596.92 239
KD-MVS_self_test94.10 13194.73 11092.19 21297.66 11779.49 27594.86 10997.12 15189.59 16496.87 7497.65 6990.40 16498.34 20189.08 19299.35 6198.75 91
test_vis3_rt90.40 22690.03 23791.52 23792.58 32688.95 10390.38 26697.72 10373.30 35997.79 3097.51 8377.05 30787.10 39789.03 19394.89 32198.50 121
cl2289.02 26288.50 26290.59 27289.76 37776.45 32586.62 35294.03 27682.98 28092.65 24792.49 30872.05 33297.53 27088.93 19497.02 26597.78 187
VDD-MVS94.37 11894.37 12394.40 13197.49 12686.07 17293.97 14593.28 29094.49 4596.24 10397.78 6287.99 19398.79 13988.92 19599.14 9998.34 131
AUN-MVS90.05 24388.30 26895.32 8896.09 21790.52 7792.42 19992.05 31782.08 29288.45 33292.86 29965.76 35998.69 16088.91 19696.07 29196.75 249
TransMVSNet (Re)95.27 8796.04 5292.97 18298.37 6481.92 23495.07 10296.76 17993.97 5597.77 3198.57 2395.72 2097.90 23788.89 19799.23 8699.08 48
CR-MVSNet87.89 28687.12 29790.22 28391.01 36378.93 28492.52 19192.81 29873.08 36189.10 31796.93 12967.11 34997.64 26788.80 19892.70 36694.08 340
CVMVSNet85.16 32284.72 32086.48 34592.12 34070.19 36892.32 20488.17 34456.15 40390.64 29295.85 19467.97 34796.69 31388.78 19990.52 38292.56 369
FMVSNet194.84 9995.13 9493.97 14497.60 11984.29 19995.99 6396.56 19192.38 8597.03 6698.53 2690.12 16898.98 10688.78 19999.16 9798.65 106
ZD-MVS97.23 13890.32 7897.54 11584.40 26294.78 18095.79 19892.76 10999.39 4988.72 20198.40 179
train_agg92.71 17591.83 19595.35 8496.45 18689.46 9090.60 25896.92 16579.37 31590.49 29394.39 25691.20 14398.88 12188.66 20298.43 17897.72 193
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17495.19 9996.77 17896.64 1997.61 3898.05 4593.23 9398.79 13988.60 20399.04 11198.78 87
test111190.39 22890.61 22489.74 29498.04 8771.50 36395.59 8079.72 39889.41 16695.94 11798.14 3970.79 33798.81 13588.52 20499.32 6898.90 74
test_prior290.21 27189.33 16990.77 28994.81 24090.41 16388.21 20598.55 167
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10693.38 6995.89 12197.23 10593.35 8997.66 26588.20 20698.66 15997.79 186
D2MVS89.93 24589.60 24790.92 26094.03 29878.40 29488.69 31694.85 25678.96 32393.08 23295.09 23074.57 32296.94 30288.19 20798.96 12197.41 213
IS-MVSNet94.49 11394.35 12594.92 10298.25 7286.46 16097.13 1894.31 27096.24 2596.28 10196.36 16982.88 25299.35 6088.19 20799.52 4198.96 64
test9_res88.16 20998.40 17997.83 181
UGNet93.08 16192.50 17994.79 10893.87 30487.99 12595.07 10294.26 27390.64 14487.33 35097.67 6886.89 21398.49 18588.10 21098.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
test250685.42 32084.57 32387.96 32797.81 10266.53 38496.14 5856.35 41189.04 17493.55 21598.10 4242.88 40998.68 16288.09 21199.18 9498.67 104
test_cas_vis1_n_192088.25 28288.27 27188.20 32492.19 33878.92 28689.45 29595.44 23975.29 34993.23 22895.65 20771.58 33490.23 38888.05 21293.55 35395.44 303
FA-MVS(test-final)91.81 19691.85 19491.68 23194.95 26979.99 26296.00 6293.44 28887.80 20194.02 20197.29 10177.60 29998.45 19188.04 21397.49 24796.61 251
ETV-MVS92.99 16492.74 17193.72 15895.86 23386.30 16692.33 20397.84 9191.70 11892.81 24186.17 38292.22 11899.19 8188.03 21497.73 23495.66 296
EIA-MVS92.35 18692.03 18893.30 17595.81 23883.97 20792.80 18098.17 4887.71 20489.79 31087.56 37291.17 14699.18 8287.97 21597.27 25696.77 247
mvs_anonymous90.37 23091.30 20887.58 33292.17 33968.00 37789.84 28494.73 26283.82 26893.22 22997.40 8887.54 19997.40 28087.94 21695.05 31897.34 220
IterMVS90.18 23590.16 23390.21 28493.15 31575.98 33087.56 32992.97 29686.43 22294.09 19596.40 16278.32 29497.43 27787.87 21794.69 32897.23 226
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
miper_enhance_ethall88.42 27987.87 28290.07 28788.67 38975.52 33485.10 37095.59 23375.68 34292.49 25289.45 35778.96 28797.88 24187.86 21897.02 26596.81 245
ET-MVSNet_ETH3D86.15 31584.27 32691.79 22593.04 31881.28 24287.17 33786.14 36179.57 31383.65 37588.66 36357.10 38698.18 21587.74 21995.40 30895.90 285
Effi-MVS+-dtu93.90 14092.60 17797.77 394.74 27996.67 594.00 14295.41 24289.94 15691.93 27292.13 31890.12 16898.97 11087.68 22097.48 24897.67 197
SDMVSNet94.43 11695.02 9892.69 19497.93 9582.88 22491.92 22295.99 21993.65 6595.51 13998.63 2094.60 6596.48 31887.57 22199.35 6198.70 100
WR-MVS93.49 14893.72 14392.80 19197.57 12280.03 26090.14 27495.68 22793.70 6196.62 8695.39 22187.21 20599.04 10187.50 22299.64 2499.33 26
tfpnnormal94.27 12394.87 10392.48 20597.71 11180.88 24994.55 12395.41 24293.70 6196.67 8497.72 6591.40 13698.18 21587.45 22399.18 9498.36 130
jason89.17 25888.32 26691.70 23095.73 24280.07 25788.10 32293.22 29171.98 36790.09 30192.79 30278.53 29398.56 17887.43 22497.06 26396.46 259
jason: jason.
