| LCM-MVSNet | | | 99.86 1 | 99.86 1 | 99.87 1 | 99.99 1 | 99.77 1 | 99.77 1 | 99.80 2 | 99.97 1 | 99.97 1 | 99.95 1 | 99.74 1 | 99.98 1 | 99.56 1 | 100.00 1 | 99.85 3 |
|
| pmmvs6 | | | 99.07 4 | 99.24 4 | 98.56 48 | 99.81 2 | 96.38 62 | 98.87 9 | 99.30 27 | 99.01 16 | 99.63 11 | 99.66 3 | 99.27 2 | 99.68 122 | 97.75 50 | 99.89 26 | 99.62 36 |
|
| UniMVSNet_ETH3D | | | 99.12 3 | 99.28 3 | 98.65 42 | 99.77 5 | 96.34 65 | 99.18 5 | 99.20 35 | 99.67 2 | 99.73 3 | 99.65 5 | 99.15 3 | 99.86 24 | 97.22 67 | 99.92 16 | 99.77 12 |
|
| test_fmvsmconf0.01_n | | | 98.57 17 | 98.74 16 | 98.06 88 | 99.39 46 | 94.63 136 | 96.70 145 | 99.82 1 | 95.44 167 | 99.64 10 | 99.52 7 | 98.96 4 | 99.74 76 | 99.38 3 | 99.86 31 | 99.81 8 |
|
| XVG-OURS-SEG-HR | | | 97.38 116 | 97.07 132 | 98.30 68 | 99.01 109 | 97.41 34 | 94.66 270 | 99.02 77 | 95.20 175 | 98.15 130 | 97.52 214 | 98.83 5 | 98.43 359 | 94.87 184 | 96.41 358 | 99.07 171 |
|
| ACMH | | 93.61 9 | 98.44 25 | 98.76 13 | 97.51 127 | 99.43 39 | 93.54 180 | 98.23 46 | 99.05 67 | 97.40 80 | 99.37 23 | 99.08 51 | 98.79 6 | 99.47 196 | 97.74 51 | 99.71 74 | 99.50 62 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| mvs_tets | | | 98.90 5 | 98.94 6 | 98.75 31 | 99.69 10 | 96.48 60 | 98.54 23 | 99.22 32 | 96.23 122 | 99.71 4 | 99.48 10 | 98.77 7 | 99.93 3 | 98.89 17 | 99.95 5 | 99.84 5 |
|
| test_fmvsmconf0.1_n | | | 98.41 27 | 98.54 25 | 98.03 93 | 99.16 82 | 94.61 137 | 96.18 175 | 99.73 3 | 95.05 183 | 99.60 14 | 99.34 25 | 98.68 8 | 99.72 87 | 99.21 7 | 99.85 38 | 99.76 17 |
|
| LTVRE_ROB | | 96.88 1 | 99.18 2 | 99.34 2 | 98.72 37 | 99.71 9 | 96.99 44 | 99.69 2 | 99.57 14 | 99.02 15 | 99.62 12 | 99.36 21 | 98.53 9 | 99.52 181 | 98.58 29 | 99.95 5 | 99.66 30 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_fmvsmconf_n | | | 98.30 32 | 98.41 32 | 97.99 96 | 98.94 115 | 94.60 138 | 96.00 190 | 99.64 12 | 94.99 186 | 99.43 19 | 99.18 39 | 98.51 10 | 99.71 102 | 99.13 10 | 99.84 40 | 99.67 28 |
|
| TransMVSNet (Re) | | | 98.38 28 | 98.67 18 | 97.51 127 | 99.51 30 | 93.39 186 | 98.20 51 | 98.87 113 | 98.23 40 | 99.48 16 | 99.27 30 | 98.47 11 | 99.55 173 | 96.52 89 | 99.53 125 | 99.60 37 |
|
| pm-mvs1 | | | 98.47 24 | 98.67 18 | 97.86 103 | 99.52 29 | 94.58 139 | 98.28 42 | 99.00 86 | 97.57 67 | 99.27 29 | 99.22 34 | 98.32 12 | 99.50 186 | 97.09 74 | 99.75 65 | 99.50 62 |
|
| jajsoiax | | | 98.77 9 | 98.79 12 | 98.74 34 | 99.66 13 | 96.48 60 | 98.45 31 | 99.12 49 | 95.83 148 | 99.67 7 | 99.37 19 | 98.25 13 | 99.92 5 | 98.77 20 | 99.94 8 | 99.82 6 |
|
| sd_testset | | | 97.97 52 | 98.12 41 | 97.51 127 | 99.41 42 | 93.44 183 | 97.96 62 | 98.25 215 | 98.58 28 | 98.78 64 | 99.39 16 | 98.21 14 | 99.56 168 | 92.65 252 | 99.86 31 | 99.52 58 |
|
| ACMH+ | | 93.58 10 | 98.23 36 | 98.31 35 | 97.98 97 | 99.39 46 | 95.22 118 | 97.55 93 | 99.20 35 | 98.21 41 | 99.25 31 | 98.51 104 | 98.21 14 | 99.40 221 | 94.79 188 | 99.72 71 | 99.32 115 |
|
| HPM-MVS_fast | | | 98.32 30 | 98.13 40 | 98.88 23 | 99.54 26 | 97.48 30 | 98.35 35 | 99.03 75 | 95.88 144 | 97.88 159 | 98.22 145 | 98.15 16 | 99.74 76 | 96.50 90 | 99.62 92 | 99.42 97 |
|
| wuyk23d | | | 93.25 299 | 95.20 215 | 87.40 386 | 96.07 349 | 95.38 105 | 97.04 123 | 94.97 335 | 95.33 170 | 99.70 6 | 98.11 157 | 98.14 17 | 91.94 404 | 77.76 395 | 99.68 82 | 74.89 404 |
|
| ACMM | | 93.33 11 | 98.05 48 | 97.79 73 | 98.85 24 | 99.15 85 | 97.55 26 | 96.68 146 | 98.83 129 | 95.21 174 | 98.36 104 | 98.13 153 | 98.13 18 | 99.62 149 | 96.04 110 | 99.54 121 | 99.39 104 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| HPM-MVS |  | | 98.11 43 | 97.83 69 | 98.92 21 | 99.42 41 | 97.46 31 | 98.57 20 | 99.05 67 | 95.43 168 | 97.41 184 | 97.50 216 | 97.98 19 | 99.79 44 | 95.58 140 | 99.57 108 | 99.50 62 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| testgi | | | 96.07 186 | 96.50 170 | 94.80 290 | 99.26 59 | 87.69 308 | 95.96 195 | 98.58 180 | 95.08 181 | 98.02 146 | 96.25 296 | 97.92 20 | 97.60 384 | 88.68 330 | 98.74 262 | 99.11 164 |
|
| LPG-MVS_test | | | 97.94 62 | 97.67 86 | 98.74 34 | 99.15 85 | 97.02 42 | 97.09 120 | 99.02 77 | 95.15 178 | 98.34 107 | 98.23 142 | 97.91 21 | 99.70 110 | 94.41 203 | 99.73 67 | 99.50 62 |
|
| LGP-MVS_train | | | | | 98.74 34 | 99.15 85 | 97.02 42 | | 99.02 77 | 95.15 178 | 98.34 107 | 98.23 142 | 97.91 21 | 99.70 110 | 94.41 203 | 99.73 67 | 99.50 62 |
|
| SED-MVS | | | 97.94 62 | 97.90 59 | 98.07 86 | 99.22 68 | 95.35 108 | 96.79 136 | 98.83 129 | 96.11 128 | 99.08 40 | 98.24 140 | 97.87 23 | 99.72 87 | 95.44 149 | 99.51 135 | 99.14 154 |
|
| test_241102_ONE | | | | | | 99.22 68 | 95.35 108 | | 98.83 129 | 96.04 133 | 99.08 40 | 98.13 153 | 97.87 23 | 99.33 246 | | | |
|
| SDMVSNet | | | 97.97 52 | 98.26 39 | 97.11 163 | 99.41 42 | 92.21 215 | 96.92 128 | 98.60 176 | 98.58 28 | 98.78 64 | 99.39 16 | 97.80 25 | 99.62 149 | 94.98 182 | 99.86 31 | 99.52 58 |
|
| testf1 | | | 98.57 17 | 98.45 29 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 82 | 99.42 22 | 97.69 63 | 98.92 51 | 98.77 78 | 97.80 25 | 99.25 266 | 96.27 100 | 99.69 78 | 98.76 219 |
|
| APD_test2 | | | 98.57 17 | 98.45 29 | 98.93 18 | 99.79 3 | 98.78 2 | 97.69 82 | 99.42 22 | 97.69 63 | 98.92 51 | 98.77 78 | 97.80 25 | 99.25 266 | 96.27 100 | 99.69 78 | 98.76 219 |
|
| SD-MVS | | | 97.37 118 | 97.70 81 | 96.35 214 | 98.14 215 | 95.13 122 | 96.54 152 | 98.92 102 | 95.94 140 | 99.19 34 | 98.08 159 | 97.74 28 | 95.06 398 | 95.24 161 | 99.54 121 | 98.87 207 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| DeepC-MVS | | 95.41 4 | 97.82 81 | 97.70 81 | 98.16 79 | 98.78 134 | 95.72 86 | 96.23 173 | 99.02 77 | 93.92 221 | 98.62 76 | 98.99 57 | 97.69 29 | 99.62 149 | 96.18 105 | 99.87 29 | 99.15 151 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| nrg030 | | | 98.54 21 | 98.62 22 | 98.32 65 | 99.22 68 | 95.66 91 | 97.90 67 | 99.08 59 | 98.31 36 | 99.02 43 | 98.74 81 | 97.68 30 | 99.61 156 | 97.77 49 | 99.85 38 | 99.70 26 |
|
| MGCFI-Net | | | 97.20 127 | 97.23 122 | 97.08 168 | 97.68 271 | 93.71 173 | 97.79 73 | 99.09 57 | 97.40 80 | 96.59 237 | 93.96 350 | 97.67 31 | 99.35 241 | 96.43 93 | 98.50 284 | 98.17 283 |
|
| ANet_high | | | 98.31 31 | 98.94 6 | 96.41 213 | 99.33 53 | 89.64 263 | 97.92 66 | 99.56 16 | 99.27 6 | 99.66 9 | 99.50 9 | 97.67 31 | 99.83 32 | 97.55 58 | 99.98 2 | 99.77 12 |
|
| test_fmvsmvis_n_1920 | | | 98.08 45 | 98.47 26 | 96.93 178 | 99.03 107 | 93.29 188 | 96.32 165 | 99.65 9 | 95.59 159 | 99.71 4 | 99.01 54 | 97.66 33 | 99.60 158 | 99.44 2 | 99.83 43 | 97.90 307 |
|
| casdiffmvs_mvg |  | | 97.83 78 | 98.11 42 | 97.00 175 | 98.57 161 | 92.10 223 | 95.97 193 | 99.18 38 | 97.67 66 | 99.00 46 | 98.48 109 | 97.64 34 | 99.50 186 | 96.96 79 | 99.54 121 | 99.40 100 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| sasdasda | | | 97.23 125 | 97.21 124 | 97.30 149 | 97.65 277 | 94.39 145 | 97.84 70 | 99.05 67 | 97.42 75 | 96.68 230 | 93.85 353 | 97.63 35 | 99.33 246 | 96.29 98 | 98.47 285 | 98.18 281 |
|
| canonicalmvs | | | 97.23 125 | 97.21 124 | 97.30 149 | 97.65 277 | 94.39 145 | 97.84 70 | 99.05 67 | 97.42 75 | 96.68 230 | 93.85 353 | 97.63 35 | 99.33 246 | 96.29 98 | 98.47 285 | 98.18 281 |
|
| GeoE | | | 97.75 87 | 97.70 81 | 97.89 101 | 98.88 122 | 94.53 140 | 97.10 119 | 98.98 92 | 95.75 152 | 97.62 170 | 97.59 209 | 97.61 37 | 99.77 56 | 96.34 97 | 99.44 155 | 99.36 112 |
|
| TranMVSNet+NR-MVSNet | | | 98.33 29 | 98.30 37 | 98.43 57 | 99.07 100 | 95.87 81 | 96.73 143 | 99.05 67 | 98.67 24 | 98.84 59 | 98.45 110 | 97.58 38 | 99.88 20 | 96.45 92 | 99.86 31 | 99.54 53 |
|
| cdsmvs_eth3d_5k | | | 24.22 375 | 32.30 378 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 98.10 239 | 0.00 411 | 0.00 412 | 95.06 331 | 97.54 39 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| ACMP | | 92.54 13 | 97.47 110 | 97.10 129 | 98.55 49 | 99.04 106 | 96.70 51 | 96.24 172 | 98.89 105 | 93.71 225 | 97.97 151 | 97.75 197 | 97.44 40 | 99.63 144 | 93.22 245 | 99.70 77 | 99.32 115 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test_djsdf | | | 98.73 11 | 98.74 16 | 98.69 39 | 99.63 15 | 96.30 67 | 98.67 15 | 99.02 77 | 96.50 110 | 99.32 26 | 99.44 14 | 97.43 41 | 99.92 5 | 98.73 22 | 99.95 5 | 99.86 2 |
|
| TDRefinement | | | 98.90 5 | 98.86 8 | 99.02 6 | 99.54 26 | 98.06 8 | 99.34 4 | 99.44 20 | 98.85 21 | 99.00 46 | 99.20 35 | 97.42 42 | 99.59 159 | 97.21 68 | 99.76 58 | 99.40 100 |
|
| anonymousdsp | | | 98.72 14 | 98.63 20 | 98.99 10 | 99.62 16 | 97.29 37 | 98.65 19 | 99.19 37 | 95.62 157 | 99.35 25 | 99.37 19 | 97.38 43 | 99.90 14 | 98.59 28 | 99.91 19 | 99.77 12 |
|
| PS-CasMVS | | | 98.73 11 | 98.85 10 | 98.39 61 | 99.55 23 | 95.47 102 | 98.49 28 | 99.13 48 | 99.22 8 | 99.22 33 | 98.96 61 | 97.35 44 | 99.92 5 | 97.79 48 | 99.93 11 | 99.79 10 |
|
| COLMAP_ROB |  | 94.48 6 | 98.25 35 | 98.11 42 | 98.64 43 | 99.21 75 | 97.35 35 | 97.96 62 | 99.16 40 | 98.34 35 | 98.78 64 | 98.52 102 | 97.32 45 | 99.45 203 | 94.08 217 | 99.67 84 | 99.13 156 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| EG-PatchMatch MVS | | | 97.69 92 | 97.79 73 | 97.40 144 | 99.06 101 | 93.52 181 | 95.96 195 | 98.97 95 | 94.55 202 | 98.82 61 | 98.76 80 | 97.31 46 | 99.29 258 | 97.20 70 | 99.44 155 | 99.38 106 |
|
| XXY-MVS | | | 97.54 105 | 97.70 81 | 97.07 169 | 99.46 36 | 92.21 215 | 97.22 112 | 99.00 86 | 94.93 189 | 98.58 81 | 98.92 65 | 97.31 46 | 99.41 219 | 94.44 201 | 99.43 163 | 99.59 38 |
|
| PEN-MVS | | | 98.75 10 | 98.85 10 | 98.44 55 | 99.58 19 | 95.67 90 | 98.45 31 | 99.15 44 | 99.33 5 | 99.30 27 | 99.00 55 | 97.27 48 | 99.92 5 | 97.64 56 | 99.92 16 | 99.75 19 |
|
| DTE-MVSNet | | | 98.79 8 | 98.86 8 | 98.59 46 | 99.55 23 | 96.12 72 | 98.48 30 | 99.10 52 | 99.36 4 | 99.29 28 | 99.06 52 | 97.27 48 | 99.93 3 | 97.71 52 | 99.91 19 | 99.70 26 |
|
| ZNCC-MVS | | | 97.92 66 | 97.62 95 | 98.83 25 | 99.32 55 | 97.24 39 | 97.45 100 | 98.84 123 | 95.76 150 | 96.93 217 | 97.43 220 | 97.26 50 | 99.79 44 | 96.06 107 | 99.53 125 | 99.45 85 |
|
| MP-MVS-pluss | | | 97.69 92 | 97.36 114 | 98.70 38 | 99.50 33 | 96.84 47 | 95.38 232 | 98.99 89 | 92.45 270 | 98.11 133 | 98.31 124 | 97.25 51 | 99.77 56 | 96.60 86 | 99.62 92 | 99.48 76 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| ACMMP_NAP | | | 97.89 72 | 97.63 93 | 98.67 40 | 99.35 51 | 96.84 47 | 96.36 162 | 98.79 139 | 95.07 182 | 97.88 159 | 98.35 120 | 97.24 52 | 99.72 87 | 96.05 109 | 99.58 105 | 99.45 85 |
|
| Effi-MVS+ | | | 96.19 182 | 96.01 189 | 96.71 194 | 97.43 296 | 92.19 219 | 96.12 181 | 99.10 52 | 95.45 165 | 93.33 345 | 94.71 338 | 97.23 53 | 99.56 168 | 93.21 246 | 97.54 328 | 98.37 258 |
|
| tt0805 | | | 97.44 112 | 97.56 101 | 97.11 163 | 99.55 23 | 96.36 63 | 98.66 18 | 95.66 320 | 98.31 36 | 97.09 205 | 95.45 325 | 97.17 54 | 98.50 354 | 98.67 25 | 97.45 334 | 96.48 367 |
