This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25599.72 3199.78 896.60 18799.67 26699.91 299.90 7099.94 7
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
MVS_030498.10 18197.88 19698.76 17198.82 25896.50 23597.90 18691.35 39199.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
test_fmvs1_n98.09 18498.28 15597.52 28999.68 5993.47 33098.63 9899.93 495.41 30399.68 3999.64 3291.88 30699.48 33199.82 899.87 7899.62 68
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 27599.78 2699.82 496.14 20498.63 38699.82 899.93 4499.95 6
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
MM98.91 14896.97 21997.89 18894.44 37499.54 2798.95 15799.14 13093.50 28299.92 5199.80 1299.96 2599.85 19
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27399.79 2599.57 4292.85 29499.42 34299.79 1399.84 8699.60 75
test_fmvs197.72 21397.94 19097.07 31298.66 29292.39 34797.68 21599.81 2395.20 30799.54 5699.44 7191.56 30899.41 34399.78 1599.77 12499.40 174
test_vis1_n_192098.40 15198.92 6996.81 32599.74 3890.76 37198.15 15299.91 798.33 13099.89 1599.55 4895.07 24499.88 8499.76 1699.93 4499.79 30
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38199.76 1699.56 21099.92 9
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23899.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35098.03 16899.85 1597.62 18699.96 499.62 3493.98 27599.74 23499.52 3199.86 8199.79 30
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24099.32 10399.18 11795.84 22399.84 13999.50 3299.91 6399.54 109
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25699.95 2399.45 3599.96 2599.88 14
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 37899.41 3798.29 33498.45 327
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21699.79 19999.33 3999.90 7099.51 121
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22299.91 6099.32 4099.95 3299.70 52
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 23999.97 499.31 4199.98 1299.73 45
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27899.97 499.26 4499.57 20799.43 159
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27499.94 3699.25 4699.96 2599.42 162
K. test v398.00 19097.66 21299.03 13199.79 2597.56 18699.19 4992.47 38599.62 2099.52 6299.66 2789.61 32099.96 1299.25 4699.81 10099.56 98
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26099.95 2399.11 5399.24 26799.82 25
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29799.93 4199.04 5999.84 8699.60 75
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
lessismore_v098.97 13999.73 3997.53 18886.71 39899.37 9099.52 5789.93 31899.92 5198.99 6399.72 14999.44 155
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 26699.96 499.81 598.18 7899.45 33798.97 6499.79 11599.83 22
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
mvs_anonymous97.83 20998.16 17096.87 32198.18 33591.89 35497.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34198.95 272
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35296.42 30199.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
test111196.49 28896.82 26095.52 35299.42 13687.08 38599.22 4287.14 39799.11 7299.46 7199.58 4188.69 32699.86 11098.80 7299.95 3299.62 68
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
test_vis1_rt97.75 21197.72 20797.83 25998.81 26196.35 23997.30 25399.69 3694.61 31897.87 27098.05 29996.26 20298.32 38998.74 7798.18 33898.82 290
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
test250692.39 35491.89 35793.89 36999.38 14182.28 39999.32 2366.03 40599.08 8498.77 19299.57 4266.26 40099.84 13998.71 8099.95 3299.54 109
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25498.71 8099.76 13599.33 203
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
iter_conf_final97.10 25796.65 27498.45 21398.53 30996.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38099.87 10198.68 8399.91 6399.40 174
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26699.93 4198.65 8598.83 31199.76 39
IterMVS-SCA-FT97.85 20698.18 16696.87 32199.27 16291.16 36795.53 33999.25 18799.10 7999.41 8099.35 8493.10 28799.96 1298.65 8599.94 4099.49 128
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS_Test98.18 17798.36 14597.67 27498.48 31394.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31098.57 9098.90 30998.71 308
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
UGNet98.53 13798.45 13198.79 16497.94 34696.96 22199.08 5998.54 29999.10 7996.82 33199.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
ECVR-MVScopyleft96.42 29096.61 27595.85 34499.38 14188.18 38199.22 4286.00 39999.08 8499.36 9299.57 4288.47 33199.82 16698.52 9499.95 3299.54 109
iter_conf0596.54 28496.07 29097.92 25397.90 34994.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39099.87 10198.50 9599.92 5599.40 174
IterMVS97.73 21298.11 17596.57 32999.24 16790.28 37295.52 34199.21 19698.86 10299.33 9799.33 9093.11 28699.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25498.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSTER96.86 27296.55 27997.79 26297.91 34894.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37299.80 18698.44 9899.82 9699.37 186
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29098.37 10199.85 8299.39 177
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25199.79 19998.34 10399.63 18499.34 198
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
