This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12997.75 5499.89 2399.62 36
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3899.67 299.73 499.65 699.15 399.86 2697.22 7199.92 1499.77 13
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15599.82 195.44 17599.64 1199.52 998.96 499.74 8399.38 399.86 2899.81 9
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28299.02 8295.20 18498.15 13397.52 22598.83 598.43 36994.87 19496.41 37099.07 178
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7297.40 8499.37 2499.08 5598.79 699.47 20497.74 5599.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3596.23 12899.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18499.73 595.05 19399.60 1599.34 2698.68 899.72 9599.21 799.85 3699.76 18
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18998.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19999.64 1594.99 19699.43 2099.18 4298.51 1099.71 10999.13 1099.84 3899.67 28
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 12098.23 4799.48 1799.27 3198.47 1199.55 18196.52 9899.53 13099.60 37
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9397.57 7299.27 3099.22 3598.32 1299.50 19497.09 7999.75 6499.50 67
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5295.83 15599.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22398.58 3298.78 6699.39 1898.21 1499.56 17792.65 26299.86 2899.52 60
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3898.21 4899.25 3298.51 11298.21 1499.40 23094.79 19899.72 7099.32 122
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 8095.88 15197.88 16398.22 15698.15 1699.74 8396.50 9999.62 9299.42 102
wuyk23d93.25 30895.20 22187.40 39996.07 35695.38 10797.04 12994.97 34695.33 17999.70 798.11 16898.14 1791.94 41777.76 40899.68 8174.89 417
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15698.83 13795.21 18398.36 10698.13 16498.13 1899.62 15896.04 11999.54 12699.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7295.43 17697.41 18997.50 22797.98 1999.79 4995.58 14999.57 11399.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testgi96.07 19196.50 17694.80 29699.26 5787.69 31595.96 20598.58 18895.08 19098.02 14996.25 31097.92 2097.60 39488.68 34298.74 26999.11 171
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13796.11 13499.08 4098.24 15197.87 2399.72 9595.44 15999.51 14099.14 161
test_241102_ONE99.22 6695.35 11098.83 13796.04 13999.08 4098.13 16497.87 2399.33 254
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18498.58 3298.78 6699.39 1897.80 2599.62 15894.98 19299.86 2899.52 60
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
SD-MVS97.37 12397.70 8696.35 22198.14 22295.13 12496.54 16198.92 10895.94 14699.19 3598.08 17097.74 2895.06 41195.24 17199.54 12698.87 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18299.02 8293.92 23298.62 7898.99 6197.69 2999.62 15896.18 11499.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6498.31 4199.02 4498.74 8597.68 3099.61 16597.77 5399.85 3699.70 26
MGCFI-Net97.20 13297.23 12897.08 17197.68 27793.71 17597.79 7799.09 6197.40 8496.59 24493.96 36397.67 3199.35 24996.43 10298.50 29298.17 294
ANet_high98.31 3698.94 696.41 21999.33 5189.64 27197.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6299.98 299.77 13
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17499.65 1295.59 16699.71 599.01 5897.66 3399.60 16799.44 299.83 4297.90 318
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20399.18 4197.67 7199.00 4798.48 11797.64 3499.50 19496.96 8699.54 12699.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
sasdasda97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
canonicalmvs97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9995.75 15997.62 17597.59 22097.61 3799.77 6396.34 10799.44 16099.36 118
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15399.05 7298.67 2898.84 6198.45 11897.58 3899.88 2196.45 10199.86 2899.54 54
cdsmvs_eth3d_5k24.22 39032.30 3930.00 4080.00 4310.00 4330.00 41998.10 2460.00 4260.00 42795.06 34597.54 390.00 4270.00 4260.00 4250.00 423
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 18198.89 11193.71 23697.97 15497.75 20897.44 4099.63 15393.22 25599.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8296.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16897.21 7299.76 5799.40 105
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 4095.62 16499.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5199.22 1099.22 3498.96 6597.35 4499.92 697.79 5199.93 1199.79 11
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4398.34 4098.78 6698.52 11097.32 4599.45 21294.08 22799.67 8399.13 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20598.97 10294.55 21298.82 6398.76 8497.31 4699.29 26697.20 7499.44 16099.38 112
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9394.93 19998.58 8398.92 6997.31 4699.41 22894.44 21199.43 16999.59 38
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4799.33 699.30 2899.00 5997.27 4899.92 697.64 6099.92 1499.75 20
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5699.36 599.29 2999.06 5697.27 4899.93 497.71 5699.91 1799.70 26
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13195.76 15796.93 22297.43 23197.26 5299.79 4996.06 11699.53 13099.45 90
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24398.99 9692.45 28098.11 13698.31 13597.25 5399.77 6396.60 9599.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 17198.79 14795.07 19197.88 16398.35 13097.24 5499.72 9596.05 11899.58 11099.45 90
Effi-MVS+96.19 18796.01 19596.71 19997.43 30492.19 22296.12 19099.10 5695.45 17393.33 35894.71 35297.23 5599.56 17793.21 25697.54 33998.37 268
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32998.31 4197.09 21195.45 33997.17 5698.50 36498.67 2597.45 34596.48 379
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6895.45 17397.55 17797.94 19097.11 5799.78 5394.77 20199.46 15699.48 81
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10995.70 13799.62 9299.58 39
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10897.72 6598.25 12198.13 16497.10 5899.75 7495.44 15999.24 21399.32 122
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25598.46 19794.58 21198.10 13898.07 17297.09 6099.39 23495.16 17799.44 16099.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13196.05 13797.49 18297.54 22397.07 6199.70 11795.61 14699.46 15699.30 127
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14998.23 22695.92 14898.40 10098.28 14497.06 6299.71 10995.48 15599.52 13599.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6195.51 9996.89 13798.89 11195.92 14898.64 7698.31 13597.06 62
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18899.57 1795.66 16199.52 1698.71 8997.04 6499.64 14999.21 799.87 2698.69 238
casdiffmvspermissive97.50 11197.81 7796.56 20998.51 17591.04 24995.83 21399.09 6197.23 9198.33 11398.30 13997.03 6599.37 24296.58 9799.38 17999.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 11096.58 11098.08 14197.87 19697.02 6699.76 6895.25 17099.59 10799.40 105
Skip Steuart: Steuart Systems R&D Blog.
