This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
jajsoiax99.89 399.89 599.89 899.96 599.78 4799.70 3499.86 3699.89 2099.98 1199.90 2799.94 199.98 1199.75 24100.00 199.90 12
mvs_tets99.90 299.90 399.90 599.96 599.79 4499.72 2999.88 3199.92 1299.98 1199.93 1799.94 199.98 1199.77 23100.00 199.92 11
test_vis1_n_192099.72 2299.88 699.27 22999.93 2397.84 30399.34 118100.00 199.99 199.99 799.82 6299.87 399.99 699.97 499.99 1399.97 3
test_fmvs399.83 1299.93 299.53 15899.96 598.62 25699.67 48100.00 199.95 5100.00 199.95 1399.85 499.99 699.98 199.99 1399.98 1
mvsany_test399.85 899.88 699.75 6099.95 1399.37 16399.53 8299.98 999.77 5699.99 799.95 1399.85 499.94 6599.95 899.98 3199.94 8
wuyk23d97.58 30099.13 13692.93 35899.69 14099.49 13199.52 8399.77 7897.97 28299.96 1699.79 8199.84 699.94 6595.85 32999.82 16479.36 374
cdsmvs_eth3d_5k24.88 34633.17 3480.00 3620.00 3850.00 3860.00 37399.62 1520.00 3800.00 38199.13 31299.82 70.00 3810.00 3790.00 3790.00 377
LTVRE_ROB99.19 199.88 599.87 999.88 1299.91 2799.90 799.96 199.92 1999.90 1499.97 1499.87 4099.81 899.95 5299.54 4499.99 1399.80 32
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis3_rt99.89 399.90 399.87 1599.98 399.75 6299.70 34100.00 199.73 58100.00 199.89 3199.79 999.88 17399.98 1100.00 199.98 1
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1199.99 1100.00 199.98 1099.78 10100.00 199.92 10100.00 199.87 17
test_djsdf99.84 1099.81 1599.91 299.94 1699.84 2499.77 1499.80 6499.73 5899.97 1499.92 2199.77 1199.98 1199.43 57100.00 199.90 12
mvsany_test199.44 8599.45 7899.40 19399.37 25898.64 25497.90 32799.59 17799.27 14199.92 2999.82 6299.74 1299.93 8299.55 4399.87 13099.63 110
pmmvs699.86 799.86 1199.83 2599.94 1699.90 799.83 699.91 2299.85 3499.94 2299.95 1399.73 1399.90 14299.65 3099.97 4399.69 68
UniMVSNet_ETH3D99.85 899.83 1399.90 599.89 3499.91 499.89 499.71 10999.93 1099.95 2099.89 3199.71 1499.96 4299.51 4999.97 4399.84 22
XVG-OURS99.21 14899.06 16099.65 10799.82 6199.62 10597.87 32899.74 9398.36 25199.66 13699.68 14999.71 1499.90 14296.84 28599.88 11999.43 218
XVG-OURS-SEG-HR99.16 16298.99 18399.66 10299.84 5099.64 9998.25 29199.73 9798.39 24899.63 14399.43 25599.70 1699.90 14297.34 25498.64 34299.44 212
DeepC-MVS98.90 499.62 5299.61 4699.67 9599.72 12599.44 14499.24 15199.71 10999.27 14199.93 2599.90 2799.70 1699.93 8298.99 12099.99 1399.64 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ACMH98.42 699.59 5699.54 6499.72 8099.86 4699.62 10599.56 7999.79 7098.77 21299.80 7799.85 4999.64 1899.85 22298.70 15099.89 11099.70 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GeoE99.69 2999.66 3499.78 4199.76 10299.76 5899.60 7199.82 5399.46 11599.75 10099.56 21899.63 1999.95 5299.43 5799.88 11999.62 121
pm-mvs199.79 1599.79 1899.78 4199.91 2799.83 2999.76 1899.87 3399.73 5899.89 4299.87 4099.63 1999.87 18799.54 4499.92 9199.63 110
DSMNet-mixed99.48 7399.65 3698.95 26999.71 12897.27 32099.50 8799.82 5399.59 10099.41 21999.85 4999.62 21100.00 199.53 4799.89 11099.59 142
Vis-MVSNetpermissive99.75 1899.74 2399.79 3899.88 3999.66 9399.69 4199.92 1999.67 7899.77 9199.75 10499.61 2299.98 1199.35 7199.98 3199.72 58
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ANet_high99.88 599.87 999.91 299.99 199.91 499.65 58100.00 199.90 14100.00 199.97 1199.61 2299.97 2399.75 24100.00 199.84 22
TransMVSNet (Re)99.78 1699.77 2099.81 3099.91 2799.85 1999.75 2199.86 3699.70 6999.91 3299.89 3199.60 2499.87 18799.59 3599.74 20399.71 61
test_f99.75 1899.88 699.37 20499.96 598.21 27999.51 86100.00 199.94 9100.00 199.93 1799.58 2599.94 6599.97 499.99 1399.97 3
CS-MVS-test99.68 3299.70 2599.64 11499.57 18699.83 2999.78 1199.97 1199.92 1299.50 19799.38 26799.57 2699.95 5299.69 2799.90 10199.15 277
PMMVS299.48 7399.45 7899.57 14799.76 10298.99 22098.09 30599.90 2598.95 18799.78 8699.58 20699.57 2699.93 8299.48 5299.95 6899.79 38
DROMVSNet99.69 2999.69 2999.68 9299.71 12899.91 499.76 1899.96 1599.86 2999.51 19599.39 26599.57 2699.93 8299.64 3299.86 13899.20 266
SD-MVS99.01 19299.30 10898.15 31899.50 21899.40 15698.94 22699.61 15999.22 15399.75 10099.82 6299.54 2995.51 37897.48 24799.87 13099.54 165
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
casdiffmvs_mvgpermissive99.68 3299.68 3299.69 9099.81 6899.59 11599.29 13799.90 2599.71 6499.79 8299.73 11199.54 2999.84 23699.36 6999.96 5799.65 97
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CS-MVS99.67 3899.70 2599.58 14199.53 20599.84 2499.79 1099.96 1599.90 1499.61 15899.41 25799.51 3199.95 5299.66 2999.89 11098.96 311
test_fmvs299.72 2299.85 1299.34 21199.91 2798.08 29299.48 92100.00 199.90 1499.99 799.91 2499.50 3299.98 1199.98 199.99 1399.96 5
anonymousdsp99.80 1499.77 2099.90 599.96 599.88 1299.73 2699.85 4099.70 6999.92 2999.93 1799.45 3399.97 2399.36 69100.00 199.85 21
tt080599.63 4699.57 5899.81 3099.87 4399.88 1299.58 7498.70 32999.72 6299.91 3299.60 19999.43 3499.81 27599.81 2199.53 27299.73 56
ETV-MVS99.18 15799.18 12899.16 24599.34 27199.28 18199.12 18999.79 7099.48 10898.93 28898.55 36199.40 3599.93 8298.51 16099.52 27598.28 350
xiu_mvs_v1_base_debu99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
xiu_mvs_v1_base99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
xiu_mvs_v1_base_debi99.23 13599.34 9798.91 27699.59 17198.23 27698.47 27699.66 13299.61 9299.68 12798.94 34299.39 3699.97 2399.18 9799.55 26598.51 340
ACMM98.09 1199.46 8199.38 8999.72 8099.80 7399.69 8699.13 18599.65 14198.99 18299.64 13999.72 11899.39 3699.86 20598.23 17799.81 17399.60 135
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
xiu_mvs_v2_base99.02 18899.11 14398.77 29399.37 25898.09 28998.13 30099.51 22499.47 11299.42 21398.54 36299.38 4099.97 2398.83 13599.33 29998.24 352
XXY-MVS99.71 2599.67 3399.81 3099.89 3499.72 7499.59 7299.82 5399.39 12899.82 6799.84 5499.38 4099.91 12499.38 6499.93 8799.80 32
LPG-MVS_test99.22 14399.05 16499.74 6599.82 6199.63 10399.16 17599.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
LGP-MVS_train99.74 6599.82 6199.63 10399.73 9797.56 30099.64 13999.69 13899.37 4299.89 15996.66 29499.87 13099.69 68
TDRefinement99.72 2299.70 2599.77 4499.90 3299.85 1999.86 599.92 1999.69 7299.78 8699.92 2199.37 4299.88 17398.93 13299.95 6899.60 135
testgi99.29 12399.26 11999.37 20499.75 11398.81 23898.84 23499.89 2798.38 24999.75 10099.04 32699.36 4599.86 20599.08 11499.25 30999.45 207
Fast-Effi-MVS+99.02 18898.87 20199.46 17399.38 25699.50 13099.04 20599.79 7097.17 32298.62 31998.74 35499.34 4699.95 5298.32 17199.41 29098.92 316
casdiffmvspermissive99.63 4699.61 4699.67 9599.79 8399.59 11599.13 18599.85 4099.79 5099.76 9399.72 11899.33 4799.82 26099.21 9199.94 7999.59 142
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
new-patchmatchnet99.35 11099.57 5898.71 29899.82 6196.62 33598.55 26799.75 8899.50 10699.88 4899.87 4099.31 4899.88 17399.43 57100.00 199.62 121
HPM-MVS_fast99.43 8799.30 10899.80 3499.83 5499.81 3899.52 8399.70 11598.35 25699.51 19599.50 23699.31 4899.88 17398.18 18499.84 14799.69 68
EG-PatchMatch MVS99.57 5799.56 6399.62 13099.77 9899.33 17399.26 14499.76 8399.32 13699.80 7799.78 8899.29 5099.87 18799.15 10499.91 10099.66 89