pmmvs597.64 21997.49 22398.08 24499.14 19695.12 28096.70 28999.05 23393.77 33798.62 20898.83 20593.23 28399.75 22998.33 10599.76 13599.36 192
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
EU-MVSNet97.66 21898.50 12195.13 35899.63 7585.84 38898.35 13598.21 31398.23 14099.54 5699.46 6695.02 24599.68 26398.24 10799.87 7899.87 16
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 33799.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
alignmvs97.35 23896.88 25598.78 16798.54 30798.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33499.55 31398.18 11198.96 30498.70 311
Syy-MVS96.04 29995.56 30397.49 29297.10 37794.48 29896.18 31496.58 35695.65 29394.77 37492.29 39491.27 31099.36 34998.17 11298.05 34998.63 318
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25499.78 21098.13 11399.13 28499.31 209
h-mvs3397.77 21097.33 23499.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 32999.96 1298.11 11496.34 37699.49 128
hse-mvs297.46 23097.07 24598.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 32999.79 19998.11 11497.39 36098.81 294
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
canonicalmvs98.34 15898.26 15898.58 19498.46 31597.82 16998.96 7399.46 10499.19 6997.46 30195.46 37698.59 4999.46 33698.08 11798.71 31998.46 325
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
xiu_mvs_v1_base_debu97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
xiu_mvs_v1_base97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
xiu_mvs_v1_base_debi97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27099.82 16697.97 12599.80 11099.29 214
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30399.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 29699.42 7999.19 11497.27 14799.63 28897.89 12899.97 2099.20 231
Patchmatch-RL test97.26 24597.02 24897.99 25299.52 10495.53 26496.13 31699.71 3397.47 20299.27 10899.16 12384.30 35999.62 29097.89 12899.77 12498.81 294
VDDNet98.21 17497.95 18899.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31599.80 18697.88 13199.20 27399.48 138
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CANet97.87 20097.76 20298.19 23697.75 35495.51 26596.76 28599.05 23397.74 17796.93 32098.21 28695.59 22999.89 7597.86 13399.93 4499.19 236
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
tttt051795.64 31194.98 32097.64 27899.36 14893.81 32398.72 9090.47 39398.08 15698.67 20198.34 27673.88 39299.92 5197.77 13799.51 22499.20 231
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27099.86 11097.77 13799.69 16299.41 165
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27099.86 11097.77 13799.69 16299.41 165
FMVSNet397.50 22697.24 23798.29 22998.08 34195.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33599.81 17997.77 13799.69 16299.23 226
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29899.74 23497.76 14195.60 38499.34 198
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 32697.70 14299.73 14297.89 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PatchT96.65 28096.35 28397.54 28797.40 37095.32 27297.98 17796.64 35599.33 5096.89 32799.42 7484.32 35899.81 17997.69 14497.49 35697.48 369
mvsany_test197.60 22197.54 21997.77 26497.72 35595.35 27195.36 34697.13 34394.13 33199.71 3399.33 9097.93 9899.30 35997.60 14598.94 30698.67 316
D2MVS97.84 20797.84 19997.83 25999.14 19694.74 28996.94 27498.88 26095.84 28998.89 17098.96 17594.40 26499.69 25497.55 14699.95 3299.05 253
MSLP-MVS++98.02 18898.14 17397.64 27898.58 30295.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 38497.55 14699.41 24198.94 276
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22899.85 12297.54 14899.85 8299.59 81
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
RPMNet97.02 26496.93 25097.30 30197.71 35794.22 30398.11 15699.30 16799.37 4596.91 32399.34 8886.72 33799.87 10197.53 14997.36 36397.81 356
PMMVS298.07 18698.08 17998.04 24999.41 13894.59 29694.59 36899.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
LFMVS97.20 25196.72 26698.64 18298.72 27296.95 22298.93 7594.14 38099.74 698.78 18999.01 16284.45 35699.73 23997.44 15299.27 26299.25 221
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CHOSEN 280x42095.51 31595.47 30495.65 35098.25 33088.27 38093.25 38598.88 26093.53 34094.65 37697.15 34586.17 34299.93 4197.41 15499.93 4498.73 307
CR-MVSNet96.28 29495.95 29297.28 30297.71 35794.22 30398.11 15698.92 25492.31 35696.91 32399.37 8085.44 35099.81 17997.39 15597.36 36397.81 356
Anonymous20240521197.90 19597.50 22299.08 11998.90 24198.25 11998.53 11096.16 36198.87 10199.11 12998.86 19990.40 31699.78 21097.36 15699.31 25599.19 236
CANet_DTU97.26 24597.06 24697.84 25897.57 36294.65 29496.19 31398.79 27997.23 23395.14 37198.24 28393.22 28499.84 13997.34 15799.84 8699.04 257
Anonymous2023120698.21 17498.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 27898.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 31498.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
FMVSNet596.01 30095.20 31698.41 21897.53 36596.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39499.88 8497.27 16099.71 15499.25 221
our_test_397.39 23697.73 20696.34 33398.70 27989.78 37494.61 36798.97 24896.50 26599.04 14398.85 20295.98 21699.84 13997.26 16199.67 17399.41 165
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
jason97.45 23297.35 23297.76 26799.24 16793.93 31795.86 32898.42 30594.24 32898.50 22698.13 29094.82 25199.91 6097.22 16399.73 14299.43 159
jason: jason.