PC_three_145287.24 35498.37 10397.44 23097.00 6796.78 40492.01 27199.25 21099.21 147
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27997.01 26696.99 6899.82 3697.66 5999.64 8898.39 266
DVP-MVS++97.96 5997.90 6598.12 8697.75 26995.40 10599.03 898.89 11196.62 10698.62 7898.30 13996.97 6999.75 7495.70 13799.25 21099.21 147
OPU-MVS97.64 12198.01 23195.27 11596.79 14597.35 24296.97 6998.51 36391.21 28999.25 21099.14 161
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.94 7195.49 15199.20 21599.26 139
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5695.96 14498.59 8298.69 9296.94 7199.81 4196.64 9399.58 11099.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6198.42 3799.03 4398.71 8996.93 7399.83 3497.09 7999.63 9099.56 50
test_one_060199.05 10595.50 10298.87 12097.21 9398.03 14898.30 13996.93 73
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14795.96 14497.53 17897.40 23396.93 7399.77 6395.04 18699.35 18899.42 102
test_241102_TWO98.83 13796.11 13498.62 7898.24 15196.92 7699.72 9595.44 15999.49 14799.49 75
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22593.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31999.06 23898.32 275
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9398.40 3899.07 4298.98 6296.89 7899.75 7497.19 7599.79 5299.55 53
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10395.75 15997.91 16098.06 17796.89 7899.76 6895.32 16799.57 11399.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27597.19 25296.88 8099.86 2697.50 6499.73 6698.41 263
PMVScopyleft89.60 1796.71 16596.97 14495.95 24099.51 2897.81 2097.42 11097.49 28397.93 5695.95 27998.58 10396.88 8096.91 40189.59 32899.36 18393.12 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13196.00 14297.22 19597.62 21896.87 8299.76 6895.48 15599.43 16999.46 86
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10396.11 13496.89 22597.45 22996.85 8399.78 5395.19 17399.63 9099.38 112
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25798.99 9695.84 15498.78 6698.08 17096.84 8499.81 4193.98 23399.57 11399.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15498.73 15998.66 2998.56 8498.41 12396.84 8499.69 12494.82 19699.81 4798.64 242
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29996.92 27296.81 8699.87 2496.87 8999.76 5798.51 256
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13796.05 13797.46 18797.63 21796.77 8799.76 6895.61 14699.46 15699.49 75
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4899.36 18399.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+95.49 21795.07 22896.75 19797.67 28192.82 20094.22 29798.60 18491.61 29593.42 35692.90 37696.73 8999.70 11792.60 26397.89 32097.74 331
baseline97.44 11697.78 8296.43 21698.52 17390.75 25696.84 13899.03 8096.51 11497.86 16798.02 18196.67 9099.36 24597.09 7999.47 15399.19 151
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13797.32 8898.06 14497.85 19796.65 9199.77 6395.00 18999.11 22999.32 122
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19898.25 4699.13 3898.66 9496.65 9199.69 12493.92 23599.62 9298.91 205
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29897.23 4492.56 35198.60 18492.84 27298.54 8597.40 23396.64 9398.78 33494.40 21599.41 17698.93 201
MVS_111021_LR96.82 15696.55 17097.62 12298.27 20095.34 11293.81 31998.33 21694.59 21096.56 24796.63 29096.61 9498.73 33994.80 19799.34 19198.78 225
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5698.76 2796.79 22899.34 2696.61 9498.82 33096.38 10499.50 14496.98 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.60 9699.76 6895.49 15199.20 21599.26 139
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32998.36 21294.74 20296.58 24596.76 28496.54 9798.99 31594.87 19499.27 20799.15 157
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14998.73 15991.61 29598.48 9298.36 12996.53 9899.68 12995.17 17599.54 12699.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 5099.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15196.04 13997.10 20697.73 21196.53 9899.78 5395.16 17799.50 14499.46 86
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25997.64 21696.49 10199.72 9595.66 14299.37 18099.45 90
X-MVStestdata92.86 31390.83 34298.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25936.50 42196.49 10199.72 9595.66 14299.37 18099.45 90
9.1496.69 16098.53 17296.02 19798.98 9993.23 25297.18 20097.46 22896.47 10399.62 15892.99 25999.32 198
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4599.98 299.85 5
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 21099.41 2693.36 24799.00 4798.44 12096.46 10599.65 14599.09 1199.76 5799.45 90
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5695.32 18097.83 16997.88 19596.44 10699.72 9594.59 21099.39 17899.25 143
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15999.15 4793.68 23998.89 5799.30 2996.42 10799.37 24299.03 1399.83 4299.66 30
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
xiu_mvs_v1_base95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
ETV-MVS96.13 19095.90 20396.82 19297.76 26793.89 16795.40 24198.95 10595.87 15295.58 29791.00 40096.36 11199.72 9593.36 24998.83 26196.85 366
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21399.32 2793.22 25398.91 5698.49 11396.31 11299.64 14999.07 1299.76 5799.40 105
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18999.09 9591.43 24396.37 17099.11 5394.19 22299.01 4599.25 3296.30 11399.38 23799.00 1499.88 2499.73 22
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15996.27 12595.59 29697.75 20896.30 11399.78 5393.70 24399.48 15199.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TinyColmap96.00 19696.34 18294.96 28797.90 24287.91 30894.13 30498.49 19594.41 21598.16 13197.76 20596.29 11598.68 34890.52 31299.42 17298.30 279
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31994.39 14795.46 23598.73 15996.03 14194.72 31694.92 34996.28 11699.69 12493.81 23897.98 31498.09 297
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 18099.06 6893.67 24098.64 7699.00 5996.23 11799.36 24598.99 1599.80 5099.53 57
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19398.79 13691.44 24296.14 18999.06 6894.19 22298.82 6398.98 6296.22 11899.38 23798.98 1699.86 2899.58 39
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6496.57 11398.07 14398.38 12796.22 11899.14 29294.71 20599.31 20198.52 255
OMC-MVS96.48 17696.00 19697.91 10298.30 19596.01 8294.86 27498.60 18491.88 29097.18 20097.21 25196.11 12099.04 30990.49 31599.34 19198.69 238
xiu_mvs_v2_base94.22 27694.63 25492.99 35297.32 31484.84 35992.12 36397.84 26391.96 28894.17 32993.43 36796.07 12199.71 10991.27 28697.48 34294.42 401
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9696.35 12498.13 13595.95 32595.99 12299.66 14394.36 21899.73 6698.59 248
PHI-MVS96.96 14496.53 17398.25 7597.48 29896.50 6396.76 14798.85 12793.52 24296.19 27196.85 27595.94 12399.42 21993.79 23999.43 16998.83 218
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 218
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 23093.00 26598.16 13198.06 17795.89 12599.72 9595.67 14199.10 23199.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16698.98 9995.05 19398.06 14498.02 18195.86 12699.56 17794.37 21699.64 8899.00 187
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
TestCases98.06 9099.08 9696.16 7499.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17498.77 15292.96 27097.44 18897.58 22295.84 12799.74 8391.96 27299.35 18899.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pcd_1.5k_mvsjas7.98 39310.65 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42695.82 1300.00 4270.00 4260.00 4250.00 423