|
| PGM-MVS | | | 97.88 73 | 97.52 105 | 98.96 13 | 99.20 77 | 97.62 21 | 97.09 120 | 99.06 63 | 95.45 165 | 97.55 172 | 97.94 179 | 97.11 55 | 99.78 47 | 94.77 191 | 99.46 151 | 99.48 76 |
|
| test_0728_THIRD | | | | | | | | | | 96.62 101 | 98.40 98 | 98.28 133 | 97.10 56 | 99.71 102 | 95.70 128 | 99.62 92 | 99.58 39 |
|
| APD-MVS_3200maxsize | | | 98.13 42 | 97.90 59 | 98.79 29 | 98.79 131 | 97.31 36 | 97.55 93 | 98.92 102 | 97.72 59 | 98.25 118 | 98.13 153 | 97.10 56 | 99.75 67 | 95.44 149 | 99.24 206 | 99.32 115 |
|
| OPM-MVS | | | 97.54 105 | 97.25 120 | 98.41 59 | 99.11 94 | 96.61 56 | 95.24 243 | 98.46 189 | 94.58 201 | 98.10 135 | 98.07 161 | 97.09 58 | 99.39 225 | 95.16 167 | 99.44 155 | 99.21 140 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| HFP-MVS | | | 97.94 62 | 97.64 91 | 98.83 25 | 99.15 85 | 97.50 29 | 97.59 90 | 98.84 123 | 96.05 131 | 97.49 177 | 97.54 212 | 97.07 59 | 99.70 110 | 95.61 137 | 99.46 151 | 99.30 120 |
|
| DVP-MVS |  | | 97.78 85 | 97.65 88 | 98.16 79 | 99.24 63 | 95.51 97 | 96.74 139 | 98.23 218 | 95.92 141 | 98.40 98 | 98.28 133 | 97.06 60 | 99.71 102 | 95.48 145 | 99.52 130 | 99.26 132 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.24 63 | 95.51 97 | 96.89 130 | 98.89 105 | 95.92 141 | 98.64 74 | 98.31 124 | 97.06 60 | | | | |
|
| test_fmvsm_n_1920 | | | 98.08 45 | 98.29 38 | 97.43 140 | 98.88 122 | 93.95 164 | 96.17 179 | 99.57 14 | 95.66 154 | 99.52 15 | 98.71 84 | 97.04 62 | 99.64 140 | 99.21 7 | 99.87 29 | 98.69 228 |
|
| casdiffmvs |  | | 97.50 107 | 97.81 71 | 96.56 204 | 98.51 170 | 91.04 243 | 95.83 204 | 99.09 57 | 97.23 87 | 98.33 110 | 98.30 128 | 97.03 63 | 99.37 234 | 96.58 88 | 99.38 173 | 99.28 127 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| SteuartSystems-ACMMP | | | 98.02 50 | 97.76 78 | 98.79 29 | 99.43 39 | 97.21 41 | 97.15 115 | 98.90 104 | 96.58 105 | 98.08 138 | 97.87 186 | 97.02 64 | 99.76 61 | 95.25 160 | 99.59 103 | 99.40 100 |
| Skip Steuart: Steuart Systems R&D Blog. |
| PC_three_1452 | | | | | | | | | | 87.24 341 | 98.37 101 | 97.44 219 | 97.00 65 | 96.78 394 | 92.01 262 | 99.25 203 | 99.21 140 |
|
| EC-MVSNet | | | 97.90 71 | 97.94 58 | 97.79 107 | 98.66 148 | 95.14 121 | 98.31 39 | 99.66 8 | 97.57 67 | 95.95 269 | 97.01 253 | 96.99 66 | 99.82 34 | 97.66 55 | 99.64 89 | 98.39 256 |
|
| DVP-MVS++ | | | 97.96 54 | 97.90 59 | 98.12 84 | 97.75 263 | 95.40 103 | 99.03 7 | 98.89 105 | 96.62 101 | 98.62 76 | 98.30 128 | 96.97 67 | 99.75 67 | 95.70 128 | 99.25 203 | 99.21 140 |
|
| OPU-MVS | | | | | 97.64 118 | 98.01 224 | 95.27 113 | 96.79 136 | | | | 97.35 231 | 96.97 67 | 98.51 353 | 91.21 280 | 99.25 203 | 99.14 154 |
|
| RE-MVS-def | | | | 97.88 64 | | 98.81 127 | 98.05 9 | 97.55 93 | 98.86 116 | 97.77 54 | 98.20 122 | 98.07 161 | 96.94 69 | | 95.49 142 | 99.20 208 | 99.26 132 |
|
| APDe-MVS |  | | 98.14 39 | 98.03 50 | 98.47 54 | 98.72 139 | 96.04 75 | 98.07 58 | 99.10 52 | 95.96 138 | 98.59 80 | 98.69 86 | 96.94 69 | 99.81 36 | 96.64 84 | 99.58 105 | 99.57 46 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| test_one_0601 | | | | | | 99.05 105 | 95.50 100 | | 98.87 113 | 97.21 88 | 98.03 145 | 98.30 128 | 96.93 71 | | | | |
|
| GST-MVS | | | 97.82 81 | 97.49 109 | 98.81 27 | 99.23 65 | 97.25 38 | 97.16 114 | 98.79 139 | 95.96 138 | 97.53 173 | 97.40 222 | 96.93 71 | 99.77 56 | 95.04 176 | 99.35 182 | 99.42 97 |
|
| test_241102_TWO | | | | | | | | | 98.83 129 | 96.11 128 | 98.62 76 | 98.24 140 | 96.92 73 | 99.72 87 | 95.44 149 | 99.49 142 | 99.49 70 |
|
| LCM-MVSNet-Re | | | 97.33 121 | 97.33 116 | 97.32 148 | 98.13 218 | 93.79 170 | 96.99 125 | 99.65 9 | 96.74 99 | 99.47 17 | 98.93 64 | 96.91 74 | 99.84 30 | 90.11 308 | 99.06 231 | 98.32 265 |
|
| VPA-MVSNet | | | 98.27 33 | 98.46 27 | 97.70 113 | 99.06 101 | 93.80 169 | 97.76 77 | 99.00 86 | 98.40 33 | 99.07 42 | 98.98 58 | 96.89 75 | 99.75 67 | 97.19 71 | 99.79 53 | 99.55 52 |
|
| ACMMP |  | | 98.05 48 | 97.75 80 | 98.93 18 | 99.23 65 | 97.60 22 | 98.09 57 | 98.96 96 | 95.75 152 | 97.91 156 | 98.06 166 | 96.89 75 | 99.76 61 | 95.32 157 | 99.57 108 | 99.43 96 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| CS-MVS | | | 98.09 44 | 98.01 52 | 98.32 65 | 98.45 179 | 96.69 52 | 98.52 26 | 99.69 5 | 98.07 46 | 96.07 265 | 97.19 241 | 96.88 77 | 99.86 24 | 97.50 60 | 99.73 67 | 98.41 253 |
|
| PMVS |  | 89.60 17 | 96.71 159 | 96.97 138 | 95.95 233 | 99.51 30 | 97.81 16 | 97.42 104 | 97.49 276 | 97.93 50 | 95.95 269 | 98.58 96 | 96.88 77 | 96.91 391 | 89.59 316 | 99.36 177 | 93.12 396 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| region2R | | | 97.92 66 | 97.59 98 | 98.92 21 | 99.22 68 | 97.55 26 | 97.60 88 | 98.84 123 | 96.00 136 | 97.22 189 | 97.62 207 | 96.87 79 | 99.76 61 | 95.48 145 | 99.43 163 | 99.46 81 |
|
| CP-MVS | | | 97.92 66 | 97.56 101 | 98.99 10 | 98.99 110 | 97.82 15 | 97.93 65 | 98.96 96 | 96.11 128 | 96.89 220 | 97.45 218 | 96.85 80 | 99.78 47 | 95.19 163 | 99.63 91 | 99.38 106 |
|
| DPE-MVS |  | | 97.64 96 | 97.35 115 | 98.50 51 | 98.85 125 | 96.18 69 | 95.21 245 | 98.99 89 | 95.84 147 | 98.78 64 | 98.08 159 | 96.84 81 | 99.81 36 | 93.98 223 | 99.57 108 | 99.52 58 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| test_0402 | | | 97.84 77 | 97.97 55 | 97.47 136 | 99.19 79 | 94.07 159 | 96.71 144 | 98.73 151 | 98.66 25 | 98.56 82 | 98.41 114 | 96.84 81 | 99.69 117 | 94.82 186 | 99.81 48 | 98.64 232 |
|
| CS-MVS-test | | | 97.91 69 | 97.84 66 | 98.14 82 | 98.52 168 | 96.03 77 | 98.38 34 | 99.67 6 | 98.11 44 | 95.50 286 | 96.92 259 | 96.81 83 | 99.87 22 | 96.87 82 | 99.76 58 | 98.51 246 |
|
| ACMMPR | | | 97.95 58 | 97.62 95 | 98.94 15 | 99.20 77 | 97.56 25 | 97.59 90 | 98.83 129 | 96.05 131 | 97.46 182 | 97.63 206 | 96.77 84 | 99.76 61 | 95.61 137 | 99.46 151 | 99.49 70 |
|
| Vis-MVSNet |  | | 98.27 33 | 98.34 34 | 98.07 86 | 99.33 53 | 95.21 120 | 98.04 59 | 99.46 18 | 97.32 84 | 97.82 166 | 99.11 47 | 96.75 85 | 99.86 24 | 97.84 45 | 99.36 177 | 99.15 151 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Fast-Effi-MVS+ | | | 95.49 210 | 95.07 222 | 96.75 192 | 97.67 275 | 92.82 197 | 94.22 285 | 98.60 176 | 91.61 283 | 93.42 343 | 92.90 364 | 96.73 86 | 99.70 110 | 92.60 253 | 97.89 311 | 97.74 319 |
|
| baseline | | | 97.44 112 | 97.78 77 | 96.43 210 | 98.52 168 | 90.75 250 | 96.84 131 | 99.03 75 | 96.51 109 | 97.86 163 | 98.02 170 | 96.67 87 | 99.36 237 | 97.09 74 | 99.47 148 | 99.19 145 |
|
| SR-MVS | | | 98.00 51 | 97.66 87 | 99.01 8 | 98.77 135 | 97.93 11 | 97.38 105 | 98.83 129 | 97.32 84 | 98.06 141 | 97.85 187 | 96.65 88 | 99.77 56 | 95.00 179 | 99.11 222 | 99.32 115 |
|
| tfpnnormal | | | 97.72 90 | 97.97 55 | 96.94 177 | 99.26 59 | 92.23 214 | 97.83 72 | 98.45 190 | 98.25 39 | 99.13 38 | 98.66 88 | 96.65 88 | 99.69 117 | 93.92 225 | 99.62 92 | 98.91 197 |
|
| DeepPCF-MVS | | 94.58 5 | 96.90 143 | 96.43 172 | 98.31 67 | 97.48 290 | 97.23 40 | 92.56 339 | 98.60 176 | 92.84 261 | 98.54 83 | 97.40 222 | 96.64 90 | 98.78 324 | 94.40 205 | 99.41 170 | 98.93 193 |
|
| MVS_111021_LR | | | 96.82 150 | 96.55 164 | 97.62 119 | 98.27 194 | 95.34 110 | 93.81 307 | 98.33 208 | 94.59 200 | 96.56 240 | 96.63 277 | 96.61 91 | 98.73 329 | 94.80 187 | 99.34 185 | 98.78 215 |
|
| Gipuma |  | | 98.07 47 | 98.31 35 | 97.36 146 | 99.76 7 | 96.28 68 | 98.51 27 | 99.10 52 | 98.76 23 | 96.79 222 | 99.34 25 | 96.61 91 | 98.82 320 | 96.38 95 | 99.50 139 | 96.98 347 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| SR-MVS-dyc-post | | | 98.14 39 | 97.84 66 | 99.02 6 | 98.81 127 | 98.05 9 | 97.55 93 | 98.86 116 | 97.77 54 | 98.20 122 | 98.07 161 | 96.60 93 | 99.76 61 | 95.49 142 | 99.20 208 | 99.26 132 |
|
| MVS_111021_HR | | | 96.73 156 | 96.54 166 | 97.27 152 | 98.35 187 | 93.66 177 | 93.42 317 | 98.36 204 | 94.74 192 | 96.58 238 | 96.76 271 | 96.54 94 | 98.99 306 | 94.87 184 | 99.27 201 | 99.15 151 |
|
| SMA-MVS |  | | 97.48 109 | 97.11 128 | 98.60 45 | 98.83 126 | 96.67 53 | 96.74 139 | 98.73 151 | 91.61 283 | 98.48 90 | 98.36 119 | 96.53 95 | 99.68 122 | 95.17 165 | 99.54 121 | 99.45 85 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| v7n | | | 98.73 11 | 98.99 5 | 97.95 98 | 99.64 14 | 94.20 156 | 98.67 15 | 99.14 47 | 99.08 10 | 99.42 20 | 99.23 33 | 96.53 95 | 99.91 13 | 99.27 5 | 99.93 11 | 99.73 22 |
|
| mPP-MVS | | | 97.91 69 | 97.53 104 | 99.04 4 | 99.22 68 | 97.87 14 | 97.74 80 | 98.78 143 | 96.04 133 | 97.10 200 | 97.73 200 | 96.53 95 | 99.78 47 | 95.16 167 | 99.50 139 | 99.46 81 |
|
| XVS | | | 97.96 54 | 97.63 93 | 98.94 15 | 99.15 85 | 97.66 19 | 97.77 75 | 98.83 129 | 97.42 75 | 96.32 251 | 97.64 205 | 96.49 98 | 99.72 87 | 95.66 133 | 99.37 174 | 99.45 85 |
|
| X-MVStestdata | | | 92.86 304 | 90.83 331 | 98.94 15 | 99.15 85 | 97.66 19 | 97.77 75 | 98.83 129 | 97.42 75 | 96.32 251 | 36.50 406 | 96.49 98 | 99.72 87 | 95.66 133 | 99.37 174 | 99.45 85 |
|
| 9.14 | | | | 96.69 154 | | 98.53 167 | | 96.02 188 | 98.98 92 | 93.23 241 | 97.18 194 | 97.46 217 | 96.47 100 | 99.62 149 | 92.99 249 | 99.32 192 | |
|
| UA-Net | | | 98.88 7 | 98.76 13 | 99.22 2 | 99.11 94 | 97.89 13 | 99.47 3 | 99.32 25 | 99.08 10 | 97.87 162 | 99.67 2 | 96.47 100 | 99.92 5 | 97.88 42 | 99.98 2 | 99.85 3 |
|
| fmvsm_l_conf0.5_n | | | 97.68 94 | 97.81 71 | 97.27 152 | 98.92 118 | 92.71 203 | 95.89 201 | 99.41 24 | 93.36 236 | 99.00 46 | 98.44 112 | 96.46 102 | 99.65 136 | 99.09 11 | 99.76 58 | 99.45 85 |
|
| SF-MVS | | | 97.60 100 | 97.39 112 | 98.22 75 | 98.93 116 | 95.69 88 | 97.05 122 | 99.10 52 | 95.32 171 | 97.83 165 | 97.88 185 | 96.44 103 | 99.72 87 | 94.59 200 | 99.39 172 | 99.25 136 |
|
| fmvsm_s_conf0.1_n_a | | | 97.80 83 | 98.01 52 | 97.18 158 | 99.17 81 | 92.51 206 | 96.57 150 | 99.15 44 | 93.68 228 | 98.89 54 | 99.30 28 | 96.42 104 | 99.37 234 | 99.03 13 | 99.83 43 | 99.66 30 |
|
| xiu_mvs_v1_base_debu | | | 95.62 205 | 95.96 193 | 94.60 298 | 98.01 224 | 88.42 286 | 93.99 297 | 98.21 220 | 92.98 255 | 95.91 271 | 94.53 341 | 96.39 105 | 99.72 87 | 95.43 152 | 98.19 297 | 95.64 378 |
|
| xiu_mvs_v1_base | | | 95.62 205 | 95.96 193 | 94.60 298 | 98.01 224 | 88.42 286 | 93.99 297 | 98.21 220 | 92.98 255 | 95.91 271 | 94.53 341 | 96.39 105 | 99.72 87 | 95.43 152 | 98.19 297 | 95.64 378 |
|
| xiu_mvs_v1_base_debi | | | 95.62 205 | 95.96 193 | 94.60 298 | 98.01 224 | 88.42 286 | 93.99 297 | 98.21 220 | 92.98 255 | 95.91 271 | 94.53 341 | 96.39 105 | 99.72 87 | 95.43 152 | 98.19 297 | 95.64 378 |
|
| ETV-MVS | | | 96.13 185 | 95.90 197 | 96.82 187 | 97.76 261 | 93.89 165 | 95.40 230 | 98.95 98 | 95.87 145 | 95.58 285 | 91.00 388 | 96.36 108 | 99.72 87 | 93.36 239 | 98.83 254 | 96.85 354 |
|
| fmvsm_l_conf0.5_n_a | | | 97.60 100 | 97.76 78 | 97.11 163 | 98.92 118 | 92.28 212 | 95.83 204 | 99.32 25 | 93.22 242 | 98.91 53 | 98.49 105 | 96.31 109 | 99.64 140 | 99.07 12 | 99.76 58 | 99.40 100 |