DeepPCF-MVS98.42 699.18 15799.02 17299.67 9599.22 29799.75 6297.25 35599.47 23698.72 21799.66 13699.70 13299.29 5099.63 34898.07 19299.81 17399.62 121
pcd_1.5k_mvsjas16.61 34722.14 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 199.28 520.00 3810.00 3790.00 3790.00 377
PS-MVSNAJss99.84 1099.82 1499.89 899.96 599.77 5099.68 4499.85 4099.95 599.98 1199.92 2199.28 5299.98 1199.75 24100.00 199.94 8
PS-MVSNAJ99.00 19499.08 15498.76 29499.37 25898.10 28898.00 31599.51 22499.47 11299.41 21998.50 36499.28 5299.97 2398.83 13599.34 29898.20 356
TSAR-MVS + MP.99.34 11599.24 12399.63 12199.82 6199.37 16399.26 14499.35 26998.77 21299.57 16999.70 13299.27 5599.88 17397.71 22699.75 19699.65 97
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
testf199.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
APD_test299.63 4699.60 4999.72 8099.94 1699.95 299.47 9599.89 2799.43 12399.88 4899.80 7199.26 5699.90 14298.81 13999.88 11999.32 242
ACMH+98.40 899.50 6999.43 8399.71 8599.86 4699.76 5899.32 12399.77 7899.53 10499.77 9199.76 9999.26 5699.78 28797.77 21899.88 11999.60 135
HPM-MVScopyleft99.25 13199.07 15899.78 4199.81 6899.75 6299.61 6699.67 12897.72 29599.35 22999.25 29799.23 5999.92 10297.21 26899.82 16499.67 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DELS-MVS99.34 11599.30 10899.48 16999.51 21299.36 16798.12 30199.53 21599.36 13299.41 21999.61 19199.22 6099.87 18799.21 9199.68 22899.20 266
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_fmvs1_n99.68 3299.81 1599.28 22699.95 1397.93 30199.49 91100.00 199.82 4299.99 799.89 3199.21 6199.98 1199.97 499.98 3199.93 10
pmmvs-eth3d99.48 7399.47 7299.51 16299.77 9899.41 15598.81 24199.66 13299.42 12799.75 10099.66 15899.20 6299.76 29798.98 12299.99 1399.36 233
COLMAP_ROBcopyleft98.06 1299.45 8399.37 9299.70 8999.83 5499.70 8399.38 10999.78 7599.53 10499.67 13299.78 8899.19 6399.86 20597.32 25599.87 13099.55 157
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + GP.99.12 17099.04 16999.38 20199.34 27199.16 20398.15 29799.29 28398.18 27199.63 14399.62 18299.18 6499.68 33098.20 18099.74 20399.30 247
MVS_111021_HR99.12 17099.02 17299.40 19399.50 21899.11 20897.92 32499.71 10998.76 21599.08 27699.47 24799.17 6599.54 35897.85 21399.76 19499.54 165
3Dnovator99.15 299.43 8799.36 9599.65 10799.39 25399.42 15199.70 3499.56 19499.23 14999.35 22999.80 7199.17 6599.95 5298.21 17999.84 14799.59 142
EGC-MVSNET89.05 34385.52 34699.64 11499.89 3499.78 4799.56 7999.52 22024.19 37749.96 37899.83 5599.15 6799.92 10297.71 22699.85 14299.21 262
UA-Net99.78 1699.76 2299.86 1899.72 12599.71 7699.91 399.95 1899.96 399.71 11899.91 2499.15 6799.97 2399.50 51100.00 199.90 12
baseline99.63 4699.62 4299.66 10299.80 7399.62 10599.44 10199.80 6499.71 6499.72 11399.69 13899.15 6799.83 25199.32 7799.94 7999.53 171
OPM-MVS99.26 13099.13 13699.63 12199.70 13699.61 11198.58 26199.48 23398.50 23799.52 19099.63 17599.14 7099.76 29797.89 20699.77 19299.51 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+99.06 17998.97 18799.34 21199.31 27998.98 22198.31 28799.91 2298.81 20698.79 30798.94 34299.14 7099.84 23698.79 14198.74 33899.20 266
v7n99.82 1399.80 1799.88 1299.96 599.84 2499.82 899.82 5399.84 3799.94 2299.91 2499.13 7299.96 4299.83 1899.99 1399.83 26
nrg03099.70 2699.66 3499.82 2799.76 10299.84 2499.61 6699.70 11599.93 1099.78 8699.68 14999.10 7399.78 28799.45 5599.96 5799.83 26
MSDG99.08 17798.98 18699.37 20499.60 16799.13 20697.54 34199.74 9398.84 20499.53 18899.55 22599.10 7399.79 28497.07 27399.86 13899.18 271
PC_three_145297.56 30099.68 12799.41 25799.09 7597.09 37696.66 29499.60 25499.62 121
v124099.56 6099.58 5599.51 16299.80 7399.00 21999.00 21399.65 14199.15 16799.90 3899.75 10499.09 7599.88 17399.90 1199.96 5799.67 80
MVS_111021_LR99.13 16899.03 17199.42 18499.58 17699.32 17597.91 32699.73 9798.68 21999.31 24199.48 24399.09 7599.66 33997.70 22999.77 19299.29 250
v192192099.56 6099.57 5899.55 15399.75 11399.11 20899.05 20399.61 15999.15 16799.88 4899.71 12599.08 7899.87 18799.90 1199.97 4399.66 89
v119299.57 5799.57 5899.57 14799.77 9899.22 19599.04 20599.60 17199.18 15699.87 5699.72 11899.08 7899.85 22299.89 1499.98 3199.66 89
test_040299.22 14399.14 13499.45 17699.79 8399.43 14899.28 13999.68 12499.54 10299.40 22499.56 21899.07 8099.82 26096.01 32299.96 5799.11 286
ACMP97.51 1499.05 18298.84 20599.67 9599.78 9099.55 12598.88 22999.66 13297.11 32699.47 20199.60 19999.07 8099.89 15996.18 31799.85 14299.58 147
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
CLD-MVS98.76 22498.57 23099.33 21499.57 18698.97 22397.53 34399.55 20096.41 33699.27 24899.13 31299.07 8099.78 28796.73 29099.89 11099.23 258
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_Blended_VisFu99.40 9699.38 8999.44 17899.90 3298.66 25098.94 22699.91 2297.97 28299.79 8299.73 11199.05 8399.97 2399.15 10499.99 1399.68 74
canonicalmvs99.02 18899.00 17899.09 25699.10 32098.70 24699.61 6699.66 13299.63 8898.64 31897.65 37599.04 8499.54 35898.79 14198.92 32799.04 303
SteuartSystems-ACMMP99.30 12299.14 13499.76 5199.87 4399.66 9399.18 16699.60 17198.55 23199.57 16999.67 15499.03 8599.94 6597.01 27499.80 17899.69 68
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++99.38 10299.25 12199.77 4499.03 32899.77 5099.74 2399.61 15999.18 15699.76 9399.61 19199.00 8699.92 10297.72 22499.60 25499.62 121
OPU-MVS99.29 22499.12 31499.44 14499.20 16199.40 26199.00 8698.84 37396.54 30099.60 25499.58 147
test_vis1_n99.68 3299.79 1899.36 20899.94 1698.18 28299.52 83100.00 199.86 29100.00 199.88 3698.99 8899.96 4299.97 499.96 5799.95 6
EI-MVSNet-UG-set99.48 7399.50 7099.42 18499.57 18698.65 25399.24 15199.46 23999.68 7499.80 7799.66 15898.99 8899.89 15999.19 9599.90 10199.72 58
Fast-Effi-MVS+-dtu99.20 15099.12 14099.43 18299.25 29399.69 8699.05 20399.82 5399.50 10698.97 28499.05 32498.98 9099.98 1198.20 18099.24 31198.62 333
FMVSNet199.66 4099.63 4199.73 7499.78 9099.77 5099.68 4499.70 11599.67 7899.82 6799.83 5598.98 9099.90 14299.24 8899.97 4399.53 171
EI-MVSNet-Vis-set99.47 8099.49 7199.42 18499.57 18698.66 25099.24 15199.46 23999.67 7899.79 8299.65 16398.97 9299.89 15999.15 10499.89 11099.71 61
PHI-MVS99.11 17398.95 19099.59 13899.13 31299.59 11599.17 17199.65 14197.88 28899.25 25099.46 25098.97 9299.80 28197.26 26299.82 16499.37 230
TinyColmap98.97 19898.93 19199.07 26099.46 23898.19 28097.75 33299.75 8898.79 20999.54 18399.70 13298.97 9299.62 34996.63 29799.83 15599.41 222
SMA-MVScopyleft99.19 15399.00 17899.73 7499.46 23899.73 7099.13 18599.52 22097.40 31199.57 16999.64 16598.93 9599.83 25197.61 23999.79 18399.63 110
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
XVG-ACMP-BASELINE99.23 13599.10 15199.63 12199.82 6199.58 11998.83 23699.72 10698.36 25199.60 16199.71 12598.92 9699.91 12497.08 27299.84 14799.40 223
CSCG99.37 10599.29 11399.60 13699.71 12899.46 13799.43 10399.85 4098.79 20999.41 21999.60 19998.92 9699.92 10298.02 19399.92 9199.43 218
SED-MVS99.40 9699.28 11599.77 4499.69 14099.82 3599.20 16199.54 20699.13 16999.82 6799.63 17598.91 9899.92 10297.85 21399.70 21999.58 147