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3696.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
PS-MVSNAJ94.10 28294.47 26493.00 35197.35 30984.88 35691.86 36897.84 26391.96 28894.17 32992.50 38595.82 13099.71 10991.27 28697.48 34294.40 402
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27293.65 18098.49 2898.88 11896.86 10197.11 20598.55 10795.82 13099.73 8995.94 12799.42 17299.13 163
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15997.69 6897.90 16197.96 18795.81 13499.82 3696.13 11599.61 9899.45 90
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14798.98 2198.74 7398.49 11395.80 13599.49 19995.04 18699.44 16099.11 171
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 22098.79 2699.23 3398.86 7795.76 13699.61 16595.49 15199.36 18399.23 145
LS3D97.77 9097.50 11398.57 5196.24 34497.58 2898.45 3198.85 12798.58 3297.51 18097.94 19095.74 13799.63 15395.19 17398.97 24398.51 256
EIA-MVS96.04 19395.77 20996.85 18997.80 25792.98 19896.12 19099.16 4394.65 20693.77 34291.69 39495.68 13899.67 13794.18 22398.85 25897.91 317
CNVR-MVS96.92 14696.55 17098.03 9598.00 23595.54 9794.87 27398.17 23694.60 20896.38 25697.05 26295.67 13999.36 24595.12 18399.08 23399.19 151
CLD-MVS95.47 22095.07 22896.69 20198.27 20092.53 20991.36 37698.67 17491.22 30595.78 28994.12 36295.65 14098.98 31790.81 29999.72 7098.57 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4799.37 499.67 899.43 1795.61 14199.72 9598.12 3699.86 2899.73 22
EGC-MVSNET83.08 38577.93 38898.53 5499.57 1997.55 3098.33 3898.57 1894.71 42310.38 42498.90 7395.60 14299.50 19495.69 13999.61 9898.55 252
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19495.63 16397.22 19597.30 24695.52 14398.55 36090.97 29498.90 25198.34 274
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27694.15 15996.02 19798.43 20193.17 26097.30 19197.38 23995.48 14499.28 26893.74 24099.34 19198.88 213
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4299.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17697.41 8399.00 4799.19 3895.47 14599.73 8995.83 13499.76 5799.30 127
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11198.49 3599.38 2399.14 4995.44 14799.84 3296.47 10099.80 5099.47 84
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8998.53 2999.86 2899.95 2
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13199.05 1799.01 4598.65 9795.37 14999.90 1697.57 6199.91 1799.77 13
segment_acmp95.34 150
CDPH-MVS95.45 22294.65 25197.84 10798.28 19894.96 12893.73 32198.33 21685.03 37995.44 30096.60 29195.31 15199.44 21590.01 32199.13 22599.11 171
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22695.60 9598.04 5998.70 16898.13 5096.93 22298.45 11895.30 15299.62 15895.64 14498.96 24499.24 144
MVS_Test96.27 18496.79 15794.73 30096.94 32986.63 33396.18 18498.33 21694.94 19796.07 27598.28 14495.25 15399.26 27297.21 7297.90 31998.30 279
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31799.05 7295.19 18598.32 11497.70 21395.22 15498.41 37094.27 22098.13 30998.93 201
dcpmvs_297.12 13497.99 5994.51 31099.11 9284.00 36997.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 15099.78 5599.58 39
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28298.17 23690.17 32096.21 26996.10 31995.14 15699.43 21794.13 22698.85 25899.13 163
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30892.08 22795.34 24897.65 27697.74 6398.29 11998.11 16895.05 15799.68 12997.50 6499.50 14499.56 50
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 31192.01 22995.33 24997.65 27697.74 6398.30 11898.14 16295.04 15899.69 12497.55 6299.52 13599.58 39
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10697.10 9598.85 6098.88 7595.03 15999.67 13797.39 6899.65 8699.26 139
ZD-MVS98.43 18695.94 8398.56 19090.72 31096.66 23997.07 26095.02 16099.74 8391.08 29098.93 249
DELS-MVS96.17 18896.23 18695.99 23697.55 29490.04 26392.38 36098.52 19294.13 22496.55 24997.06 26194.99 16199.58 17095.62 14599.28 20598.37 268
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 17096.93 14795.55 26198.88 12687.12 32594.47 28799.30 2994.12 22596.65 24198.41 12394.98 16299.87 2495.81 13699.78 5599.66 30
ab-mvs96.59 17096.59 16696.60 20498.64 15492.21 21898.35 3597.67 27294.45 21496.99 21798.79 7994.96 16399.49 19990.39 31699.07 23598.08 298
MSLP-MVS++96.42 18096.71 15995.57 25897.82 25290.56 26095.71 21898.84 13194.72 20396.71 23597.39 23794.91 16498.10 38695.28 16899.02 24098.05 307
QAPM95.88 20095.57 21696.80 19397.90 24291.84 23498.18 5398.73 15988.41 34296.42 25498.13 16494.73 16599.75 7488.72 34098.94 24798.81 221
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6896.19 13198.48 9298.70 9194.72 16699.24 27894.37 21699.33 19699.17 154
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22698.87 12097.57 7298.31 11697.83 19894.69 16799.85 2997.02 8499.71 7399.46 86
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23698.86 12398.20 4998.37 10399.24 3394.69 16799.55 18195.98 12599.79 5299.65 33
TEST997.84 24995.23 11793.62 32398.39 20886.81 36093.78 34095.99 32194.68 16999.52 189
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20899.04 7997.51 7698.22 12497.81 20394.68 16999.78 5397.14 7799.75 6499.41 104
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22499.02 8298.11 5198.31 11697.69 21494.65 17199.85 2997.02 8499.71 7399.48 81
VPNet97.26 12997.49 11496.59 20599.47 3390.58 25896.27 17698.53 19197.77 6098.46 9598.41 12394.59 17299.68 12994.61 20699.29 20499.52 60
train_agg95.46 22194.66 25097.88 10497.84 24995.23 11793.62 32398.39 20887.04 35693.78 34095.99 32194.58 17399.52 18991.76 28098.90 25198.89 209
test_897.81 25395.07 12693.54 32698.38 21087.04 35693.71 34495.96 32494.58 17399.52 189
API-MVS95.09 24095.01 23195.31 27096.61 33694.02 16396.83 13997.18 29295.60 16595.79 28794.33 36094.54 17598.37 37585.70 37198.52 28893.52 406
Test By Simon94.51 176
MSDG95.33 22895.13 22595.94 24297.40 30691.85 23391.02 38798.37 21195.30 18196.31 26295.99 32194.51 17698.38 37389.59 32897.65 33697.60 341
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27295.23 11794.15 30196.90 30493.26 25198.04 14796.70 28694.41 17898.89 32594.77 20199.14 22398.37 268
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15997.79 5999.42 2197.83 19894.40 17999.78 5395.91 12999.76 5799.46 86
AdaColmapbinary95.11 23894.62 25596.58 20697.33 31394.45 14694.92 27198.08 24893.15 26193.98 33895.53 33794.34 18099.10 30285.69 37298.61 28396.20 384
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3698.43 3698.89 5798.83 7894.30 18199.81 4197.87 4699.91 1799.77 13
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 33198.69 596.42 16598.09 24795.86 15395.15 30695.54 33694.26 18299.81 4194.06 22898.51 29198.47 260
ambc96.56 20998.23 20691.68 23897.88 7298.13 24498.42 9898.56 10694.22 18399.04 30994.05 23099.35 18898.95 195
test20.0396.58 17296.61 16596.48 21498.49 17991.72 23695.68 22297.69 27196.81 10298.27 12097.92 19394.18 18498.71 34290.78 30199.66 8599.00 187
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20398.20 23095.51 17095.06 30896.53 29594.10 18599.70 11794.29 21999.15 22299.13 163
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31799.27 3099.33 2894.04 18696.03 40997.14 7797.83 32299.78 12
test_fmvs397.38 12197.56 10696.84 19198.63 15892.81 20297.60 9499.61 1690.87 30898.76 7199.66 494.03 18797.90 38899.24 699.68 8199.81 9