|
| fmvsm_s_conf0.1_n | | | 97.73 88 | 98.02 51 | 96.85 184 | 99.09 97 | 91.43 238 | 96.37 161 | 99.11 50 | 94.19 211 | 99.01 44 | 99.25 31 | 96.30 110 | 99.38 228 | 99.00 14 | 99.88 27 | 99.73 22 |
|
| MP-MVS |  | | 97.64 96 | 97.18 126 | 99.00 9 | 99.32 55 | 97.77 17 | 97.49 99 | 98.73 151 | 96.27 119 | 95.59 284 | 97.75 197 | 96.30 110 | 99.78 47 | 93.70 233 | 99.48 146 | 99.45 85 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| TinyColmap | | | 96.00 191 | 96.34 177 | 94.96 281 | 97.90 236 | 87.91 301 | 94.13 292 | 98.49 187 | 94.41 204 | 98.16 128 | 97.76 194 | 96.29 112 | 98.68 338 | 90.52 301 | 99.42 166 | 98.30 269 |
|
| Fast-Effi-MVS+-dtu | | | 96.44 173 | 96.12 184 | 97.39 145 | 97.18 311 | 94.39 145 | 95.46 224 | 98.73 151 | 96.03 135 | 94.72 304 | 94.92 335 | 96.28 113 | 99.69 117 | 93.81 228 | 97.98 305 | 98.09 286 |
|
| fmvsm_s_conf0.5_n_a | | | 97.65 95 | 97.83 69 | 97.13 162 | 98.80 129 | 92.51 206 | 96.25 171 | 99.06 63 | 93.67 229 | 98.64 74 | 99.00 55 | 96.23 114 | 99.36 237 | 98.99 15 | 99.80 51 | 99.53 56 |
|
| fmvsm_s_conf0.5_n | | | 97.62 98 | 97.89 62 | 96.80 188 | 98.79 131 | 91.44 237 | 96.14 180 | 99.06 63 | 94.19 211 | 98.82 61 | 98.98 58 | 96.22 115 | 99.38 228 | 98.98 16 | 99.86 31 | 99.58 39 |
|
| APD_test1 | | | 97.95 58 | 97.68 85 | 98.75 31 | 99.60 17 | 98.60 5 | 97.21 113 | 99.08 59 | 96.57 108 | 98.07 140 | 98.38 118 | 96.22 115 | 99.14 284 | 94.71 195 | 99.31 195 | 98.52 245 |
|
| OMC-MVS | | | 96.48 171 | 96.00 190 | 97.91 100 | 98.30 189 | 96.01 78 | 94.86 262 | 98.60 176 | 91.88 279 | 97.18 194 | 97.21 240 | 96.11 117 | 99.04 300 | 90.49 304 | 99.34 185 | 98.69 228 |
|
| xiu_mvs_v2_base | | | 94.22 267 | 94.63 246 | 92.99 343 | 97.32 306 | 84.84 351 | 92.12 351 | 97.84 256 | 91.96 277 | 94.17 316 | 93.43 355 | 96.07 118 | 99.71 102 | 91.27 277 | 97.48 331 | 94.42 388 |
|
| CSCG | | | 97.40 115 | 97.30 117 | 97.69 115 | 98.95 112 | 94.83 128 | 97.28 108 | 98.99 89 | 96.35 118 | 98.13 132 | 95.95 311 | 95.99 119 | 99.66 134 | 94.36 208 | 99.73 67 | 98.59 238 |
|
| PHI-MVS | | | 96.96 139 | 96.53 167 | 98.25 73 | 97.48 290 | 96.50 59 | 96.76 138 | 98.85 120 | 93.52 231 | 96.19 261 | 96.85 262 | 95.94 120 | 99.42 210 | 93.79 229 | 99.43 163 | 98.83 210 |
|
| TSAR-MVS + MP. | | | 97.42 114 | 97.23 122 | 98.00 95 | 99.38 48 | 95.00 125 | 97.63 87 | 98.20 223 | 93.00 254 | 98.16 128 | 98.06 166 | 95.89 121 | 99.72 87 | 95.67 132 | 99.10 224 | 99.28 127 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| XVG-ACMP-BASELINE | | | 97.58 103 | 97.28 119 | 98.49 52 | 99.16 82 | 96.90 46 | 96.39 157 | 98.98 92 | 95.05 183 | 98.06 141 | 98.02 170 | 95.86 122 | 99.56 168 | 94.37 206 | 99.64 89 | 99.00 180 |
|
| AllTest | | | 97.20 127 | 96.92 143 | 98.06 88 | 99.08 98 | 96.16 70 | 97.14 117 | 99.16 40 | 94.35 206 | 97.78 167 | 98.07 161 | 95.84 123 | 99.12 288 | 91.41 274 | 99.42 166 | 98.91 197 |
|
| TestCases | | | | | 98.06 88 | 99.08 98 | 96.16 70 | | 99.16 40 | 94.35 206 | 97.78 167 | 98.07 161 | 95.84 123 | 99.12 288 | 91.41 274 | 99.42 166 | 98.91 197 |
|
| APD-MVS |  | | 97.00 134 | 96.53 167 | 98.41 59 | 98.55 164 | 96.31 66 | 96.32 165 | 98.77 144 | 92.96 259 | 97.44 183 | 97.58 211 | 95.84 123 | 99.74 76 | 91.96 263 | 99.35 182 | 99.19 145 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| pcd_1.5k_mvsjas | | | 7.98 378 | 10.65 381 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 95.82 126 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| PS-MVSNAJss | | | 98.53 22 | 98.63 20 | 98.21 78 | 99.68 11 | 94.82 129 | 98.10 56 | 99.21 33 | 96.91 94 | 99.75 2 | 99.45 13 | 95.82 126 | 99.92 5 | 98.80 19 | 99.96 4 | 99.89 1 |
|
| PS-MVSNAJ | | | 94.10 273 | 94.47 256 | 93.00 342 | 97.35 301 | 84.88 349 | 91.86 356 | 97.84 256 | 91.96 277 | 94.17 316 | 92.50 373 | 95.82 126 | 99.71 102 | 91.27 277 | 97.48 331 | 94.40 389 |
|
| 3Dnovator | | 96.53 2 | 97.61 99 | 97.64 91 | 97.50 131 | 97.74 266 | 93.65 178 | 98.49 28 | 98.88 111 | 96.86 96 | 97.11 199 | 98.55 100 | 95.82 126 | 99.73 82 | 95.94 118 | 99.42 166 | 99.13 156 |
|
| MTAPA | | | 98.14 39 | 97.84 66 | 99.06 3 | 99.44 38 | 97.90 12 | 97.25 109 | 98.73 151 | 97.69 63 | 97.90 157 | 97.96 176 | 95.81 130 | 99.82 34 | 96.13 106 | 99.61 98 | 99.45 85 |
|
| DP-MVS | | | 97.87 74 | 97.89 62 | 97.81 106 | 98.62 155 | 94.82 129 | 97.13 118 | 98.79 139 | 98.98 17 | 98.74 70 | 98.49 105 | 95.80 131 | 99.49 191 | 95.04 176 | 99.44 155 | 99.11 164 |
|
| Anonymous20240529 | | | 97.96 54 | 98.04 49 | 97.71 112 | 98.69 146 | 94.28 154 | 97.86 69 | 98.31 212 | 98.79 22 | 99.23 32 | 98.86 73 | 95.76 132 | 99.61 156 | 95.49 142 | 99.36 177 | 99.23 138 |
|
| LS3D | | | 97.77 86 | 97.50 108 | 98.57 47 | 96.24 337 | 97.58 24 | 98.45 31 | 98.85 120 | 98.58 28 | 97.51 175 | 97.94 179 | 95.74 133 | 99.63 144 | 95.19 163 | 98.97 236 | 98.51 246 |
|
| EIA-MVS | | | 96.04 188 | 95.77 203 | 96.85 184 | 97.80 251 | 92.98 195 | 96.12 181 | 99.16 40 | 94.65 196 | 93.77 329 | 91.69 382 | 95.68 134 | 99.67 128 | 94.18 213 | 98.85 251 | 97.91 306 |
|
| CNVR-MVS | | | 96.92 141 | 96.55 164 | 98.03 93 | 98.00 228 | 95.54 95 | 94.87 261 | 98.17 229 | 94.60 198 | 96.38 248 | 97.05 249 | 95.67 135 | 99.36 237 | 95.12 173 | 99.08 226 | 99.19 145 |
|
| CLD-MVS | | | 95.47 213 | 95.07 222 | 96.69 196 | 98.27 194 | 92.53 205 | 91.36 363 | 98.67 166 | 91.22 291 | 95.78 278 | 94.12 349 | 95.65 136 | 98.98 308 | 90.81 289 | 99.72 71 | 98.57 239 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| Anonymous20231211 | | | 98.55 20 | 98.76 13 | 97.94 99 | 98.79 131 | 94.37 148 | 98.84 11 | 99.15 44 | 99.37 3 | 99.67 7 | 99.43 15 | 95.61 137 | 99.72 87 | 98.12 34 | 99.86 31 | 99.73 22 |
|
| EGC-MVSNET | | | 83.08 372 | 77.93 375 | 98.53 50 | 99.57 20 | 97.55 26 | 98.33 38 | 98.57 181 | 4.71 408 | 10.38 409 | 98.90 69 | 95.60 138 | 99.50 186 | 95.69 130 | 99.61 98 | 98.55 242 |
|
| ITE_SJBPF | | | | | 97.85 104 | 98.64 149 | 96.66 54 | | 98.51 186 | 95.63 156 | 97.22 189 | 97.30 235 | 95.52 139 | 98.55 350 | 90.97 284 | 98.90 244 | 98.34 264 |
|
| DeepC-MVS_fast | | 94.34 7 | 96.74 154 | 96.51 169 | 97.44 139 | 97.69 270 | 94.15 157 | 96.02 188 | 98.43 193 | 93.17 249 | 97.30 186 | 97.38 228 | 95.48 140 | 99.28 260 | 93.74 230 | 99.34 185 | 98.88 205 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| WR-MVS_H | | | 98.65 15 | 98.62 22 | 98.75 31 | 99.51 30 | 96.61 56 | 98.55 22 | 99.17 39 | 99.05 13 | 99.17 35 | 98.79 75 | 95.47 141 | 99.89 18 | 97.95 41 | 99.91 19 | 99.75 19 |
|
| FMVSNet1 | | | 97.95 58 | 98.08 44 | 97.56 122 | 99.14 92 | 93.67 174 | 98.23 46 | 98.66 168 | 97.41 79 | 99.00 46 | 99.19 36 | 95.47 141 | 99.73 82 | 95.83 125 | 99.76 58 | 99.30 120 |
|
| MIMVSNet1 | | | 98.51 23 | 98.45 29 | 98.67 40 | 99.72 8 | 96.71 50 | 98.76 12 | 98.89 105 | 98.49 31 | 99.38 22 | 99.14 46 | 95.44 143 | 99.84 30 | 96.47 91 | 99.80 51 | 99.47 79 |
|
| CP-MVSNet | | | 98.42 26 | 98.46 27 | 98.30 68 | 99.46 36 | 95.22 118 | 98.27 44 | 98.84 123 | 99.05 13 | 99.01 44 | 98.65 91 | 95.37 144 | 99.90 14 | 97.57 57 | 99.91 19 | 99.77 12 |
|
| segment_acmp | | | | | | | | | | | | | 95.34 145 | | | | |
|
| CDPH-MVS | | | 95.45 215 | 94.65 243 | 97.84 105 | 98.28 192 | 94.96 126 | 93.73 309 | 98.33 208 | 85.03 366 | 95.44 287 | 96.60 278 | 95.31 146 | 99.44 206 | 90.01 310 | 99.13 218 | 99.11 164 |
|
| 3Dnovator+ | | 96.13 3 | 97.73 88 | 97.59 98 | 98.15 81 | 98.11 219 | 95.60 92 | 98.04 59 | 98.70 160 | 98.13 43 | 96.93 217 | 98.45 110 | 95.30 147 | 99.62 149 | 95.64 135 | 98.96 237 | 99.24 137 |
|
| MVS_Test | | | 96.27 179 | 96.79 151 | 94.73 294 | 96.94 321 | 86.63 327 | 96.18 175 | 98.33 208 | 94.94 187 | 96.07 265 | 98.28 133 | 95.25 148 | 99.26 264 | 97.21 68 | 97.90 310 | 98.30 269 |
|
| XVG-OURS | | | 97.12 129 | 96.74 152 | 98.26 70 | 98.99 110 | 97.45 32 | 93.82 305 | 99.05 67 | 95.19 176 | 98.32 111 | 97.70 202 | 95.22 149 | 98.41 360 | 94.27 210 | 98.13 300 | 98.93 193 |
|
| dcpmvs_2 | | | 97.12 129 | 97.99 54 | 94.51 304 | 99.11 94 | 84.00 360 | 97.75 78 | 99.65 9 | 97.38 82 | 99.14 37 | 98.42 113 | 95.16 150 | 99.96 2 | 95.52 141 | 99.78 56 | 99.58 39 |
|
| MCST-MVS | | | 96.24 180 | 95.80 201 | 97.56 122 | 98.75 136 | 94.13 158 | 94.66 270 | 98.17 229 | 90.17 306 | 96.21 259 | 96.10 305 | 95.14 151 | 99.43 208 | 94.13 216 | 98.85 251 | 99.13 156 |
|
| EI-MVSNet-Vis-set | | | 97.32 122 | 97.39 112 | 97.11 163 | 97.36 300 | 92.08 224 | 95.34 236 | 97.65 269 | 97.74 57 | 98.29 116 | 98.11 157 | 95.05 152 | 99.68 122 | 97.50 60 | 99.50 139 | 99.56 50 |
|
| EI-MVSNet-UG-set | | | 97.32 122 | 97.40 111 | 97.09 167 | 97.34 303 | 92.01 226 | 95.33 237 | 97.65 269 | 97.74 57 | 98.30 115 | 98.14 151 | 95.04 153 | 99.69 117 | 97.55 58 | 99.52 130 | 99.58 39 |
|
| KD-MVS_self_test | | | 97.86 76 | 98.07 45 | 97.25 155 | 99.22 68 | 92.81 198 | 97.55 93 | 98.94 99 | 97.10 90 | 98.85 57 | 98.88 71 | 95.03 154 | 99.67 128 | 97.39 64 | 99.65 87 | 99.26 132 |
|
| ZD-MVS | | | | | | 98.43 181 | 95.94 79 | | 98.56 182 | 90.72 296 | 96.66 233 | 97.07 247 | 95.02 155 | 99.74 76 | 91.08 281 | 98.93 242 | |
|
| DELS-MVS | | | 96.17 183 | 96.23 180 | 95.99 229 | 97.55 286 | 90.04 257 | 92.38 348 | 98.52 184 | 94.13 213 | 96.55 242 | 97.06 248 | 94.99 156 | 99.58 161 | 95.62 136 | 99.28 199 | 98.37 258 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| patch_mono-2 | | | 96.59 165 | 96.93 141 | 95.55 252 | 98.88 122 | 87.12 319 | 94.47 275 | 99.30 27 | 94.12 214 | 96.65 235 | 98.41 114 | 94.98 157 | 99.87 22 | 95.81 127 | 99.78 56 | 99.66 30 |
|
| ab-mvs | | | 96.59 165 | 96.59 160 | 96.60 199 | 98.64 149 | 92.21 215 | 98.35 35 | 97.67 265 | 94.45 203 | 96.99 212 | 98.79 75 | 94.96 158 | 99.49 191 | 90.39 305 | 99.07 228 | 98.08 287 |
|
| MSLP-MVS++ | | | 96.42 175 | 96.71 153 | 95.57 249 | 97.82 246 | 90.56 254 | 95.71 208 | 98.84 123 | 94.72 193 | 96.71 229 | 97.39 226 | 94.91 159 | 98.10 376 | 95.28 158 | 99.02 233 | 98.05 296 |
|
| QAPM | | | 95.88 195 | 95.57 210 | 96.80 188 | 97.90 236 | 91.84 230 | 98.18 53 | 98.73 151 | 88.41 329 | 96.42 246 | 98.13 153 | 94.73 160 | 99.75 67 | 88.72 328 | 98.94 240 | 98.81 212 |
|
| RPSCF | | | 97.87 74 | 97.51 106 | 98.95 14 | 99.15 85 | 98.43 6 | 97.56 92 | 99.06 63 | 96.19 125 | 98.48 90 | 98.70 85 | 94.72 161 | 99.24 270 | 94.37 206 | 99.33 190 | 99.17 148 |
|
| DU-MVS | | | 97.79 84 | 97.60 97 | 98.36 63 | 98.73 137 | 95.78 84 | 95.65 215 | 98.87 113 | 97.57 67 | 98.31 113 | 97.83 188 | 94.69 162 | 99.85 27 | 97.02 77 | 99.71 74 | 99.46 81 |
|
| Baseline_NR-MVSNet | | | 97.72 90 | 97.79 73 | 97.50 131 | 99.56 21 | 93.29 188 | 95.44 225 | 98.86 116 | 98.20 42 | 98.37 101 | 99.24 32 | 94.69 162 | 99.55 173 | 95.98 116 | 99.79 53 | 99.65 33 |
|