Effi-MVS+92.79 17192.74 17192.94 18595.10 26683.30 21494.00 14297.53 11791.36 12789.35 31690.65 34394.01 7798.66 16487.40 22595.30 31296.88 243
FMVSNet292.78 17292.73 17392.95 18495.40 25881.98 23394.18 13595.53 23788.63 18496.05 11397.37 9081.31 27198.81 13587.38 22698.67 15798.06 151
EPP-MVSNet93.91 13993.68 14694.59 12198.08 8185.55 18597.44 1294.03 27694.22 5094.94 17396.19 18082.07 26399.57 1487.28 22798.89 12598.65 106
PC_three_145275.31 34895.87 12295.75 20392.93 10396.34 32787.18 22898.68 15598.04 154
ECVR-MVScopyleft90.12 23890.16 23390.00 29097.81 10272.68 35795.76 7478.54 40189.04 17495.36 15098.10 4270.51 33898.64 16887.10 22999.18 9498.67 104
VDDNet94.03 13394.27 12993.31 17498.87 2182.36 23095.51 8691.78 32097.19 1296.32 9698.60 2284.24 24098.75 14687.09 23098.83 13798.81 84
agg_prior287.06 23198.36 18897.98 163
LF4IMVS92.72 17492.02 18994.84 10695.65 24791.99 5492.92 17696.60 18785.08 25292.44 25693.62 28286.80 21496.35 32586.81 23298.25 19796.18 271
GBi-Net93.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
test193.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
FMVSNet390.78 21590.32 23292.16 21693.03 31979.92 26492.54 19094.95 25486.17 22895.10 16596.01 18969.97 34098.75 14686.74 23398.38 18397.82 183
lupinMVS88.34 28187.31 28991.45 23994.74 27980.06 25887.23 33492.27 31071.10 37288.83 32091.15 33277.02 30898.53 18286.67 23696.75 27895.76 290
OMC-MVS94.22 12793.69 14595.81 6997.25 13791.27 6492.27 20897.40 12587.10 21694.56 18695.42 21793.74 7998.11 22086.62 23798.85 13198.06 151
mvsany_test389.11 26088.21 27691.83 22391.30 36090.25 7988.09 32378.76 39976.37 34096.43 9198.39 3383.79 24390.43 38786.57 23894.20 33994.80 325
pmmvs-eth3d91.54 20290.73 22293.99 14295.76 24187.86 12890.83 25093.98 28078.23 32894.02 20196.22 17982.62 25996.83 30986.57 23898.33 18997.29 223
BP-MVS86.55 240
HQP-MVS92.09 19291.49 20393.88 15096.36 19084.89 19391.37 23797.31 13587.16 21388.81 32293.40 28884.76 23798.60 17286.55 24097.73 23498.14 147
ppachtmachnet_test88.61 27788.64 26088.50 31891.76 35070.99 36684.59 37692.98 29579.30 32092.38 25993.53 28679.57 28397.45 27686.50 24297.17 26097.07 231
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 17093.73 6097.87 2898.49 2990.73 15799.05 9886.43 24399.60 2799.10 47
PVSNet_Blended_VisFu91.63 20091.20 20992.94 18597.73 10983.95 20892.14 21297.46 12178.85 32592.35 26194.98 23484.16 24199.08 9386.36 24496.77 27795.79 289
Fast-Effi-MVS+-dtu92.77 17392.16 18494.58 12394.66 28488.25 12092.05 21496.65 18589.62 16390.08 30291.23 33192.56 11298.60 17286.30 24596.27 28996.90 240
OPU-MVS95.15 9796.84 15989.43 9295.21 9595.66 20693.12 9798.06 22386.28 24698.61 16197.95 167
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22396.47 2293.40 21997.46 8695.31 3595.47 34486.18 24798.78 14389.11 386
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
OpenMVScopyleft89.45 892.27 18992.13 18792.68 19594.53 28784.10 20595.70 7597.03 15682.44 28891.14 28496.42 16088.47 18498.38 19685.95 24897.47 24995.55 301
Syy-MVS84.81 32584.93 31984.42 36591.71 35263.36 39985.89 36281.49 38981.03 29985.13 36281.64 39877.44 30195.00 35385.94 24994.12 34294.91 322
CDPH-MVS92.67 17691.83 19595.18 9696.94 15188.46 11890.70 25597.07 15477.38 33292.34 26395.08 23192.67 11198.88 12185.74 25098.57 16698.20 141
SSC-MVS90.16 23692.96 16481.78 37797.88 9848.48 40990.75 25287.69 35096.02 3196.70 8297.63 7185.60 23197.80 25085.73 25198.60 16399.06 50
CANet_DTU89.85 24789.17 24991.87 22292.20 33780.02 26190.79 25195.87 22286.02 23082.53 38591.77 32480.01 28198.57 17785.66 25297.70 23797.01 236
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19491.93 10094.82 17895.39 22191.99 12397.08 29685.53 25397.96 22497.41 213
new-patchmatchnet88.97 26690.79 22083.50 37294.28 29255.83 40785.34 36993.56 28586.18 22795.47 14295.73 20483.10 24996.51 31785.40 25498.06 21498.16 145
iter_conf05_1188.91 26988.32 26690.66 26993.95 30178.09 29886.98 33993.06 29479.35 31887.64 34489.80 34880.25 28098.96 11185.18 25598.69 15394.95 317
