This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2699.01 1699.63 1199.66 399.27 299.68 12497.75 5199.89 2699.62 36
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3499.67 299.73 399.65 599.15 399.86 2497.22 6899.92 1599.77 12
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
XVG-OURS-SEG-HR97.38 11797.07 13198.30 6899.01 11097.41 3494.66 26999.02 7495.20 17498.15 13097.52 21698.83 598.43 35194.87 18496.41 35399.07 173
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6597.40 7999.37 2399.08 5198.79 699.47 19797.74 5299.71 7599.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3196.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18298.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 11098.23 4099.48 1699.27 3098.47 1199.55 17496.52 9199.53 12599.60 38
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8397.57 6799.27 2999.22 3498.32 1299.50 18797.09 7599.75 6699.50 63
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4895.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21398.58 2898.78 6599.39 1698.21 1499.56 17092.65 25299.86 3199.52 59
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3498.21 4199.25 3198.51 10598.21 1499.40 22294.79 18899.72 7299.32 116
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7295.88 14397.88 15998.22 14698.15 1699.74 7796.50 9299.62 9399.42 98
wuyk23d93.25 29695.20 21387.40 37796.07 34595.38 10597.04 12294.97 33395.33 16999.70 698.11 15898.14 1791.94 39577.76 38899.68 8374.89 395
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8697.55 2696.68 14698.83 12695.21 17398.36 10498.13 15498.13 1899.62 15196.04 11099.54 12199.39 105
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6595.43 16797.41 18497.50 21897.98 1999.79 4595.58 14099.57 10999.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testgi96.07 18496.50 16894.80 28899.26 6087.69 30695.96 19498.58 17895.08 18098.02 14696.25 29897.92 2097.60 37588.68 32898.74 26299.11 166
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8697.02 4297.09 11999.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12696.11 12799.08 4098.24 14197.87 2399.72 8895.44 14999.51 13599.14 156
test_241102_ONE99.22 6995.35 10898.83 12696.04 13299.08 4098.13 15497.87 2399.33 245
SDMVSNet97.97 5298.26 3997.11 16399.41 4392.21 21496.92 12798.60 17398.58 2898.78 6599.39 1697.80 2599.62 15194.98 18299.86 3199.52 59
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
SD-MVS97.37 11997.70 8196.35 21498.14 21695.13 12296.54 15198.92 9995.94 13999.19 3498.08 16097.74 2895.06 38995.24 16199.54 12198.87 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13595.72 8696.23 17299.02 7493.92 22098.62 7698.99 5797.69 2999.62 15196.18 10599.87 2999.15 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5798.31 3699.02 4398.74 8297.68 3099.61 15897.77 5099.85 3899.70 26
ANet_high98.31 3198.94 696.41 21399.33 5489.64 26397.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5999.98 299.77 12
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 16099.44 299.83 4397.90 305
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16292.10 22295.97 19299.18 3797.67 6699.00 4698.48 11097.64 3399.50 18796.96 8099.54 12199.40 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
canonicalmvs97.23 12697.21 12497.30 15097.65 27694.39 14597.84 7199.05 6597.42 7596.68 23193.85 35297.63 3499.33 24596.29 9998.47 28498.18 283
GeoE97.75 8797.70 8197.89 10298.88 12394.53 14097.10 11898.98 8995.75 15197.62 17097.59 21197.61 3599.77 5796.34 9899.44 15599.36 113