miper_lstm_enhance97.18 25397.16 24197.25 30598.16 33692.85 33995.15 35299.31 15997.25 22798.74 19798.78 21490.07 31799.78 21097.19 16499.80 11099.11 248
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
TSAR-MVS + GP.98.18 17797.98 18698.77 17098.71 27597.88 16196.32 30698.66 29296.33 27199.23 11998.51 25697.48 13799.40 34497.16 16699.46 23499.02 260
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
MSC_two_6792asdad99.32 8098.43 31898.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
No_MVS99.32 8098.43 31898.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24898.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
PVSNet_Blended_VisFu98.17 17998.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 32498.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
HyFIR lowres test97.19 25296.60 27798.96 14099.62 7797.28 20195.17 35099.50 8694.21 32999.01 14798.32 27986.61 33899.99 297.10 17399.84 8699.60 75
EGC-MVSNET85.24 36280.54 36599.34 7399.77 2999.20 3499.08 5999.29 17512.08 39920.84 40099.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
DVP-MVS++98.90 7698.70 9399.51 4398.43 31899.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
eth_miper_zixun_eth97.23 24997.25 23697.17 30798.00 34492.77 34194.71 36199.18 20697.27 22598.56 21998.74 22091.89 30599.69 25497.06 17799.81 10099.05 253
MDA-MVSNet_test_wron97.60 22197.66 21297.41 29899.04 21793.09 33395.27 34798.42 30597.26 22698.88 17498.95 17995.43 23599.73 23997.02 17898.72 31799.41 165
cl____97.02 26496.83 25997.58 28297.82 35294.04 31194.66 36499.16 21397.04 24398.63 20698.71 22488.68 32899.69 25497.00 17999.81 10099.00 264
DIV-MVS_self_test97.02 26496.84 25897.58 28297.82 35294.03 31294.66 36499.16 21397.04 24398.63 20698.71 22488.69 32699.69 25497.00 17999.81 10099.01 261
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
YYNet197.60 22197.67 20997.39 29999.04 21793.04 33795.27 34798.38 30897.25 22798.92 16698.95 17995.48 23499.73 23996.99 18198.74 31599.41 165
pmmvs497.58 22497.28 23598.51 20798.84 25396.93 22495.40 34598.52 30193.60 33998.61 21098.65 23795.10 24399.60 29796.97 18499.79 11598.99 265
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26199.17 12799.21 11194.81 25399.77 21696.96 18599.88 7599.44 155
c3_l97.36 23797.37 23097.31 30098.09 34093.25 33295.01 35599.16 21397.05 24298.77 19298.72 22392.88 29299.64 28596.93 18699.76 13599.05 253
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
ET-MVSNet_ETH3D94.30 33293.21 34297.58 28298.14 33794.47 29994.78 36093.24 38494.72 31689.56 39495.87 36878.57 38599.81 17996.91 18797.11 36898.46 325
N_pmnet97.63 22097.17 24098.99 13699.27 16297.86 16395.98 31993.41 38295.25 30599.47 7098.90 18995.63 22799.85 12296.91 18799.73 14299.27 217
1112_ss97.29 24496.86 25698.58 19499.34 15496.32 24096.75 28699.58 5493.14 34596.89 32797.48 33292.11 30399.86 11096.91 18799.54 21599.57 92
thisisatest053095.27 31894.45 32797.74 27099.19 18194.37 30197.86 19490.20 39497.17 23798.22 24597.65 32273.53 39399.90 6596.90 19299.35 24998.95 272
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31898.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 332
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24699.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32099.27 18197.60 19097.99 26498.25 28298.15 8499.38 34896.87 19599.57 20799.42 162
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30299.90 6596.87 19599.68 16799.49 128
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33393.78 32497.29 25498.84 27196.10 28098.64 20598.65 23796.04 20999.36 34996.84 19899.14 28299.20 231
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
miper_ehance_all_eth97.06 26197.03 24797.16 30997.83 35193.06 33494.66 36499.09 22795.99 28598.69 19998.45 26592.73 29699.61 29696.79 20099.03 29498.82 290
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
X-MVStestdata94.32 33092.59 34899.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 39797.50 13399.83 15696.79 20099.53 21999.56 98
lupinMVS97.06 26196.86 25697.65 27698.88 24793.89 32195.48 34297.97 32393.53 34098.16 24997.58 32693.81 27899.91 6096.77 20399.57 20799.17 242
IU-MVS99.49 11699.15 4798.87 26292.97 34799.41 8096.76 20499.62 18799.66 59
CHOSEN 1792x268897.49 22897.14 24498.54 20499.68 5996.09 24796.50 29699.62 4791.58 36298.84 18298.97 17292.36 29999.88 8496.76 20499.95 3299.67 58
ppachtmachnet_test97.50 22697.74 20496.78 32798.70 27991.23 36694.55 36999.05 23396.36 27099.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32398.97 6695.03 35499.18 20696.88 25199.33 9798.78 21498.16 8299.28 36396.74 20699.62 18799.44 155
EIA-MVS98.00 19097.74 20498.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33795.55 37297.68 11299.80 18696.73 20899.27 26298.52 323
CDS-MVSNet97.69 21597.35 23298.69 17998.73 27097.02 21896.92 27898.75 28695.89 28898.59 21498.67 23292.08 30499.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26696.71 21199.77 12499.50 124