bld_raw_dy_0_6490.86 21290.99 21490.47 27493.95 30177.88 30393.99 14498.93 777.75 33097.03 6690.61 34481.82 26898.58 17685.18 25599.61 2694.95 317
EPNet89.80 24988.25 27294.45 12983.91 40786.18 16993.87 14787.07 35691.16 13380.64 39594.72 24578.83 28898.89 12085.17 25798.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmtry90.11 23989.92 23990.66 26990.35 37277.00 31592.96 17592.81 29890.25 15394.74 18296.93 12967.11 34997.52 27185.17 25798.98 11497.46 209
旧先验290.00 27968.65 38592.71 24696.52 31685.15 259
MDA-MVSNet-bldmvs91.04 21090.88 21691.55 23594.68 28380.16 25385.49 36792.14 31490.41 15194.93 17495.79 19885.10 23496.93 30485.15 25994.19 34197.57 202
Anonymous20240521192.58 17892.50 17992.83 19096.55 17783.22 21792.43 19891.64 32294.10 5295.59 13696.64 15081.88 26797.50 27285.12 26198.52 17197.77 188
AllTest94.88 9894.51 11996.00 5698.02 8892.17 5095.26 9398.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
VPNet93.08 16193.76 14291.03 25598.60 3975.83 33391.51 23595.62 22891.84 10795.74 12997.10 11889.31 17898.32 20285.07 26499.06 10398.93 68
LFMVS91.33 20791.16 21291.82 22496.27 20179.36 27795.01 10585.61 36996.04 3094.82 17897.06 12072.03 33398.46 19084.96 26598.70 15297.65 198
VNet92.67 17692.96 16491.79 22596.27 20180.15 25491.95 21894.98 25392.19 9494.52 18896.07 18687.43 20197.39 28184.83 26698.38 18397.83 181
our_test_387.55 29687.59 28687.44 33491.76 35070.48 36783.83 38290.55 33279.79 30992.06 27092.17 31778.63 29295.63 33984.77 26794.73 32696.22 269
TAPA-MVS88.58 1092.49 18191.75 19794.73 11096.50 18289.69 8692.91 17797.68 10478.02 32992.79 24394.10 26590.85 15197.96 23484.76 26898.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
Fast-Effi-MVS+91.28 20990.86 21792.53 20495.45 25782.53 22789.25 30496.52 19585.00 25389.91 30688.55 36692.94 10298.84 12884.72 26995.44 30796.22 269
GA-MVS87.70 29086.82 30190.31 27993.27 31377.22 31384.72 37592.79 30085.11 25189.82 30890.07 34566.80 35297.76 25784.56 27094.27 33795.96 280
QAPM92.88 16892.77 16993.22 17795.82 23683.31 21396.45 3997.35 13283.91 26693.75 20896.77 13889.25 17998.88 12184.56 27097.02 26597.49 208
UnsupCasMVSNet_eth90.33 23290.34 23190.28 28094.64 28580.24 25289.69 28995.88 22185.77 23493.94 20595.69 20581.99 26492.98 37584.21 27291.30 37797.62 199
testing383.66 33482.52 33987.08 33695.84 23465.84 38989.80 28677.17 40588.17 19490.84 28888.63 36430.95 41398.11 22084.05 27397.19 25997.28 224
CLD-MVS91.82 19591.41 20593.04 17996.37 18883.65 21186.82 34697.29 13884.65 25992.27 26589.67 35492.20 12097.85 24783.95 27499.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
114514_t90.51 22289.80 24292.63 19898.00 9082.24 23193.40 16397.29 13865.84 39389.40 31594.80 24286.99 20998.75 14683.88 27598.61 16196.89 241
DP-MVS Recon92.31 18791.88 19393.60 16197.18 14286.87 14891.10 24597.37 12684.92 25592.08 26994.08 26688.59 18298.20 21283.50 27698.14 20895.73 291
YYNet188.17 28388.24 27387.93 32892.21 33673.62 34980.75 39288.77 33782.51 28794.99 17295.11 22982.70 25793.70 36883.33 27793.83 34796.48 258
MDA-MVSNet_test_wron88.16 28488.23 27487.93 32892.22 33573.71 34880.71 39388.84 33682.52 28694.88 17795.14 22782.70 25793.61 36983.28 27893.80 34896.46 259
XXY-MVS92.58 17893.16 16390.84 26497.75 10679.84 26591.87 22696.22 20985.94 23195.53 13897.68 6692.69 11094.48 35983.21 27997.51 24698.21 140
cascas87.02 31086.28 31289.25 30491.56 35776.45 32584.33 37996.78 17671.01 37386.89 35385.91 38381.35 27096.94 30283.09 28095.60 30294.35 337
test-LLR83.58 33583.17 33484.79 36289.68 37966.86 38283.08 38484.52 37883.07 27882.85 38284.78 39062.86 37493.49 37082.85 28194.86 32294.03 343
test-mter81.21 35580.01 36284.79 36289.68 37966.86 38283.08 38484.52 37873.85 35682.85 38284.78 39043.66 40693.49 37082.85 28194.86 32294.03 343
pmmvs488.95 26787.70 28592.70 19394.30 29185.60 18487.22 33592.16 31374.62 35189.75 31294.19 26277.97 29796.41 32182.71 28396.36 28796.09 274
testdata91.03 25596.87 15682.01 23294.28 27271.55 36892.46 25495.42 21785.65 22997.38 28382.64 28497.27 25693.70 352