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6598.67 2498.84 5998.45 11197.58 3699.88 2096.45 9499.86 3199.54 54
cdsmvs_eth3d_5k24.22 36532.30 3680.00 3840.00 4060.00 4090.00 39598.10 2370.00 4020.00 40395.06 33397.54 370.00 4030.00 4020.00 4010.00 399
ACMP92.54 1397.47 11197.10 12898.55 4999.04 10796.70 5196.24 17198.89 10293.71 22597.97 15197.75 19997.44 3899.63 14693.22 24599.70 7899.32 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7496.50 10999.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 16197.21 6999.76 5999.40 101
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3695.62 15699.35 2599.37 1997.38 4199.90 1498.59 2899.91 1899.77 12
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4799.22 899.22 3398.96 6197.35 4299.92 597.79 4999.93 1199.79 10
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3998.34 3598.78 6598.52 10397.32 4399.45 20494.08 21799.67 8599.13 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS97.69 9297.79 7397.40 14599.06 10293.52 18095.96 19498.97 9294.55 20198.82 6198.76 8197.31 4499.29 25697.20 7199.44 15599.38 107
XXY-MVS97.54 10697.70 8197.07 16899.46 3792.21 21497.22 11199.00 8394.93 18898.58 8198.92 6697.31 4499.41 22094.44 20199.43 16399.59 39
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4399.33 599.30 2799.00 5597.27 4699.92 597.64 5799.92 1599.75 19
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5199.36 499.29 2899.06 5297.27 4699.93 397.71 5399.91 1899.70 26
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5697.24 3997.45 9998.84 12095.76 14996.93 21797.43 22297.26 4899.79 4596.06 10799.53 12599.45 86
MP-MVS-pluss97.69 9297.36 11598.70 3899.50 3496.84 4795.38 23198.99 8692.45 26798.11 13398.31 12597.25 4999.77 5796.60 8899.62 9399.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5296.84 4796.36 16198.79 13695.07 18197.88 15998.35 12197.24 5099.72 8896.05 10999.58 10699.45 86
Effi-MVS+96.19 18096.01 18796.71 19397.43 29492.19 21896.12 18099.10 5195.45 16493.33 34394.71 34097.23 5199.56 17093.21 24697.54 32598.37 260
tt080597.44 11397.56 10297.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32797.17 5298.50 34698.67 2597.45 33196.48 358
PGM-MVS97.88 7397.52 10698.96 1399.20 7897.62 2197.09 11999.06 6195.45 16497.55 17297.94 18097.11 5399.78 4894.77 19199.46 15199.48 77
test_0728_THIRD96.62 9998.40 9898.28 13497.10 5499.71 10495.70 12899.62 9399.58 40
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13297.31 3697.55 9298.92 9997.72 5998.25 11898.13 15497.10 5499.75 6895.44 14999.24 20699.32 116
OPM-MVS97.54 10697.25 12198.41 5999.11 9596.61 5695.24 24298.46 18794.58 20098.10 13598.07 16297.09 5699.39 22695.16 16799.44 15599.21 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
HFP-MVS97.94 6297.64 9198.83 2599.15 8697.50 2997.59 8998.84 12096.05 13097.49 17797.54 21497.07 5799.70 11295.61 13799.46 15199.30 121
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6495.51 9796.74 13998.23 21695.92 14098.40 9898.28 13497.06 5899.71 10495.48 14599.52 13099.26 133
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.24 6495.51 9796.89 12998.89 10295.92 14098.64 7498.31 12597.06 58
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12393.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14299.21 799.87 2998.69 230
casdiffmvspermissive97.50 10897.81 7196.56 20398.51 17191.04 24295.83 20399.09 5697.23 8598.33 11098.30 12997.03 6199.37 23496.58 9099.38 17399.28 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 4097.21 4197.15 11498.90 10196.58 10498.08 13897.87 18897.02 6299.76 6295.25 16099.59 10499.40 101
Skip Steuart: Steuart Systems R&D Blog.