| TEST9 | | | | | | 97.84 243 | 95.23 115 | 93.62 311 | 98.39 200 | 86.81 347 | 93.78 327 | 95.99 307 | 94.68 164 | 99.52 181 | | | |
|
| UniMVSNet (Re) | | | 97.83 78 | 97.65 88 | 98.35 64 | 98.80 129 | 95.86 83 | 95.92 199 | 99.04 74 | 97.51 72 | 98.22 121 | 97.81 192 | 94.68 164 | 99.78 47 | 97.14 72 | 99.75 65 | 99.41 99 |
|
| UniMVSNet_NR-MVSNet | | | 97.83 78 | 97.65 88 | 98.37 62 | 98.72 139 | 95.78 84 | 95.66 213 | 99.02 77 | 98.11 44 | 98.31 113 | 97.69 203 | 94.65 166 | 99.85 27 | 97.02 77 | 99.71 74 | 99.48 76 |
|
| VPNet | | | 97.26 124 | 97.49 109 | 96.59 200 | 99.47 35 | 90.58 252 | 96.27 167 | 98.53 183 | 97.77 54 | 98.46 93 | 98.41 114 | 94.59 167 | 99.68 122 | 94.61 196 | 99.29 198 | 99.52 58 |
|
| train_agg | | | 95.46 214 | 94.66 242 | 97.88 102 | 97.84 243 | 95.23 115 | 93.62 311 | 98.39 200 | 87.04 343 | 93.78 327 | 95.99 307 | 94.58 168 | 99.52 181 | 91.76 271 | 98.90 244 | 98.89 201 |
|
| test_8 | | | | | | 97.81 247 | 95.07 124 | 93.54 314 | 98.38 202 | 87.04 343 | 93.71 331 | 95.96 310 | 94.58 168 | 99.52 181 | | | |
|
| API-MVS | | | 95.09 232 | 95.01 225 | 95.31 262 | 96.61 327 | 94.02 161 | 96.83 132 | 97.18 285 | 95.60 158 | 95.79 276 | 94.33 347 | 94.54 170 | 98.37 365 | 85.70 359 | 98.52 281 | 93.52 393 |
|
| Test By Simon | | | | | | | | | | | | | 94.51 171 | | | | |
|
| MSDG | | | 95.33 219 | 95.13 219 | 95.94 235 | 97.40 298 | 91.85 229 | 91.02 374 | 98.37 203 | 95.30 172 | 96.31 253 | 95.99 307 | 94.51 171 | 98.38 363 | 89.59 316 | 97.65 325 | 97.60 327 |
|
| TSAR-MVS + GP. | | | 96.47 172 | 96.12 184 | 97.49 134 | 97.74 266 | 95.23 115 | 94.15 289 | 96.90 296 | 93.26 240 | 98.04 144 | 96.70 273 | 94.41 173 | 98.89 315 | 94.77 191 | 99.14 216 | 98.37 258 |
|
| NR-MVSNet | | | 97.96 54 | 97.86 65 | 98.26 70 | 98.73 137 | 95.54 95 | 98.14 54 | 98.73 151 | 97.79 53 | 99.42 20 | 97.83 188 | 94.40 174 | 99.78 47 | 95.91 120 | 99.76 58 | 99.46 81 |
|
| AdaColmap |  | | 95.11 230 | 94.62 247 | 96.58 201 | 97.33 305 | 94.45 144 | 94.92 259 | 98.08 241 | 93.15 250 | 93.98 325 | 95.53 323 | 94.34 175 | 99.10 294 | 85.69 360 | 98.61 276 | 96.20 372 |
|
| FC-MVSNet-test | | | 98.16 37 | 98.37 33 | 97.56 122 | 99.49 34 | 93.10 193 | 98.35 35 | 99.21 33 | 98.43 32 | 98.89 54 | 98.83 74 | 94.30 176 | 99.81 36 | 97.87 43 | 99.91 19 | 99.77 12 |
|
| Effi-MVS+-dtu | | | 96.81 151 | 96.09 186 | 98.99 10 | 96.90 323 | 98.69 4 | 96.42 156 | 98.09 240 | 95.86 146 | 95.15 294 | 95.54 322 | 94.26 177 | 99.81 36 | 94.06 218 | 98.51 283 | 98.47 250 |
|
| ambc | | | | | 96.56 204 | 98.23 199 | 91.68 233 | 97.88 68 | 98.13 237 | | 98.42 96 | 98.56 99 | 94.22 178 | 99.04 300 | 94.05 220 | 99.35 182 | 98.95 187 |
|
| test20.03 | | | 96.58 167 | 96.61 159 | 96.48 208 | 98.49 174 | 91.72 232 | 95.68 212 | 97.69 264 | 96.81 97 | 98.27 117 | 97.92 182 | 94.18 179 | 98.71 332 | 90.78 291 | 99.66 86 | 99.00 180 |
|
| HPM-MVS++ |  | | 96.99 135 | 96.38 175 | 98.81 27 | 98.64 149 | 97.59 23 | 95.97 193 | 98.20 223 | 95.51 163 | 95.06 296 | 96.53 282 | 94.10 180 | 99.70 110 | 94.29 209 | 99.15 215 | 99.13 156 |
|
| test_vis3_rt | | | 97.04 132 | 96.98 137 | 97.23 157 | 98.44 180 | 95.88 80 | 96.82 133 | 99.67 6 | 90.30 303 | 99.27 29 | 99.33 27 | 94.04 181 | 96.03 397 | 97.14 72 | 97.83 312 | 99.78 11 |
|
| test_fmvs3 | | | 97.38 116 | 97.56 101 | 96.84 186 | 98.63 153 | 92.81 198 | 97.60 88 | 99.61 13 | 90.87 294 | 98.76 69 | 99.66 3 | 94.03 182 | 97.90 378 | 99.24 6 | 99.68 82 | 99.81 8 |
|
| PM-MVS | | | 97.36 120 | 97.10 129 | 98.14 82 | 98.91 120 | 96.77 49 | 96.20 174 | 98.63 174 | 93.82 222 | 98.54 83 | 98.33 122 | 93.98 183 | 99.05 299 | 95.99 115 | 99.45 154 | 98.61 237 |
|
| mvsany_test3 | | | 96.21 181 | 95.93 196 | 97.05 170 | 97.40 298 | 94.33 150 | 95.76 207 | 94.20 343 | 89.10 318 | 99.36 24 | 99.60 6 | 93.97 184 | 97.85 379 | 95.40 156 | 98.63 274 | 98.99 183 |
|
| OpenMVS |  | 94.22 8 | 95.48 212 | 95.20 215 | 96.32 216 | 97.16 312 | 91.96 227 | 97.74 80 | 98.84 123 | 87.26 340 | 94.36 313 | 98.01 172 | 93.95 185 | 99.67 128 | 90.70 297 | 98.75 261 | 97.35 338 |
|
| v8 | | | 97.60 100 | 98.06 47 | 96.23 219 | 98.71 142 | 89.44 267 | 97.43 103 | 98.82 137 | 97.29 86 | 98.74 70 | 99.10 48 | 93.86 186 | 99.68 122 | 98.61 27 | 99.94 8 | 99.56 50 |
|
| diffmvs |  | | 96.04 188 | 96.23 180 | 95.46 257 | 97.35 301 | 88.03 299 | 93.42 317 | 99.08 59 | 94.09 217 | 96.66 233 | 96.93 257 | 93.85 187 | 99.29 258 | 96.01 114 | 98.67 269 | 99.06 173 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| NCCC | | | 96.52 169 | 95.99 191 | 98.10 85 | 97.81 247 | 95.68 89 | 95.00 257 | 98.20 223 | 95.39 169 | 95.40 289 | 96.36 292 | 93.81 188 | 99.45 203 | 93.55 236 | 98.42 289 | 99.17 148 |
|
| TAPA-MVS | | 93.32 12 | 94.93 237 | 94.23 263 | 97.04 172 | 98.18 206 | 94.51 141 | 95.22 244 | 98.73 151 | 81.22 385 | 96.25 257 | 95.95 311 | 93.80 189 | 98.98 308 | 89.89 312 | 98.87 248 | 97.62 325 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| FIs | | | 97.93 65 | 98.07 45 | 97.48 135 | 99.38 48 | 92.95 196 | 98.03 61 | 99.11 50 | 98.04 48 | 98.62 76 | 98.66 88 | 93.75 190 | 99.78 47 | 97.23 66 | 99.84 40 | 99.73 22 |
|
| OurMVSNet-221017-0 | | | 98.61 16 | 98.61 24 | 98.63 44 | 99.77 5 | 96.35 64 | 99.17 6 | 99.05 67 | 98.05 47 | 99.61 13 | 99.52 7 | 93.72 191 | 99.88 20 | 98.72 24 | 99.88 27 | 99.65 33 |
|
| test_prior2 | | | | | | | | 93.33 321 | | 94.21 209 | 94.02 323 | 96.25 296 | 93.64 192 | | 91.90 265 | 98.96 237 | |
|
| mvsany_test1 | | | 93.47 293 | 93.03 289 | 94.79 291 | 94.05 392 | 92.12 220 | 90.82 376 | 90.01 389 | 85.02 367 | 97.26 188 | 98.28 133 | 93.57 193 | 97.03 388 | 92.51 256 | 95.75 373 | 95.23 384 |
|
| 旧先验1 | | | | | | 97.80 251 | 93.87 166 | | 97.75 261 | | | 97.04 250 | 93.57 193 | | | 98.68 268 | 98.72 224 |
|
| v10 | | | 97.55 104 | 97.97 55 | 96.31 217 | 98.60 157 | 89.64 263 | 97.44 101 | 99.02 77 | 96.60 103 | 98.72 72 | 99.16 43 | 93.48 195 | 99.72 87 | 98.76 21 | 99.92 16 | 99.58 39 |
|
| v148 | | | 96.58 167 | 96.97 138 | 95.42 259 | 98.63 153 | 87.57 309 | 95.09 249 | 97.90 251 | 95.91 143 | 98.24 119 | 97.96 176 | 93.42 196 | 99.39 225 | 96.04 110 | 99.52 130 | 99.29 126 |
|
| V42 | | | 97.04 132 | 97.16 127 | 96.68 197 | 98.59 159 | 91.05 242 | 96.33 164 | 98.36 204 | 94.60 198 | 97.99 147 | 98.30 128 | 93.32 197 | 99.62 149 | 97.40 63 | 99.53 125 | 99.38 106 |
|
| new-patchmatchnet | | | 95.67 203 | 96.58 161 | 92.94 345 | 97.48 290 | 80.21 385 | 92.96 327 | 98.19 228 | 94.83 190 | 98.82 61 | 98.79 75 | 93.31 198 | 99.51 185 | 95.83 125 | 99.04 232 | 99.12 161 |
|
| test12 | | | | | 97.46 137 | 97.61 281 | 94.07 159 | | 97.78 260 | | 93.57 337 | | 93.31 198 | 99.42 210 | | 98.78 258 | 98.89 201 |
|
| UGNet | | | 96.81 151 | 96.56 163 | 97.58 121 | 96.64 326 | 93.84 168 | 97.75 78 | 97.12 288 | 96.47 113 | 93.62 334 | 98.88 71 | 93.22 200 | 99.53 178 | 95.61 137 | 99.69 78 | 99.36 112 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| pmmvs-eth3d | | | 96.49 170 | 96.18 183 | 97.42 142 | 98.25 196 | 94.29 151 | 94.77 266 | 98.07 245 | 89.81 311 | 97.97 151 | 98.33 122 | 93.11 201 | 99.08 296 | 95.46 148 | 99.84 40 | 98.89 201 |
|
| v1144 | | | 96.84 146 | 97.08 131 | 96.13 226 | 98.42 182 | 89.28 270 | 95.41 229 | 98.67 166 | 94.21 209 | 97.97 151 | 98.31 124 | 93.06 202 | 99.65 136 | 98.06 38 | 99.62 92 | 99.45 85 |
|
| PVSNet_BlendedMVS | | | 95.02 236 | 94.93 228 | 95.27 263 | 97.79 256 | 87.40 314 | 94.14 291 | 98.68 163 | 88.94 322 | 94.51 309 | 98.01 172 | 93.04 203 | 99.30 254 | 89.77 314 | 99.49 142 | 99.11 164 |
|
| PVSNet_Blended | | | 93.96 278 | 93.65 277 | 94.91 282 | 97.79 256 | 87.40 314 | 91.43 362 | 98.68 163 | 84.50 373 | 94.51 309 | 94.48 345 | 93.04 203 | 99.30 254 | 89.77 314 | 98.61 276 | 98.02 299 |
|
| mvs_anonymous | | | 95.36 217 | 96.07 188 | 93.21 336 | 96.29 336 | 81.56 377 | 94.60 272 | 97.66 267 | 93.30 239 | 96.95 216 | 98.91 68 | 93.03 205 | 99.38 228 | 96.60 86 | 97.30 339 | 98.69 228 |
|
| v1192 | | | 96.83 149 | 97.06 133 | 96.15 225 | 98.28 192 | 89.29 269 | 95.36 233 | 98.77 144 | 93.73 224 | 98.11 133 | 98.34 121 | 93.02 206 | 99.67 128 | 98.35 32 | 99.58 105 | 99.50 62 |
|
| F-COLMAP | | | 95.30 221 | 94.38 260 | 98.05 92 | 98.64 149 | 96.04 75 | 95.61 219 | 98.66 168 | 89.00 321 | 93.22 346 | 96.40 290 | 92.90 207 | 99.35 241 | 87.45 348 | 97.53 329 | 98.77 218 |
|
| WR-MVS | | | 96.90 143 | 96.81 148 | 97.16 159 | 98.56 163 | 92.20 218 | 94.33 278 | 98.12 238 | 97.34 83 | 98.20 122 | 97.33 233 | 92.81 208 | 99.75 67 | 94.79 188 | 99.81 48 | 99.54 53 |
|
| v1240 | | | 96.74 154 | 97.02 136 | 95.91 236 | 98.18 206 | 88.52 285 | 95.39 231 | 98.88 111 | 93.15 250 | 98.46 93 | 98.40 117 | 92.80 209 | 99.71 102 | 98.45 31 | 99.49 142 | 99.49 70 |
|
| MVS_0304 | | | 96.62 164 | 96.40 174 | 97.28 151 | 97.91 234 | 92.30 211 | 96.47 155 | 89.74 390 | 97.52 71 | 95.38 290 | 98.63 93 | 92.76 210 | 99.81 36 | 99.28 4 | 99.93 11 | 99.75 19 |
|
| MVE |  | 73.61 22 | 86.48 370 | 85.92 369 | 88.18 384 | 96.23 339 | 85.28 343 | 81.78 402 | 75.79 408 | 86.01 353 | 82.53 404 | 91.88 379 | 92.74 211 | 87.47 407 | 71.42 404 | 94.86 381 | 91.78 398 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DP-MVS Recon | | | 95.55 208 | 95.13 219 | 96.80 188 | 98.51 170 | 93.99 163 | 94.60 272 | 98.69 161 | 90.20 305 | 95.78 278 | 96.21 298 | 92.73 212 | 98.98 308 | 90.58 300 | 98.86 250 | 97.42 335 |
|
| CANet | | | 95.86 196 | 95.65 207 | 96.49 207 | 96.41 334 | 90.82 247 | 94.36 277 | 98.41 197 | 94.94 187 | 92.62 363 | 96.73 272 | 92.68 213 | 99.71 102 | 95.12 173 | 99.60 101 | 98.94 189 |
|
| v1921920 | | | 96.72 157 | 96.96 140 | 95.99 229 | 98.21 200 | 88.79 282 | 95.42 227 | 98.79 139 | 93.22 242 | 98.19 126 | 98.26 138 | 92.68 213 | 99.70 110 | 98.34 33 | 99.55 118 | 99.49 70 |
|
| BH-untuned | | | 94.69 249 | 94.75 240 | 94.52 303 | 97.95 233 | 87.53 310 | 94.07 294 | 97.01 292 | 93.99 219 | 97.10 200 | 95.65 318 | 92.65 215 | 98.95 313 | 87.60 343 | 96.74 351 | 97.09 342 |
|
| LF4IMVS | | | 96.07 186 | 95.63 208 | 97.36 146 | 98.19 203 | 95.55 94 | 95.44 225 | 98.82 137 | 92.29 273 | 95.70 282 | 96.55 280 | 92.63 216 | 98.69 335 | 91.75 272 | 99.33 190 | 97.85 311 |
|
| v2v482 | | | 96.78 153 | 97.06 133 | 95.95 233 | 98.57 161 | 88.77 283 | 95.36 233 | 98.26 214 | 95.18 177 | 97.85 164 | 98.23 142 | 92.58 217 | 99.63 144 | 97.80 47 | 99.69 78 | 99.45 85 |
|
| WB-MVSnew | | | 91.50 327 | 91.29 320 | 92.14 362 | 94.85 379 | 80.32 384 | 93.29 322 | 88.77 393 | 88.57 328 | 94.03 322 | 92.21 375 | 92.56 218 | 98.28 370 | 80.21 388 | 97.08 340 | 97.81 315 |
|
| EI-MVSNet | | | 96.63 163 | 96.93 141 | 95.74 242 | 97.26 308 | 88.13 296 | 95.29 241 | 97.65 269 | 96.99 91 | 97.94 154 | 98.19 147 | 92.55 219 | 99.58 161 | 96.91 80 | 99.56 111 | 99.50 62 |
|