test_241102_ONE99.69 14099.82 3599.54 20699.12 17299.82 6799.49 24098.91 9899.52 362
Gipumacopyleft99.57 5799.59 5199.49 16599.98 399.71 7699.72 2999.84 4699.81 4499.94 2299.78 8898.91 9899.71 31298.41 16499.95 6899.05 302
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
DeepC-MVS_fast98.47 599.23 13599.12 14099.56 15099.28 28899.22 19598.99 21899.40 25799.08 17499.58 16699.64 16598.90 10199.83 25197.44 24999.75 19699.63 110
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ITE_SJBPF99.38 20199.63 16099.44 14499.73 9798.56 22999.33 23499.53 22998.88 10299.68 33096.01 32299.65 23999.02 308
SF-MVS99.10 17698.93 19199.62 13099.58 17699.51 12999.13 18599.65 14197.97 28299.42 21399.61 19198.86 10399.87 18796.45 30699.68 22899.49 194
tfpnnormal99.43 8799.38 8999.60 13699.87 4399.75 6299.59 7299.78 7599.71 6499.90 3899.69 13898.85 10499.90 14297.25 26599.78 18899.15 277
ZNCC-MVS99.22 14399.04 16999.77 4499.76 10299.73 7099.28 13999.56 19498.19 27099.14 26999.29 28998.84 10599.92 10297.53 24599.80 17899.64 105
MP-MVS-pluss99.14 16698.92 19599.80 3499.83 5499.83 2998.61 25799.63 14996.84 33199.44 20799.58 20698.81 10699.91 12497.70 22999.82 16499.67 80
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
VPA-MVSNet99.66 4099.62 4299.79 3899.68 14899.75 6299.62 6199.69 12199.85 3499.80 7799.81 6798.81 10699.91 12499.47 5399.88 11999.70 64
test20.0399.55 6399.54 6499.58 14199.79 8399.37 16399.02 20999.89 2799.60 9899.82 6799.62 18298.81 10699.89 15999.43 5799.86 13899.47 202
PGM-MVS99.20 15099.01 17599.77 4499.75 11399.71 7699.16 17599.72 10697.99 28099.42 21399.60 19998.81 10699.93 8296.91 27999.74 20399.66 89
HFP-MVS99.25 13199.08 15499.76 5199.73 12299.70 8399.31 12899.59 17798.36 25199.36 22899.37 26998.80 11099.91 12497.43 25099.75 19699.68 74
APDe-MVS99.48 7399.36 9599.85 2099.55 19899.81 3899.50 8799.69 12198.99 18299.75 10099.71 12598.79 11199.93 8298.46 16299.85 14299.80 32
CP-MVS99.23 13599.05 16499.75 6099.66 15499.66 9399.38 10999.62 15298.38 24999.06 28099.27 29298.79 11199.94 6597.51 24699.82 16499.66 89
MSLP-MVS++99.05 18299.09 15298.91 27699.21 29998.36 27298.82 24099.47 23698.85 20198.90 29499.56 21898.78 11399.09 37198.57 15799.68 22899.26 252
MVS_Test99.28 12499.31 10399.19 24299.35 26398.79 24099.36 11699.49 23299.17 16199.21 25999.67 15498.78 11399.66 33999.09 11399.66 23799.10 288
3Dnovator+98.92 399.35 11099.24 12399.67 9599.35 26399.47 13399.62 6199.50 22899.44 11899.12 27299.78 8898.77 11599.94 6597.87 21099.72 21499.62 121
APD-MVS_3200maxsize99.31 12199.16 13099.74 6599.53 20599.75 6299.27 14299.61 15999.19 15599.57 16999.64 16598.76 11699.90 14297.29 25799.62 24499.56 154
TranMVSNet+NR-MVSNet99.54 6599.47 7299.76 5199.58 17699.64 9999.30 13199.63 14999.61 9299.71 11899.56 21898.76 11699.96 4299.14 11099.92 9199.68 74
test_vis1_rt99.45 8399.46 7699.41 19199.71 12898.63 25598.99 21899.96 1599.03 18099.95 2099.12 31698.75 11899.84 23699.82 2099.82 16499.77 45
EIA-MVS99.12 17099.01 17599.45 17699.36 26199.62 10599.34 11899.79 7098.41 24598.84 30198.89 34698.75 11899.84 23698.15 18899.51 27698.89 318
ACMMP_NAP99.28 12499.11 14399.79 3899.75 11399.81 3898.95 22499.53 21598.27 26599.53 18899.73 11198.75 11899.87 18797.70 22999.83 15599.68 74
v1099.69 2999.69 2999.66 10299.81 6899.39 15899.66 5299.75 8899.60 9899.92 2999.87 4098.75 11899.86 20599.90 1199.99 1399.73 56
region2R99.23 13599.05 16499.77 4499.76 10299.70 8399.31 12899.59 17798.41 24599.32 23799.36 27398.73 12299.93 8297.29 25799.74 20399.67 80
test_fmvs199.48 7399.65 3698.97 26799.54 19997.16 32399.11 19199.98 999.78 5299.96 1699.81 6798.72 12399.97 2399.95 899.97 4399.79 38
LS3D99.24 13499.11 14399.61 13398.38 36499.79 4499.57 7799.68 12499.61 9299.15 26799.71 12598.70 12499.91 12497.54 24399.68 22899.13 285
DP-MVS99.48 7399.39 8799.74 6599.57 18699.62 10599.29 13799.61 15999.87 2699.74 10899.76 9998.69 12599.87 18798.20 18099.80 17899.75 54
AllTest99.21 14899.07 15899.63 12199.78 9099.64 9999.12 18999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
TestCases99.63 12199.78 9099.64 9999.83 4898.63 22399.63 14399.72 11898.68 12699.75 30196.38 30999.83 15599.51 184
LCM-MVSNet-Re99.28 12499.15 13399.67 9599.33 27699.76 5899.34 11899.97 1198.93 19199.91 3299.79 8198.68 12699.93 8296.80 28699.56 26199.30 247
v114499.54 6599.53 6899.59 13899.79 8399.28 18199.10 19399.61 15999.20 15499.84 6299.73 11198.67 12999.84 23699.86 1799.98 3199.64 105
DTE-MVSNet99.68 3299.61 4699.88 1299.80 7399.87 1599.67 4899.71 10999.72 6299.84 6299.78 8898.67 12999.97 2399.30 8199.95 6899.80 32
v14419299.55 6399.54 6499.58 14199.78 9099.20 20099.11 19199.62 15299.18 15699.89 4299.72 11898.66 13199.87 18799.88 1599.97 4399.66 89
v899.68 3299.69 2999.65 10799.80 7399.40 15699.66 5299.76 8399.64 8699.93 2599.85 4998.66 13199.84 23699.88 1599.99 1399.71 61
GST-MVS99.16 16298.96 18999.75 6099.73 12299.73 7099.20 16199.55 20098.22 26799.32 23799.35 27898.65 13399.91 12496.86 28299.74 20399.62 121
ppachtmachnet_test98.89 21299.12 14098.20 31799.66 15495.24 35297.63 33799.68 12499.08 17499.78 8699.62 18298.65 13399.88 17398.02 19399.96 5799.48 198
PS-CasMVS99.66 4099.58 5599.89 899.80 7399.85 1999.66 5299.73 9799.62 8999.84 6299.71 12598.62 13599.96 4299.30 8199.96 5799.86 19
LF4IMVS99.01 19298.92 19599.27 22999.71 12899.28 18198.59 26099.77 7898.32 26299.39 22599.41 25798.62 13599.84 23696.62 29899.84 14798.69 331
ACMMPR99.23 13599.06 16099.76 5199.74 11999.69 8699.31 12899.59 17798.36 25199.35 22999.38 26798.61 13799.93 8297.43 25099.75 19699.67 80
API-MVS98.38 26498.39 24698.35 31098.83 34699.26 18599.14 17999.18 30598.59 22798.66 31798.78 35298.61 13799.57 35794.14 35499.56 26196.21 371
mvsmamba99.74 2199.70 2599.85 2099.93 2399.83 2999.76 1899.81 6299.96 399.91 3299.81 6798.60 13999.94 6599.58 3899.98 3199.77 45
test_one_060199.63 16099.76 5899.55 20099.23 14999.31 24199.61 19198.59 140
OMC-MVS98.90 20998.72 21599.44 17899.39 25399.42 15198.58 26199.64 14797.31 31699.44 20799.62 18298.59 14099.69 32096.17 31899.79 18399.22 260
test_0728_THIRD99.18 15699.62 15299.61 19198.58 14299.91 12497.72 22499.80 17899.77 45
RE-MVS-def99.13 13699.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.57 14397.27 26099.61 25199.54 165
ACMMPcopyleft99.25 13199.08 15499.74 6599.79 8399.68 8999.50 8799.65 14198.07 27699.52 19099.69 13898.57 14399.92 10297.18 26999.79 18399.63 110
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PEN-MVS99.66 4099.59 5199.89 899.83 5499.87 1599.66 5299.73 9799.70 6999.84 6299.73 11198.56 14599.96 4299.29 8499.94 7999.83 26
V4299.56 6099.54 6499.63 12199.79 8399.46 13799.39 10799.59 17799.24 14799.86 5799.70 13298.55 14699.82 26099.79 2299.95 6899.60 135
QAPM98.40 26397.99 27699.65 10799.39 25399.47 13399.67 4899.52 22091.70 36698.78 30999.80 7198.55 14699.95 5294.71 34999.75 19699.53 171
EI-MVSNet99.38 10299.44 8199.21 23999.58 17698.09 28999.26 14499.46 23999.62 8999.75 10099.67 15498.54 14899.85 22299.15 10499.92 9199.68 74
jason99.16 16299.11 14399.32 21899.75 11398.44 26598.26 29099.39 26098.70 21899.74 10899.30 28698.54 14899.97 2398.48 16199.82 16499.55 157
jason: jason.