PC_three_145287.24 33298.37 10197.44 22197.00 6396.78 38592.01 26099.25 20399.21 141
EC-MVSNet97.90 7197.94 5897.79 10898.66 14995.14 12198.31 3999.66 897.57 6795.95 26897.01 25596.99 6499.82 3597.66 5699.64 9098.39 258
DVP-MVS++97.96 5497.90 5998.12 8497.75 26495.40 10399.03 798.89 10296.62 9998.62 7698.30 12996.97 6599.75 6895.70 12899.25 20399.21 141
OPU-MVS97.64 11998.01 22595.27 11396.79 13697.35 23396.97 6598.51 34591.21 27899.25 20399.14 156
RE-MVS-def97.88 6498.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.94 6795.49 14299.20 20899.26 133
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 14096.04 7598.07 5899.10 5195.96 13798.59 8098.69 8796.94 6799.81 3796.64 8699.58 10699.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
test_one_060199.05 10695.50 10098.87 11097.21 8698.03 14598.30 12996.93 69
GST-MVS97.82 8197.49 11098.81 2799.23 6697.25 3897.16 11398.79 13695.96 13797.53 17397.40 22496.93 6999.77 5795.04 17699.35 18299.42 98
test_241102_TWO98.83 12696.11 12798.62 7698.24 14196.92 7199.72 8895.44 14999.49 14299.49 71
LCM-MVSNet-Re97.33 12297.33 11797.32 14998.13 21993.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30699.06 23198.32 267
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8398.40 3399.07 4298.98 5896.89 7399.75 6897.19 7299.79 5399.55 53
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6697.60 2298.09 5798.96 9395.75 15197.91 15698.06 16796.89 7399.76 6295.32 15799.57 10999.43 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CS-MVS98.09 4498.01 5298.32 6598.45 18096.69 5298.52 2699.69 598.07 4696.07 26497.19 24396.88 7599.86 2497.50 6199.73 6898.41 255
PMVScopyleft89.60 1796.71 15796.97 13795.95 23399.51 3197.81 1697.42 10397.49 27597.93 5095.95 26898.58 9796.88 7596.91 38289.59 31499.36 17793.12 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
region2R97.92 6697.59 9998.92 2199.22 6997.55 2697.60 8798.84 12096.00 13597.22 18997.62 20996.87 7799.76 6295.48 14599.43 16399.46 82
CP-MVS97.92 6697.56 10298.99 1098.99 11197.82 1597.93 6698.96 9396.11 12796.89 22097.45 22096.85 7899.78 4895.19 16399.63 9299.38 107
DPE-MVScopyleft97.64 9797.35 11698.50 5198.85 12696.18 6995.21 24498.99 8695.84 14698.78 6598.08 16096.84 7999.81 3793.98 22399.57 10999.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14898.66 2598.56 8298.41 11596.84 7999.69 11994.82 18699.81 4898.64 234
CS-MVS-test97.91 6997.84 6698.14 8298.52 16996.03 7798.38 3499.67 698.11 4495.50 28596.92 26196.81 8199.87 2296.87 8399.76 5998.51 248
ACMMPR97.95 5897.62 9598.94 1599.20 7897.56 2597.59 8998.83 12696.05 13097.46 18297.63 20896.77 8299.76 6295.61 13799.46 15199.49 71
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16699.11 4796.75 8399.86 2497.84 4699.36 17799.15 153
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Fast-Effi-MVS+95.49 20895.07 21996.75 19197.67 27492.82 19694.22 28498.60 17391.61 27993.42 34192.90 36296.73 8499.70 11292.60 25397.89 30897.74 314
baseline97.44 11397.78 7796.43 20998.52 16990.75 24996.84 13099.03 7296.51 10897.86 16398.02 17196.67 8599.36 23797.09 7599.47 14899.19 146