| IterMVS-LS | | | 96.92 141 | 97.29 118 | 95.79 240 | 98.51 170 | 88.13 296 | 95.10 248 | 98.66 168 | 96.99 91 | 98.46 93 | 98.68 87 | 92.55 219 | 99.74 76 | 96.91 80 | 99.79 53 | 99.50 62 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| VDD-MVS | | | 97.37 118 | 97.25 120 | 97.74 110 | 98.69 146 | 94.50 143 | 97.04 123 | 95.61 324 | 98.59 27 | 98.51 85 | 98.72 82 | 92.54 221 | 99.58 161 | 96.02 112 | 99.49 142 | 99.12 161 |
|
| MVS | | | 90.02 339 | 89.20 346 | 92.47 357 | 94.71 381 | 86.90 323 | 95.86 202 | 96.74 303 | 64.72 404 | 90.62 376 | 92.77 367 | 92.54 221 | 98.39 362 | 79.30 390 | 95.56 375 | 92.12 397 |
|
| test_vis1_rt | | | 94.03 277 | 93.65 277 | 95.17 269 | 95.76 362 | 93.42 184 | 93.97 300 | 98.33 208 | 84.68 370 | 93.17 348 | 95.89 313 | 92.53 223 | 94.79 399 | 93.50 237 | 94.97 379 | 97.31 339 |
|
| v144192 | | | 96.69 160 | 96.90 145 | 96.03 228 | 98.25 196 | 88.92 277 | 95.49 223 | 98.77 144 | 93.05 252 | 98.09 136 | 98.29 132 | 92.51 224 | 99.70 110 | 98.11 35 | 99.56 111 | 99.47 79 |
|
| 原ACMM1 | | | | | 96.58 201 | 98.16 211 | 92.12 220 | | 98.15 235 | 85.90 356 | 93.49 339 | 96.43 287 | 92.47 225 | 99.38 228 | 87.66 342 | 98.62 275 | 98.23 276 |
|
| VNet | | | 96.84 146 | 96.83 147 | 96.88 182 | 98.06 220 | 92.02 225 | 96.35 163 | 97.57 275 | 97.70 62 | 97.88 159 | 97.80 193 | 92.40 226 | 99.54 176 | 94.73 193 | 98.96 237 | 99.08 169 |
|
| 114514_t | | | 93.96 278 | 93.22 286 | 96.19 222 | 99.06 101 | 90.97 245 | 95.99 191 | 98.94 99 | 73.88 402 | 93.43 342 | 96.93 257 | 92.38 227 | 99.37 234 | 89.09 323 | 99.28 199 | 98.25 275 |
|
| CPTT-MVS | | | 96.69 160 | 96.08 187 | 98.49 52 | 98.89 121 | 96.64 55 | 97.25 109 | 98.77 144 | 92.89 260 | 96.01 268 | 97.13 243 | 92.23 228 | 99.67 128 | 92.24 258 | 99.34 185 | 99.17 148 |
|
| MSP-MVS | | | 97.45 111 | 96.92 143 | 99.03 5 | 99.26 59 | 97.70 18 | 97.66 84 | 98.89 105 | 95.65 155 | 98.51 85 | 96.46 286 | 92.15 229 | 99.81 36 | 95.14 170 | 98.58 279 | 99.58 39 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| MAR-MVS | | | 94.21 269 | 93.03 289 | 97.76 109 | 96.94 321 | 97.44 33 | 96.97 126 | 97.15 286 | 87.89 338 | 92.00 368 | 92.73 369 | 92.14 230 | 99.12 288 | 83.92 374 | 97.51 330 | 96.73 361 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PVSNet_Blended_VisFu | | | 95.95 192 | 95.80 201 | 96.42 211 | 99.28 57 | 90.62 251 | 95.31 239 | 99.08 59 | 88.40 330 | 96.97 215 | 98.17 150 | 92.11 231 | 99.78 47 | 93.64 234 | 99.21 207 | 98.86 208 |
|
| BH-RMVSNet | | | 94.56 257 | 94.44 259 | 94.91 282 | 97.57 283 | 87.44 313 | 93.78 308 | 96.26 309 | 93.69 227 | 96.41 247 | 96.50 285 | 92.10 232 | 99.00 304 | 85.96 357 | 97.71 319 | 98.31 267 |
|
| 新几何1 | | | | | 97.25 155 | 98.29 190 | 94.70 133 | | 97.73 262 | 77.98 396 | 94.83 303 | 96.67 275 | 92.08 233 | 99.45 203 | 88.17 337 | 98.65 273 | 97.61 326 |
|
| testdata | | | | | 95.70 245 | 98.16 211 | 90.58 252 | | 97.72 263 | 80.38 388 | 95.62 283 | 97.02 251 | 92.06 234 | 98.98 308 | 89.06 325 | 98.52 281 | 97.54 330 |
|
| YYNet1 | | | 94.73 244 | 94.84 234 | 94.41 308 | 97.47 294 | 85.09 347 | 90.29 381 | 95.85 318 | 92.52 267 | 97.53 173 | 97.76 194 | 91.97 235 | 99.18 277 | 93.31 242 | 96.86 345 | 98.95 187 |
|
| Anonymous20231206 | | | 95.27 222 | 95.06 224 | 95.88 237 | 98.72 139 | 89.37 268 | 95.70 209 | 97.85 254 | 88.00 336 | 96.98 214 | 97.62 207 | 91.95 236 | 99.34 244 | 89.21 321 | 99.53 125 | 98.94 189 |
|
| MS-PatchMatch | | | 94.83 241 | 94.91 230 | 94.57 301 | 96.81 324 | 87.10 320 | 94.23 284 | 97.34 280 | 88.74 325 | 97.14 196 | 97.11 245 | 91.94 237 | 98.23 372 | 92.99 249 | 97.92 308 | 98.37 258 |
|
| MDA-MVSNet_test_wron | | | 94.73 244 | 94.83 236 | 94.42 307 | 97.48 290 | 85.15 345 | 90.28 382 | 95.87 317 | 92.52 267 | 97.48 179 | 97.76 194 | 91.92 238 | 99.17 281 | 93.32 241 | 96.80 350 | 98.94 189 |
|
| HQP_MVS | | | 96.66 162 | 96.33 178 | 97.68 116 | 98.70 144 | 94.29 151 | 96.50 153 | 98.75 148 | 96.36 116 | 96.16 262 | 96.77 269 | 91.91 239 | 99.46 199 | 92.59 254 | 99.20 208 | 99.28 127 |
|
| plane_prior6 | | | | | | 98.38 184 | 94.37 148 | | | | | | 91.91 239 | | | | |
|
| MVP-Stereo | | | 95.69 201 | 95.28 213 | 96.92 179 | 98.15 213 | 93.03 194 | 95.64 218 | 98.20 223 | 90.39 302 | 96.63 236 | 97.73 200 | 91.63 241 | 99.10 294 | 91.84 268 | 97.31 338 | 98.63 234 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| PatchMatch-RL | | | 94.61 255 | 93.81 275 | 97.02 174 | 98.19 203 | 95.72 86 | 93.66 310 | 97.23 282 | 88.17 334 | 94.94 301 | 95.62 320 | 91.43 242 | 98.57 347 | 87.36 349 | 97.68 322 | 96.76 360 |
|
| MDA-MVSNet-bldmvs | | | 95.69 201 | 95.67 205 | 95.74 242 | 98.48 176 | 88.76 284 | 92.84 329 | 97.25 281 | 96.00 136 | 97.59 171 | 97.95 178 | 91.38 243 | 99.46 199 | 93.16 247 | 96.35 360 | 98.99 183 |
|
| SSC-MVS | | | 95.92 193 | 97.03 135 | 92.58 354 | 99.28 57 | 78.39 390 | 96.68 146 | 95.12 333 | 98.90 19 | 99.11 39 | 98.66 88 | 91.36 244 | 99.68 122 | 95.00 179 | 99.16 214 | 99.67 28 |
|
| mvsmamba | | | 98.16 37 | 98.06 47 | 98.44 55 | 99.53 28 | 95.87 81 | 98.70 13 | 98.94 99 | 97.71 61 | 98.85 57 | 99.10 48 | 91.35 245 | 99.83 32 | 98.47 30 | 99.90 24 | 99.64 35 |
|
| PAPR | | | 92.22 314 | 91.27 322 | 95.07 274 | 95.73 364 | 88.81 281 | 91.97 354 | 97.87 253 | 85.80 357 | 90.91 375 | 92.73 369 | 91.16 246 | 98.33 367 | 79.48 389 | 95.76 372 | 98.08 287 |
|
| 1314 | | | 92.38 311 | 92.30 306 | 92.64 353 | 95.42 371 | 85.15 345 | 95.86 202 | 96.97 294 | 85.40 362 | 90.62 376 | 93.06 362 | 91.12 247 | 97.80 381 | 86.74 354 | 95.49 376 | 94.97 386 |
|
| WB-MVS | | | 95.50 209 | 96.62 157 | 92.11 363 | 99.21 75 | 77.26 398 | 96.12 181 | 95.40 330 | 98.62 26 | 98.84 59 | 98.26 138 | 91.08 248 | 99.50 186 | 93.37 238 | 98.70 267 | 99.58 39 |
|
| ppachtmachnet_test | | | 94.49 261 | 94.84 234 | 93.46 329 | 96.16 343 | 82.10 372 | 90.59 378 | 97.48 277 | 90.53 300 | 97.01 211 | 97.59 209 | 91.01 249 | 99.36 237 | 93.97 224 | 99.18 212 | 98.94 189 |
|
| PLC |  | 91.02 16 | 94.05 276 | 92.90 292 | 97.51 127 | 98.00 228 | 95.12 123 | 94.25 282 | 98.25 215 | 86.17 352 | 91.48 373 | 95.25 327 | 91.01 249 | 99.19 276 | 85.02 369 | 96.69 353 | 98.22 277 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test222 | | | | | | 98.17 209 | 93.24 191 | 92.74 334 | 97.61 274 | 75.17 400 | 94.65 306 | 96.69 274 | 90.96 251 | | | 98.66 271 | 97.66 322 |
|
| CL-MVSNet_self_test | | | 95.04 233 | 94.79 239 | 95.82 239 | 97.51 288 | 89.79 261 | 91.14 371 | 96.82 299 | 93.05 252 | 96.72 228 | 96.40 290 | 90.82 252 | 99.16 282 | 91.95 264 | 98.66 271 | 98.50 248 |
|
| USDC | | | 94.56 257 | 94.57 253 | 94.55 302 | 97.78 259 | 86.43 330 | 92.75 332 | 98.65 173 | 85.96 354 | 96.91 219 | 97.93 181 | 90.82 252 | 98.74 328 | 90.71 296 | 99.59 103 | 98.47 250 |
|
| PCF-MVS | | 89.43 18 | 92.12 317 | 90.64 334 | 96.57 203 | 97.80 251 | 93.48 182 | 89.88 388 | 98.45 190 | 74.46 401 | 96.04 267 | 95.68 317 | 90.71 254 | 99.31 251 | 73.73 400 | 99.01 235 | 96.91 351 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PAPM_NR | | | 94.61 255 | 94.17 267 | 95.96 231 | 98.36 186 | 91.23 240 | 95.93 198 | 97.95 248 | 92.98 255 | 93.42 343 | 94.43 346 | 90.53 255 | 98.38 363 | 87.60 343 | 96.29 362 | 98.27 273 |
|
| our_test_3 | | | 94.20 271 | 94.58 251 | 93.07 338 | 96.16 343 | 81.20 380 | 90.42 380 | 96.84 297 | 90.72 296 | 97.14 196 | 97.13 243 | 90.47 256 | 99.11 291 | 94.04 221 | 98.25 295 | 98.91 197 |
|
| MM | | | 96.87 145 | 96.62 157 | 97.62 119 | 97.72 268 | 93.30 187 | 96.39 157 | 92.61 363 | 97.90 52 | 96.76 227 | 98.64 92 | 90.46 257 | 99.81 36 | 99.16 9 | 99.94 8 | 99.76 17 |
|
| test_f | | | 95.82 198 | 95.88 199 | 95.66 246 | 97.61 281 | 93.21 192 | 95.61 219 | 98.17 229 | 86.98 345 | 98.42 96 | 99.47 11 | 90.46 257 | 94.74 400 | 97.71 52 | 98.45 287 | 99.03 176 |
|
| OpenMVS_ROB |  | 91.80 14 | 93.64 289 | 93.05 287 | 95.42 259 | 97.31 307 | 91.21 241 | 95.08 251 | 96.68 306 | 81.56 382 | 96.88 221 | 96.41 288 | 90.44 259 | 99.25 266 | 85.39 365 | 97.67 323 | 95.80 376 |
|
| HQP2-MVS | | | | | | | | | | | | | 90.33 260 | | | | |
|
| N_pmnet | | | 95.18 226 | 94.23 263 | 98.06 88 | 97.85 238 | 96.55 58 | 92.49 340 | 91.63 371 | 89.34 315 | 98.09 136 | 97.41 221 | 90.33 260 | 99.06 298 | 91.58 273 | 99.31 195 | 98.56 240 |
|
| HQP-MVS | | | 95.17 228 | 94.58 251 | 96.92 179 | 97.85 238 | 92.47 208 | 94.26 279 | 98.43 193 | 93.18 246 | 92.86 354 | 95.08 329 | 90.33 260 | 99.23 272 | 90.51 302 | 98.74 262 | 99.05 175 |
|
| CNLPA | | | 95.04 233 | 94.47 256 | 96.75 192 | 97.81 247 | 95.25 114 | 94.12 293 | 97.89 252 | 94.41 204 | 94.57 307 | 95.69 316 | 90.30 263 | 98.35 366 | 86.72 355 | 98.76 260 | 96.64 362 |
|
| PMMVS | | | 92.39 310 | 91.08 325 | 96.30 218 | 93.12 399 | 92.81 198 | 90.58 379 | 95.96 315 | 79.17 393 | 91.85 370 | 92.27 374 | 90.29 264 | 98.66 340 | 89.85 313 | 96.68 354 | 97.43 334 |
|
| TR-MVS | | | 92.54 309 | 92.20 308 | 93.57 327 | 96.49 332 | 86.66 326 | 93.51 315 | 94.73 337 | 89.96 309 | 94.95 300 | 93.87 352 | 90.24 265 | 98.61 344 | 81.18 385 | 94.88 380 | 95.45 382 |
|
| TAMVS | | | 95.49 210 | 94.94 226 | 97.16 159 | 98.31 188 | 93.41 185 | 95.07 252 | 96.82 299 | 91.09 292 | 97.51 175 | 97.82 191 | 89.96 266 | 99.42 210 | 88.42 333 | 99.44 155 | 98.64 232 |
|
| DPM-MVS | | | 93.68 286 | 92.77 299 | 96.42 211 | 97.91 234 | 92.54 204 | 91.17 370 | 97.47 278 | 84.99 368 | 93.08 350 | 94.74 337 | 89.90 267 | 99.00 304 | 87.54 345 | 98.09 302 | 97.72 320 |
|
| PMMVS2 | | | 93.66 287 | 94.07 269 | 92.45 358 | 97.57 283 | 80.67 383 | 86.46 396 | 96.00 313 | 93.99 219 | 97.10 200 | 97.38 228 | 89.90 267 | 97.82 380 | 88.76 327 | 99.47 148 | 98.86 208 |
|
| RRT_MVS | | | 97.95 58 | 97.79 73 | 98.43 57 | 99.67 12 | 95.56 93 | 98.86 10 | 96.73 305 | 97.99 49 | 99.15 36 | 99.35 23 | 89.84 269 | 99.90 14 | 98.64 26 | 99.90 24 | 99.82 6 |
|
| BH-w/o | | | 92.14 316 | 91.94 310 | 92.73 351 | 97.13 314 | 85.30 341 | 92.46 342 | 95.64 321 | 89.33 316 | 94.21 315 | 92.74 368 | 89.60 270 | 98.24 371 | 81.68 383 | 94.66 382 | 94.66 387 |
|
| Anonymous20240521 | | | 97.07 131 | 97.51 106 | 95.76 241 | 99.35 51 | 88.18 293 | 97.78 74 | 98.40 199 | 97.11 89 | 98.34 107 | 99.04 53 | 89.58 271 | 99.79 44 | 98.09 36 | 99.93 11 | 99.30 120 |
|
| UnsupCasMVSNet_bld | | | 94.72 248 | 94.26 262 | 96.08 227 | 98.62 155 | 90.54 255 | 93.38 319 | 98.05 247 | 90.30 303 | 97.02 210 | 96.80 268 | 89.54 272 | 99.16 282 | 88.44 332 | 96.18 364 | 98.56 240 |
|
| MG-MVS | | | 94.08 275 | 94.00 271 | 94.32 311 | 97.09 315 | 85.89 335 | 93.19 325 | 95.96 315 | 92.52 267 | 94.93 302 | 97.51 215 | 89.54 272 | 98.77 325 | 87.52 347 | 97.71 319 | 98.31 267 |
|
| UnsupCasMVSNet_eth | | | 95.91 194 | 95.73 204 | 96.44 209 | 98.48 176 | 91.52 235 | 95.31 239 | 98.45 190 | 95.76 150 | 97.48 179 | 97.54 212 | 89.53 274 | 98.69 335 | 94.43 202 | 94.61 383 | 99.13 156 |