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 31799.30 16797.58 19198.10 25698.24 28398.25 6999.34 35396.69 21299.65 17999.12 247
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24198.75 19598.92 18598.18 7899.65 28296.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu98.26 16997.90 19499.35 7098.02 34399.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
Effi-MVS+98.02 18897.82 20098.62 18798.53 30997.19 20997.33 25099.68 4197.30 22296.68 33597.46 33498.56 5299.80 18696.63 21598.20 33798.86 287
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26799.85 12296.60 21698.72 31799.37 186
Test_1112_low_res96.99 26896.55 27998.31 22799.35 15295.47 26795.84 33199.53 8091.51 36496.80 33298.48 26391.36 30999.83 15696.58 21799.53 21999.62 68
LS3D98.63 12198.38 14399.36 6497.25 37499.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30596.57 21999.55 21398.97 269
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
sss97.21 25096.93 25098.06 24698.83 25595.22 27696.75 28698.48 30394.49 32097.27 30997.90 30992.77 29599.80 18696.57 21999.32 25399.16 245
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 39896.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 32796.55 22699.50 23199.26 220
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
MVP-Stereo98.08 18597.92 19298.57 19698.96 22996.79 22797.90 18699.18 20696.41 26998.46 22998.95 17995.93 21999.60 29796.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 32896.50 23098.99 30099.34 198
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 25798.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33098.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CNVR-MVS98.17 17997.87 19799.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 30796.42 23499.33 25299.39 177
CL-MVSNet_self_test97.44 23397.22 23898.08 24498.57 30495.78 25894.30 37498.79 27996.58 26498.60 21298.19 28894.74 25899.64 28596.41 23598.84 31098.82 290
cl2295.79 30795.39 31096.98 31596.77 38492.79 34094.40 37298.53 30094.59 31997.89 26998.17 28982.82 36899.24 36596.37 23699.03 29498.92 278
PS-MVSNAJ97.08 26097.39 22896.16 34198.56 30592.46 34595.24 34998.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 387
CVMVSNet96.25 29597.21 23993.38 37599.10 20280.56 40297.20 26298.19 31696.94 24899.00 14899.02 15389.50 32299.80 18696.36 23899.59 19899.78 33
xiu_mvs_v2_base97.16 25597.49 22396.17 33998.54 30792.46 34595.45 34398.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 386
AUN-MVS96.24 29695.45 30698.60 19298.70 27997.22 20697.38 24697.65 33195.95 28695.53 36697.96 30782.11 37199.79 19996.31 24097.44 35898.80 299
miper_enhance_ethall96.01 30095.74 29596.81 32596.41 38992.27 35193.69 38398.89 25991.14 36998.30 24197.35 34190.58 31499.58 30596.31 24099.03 29498.60 320
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23898.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ETV-MVS98.03 18797.86 19898.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37398.41 6099.88 8496.27 24399.24 26797.71 363
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 35996.23 24498.38 33199.28 216
GA-MVS95.86 30595.32 31397.49 29298.60 29794.15 30893.83 38197.93 32495.49 29896.68 33597.42 33683.21 36499.30 35996.22 24598.55 32999.01 261
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
Fast-Effi-MVS+97.67 21797.38 22998.57 19698.71 27597.43 19497.23 25899.45 10794.82 31596.13 35096.51 35498.52 5499.91 6096.19 24798.83 31198.37 334
pmmvs395.03 32294.40 32896.93 31797.70 35992.53 34495.08 35397.71 32988.57 38297.71 28198.08 29779.39 37999.82 16696.19 24799.11 28898.43 330
MCST-MVS98.00 19097.63 21599.10 11599.24 16798.17 12896.89 27998.73 28995.66 29297.92 26697.70 32097.17 15399.66 27796.18 24999.23 26999.47 145
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 25999.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
FA-MVS(test-final)96.99 26896.82 26097.50 29198.70 27994.78 28799.34 2096.99 34695.07 30898.48 22899.33 9088.41 33299.65 28296.13 25398.92 30898.07 345
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29597.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28596.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
EPNet96.14 29795.44 30798.25 23190.76 40195.50 26697.92 18394.65 37298.97 9392.98 38898.85 20289.12 32499.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Patchmtry97.35 23896.97 24998.50 20997.31 37396.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35099.85 12295.96 25899.83 9399.17 242
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
tpm94.67 32694.34 33095.66 34997.68 36188.42 37897.88 18994.90 37194.46 32296.03 35598.56 25178.66 38399.79 19995.88 26095.01 38798.78 301
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
test-LLR93.90 33993.85 33394.04 36696.53 38684.62 39394.05 37892.39 38696.17 27694.12 38195.07 37882.30 36999.67 26695.87 26398.18 33897.82 354
test-mter92.33 35691.76 35994.04 36696.53 38684.62 39394.05 37892.39 38694.00 33594.12 38195.07 37865.63 40299.67 26695.87 26398.18 33897.82 354