OurMVSNet-221017-099.75 1899.71 2499.84 2399.96 599.83 2999.83 699.85 4099.80 4799.93 2599.93 1798.54 14899.93 8299.59 3599.98 3199.76 51
IterMVS-LS99.41 9499.47 7299.25 23599.81 6898.09 28998.85 23399.76 8399.62 8999.83 6699.64 16598.54 14899.97 2399.15 10499.99 1399.68 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
9.1498.64 22199.45 24198.81 24199.60 17197.52 30599.28 24799.56 21898.53 15299.83 25195.36 34199.64 241
mPP-MVS99.19 15399.00 17899.76 5199.76 10299.68 8999.38 10999.54 20698.34 26099.01 28299.50 23698.53 15299.93 8297.18 26999.78 18899.66 89
CNVR-MVS98.99 19798.80 21199.56 15099.25 29399.43 14898.54 27099.27 28798.58 22898.80 30699.43 25598.53 15299.70 31497.22 26799.59 25899.54 165
PVSNet_BlendedMVS99.03 18699.01 17599.09 25699.54 19997.99 29498.58 26199.82 5397.62 29999.34 23299.71 12598.52 15599.77 29597.98 19899.97 4399.52 182
PVSNet_Blended98.70 23298.59 22699.02 26499.54 19997.99 29497.58 34099.82 5395.70 34799.34 23298.98 33698.52 15599.77 29597.98 19899.83 15599.30 247
MCST-MVS99.02 18898.81 20999.65 10799.58 17699.49 13198.58 26199.07 31298.40 24799.04 28199.25 29798.51 15799.80 28197.31 25699.51 27699.65 97
UGNet99.38 10299.34 9799.49 16598.90 33898.90 23399.70 3499.35 26999.86 2998.57 32499.81 6798.50 15899.93 8299.38 6499.98 3199.66 89
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
XVS99.27 12899.11 14399.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31099.47 24798.47 15999.88 17397.62 23799.73 20899.67 80
X-MVStestdata96.09 33194.87 34099.75 6099.71 12899.71 7699.37 11399.61 15999.29 13798.76 31061.30 38498.47 15999.88 17397.62 23799.73 20899.67 80
diffmvspermissive99.34 11599.32 10299.39 19799.67 15398.77 24198.57 26599.81 6299.61 9299.48 20099.41 25798.47 15999.86 20598.97 12499.90 10199.53 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ambc99.20 24199.35 26398.53 25999.17 17199.46 23999.67 13299.80 7198.46 16299.70 31497.92 20399.70 21999.38 227
FC-MVSNet-test99.70 2699.65 3699.86 1899.88 3999.86 1899.72 2999.78 7599.90 1499.82 6799.83 5598.45 16399.87 18799.51 4999.97 4399.86 19
dcpmvs_299.61 5499.64 4099.53 15899.79 8398.82 23799.58 7499.97 1199.95 599.96 1699.76 9998.44 16499.99 699.34 7299.96 5799.78 41
131498.00 28597.90 28898.27 31698.90 33897.45 31699.30 13199.06 31494.98 35597.21 36499.12 31698.43 16599.67 33595.58 33698.56 34597.71 363
USDC98.96 20198.93 19199.05 26299.54 19997.99 29497.07 36199.80 6498.21 26899.75 10099.77 9598.43 16599.64 34797.90 20599.88 11999.51 184
KD-MVS_self_test99.63 4699.59 5199.76 5199.84 5099.90 799.37 11399.79 7099.83 4099.88 4899.85 4998.42 16799.90 14299.60 3499.73 20899.49 194
APD_test199.36 10899.28 11599.61 13399.89 3499.89 1099.32 12399.74 9399.18 15699.69 12499.75 10498.41 16899.84 23697.85 21399.70 21999.10 288
SR-MVS-dyc-post99.27 12899.11 14399.73 7499.54 19999.74 6899.26 14499.62 15299.16 16399.52 19099.64 16598.41 16899.91 12497.27 26099.61 25199.54 165
v14899.40 9699.41 8699.39 19799.76 10298.94 22699.09 19799.59 17799.17 16199.81 7499.61 19198.41 16899.69 32099.32 7799.94 7999.53 171
Test By Simon98.41 168
PM-MVS99.36 10899.29 11399.58 14199.83 5499.66 9398.95 22499.86 3698.85 20199.81 7499.73 11198.40 17299.92 10298.36 16799.83 15599.17 273
SR-MVS99.19 15399.00 17899.74 6599.51 21299.72 7499.18 16699.60 17198.85 20199.47 20199.58 20698.38 17399.92 10296.92 27899.54 27099.57 152
segment_acmp98.37 174
MP-MVScopyleft99.06 17998.83 20799.76 5199.76 10299.71 7699.32 12399.50 22898.35 25698.97 28499.48 24398.37 17499.92 10295.95 32799.75 19699.63 110
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
bld_raw_dy_0_6499.70 2699.65 3699.85 2099.95 1399.77 5099.66 5299.71 10999.95 599.91 3299.77 9598.35 176100.00 199.54 4499.99 1399.79 38
DVP-MVScopyleft99.32 12099.17 12999.77 4499.69 14099.80 4299.14 17999.31 27899.16 16399.62 15299.61 19198.35 17699.91 12497.88 20799.72 21499.61 131
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 14099.80 4299.24 15199.57 18999.16 16399.73 11299.65 16398.35 176
MVS95.72 33894.63 34298.99 26598.56 36197.98 30099.30 13198.86 32172.71 37597.30 36199.08 32198.34 17999.74 30389.21 36798.33 34999.26 252
CDPH-MVS98.56 24498.20 26399.61 13399.50 21899.46 13798.32 28699.41 25095.22 35299.21 25999.10 32098.34 17999.82 26095.09 34599.66 23799.56 154
testdata99.42 18499.51 21298.93 22999.30 28196.20 34098.87 29899.40 26198.33 18199.89 15996.29 31299.28 30599.44 212
test_241102_TWO99.54 20699.13 16999.76 9399.63 17598.32 18299.92 10297.85 21399.69 22399.75 54
APD-MVScopyleft98.87 21598.59 22699.71 8599.50 21899.62 10599.01 21199.57 18996.80 33399.54 18399.63 17598.29 18399.91 12495.24 34299.71 21799.61 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
OpenMVScopyleft98.12 1098.23 27597.89 28999.26 23299.19 30499.26 18599.65 5899.69 12191.33 36798.14 34399.77 9598.28 18499.96 4295.41 33999.55 26598.58 337
FIs99.65 4599.58 5599.84 2399.84 5099.85 1999.66 5299.75 8899.86 2999.74 10899.79 8198.27 18599.85 22299.37 6799.93 8799.83 26
TAPA-MVS97.92 1398.03 28397.55 29999.46 17399.47 23499.44 14498.50 27499.62 15286.79 37099.07 27999.26 29598.26 18699.62 34997.28 25999.73 20899.31 246
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
patch_mono-299.51 6899.46 7699.64 11499.70 13699.11 20899.04 20599.87 3399.71 6499.47 20199.79 8198.24 18799.98 1199.38 6499.96 5799.83 26
v2v48299.50 6999.47 7299.58 14199.78 9099.25 18899.14 17999.58 18799.25 14599.81 7499.62 18298.24 18799.84 23699.83 1899.97 4399.64 105
pmmvs499.13 16899.06 16099.36 20899.57 18699.10 21398.01 31399.25 29398.78 21199.58 16699.44 25498.24 18799.76 29798.74 14799.93 8799.22 260
mvs_anonymous99.28 12499.39 8798.94 27099.19 30497.81 30599.02 20999.55 20099.78 5299.85 5999.80 7198.24 18799.86 20599.57 4099.50 27899.15 277
DPE-MVScopyleft99.14 16698.92 19599.82 2799.57 18699.77 5098.74 25199.60 17198.55 23199.76 9399.69 13898.23 19199.92 10296.39 30899.75 19699.76 51
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MTAPA99.35 11099.20 12699.80 3499.81 6899.81 3899.33 12199.53 21599.27 14199.42 21399.63 17598.21 19299.95 5297.83 21799.79 18399.65 97
MS-PatchMatch99.00 19498.97 18799.09 25699.11 31998.19 28098.76 25099.33 27298.49 23999.44 20799.58 20698.21 19299.69 32098.20 18099.62 24499.39 225
our_test_398.85 21799.09 15298.13 31999.66 15494.90 35597.72 33399.58 18799.07 17699.64 13999.62 18298.19 19499.93 8298.41 16499.95 6899.55 157
MVP-Stereo99.16 16299.08 15499.43 18299.48 22899.07 21699.08 20099.55 20098.63 22399.31 24199.68 14998.19 19499.78 28798.18 18499.58 25999.45 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
WR-MVS_H99.61 5499.53 6899.87 1599.80 7399.83 2999.67 4899.75 8899.58 10199.85 5999.69 13898.18 19699.94 6599.28 8699.95 6899.83 26
new_pmnet98.88 21398.89 19998.84 28699.70 13697.62 31198.15 29799.50 22897.98 28199.62 15299.54 22798.15 19799.94 6597.55 24299.84 14798.95 313
D2MVS99.22 14399.19 12799.29 22499.69 14098.74 24498.81 24199.41 25098.55 23199.68 12799.69 13898.13 19899.87 18798.82 13799.98 3199.24 255