thisisatest051584.72 32682.99 33689.90 29192.96 32175.33 33684.36 37883.42 38377.37 33388.27 33586.65 37753.94 39298.72 15182.56 28597.40 25395.67 295
PS-MVSNAJ88.86 27188.99 25488.48 31994.88 27074.71 33786.69 34995.60 22980.88 30287.83 34187.37 37590.77 15398.82 13082.52 28694.37 33491.93 374
xiu_mvs_v2_base89.00 26589.19 24888.46 32094.86 27274.63 33986.97 34095.60 22980.88 30287.83 34188.62 36591.04 14898.81 13582.51 28794.38 33391.93 374
WB-MVS89.44 25492.15 18681.32 37897.73 10948.22 41089.73 28787.98 34895.24 3696.05 11396.99 12685.18 23396.95 30182.45 28897.97 22398.78 87
PAPM_NR91.03 21190.81 21991.68 23196.73 16481.10 24693.72 15396.35 20288.19 19388.77 32692.12 31985.09 23597.25 28582.40 28993.90 34696.68 250
test_yl90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
DCV-MVSNet90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
DPM-MVS89.35 25588.40 26492.18 21596.13 21584.20 20386.96 34196.15 21375.40 34687.36 34991.55 32983.30 24798.01 22982.17 29296.62 28194.32 338
MG-MVS89.54 25189.80 24288.76 31194.88 27072.47 35989.60 29092.44 30985.82 23389.48 31495.98 19082.85 25497.74 26081.87 29395.27 31396.08 275
PatchmatchNetpermissive85.22 32184.64 32186.98 33889.51 38269.83 37390.52 26087.34 35478.87 32487.22 35192.74 30466.91 35196.53 31581.77 29486.88 39194.58 332
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TinyColmap92.00 19492.76 17089.71 29595.62 25077.02 31490.72 25496.17 21287.70 20595.26 15696.29 17392.54 11396.45 32081.77 29498.77 14495.66 296
sd_testset93.94 13794.39 12192.61 20097.93 9583.24 21593.17 17095.04 25193.65 6595.51 13998.63 2094.49 6995.89 33681.72 29699.35 6198.70 100
test_vis1_rt85.58 31984.58 32288.60 31587.97 39186.76 15085.45 36893.59 28366.43 39087.64 34489.20 36079.33 28585.38 40181.59 29789.98 38593.66 353
原ACMM192.87 18896.91 15484.22 20297.01 15776.84 33889.64 31394.46 25488.00 19298.70 15881.53 29898.01 22095.70 294
1112_ss88.42 27987.41 28891.45 23996.69 16680.99 24789.72 28896.72 18173.37 35887.00 35290.69 34177.38 30398.20 21281.38 29993.72 34995.15 309
MS-PatchMatch88.05 28587.75 28388.95 30793.28 31277.93 30087.88 32592.49 30875.42 34592.57 25193.59 28480.44 27894.24 36681.28 30092.75 36594.69 331
LCM-MVSNet-Re94.20 12894.58 11893.04 17995.91 23183.13 22093.79 15099.19 392.00 9798.84 598.04 4793.64 8099.02 10381.28 30098.54 16996.96 238
tpmrst82.85 34382.93 33782.64 37487.65 39258.99 40590.14 27487.90 34975.54 34483.93 37491.63 32766.79 35495.36 34781.21 30281.54 40193.57 358
无先验89.94 28095.75 22570.81 37598.59 17481.17 30394.81 324
新几何193.17 17897.16 14387.29 13594.43 26867.95 38791.29 27994.94 23686.97 21098.23 21081.06 30497.75 23393.98 345
MSDG90.82 21390.67 22391.26 24794.16 29383.08 22186.63 35196.19 21090.60 14691.94 27191.89 32289.16 18095.75 33880.96 30594.51 33194.95 317
mvsany_test183.91 33382.93 33786.84 34286.18 40185.93 17481.11 39175.03 40670.80 37688.57 33194.63 24883.08 25087.38 39680.39 30686.57 39287.21 392
pmmvs587.87 28787.14 29590.07 28793.26 31476.97 31888.89 30992.18 31173.71 35788.36 33393.89 27576.86 31396.73 31280.32 30796.81 27596.51 254
PVSNet_BlendedMVS90.35 23189.96 23891.54 23694.81 27478.80 29190.14 27496.93 16379.43 31488.68 32995.06 23286.27 22298.15 21880.27 30898.04 21697.68 196
PVSNet_Blended88.74 27488.16 27890.46 27794.81 27478.80 29186.64 35096.93 16374.67 35088.68 32989.18 36186.27 22298.15 21880.27 30896.00 29394.44 335
testdata298.03 22580.24 310
FE-MVS89.06 26188.29 26991.36 24294.78 27679.57 27396.77 2890.99 32684.87 25692.96 23896.29 17360.69 38298.80 13880.18 31197.11 26295.71 292
F-COLMAP92.28 18891.06 21395.95 5997.52 12491.90 5693.53 15797.18 14583.98 26588.70 32894.04 26788.41 18598.55 18080.17 31295.99 29497.39 217
EPMVS81.17 35680.37 35883.58 37185.58 40365.08 39390.31 26971.34 40777.31 33485.80 35891.30 33059.38 38392.70 37679.99 31382.34 40092.96 365
TESTMET0.1,179.09 36878.04 37082.25 37587.52 39464.03 39783.08 38480.62 39570.28 37980.16 39683.22 39544.13 40490.56 38579.95 31493.36 35492.15 372