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18398.63 18293.82 23398.54 8598.33 13393.98 18899.05 30795.99 12499.45 15998.61 247
mvsany_test396.21 18695.93 20297.05 17397.40 30694.33 15295.76 21794.20 35589.10 33199.36 2599.60 893.97 18997.85 38995.40 16698.63 28198.99 190
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22397.16 32091.96 23097.74 8498.84 13187.26 35394.36 32598.01 18393.95 19099.67 13790.70 30898.75 26897.35 352
v897.60 10498.06 5396.23 22698.71 14789.44 27697.43 10998.82 14597.29 9098.74 7399.10 5293.86 19199.68 12998.61 2699.94 899.56 50
diffmvspermissive96.04 19396.23 18695.46 26697.35 30988.03 30693.42 32999.08 6494.09 22896.66 23996.93 27093.85 19299.29 26696.01 12398.67 27699.06 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC96.52 17495.99 19798.10 8797.81 25395.68 9295.00 26998.20 23095.39 17795.40 30296.36 30693.81 19399.45 21293.55 24698.42 29799.17 154
TAPA-MVS93.32 1294.93 24594.23 27297.04 17598.18 21394.51 14395.22 25698.73 15981.22 39896.25 26695.95 32593.80 19498.98 31789.89 32498.87 25597.62 339
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5398.04 5598.62 7898.66 9493.75 19599.78 5397.23 7099.84 3899.73 22
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7298.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
test_prior293.33 33394.21 22094.02 33696.25 31093.64 19791.90 27498.96 244
mvsany_test193.47 30193.03 29894.79 29794.05 40492.12 22390.82 38990.01 40385.02 38097.26 19498.28 14493.57 19897.03 39892.51 26695.75 38595.23 397
旧先验197.80 25793.87 16897.75 26897.04 26393.57 19898.68 27598.72 234
v1097.55 10897.97 6196.31 22498.60 16289.64 27197.44 10799.02 8296.60 10898.72 7599.16 4693.48 20099.72 9598.76 2199.92 1499.58 39
v14896.58 17296.97 14495.42 26798.63 15887.57 31695.09 26197.90 25895.91 15098.24 12297.96 18793.42 20199.39 23496.04 11999.52 13599.29 133
V4297.04 13797.16 13396.68 20298.59 16491.05 24896.33 17398.36 21294.60 20897.99 15098.30 13993.32 20299.62 15897.40 6799.53 13099.38 112
new-patchmatchnet95.67 21096.58 16792.94 35497.48 29880.21 39592.96 33998.19 23594.83 20098.82 6398.79 7993.31 20399.51 19395.83 13499.04 23999.12 168
test1297.46 14097.61 28994.07 16197.78 26793.57 35093.31 20399.42 21998.78 26598.89 209
UGNet96.81 15796.56 16997.58 12496.64 33593.84 17097.75 8297.12 29596.47 11993.62 34798.88 7593.22 20599.53 18695.61 14699.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvs5depth98.06 5298.58 2696.51 21198.97 11489.65 27099.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20394.29 15394.77 27898.07 25289.81 32497.97 15498.33 13393.11 20799.08 30495.46 15899.84 3898.89 209
v114496.84 15297.08 13796.13 23398.42 18789.28 27995.41 24098.67 17494.21 22097.97 15498.31 13593.06 20899.65 14598.06 4099.62 9299.45 90
MVSMamba_PlusPlus97.43 11897.98 6095.78 24898.88 12689.70 26898.03 6198.85 12799.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12297.73 332
PVSNet_BlendedMVS95.02 24494.93 23495.27 27197.79 26287.40 32094.14 30398.68 17188.94 33594.51 32198.01 18393.04 20999.30 26289.77 32699.49 14799.11 171
PVSNet_Blended93.96 28893.65 28894.91 28897.79 26287.40 32091.43 37598.68 17184.50 38694.51 32194.48 35893.04 20999.30 26289.77 32698.61 28398.02 310
mvs_anonymous95.36 22596.07 19493.21 34496.29 34381.56 38694.60 28497.66 27493.30 25096.95 22198.91 7293.03 21299.38 23796.60 9597.30 35098.69 238
v119296.83 15597.06 13996.15 23298.28 19889.29 27895.36 24498.77 15293.73 23598.11 13698.34 13293.02 21399.67 13798.35 3399.58 11099.50 67
F-COLMAP95.30 23094.38 26998.05 9498.64 15496.04 7995.61 23098.66 17689.00 33493.22 35996.40 30492.90 21499.35 24987.45 36097.53 34098.77 228
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 29098.12 24597.34 8798.20 12597.33 24492.81 21599.75 7494.79 19899.81 4799.54 54
v124096.74 16097.02 14295.91 24398.18 21388.52 29295.39 24298.88 11893.15 26198.46 9598.40 12692.80 21699.71 10998.45 3199.49 14799.49 75
MVEpermissive73.61 2286.48 38385.92 38288.18 39796.23 34685.28 35081.78 41775.79 42186.01 36682.53 41791.88 39192.74 21787.47 42071.42 41794.86 39391.78 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DP-MVS Recon95.55 21595.13 22596.80 19398.51 17593.99 16594.60 28498.69 16990.20 31995.78 28996.21 31292.73 21898.98 31790.58 31198.86 25797.42 349
CANet95.86 20195.65 21396.49 21396.41 34190.82 25394.36 28998.41 20594.94 19792.62 37596.73 28592.68 21999.71 10995.12 18399.60 10498.94 197
v192192096.72 16396.96 14695.99 23698.21 20788.79 28995.42 23898.79 14793.22 25398.19 12998.26 14992.68 21999.70 11798.34 3499.55 12299.49 75
BH-untuned94.69 25894.75 24894.52 30997.95 24087.53 31794.07 30697.01 30093.99 23097.10 20695.65 33292.65 22198.95 32287.60 35596.74 36297.09 356
LF4IMVS96.07 19195.63 21497.36 14998.19 21095.55 9695.44 23698.82 14592.29 28395.70 29396.55 29392.63 22298.69 34591.75 28199.33 19697.85 322
v2v48296.78 15997.06 13995.95 24098.57 16688.77 29095.36 24498.26 22295.18 18697.85 16898.23 15392.58 22399.63 15397.80 5099.69 7799.45 90
WB-MVSnew91.50 33891.29 33192.14 37294.85 38980.32 39493.29 33488.77 40688.57 34194.03 33592.21 38792.56 22498.28 38080.21 40197.08 35197.81 326
EI-MVSNet96.63 16996.93 14795.74 25097.26 31688.13 30395.29 25397.65 27696.99 9697.94 15898.19 15892.55 22599.58 17096.91 8799.56 11699.50 67
IterMVS-LS96.92 14697.29 12395.79 24798.51 17588.13 30395.10 26098.66 17696.99 9698.46 9598.68 9392.55 22599.74 8396.91 8799.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33398.59 3198.51 8798.72 8692.54 22799.58 17096.02 12199.49 14799.12 168
MVS90.02 35189.20 35892.47 36694.71 39286.90 32995.86 21196.74 31164.72 41890.62 38892.77 37992.54 22798.39 37279.30 40395.56 38792.12 410
test_vis1_rt94.03 28793.65 28895.17 27695.76 37193.42 18793.97 31298.33 21684.68 38393.17 36095.89 32792.53 22994.79 41293.50 24794.97 39197.31 353
v14419296.69 16696.90 15196.03 23598.25 20388.92 28495.49 23498.77 15293.05 26398.09 13998.29 14392.51 23099.70 11798.11 3799.56 11699.47 84
原ACMM196.58 20698.16 21892.12 22398.15 24285.90 36993.49 35296.43 30192.47 23199.38 23787.66 35498.62 28298.23 286
VNet96.84 15296.83 15396.88 18798.06 22792.02 22896.35 17297.57 28297.70 6797.88 16397.80 20492.40 23299.54 18494.73 20398.96 24499.08 176
114514_t93.96 28893.22 29696.19 22999.06 10090.97 25195.99 20198.94 10673.88 41693.43 35596.93 27092.38 23399.37 24289.09 33599.28 20598.25 285
balanced_conf0396.88 15097.29 12395.63 25597.66 28289.47 27597.95 6698.89 11195.94 14697.77 17398.55 10792.23 23499.68 12997.05 8399.61 9897.73 332
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15292.89 27196.01 27897.13 25592.23 23499.67 13792.24 26999.34 19199.17 154
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11195.65 16298.51 8796.46 29992.15 23699.81 4195.14 18098.58 28699.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS94.21 27893.03 29897.76 11196.94 32997.44 3796.97 13397.15 29387.89 35192.00 38092.73 38192.14 23799.12 29683.92 38697.51 34196.73 373
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21799.28 5590.62 25795.31 25199.08 6488.40 34396.97 22098.17 16192.11 23899.78 5393.64 24499.21 21498.86 216
BH-RMVSNet94.56 26694.44 26794.91 28897.57 29187.44 31993.78 32096.26 31793.69 23896.41 25596.50 29892.10 23999.00 31385.96 36997.71 32998.31 277
新几何197.25 15898.29 19694.70 13597.73 26977.98 40994.83 31596.67 28892.08 24099.45 21288.17 34998.65 28097.61 340