Anonymous2024052999.42 9099.34 9799.65 10799.53 20599.60 11399.63 6099.39 26099.47 11299.76 9399.78 8898.13 19899.86 20598.70 15099.68 22899.49 194
EU-MVSNet99.39 10099.62 4298.72 29699.88 3996.44 33799.56 7999.85 4099.90 1499.90 3899.85 4998.09 20099.83 25199.58 3899.95 6899.90 12
PMVScopyleft92.94 2198.82 21998.81 20998.85 28499.84 5097.99 29499.20 16199.47 23699.71 6499.42 21399.82 6298.09 20099.47 36593.88 35999.85 14299.07 300
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
HPM-MVS++copyleft98.96 20198.70 21999.74 6599.52 21099.71 7698.86 23199.19 30498.47 24198.59 32299.06 32398.08 20299.91 12496.94 27799.60 25499.60 135
ab-mvs99.33 11899.28 11599.47 17199.57 18699.39 15899.78 1199.43 24798.87 19999.57 16999.82 6298.06 20399.87 18798.69 15299.73 20899.15 277
RRT_MVS99.67 3899.59 5199.91 299.94 1699.88 1299.78 1199.27 28799.87 2699.91 3299.87 4098.04 20499.96 4299.68 2899.99 1399.90 12
N_pmnet98.73 22998.53 23699.35 21099.72 12598.67 24798.34 28494.65 37198.35 25699.79 8299.68 14998.03 20599.93 8298.28 17399.92 9199.44 212
TEST999.35 26399.35 17098.11 30399.41 25094.83 35997.92 34998.99 33398.02 20699.85 222
train_agg98.35 26897.95 28099.57 14799.35 26399.35 17098.11 30399.41 25094.90 35697.92 34998.99 33398.02 20699.85 22295.38 34099.44 28599.50 189
test_899.34 27199.31 17698.08 30799.40 25794.90 35697.87 35398.97 33898.02 20699.84 236
MVSFormer99.41 9499.44 8199.31 22199.57 18698.40 26899.77 1499.80 6499.73 5899.63 14399.30 28698.02 20699.98 1199.43 5799.69 22399.55 157
lupinMVS98.96 20198.87 20199.24 23799.57 18698.40 26898.12 30199.18 30598.28 26499.63 14399.13 31298.02 20699.97 2398.22 17899.69 22399.35 236
Anonymous2023121199.62 5299.57 5899.76 5199.61 16599.60 11399.81 999.73 9799.82 4299.90 3899.90 2797.97 21199.86 20599.42 6299.96 5799.80 32
MIMVSNet199.66 4099.62 4299.80 3499.94 1699.87 1599.69 4199.77 7899.78 5299.93 2599.89 3197.94 21299.92 10299.65 3099.98 3199.62 121
原ACMM199.37 20499.47 23498.87 23699.27 28796.74 33498.26 33499.32 28297.93 21399.82 26095.96 32699.38 29399.43 218
test_prior297.95 32197.87 28998.05 34599.05 32497.90 21495.99 32499.49 280
RPSCF99.18 15799.02 17299.64 11499.83 5499.85 1999.44 10199.82 5398.33 26199.50 19799.78 8897.90 21499.65 34596.78 28799.83 15599.44 212
PMMVS98.49 25398.29 25799.11 25398.96 33598.42 26797.54 34199.32 27497.53 30498.47 32998.15 37097.88 21699.82 26097.46 24899.24 31199.09 292
ZD-MVS99.43 24599.61 11199.43 24796.38 33799.11 27399.07 32297.86 21799.92 10294.04 35699.49 280
NCCC98.82 21998.57 23099.58 14199.21 29999.31 17698.61 25799.25 29398.65 22198.43 33099.26 29597.86 21799.81 27596.55 29999.27 30899.61 131
UniMVSNet_NR-MVSNet99.37 10599.25 12199.72 8099.47 23499.56 12298.97 22299.61 15999.43 12399.67 13299.28 29097.85 21999.95 5299.17 10099.81 17399.65 97
TAMVS99.49 7199.45 7899.63 12199.48 22899.42 15199.45 9899.57 18999.66 8299.78 8699.83 5597.85 21999.86 20599.44 5699.96 5799.61 131
DP-MVS Recon98.50 25198.23 25999.31 22199.49 22399.46 13798.56 26699.63 14994.86 35898.85 30099.37 26997.81 22199.59 35596.08 31999.44 28598.88 319
PatchMatch-RL98.68 23398.47 23899.30 22399.44 24299.28 18198.14 29999.54 20697.12 32599.11 27399.25 29797.80 22299.70 31496.51 30299.30 30298.93 315
CP-MVSNet99.54 6599.43 8399.87 1599.76 10299.82 3599.57 7799.61 15999.54 10299.80 7799.64 16597.79 22399.95 5299.21 9199.94 7999.84 22
DPM-MVS98.28 27097.94 28499.32 21899.36 26199.11 20897.31 35398.78 32696.88 32998.84 30199.11 31997.77 22499.61 35394.03 35799.36 29699.23 258
114514_t98.49 25398.11 27099.64 11499.73 12299.58 11999.24 15199.76 8389.94 36999.42 21399.56 21897.76 22599.86 20597.74 22399.82 16499.47 202
tmp_tt95.75 33795.42 33596.76 34689.90 38294.42 35798.86 23197.87 35578.01 37399.30 24699.69 13897.70 22695.89 37799.29 8498.14 35699.95 6
UniMVSNet (Re)99.37 10599.26 11999.68 9299.51 21299.58 11998.98 22199.60 17199.43 12399.70 12199.36 27397.70 22699.88 17399.20 9499.87 13099.59 142
Effi-MVS+-dtu99.07 17898.92 19599.52 16098.89 34199.78 4799.15 17799.66 13299.34 13398.92 29199.24 30297.69 22899.98 1198.11 19099.28 30598.81 325
F-COLMAP98.74 22798.45 24099.62 13099.57 18699.47 13398.84 23499.65 14196.31 33998.93 28899.19 30997.68 22999.87 18796.52 30199.37 29599.53 171
新几何199.52 16099.50 21899.22 19599.26 29095.66 34898.60 32199.28 29097.67 23099.89 15995.95 32799.32 30099.45 207
旧先验199.49 22399.29 17999.26 29099.39 26597.67 23099.36 29699.46 206
DU-MVS99.33 11899.21 12599.71 8599.43 24599.56 12298.83 23699.53 21599.38 12999.67 13299.36 27397.67 23099.95 5299.17 10099.81 17399.63 110
Baseline_NR-MVSNet99.49 7199.37 9299.82 2799.91 2799.84 2498.83 23699.86 3699.68 7499.65 13899.88 3697.67 23099.87 18799.03 11799.86 13899.76 51
CANet99.11 17399.05 16499.28 22698.83 34698.56 25898.71 25599.41 25099.25 14599.23 25499.22 30497.66 23499.94 6599.19 9599.97 4399.33 239
VPNet99.46 8199.37 9299.71 8599.82 6199.59 11599.48 9299.70 11599.81 4499.69 12499.58 20697.66 23499.86 20599.17 10099.44 28599.67 80
Anonymous2023120699.35 11099.31 10399.47 17199.74 11999.06 21899.28 13999.74 9399.23 14999.72 11399.53 22997.63 23699.88 17399.11 11299.84 14799.48 198
test1299.54 15799.29 28599.33 17399.16 30798.43 33097.54 23799.82 26099.47 28299.48 198
NR-MVSNet99.40 9699.31 10399.68 9299.43 24599.55 12599.73 2699.50 22899.46 11599.88 4899.36 27397.54 23799.87 18798.97 12499.87 13099.63 110
MAR-MVS98.24 27497.92 28699.19 24298.78 35399.65 9899.17 17199.14 30995.36 35098.04 34698.81 35197.47 23999.72 30895.47 33899.06 31898.21 354
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CHOSEN 1792x268899.39 10099.30 10899.65 10799.88 3999.25 18898.78 24899.88 3198.66 22099.96 1699.79 8197.45 24099.93 8299.34 7299.99 1399.78 41
PAPR97.56 30197.07 30999.04 26398.80 35098.11 28797.63 33799.25 29394.56 36198.02 34798.25 36997.43 24199.68 33090.90 36698.74 33899.33 239
YYNet198.95 20498.99 18398.84 28699.64 15897.14 32598.22 29399.32 27498.92 19399.59 16499.66 15897.40 24299.83 25198.27 17499.90 10199.55 157
PVSNet97.47 1598.42 26098.44 24198.35 31099.46 23896.26 33996.70 36699.34 27197.68 29799.00 28399.13 31297.40 24299.72 30897.59 24199.68 22899.08 295
MDA-MVSNet_test_wron98.95 20498.99 18398.85 28499.64 15897.16 32398.23 29299.33 27298.93 19199.56 17699.66 15897.39 24499.83 25198.29 17299.88 11999.55 157
MG-MVS98.52 24898.39 24698.94 27099.15 30997.39 31898.18 29499.21 30398.89 19899.23 25499.63 17597.37 24599.74 30394.22 35399.61 25199.69 68
OpenMVS_ROBcopyleft97.31 1797.36 30796.84 31798.89 28399.29 28599.45 14298.87 23099.48 23386.54 37299.44 20799.74 10797.34 24699.86 20591.61 36399.28 30597.37 367
AdaColmapbinary98.60 23898.35 25199.38 20199.12 31499.22 19598.67 25699.42 24997.84 29298.81 30499.27 29297.32 24799.81 27595.14 34399.53 27299.10 288
test22299.51 21299.08 21597.83 33099.29 28395.21 35398.68 31699.31 28497.28 24899.38 29399.43 218
HQP_MVS98.90 20998.68 22099.55 15399.58 17699.24 19298.80 24499.54 20698.94 18899.14 26999.25 29797.24 24999.82 26095.84 33099.78 18899.60 135
plane_prior699.47 23499.26 18597.24 249