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24598.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
USDC97.41 23597.40 22797.44 29698.94 23193.67 32795.17 35099.53 8094.03 33498.97 15499.10 13795.29 23799.34 35395.84 26699.73 14299.30 212
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32697.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
TESTMET0.1,192.19 35891.77 35893.46 37396.48 38882.80 39894.05 37891.52 39094.45 32494.00 38494.88 38466.65 39999.56 31095.78 26898.11 34498.02 347
DSMNet-mixed97.42 23497.60 21796.87 32199.15 19591.46 35898.54 10999.12 22192.87 35097.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32099.50 8697.30 22299.05 14198.98 17099.35 1299.32 35695.72 27099.68 16799.18 238
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32295.72 27099.71 15499.32 205
PHI-MVS98.29 16697.95 18899.34 7398.44 31799.16 4398.12 15599.38 12896.01 28498.06 25998.43 26697.80 10699.67 26695.69 27299.58 20399.20 231
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25698.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
tpmrst95.07 32195.46 30593.91 36897.11 37684.36 39597.62 22496.96 34894.98 31096.35 34898.80 21185.46 34999.59 30195.60 27596.23 37897.79 359
PMMVS96.51 28595.98 29198.09 24197.53 36595.84 25594.92 35798.84 27191.58 36296.05 35495.58 37195.68 22699.66 27795.59 27698.09 34598.76 304
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26299.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26299.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
IS-MVSNet98.19 17697.90 19499.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30799.79 19995.49 27999.80 11099.48 138
baseline195.96 30395.44 30797.52 28998.51 31293.99 31598.39 13196.09 36398.21 14298.40 23897.76 31686.88 33699.63 28895.42 28089.27 39698.95 272
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
NCCC97.86 20197.47 22699.05 12898.61 29598.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21599.66 27795.31 28298.82 31399.43 159
testing393.51 34492.09 35297.75 26898.60 29794.40 30097.32 25195.26 37097.56 19496.79 33395.50 37453.57 40499.77 21695.26 28398.97 30399.08 249
PC_three_145293.27 34399.40 8398.54 25298.22 7497.00 39495.17 28499.45 23699.49 128
Patchmatch-test96.55 28396.34 28497.17 30798.35 32493.06 33498.40 13097.79 32697.33 21898.41 23498.67 23283.68 36399.69 25495.16 28599.31 25598.77 302
EPMVS93.72 34293.27 34195.09 36096.04 39387.76 38298.13 15385.01 40094.69 31796.92 32198.64 24078.47 38799.31 35795.04 28696.46 37598.20 338
UnsupCasMVSNet_bld97.30 24296.92 25298.45 21399.28 16096.78 23096.20 31299.27 18195.42 30098.28 24398.30 28093.16 28599.71 24794.99 28797.37 36198.87 286
PatchmatchNetpermissive95.58 31295.67 29995.30 35797.34 37287.32 38497.65 22196.65 35495.30 30497.07 31598.69 22884.77 35399.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu94.93 32494.78 32595.38 35693.58 39887.68 38396.78 28395.69 36897.35 21789.14 39598.09 29688.15 33399.49 32894.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_yl96.69 27796.29 28697.90 25498.28 32895.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34099.55 31394.87 29098.32 33298.89 282
DCV-MVSNet96.69 27796.29 28697.90 25498.28 32895.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34099.55 31394.87 29098.32 33298.89 282
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29198.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
PVSNet_BlendedMVS97.55 22597.53 22097.60 28098.92 23793.77 32596.64 29199.43 11794.49 32097.62 28699.18 11796.82 17399.67 26694.73 29399.93 4499.36 192
PVSNet_Blended96.88 27196.68 26997.47 29498.92 23793.77 32594.71 36199.43 11790.98 37097.62 28697.36 34096.82 17399.67 26694.73 29399.56 21098.98 266
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
OPU-MVS98.82 15798.59 30098.30 11698.10 15898.52 25598.18 7898.75 38594.62 29699.48 23399.41 165
LF4IMVS97.90 19597.69 20898.52 20699.17 18997.66 18197.19 26499.47 10296.31 27397.85 27398.20 28796.71 18399.52 32294.62 29699.72 14998.38 332
CostFormer93.97 33893.78 33594.51 36397.53 36585.83 38997.98 17795.96 36589.29 38094.99 37398.63 24278.63 38499.62 29094.54 29896.50 37498.09 344
thisisatest051594.12 33693.16 34396.97 31698.60 29792.90 33893.77 38290.61 39294.10 33296.91 32395.87 36874.99 39199.80 18694.52 29999.12 28798.20 338
旧先验295.76 33288.56 38397.52 29699.66 27794.48 300
CLD-MVS97.49 22897.16 24198.48 21099.07 20997.03 21794.71 36199.21 19694.46 32298.06 25997.16 34497.57 12499.48 33194.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25398.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25398.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
HQP_MVS97.99 19397.67 20998.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24799.70 25094.42 30499.51 22499.45 151
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 151
JIA-IIPM95.52 31495.03 31997.00 31396.85 38294.03 31296.93 27695.82 36699.20 6594.63 37799.71 1783.09 36599.60 29794.42 30494.64 38897.36 372