testdata95.70 25398.16 21890.58 25897.72 27080.38 40195.62 29497.02 26492.06 24198.98 31789.06 33798.52 28897.54 344
YYNet194.73 25394.84 24294.41 31497.47 30285.09 35490.29 39495.85 32792.52 27797.53 17897.76 20591.97 24299.18 28593.31 25296.86 35698.95 195
Anonymous2023120695.27 23195.06 23095.88 24498.72 14489.37 27795.70 21997.85 26188.00 34996.98 21997.62 21891.95 24399.34 25289.21 33399.53 13098.94 197
MS-PatchMatch94.83 25094.91 23694.57 30796.81 33287.10 32694.23 29697.34 28788.74 33897.14 20297.11 25891.94 24498.23 38292.99 25997.92 31798.37 268
MDA-MVSNet_test_wron94.73 25394.83 24494.42 31397.48 29885.15 35290.28 39595.87 32692.52 27797.48 18497.76 20591.92 24599.17 28993.32 25196.80 36198.94 197
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16298.75 15696.36 12296.16 27296.77 28291.91 24699.46 20792.59 26499.20 21599.28 134
plane_prior698.38 18994.37 15091.91 246
MVP-Stereo95.69 20895.28 21996.92 18298.15 22093.03 19795.64 22998.20 23090.39 31696.63 24297.73 21191.63 24899.10 30291.84 27797.31 34998.63 244
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL94.61 26493.81 28697.02 17798.19 21095.72 8993.66 32297.23 28988.17 34794.94 31395.62 33491.43 24998.57 35787.36 36197.68 33296.76 372
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 25098.48 18188.76 29192.84 34197.25 28896.00 14297.59 17697.95 18991.38 25099.46 20793.16 25796.35 37298.99 190
SSC-MVS95.92 19897.03 14192.58 36399.28 5578.39 40096.68 15695.12 34498.90 2399.11 3998.66 9491.36 25199.68 12995.00 18999.16 22199.67 28
PAPR92.22 32391.27 33395.07 28095.73 37388.81 28891.97 36697.87 26085.80 37090.91 38792.73 38191.16 25298.33 37779.48 40295.76 38498.08 298
131492.38 32092.30 31592.64 36295.42 38085.15 35295.86 21196.97 30285.40 37590.62 38893.06 37491.12 25397.80 39186.74 36695.49 38894.97 399
WB-MVS95.50 21696.62 16392.11 37399.21 7377.26 41096.12 19095.40 33998.62 3098.84 6198.26 14991.08 25499.50 19493.37 24898.70 27499.58 39
ppachtmachnet_test94.49 27094.84 24293.46 33796.16 35082.10 38190.59 39197.48 28490.53 31497.01 21697.59 22091.01 25599.36 24593.97 23499.18 21998.94 197
PLCcopyleft91.02 1694.05 28592.90 30197.51 13098.00 23595.12 12594.25 29498.25 22386.17 36591.48 38595.25 34191.01 25599.19 28485.02 38196.69 36598.22 288
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test22298.17 21693.24 19492.74 34697.61 28175.17 41494.65 31896.69 28790.96 25798.66 27897.66 336
CL-MVSNet_self_test95.04 24194.79 24795.82 24697.51 29689.79 26791.14 38496.82 30793.05 26396.72 23496.40 30490.82 25899.16 29091.95 27398.66 27898.50 258
USDC94.56 26694.57 26194.55 30897.78 26586.43 33692.75 34498.65 18185.96 36796.91 22497.93 19290.82 25898.74 33890.71 30799.59 10798.47 260
PCF-MVS89.43 1892.12 32690.64 34696.57 20897.80 25793.48 18489.88 40198.45 19874.46 41596.04 27795.68 33190.71 26099.31 25973.73 41399.01 24296.91 363
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM_NR94.61 26494.17 27695.96 23898.36 19191.23 24695.93 20797.95 25592.98 26693.42 35694.43 35990.53 26198.38 37387.60 35596.29 37498.27 283
our_test_394.20 28094.58 25993.07 34796.16 35081.20 39090.42 39396.84 30590.72 31097.14 20297.13 25590.47 26299.11 29994.04 23198.25 30498.91 205
MM96.87 15196.62 16397.62 12297.72 27493.30 19096.39 16692.61 37597.90 5896.76 23398.64 9890.46 26399.81 4199.16 999.94 899.76 18
test_f95.82 20395.88 20595.66 25497.61 28993.21 19595.61 23098.17 23686.98 35898.42 9899.47 1390.46 26394.74 41397.71 5698.45 29599.03 183
OpenMVS_ROBcopyleft91.80 1493.64 29793.05 29795.42 26797.31 31591.21 24795.08 26396.68 31481.56 39596.88 22696.41 30290.44 26599.25 27485.39 37797.67 33395.80 389
HQP2-MVS90.33 266
N_pmnet95.18 23594.23 27298.06 9097.85 24496.55 6292.49 35291.63 38389.34 32898.09 13997.41 23290.33 26699.06 30691.58 28299.31 20198.56 250
HQP-MVS95.17 23794.58 25996.92 18297.85 24492.47 21294.26 29198.43 20193.18 25792.86 36695.08 34390.33 26699.23 28090.51 31398.74 26999.05 182
CNLPA95.04 24194.47 26496.75 19797.81 25395.25 11694.12 30597.89 25994.41 21594.57 31995.69 33090.30 26998.35 37686.72 36798.76 26796.64 374
PMMVS92.39 31991.08 33696.30 22593.12 41192.81 20290.58 39295.96 32379.17 40691.85 38292.27 38690.29 27098.66 35089.85 32596.68 36697.43 348
TR-MVS92.54 31892.20 31893.57 33596.49 33986.66 33293.51 32794.73 34989.96 32294.95 31293.87 36490.24 27198.61 35481.18 39894.88 39295.45 395
TAMVS95.49 21794.94 23297.16 16298.31 19493.41 18895.07 26496.82 30791.09 30697.51 18097.82 20189.96 27299.42 21988.42 34599.44 16098.64 242
DPM-MVS93.68 29592.77 30896.42 21797.91 24192.54 20891.17 38397.47 28584.99 38193.08 36294.74 35189.90 27399.00 31387.54 35798.09 31197.72 334
PMMVS293.66 29694.07 27992.45 36797.57 29180.67 39386.46 40996.00 32193.99 23097.10 20697.38 23989.90 27397.82 39088.76 33999.47 15398.86 216
BH-w/o92.14 32591.94 32092.73 36097.13 32285.30 34892.46 35495.64 33089.33 32994.21 32792.74 38089.60 27598.24 38181.68 39594.66 39494.66 400
Anonymous2024052197.07 13697.51 11195.76 24999.35 4988.18 30097.78 7898.40 20797.11 9498.34 11099.04 5789.58 27699.79 4998.09 3899.93 1199.30 127
UnsupCasMVSNet_bld94.72 25794.26 27196.08 23498.62 16090.54 26193.38 33198.05 25490.30 31797.02 21596.80 28189.54 27799.16 29088.44 34496.18 37698.56 250
MG-MVS94.08 28494.00 28194.32 31897.09 32385.89 34193.19 33795.96 32392.52 27794.93 31497.51 22689.54 27798.77 33587.52 35997.71 32998.31 277
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21598.48 18191.52 24095.31 25198.45 19895.76 15797.48 18497.54 22389.53 27998.69 34594.43 21294.61 39599.13 163
GBi-Net96.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
test196.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
FMVSNet296.72 16396.67 16296.87 18897.96 23791.88 23297.15 12198.06 25395.59 16698.50 8998.62 9989.51 28099.65 14594.99 19199.60 10499.07 178
pmmvs494.82 25194.19 27596.70 20097.42 30592.75 20692.09 36596.76 30986.80 36195.73 29297.22 25089.28 28398.89 32593.28 25399.14 22398.46 262
cascas91.89 33291.35 33093.51 33694.27 39885.60 34388.86 40698.61 18379.32 40592.16 37991.44 39689.22 28498.12 38590.80 30097.47 34496.82 369
DSMNet-mixed92.19 32491.83 32293.25 34196.18 34983.68 37296.27 17693.68 36076.97 41392.54 37699.18 4289.20 28598.55 36083.88 38798.60 28597.51 345
c3_l95.20 23495.32 21894.83 29596.19 34886.43 33691.83 36998.35 21593.47 24497.36 19097.26 24888.69 28699.28 26895.41 16599.36 18398.78 225
test_fmvs296.38 18196.45 17796.16 23197.85 24491.30 24496.81 14199.45 2189.24 33098.49 9099.38 2088.68 28797.62 39398.83 1899.32 19899.57 46
CANet_DTU94.65 26294.21 27495.96 23895.90 36089.68 26993.92 31497.83 26593.19 25690.12 39695.64 33388.52 28899.57 17693.27 25499.47 15398.62 245
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31697.91 5797.30 19198.06 17788.46 28999.85 2993.85 23799.40 17799.32 122
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30298.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
miper_ehance_all_eth94.69 25894.70 24994.64 30195.77 37086.22 33891.32 38098.24 22591.67 29297.05 21396.65 28988.39 29199.22 28294.88 19398.34 30098.49 259
MVS_030495.71 20795.18 22397.33 15194.85 38992.82 20095.36 24490.89 39295.51 17095.61 29597.82 20188.39 29199.78 5398.23 3599.91 1799.40 105
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31198.36 3998.14 13497.98 18688.23 29399.71 10993.10 25899.72 7099.38 112
jason94.39 27394.04 28095.41 26998.29 19687.85 31192.74 34696.75 31085.38 37695.29 30396.15 31488.21 29499.65 14594.24 22199.34 19198.74 231
jason: jason.