SR-MVS98.00 5197.66 8799.01 898.77 13697.93 1197.38 10498.83 12697.32 8298.06 14197.85 18996.65 8699.77 5795.00 17999.11 22299.32 116
tfpnnormal97.72 9097.97 5596.94 17699.26 6092.23 21397.83 7298.45 18898.25 3999.13 3898.66 8996.65 8699.69 11993.92 22599.62 9398.91 199
DeepPCF-MVS94.58 596.90 14296.43 17098.31 6797.48 28897.23 4092.56 33498.60 17392.84 25998.54 8397.40 22496.64 8898.78 31894.40 20599.41 17098.93 195
MVS_111021_LR96.82 14896.55 16297.62 12098.27 19595.34 11093.81 30698.33 20694.59 19996.56 23996.63 27996.61 8998.73 32394.80 18799.34 18598.78 217
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 5198.76 2396.79 22399.34 2596.61 8998.82 31496.38 9699.50 13996.98 338
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.60 9199.76 6295.49 14299.20 20899.26 133
MVS_111021_HR96.73 15496.54 16497.27 15298.35 18893.66 17693.42 31698.36 20294.74 19196.58 23796.76 27396.54 9298.99 30094.87 18499.27 20199.15 153
SMA-MVScopyleft97.48 11097.11 12798.60 4598.83 12796.67 5396.74 13998.73 14891.61 27998.48 9098.36 12096.53 9399.68 12495.17 16599.54 12199.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4699.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
mPP-MVS97.91 6997.53 10599.04 499.22 6997.87 1497.74 7998.78 14096.04 13297.10 20097.73 20296.53 9399.78 4895.16 16799.50 13999.46 82
XVS97.96 5497.63 9398.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25097.64 20796.49 9699.72 8895.66 13399.37 17499.45 86
X-MVStestdata92.86 30190.83 32798.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25036.50 39796.49 9699.72 8895.66 13399.37 17499.45 86
9.1496.69 15398.53 16896.02 18798.98 8993.23 24097.18 19497.46 21996.47 9899.62 15192.99 24999.32 192
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2499.08 1097.87 16299.67 296.47 9899.92 597.88 4399.98 299.85 3
fmvsm_l_conf0.5_n97.68 9597.81 7197.27 15298.92 11992.71 20295.89 20099.41 2393.36 23599.00 4698.44 11396.46 10099.65 13899.09 1199.76 5999.45 86
SF-MVS97.60 10197.39 11398.22 7598.93 11795.69 8897.05 12199.10 5195.32 17097.83 16597.88 18796.44 10199.72 8894.59 20099.39 17299.25 137
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8292.51 20596.57 14999.15 4393.68 22798.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
ETV-MVS96.13 18395.90 19596.82 18697.76 26293.89 16595.40 22998.95 9595.87 14495.58 28491.00 38496.36 10699.72 8893.36 23998.83 25496.85 345
fmvsm_l_conf0.5_n_a97.60 10197.76 7897.11 16398.92 11992.28 21195.83 20399.32 2493.22 24198.91 5398.49 10696.31 10799.64 14299.07 1299.76 5999.40 101
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9891.43 23796.37 16099.11 4994.19 21099.01 4499.25 3196.30 10899.38 22999.00 1499.88 2799.73 22
MP-MVScopyleft97.64 9797.18 12599.00 999.32 5697.77 1797.49 9898.73 14896.27 11895.59 28397.75 19996.30 10899.78 4893.70 23399.48 14699.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
TinyColmap96.00 18996.34 17594.96 27997.90 23787.91 29994.13 29198.49 18594.41 20398.16 12897.76 19696.29 11098.68 33190.52 29999.42 16698.30 271
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14697.18 31094.39 14595.46 22398.73 14896.03 13494.72 30394.92 33796.28 11199.69 11993.81 22897.98 30398.09 285