|
| GBi-Net | | | 96.99 135 | 96.80 149 | 97.56 122 | 97.96 230 | 93.67 174 | 98.23 46 | 98.66 168 | 95.59 159 | 97.99 147 | 99.19 36 | 89.51 275 | 99.73 82 | 94.60 197 | 99.44 155 | 99.30 120 |
|
| test1 | | | 96.99 135 | 96.80 149 | 97.56 122 | 97.96 230 | 93.67 174 | 98.23 46 | 98.66 168 | 95.59 159 | 97.99 147 | 99.19 36 | 89.51 275 | 99.73 82 | 94.60 197 | 99.44 155 | 99.30 120 |
|
| FMVSNet2 | | | 96.72 157 | 96.67 156 | 96.87 183 | 97.96 230 | 91.88 228 | 97.15 115 | 98.06 246 | 95.59 159 | 98.50 87 | 98.62 94 | 89.51 275 | 99.65 136 | 94.99 181 | 99.60 101 | 99.07 171 |
|
| pmmvs4 | | | 94.82 242 | 94.19 266 | 96.70 195 | 97.42 297 | 92.75 202 | 92.09 353 | 96.76 301 | 86.80 348 | 95.73 281 | 97.22 239 | 89.28 278 | 98.89 315 | 93.28 243 | 99.14 216 | 98.46 252 |
|
| cascas | | | 91.89 322 | 91.35 319 | 93.51 328 | 94.27 387 | 85.60 337 | 88.86 393 | 98.61 175 | 79.32 392 | 92.16 367 | 91.44 384 | 89.22 279 | 98.12 375 | 90.80 290 | 97.47 333 | 96.82 357 |
|
| DSMNet-mixed | | | 92.19 315 | 91.83 312 | 93.25 333 | 96.18 342 | 83.68 363 | 96.27 167 | 93.68 348 | 76.97 399 | 92.54 364 | 99.18 39 | 89.20 280 | 98.55 350 | 83.88 375 | 98.60 278 | 97.51 331 |
|
| c3_l | | | 95.20 225 | 95.32 212 | 94.83 289 | 96.19 341 | 86.43 330 | 91.83 357 | 98.35 207 | 93.47 233 | 97.36 185 | 97.26 237 | 88.69 281 | 99.28 260 | 95.41 155 | 99.36 177 | 98.78 215 |
|
| test_fmvs2 | | | 96.38 176 | 96.45 171 | 96.16 224 | 97.85 238 | 91.30 239 | 96.81 134 | 99.45 19 | 89.24 317 | 98.49 88 | 99.38 18 | 88.68 282 | 97.62 383 | 98.83 18 | 99.32 192 | 99.57 46 |
|
| bld_raw_dy_0_64 | | | 95.16 229 | 95.16 218 | 95.15 270 | 96.54 328 | 89.06 276 | 96.63 149 | 99.54 17 | 89.68 313 | 98.72 72 | 94.50 344 | 88.64 283 | 99.38 228 | 92.24 258 | 99.93 11 | 97.03 345 |
|
| CANet_DTU | | | 94.65 253 | 94.21 265 | 95.96 231 | 95.90 352 | 89.68 262 | 93.92 302 | 97.83 258 | 93.19 245 | 90.12 384 | 95.64 319 | 88.52 284 | 99.57 167 | 93.27 244 | 99.47 148 | 98.62 235 |
|
| EPP-MVSNet | | | 96.84 146 | 96.58 161 | 97.65 117 | 99.18 80 | 93.78 171 | 98.68 14 | 96.34 308 | 97.91 51 | 97.30 186 | 98.06 166 | 88.46 285 | 99.85 27 | 93.85 227 | 99.40 171 | 99.32 115 |
|
| SixPastTwentyTwo | | | 97.49 108 | 97.57 100 | 97.26 154 | 99.56 21 | 92.33 210 | 98.28 42 | 96.97 294 | 98.30 38 | 99.45 18 | 99.35 23 | 88.43 286 | 99.89 18 | 98.01 39 | 99.76 58 | 99.54 53 |
|
| miper_ehance_all_eth | | | 94.69 249 | 94.70 241 | 94.64 295 | 95.77 361 | 86.22 332 | 91.32 367 | 98.24 217 | 91.67 281 | 97.05 207 | 96.65 276 | 88.39 287 | 99.22 274 | 94.88 183 | 98.34 291 | 98.49 249 |
|
| IS-MVSNet | | | 96.93 140 | 96.68 155 | 97.70 113 | 99.25 62 | 94.00 162 | 98.57 20 | 96.74 303 | 98.36 34 | 98.14 131 | 97.98 175 | 88.23 288 | 99.71 102 | 93.10 248 | 99.72 71 | 99.38 106 |
|
| jason | | | 94.39 264 | 94.04 270 | 95.41 261 | 98.29 190 | 87.85 304 | 92.74 334 | 96.75 302 | 85.38 363 | 95.29 291 | 96.15 300 | 88.21 289 | 99.65 136 | 94.24 211 | 99.34 185 | 98.74 221 |
| jason: jason. |
| IterMVS-SCA-FT | | | 95.86 196 | 96.19 182 | 94.85 287 | 97.68 271 | 85.53 338 | 92.42 345 | 97.63 273 | 96.99 91 | 98.36 104 | 98.54 101 | 87.94 290 | 99.75 67 | 97.07 76 | 99.08 226 | 99.27 131 |
|
| SCA | | | 93.38 296 | 93.52 280 | 92.96 344 | 96.24 337 | 81.40 379 | 93.24 323 | 94.00 344 | 91.58 285 | 94.57 307 | 96.97 254 | 87.94 290 | 99.42 210 | 89.47 318 | 97.66 324 | 98.06 293 |
|
| sss | | | 94.22 267 | 93.72 276 | 95.74 242 | 97.71 269 | 89.95 259 | 93.84 304 | 96.98 293 | 88.38 331 | 93.75 330 | 95.74 315 | 87.94 290 | 98.89 315 | 91.02 283 | 98.10 301 | 98.37 258 |
|
| IterMVS | | | 95.42 216 | 95.83 200 | 94.20 315 | 97.52 287 | 83.78 362 | 92.41 346 | 97.47 278 | 95.49 164 | 98.06 141 | 98.49 105 | 87.94 290 | 99.58 161 | 96.02 112 | 99.02 233 | 99.23 138 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| CHOSEN 1792x2688 | | | 94.10 273 | 93.41 282 | 96.18 223 | 99.16 82 | 90.04 257 | 92.15 350 | 98.68 163 | 79.90 390 | 96.22 258 | 97.83 188 | 87.92 294 | 99.42 210 | 89.18 322 | 99.65 87 | 99.08 169 |
|
| VDDNet | | | 96.98 138 | 96.84 146 | 97.41 143 | 99.40 45 | 93.26 190 | 97.94 64 | 95.31 331 | 99.26 7 | 98.39 100 | 99.18 39 | 87.85 295 | 99.62 149 | 95.13 172 | 99.09 225 | 99.35 114 |
|
| pmmvs5 | | | 94.63 254 | 94.34 261 | 95.50 254 | 97.63 280 | 88.34 289 | 94.02 295 | 97.13 287 | 87.15 342 | 95.22 293 | 97.15 242 | 87.50 296 | 99.27 263 | 93.99 222 | 99.26 202 | 98.88 205 |
|
| D2MVS | | | 95.18 226 | 95.17 217 | 95.21 266 | 97.76 261 | 87.76 307 | 94.15 289 | 97.94 249 | 89.77 312 | 96.99 212 | 97.68 204 | 87.45 297 | 99.14 284 | 95.03 178 | 99.81 48 | 98.74 221 |
|
| test_vis1_n_1920 | | | 95.77 199 | 96.41 173 | 93.85 320 | 98.55 164 | 84.86 350 | 95.91 200 | 99.71 4 | 92.72 264 | 97.67 169 | 98.90 69 | 87.44 298 | 98.73 329 | 97.96 40 | 98.85 251 | 97.96 303 |
|
| iter_conf05_11 | | | 93.77 281 | 93.29 283 | 95.24 264 | 96.54 328 | 89.14 274 | 91.55 360 | 95.02 334 | 90.16 307 | 93.21 347 | 93.94 351 | 87.37 299 | 99.56 168 | 92.24 258 | 99.56 111 | 97.03 345 |
|
| PVSNet | | 86.72 19 | 91.10 331 | 90.97 328 | 91.49 367 | 97.56 285 | 78.04 392 | 87.17 395 | 94.60 339 | 84.65 371 | 92.34 365 | 92.20 376 | 87.37 299 | 98.47 357 | 85.17 368 | 97.69 321 | 97.96 303 |
|
| Anonymous202405211 | | | 96.34 177 | 95.98 192 | 97.43 140 | 98.25 196 | 93.85 167 | 96.74 139 | 94.41 341 | 97.72 59 | 98.37 101 | 98.03 169 | 87.15 301 | 99.53 178 | 94.06 218 | 99.07 228 | 98.92 196 |
|
| MVSFormer | | | 96.14 184 | 96.36 176 | 95.49 255 | 97.68 271 | 87.81 305 | 98.67 15 | 99.02 77 | 96.50 110 | 94.48 311 | 96.15 300 | 86.90 302 | 99.92 5 | 98.73 22 | 99.13 218 | 98.74 221 |
|
| lupinMVS | | | 93.77 281 | 93.28 284 | 95.24 264 | 97.68 271 | 87.81 305 | 92.12 351 | 96.05 311 | 84.52 372 | 94.48 311 | 95.06 331 | 86.90 302 | 99.63 144 | 93.62 235 | 99.13 218 | 98.27 273 |
|
| eth_miper_zixun_eth | | | 94.89 239 | 94.93 228 | 94.75 293 | 95.99 350 | 86.12 333 | 91.35 364 | 98.49 187 | 93.40 234 | 97.12 198 | 97.25 238 | 86.87 304 | 99.35 241 | 95.08 175 | 98.82 255 | 98.78 215 |
|
| test_vis1_n | | | 95.67 203 | 95.89 198 | 95.03 276 | 98.18 206 | 89.89 260 | 96.94 127 | 99.28 29 | 88.25 333 | 98.20 122 | 98.92 65 | 86.69 305 | 97.19 386 | 97.70 54 | 98.82 255 | 98.00 301 |
|
| WTY-MVS | | | 93.55 291 | 93.00 291 | 95.19 267 | 97.81 247 | 87.86 302 | 93.89 303 | 96.00 313 | 89.02 320 | 94.07 320 | 95.44 326 | 86.27 306 | 99.33 246 | 87.69 341 | 96.82 348 | 98.39 256 |
|
| CDS-MVSNet | | | 94.88 240 | 94.12 268 | 97.14 161 | 97.64 279 | 93.57 179 | 93.96 301 | 97.06 291 | 90.05 308 | 96.30 254 | 96.55 280 | 86.10 307 | 99.47 196 | 90.10 309 | 99.31 195 | 98.40 254 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| 1112_ss | | | 94.12 272 | 93.42 281 | 96.23 219 | 98.59 159 | 90.85 246 | 94.24 283 | 98.85 120 | 85.49 359 | 92.97 352 | 94.94 333 | 86.01 308 | 99.64 140 | 91.78 270 | 97.92 308 | 98.20 279 |
|
| dmvs_testset | | | 87.30 367 | 86.99 364 | 88.24 383 | 96.71 325 | 77.48 395 | 94.68 269 | 86.81 400 | 92.64 266 | 89.61 388 | 87.01 402 | 85.91 309 | 93.12 403 | 61.04 407 | 88.49 399 | 94.13 390 |
|
| miper_enhance_ethall | | | 93.14 301 | 92.78 298 | 94.20 315 | 93.65 395 | 85.29 342 | 89.97 384 | 97.85 254 | 85.05 365 | 96.15 264 | 94.56 340 | 85.74 310 | 99.14 284 | 93.74 230 | 98.34 291 | 98.17 283 |
|
| new_pmnet | | | 92.34 312 | 91.69 316 | 94.32 311 | 96.23 339 | 89.16 272 | 92.27 349 | 92.88 357 | 84.39 375 | 95.29 291 | 96.35 293 | 85.66 311 | 96.74 395 | 84.53 372 | 97.56 327 | 97.05 343 |
|
| Syy-MVS | | | 92.09 318 | 91.80 314 | 92.93 346 | 95.19 374 | 82.65 368 | 92.46 342 | 91.35 373 | 90.67 298 | 91.76 371 | 87.61 400 | 85.64 312 | 98.50 354 | 94.73 193 | 96.84 346 | 97.65 323 |
|
| alignmvs | | | 96.01 190 | 95.52 211 | 97.50 131 | 97.77 260 | 94.71 131 | 96.07 184 | 96.84 297 | 97.48 73 | 96.78 226 | 94.28 348 | 85.50 313 | 99.40 221 | 96.22 102 | 98.73 265 | 98.40 254 |
|
| lessismore_v0 | | | | | 97.05 170 | 99.36 50 | 92.12 220 | | 84.07 403 | | 98.77 68 | 98.98 58 | 85.36 314 | 99.74 76 | 97.34 65 | 99.37 174 | 99.30 120 |
|
| HY-MVS | | 91.43 15 | 92.58 308 | 91.81 313 | 94.90 284 | 96.49 332 | 88.87 279 | 97.31 106 | 94.62 338 | 85.92 355 | 90.50 379 | 96.84 263 | 85.05 315 | 99.40 221 | 83.77 377 | 95.78 371 | 96.43 368 |
|
| EPNet | | | 93.72 284 | 92.62 303 | 97.03 173 | 87.61 411 | 92.25 213 | 96.27 167 | 91.28 375 | 96.74 99 | 87.65 397 | 97.39 226 | 85.00 316 | 99.64 140 | 92.14 261 | 99.48 146 | 99.20 144 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| miper_lstm_enhance | | | 94.81 243 | 94.80 238 | 94.85 287 | 96.16 343 | 86.45 329 | 91.14 371 | 98.20 223 | 93.49 232 | 97.03 209 | 97.37 230 | 84.97 317 | 99.26 264 | 95.28 158 | 99.56 111 | 98.83 210 |
|
| Test_1112_low_res | | | 93.53 292 | 92.86 293 | 95.54 253 | 98.60 157 | 88.86 280 | 92.75 332 | 98.69 161 | 82.66 379 | 92.65 360 | 96.92 259 | 84.75 318 | 99.56 168 | 90.94 285 | 97.76 315 | 98.19 280 |
|
| MVS-HIRNet | | | 88.40 358 | 90.20 339 | 82.99 387 | 97.01 317 | 60.04 412 | 93.11 326 | 85.61 402 | 84.45 374 | 88.72 393 | 99.09 50 | 84.72 319 | 98.23 372 | 82.52 381 | 96.59 356 | 90.69 402 |
|
| K. test v3 | | | 96.44 173 | 96.28 179 | 96.95 176 | 99.41 42 | 91.53 234 | 97.65 85 | 90.31 385 | 98.89 20 | 98.93 50 | 99.36 21 | 84.57 320 | 99.92 5 | 97.81 46 | 99.56 111 | 99.39 104 |
|
| test_cas_vis1_n_1920 | | | 95.34 218 | 95.67 205 | 94.35 310 | 98.21 200 | 86.83 325 | 95.61 219 | 99.26 30 | 90.45 301 | 98.17 127 | 98.96 61 | 84.43 321 | 98.31 368 | 96.74 83 | 99.17 213 | 97.90 307 |
|
| h-mvs33 | | | 96.29 178 | 95.63 208 | 98.26 70 | 98.50 173 | 96.11 73 | 96.90 129 | 97.09 289 | 96.58 105 | 97.21 191 | 98.19 147 | 84.14 322 | 99.78 47 | 95.89 121 | 96.17 365 | 98.89 201 |
|
| hse-mvs2 | | | 95.77 199 | 95.09 221 | 97.79 107 | 97.84 243 | 95.51 97 | 95.66 213 | 95.43 329 | 96.58 105 | 97.21 191 | 96.16 299 | 84.14 322 | 99.54 176 | 95.89 121 | 96.92 342 | 98.32 265 |
|
| DIV-MVS_self_test | | | 94.73 244 | 94.64 244 | 95.01 277 | 95.86 355 | 87.00 321 | 91.33 365 | 98.08 241 | 93.34 237 | 97.10 200 | 97.34 232 | 84.02 324 | 99.31 251 | 95.15 169 | 99.55 118 | 98.72 224 |
|
| cl____ | | | 94.73 244 | 94.64 244 | 95.01 277 | 95.85 356 | 87.00 321 | 91.33 365 | 98.08 241 | 93.34 237 | 97.10 200 | 97.33 233 | 84.01 325 | 99.30 254 | 95.14 170 | 99.56 111 | 98.71 227 |
|
| Vis-MVSNet (Re-imp) | | | 95.11 230 | 94.85 233 | 95.87 238 | 99.12 93 | 89.17 271 | 97.54 98 | 94.92 336 | 96.50 110 | 96.58 238 | 97.27 236 | 83.64 326 | 99.48 194 | 88.42 333 | 99.67 84 | 98.97 185 |
|
| FA-MVS(test-final) | | | 94.91 238 | 94.89 231 | 94.99 279 | 97.51 288 | 88.11 298 | 98.27 44 | 95.20 332 | 92.40 272 | 96.68 230 | 98.60 95 | 83.44 327 | 99.28 260 | 93.34 240 | 98.53 280 | 97.59 328 |