IterMVS-SCA-FT95.86 20196.19 18894.85 29397.68 27785.53 34492.42 35797.63 28096.99 9698.36 10698.54 10987.94 29599.75 7497.07 8299.08 23399.27 138
SCA93.38 30493.52 29192.96 35396.24 34481.40 38893.24 33594.00 35691.58 29794.57 31996.97 26787.94 29599.42 21989.47 33097.66 33598.06 304
sss94.22 27693.72 28795.74 25097.71 27589.95 26593.84 31696.98 30188.38 34493.75 34395.74 32987.94 29598.89 32591.02 29298.10 31098.37 268
IterMVS95.42 22395.83 20694.20 32297.52 29583.78 37192.41 35897.47 28595.49 17298.06 14498.49 11387.94 29599.58 17096.02 12199.02 24099.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268894.10 28293.41 29396.18 23099.16 8090.04 26392.15 36298.68 17179.90 40396.22 26897.83 19887.92 29999.42 21989.18 33499.65 8699.08 176
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34199.26 998.39 10299.18 4287.85 30099.62 15895.13 18299.09 23299.35 120
pmmvs594.63 26394.34 27095.50 26397.63 28888.34 29694.02 30797.13 29487.15 35595.22 30597.15 25487.50 30199.27 27193.99 23299.26 20998.88 213
D2MVS95.18 23595.17 22495.21 27397.76 26787.76 31494.15 30197.94 25689.77 32596.99 21797.68 21587.45 30299.14 29295.03 18899.81 4798.74 231
test_vis1_n_192095.77 20596.41 17993.85 32798.55 16984.86 35895.91 20999.71 692.72 27597.67 17498.90 7387.44 30398.73 33997.96 4298.85 25897.96 314
PVSNet86.72 1991.10 34390.97 33991.49 37897.56 29378.04 40387.17 40894.60 35184.65 38492.34 37792.20 38887.37 30498.47 36785.17 38097.69 33197.96 314
Anonymous20240521196.34 18295.98 19897.43 14398.25 20393.85 16996.74 14994.41 35397.72 6598.37 10398.03 18087.15 30599.53 18694.06 22899.07 23598.92 204
MVSFormer96.14 18996.36 18195.49 26497.68 27787.81 31298.67 1599.02 8296.50 11594.48 32396.15 31486.90 30699.92 698.73 2299.13 22598.74 231
lupinMVS93.77 29193.28 29495.24 27297.68 27787.81 31292.12 36396.05 31984.52 38594.48 32395.06 34586.90 30699.63 15393.62 24599.13 22598.27 283
eth_miper_zixun_eth94.89 24894.93 23494.75 29995.99 35786.12 33991.35 37798.49 19593.40 24597.12 20497.25 24986.87 30899.35 24995.08 18598.82 26298.78 225
test_vis1_n95.67 21095.89 20495.03 28298.18 21389.89 26696.94 13499.28 3188.25 34698.20 12598.92 6986.69 30997.19 39697.70 5898.82 26298.00 312
RRT-MVS95.78 20496.25 18594.35 31696.68 33484.47 36397.72 8699.11 5397.23 9197.27 19398.72 8686.39 31099.79 4995.49 15197.67 33398.80 222
WTY-MVS93.55 29993.00 30095.19 27497.81 25387.86 30993.89 31596.00 32189.02 33394.07 33395.44 34086.27 31199.33 25487.69 35396.82 35998.39 266
CDS-MVSNet94.88 24994.12 27897.14 16497.64 28793.57 18193.96 31397.06 29890.05 32196.30 26396.55 29386.10 31299.47 20490.10 32099.31 20198.40 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss94.12 28193.42 29296.23 22698.59 16490.85 25294.24 29598.85 12785.49 37292.97 36494.94 34786.01 31399.64 14991.78 27997.92 31798.20 290
dmvs_testset87.30 38086.99 37788.24 39696.71 33377.48 40794.68 28186.81 41392.64 27689.61 40187.01 41585.91 31493.12 41661.04 42088.49 41294.13 403
miper_enhance_ethall93.14 31092.78 30794.20 32293.65 40785.29 34989.97 39797.85 26185.05 37896.15 27494.56 35485.74 31599.14 29293.74 24098.34 30098.17 294
ttmdpeth94.05 28594.15 27793.75 33095.81 36785.32 34796.00 19994.93 34792.07 28494.19 32899.09 5385.73 31696.41 40890.98 29398.52 28899.53 57
new_pmnet92.34 32191.69 32694.32 31896.23 34689.16 28192.27 36192.88 36984.39 38895.29 30396.35 30785.66 31796.74 40684.53 38497.56 33897.05 357
Syy-MVS92.09 32791.80 32492.93 35595.19 38482.65 37792.46 35491.35 38690.67 31291.76 38387.61 41385.64 31898.50 36494.73 20396.84 35797.65 337
alignmvs96.01 19595.52 21797.50 13497.77 26694.71 13396.07 19396.84 30597.48 7796.78 23294.28 36185.50 31999.40 23096.22 11298.73 27298.40 264
lessismore_v097.05 17399.36 4892.12 22384.07 41698.77 7098.98 6285.36 32099.74 8397.34 6999.37 18099.30 127
HY-MVS91.43 1592.58 31791.81 32394.90 29096.49 33988.87 28697.31 11294.62 35085.92 36890.50 39196.84 27685.05 32199.40 23083.77 38995.78 38396.43 380
EPNet93.72 29392.62 31297.03 17687.61 42492.25 21696.27 17691.28 38896.74 10487.65 41097.39 23785.00 32299.64 14992.14 27099.48 15199.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance94.81 25294.80 24694.85 29396.16 35086.45 33591.14 38498.20 23093.49 24397.03 21497.37 24184.97 32399.26 27295.28 16899.56 11698.83 218
Test_1112_low_res93.53 30092.86 30295.54 26298.60 16288.86 28792.75 34498.69 16982.66 39292.65 37296.92 27284.75 32499.56 17790.94 29597.76 32598.19 291
MVS-HIRNet88.40 37090.20 35182.99 40097.01 32560.04 42593.11 33885.61 41584.45 38788.72 40699.09 5384.72 32598.23 38282.52 39396.59 36890.69 415
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23997.65 9190.31 39998.89 2498.93 5399.36 2384.57 32699.92 697.81 4999.56 11699.39 110
test_cas_vis1_n_192095.34 22795.67 21194.35 31698.21 20786.83 33195.61 23099.26 3390.45 31598.17 13098.96 6584.43 32798.31 37896.74 9299.17 22097.90 318
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29696.58 11097.21 19798.19 15884.14 32899.78 5395.89 13096.17 37798.89 209
hse-mvs295.77 20595.09 22797.79 10997.84 24995.51 9995.66 22495.43 33896.58 11097.21 19796.16 31384.14 32899.54 18495.89 13096.92 35398.32 275
MonoMVSNet93.30 30693.96 28491.33 38194.14 40281.33 38997.68 8996.69 31395.38 17896.32 25998.42 12184.12 33096.76 40590.78 30192.12 40595.89 386
DIV-MVS_self_test94.73 25394.64 25295.01 28395.86 36387.00 32791.33 37898.08 24893.34 24897.10 20697.34 24384.02 33199.31 25995.15 17999.55 12298.72 234
cl____94.73 25394.64 25295.01 28395.85 36487.00 32791.33 37898.08 24893.34 24897.10 20697.33 24484.01 33299.30 26295.14 18099.56 11698.71 237
Vis-MVSNet (Re-imp)95.11 23894.85 24195.87 24599.12 9189.17 28097.54 10494.92 34896.50 11596.58 24597.27 24783.64 33399.48 20288.42 34599.67 8398.97 192
FA-MVS(test-final)94.91 24694.89 23794.99 28597.51 29688.11 30598.27 4495.20 34392.40 28296.68 23698.60 10283.44 33499.28 26893.34 25098.53 28797.59 342
dmvs_re92.08 32891.27 33394.51 31097.16 32092.79 20595.65 22692.64 37494.11 22692.74 36990.98 40183.41 33594.44 41580.72 39994.07 39896.29 382
PVSNet_081.89 2184.49 38483.21 38788.34 39595.76 37174.97 41883.49 41492.70 37378.47 40887.94 40986.90 41683.38 33696.63 40773.44 41466.86 42093.40 407
mvsmamba94.91 24694.41 26896.40 22097.65 28491.30 24497.92 6995.32 34091.50 29895.54 29898.38 12783.06 33799.68 12992.46 26797.84 32198.23 286
test_fmvs1_n95.21 23395.28 21994.99 28598.15 22089.13 28396.81 14199.43 2386.97 35997.21 19798.92 6983.00 33897.13 39798.09 3898.94 24798.72 234
CMPMVSbinary73.10 2392.74 31591.39 32996.77 19693.57 40994.67 13694.21 29897.67 27280.36 40293.61 34896.60 29182.85 33997.35 39584.86 38298.78 26598.29 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs194.51 26994.60 25694.26 32195.91 35987.92 30795.35 24799.02 8286.56 36396.79 22898.52 11082.64 34097.00 40097.87 4698.71 27397.88 320
EU-MVSNet94.25 27594.47 26493.60 33498.14 22282.60 37997.24 11792.72 37285.08 37798.48 9298.94 6782.59 34198.76 33797.47 6699.53 13099.44 100