Test_1112_low_res87.50 29886.58 30590.25 28296.80 16377.75 30587.53 33196.25 20569.73 38286.47 35493.61 28375.67 31897.88 24179.95 31493.20 35895.11 313
CL-MVSNet_self_test90.04 24489.90 24090.47 27495.24 26477.81 30486.60 35392.62 30585.64 23893.25 22793.92 27383.84 24296.06 33279.93 31698.03 21797.53 206
OpenMVS_ROBcopyleft85.12 1689.52 25289.05 25190.92 26094.58 28681.21 24591.10 24593.41 28977.03 33693.41 21793.99 27183.23 24897.80 25079.93 31694.80 32593.74 351
CNLPA91.72 19891.20 20993.26 17696.17 20991.02 6791.14 24395.55 23690.16 15490.87 28793.56 28586.31 22194.40 36279.92 31897.12 26194.37 336
ab-mvs92.40 18492.62 17691.74 22797.02 14781.65 23795.84 7195.50 23886.95 21892.95 23997.56 7590.70 15897.50 27279.63 31997.43 25196.06 276
test_post190.21 2715.85 41065.36 36196.00 33379.61 320
SCA87.43 29987.21 29388.10 32692.01 34471.98 36189.43 29688.11 34682.26 29088.71 32792.83 30078.65 29097.59 26879.61 32093.30 35694.75 328
tpmvs84.22 33083.97 32884.94 36087.09 39765.18 39191.21 24288.35 34082.87 28185.21 36090.96 33665.24 36396.75 31179.60 32285.25 39492.90 366
baseline187.62 29487.31 28988.54 31694.71 28274.27 34593.10 17288.20 34386.20 22692.18 26793.04 29573.21 32795.52 34179.32 32385.82 39395.83 287
tpm84.38 32984.08 32785.30 35790.47 37063.43 39889.34 29985.63 36877.24 33587.62 34695.03 23361.00 38197.30 28479.26 32491.09 38095.16 308
BH-untuned90.68 21890.90 21590.05 28995.98 22679.57 27390.04 27794.94 25587.91 19794.07 19793.00 29687.76 19697.78 25479.19 32595.17 31592.80 367
API-MVS91.52 20391.61 19891.26 24794.16 29386.26 16794.66 11594.82 25891.17 13292.13 26891.08 33490.03 17397.06 29879.09 32697.35 25590.45 384
131486.46 31486.33 31186.87 34191.65 35474.54 34091.94 22094.10 27574.28 35384.78 36787.33 37683.03 25195.00 35378.72 32791.16 37991.06 381
BH-RMVSNet90.47 22490.44 22890.56 27395.21 26578.65 29389.15 30593.94 28188.21 19292.74 24594.22 26186.38 22097.88 24178.67 32895.39 30995.14 310
MVP-Stereo90.07 24288.92 25593.54 16596.31 19786.49 15890.93 24895.59 23379.80 30891.48 27695.59 20880.79 27697.39 28178.57 32991.19 37896.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MDTV_nov1_ep1383.88 33189.42 38361.52 40088.74 31587.41 35273.99 35584.96 36694.01 27065.25 36295.53 34078.02 33093.16 359
Vis-MVSNet (Re-imp)90.42 22590.16 23391.20 25197.66 11777.32 31194.33 12987.66 35191.20 13192.99 23695.13 22875.40 32098.28 20477.86 33199.19 9297.99 162
sss87.23 30386.82 30188.46 32093.96 29977.94 29986.84 34492.78 30177.59 33187.61 34791.83 32378.75 28991.92 37977.84 33294.20 33995.52 302
IB-MVS77.21 1983.11 33881.05 35089.29 30291.15 36175.85 33185.66 36686.00 36379.70 31182.02 38986.61 37848.26 39898.39 19377.84 33292.22 37193.63 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Patchmatch-test86.10 31686.01 31386.38 34990.63 36774.22 34689.57 29186.69 35785.73 23689.81 30992.83 30065.24 36391.04 38377.82 33495.78 29993.88 348
USDC89.02 26289.08 25088.84 31095.07 26774.50 34288.97 30796.39 20073.21 36093.27 22496.28 17582.16 26296.39 32277.55 33598.80 14195.62 299
CDS-MVSNet89.55 25088.22 27593.53 16695.37 26186.49 15889.26 30293.59 28379.76 31091.15 28392.31 31477.12 30698.38 19677.51 33697.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
N_pmnet88.90 27087.25 29293.83 15494.40 29093.81 3584.73 37387.09 35579.36 31793.26 22592.43 31279.29 28691.68 38077.50 33797.22 25896.00 278
AdaColmapbinary91.63 20091.36 20692.47 20695.56 25386.36 16492.24 21196.27 20488.88 18089.90 30792.69 30591.65 13198.32 20277.38 33897.64 24192.72 368
CostFormer83.09 33982.21 34285.73 35289.27 38467.01 38090.35 26786.47 35970.42 37883.52 37893.23 29361.18 37996.85 30877.21 33988.26 38993.34 360
E-PMN80.72 35980.86 35380.29 38185.11 40468.77 37572.96 39781.97 38787.76 20383.25 38183.01 39662.22 37789.17 39477.15 34094.31 33682.93 398