fmvsm_s_conf0.5_n_a97.65 9697.83 6997.13 16298.80 13092.51 20596.25 17099.06 6193.67 22898.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 57
fmvsm_s_conf0.5_n97.62 9997.89 6296.80 18798.79 13291.44 23696.14 17999.06 6194.19 21098.82 6198.98 5896.22 11399.38 22998.98 1699.86 3199.58 40
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5796.57 10798.07 14098.38 11996.22 11399.14 28094.71 19599.31 19598.52 247
OMC-MVS96.48 16996.00 18897.91 10098.30 19096.01 7894.86 26198.60 17391.88 27697.18 19497.21 24296.11 11599.04 29490.49 30299.34 18598.69 230
xiu_mvs_v2_base94.22 26594.63 24392.99 33997.32 30484.84 34992.12 34497.84 25591.96 27494.17 31593.43 35396.07 11699.71 10491.27 27597.48 32894.42 379
CSCG97.40 11697.30 11897.69 11698.95 11394.83 12897.28 10798.99 8696.35 11798.13 13295.95 31395.99 11799.66 13694.36 20899.73 6898.59 240
PHI-MVS96.96 13896.53 16598.25 7397.48 28896.50 5996.76 13898.85 11793.52 23096.19 26096.85 26495.94 11899.42 21193.79 22999.43 16398.83 212
TSAR-MVS + MP.97.42 11597.23 12398.00 9599.38 4995.00 12597.63 8698.20 22193.00 25298.16 12898.06 16795.89 11999.72 8895.67 13299.10 22499.28 128
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
XVG-ACMP-BASELINE97.58 10497.28 12098.49 5299.16 8396.90 4696.39 15698.98 8995.05 18298.06 14198.02 17195.86 12099.56 17094.37 20699.64 9099.00 182
AllTest97.20 12796.92 14298.06 8899.08 9996.16 7097.14 11699.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
TestCases98.06 8899.08 9996.16 7099.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
APD-MVScopyleft97.00 13396.53 16598.41 5998.55 16596.31 6696.32 16498.77 14192.96 25797.44 18397.58 21395.84 12199.74 7791.96 26199.35 18299.19 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
pcd_1.5k_mvsjas7.98 36810.65 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40295.82 1240.00 4030.00 4020.00 4010.00 399
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3296.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
PS-MVSNAJ94.10 27194.47 25393.00 33897.35 29984.88 34791.86 34897.84 25591.96 27494.17 31592.50 37095.82 12499.71 10491.27 27597.48 32894.40 380
3Dnovator96.53 297.61 10097.64 9197.50 13297.74 26793.65 17798.49 2898.88 10896.86 9497.11 19998.55 10195.82 12499.73 8395.94 11899.42 16699.13 158
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14897.69 6397.90 15797.96 17795.81 12899.82 3596.13 10699.61 9999.45 86
DP-MVS97.87 7497.89 6297.81 10798.62 15694.82 12997.13 11798.79 13698.98 1798.74 7198.49 10695.80 12999.49 19295.04 17699.44 15599.11 166
Anonymous2024052997.96 5498.04 4997.71 11398.69 14794.28 15397.86 7098.31 21098.79 2299.23 3298.86 7495.76 13099.61 15895.49 14299.36 17799.23 139
LS3D97.77 8697.50 10998.57 4796.24 33497.58 2498.45 3198.85 11798.58 2897.51 17597.94 18095.74 13199.63 14695.19 16398.97 23698.51 248
EIA-MVS96.04 18695.77 20196.85 18397.80 25292.98 19496.12 18099.16 3994.65 19593.77 32791.69 37895.68 13299.67 13094.18 21398.85 25197.91 304
CNVR-MVS96.92 14096.55 16298.03 9398.00 22995.54 9594.87 26098.17 22794.60 19796.38 24797.05 25195.67 13399.36 23795.12 17399.08 22699.19 146