GBi-Net99.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
test199.42 9099.31 10399.73 7499.49 22399.77 5099.68 4499.70 11599.44 11899.62 15299.83 5597.21 25199.90 14298.96 12699.90 10199.53 171
FMVSNet299.35 11099.28 11599.55 15399.49 22399.35 17099.45 9899.57 18999.44 11899.70 12199.74 10797.21 25199.87 18799.03 11799.94 7999.44 212
BH-RMVSNet98.41 26198.14 26999.21 23999.21 29998.47 26298.60 25998.26 34898.35 25698.93 28899.31 28497.20 25499.66 33994.32 35199.10 31799.51 184
MVS-HIRNet97.86 28798.22 26196.76 34699.28 28891.53 37298.38 28392.60 37699.13 16999.31 24199.96 1297.18 25599.68 33098.34 16999.83 15599.07 300
PAPM_NR98.36 26598.04 27399.33 21499.48 22898.93 22998.79 24799.28 28697.54 30398.56 32598.57 35997.12 25699.69 32094.09 35598.90 32999.38 227
CPTT-MVS98.74 22798.44 24199.64 11499.61 16599.38 16099.18 16699.55 20096.49 33599.27 24899.37 26997.11 25799.92 10295.74 33399.67 23499.62 121
CNLPA98.57 24398.34 25299.28 22699.18 30699.10 21398.34 28499.41 25098.48 24098.52 32698.98 33697.05 25899.78 28795.59 33599.50 27898.96 311
BH-untuned98.22 27698.09 27198.58 30299.38 25697.24 32198.55 26798.98 31997.81 29399.20 26498.76 35397.01 25999.65 34594.83 34698.33 34998.86 321
VDD-MVS99.20 15099.11 14399.44 17899.43 24598.98 22199.50 8798.32 34799.80 4799.56 17699.69 13896.99 26099.85 22298.99 12099.73 20899.50 189
PLCcopyleft97.35 1698.36 26597.99 27699.48 16999.32 27899.24 19298.50 27499.51 22495.19 35498.58 32398.96 34096.95 26199.83 25195.63 33499.25 30999.37 230
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
WR-MVS99.11 17398.93 19199.66 10299.30 28399.42 15198.42 28199.37 26599.04 17999.57 16999.20 30896.89 26299.86 20598.66 15499.87 13099.70 64
CL-MVSNet_self_test98.71 23198.56 23399.15 24799.22 29798.66 25097.14 35899.51 22498.09 27599.54 18399.27 29296.87 26399.74 30398.43 16398.96 32499.03 304
MSP-MVS99.04 18598.79 21299.81 3099.78 9099.73 7099.35 11799.57 18998.54 23499.54 18398.99 33396.81 26499.93 8296.97 27699.53 27299.77 45
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
HQP2-MVS96.67 265
HQP-MVS98.36 26598.02 27599.39 19799.31 27998.94 22697.98 31799.37 26597.45 30898.15 33998.83 34996.67 26599.70 31494.73 34799.67 23499.53 171
CANet_DTU98.91 20798.85 20399.09 25698.79 35198.13 28498.18 29499.31 27899.48 10898.86 29999.51 23396.56 26799.95 5299.05 11699.95 6899.19 269
pmmvs599.19 15399.11 14399.42 18499.76 10298.88 23498.55 26799.73 9798.82 20599.72 11399.62 18296.56 26799.82 26099.32 7799.95 6899.56 154
MVEpermissive92.54 2296.66 32196.11 32598.31 31499.68 14897.55 31397.94 32295.60 36999.37 13090.68 37798.70 35596.56 26798.61 37586.94 37599.55 26598.77 329
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
VNet99.18 15799.06 16099.56 15099.24 29599.36 16799.33 12199.31 27899.67 7899.47 20199.57 21596.48 27099.84 23699.15 10499.30 30299.47 202
MDA-MVSNet-bldmvs99.06 17999.05 16499.07 26099.80 7397.83 30498.89 22899.72 10699.29 13799.63 14399.70 13296.47 27199.89 15998.17 18699.82 16499.50 189
DeepMVS_CXcopyleft97.98 32199.69 14096.95 32899.26 29075.51 37495.74 37298.28 36896.47 27199.62 34991.23 36597.89 36097.38 366
1112_ss99.05 18298.84 20599.67 9599.66 15499.29 17998.52 27299.82 5397.65 29899.43 21199.16 31096.42 27399.91 12499.07 11599.84 14799.80 32
TR-MVS97.44 30497.15 30898.32 31298.53 36297.46 31598.47 27697.91 35496.85 33098.21 33898.51 36396.42 27399.51 36392.16 36297.29 36597.98 360
miper_ehance_all_eth98.59 24198.59 22698.59 30198.98 33497.07 32697.49 34699.52 22098.50 23799.52 19099.37 26996.41 27599.71 31297.86 21199.62 24499.00 310
Anonymous2024052199.44 8599.42 8599.49 16599.89 3498.96 22599.62 6199.76 8399.85 3499.82 6799.88 3696.39 27699.97 2399.59 3599.98 3199.55 157
c3_l98.72 23098.71 21698.72 29699.12 31497.22 32297.68 33699.56 19498.90 19599.54 18399.48 24396.37 27799.73 30697.88 20799.88 11999.21 262
sss98.90 20998.77 21399.27 22999.48 22898.44 26598.72 25399.32 27497.94 28699.37 22799.35 27896.31 27899.91 12498.85 13499.63 24399.47 202
CDS-MVSNet99.22 14399.13 13699.50 16499.35 26399.11 20898.96 22399.54 20699.46 11599.61 15899.70 13296.31 27899.83 25199.34 7299.88 11999.55 157
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth98.68 23398.71 21698.60 30099.10 32096.84 33297.52 34599.54 20698.94 18899.58 16699.48 24396.25 28099.76 29798.01 19699.93 8799.21 262
SixPastTwentyTwo99.42 9099.30 10899.76 5199.92 2699.67 9199.70 3499.14 30999.65 8499.89 4299.90 2796.20 28199.94 6599.42 6299.92 9199.67 80
MVS_030498.88 21398.71 21699.39 19798.85 34498.91 23299.45 9899.30 28198.56 22997.26 36399.68 14996.18 28299.96 4299.17 10099.94 7999.29 250
Test_1112_low_res98.95 20498.73 21499.63 12199.68 14899.15 20598.09 30599.80 6497.14 32499.46 20599.40 26196.11 28399.89 15999.01 11999.84 14799.84 22
IterMVS98.97 19899.16 13098.42 30799.74 11995.64 34898.06 31099.83 4899.83 4099.85 5999.74 10796.10 28499.99 699.27 87100.00 199.63 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT99.00 19499.16 13098.51 30399.75 11395.90 34598.07 30899.84 4699.84 3799.89 4299.73 11196.01 28599.99 699.33 75100.00 199.63 110
SCA98.11 27998.36 24997.36 33799.20 30292.99 36498.17 29698.49 34198.24 26699.10 27599.57 21596.01 28599.94 6596.86 28299.62 24499.14 282
PVSNet_095.53 1995.85 33695.31 33897.47 33498.78 35393.48 36395.72 36999.40 25796.18 34197.37 36097.73 37495.73 28799.58 35695.49 33781.40 37699.36 233
CMPMVSbinary77.52 2398.50 25198.19 26699.41 19198.33 36699.56 12299.01 21199.59 17795.44 34999.57 16999.80 7195.64 28899.46 36796.47 30599.92 9199.21 262
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
BH-w/o97.20 30897.01 31197.76 32899.08 32395.69 34798.03 31298.52 33895.76 34697.96 34898.02 37195.62 28999.47 36592.82 36197.25 36698.12 358
cascas96.99 31296.82 31897.48 33397.57 37695.64 34896.43 36899.56 19491.75 36597.13 36697.61 37695.58 29098.63 37496.68 29299.11 31698.18 357
UnsupCasMVSNet_bld98.55 24598.27 25899.40 19399.56 19799.37 16397.97 32099.68 12497.49 30799.08 27699.35 27895.41 29199.82 26097.70 22998.19 35499.01 309
UnsupCasMVSNet_eth98.83 21898.57 23099.59 13899.68 14899.45 14298.99 21899.67 12899.48 10899.55 18199.36 27394.92 29299.86 20598.95 13096.57 36999.45 207
EPP-MVSNet99.17 16199.00 17899.66 10299.80 7399.43 14899.70 3499.24 29699.48 10899.56 17699.77 9594.89 29399.93 8298.72 14999.89 11099.63 110
WTY-MVS98.59 24198.37 24899.26 23299.43 24598.40 26898.74 25199.13 31198.10 27399.21 25999.24 30294.82 29499.90 14297.86 21198.77 33499.49 194
miper_enhance_ethall98.03 28397.94 28498.32 31298.27 36796.43 33896.95 36299.41 25096.37 33899.43 21198.96 34094.74 29599.69 32097.71 22699.62 24498.83 324
IS-MVSNet99.03 18698.85 20399.55 15399.80 7399.25 18899.73 2699.15 30899.37 13099.61 15899.71 12594.73 29699.81 27597.70 22999.88 11999.58 147
miper_lstm_enhance98.65 23598.60 22498.82 29199.20 30297.33 31997.78 33199.66 13299.01 18199.59 16499.50 23694.62 29799.85 22298.12 18999.90 10199.26 252
lessismore_v099.64 11499.86 4699.38 16090.66 37899.89 4299.83 5594.56 29899.97 2399.56 4199.92 9199.57 152