baseline193.14 31092.64 31194.62 30397.34 31187.20 32496.67 15893.02 36794.71 20496.51 25195.83 32881.64 34298.60 35690.00 32288.06 41398.07 300
test111194.53 26894.81 24593.72 33199.06 10081.94 38498.31 3983.87 41796.37 12198.49 9099.17 4581.49 34399.73 8996.64 9399.86 2899.49 75
CVMVSNet92.33 32292.79 30590.95 38397.26 31675.84 41495.29 25392.33 37781.86 39396.27 26498.19 15881.44 34498.46 36894.23 22298.29 30398.55 252
EPNet_dtu91.39 34090.75 34393.31 33990.48 42082.61 37894.80 27592.88 36993.39 24681.74 41894.90 35081.36 34599.11 29988.28 34798.87 25598.21 289
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft94.37 27494.48 26394.05 32698.95 11583.10 37498.31 3982.48 41996.20 12998.23 12399.16 4681.18 34699.66 14395.95 12699.83 4299.38 112
test_yl94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
DCV-MVSNet94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
MIMVSNet93.42 30292.86 30295.10 27998.17 21688.19 29998.13 5593.69 35892.07 28495.04 31198.21 15780.95 34999.03 31281.42 39698.06 31298.07 300
PAPM87.64 37685.84 38393.04 34896.54 33784.99 35588.42 40795.57 33479.52 40483.82 41593.05 37580.57 35098.41 37062.29 41992.79 40295.71 390
HyFIR lowres test93.72 29392.65 31096.91 18498.93 12091.81 23591.23 38298.52 19282.69 39196.46 25396.52 29780.38 35199.90 1690.36 31798.79 26499.03 183
FMVSNet395.26 23294.94 23296.22 22896.53 33890.06 26295.99 20197.66 27494.11 22697.99 15097.91 19480.22 35299.63 15394.60 20799.44 16098.96 193
RPMNet94.68 26094.60 25694.90 29095.44 37888.15 30196.18 18498.86 12397.43 7894.10 33198.49 11379.40 35399.76 6895.69 13995.81 38096.81 370
LFMVS95.32 22994.88 23996.62 20398.03 22891.47 24197.65 9190.72 39599.11 1297.89 16298.31 13579.20 35499.48 20293.91 23699.12 22898.93 201
ADS-MVSNet291.47 33990.51 34894.36 31595.51 37685.63 34295.05 26695.70 32883.46 38992.69 37096.84 27679.15 35599.41 22885.66 37390.52 40798.04 308
ADS-MVSNet90.95 34690.26 35093.04 34895.51 37682.37 38095.05 26693.41 36483.46 38992.69 37096.84 27679.15 35598.70 34385.66 37390.52 40798.04 308
MDTV_nov1_ep13_2view57.28 42694.89 27280.59 40094.02 33678.66 35785.50 37597.82 324
cl2293.25 30892.84 30494.46 31294.30 39786.00 34091.09 38696.64 31590.74 30995.79 28796.31 30878.24 35898.77 33594.15 22598.34 30098.62 245
PatchmatchNetpermissive91.98 33191.87 32192.30 36994.60 39479.71 39695.12 25993.59 36389.52 32793.61 34897.02 26477.94 35999.18 28590.84 29894.57 39798.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs177.80 36098.06 304
CR-MVSNet93.29 30792.79 30594.78 29895.44 37888.15 30196.18 18497.20 29084.94 38294.10 33198.57 10477.67 36199.39 23495.17 17595.81 38096.81 370
Patchmtry95.03 24394.59 25896.33 22294.83 39190.82 25396.38 16997.20 29096.59 10997.49 18298.57 10477.67 36199.38 23792.95 26199.62 9298.80 222
tpmrst90.31 34990.61 34789.41 39194.06 40372.37 42295.06 26593.69 35888.01 34892.32 37896.86 27477.45 36398.82 33091.04 29187.01 41497.04 358
sam_mvs77.38 364
patchmatchnet-post96.84 27677.36 36599.42 219
Patchmatch-RL test94.66 26194.49 26295.19 27498.54 17188.91 28592.57 35098.74 15891.46 30098.32 11497.75 20877.31 36698.81 33296.06 11699.61 9897.85 322
tpmvs90.79 34790.87 34090.57 38692.75 41576.30 41295.79 21693.64 36291.04 30791.91 38196.26 30977.19 36798.86 32989.38 33289.85 41096.56 377
test_post10.87 42476.83 36899.07 305
Patchmatch-test93.60 29893.25 29594.63 30296.14 35487.47 31896.04 19594.50 35293.57 24196.47 25296.97 26776.50 36998.61 35490.67 30998.41 29897.81 326
MDTV_nov1_ep1391.28 33294.31 39673.51 42094.80 27593.16 36686.75 36293.45 35497.40 23376.37 37098.55 36088.85 33896.43 369
EMVS89.06 36489.22 35688.61 39493.00 41277.34 40882.91 41690.92 39194.64 20792.63 37491.81 39276.30 37197.02 39983.83 38896.90 35591.48 413
test_post194.98 27010.37 42576.21 37299.04 30989.47 330
GA-MVS92.83 31492.15 31994.87 29296.97 32687.27 32390.03 39696.12 31891.83 29194.05 33494.57 35376.01 37398.97 32192.46 26797.34 34898.36 273
BP-MVS195.36 22594.86 24096.89 18698.35 19291.72 23696.76 14795.21 34296.48 11896.23 26797.19 25275.97 37499.80 4897.91 4499.60 10499.15 157
PatchT93.75 29293.57 29094.29 32095.05 38787.32 32296.05 19492.98 36897.54 7594.25 32698.72 8675.79 37599.24 27895.92 12895.81 38096.32 381
E-PMN89.52 36189.78 35388.73 39393.14 41077.61 40683.26 41592.02 37994.82 20193.71 34493.11 36975.31 37696.81 40285.81 37096.81 36091.77 412
DeepMVS_CXcopyleft77.17 40190.94 41985.28 35074.08 42452.51 42080.87 42088.03 41275.25 37770.63 42259.23 42184.94 41675.62 416
GDP-MVS95.39 22494.89 23796.90 18598.26 20291.91 23196.48 16499.28 3195.06 19296.54 25097.12 25774.83 37899.82 3697.19 7599.27 20798.96 193
AUN-MVS93.95 29092.69 30997.74 11297.80 25795.38 10795.57 23395.46 33791.26 30492.64 37396.10 31974.67 37999.55 18193.72 24296.97 35298.30 279
CHOSEN 280x42089.98 35389.19 35992.37 36895.60 37581.13 39186.22 41097.09 29681.44 39787.44 41193.15 36873.99 38099.47 20488.69 34199.07 23596.52 378
thres20091.00 34590.42 34992.77 35997.47 30283.98 37094.01 30891.18 39095.12 18995.44 30091.21 39873.93 38199.31 25977.76 40897.63 33795.01 398
test-LLR89.97 35489.90 35290.16 38794.24 39974.98 41689.89 39889.06 40492.02 28689.97 39790.77 40273.92 38298.57 35791.88 27597.36 34696.92 361
test0.0.03 190.11 35089.21 35792.83 35793.89 40586.87 33091.74 37088.74 40792.02 28694.71 31791.14 39973.92 38294.48 41483.75 39092.94 40197.16 355
tpm cat188.01 37487.33 37490.05 39094.48 39576.28 41394.47 28794.35 35473.84 41789.26 40395.61 33573.64 38498.30 37984.13 38586.20 41595.57 394
tfpn200view991.55 33791.00 33793.21 34498.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32695.85 387
thres40091.68 33691.00 33793.71 33298.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32697.36 350
test_method66.88 38666.13 38969.11 40262.68 42725.73 43049.76 41896.04 32014.32 42264.27 42291.69 39473.45 38788.05 41976.06 41066.94 41993.54 405
thres100view90091.76 33591.26 33593.26 34098.21 20784.50 36296.39 16690.39 39696.87 10096.33 25893.08 37373.44 38899.42 21978.85 40597.74 32695.85 387
thres600view792.03 33091.43 32893.82 32898.19 21084.61 36196.27 17690.39 39696.81 10296.37 25793.11 36973.44 38899.49 19980.32 40097.95 31697.36 350
MVSTER94.21 27893.93 28595.05 28195.83 36586.46 33495.18 25897.65 27692.41 28197.94 15898.00 18572.39 39099.58 17096.36 10599.56 11699.12 168
JIA-IIPM91.79 33490.69 34595.11 27793.80 40690.98 25094.16 30091.78 38296.38 12090.30 39499.30 2972.02 39198.90 32488.28 34790.17 40995.45 395
tpm91.08 34490.85 34191.75 37695.33 38278.09 40295.03 26891.27 38988.75 33793.53 35197.40 23371.24 39299.30 26291.25 28893.87 39997.87 321
baseline289.65 36088.44 36693.25 34195.62 37482.71 37693.82 31785.94 41488.89 33687.35 41292.54 38371.23 39399.33 25486.01 36894.60 39697.72 334
CostFormer89.75 35789.25 35591.26 38294.69 39378.00 40495.32 25091.98 38081.50 39690.55 39096.96 26971.06 39498.89 32588.59 34392.63 40396.87 364