CLD-MVS95.47 21195.07 21996.69 19598.27 19592.53 20491.36 35498.67 16391.22 28695.78 27794.12 35095.65 13498.98 30290.81 28799.72 7298.57 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
Anonymous2023121198.55 2098.76 1397.94 9998.79 13294.37 14798.84 1199.15 4399.37 399.67 799.43 1595.61 13599.72 8898.12 3599.86 3199.73 22
EGC-MVSNET83.08 36277.93 36598.53 5099.57 2097.55 2698.33 3898.57 1794.71 39910.38 40098.90 7095.60 13699.50 18795.69 13099.61 9998.55 244
ITE_SJBPF97.85 10598.64 15096.66 5498.51 18495.63 15597.22 18997.30 23795.52 13798.55 34290.97 28298.90 24498.34 266
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 14097.69 27094.15 15796.02 18798.43 19193.17 24797.30 18697.38 23095.48 13899.28 25893.74 23099.34 18598.88 207
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3899.05 1399.17 3598.79 7695.47 13999.89 1897.95 4299.91 1899.75 19
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16597.41 7899.00 4699.19 3695.47 13999.73 8395.83 12599.76 5999.30 121
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10298.49 3199.38 2299.14 4695.44 14199.84 3096.47 9399.80 5199.47 80
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 12099.05 1399.01 4498.65 9295.37 14299.90 1497.57 5899.91 1899.77 12
segment_acmp95.34 143
CDPH-MVS95.45 21394.65 24097.84 10698.28 19394.96 12693.73 30898.33 20685.03 35795.44 28696.60 28095.31 14499.44 20790.01 30899.13 21899.11 166
3Dnovator+96.13 397.73 8897.59 9998.15 8198.11 22095.60 9298.04 6098.70 15798.13 4396.93 21798.45 11195.30 14599.62 15195.64 13598.96 23799.24 138
MVS_Test96.27 17796.79 15094.73 29296.94 32086.63 32596.18 17498.33 20694.94 18696.07 26498.28 13495.25 14699.26 26297.21 6997.90 30798.30 271
XVG-OURS97.12 12896.74 15198.26 7098.99 11197.45 3293.82 30499.05 6595.19 17598.32 11197.70 20495.22 14798.41 35294.27 21098.13 29898.93 195
dcpmvs_297.12 12897.99 5494.51 30299.11 9584.00 35897.75 7799.65 997.38 8099.14 3798.42 11495.16 14899.96 295.52 14199.78 5699.58 40
MCST-MVS96.24 17895.80 19997.56 12398.75 13794.13 15894.66 26998.17 22790.17 30196.21 25896.10 30795.14 14999.43 20994.13 21698.85 25199.13 158
EI-MVSNet-Vis-set97.32 12397.39 11397.11 16397.36 29892.08 22395.34 23597.65 26897.74 5798.29 11698.11 15895.05 15099.68 12497.50 6199.50 13999.56 51
EI-MVSNet-UG-set97.32 12397.40 11297.09 16797.34 30192.01 22595.33 23697.65 26897.74 5798.30 11598.14 15295.04 15199.69 11997.55 5999.52 13099.58 40
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6992.81 19797.55 9298.94 9697.10 8898.85 5798.88 7295.03 15299.67 13097.39 6599.65 8899.26 133
ZD-MVS98.43 18295.94 7998.56 18090.72 29196.66 23397.07 24995.02 15399.74 7791.08 27998.93 242
DELS-MVS96.17 18196.23 17895.99 22997.55 28490.04 25792.38 34198.52 18294.13 21296.55 24197.06 25094.99 15499.58 16395.62 13699.28 19998.37 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-296.59 16396.93 14095.55 25298.88 12387.12 31794.47 27499.30 2694.12 21396.65 23598.41 11594.98 15599.87 2295.81 12799.78 5699.66 30
ab-mvs96.59 16396.59 15896.60 19898.64 15092.21 21498.35 3597.67 26494.45 20296.99 21298.79 7694.96 15699.49 19290.39 30399.07 22898.08 286
MSLP-MVS++96.42 17396.71 15295.57 24997.82 24790.56 25395.71 20798.84 12094.72 19296.71 23097.39 22894.91 15798.10 36795.28 15899.02 23398.05 295