PCF-MVS96.03 1896.73 31995.86 33099.33 21499.44 24299.16 20396.87 36499.44 24486.58 37198.95 28699.40 26194.38 29999.88 17387.93 37099.80 17898.95 313
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VDDNet98.97 19898.82 20899.42 18499.71 12898.81 23899.62 6198.68 33099.81 4499.38 22699.80 7194.25 30099.85 22298.79 14199.32 30099.59 142
HY-MVS98.23 998.21 27797.95 28098.99 26599.03 32898.24 27599.61 6698.72 32896.81 33298.73 31299.51 23394.06 30199.86 20596.91 27998.20 35298.86 321
test_method91.72 34292.32 34589.91 35993.49 38170.18 38390.28 37299.56 19461.71 37695.39 37399.52 23193.90 30299.94 6598.76 14598.27 35199.62 121
DIV-MVS_self_test98.54 24698.42 24398.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.87 30399.78 28797.97 20099.89 11099.18 271
cl____98.54 24698.41 24498.92 27499.03 32897.80 30697.46 34799.59 17798.90 19599.60 16199.46 25093.85 30499.78 28797.97 20099.89 11099.17 273
EMVS96.96 31497.28 30495.99 35698.76 35591.03 37495.26 37198.61 33499.34 13398.92 29198.88 34793.79 30599.66 33992.87 36099.05 31997.30 368
EPNet_dtu97.62 29897.79 29297.11 34496.67 37792.31 36798.51 27398.04 35099.24 14795.77 37199.47 24793.78 30699.66 33998.98 12299.62 24499.37 230
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test111197.74 29298.16 26896.49 35199.60 16789.86 38099.71 3391.21 37799.89 2099.88 4899.87 4093.73 30799.90 14299.56 4199.99 1399.70 64
K. test v398.87 21598.60 22499.69 9099.93 2399.46 13799.74 2394.97 37099.78 5299.88 4899.88 3693.66 30899.97 2399.61 3399.95 6899.64 105
ECVR-MVScopyleft97.73 29398.04 27396.78 34599.59 17190.81 37699.72 2990.43 37999.89 2099.86 5799.86 4793.60 30999.89 15999.46 5499.99 1399.65 97
CHOSEN 280x42098.41 26198.41 24498.40 30899.34 27195.89 34696.94 36399.44 24498.80 20899.25 25099.52 23193.51 31099.98 1198.94 13199.98 3199.32 242
CVMVSNet98.61 23698.88 20097.80 32799.58 17693.60 36299.26 14499.64 14799.66 8299.72 11399.67 15493.26 31199.93 8299.30 8199.81 17399.87 17
Anonymous20240521198.75 22598.46 23999.63 12199.34 27199.66 9399.47 9597.65 35699.28 14099.56 17699.50 23693.15 31299.84 23698.62 15599.58 25999.40 223
EPNet98.13 27897.77 29399.18 24494.57 38097.99 29499.24 15197.96 35299.74 5797.29 36299.62 18293.13 31399.97 2398.59 15699.83 15599.58 147
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
FA-MVS(test-final)98.52 24898.32 25499.10 25599.48 22898.67 24799.77 1498.60 33697.35 31499.63 14399.80 7193.07 31499.84 23697.92 20399.30 30298.78 328
PAPM95.61 33994.71 34198.31 31499.12 31496.63 33496.66 36798.46 34290.77 36896.25 36898.68 35693.01 31599.69 32081.60 37697.86 36298.62 333
Vis-MVSNet (Re-imp)98.77 22398.58 22999.34 21199.78 9098.88 23499.61 6699.56 19499.11 17399.24 25399.56 21893.00 31699.78 28797.43 25099.89 11099.35 236
E-PMN97.14 31197.43 30096.27 35398.79 35191.62 37195.54 37099.01 31899.44 11898.88 29599.12 31692.78 31799.68 33094.30 35299.03 32197.50 364
FMVSNet398.80 22198.63 22399.32 21899.13 31298.72 24599.10 19399.48 23399.23 14999.62 15299.64 16592.57 31899.86 20598.96 12699.90 10199.39 225
HyFIR lowres test98.91 20798.64 22199.73 7499.85 4999.47 13398.07 30899.83 4898.64 22299.89 4299.60 19992.57 318100.00 199.33 7599.97 4399.72 58
RPMNet98.60 23898.53 23698.83 28899.05 32598.12 28599.30 13199.62 15299.86 2999.16 26599.74 10792.53 32099.92 10298.75 14698.77 33498.44 345
h-mvs3398.61 23698.34 25299.44 17899.60 16798.67 24799.27 14299.44 24499.68 7499.32 23799.49 24092.50 321100.00 199.24 8896.51 37099.65 97
hse-mvs298.52 24898.30 25699.16 24599.29 28598.60 25798.77 24999.02 31699.68 7499.32 23799.04 32692.50 32199.85 22299.24 8897.87 36199.03 304
tpmvs97.39 30597.69 29596.52 35098.41 36391.76 36999.30 13198.94 32097.74 29497.85 35499.55 22592.40 32399.73 30696.25 31498.73 34098.06 359
tpmrst97.73 29398.07 27296.73 34898.71 35792.00 36899.10 19398.86 32198.52 23598.92 29199.54 22791.90 32499.82 26098.02 19399.03 32198.37 347
JIA-IIPM98.06 28297.92 28698.50 30498.59 36097.02 32798.80 24498.51 33999.88 2597.89 35199.87 4091.89 32599.90 14298.16 18797.68 36398.59 335
CR-MVSNet98.35 26898.20 26398.83 28899.05 32598.12 28599.30 13199.67 12897.39 31299.16 26599.79 8191.87 32699.91 12498.78 14498.77 33498.44 345
Patchmtry98.78 22298.54 23499.49 16598.89 34199.19 20199.32 12399.67 12899.65 8499.72 11399.79 8191.87 32699.95 5298.00 19799.97 4399.33 239
MDTV_nov1_ep13_2view91.44 37399.14 17997.37 31399.21 25991.78 32896.75 28899.03 304
PatchT98.45 25898.32 25498.83 28898.94 33698.29 27499.24 15198.82 32499.84 3799.08 27699.76 9991.37 32999.94 6598.82 13799.00 32398.26 351
test_yl98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
DCV-MVSNet98.25 27297.95 28099.13 25199.17 30798.47 26299.00 21398.67 33298.97 18499.22 25799.02 33191.31 33099.69 32097.26 26298.93 32599.24 255
baseline197.73 29397.33 30398.96 26899.30 28397.73 30899.40 10598.42 34399.33 13599.46 20599.21 30691.18 33299.82 26098.35 16891.26 37599.32 242
tpm cat196.78 31796.98 31296.16 35598.85 34490.59 37899.08 20099.32 27492.37 36497.73 35999.46 25091.15 33399.69 32096.07 32098.80 33198.21 354
LFMVS98.46 25698.19 26699.26 23299.24 29598.52 26199.62 6196.94 36399.87 2699.31 24199.58 20691.04 33499.81 27598.68 15399.42 28999.45 207
MDTV_nov1_ep1397.73 29498.70 35890.83 37599.15 17798.02 35198.51 23698.82 30399.61 19190.98 33599.66 33996.89 28198.92 327
MIMVSNet98.43 25998.20 26399.11 25399.53 20598.38 27199.58 7498.61 33498.96 18699.33 23499.76 9990.92 33699.81 27597.38 25399.76 19499.15 277
ADS-MVSNet297.78 29197.66 29898.12 32099.14 31095.36 35099.22 15898.75 32796.97 32798.25 33599.64 16590.90 33799.94 6596.51 30299.56 26199.08 295
ADS-MVSNet97.72 29697.67 29797.86 32599.14 31094.65 35699.22 15898.86 32196.97 32798.25 33599.64 16590.90 33799.84 23696.51 30299.56 26199.08 295
alignmvs98.28 27097.96 27999.25 23599.12 31498.93 22999.03 20898.42 34399.64 8698.72 31397.85 37390.86 33999.62 34998.88 13399.13 31499.19 269
sam_mvs190.81 34099.14 282
PatchmatchNetpermissive97.65 29797.80 29097.18 34298.82 34992.49 36699.17 17198.39 34598.12 27298.79 30799.58 20690.71 34199.89 15997.23 26699.41 29099.16 275
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
patchmatchnet-post99.62 18290.58 34299.94 65
Patchmatch-RL test98.60 23898.36 24999.33 21499.77 9899.07 21698.27 28999.87 3398.91 19499.74 10899.72 11890.57 34399.79 28498.55 15899.85 14299.11 286
sam_mvs90.52 344
pmmvs398.08 28197.80 29098.91 27699.41 25197.69 31097.87 32899.66 13295.87 34399.50 19799.51 23390.35 34599.97 2398.55 15899.47 28299.08 295
test_post52.41 38590.25 34699.86 205
iter_conf_final98.75 22598.54 23499.40 19399.33 27698.75 24299.26 14499.59 17799.80 4799.76 9399.58 20690.17 34799.92 10299.37 6799.97 4399.54 165
Patchmatch-test98.10 28097.98 27898.48 30599.27 29096.48 33699.40 10599.07 31298.81 20699.23 25499.57 21590.11 34899.87 18796.69 29199.64 24199.09 292
test-LLR97.15 30996.95 31397.74 33098.18 37095.02 35397.38 34996.10 36498.00 27897.81 35598.58 35790.04 34999.91 12497.69 23598.78 33298.31 348