PLCcopyleft85.34 1590.40 22688.92 25594.85 10596.53 18190.02 8191.58 23496.48 19780.16 30786.14 35692.18 31685.73 22798.25 20976.87 34194.61 33096.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS90.32 23388.87 25894.66 11594.82 27391.85 5794.22 13494.75 26180.91 30187.52 34888.07 37086.63 21897.87 24476.67 34296.21 29094.25 339
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EPNet_dtu85.63 31884.37 32489.40 30086.30 40074.33 34491.64 23388.26 34184.84 25772.96 40489.85 34671.27 33697.69 26376.60 34397.62 24296.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testing9982.94 34181.72 34486.59 34392.55 32866.53 38486.08 36185.70 36685.47 24583.95 37385.70 38545.87 40097.07 29776.58 34493.56 35296.17 273
JIA-IIPM85.08 32383.04 33591.19 25287.56 39386.14 17089.40 29884.44 38088.98 17682.20 38697.95 5356.82 38896.15 32876.55 34583.45 39791.30 379
PatchMatch-RL89.18 25788.02 28192.64 19695.90 23292.87 4588.67 31891.06 32580.34 30590.03 30491.67 32683.34 24694.42 36176.35 34694.84 32490.64 383
testing9183.56 33682.45 34086.91 34092.92 32267.29 37886.33 35788.07 34786.22 22584.26 37185.76 38448.15 39997.17 29176.27 34794.08 34596.27 267
FMVSNet587.82 28986.56 30691.62 23392.31 33279.81 26893.49 15994.81 26083.26 27291.36 27896.93 12952.77 39597.49 27476.07 34898.03 21797.55 205
PMMVS83.00 34081.11 34988.66 31483.81 40886.44 16182.24 38885.65 36761.75 40082.07 38785.64 38679.75 28291.59 38175.99 34993.09 36187.94 391
CMPMVSbinary68.83 2287.28 30285.67 31692.09 21888.77 38885.42 18890.31 26994.38 26970.02 38088.00 33893.30 29073.78 32694.03 36775.96 35096.54 28396.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
EMVS80.35 36280.28 36080.54 38084.73 40669.07 37472.54 39980.73 39487.80 20181.66 39181.73 39762.89 37389.84 38975.79 35194.65 32982.71 399
HyFIR lowres test87.19 30685.51 31792.24 21097.12 14680.51 25185.03 37196.06 21466.11 39291.66 27592.98 29870.12 33999.14 8675.29 35295.23 31497.07 231
UnsupCasMVSNet_bld88.50 27888.03 28089.90 29195.52 25578.88 28887.39 33394.02 27879.32 31993.06 23394.02 26980.72 27794.27 36475.16 35393.08 36296.54 252
WTY-MVS86.93 31186.50 31088.24 32394.96 26874.64 33887.19 33692.07 31678.29 32788.32 33491.59 32878.06 29694.27 36474.88 35493.15 36095.80 288
WAC-MVS61.25 40174.55 355
KD-MVS_2432*160082.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
miper_refine_blended82.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
baseline283.38 33781.54 34788.90 30891.38 35872.84 35688.78 31381.22 39178.97 32279.82 39787.56 37261.73 37897.80 25074.30 35890.05 38496.05 277
testing1181.98 35080.52 35786.38 34992.69 32567.13 37985.79 36484.80 37782.16 29181.19 39485.41 38745.24 40196.88 30774.14 35993.24 35795.14 310
gm-plane-assit87.08 39859.33 40471.22 37083.58 39497.20 28873.95 360
test20.0390.80 21490.85 21890.63 27195.63 24979.24 28089.81 28592.87 29789.90 15794.39 19096.40 16285.77 22695.27 35173.86 36199.05 10697.39 217
TAMVS90.16 23689.05 25193.49 17096.49 18386.37 16390.34 26892.55 30780.84 30492.99 23694.57 25281.94 26698.20 21273.51 36298.21 20295.90 285
CHOSEN 1792x268887.19 30685.92 31591.00 25897.13 14579.41 27684.51 37795.60 22964.14 39690.07 30394.81 24078.26 29597.14 29473.34 36395.38 31096.46 259
thres600view787.66 29287.10 29889.36 30196.05 22073.17 35192.72 18285.31 37291.89 10293.29 22290.97 33563.42 37198.39 19373.23 36496.99 27096.51 254
dp79.28 36778.62 36781.24 37985.97 40256.45 40686.91 34285.26 37472.97 36381.45 39389.17 36256.01 39095.45 34573.19 36576.68 40391.82 377
pmmvs380.83 35878.96 36686.45 34687.23 39677.48 30984.87 37282.31 38663.83 39785.03 36489.50 35649.66 39693.10 37373.12 36695.10 31688.78 389
MDTV_nov1_ep13_2view42.48 41388.45 32067.22 38983.56 37766.80 35272.86 36794.06 342
TR-MVS87.70 29087.17 29489.27 30394.11 29579.26 27988.69 31691.86 31981.94 29390.69 29189.79 35182.82 25597.42 27872.65 36891.98 37491.14 380
PAPR87.65 29386.77 30390.27 28192.85 32377.38 31088.56 31996.23 20776.82 33984.98 36589.75 35386.08 22497.16 29372.33 36993.35 35596.26 268
Anonymous2023120688.77 27388.29 26990.20 28596.31 19778.81 29089.56 29293.49 28774.26 35492.38 25995.58 21182.21 26095.43 34672.07 37098.75 14796.34 263