QAPM95.88 19395.57 20896.80 18797.90 23791.84 22998.18 5398.73 14888.41 32096.42 24598.13 15494.73 15899.75 6888.72 32698.94 24098.81 214
RPSCF97.87 7497.51 10798.95 1499.15 8698.43 697.56 9199.06 6196.19 12498.48 9098.70 8694.72 15999.24 26794.37 20699.33 19099.17 150
DU-MVS97.79 8497.60 9898.36 6398.73 13895.78 8495.65 21498.87 11097.57 6798.31 11397.83 19094.69 16099.85 2797.02 7899.71 7599.46 82
Baseline_NR-MVSNet97.72 9097.79 7397.50 13299.56 2193.29 18795.44 22498.86 11398.20 4298.37 10199.24 3294.69 16099.55 17495.98 11699.79 5399.65 33
TEST997.84 24495.23 11593.62 31098.39 19886.81 33893.78 32595.99 30994.68 16299.52 182
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 13095.86 8395.92 19899.04 7197.51 7298.22 12197.81 19494.68 16299.78 4897.14 7399.75 6699.41 100
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 14095.78 8495.66 21299.02 7498.11 4498.31 11397.69 20594.65 16499.85 2797.02 7899.71 7599.48 77
VPNet97.26 12597.49 11096.59 19999.47 3690.58 25196.27 16698.53 18197.77 5498.46 9398.41 11594.59 16599.68 12494.61 19699.29 19899.52 59
train_agg95.46 21294.66 23997.88 10397.84 24495.23 11593.62 31098.39 19887.04 33493.78 32595.99 30994.58 16699.52 18291.76 26998.90 24498.89 203
test_897.81 24895.07 12493.54 31398.38 20087.04 33493.71 32995.96 31294.58 16699.52 182
API-MVS95.09 22995.01 22295.31 26296.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34894.54 16898.37 35785.70 35498.52 28193.52 384
Test By Simon94.51 169
MSDG95.33 21795.13 21695.94 23597.40 29691.85 22891.02 36598.37 20195.30 17196.31 25295.99 30994.51 16998.38 35589.59 31497.65 32297.60 322
TSAR-MVS + GP.96.47 17096.12 18297.49 13597.74 26795.23 11594.15 28896.90 29593.26 23998.04 14496.70 27594.41 17198.89 30994.77 19199.14 21698.37 260
NR-MVSNet97.96 5497.86 6598.26 7098.73 13895.54 9598.14 5498.73 14897.79 5399.42 2097.83 19094.40 17299.78 4895.91 12099.76 5999.46 82
AdaColmapbinary95.11 22794.62 24496.58 20097.33 30394.45 14494.92 25898.08 24093.15 24893.98 32395.53 32594.34 17399.10 28885.69 35598.61 27696.20 363
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3298.43 3298.89 5498.83 7594.30 17499.81 3797.87 4499.91 1899.77 12
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32494.26 17599.81 3794.06 21898.51 28398.47 252
ambc96.56 20398.23 20091.68 23297.88 6998.13 23598.42 9698.56 10094.22 17699.04 29494.05 22099.35 18298.95 189
test20.0396.58 16596.61 15796.48 20798.49 17591.72 23195.68 21197.69 26396.81 9598.27 11797.92 18394.18 17798.71 32690.78 28999.66 8799.00 182
HPM-MVS++copyleft96.99 13496.38 17398.81 2798.64 15097.59 2395.97 19298.20 22195.51 16295.06 29596.53 28494.10 17899.70 11294.29 20999.15 21599.13 158
test_vis3_rt97.04 13196.98 13697.23 15798.44 18195.88 8096.82 13299.67 690.30 29899.27 2999.33 2794.04 17996.03 38897.14 7397.83 30999.78 11
test_fmvs397.38 11797.56 10296.84 18598.63 15492.81 19797.60 8799.61 1390.87 28998.76 7099.66 394.03 18097.90 36999.24 699.68 8399.81 8
PM-MVS97.36 12197.10 12898.14 8298.91 12196.77 4996.20 17398.63 17193.82 22298.54 8398.33 12393.98 18199.05 29395.99 11599.45 15498.61 239