|
| dmvs_re | | | 92.08 319 | 91.27 322 | 94.51 304 | 97.16 312 | 92.79 201 | 95.65 215 | 92.64 362 | 94.11 215 | 92.74 357 | 90.98 389 | 83.41 328 | 94.44 402 | 80.72 386 | 94.07 386 | 96.29 370 |
|
| PVSNet_0 | | 81.89 21 | 84.49 371 | 83.21 374 | 88.34 382 | 95.76 362 | 74.97 405 | 83.49 399 | 92.70 361 | 78.47 395 | 87.94 396 | 86.90 403 | 83.38 329 | 96.63 396 | 73.44 401 | 66.86 407 | 93.40 394 |
|
| test_fmvs1_n | | | 95.21 224 | 95.28 213 | 94.99 279 | 98.15 213 | 89.13 275 | 96.81 134 | 99.43 21 | 86.97 346 | 97.21 191 | 98.92 65 | 83.00 330 | 97.13 387 | 98.09 36 | 98.94 240 | 98.72 224 |
|
| CMPMVS |  | 73.10 23 | 92.74 306 | 91.39 318 | 96.77 191 | 93.57 397 | 94.67 134 | 94.21 286 | 97.67 265 | 80.36 389 | 93.61 335 | 96.60 278 | 82.85 331 | 97.35 385 | 84.86 370 | 98.78 258 | 98.29 272 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_fmvs1 | | | 94.51 260 | 94.60 248 | 94.26 314 | 95.91 351 | 87.92 300 | 95.35 235 | 99.02 77 | 86.56 350 | 96.79 222 | 98.52 102 | 82.64 332 | 97.00 390 | 97.87 43 | 98.71 266 | 97.88 309 |
|
| EU-MVSNet | | | 94.25 266 | 94.47 256 | 93.60 326 | 98.14 215 | 82.60 370 | 97.24 111 | 92.72 360 | 85.08 364 | 98.48 90 | 98.94 63 | 82.59 333 | 98.76 327 | 97.47 62 | 99.53 125 | 99.44 95 |
|
| baseline1 | | | 93.14 301 | 92.64 302 | 94.62 297 | 97.34 303 | 87.20 318 | 96.67 148 | 93.02 355 | 94.71 194 | 96.51 243 | 95.83 314 | 81.64 334 | 98.60 346 | 90.00 311 | 88.06 400 | 98.07 289 |
|
| test1111 | | | 94.53 259 | 94.81 237 | 93.72 323 | 99.06 101 | 81.94 375 | 98.31 39 | 83.87 404 | 96.37 115 | 98.49 88 | 99.17 42 | 81.49 335 | 99.73 82 | 96.64 84 | 99.86 31 | 99.49 70 |
|
| CVMVSNet | | | 92.33 313 | 92.79 296 | 90.95 370 | 97.26 308 | 75.84 402 | 95.29 241 | 92.33 365 | 81.86 380 | 96.27 255 | 98.19 147 | 81.44 336 | 98.46 358 | 94.23 212 | 98.29 294 | 98.55 242 |
|
| EPNet_dtu | | | 91.39 329 | 90.75 332 | 93.31 331 | 90.48 408 | 82.61 369 | 94.80 263 | 92.88 357 | 93.39 235 | 81.74 405 | 94.90 336 | 81.36 337 | 99.11 291 | 88.28 335 | 98.87 248 | 98.21 278 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| ECVR-MVS |  | | 94.37 265 | 94.48 255 | 94.05 319 | 98.95 112 | 83.10 365 | 98.31 39 | 82.48 406 | 96.20 123 | 98.23 120 | 99.16 43 | 81.18 338 | 99.66 134 | 95.95 117 | 99.83 43 | 99.38 106 |
|
| test_yl | | | 94.40 262 | 94.00 271 | 95.59 247 | 96.95 319 | 89.52 265 | 94.75 267 | 95.55 326 | 96.18 126 | 96.79 222 | 96.14 302 | 81.09 339 | 99.18 277 | 90.75 292 | 97.77 313 | 98.07 289 |
|
| DCV-MVSNet | | | 94.40 262 | 94.00 271 | 95.59 247 | 96.95 319 | 89.52 265 | 94.75 267 | 95.55 326 | 96.18 126 | 96.79 222 | 96.14 302 | 81.09 339 | 99.18 277 | 90.75 292 | 97.77 313 | 98.07 289 |
|
| MIMVSNet | | | 93.42 294 | 92.86 293 | 95.10 273 | 98.17 209 | 88.19 292 | 98.13 55 | 93.69 346 | 92.07 274 | 95.04 299 | 98.21 146 | 80.95 341 | 99.03 303 | 81.42 384 | 98.06 303 | 98.07 289 |
|
| PAPM | | | 87.64 363 | 85.84 370 | 93.04 339 | 96.54 328 | 84.99 348 | 88.42 394 | 95.57 325 | 79.52 391 | 83.82 402 | 93.05 363 | 80.57 342 | 98.41 360 | 62.29 406 | 92.79 390 | 95.71 377 |
|
| HyFIR lowres test | | | 93.72 284 | 92.65 301 | 96.91 181 | 98.93 116 | 91.81 231 | 91.23 369 | 98.52 184 | 82.69 378 | 96.46 245 | 96.52 284 | 80.38 343 | 99.90 14 | 90.36 306 | 98.79 257 | 99.03 176 |
|
| FMVSNet3 | | | 95.26 223 | 94.94 226 | 96.22 221 | 96.53 331 | 90.06 256 | 95.99 191 | 97.66 267 | 94.11 215 | 97.99 147 | 97.91 183 | 80.22 344 | 99.63 144 | 94.60 197 | 99.44 155 | 98.96 186 |
|
| RPMNet | | | 94.68 251 | 94.60 248 | 94.90 284 | 95.44 369 | 88.15 294 | 96.18 175 | 98.86 116 | 97.43 74 | 94.10 318 | 98.49 105 | 79.40 345 | 99.76 61 | 95.69 130 | 95.81 368 | 96.81 358 |
|
| LFMVS | | | 95.32 220 | 94.88 232 | 96.62 198 | 98.03 221 | 91.47 236 | 97.65 85 | 90.72 381 | 99.11 9 | 97.89 158 | 98.31 124 | 79.20 346 | 99.48 194 | 93.91 226 | 99.12 221 | 98.93 193 |
|
| ADS-MVSNet2 | | | 91.47 328 | 90.51 336 | 94.36 309 | 95.51 367 | 85.63 336 | 95.05 254 | 95.70 319 | 83.46 376 | 92.69 358 | 96.84 263 | 79.15 347 | 99.41 219 | 85.66 361 | 90.52 394 | 98.04 297 |
|
| ADS-MVSNet | | | 90.95 334 | 90.26 338 | 93.04 339 | 95.51 367 | 82.37 371 | 95.05 254 | 93.41 352 | 83.46 376 | 92.69 358 | 96.84 263 | 79.15 347 | 98.70 333 | 85.66 361 | 90.52 394 | 98.04 297 |
|
| MDTV_nov1_ep13_2view | | | | | | | 57.28 413 | 94.89 260 | | 80.59 387 | 94.02 323 | | 78.66 349 | | 85.50 363 | | 97.82 313 |
|
| cl22 | | | 93.25 299 | 92.84 295 | 94.46 306 | 94.30 386 | 86.00 334 | 91.09 373 | 96.64 307 | 90.74 295 | 95.79 276 | 96.31 294 | 78.24 350 | 98.77 325 | 94.15 215 | 98.34 291 | 98.62 235 |
|
| PatchmatchNet |  | | 91.98 321 | 91.87 311 | 92.30 360 | 94.60 383 | 79.71 386 | 95.12 247 | 93.59 351 | 89.52 314 | 93.61 335 | 97.02 251 | 77.94 351 | 99.18 277 | 90.84 288 | 94.57 385 | 98.01 300 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| sam_mvs1 | | | | | | | | | | | | | 77.80 352 | | | | 98.06 293 |
|
| CR-MVSNet | | | 93.29 298 | 92.79 296 | 94.78 292 | 95.44 369 | 88.15 294 | 96.18 175 | 97.20 283 | 84.94 369 | 94.10 318 | 98.57 97 | 77.67 353 | 99.39 225 | 95.17 165 | 95.81 368 | 96.81 358 |
|
| Patchmtry | | | 95.03 235 | 94.59 250 | 96.33 215 | 94.83 380 | 90.82 247 | 96.38 160 | 97.20 283 | 96.59 104 | 97.49 177 | 98.57 97 | 77.67 353 | 99.38 228 | 92.95 251 | 99.62 92 | 98.80 213 |
|
| tpmrst | | | 90.31 337 | 90.61 335 | 89.41 378 | 94.06 391 | 72.37 409 | 95.06 253 | 93.69 346 | 88.01 335 | 92.32 366 | 96.86 261 | 77.45 355 | 98.82 320 | 91.04 282 | 87.01 401 | 97.04 344 |
|
| sam_mvs | | | | | | | | | | | | | 77.38 356 | | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 96.84 263 | 77.36 357 | 99.42 210 | | | |
|
| Patchmatch-RL test | | | 94.66 252 | 94.49 254 | 95.19 267 | 98.54 166 | 88.91 278 | 92.57 338 | 98.74 150 | 91.46 286 | 98.32 111 | 97.75 197 | 77.31 358 | 98.81 322 | 96.06 107 | 99.61 98 | 97.85 311 |
|
| tpmvs | | | 90.79 335 | 90.87 329 | 90.57 373 | 92.75 403 | 76.30 400 | 95.79 206 | 93.64 350 | 91.04 293 | 91.91 369 | 96.26 295 | 77.19 359 | 98.86 319 | 89.38 320 | 89.85 397 | 96.56 365 |
|
| test_post | | | | | | | | | | | | 10.87 409 | 76.83 360 | 99.07 297 | | | |
|
| Patchmatch-test | | | 93.60 290 | 93.25 285 | 94.63 296 | 96.14 347 | 87.47 311 | 96.04 186 | 94.50 340 | 93.57 230 | 96.47 244 | 96.97 254 | 76.50 361 | 98.61 344 | 90.67 298 | 98.41 290 | 97.81 315 |
|
| MDTV_nov1_ep13 | | | | 91.28 321 | | 94.31 385 | 73.51 407 | 94.80 263 | 93.16 354 | 86.75 349 | 93.45 341 | 97.40 222 | 76.37 362 | 98.55 350 | 88.85 326 | 96.43 357 | |
|
| EMVS | | | 89.06 352 | 89.22 344 | 88.61 381 | 93.00 400 | 77.34 396 | 82.91 401 | 90.92 378 | 94.64 197 | 92.63 362 | 91.81 380 | 76.30 363 | 97.02 389 | 83.83 376 | 96.90 344 | 91.48 400 |
|
| test_post1 | | | | | | | | 94.98 258 | | | | 10.37 410 | 76.21 364 | 99.04 300 | 89.47 318 | | |
|
| GA-MVS | | | 92.83 305 | 92.15 309 | 94.87 286 | 96.97 318 | 87.27 317 | 90.03 383 | 96.12 310 | 91.83 280 | 94.05 321 | 94.57 339 | 76.01 365 | 98.97 312 | 92.46 257 | 97.34 337 | 98.36 263 |
|
| PatchT | | | 93.75 283 | 93.57 279 | 94.29 313 | 95.05 377 | 87.32 316 | 96.05 185 | 92.98 356 | 97.54 70 | 94.25 314 | 98.72 82 | 75.79 366 | 99.24 270 | 95.92 119 | 95.81 368 | 96.32 369 |
|
| E-PMN | | | 89.52 349 | 89.78 341 | 88.73 380 | 93.14 398 | 77.61 394 | 83.26 400 | 92.02 367 | 94.82 191 | 93.71 331 | 93.11 357 | 75.31 367 | 96.81 392 | 85.81 358 | 96.81 349 | 91.77 399 |
|
| DeepMVS_CX |  | | | | 77.17 388 | 90.94 407 | 85.28 343 | | 74.08 411 | 52.51 405 | 80.87 406 | 88.03 399 | 75.25 368 | 70.63 408 | 59.23 408 | 84.94 403 | 75.62 403 |
|
| AUN-MVS | | | 93.95 280 | 92.69 300 | 97.74 110 | 97.80 251 | 95.38 105 | 95.57 222 | 95.46 328 | 91.26 290 | 92.64 361 | 96.10 305 | 74.67 369 | 99.55 173 | 93.72 232 | 96.97 341 | 98.30 269 |
|
| CHOSEN 280x420 | | | 89.98 341 | 89.19 347 | 92.37 359 | 95.60 366 | 81.13 381 | 86.22 397 | 97.09 289 | 81.44 384 | 87.44 398 | 93.15 356 | 73.99 370 | 99.47 196 | 88.69 329 | 99.07 228 | 96.52 366 |
|
| thres200 | | | 91.00 333 | 90.42 337 | 92.77 350 | 97.47 294 | 83.98 361 | 94.01 296 | 91.18 377 | 95.12 180 | 95.44 287 | 91.21 386 | 73.93 371 | 99.31 251 | 77.76 395 | 97.63 326 | 95.01 385 |
|
| test-LLR | | | 89.97 342 | 89.90 340 | 90.16 374 | 94.24 388 | 74.98 403 | 89.89 385 | 89.06 391 | 92.02 275 | 89.97 385 | 90.77 390 | 73.92 372 | 98.57 347 | 91.88 266 | 97.36 335 | 96.92 349 |
|
| test0.0.03 1 | | | 90.11 338 | 89.21 345 | 92.83 348 | 93.89 393 | 86.87 324 | 91.74 358 | 88.74 394 | 92.02 275 | 94.71 305 | 91.14 387 | 73.92 372 | 94.48 401 | 83.75 378 | 92.94 389 | 97.16 341 |
|
| tpm cat1 | | | 88.01 361 | 87.33 362 | 90.05 377 | 94.48 384 | 76.28 401 | 94.47 275 | 94.35 342 | 73.84 403 | 89.26 390 | 95.61 321 | 73.64 374 | 98.30 369 | 84.13 373 | 86.20 402 | 95.57 381 |
|
| tfpn200view9 | | | 91.55 326 | 91.00 326 | 93.21 336 | 98.02 222 | 84.35 356 | 95.70 209 | 90.79 379 | 96.26 120 | 95.90 274 | 92.13 377 | 73.62 375 | 99.42 210 | 78.85 392 | 97.74 316 | 95.85 374 |
|
| thres400 | | | 91.68 325 | 91.00 326 | 93.71 324 | 98.02 222 | 84.35 356 | 95.70 209 | 90.79 379 | 96.26 120 | 95.90 274 | 92.13 377 | 73.62 375 | 99.42 210 | 78.85 392 | 97.74 316 | 97.36 336 |
|
| test_method | | | 66.88 373 | 66.13 376 | 69.11 389 | 62.68 412 | 25.73 415 | 49.76 403 | 96.04 312 | 14.32 407 | 64.27 408 | 91.69 382 | 73.45 377 | 88.05 406 | 76.06 397 | 66.94 406 | 93.54 392 |
|
| thres100view900 | | | 91.76 324 | 91.26 324 | 93.26 332 | 98.21 200 | 84.50 354 | 96.39 157 | 90.39 382 | 96.87 95 | 96.33 250 | 93.08 361 | 73.44 378 | 99.42 210 | 78.85 392 | 97.74 316 | 95.85 374 |
|
| thres600view7 | | | 92.03 320 | 91.43 317 | 93.82 321 | 98.19 203 | 84.61 353 | 96.27 167 | 90.39 382 | 96.81 97 | 96.37 249 | 93.11 357 | 73.44 378 | 99.49 191 | 80.32 387 | 97.95 307 | 97.36 336 |
|
| MVSTER | | | 94.21 269 | 93.93 274 | 95.05 275 | 95.83 357 | 86.46 328 | 95.18 246 | 97.65 269 | 92.41 271 | 97.94 154 | 98.00 174 | 72.39 380 | 99.58 161 | 96.36 96 | 99.56 111 | 99.12 161 |
|
| JIA-IIPM | | | 91.79 323 | 90.69 333 | 95.11 271 | 93.80 394 | 90.98 244 | 94.16 288 | 91.78 370 | 96.38 114 | 90.30 382 | 99.30 28 | 72.02 381 | 98.90 314 | 88.28 335 | 90.17 396 | 95.45 382 |
|
| tpm | | | 91.08 332 | 90.85 330 | 91.75 366 | 95.33 372 | 78.09 391 | 95.03 256 | 91.27 376 | 88.75 324 | 93.53 338 | 97.40 222 | 71.24 382 | 99.30 254 | 91.25 279 | 93.87 387 | 97.87 310 |
|
| baseline2 | | | 89.65 348 | 88.44 354 | 93.25 333 | 95.62 365 | 82.71 367 | 93.82 305 | 85.94 401 | 88.89 323 | 87.35 399 | 92.54 371 | 71.23 383 | 99.33 246 | 86.01 356 | 94.60 384 | 97.72 320 |
|
| CostFormer | | | 89.75 345 | 89.25 343 | 91.26 369 | 94.69 382 | 78.00 393 | 95.32 238 | 91.98 368 | 81.50 383 | 90.55 378 | 96.96 256 | 71.06 384 | 98.89 315 | 88.59 331 | 92.63 391 | 96.87 352 |