test0.0.03 197.37 30696.91 31698.74 29597.72 37397.57 31297.60 33997.36 36298.00 27899.21 25998.02 37190.04 34999.79 28498.37 16695.89 37398.86 321
GA-MVS97.99 28697.68 29698.93 27399.52 21098.04 29397.19 35799.05 31598.32 26298.81 30498.97 33889.89 35199.41 36898.33 17099.05 31999.34 238
test_post199.14 17951.63 38689.54 35299.82 26096.86 282
AUN-MVS97.82 28997.38 30299.14 25099.27 29098.53 25998.72 25399.02 31698.10 27397.18 36599.03 33089.26 35399.85 22297.94 20297.91 35999.03 304
FE-MVS97.85 28897.42 30199.15 24799.44 24298.75 24299.77 1498.20 34995.85 34499.33 23499.80 7188.86 35499.88 17396.40 30799.12 31598.81 325
MVSTER98.47 25598.22 26199.24 23799.06 32498.35 27399.08 20099.46 23999.27 14199.75 10099.66 15888.61 35599.85 22299.14 11099.92 9199.52 182
baseline296.83 31696.28 32298.46 30699.09 32296.91 33098.83 23693.87 37597.23 31996.23 37098.36 36688.12 35699.90 14296.68 29298.14 35698.57 338
iter_conf0598.46 25698.23 25999.15 24799.04 32797.99 29499.10 19399.61 15999.79 5099.76 9399.58 20687.88 35799.92 10299.31 8099.97 4399.53 171
cl2297.56 30197.28 30498.40 30898.37 36596.75 33397.24 35699.37 26597.31 31699.41 21999.22 30487.30 35899.37 36997.70 22999.62 24499.08 295
dp96.86 31597.07 30996.24 35498.68 35990.30 37999.19 16598.38 34697.35 31498.23 33799.59 20487.23 35999.82 26096.27 31398.73 34098.59 335
ET-MVSNet_ETH3D96.78 31796.07 32698.91 27699.26 29297.92 30297.70 33596.05 36797.96 28592.37 37698.43 36587.06 36099.90 14298.27 17497.56 36498.91 317
thres100view90096.39 32596.03 32797.47 33499.63 16095.93 34499.18 16697.57 35798.75 21698.70 31597.31 37987.04 36199.67 33587.62 37198.51 34696.81 369
thres600view796.60 32296.16 32497.93 32399.63 16096.09 34399.18 16697.57 35798.77 21298.72 31397.32 37887.04 36199.72 30888.57 36898.62 34397.98 360
tfpn200view996.30 32895.89 32897.53 33299.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34696.81 369
thres40096.40 32495.89 32897.92 32499.58 17696.11 34199.00 21397.54 36098.43 24298.52 32696.98 38186.85 36399.67 33587.62 37198.51 34697.98 360
thres20096.09 33195.68 33397.33 33999.48 22896.22 34098.53 27197.57 35798.06 27798.37 33296.73 38386.84 36599.61 35386.99 37498.57 34496.16 372
tpm97.15 30996.95 31397.75 32998.91 33794.24 35899.32 12397.96 35297.71 29698.29 33399.32 28286.72 36699.92 10298.10 19196.24 37299.09 292
EPMVS96.53 32396.32 32197.17 34398.18 37092.97 36599.39 10789.95 38098.21 26898.61 32099.59 20486.69 36799.72 30896.99 27599.23 31398.81 325
CostFormer96.71 32096.79 31996.46 35298.90 33890.71 37799.41 10498.68 33094.69 36098.14 34399.34 28186.32 36899.80 28197.60 24098.07 35898.88 319
thisisatest051596.98 31396.42 32098.66 29999.42 25097.47 31497.27 35494.30 37397.24 31899.15 26798.86 34885.01 36999.87 18797.10 27199.39 29298.63 332
tpm296.35 32696.22 32396.73 34898.88 34391.75 37099.21 16098.51 33993.27 36397.89 35199.21 30684.83 37099.70 31496.04 32198.18 35598.75 330
tttt051797.62 29897.20 30798.90 28299.76 10297.40 31799.48 9294.36 37299.06 17899.70 12199.49 24084.55 37199.94 6598.73 14899.65 23999.36 233
thisisatest053097.45 30396.95 31398.94 27099.68 14897.73 30899.09 19794.19 37498.61 22699.56 17699.30 28684.30 37299.93 8298.27 17499.54 27099.16 275
FPMVS96.32 32795.50 33498.79 29299.60 16798.17 28398.46 28098.80 32597.16 32396.28 36799.63 17582.19 37399.09 37188.45 36998.89 33099.10 288
gg-mvs-nofinetune95.87 33595.17 33997.97 32298.19 36996.95 32899.69 4189.23 38199.89 2096.24 36999.94 1681.19 37499.51 36393.99 35898.20 35297.44 365
GG-mvs-BLEND97.36 33797.59 37496.87 33199.70 3488.49 38294.64 37597.26 38080.66 37599.12 37091.50 36496.50 37196.08 373
FMVSNet597.80 29097.25 30699.42 18498.83 34698.97 22399.38 10999.80 6498.87 19999.25 25099.69 13880.60 37699.91 12498.96 12699.90 10199.38 227
TESTMET0.1,196.24 32995.84 33197.41 33698.24 36893.84 36197.38 34995.84 36898.43 24297.81 35598.56 36079.77 37799.89 15997.77 21898.77 33498.52 339
KD-MVS_2432*160095.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
miper_refine_blended95.89 33395.41 33697.31 34094.96 37893.89 35997.09 35999.22 30097.23 31998.88 29599.04 32679.23 37899.54 35896.24 31596.81 36798.50 343
test-mter96.23 33095.73 33297.74 33098.18 37095.02 35397.38 34996.10 36497.90 28797.81 35598.58 35779.12 38099.91 12497.69 23598.78 33298.31 348
test250694.73 34194.59 34395.15 35799.59 17185.90 38299.75 2174.01 38399.89 2099.71 11899.86 4779.00 38199.90 14299.52 4899.99 1399.65 97
IB-MVS95.41 2095.30 34094.46 34497.84 32698.76 35595.33 35197.33 35296.07 36696.02 34295.37 37497.41 37776.17 38299.96 4297.54 24395.44 37498.22 353
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test12329.31 34433.05 34918.08 36025.93 38412.24 38497.53 34310.93 38511.78 37824.21 37950.08 38821.04 3838.60 37923.51 37732.43 37833.39 375
testmvs28.94 34533.33 34715.79 36126.03 3839.81 38596.77 36515.67 38411.55 37923.87 38050.74 38719.03 3848.53 38023.21 37833.07 37729.03 376
test_blank8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
sosnet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
Regformer8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.26 35611.02 3590.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.16 3100.00 3850.00 3810.00 3790.00 3790.00 377
uanet8.33 34811.11 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 381100.00 10.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.83 5499.89 1099.74 2399.71 10999.69 7299.63 143
MSC_two_6792asdad99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
No_MVS99.74 6599.03 32899.53 12799.23 29799.92 10297.77 21899.69 22399.78 41
eth-test20.00 385
eth-test0.00 385
IU-MVS99.69 14099.77 5099.22 30097.50 30699.69 12497.75 22299.70 21999.77 45
save fliter99.53 20599.25 18898.29 28899.38 26499.07 176
test_0728_SECOND99.83 2599.70 13699.79 4499.14 17999.61 15999.92 10297.88 20799.72 21499.77 45
GSMVS99.14 282
test_part299.62 16499.67 9199.55 181
MTGPAbinary99.53 215
MTMP99.09 19798.59 337
gm-plane-assit97.59 37489.02 38193.47 36298.30 36799.84 23696.38 309
test9_res95.10 34499.44 28599.50 189
agg_prior294.58 35099.46 28499.50 189
agg_prior99.35 26399.36 16799.39 26097.76 35899.85 222
test_prior499.19 20198.00 315
test_prior99.46 17399.35 26399.22 19599.39 26099.69 32099.48 198
旧先验297.94 32295.33 35198.94 28799.88 17396.75 288
新几何298.04 311
无先验98.01 31399.23 29795.83 34599.85 22295.79 33299.44 212
原ACMM297.92 324
testdata299.89 15995.99 324
testdata197.72 33397.86 291
plane_prior799.58 17699.38 160
plane_prior599.54 20699.82 26095.84 33099.78 18899.60 135
plane_prior499.25 297
plane_prior399.31 17698.36 25199.14 269
plane_prior298.80 24498.94 188
plane_prior199.51 212
plane_prior99.24 19298.42 28197.87 28999.71 217
n20.00 386
nn0.00 386
door-mid99.83 48
test1199.29 283
door99.77 78
HQP5-MVS98.94 226
HQP-NCC99.31 27997.98 31797.45 30898.15 339
ACMP_Plane99.31 27997.98 31797.45 30898.15 339
BP-MVS94.73 347
HQP4-MVS98.15 33999.70 31499.53 171
HQP3-MVS99.37 26599.67 234
NP-MVS99.40 25299.13 20698.83 349
ACMMP++_ref99.94 79
ACMMP++99.79 183