MVS84.98 32484.30 32587.01 33791.03 36277.69 30791.94 22094.16 27459.36 40184.23 37287.50 37485.66 22896.80 31071.79 37193.05 36386.54 394
tpm cat180.61 36079.46 36384.07 36888.78 38765.06 39489.26 30288.23 34262.27 39981.90 39089.66 35562.70 37695.29 35071.72 37280.60 40291.86 376
HY-MVS82.50 1886.81 31285.93 31489.47 29793.63 30877.93 30094.02 14191.58 32375.68 34283.64 37693.64 28077.40 30297.42 27871.70 37392.07 37393.05 364
testgi90.38 22991.34 20787.50 33397.49 12671.54 36289.43 29695.16 24888.38 19094.54 18794.68 24792.88 10693.09 37471.60 37497.85 23097.88 175
BH-w/o87.21 30487.02 29987.79 33194.77 27777.27 31287.90 32493.21 29381.74 29489.99 30588.39 36883.47 24596.93 30471.29 37592.43 37089.15 385
thres100view90087.35 30186.89 30088.72 31296.14 21373.09 35393.00 17485.31 37292.13 9593.26 22590.96 33663.42 37198.28 20471.27 37696.54 28394.79 326
tfpn200view987.05 30986.52 30888.67 31395.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28394.79 326
thres40087.20 30586.52 30889.24 30595.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28396.51 254
myMVS_eth3d79.62 36678.26 36983.72 37091.71 35261.25 40185.89 36281.49 38981.03 29985.13 36281.64 39832.12 41295.00 35371.17 37994.12 34294.91 322
tpm281.46 35280.35 35984.80 36189.90 37665.14 39290.44 26285.36 37165.82 39482.05 38892.44 31157.94 38596.69 31370.71 38088.49 38892.56 369
ADS-MVSNet284.01 33282.20 34389.41 29989.04 38576.37 32787.57 32790.98 32772.71 36584.46 36892.45 30968.08 34596.48 31870.58 38183.97 39595.38 304
ADS-MVSNet82.25 34581.55 34684.34 36689.04 38565.30 39087.57 32785.13 37672.71 36584.46 36892.45 30968.08 34592.33 37770.58 38183.97 39595.38 304
PVSNet76.22 2082.89 34282.37 34184.48 36493.96 29964.38 39678.60 39588.61 33871.50 36984.43 37086.36 38174.27 32394.60 35869.87 38393.69 35094.46 334
CHOSEN 280x42080.04 36477.97 37186.23 35190.13 37474.53 34172.87 39889.59 33566.38 39176.29 40185.32 38856.96 38795.36 34769.49 38494.72 32788.79 388
thres20085.85 31785.18 31887.88 33094.44 28872.52 35889.08 30686.21 36088.57 18791.44 27788.40 36764.22 36698.00 23068.35 38595.88 29893.12 361
dmvs_re84.69 32783.94 32986.95 33992.24 33482.93 22389.51 29387.37 35384.38 26385.37 35985.08 38972.44 32986.59 39868.05 38691.03 38191.33 378
PCF-MVS84.52 1789.12 25987.71 28493.34 17396.06 21985.84 17786.58 35497.31 13568.46 38693.61 21393.89 27587.51 20098.52 18367.85 38798.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
new_pmnet81.22 35481.01 35281.86 37690.92 36570.15 36984.03 38080.25 39770.83 37485.97 35789.78 35267.93 34884.65 40267.44 38891.90 37590.78 382
gg-mvs-nofinetune82.10 34981.02 35185.34 35687.46 39571.04 36494.74 11267.56 40896.44 2379.43 39898.99 645.24 40196.15 32867.18 38992.17 37288.85 387
DSMNet-mixed82.21 34681.56 34584.16 36789.57 38170.00 37290.65 25777.66 40354.99 40483.30 38097.57 7477.89 29890.50 38666.86 39095.54 30491.97 373
test0.0.03 182.48 34481.47 34885.48 35589.70 37873.57 35084.73 37381.64 38883.07 27888.13 33786.61 37862.86 37489.10 39566.24 39190.29 38393.77 350
MIMVSNet87.13 30886.54 30788.89 30996.05 22076.11 32894.39 12688.51 33981.37 29788.27 33596.75 14272.38 33095.52 34165.71 39295.47 30695.03 314
UWE-MVS80.29 36379.10 36483.87 36991.97 34659.56 40386.50 35677.43 40475.40 34687.79 34388.10 36944.08 40596.90 30664.23 39396.36 28795.14 310
PMMVS281.31 35383.44 33274.92 38690.52 36946.49 41269.19 40085.23 37584.30 26487.95 34094.71 24676.95 31084.36 40364.07 39498.09 21293.89 347
FPMVS84.50 32883.28 33388.16 32596.32 19694.49 1685.76 36585.47 37083.09 27785.20 36194.26 25963.79 37086.58 39963.72 39591.88 37683.40 397
MVS-HIRNet78.83 36980.60 35673.51 38793.07 31647.37 41187.10 33878.00 40268.94 38477.53 40097.26 10271.45 33594.62 35763.28 39688.74 38778.55 402
WB-MVSnew84.20 33183.89 33085.16 35991.62 35566.15 38888.44 32181.00 39276.23 34187.98 33987.77 37184.98 23693.35 37262.85 39794.10 34495.98 279
testing22280.54 36178.53 36886.58 34492.54 33068.60 37686.24 35882.72 38583.78 26982.68 38484.24 39239.25 41195.94 33560.25 39895.09 31795.20 306