cascas94.79 32594.33 33196.15 34296.02 39492.36 34992.34 39099.26 18685.34 38995.08 37294.96 38392.96 29198.53 38794.41 30798.59 32797.56 368
TinyColmap97.89 19797.98 18697.60 28098.86 24994.35 30296.21 31199.44 11197.45 20999.06 13698.88 19697.99 9599.28 36394.38 30899.58 20399.18 238
9.1497.78 20199.07 20997.53 23599.32 15495.53 29798.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
test_post197.59 22920.48 40183.07 36699.66 27794.16 310
SCA96.41 29196.66 27295.67 34898.24 33188.35 37995.85 33096.88 35296.11 27997.67 28498.67 23293.10 28799.85 12294.16 31099.22 27098.81 294
test_prior295.74 33396.48 26796.11 35197.63 32495.92 22094.16 31099.20 273
tpmvs95.02 32395.25 31494.33 36496.39 39085.87 38798.08 16096.83 35395.46 29995.51 36798.69 22885.91 34599.53 31894.16 31096.23 37897.58 367
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
MSDG97.71 21497.52 22198.28 23098.91 24096.82 22694.42 37199.37 13297.65 18498.37 23998.29 28197.40 14099.33 35594.09 31599.22 27098.68 315
MVS-HIRNet94.32 33095.62 30090.42 37998.46 31575.36 40396.29 30789.13 39695.25 30595.38 36899.75 1192.88 29299.19 36994.07 31699.39 24396.72 380
DP-MVS Recon97.33 24096.92 25298.57 19699.09 20597.99 14996.79 28299.35 14193.18 34497.71 28198.07 29895.00 24699.31 35793.97 31799.13 28498.42 331
new_pmnet96.99 26896.76 26497.67 27498.72 27294.89 28595.95 32498.20 31492.62 35398.55 22198.54 25294.88 25099.52 32293.96 31899.44 23998.59 322
MDTV_nov1_ep1395.22 31597.06 37983.20 39797.74 20996.16 36194.37 32696.99 31998.83 20583.95 36199.53 31893.90 31997.95 352
WTY-MVS96.67 27996.27 28897.87 25798.81 26194.61 29596.77 28497.92 32594.94 31297.12 31297.74 31791.11 31199.82 16693.89 32098.15 34299.18 238
Vis-MVSNet (Re-imp)97.46 23097.16 24198.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32599.73 23993.88 32199.79 11599.18 238
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35293.86 32299.27 26298.79 300
CPTT-MVS97.84 20797.36 23199.27 8999.31 15598.46 10598.29 13899.27 18194.90 31397.83 27498.37 27294.90 24799.84 13993.85 32399.54 21599.51 121
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 20098.93 7197.76 20799.28 17894.97 31198.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
train_agg97.10 25796.45 28299.07 12198.71 27598.08 14095.96 32299.03 23891.64 36095.85 35697.53 32896.47 19299.76 22293.67 32599.16 27999.36 192
PVSNet93.40 1795.67 30995.70 29795.57 35198.83 25588.57 37792.50 38897.72 32892.69 35296.49 34696.44 35893.72 28199.43 34093.61 32699.28 26198.71 308
test0.0.03 194.51 32793.69 33696.99 31496.05 39293.61 32994.97 35693.49 38196.17 27697.57 29294.88 38482.30 36999.01 37793.60 32794.17 39198.37 334
testdata98.09 24198.93 23395.40 27098.80 27890.08 37697.45 30298.37 27295.26 23899.70 25093.58 32898.95 30599.17 242
MDTV_nov1_ep13_2view74.92 40497.69 21490.06 37797.75 28085.78 34693.52 32998.69 312
TAPA-MVS96.21 1196.63 28195.95 29298.65 18198.93 23398.09 13696.93 27699.28 17883.58 39198.13 25397.78 31496.13 20599.40 34493.52 32999.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
OMC-MVS97.88 19997.49 22399.04 13098.89 24698.63 8996.94 27499.25 18795.02 30998.53 22498.51 25697.27 14799.47 33493.50 33199.51 22499.01 261
PatchMatch-RL97.24 24896.78 26398.61 19099.03 22097.83 16696.36 30499.06 23093.49 34297.36 30897.78 31495.75 22499.49 32893.44 33298.77 31498.52 323
114514_t96.50 28795.77 29498.69 17999.48 12397.43 19497.84 19699.55 7281.42 39396.51 34398.58 24995.53 23099.67 26693.41 33399.58 20398.98 266
dp93.47 34593.59 33893.13 37796.64 38581.62 40197.66 21996.42 35992.80 35196.11 35198.64 24078.55 38699.59 30193.31 33492.18 39598.16 340
test9_res93.28 33599.15 28199.38 184
IB-MVS91.63 1992.24 35790.90 36196.27 33697.22 37591.24 36594.36 37393.33 38392.37 35592.24 39094.58 38766.20 40199.89 7593.16 33694.63 38997.66 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline293.73 34192.83 34796.42 33297.70 35991.28 36496.84 28189.77 39593.96 33692.44 38995.93 36679.14 38199.77 21692.94 33796.76 37398.21 337
OpenMVScopyleft96.65 797.09 25996.68 26998.32 22598.32 32697.16 21298.86 8199.37 13289.48 37896.29 34999.15 12796.56 18899.90 6592.90 33899.20 27397.89 351
ADS-MVSNet295.43 31694.98 32096.76 32898.14 33791.74 35597.92 18397.76 32790.23 37296.51 34398.91 18685.61 34799.85 12292.88 33996.90 36998.69 312
ADS-MVSNet95.24 31994.93 32396.18 33898.14 33790.10 37397.92 18397.32 33990.23 37296.51 34398.91 18685.61 34799.74 23492.88 33996.90 36998.69 312
BP-MVS92.82 341
HQP-MVS97.00 26796.49 28198.55 20198.67 28796.79 22796.29 30799.04 23696.05 28195.55 36296.84 34993.84 27699.54 31692.82 34199.26 26599.32 205
testdata299.79 19992.80 343
CDPH-MVS97.26 24596.66 27299.07 12199.00 22298.15 12996.03 31899.01 24491.21 36897.79 27797.85 31296.89 16899.69 25492.75 34499.38 24699.39 177
新几何198.91 14898.94 23197.76 17498.76 28387.58 38596.75 33498.10 29494.80 25499.78 21092.73 34599.00 29999.20 231