FPMVS89.92 35588.63 36393.82 32898.37 19096.94 4991.58 37293.34 36588.00 34990.32 39397.10 25970.87 39591.13 41871.91 41696.16 37893.39 408
EPMVS89.26 36288.55 36491.39 38092.36 41679.11 39995.65 22679.86 42088.60 34093.12 36196.53 29570.73 39698.10 38690.75 30389.32 41196.98 359
FE-MVS92.95 31292.22 31795.11 27797.21 31888.33 29798.54 2393.66 36189.91 32396.21 26998.14 16270.33 39799.50 19487.79 35198.24 30597.51 345
tmp_tt57.23 38862.50 39141.44 40534.77 42849.21 42983.93 41360.22 42715.31 42171.11 42179.37 41870.09 39844.86 42464.76 41882.93 41830.25 420
ET-MVSNet_ETH3D91.12 34189.67 35495.47 26596.41 34189.15 28291.54 37390.23 40089.07 33286.78 41492.84 37869.39 39999.44 21594.16 22496.61 36797.82 324
dp88.08 37388.05 36888.16 39892.85 41368.81 42494.17 29992.88 36985.47 37391.38 38696.14 31668.87 40098.81 33286.88 36583.80 41796.87 364
tpm288.47 36987.69 37290.79 38494.98 38877.34 40895.09 26191.83 38177.51 41289.40 40296.41 30267.83 40198.73 33983.58 39192.60 40496.29 382
pmmvs390.00 35288.90 36293.32 33894.20 40185.34 34691.25 38192.56 37678.59 40793.82 33995.17 34267.36 40298.69 34589.08 33698.03 31395.92 385
thisisatest051590.43 34889.18 36094.17 32497.07 32485.44 34589.75 40287.58 40988.28 34593.69 34691.72 39365.27 40399.58 17090.59 31098.67 27697.50 347
tttt051793.31 30592.56 31395.57 25898.71 14787.86 30997.44 10787.17 41195.79 15697.47 18696.84 27664.12 40499.81 4196.20 11399.32 19899.02 186
thisisatest053092.71 31691.76 32595.56 26098.42 18788.23 29896.03 19687.35 41094.04 22996.56 24795.47 33864.03 40599.77 6394.78 20099.11 22998.68 241
FMVSNet593.39 30392.35 31496.50 21295.83 36590.81 25597.31 11298.27 22192.74 27496.27 26498.28 14462.23 40699.67 13790.86 29799.36 18399.03 183
WBMVS91.11 34290.72 34492.26 37095.99 35777.98 40591.47 37495.90 32591.63 29395.90 28496.45 30059.60 40799.46 20789.97 32399.59 10799.33 121
UBG88.29 37187.17 37591.63 37796.08 35578.21 40191.61 37191.50 38589.67 32689.71 40088.97 41059.01 40898.91 32381.28 39796.72 36497.77 329
IB-MVS85.98 2088.63 36886.95 37993.68 33395.12 38684.82 36090.85 38890.17 40187.55 35288.48 40791.34 39758.01 40999.59 16887.24 36393.80 40096.63 376
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVStest191.89 33291.45 32793.21 34489.01 42184.87 35795.82 21595.05 34591.50 29898.75 7299.19 3857.56 41095.11 41097.78 5298.37 29999.64 35
testing9189.67 35988.55 36493.04 34895.90 36081.80 38592.71 34893.71 35793.71 23690.18 39590.15 40657.11 41199.22 28287.17 36496.32 37398.12 296
gg-mvs-nofinetune88.28 37286.96 37892.23 37192.84 41484.44 36498.19 5274.60 42299.08 1487.01 41399.47 1356.93 41298.23 38278.91 40495.61 38694.01 404
KD-MVS_2432*160088.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
miper_refine_blended88.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
GG-mvs-BLEND90.60 38591.00 41884.21 36898.23 4672.63 42582.76 41684.11 41756.14 41596.79 40372.20 41592.09 40690.78 414
TESTMET0.1,187.20 38186.57 38189.07 39293.62 40872.84 42189.89 39887.01 41285.46 37489.12 40490.20 40556.00 41697.72 39290.91 29696.92 35396.64 374
reproduce_monomvs92.05 32992.26 31691.43 37995.42 38075.72 41595.68 22297.05 29994.47 21397.95 15798.35 13055.58 41799.05 30796.36 10599.44 16099.51 64
testing9989.21 36388.04 36992.70 36195.78 36981.00 39292.65 34992.03 37893.20 25589.90 39990.08 40855.25 41899.14 29287.54 35795.95 37997.97 313
UWE-MVS87.57 37886.72 38090.13 38995.21 38373.56 41991.94 36783.78 41888.73 33993.00 36392.87 37755.22 41999.25 27481.74 39497.96 31597.59 342
test250689.86 35689.16 36191.97 37498.95 11576.83 41198.54 2361.07 42696.20 12997.07 21299.16 4655.19 42099.69 12496.43 10299.83 4299.38 112
testing1188.93 36587.63 37392.80 35895.87 36281.49 38792.48 35391.54 38491.62 29488.27 40890.24 40455.12 42199.11 29987.30 36296.28 37597.81 326
test-mter87.92 37587.17 37590.16 38794.24 39974.98 41689.89 39889.06 40486.44 36489.97 39790.77 40254.96 42298.57 35791.88 27597.36 34696.92 361
ETVMVS87.62 37785.75 38493.22 34396.15 35383.26 37392.94 34090.37 39891.39 30190.37 39288.45 41151.93 42398.64 35173.76 41296.38 37197.75 330
testing22287.35 37985.50 38692.93 35595.79 36882.83 37592.40 35990.10 40292.80 27388.87 40589.02 40948.34 42498.70 34375.40 41196.74 36297.27 354
myMVS_eth3d87.16 38285.61 38591.82 37595.19 38479.32 39792.46 35491.35 38690.67 31291.76 38387.61 41341.96 42598.50 36482.66 39296.84 35797.65 337
testing389.72 35888.26 36794.10 32597.66 28284.30 36794.80 27588.25 40894.66 20595.07 30792.51 38441.15 42699.43 21791.81 27898.44 29698.55 252
dongtai63.43 38763.37 39063.60 40383.91 42553.17 42785.14 41143.40 42977.91 41180.96 41979.17 41936.36 42777.10 42137.88 42245.63 42160.54 418
kuosan54.81 38954.94 39254.42 40474.43 42650.03 42884.98 41244.27 42861.80 41962.49 42370.43 42035.16 42858.04 42319.30 42341.61 42255.19 419
test12312.59 39115.49 3943.87 4066.07 4292.55 43190.75 3902.59 4312.52 4245.20 42613.02 4234.96 4291.85 4265.20 4249.09 4237.23 421
testmvs12.33 39215.23 3953.64 4075.77 4302.23 43288.99 4053.62 4302.30 4255.29 42513.09 4224.52 4301.95 4255.16 4258.32 4246.75 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.91 39410.55 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.94 3470.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.32 39785.41 376
FOURS199.59 1798.20 899.03 899.25 3498.96 2298.87 59
MSC_two_6792asdad98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
No_MVS98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
eth-test20.00 431
eth-test0.00 431
IU-MVS99.22 6695.40 10598.14 24385.77 37198.36 10695.23 17299.51 14099.49 75
save fliter98.48 18194.71 13394.53 28698.41 20595.02 195
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14998.89 11199.75 7495.48 15599.52 13599.53 57
GSMVS98.06 304
test_part299.03 10796.07 7898.08 141
MTGPAbinary98.73 159
MTMP96.55 16074.60 422
gm-plane-assit91.79 41771.40 42381.67 39490.11 40798.99 31584.86 382
test9_res91.29 28598.89 25499.00 187
agg_prior290.34 31898.90 25199.10 175
agg_prior97.80 25794.96 12898.36 21293.49 35299.53 186
test_prior495.38 10793.61 325
test_prior97.46 14097.79 26294.26 15798.42 20499.34 25298.79 224
旧先验293.35 33277.95 41095.77 29198.67 34990.74 306
新几何293.43 328
无先验93.20 33697.91 25780.78 39999.40 23087.71 35297.94 316
原ACMM292.82 342
testdata299.46 20787.84 350
testdata192.77 34393.78 234
plane_prior798.70 14994.67 136
plane_prior598.75 15699.46 20792.59 26499.20 21599.28 134
plane_prior496.77 282
plane_prior394.51 14395.29 18296.16 272
plane_prior296.50 16296.36 122
plane_prior198.49 179
plane_prior94.29 15395.42 23894.31 21998.93 249
n20.00 432
nn0.00 432
door-mid98.17 236
test1198.08 248
door97.81 266
HQP5-MVS92.47 212
HQP-NCC97.85 24494.26 29193.18 25792.86 366
ACMP_Plane97.85 24494.26 29193.18 25792.86 366
BP-MVS90.51 313
HQP4-MVS92.87 36599.23 28099.06 180
HQP3-MVS98.43 20198.74 269
NP-MVS98.14 22293.72 17495.08 343
ACMMP++_ref99.52 135
ACMMP++99.55 122