wuyk23d87.83 28890.79 22078.96 38390.46 37188.63 11092.72 18290.67 33191.65 11998.68 1197.64 7096.06 1577.53 40559.84 39999.41 5670.73 403
GG-mvs-BLEND83.24 37385.06 40571.03 36594.99 10765.55 40974.09 40375.51 40344.57 40394.46 36059.57 40087.54 39084.24 396
PVSNet_070.34 2174.58 37172.96 37479.47 38290.63 36766.24 38673.26 39683.40 38463.67 39878.02 39978.35 40272.53 32889.59 39156.68 40160.05 40682.57 400
ETVMVS79.85 36577.94 37285.59 35392.97 32066.20 38786.13 36080.99 39381.41 29683.52 37883.89 39341.81 41094.98 35656.47 40294.25 33895.61 300
MVEpermissive59.87 2373.86 37272.65 37577.47 38487.00 39974.35 34361.37 40260.93 41067.27 38869.69 40586.49 38081.24 27472.33 40656.45 40383.45 39785.74 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM81.91 35180.11 36187.31 33593.87 30472.32 36084.02 38193.22 29169.47 38376.13 40289.84 34772.15 33197.23 28653.27 40489.02 38692.37 371
test_method50.44 37348.94 37654.93 38839.68 41212.38 41528.59 40390.09 3336.82 40641.10 40878.41 40154.41 39170.69 40750.12 40551.26 40781.72 401
dmvs_testset78.23 37078.99 36575.94 38591.99 34555.34 40888.86 31078.70 40082.69 28381.64 39279.46 40075.93 31785.74 40048.78 40682.85 39986.76 393
tmp_tt37.97 37444.33 37718.88 39011.80 41321.54 41463.51 40145.66 4144.23 40751.34 40750.48 40559.08 38422.11 40944.50 40768.35 40513.00 405
DeepMVS_CXcopyleft53.83 38970.38 41164.56 39548.52 41333.01 40565.50 40674.21 40456.19 38946.64 40838.45 40870.07 40450.30 404
test1239.49 37612.01 3791.91 3912.87 4141.30 41682.38 3871.34 4161.36 4092.84 4106.56 4082.45 4140.97 4102.73 4095.56 4083.47 406
testmvs9.02 37711.42 3801.81 3922.77 4151.13 41779.44 3941.90 4151.18 4102.65 4116.80 4071.95 4150.87 4112.62 4103.45 4093.44 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.35 37531.13 3780.00 3930.00 4160.00 4180.00 40495.58 2350.00 4110.00 41291.15 33293.43 860.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.56 37810.09 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41190.77 1530.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.56 37810.08 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41290.69 3410.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
test_one_060198.26 7087.14 14098.18 4494.25 4896.99 7097.36 9395.13 43
eth-test20.00 416
eth-test0.00 416
test_241102_ONE98.51 5086.97 14598.10 5791.85 10497.63 3597.03 12296.48 1098.95 114
save fliter97.46 12988.05 12492.04 21597.08 15387.63 207
test072698.51 5086.69 15395.34 8998.18 4491.85 10497.63 3597.37 9095.58 24
GSMVS94.75 328
test_part298.21 7489.41 9396.72 81
sam_mvs166.64 35594.75 328
sam_mvs66.41 356
MTGPAbinary97.62 108
test_post6.07 40965.74 36095.84 337
patchmatchnet-post91.71 32566.22 35897.59 268
MTMP94.82 11054.62 412
TEST996.45 18689.46 9090.60 25896.92 16579.09 32190.49 29394.39 25691.31 13898.88 121
test_896.37 18889.14 10090.51 26196.89 16879.37 31590.42 29594.36 25891.20 14398.82 130
agg_prior96.20 20788.89 10696.88 16990.21 30098.78 142
test_prior489.91 8290.74 253
test_prior94.61 11795.95 22887.23 13797.36 13198.68 16297.93 169
新几何290.02 278
旧先验196.20 20784.17 20494.82 25895.57 21289.57 17697.89 22896.32 264
原ACMM289.34 299
test22296.95 15085.27 19088.83 31293.61 28265.09 39590.74 29094.85 23984.62 23997.36 25493.91 346
segment_acmp92.14 121
testdata188.96 30888.44 189
test1294.43 13095.95 22886.75 15196.24 20689.76 31189.79 17598.79 13997.95 22597.75 191
plane_prior797.71 11188.68 109
plane_prior697.21 14188.23 12186.93 211
plane_prior495.59 208
plane_prior388.43 11990.35 15293.31 220
plane_prior294.56 12191.74 115
plane_prior197.38 131
plane_prior88.12 12293.01 17388.98 17698.06 214
n20.00 417
nn0.00 417
door-mid92.13 315
test1196.65 185
door91.26 324
HQP5-MVS84.89 193
HQP-NCC96.36 19091.37 23787.16 21388.81 322
ACMP_Plane96.36 19091.37 23787.16 21388.81 322
HQP4-MVS88.81 32298.61 17098.15 146
HQP3-MVS97.31 13597.73 234
HQP2-MVS84.76 237
NP-MVS96.82 16187.10 14193.40 288
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 159