ZD-MVS99.01 22198.84 7599.07 22994.10 33298.05 26198.12 29296.36 19999.86 11092.70 34699.19 276
F-COLMAP97.30 24296.68 26999.14 10999.19 18198.39 10897.27 25799.30 16792.93 34896.62 33898.00 30195.73 22599.68 26392.62 34798.46 33099.35 196
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 35496.07 35398.10 29495.39 23699.71 24792.61 34898.99 30099.08 249
agg_prior292.50 34999.16 27999.37 186
FE-MVS95.66 31094.95 32297.77 26498.53 30995.28 27399.40 1696.09 36393.11 34697.96 26599.26 10179.10 38299.77 21692.40 35098.71 31998.27 336
无先验95.74 33398.74 28889.38 37999.73 23992.38 35199.22 230
CMPMVSbinary75.91 2396.29 29395.44 30798.84 15596.25 39198.69 8897.02 26999.12 22188.90 38197.83 27498.86 19989.51 32198.90 38291.92 35299.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-untuned96.83 27396.75 26597.08 31098.74 26993.33 33196.71 28898.26 31196.72 25898.44 23197.37 33995.20 24099.47 33491.89 35397.43 35998.44 329
gm-plane-assit94.83 39681.97 40088.07 38494.99 38199.60 29791.76 354
CNLPA97.17 25496.71 26798.55 20198.56 30598.05 14696.33 30598.93 25196.91 25097.06 31697.39 33794.38 26599.45 33791.66 35599.18 27898.14 341
MIMVSNet96.62 28296.25 28997.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34499.65 28291.65 35699.21 27298.82 290
131495.74 30895.60 30196.17 33997.53 36592.75 34298.07 16298.31 31091.22 36794.25 37996.68 35295.53 23099.03 37491.64 35797.18 36696.74 379
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39091.59 35899.67 17396.82 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
tpm cat193.29 34793.13 34593.75 37097.39 37184.74 39297.39 24597.65 33183.39 39294.16 38098.41 26782.86 36799.39 34691.56 35995.35 38697.14 374
test_method79.78 36379.50 36680.62 38080.21 40245.76 40670.82 39498.41 30731.08 39880.89 39997.71 31884.85 35297.37 39391.51 36080.03 39798.75 305
DPM-MVS96.32 29295.59 30298.51 20798.76 26697.21 20794.54 37098.26 31191.94 35996.37 34797.25 34293.06 28999.43 34091.42 36198.74 31598.89 282
WAC-MVS90.90 36991.37 362
KD-MVS_2432*160092.87 35191.99 35495.51 35391.37 39989.27 37594.07 37698.14 31895.42 30097.25 31096.44 35867.86 39699.24 36591.28 36396.08 38198.02 347
miper_refine_blended92.87 35191.99 35495.51 35391.37 39989.27 37594.07 37698.14 31895.42 30097.25 31096.44 35867.86 39699.24 36591.28 36396.08 38198.02 347
HY-MVS95.94 1395.90 30495.35 31297.55 28697.95 34594.79 28698.81 8596.94 35092.28 35795.17 37098.57 25089.90 31999.75 22991.20 36597.33 36598.10 343
MG-MVS96.77 27696.61 27597.26 30498.31 32793.06 33495.93 32598.12 32096.45 26897.92 26698.73 22193.77 28099.39 34691.19 36699.04 29399.33 203
AdaColmapbinary97.14 25696.71 26798.46 21298.34 32597.80 17296.95 27398.93 25195.58 29596.92 32197.66 32195.87 22199.53 31890.97 36799.14 28298.04 346
PLCcopyleft94.65 1696.51 28595.73 29698.85 15498.75 26897.91 15996.42 30199.06 23090.94 37195.59 35997.38 33894.41 26399.59 30190.93 36898.04 35199.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
tpm293.09 34992.58 34994.62 36297.56 36386.53 38697.66 21995.79 36786.15 38794.07 38398.23 28575.95 38899.53 31890.91 36996.86 37297.81 356
QAPM97.31 24196.81 26298.82 15798.80 26497.49 18999.06 6399.19 20290.22 37497.69 28399.16 12396.91 16799.90 6590.89 37099.41 24199.07 251
PAPM_NR96.82 27596.32 28598.30 22899.07 20996.69 23297.48 24098.76 28395.81 29096.61 33996.47 35794.12 27399.17 37090.82 37197.78 35399.06 252
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31494.05 30996.67 29097.36 33696.70 26097.87 27097.98 30395.14 24299.44 33990.47 37298.58 32899.25 221
API-MVS97.04 26396.91 25497.42 29797.88 35098.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37290.16 37399.02 29794.88 392
E-PMN94.17 33494.37 32993.58 37296.86 38185.71 39090.11 39297.07 34498.17 14997.82 27697.19 34384.62 35598.94 37989.77 37497.68 35596.09 388
MAR-MVS96.47 28995.70 29798.79 16497.92 34799.12 5798.28 13998.60 29792.16 35895.54 36596.17 36294.77 25799.52 32289.62 37598.23 33597.72 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
myMVS_eth3d91.92 35990.45 36296.30 33497.10 37790.90 36996.18 31496.58 35695.65 29394.77 37492.29 39453.88 40399.36 34989.59 37698.05 34998.63 318
wuyk23d96.06 29897.62 21691.38 37898.65 29498.57 9698.85 8296.95 34996.86 25299.90 1299.16 12399.18 1798.40 38889.23 37799.77 12477.18 396
OpenMVS_ROBcopyleft95.38 1495.84 30695.18 31797.81 26198.41 32297.15 21397.37 24798.62 29683.86 39098.65 20498.37 27294.29 26899.68 26388.41 37898.62 32696.60 381
dmvs_re95.98 30295.39 31097.74 27098.86 24997.45 19298.37 13395.69 36897.95 16296.56 34095.95 36590.70 31397.68 39288.32 37996.13 38098.11 342
BH-w/o95.13 32094.89 32495.86 34398.20 33491.31 36295.65 33597.37 33593.64 33896.52 34295.70 37093.04 29099.02 37588.10 38095.82 38397.24 373
EMVS93.83 34094.02 33293.23 37696.83 38384.96 39189.77 39396.32 36097.92 16597.43 30496.36 36186.17 34298.93 38087.68 38197.73 35495.81 389
gg-mvs-nofinetune92.37 35591.20 36095.85 34495.80 39592.38 34899.31 2781.84 40299.75 591.83 39199.74 1368.29 39599.02 37587.15 38297.12 36796.16 385