|
| FPMVS | | | 89.92 343 | 88.63 351 | 93.82 321 | 98.37 185 | 96.94 45 | 91.58 359 | 93.34 353 | 88.00 336 | 90.32 381 | 97.10 246 | 70.87 385 | 91.13 405 | 71.91 403 | 96.16 366 | 93.39 395 |
|
| EPMVS | | | 89.26 350 | 88.55 352 | 91.39 368 | 92.36 404 | 79.11 389 | 95.65 215 | 79.86 407 | 88.60 327 | 93.12 349 | 96.53 282 | 70.73 386 | 98.10 376 | 90.75 292 | 89.32 398 | 96.98 347 |
|
| FE-MVS | | | 92.95 303 | 92.22 307 | 95.11 271 | 97.21 310 | 88.33 290 | 98.54 23 | 93.66 349 | 89.91 310 | 96.21 259 | 98.14 151 | 70.33 387 | 99.50 186 | 87.79 339 | 98.24 296 | 97.51 331 |
|
| tmp_tt | | | 57.23 374 | 62.50 377 | 41.44 390 | 34.77 413 | 49.21 414 | 83.93 398 | 60.22 414 | 15.31 406 | 71.11 407 | 79.37 405 | 70.09 388 | 44.86 409 | 64.76 405 | 82.93 405 | 30.25 405 |
|
| ET-MVSNet_ETH3D | | | 91.12 330 | 89.67 342 | 95.47 256 | 96.41 334 | 89.15 273 | 91.54 361 | 90.23 386 | 89.07 319 | 86.78 401 | 92.84 366 | 69.39 389 | 99.44 206 | 94.16 214 | 96.61 355 | 97.82 313 |
|
| dp | | | 88.08 360 | 88.05 356 | 88.16 385 | 92.85 401 | 68.81 411 | 94.17 287 | 92.88 357 | 85.47 360 | 91.38 374 | 96.14 302 | 68.87 390 | 98.81 322 | 86.88 353 | 83.80 404 | 96.87 352 |
|
| tpm2 | | | 88.47 357 | 87.69 360 | 90.79 371 | 94.98 378 | 77.34 396 | 95.09 249 | 91.83 369 | 77.51 398 | 89.40 389 | 96.41 288 | 67.83 391 | 98.73 329 | 83.58 379 | 92.60 392 | 96.29 370 |
|
| pmmvs3 | | | 90.00 340 | 88.90 350 | 93.32 330 | 94.20 390 | 85.34 340 | 91.25 368 | 92.56 364 | 78.59 394 | 93.82 326 | 95.17 328 | 67.36 392 | 98.69 335 | 89.08 324 | 98.03 304 | 95.92 373 |
|
| thisisatest0515 | | | 90.43 336 | 89.18 348 | 94.17 317 | 97.07 316 | 85.44 339 | 89.75 389 | 87.58 396 | 88.28 332 | 93.69 333 | 91.72 381 | 65.27 393 | 99.58 161 | 90.59 299 | 98.67 269 | 97.50 333 |
|
| tttt0517 | | | 93.31 297 | 92.56 304 | 95.57 249 | 98.71 142 | 87.86 302 | 97.44 101 | 87.17 398 | 95.79 149 | 97.47 181 | 96.84 263 | 64.12 394 | 99.81 36 | 96.20 103 | 99.32 192 | 99.02 179 |
|
| thisisatest0530 | | | 92.71 307 | 91.76 315 | 95.56 251 | 98.42 182 | 88.23 291 | 96.03 187 | 87.35 397 | 94.04 218 | 96.56 240 | 95.47 324 | 64.03 395 | 99.77 56 | 94.78 190 | 99.11 222 | 98.68 231 |
|
| iter_conf05 | | | 93.65 288 | 93.05 287 | 95.46 257 | 96.13 348 | 87.45 312 | 95.95 197 | 98.22 219 | 92.66 265 | 97.04 208 | 97.89 184 | 63.52 396 | 99.72 87 | 96.19 104 | 99.82 47 | 99.21 140 |
|
| FMVSNet5 | | | 93.39 295 | 92.35 305 | 96.50 206 | 95.83 357 | 90.81 249 | 97.31 106 | 98.27 213 | 92.74 263 | 96.27 255 | 98.28 133 | 62.23 397 | 99.67 128 | 90.86 287 | 99.36 177 | 99.03 176 |
|
| IB-MVS | | 85.98 20 | 88.63 356 | 86.95 366 | 93.68 325 | 95.12 376 | 84.82 352 | 90.85 375 | 90.17 387 | 87.55 339 | 88.48 394 | 91.34 385 | 58.01 398 | 99.59 159 | 87.24 351 | 93.80 388 | 96.63 364 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| testing91 | | | 89.67 347 | 88.55 352 | 93.04 339 | 95.90 352 | 81.80 376 | 92.71 336 | 93.71 345 | 93.71 225 | 90.18 383 | 90.15 394 | 57.11 399 | 99.22 274 | 87.17 352 | 96.32 361 | 98.12 285 |
|
| gg-mvs-nofinetune | | | 88.28 359 | 86.96 365 | 92.23 361 | 92.84 402 | 84.44 355 | 98.19 52 | 74.60 409 | 99.08 10 | 87.01 400 | 99.47 11 | 56.93 400 | 98.23 372 | 78.91 391 | 95.61 374 | 94.01 391 |
|
| KD-MVS_2432*1600 | | | 88.93 353 | 87.74 358 | 92.49 355 | 88.04 409 | 81.99 373 | 89.63 390 | 95.62 322 | 91.35 288 | 95.06 296 | 93.11 357 | 56.58 401 | 98.63 342 | 85.19 366 | 95.07 377 | 96.85 354 |
|
| miper_refine_blended | | | 88.93 353 | 87.74 358 | 92.49 355 | 88.04 409 | 81.99 373 | 89.63 390 | 95.62 322 | 91.35 288 | 95.06 296 | 93.11 357 | 56.58 401 | 98.63 342 | 85.19 366 | 95.07 377 | 96.85 354 |
|
| GG-mvs-BLEND | | | | | 90.60 372 | 91.00 406 | 84.21 359 | 98.23 46 | 72.63 412 | | 82.76 403 | 84.11 404 | 56.14 403 | 96.79 393 | 72.20 402 | 92.09 393 | 90.78 401 |
|
| TESTMET0.1,1 | | | 87.20 368 | 86.57 368 | 89.07 379 | 93.62 396 | 72.84 408 | 89.89 385 | 87.01 399 | 85.46 361 | 89.12 391 | 90.20 393 | 56.00 404 | 97.72 382 | 90.91 286 | 96.92 342 | 96.64 362 |
|
| testing99 | | | 89.21 351 | 88.04 357 | 92.70 352 | 95.78 360 | 81.00 382 | 92.65 337 | 92.03 366 | 93.20 244 | 89.90 387 | 90.08 396 | 55.25 405 | 99.14 284 | 87.54 345 | 95.95 367 | 97.97 302 |
|
| UWE-MVS | | | 87.57 365 | 86.72 367 | 90.13 376 | 95.21 373 | 73.56 406 | 91.94 355 | 83.78 405 | 88.73 326 | 93.00 351 | 92.87 365 | 55.22 406 | 99.25 266 | 81.74 382 | 97.96 306 | 97.59 328 |
|
| test2506 | | | 89.86 344 | 89.16 349 | 91.97 364 | 98.95 112 | 76.83 399 | 98.54 23 | 61.07 413 | 96.20 123 | 97.07 206 | 99.16 43 | 55.19 407 | 99.69 117 | 96.43 93 | 99.83 43 | 99.38 106 |
|
| testing11 | | | 88.93 353 | 87.63 361 | 92.80 349 | 95.87 354 | 81.49 378 | 92.48 341 | 91.54 372 | 91.62 282 | 88.27 395 | 90.24 392 | 55.12 408 | 99.11 291 | 87.30 350 | 96.28 363 | 97.81 315 |
|
| test-mter | | | 87.92 362 | 87.17 363 | 90.16 374 | 94.24 388 | 74.98 403 | 89.89 385 | 89.06 391 | 86.44 351 | 89.97 385 | 90.77 390 | 54.96 409 | 98.57 347 | 91.88 266 | 97.36 335 | 96.92 349 |
|
| ETVMVS | | | 87.62 364 | 85.75 371 | 93.22 335 | 96.15 346 | 83.26 364 | 92.94 328 | 90.37 384 | 91.39 287 | 90.37 380 | 88.45 398 | 51.93 410 | 98.64 341 | 73.76 399 | 96.38 359 | 97.75 318 |
|
| testing222 | | | 87.35 366 | 85.50 373 | 92.93 346 | 95.79 359 | 82.83 366 | 92.40 347 | 90.10 388 | 92.80 262 | 88.87 392 | 89.02 397 | 48.34 411 | 98.70 333 | 75.40 398 | 96.74 351 | 97.27 340 |
|
| myMVS_eth3d | | | 87.16 369 | 85.61 372 | 91.82 365 | 95.19 374 | 79.32 387 | 92.46 342 | 91.35 373 | 90.67 298 | 91.76 371 | 87.61 400 | 41.96 412 | 98.50 354 | 82.66 380 | 96.84 346 | 97.65 323 |
|
| testing3 | | | 89.72 346 | 88.26 355 | 94.10 318 | 97.66 276 | 84.30 358 | 94.80 263 | 88.25 395 | 94.66 195 | 95.07 295 | 92.51 372 | 41.15 413 | 99.43 208 | 91.81 269 | 98.44 288 | 98.55 242 |
|
| test123 | | | 12.59 376 | 15.49 379 | 3.87 391 | 6.07 414 | 2.55 416 | 90.75 377 | 2.59 416 | 2.52 409 | 5.20 411 | 13.02 408 | 4.96 414 | 1.85 411 | 5.20 409 | 9.09 408 | 7.23 406 |
|
| testmvs | | | 12.33 377 | 15.23 380 | 3.64 392 | 5.77 415 | 2.23 417 | 88.99 392 | 3.62 415 | 2.30 410 | 5.29 410 | 13.09 407 | 4.52 415 | 1.95 410 | 5.16 410 | 8.32 409 | 6.75 407 |
|
| test_blank | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet_test | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| DCPMVS | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet-low-res | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| sosnet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uncertanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| Regformer | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| ab-mvs-re | | | 7.91 379 | 10.55 382 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 94.94 333 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| uanet | | | 0.00 380 | 0.00 383 | 0.00 393 | 0.00 416 | 0.00 418 | 0.00 404 | 0.00 417 | 0.00 411 | 0.00 412 | 0.00 411 | 0.00 416 | 0.00 412 | 0.00 411 | 0.00 410 | 0.00 408 |
|
| WAC-MVS | | | | | | | 79.32 387 | | | | | | | | 85.41 364 | | |
|
| FOURS1 | | | | | | 99.59 18 | 98.20 7 | 99.03 7 | 99.25 31 | 98.96 18 | 98.87 56 | | | | | | |
|
| MSC_two_6792asdad | | | | | 98.22 75 | 97.75 263 | 95.34 110 | | 98.16 233 | | | | | 99.75 67 | 95.87 123 | 99.51 135 | 99.57 46 |
|
| No_MVS | | | | | 98.22 75 | 97.75 263 | 95.34 110 | | 98.16 233 | | | | | 99.75 67 | 95.87 123 | 99.51 135 | 99.57 46 |
|
| eth-test2 | | | | | | 0.00 416 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 416 | | | | | | | | | | | |
|
| IU-MVS | | | | | | 99.22 68 | 95.40 103 | | 98.14 236 | 85.77 358 | 98.36 104 | | | | 95.23 162 | 99.51 135 | 99.49 70 |
|
| save fliter | | | | | | 98.48 176 | 94.71 131 | 94.53 274 | 98.41 197 | 95.02 185 | | | | | | | |
|
| test_0728_SECOND | | | | | 98.25 73 | 99.23 65 | 95.49 101 | 96.74 139 | 98.89 105 | | | | | 99.75 67 | 95.48 145 | 99.52 130 | 99.53 56 |
|
| GSMVS | | | | | | | | | | | | | | | | | 98.06 293 |
|
| test_part2 | | | | | | 99.03 107 | 96.07 74 | | | | 98.08 138 | | | | | | |
|
| MTGPA |  | | | | | | | | 98.73 151 | | | | | | | | |
|
| MTMP | | | | | | | | 96.55 151 | 74.60 409 | | | | | | | | |
|
| gm-plane-assit | | | | | | 91.79 405 | 71.40 410 | | | 81.67 381 | | 90.11 395 | | 98.99 306 | 84.86 370 | | |
|
| test9_res | | | | | | | | | | | | | | | 91.29 276 | 98.89 247 | 99.00 180 |
|
| agg_prior2 | | | | | | | | | | | | | | | 90.34 307 | 98.90 244 | 99.10 168 |
|
| agg_prior | | | | | | 97.80 251 | 94.96 126 | | 98.36 204 | | 93.49 339 | | | 99.53 178 | | | |
|
| test_prior4 | | | | | | | 95.38 105 | 93.61 313 | | | | | | | | | |
|
| test_prior | | | | | 97.46 137 | 97.79 256 | 94.26 155 | | 98.42 196 | | | | | 99.34 244 | | | 98.79 214 |
|
| 旧先验2 | | | | | | | | 93.35 320 | | 77.95 397 | 95.77 280 | | | 98.67 339 | 90.74 295 | | |
|
| 新几何2 | | | | | | | | 93.43 316 | | | | | | | | | |
|
| 无先验 | | | | | | | | 93.20 324 | 97.91 250 | 80.78 386 | | | | 99.40 221 | 87.71 340 | | 97.94 305 |
|
| 原ACMM2 | | | | | | | | 92.82 330 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.46 199 | 87.84 338 | | |
|
| testdata1 | | | | | | | | 92.77 331 | | 93.78 223 | | | | | | | |
|
| plane_prior7 | | | | | | 98.70 144 | 94.67 134 | | | | | | | | | | |
|
| plane_prior5 | | | | | | | | | 98.75 148 | | | | | 99.46 199 | 92.59 254 | 99.20 208 | 99.28 127 |
|
| plane_prior4 | | | | | | | | | | | | 96.77 269 | | | | | |
|
| plane_prior3 | | | | | | | 94.51 141 | | | 95.29 173 | 96.16 262 | | | | | | |
|
| plane_prior2 | | | | | | | | 96.50 153 | | 96.36 116 | | | | | | | |
|
| plane_prior1 | | | | | | 98.49 174 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 94.29 151 | 95.42 227 | | 94.31 208 | | | | | | 98.93 242 | |
|
| n2 | | | | | | | | | 0.00 417 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 417 | | | | | | | | |
|
| door-mid | | | | | | | | | 98.17 229 | | | | | | | | |
|
| test11 | | | | | | | | | 98.08 241 | | | | | | | | |
|
| door | | | | | | | | | 97.81 259 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 92.47 208 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 97.85 238 | | 94.26 279 | | 93.18 246 | 92.86 354 | | | | | | |
|
| ACMP_Plane | | | | | | 97.85 238 | | 94.26 279 | | 93.18 246 | 92.86 354 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 90.51 302 | | |
|
| HQP4-MVS | | | | | | | | | | | 92.87 353 | | | 99.23 272 | | | 99.06 173 |
|
| HQP3-MVS | | | | | | | | | 98.43 193 | | | | | | | 98.74 262 | |
|
| NP-MVS | | | | | | 98.14 215 | 93.72 172 | | | | | 95.08 329 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 99.52 130 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.55 118 | |
|