TR-MVS95.55 31395.12 31896.86 32497.54 36493.94 31696.49 29796.53 35894.36 32797.03 31896.61 35394.26 26999.16 37186.91 38396.31 37797.47 370
PVSNet_089.98 2191.15 36190.30 36493.70 37197.72 35584.34 39690.24 39197.42 33490.20 37593.79 38693.09 39290.90 31298.89 38386.57 38472.76 39897.87 353
tmp_tt78.77 36478.73 36778.90 38158.45 40374.76 40594.20 37578.26 40439.16 39786.71 39792.82 39380.50 37375.19 40086.16 38592.29 39486.74 395
PAPR95.29 31794.47 32697.75 26897.50 36995.14 27994.89 35898.71 29091.39 36695.35 36995.48 37594.57 26099.14 37384.95 38697.37 36198.97 269
thres600view794.45 32893.83 33496.29 33599.06 21391.53 35797.99 17694.24 37898.34 12997.44 30395.01 38079.84 37599.67 26684.33 38798.23 33597.66 364
MVS93.19 34892.09 35296.50 33196.91 38094.03 31298.07 16298.06 32268.01 39594.56 37896.48 35695.96 21899.30 35983.84 38896.89 37196.17 384
thres100view90094.19 33393.67 33795.75 34799.06 21391.35 36198.03 16894.24 37898.33 13097.40 30594.98 38279.84 37599.62 29083.05 38998.08 34696.29 382
tfpn200view994.03 33793.44 33995.78 34698.93 23391.44 35997.60 22794.29 37697.94 16397.10 31394.31 38879.67 37799.62 29083.05 38998.08 34696.29 382
thres40094.14 33593.44 33996.24 33798.93 23391.44 35997.60 22794.29 37697.94 16397.10 31394.31 38879.67 37799.62 29083.05 38998.08 34697.66 364
thres20093.72 34293.14 34495.46 35598.66 29291.29 36396.61 29394.63 37397.39 21396.83 33093.71 39079.88 37499.56 31082.40 39298.13 34395.54 391
GG-mvs-BLEND94.76 36194.54 39792.13 35399.31 2780.47 40388.73 39691.01 39667.59 39898.16 39182.30 39394.53 39093.98 393
MVEpermissive83.40 2292.50 35391.92 35694.25 36598.83 25591.64 35692.71 38783.52 40195.92 28786.46 39895.46 37695.20 24095.40 39780.51 39498.64 32495.73 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PCF-MVS92.86 1894.36 32993.00 34698.42 21798.70 27997.56 18693.16 38699.11 22379.59 39497.55 29397.43 33592.19 30199.73 23979.85 39599.45 23697.97 350
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
FPMVS93.44 34692.23 35097.08 31099.25 16697.86 16395.61 33697.16 34292.90 34993.76 38798.65 23775.94 38995.66 39679.30 39697.49 35697.73 361
DeepMVS_CXcopyleft93.44 37498.24 33194.21 30594.34 37564.28 39691.34 39294.87 38689.45 32392.77 39977.54 39793.14 39293.35 394
dmvs_testset92.94 35092.21 35195.13 35898.59 30090.99 36897.65 22192.09 38896.95 24794.00 38493.55 39192.34 30096.97 39572.20 39892.52 39397.43 371
PAPM91.88 36090.34 36396.51 33098.06 34292.56 34392.44 38997.17 34186.35 38690.38 39396.01 36386.61 33899.21 36870.65 39995.43 38597.75 360
test12317.04 36720.11 3707.82 38210.25 4054.91 40794.80 3594.47 4074.93 40010.00 40224.28 3999.69 4053.64 40110.14 40012.43 40014.92 397
testmvs17.12 36620.53 3696.87 38312.05 4044.20 40893.62 3846.73 4064.62 40110.41 40124.33 3988.28 4063.56 4029.69 40115.07 39912.86 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.66 36532.88 3680.00 3840.00 4060.00 4090.00 39599.10 2250.00 4020.00 40397.58 32699.21 160.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.17 36810.90 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40298.07 860.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.12 36910.83 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.48 3320.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
eth-test20.00 406
eth-test0.00 406
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 331
save fliter99.11 20097.97 15396.53 29599.02 24198.24 139
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
GSMVS98.81 294
test_part299.36 14899.10 6099.05 141
sam_mvs184.74 35498.81 294
sam_mvs84.29 360
MTGPAbinary99.20 198
test_post21.25 40083.86 36299.70 250
patchmatchnet-post98.77 21684.37 35799.85 122
MTMP97.93 18191.91 389
TEST998.71 27598.08 14095.96 32299.03 23891.40 36595.85 35697.53 32896.52 19099.76 222
test_898.67 28798.01 14895.91 32799.02 24191.64 36095.79 35897.50 33196.47 19299.76 222
agg_prior98.68 28697.99 14999.01 24495.59 35999.77 216
test_prior497.97 15395.86 328
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30199.30 212
新几何295.93 325
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23399.01 29899.23 226
原ACMM295.53 339
test22298.92 23796.93 22495.54 33898.78 28185.72 38896.86 32998.11 29394.43 26299.10 28999.23 226
segment_acmp97.02 162
testdata195.44 34496.32 272
test1298.93 14598.58 30297.83 16698.66 29296.53 34195.51 23299.69 25499.13 28499.27 217
plane_prior799.19 18197.87 162
plane_prior698.99 22597.70 18094.90 247
plane_prior497.98 303
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior199.05 216
plane_prior97.65 18297.07 26896.72 25899.36 247
n20.00 408
nn0.00 408
door-mid99.57 61
test1198.87 262
door99.41 121
HQP5-MVS96.79 227
HQP-NCC98.67 28796.29 30796.05 28195.55 362
ACMP_Plane98.67 28796.29 30796.05 28195.55 362
HQP4-MVS95.56 36199.54 31699.32 205
HQP3-MVS99.04 23699.26 265
HQP2-MVS93.84 276
NP-MVS98.84 25397.39 19696.84 349
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190