mvsany_test396.21 17995.93 19497.05 16997.40 29694.33 14995.76 20694.20 34189.10 31199.36 2499.60 693.97 18297.85 37095.40 15698.63 27498.99 185
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21697.16 31191.96 22697.74 7998.84 12087.26 33194.36 31298.01 17393.95 18399.67 13090.70 29598.75 26197.35 332
v897.60 10198.06 4796.23 21998.71 14389.44 26797.43 10298.82 13497.29 8498.74 7199.10 4893.86 18499.68 12498.61 2799.94 899.56 51
diffmvspermissive96.04 18696.23 17895.46 25797.35 29988.03 29793.42 31699.08 5794.09 21696.66 23396.93 25993.85 18599.29 25696.01 11498.67 26999.06 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NCCC96.52 16795.99 18998.10 8597.81 24895.68 8995.00 25698.20 22195.39 16895.40 28896.36 29493.81 18699.45 20493.55 23698.42 28799.17 150
TAPA-MVS93.32 1294.93 23494.23 26097.04 17198.18 20794.51 14195.22 24398.73 14881.22 37696.25 25695.95 31393.80 18798.98 30289.89 31098.87 24897.62 320
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4998.04 4898.62 7698.66 8993.75 18899.78 4897.23 6799.84 4099.73 22
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6598.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
test_prior293.33 32094.21 20894.02 32196.25 29893.64 19091.90 26398.96 237
mvsany_test193.47 29093.03 28694.79 28994.05 38292.12 21990.82 36790.01 38285.02 35897.26 18898.28 13493.57 19197.03 37992.51 25695.75 36495.23 375
旧先验197.80 25293.87 16697.75 26097.04 25293.57 19198.68 26898.72 226
v1097.55 10597.97 5596.31 21798.60 15889.64 26397.44 10099.02 7496.60 10198.72 7399.16 4393.48 19399.72 8898.76 2199.92 1599.58 40
v14896.58 16596.97 13795.42 25998.63 15487.57 30795.09 24897.90 25095.91 14298.24 11997.96 17793.42 19499.39 22696.04 11099.52 13099.29 127
V4297.04 13197.16 12696.68 19698.59 16091.05 24196.33 16398.36 20294.60 19797.99 14798.30 12993.32 19599.62 15197.40 6499.53 12599.38 107
new-patchmatchnet95.67 20196.58 15992.94 34197.48 28880.21 37792.96 32598.19 22694.83 18998.82 6198.79 7693.31 19699.51 18695.83 12599.04 23299.12 163
test1297.46 13897.61 27994.07 15997.78 25993.57 33593.31 19699.42 21198.78 25898.89 203
UGNet96.81 14996.56 16197.58 12296.64 32593.84 16897.75 7797.12 28796.47 11293.62 33298.88 7293.22 19899.53 17995.61 13799.69 7999.36 113
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
pmmvs-eth3d96.49 16896.18 18197.42 14398.25 19794.29 15094.77 26598.07 24489.81 30597.97 15198.33 12393.11 19999.08 29095.46 14899.84 4098.89 203
v114496.84 14497.08 13096.13 22698.42 18389.28 27095.41 22898.67 16394.21 20897.97 15198.31 12593.06 20099.65 13898.06 3999.62 9399.45 86
PVSNet_BlendedMVS95.02 23394.93 22595.27 26397.79 25787.40 31294.14 29098.68 16088.94 31594.51 30898.01 17393.04 20199.30 25289.77 31299.49 14299.11 166
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25787.40 31291.43 35398.68 16084.50 36494.51 30894.48 34693.04 20199.30 25289.77 31298.61 27698.02 298
mvs_anonymous95.36 21596.07 18693.21 33396.29 33381.56 37294.60 27197.66 26693.30 23896.95 21698.91 6993.03 20399.38 22996.60 8897.30 33698.69 230
v119296.83 14797.06 13296.15 22598.28 19389.29 26995.36 23298.77 14193.73 22498.11 13398.34 12293.02 20499.67 13098.35 3399.58 10699.50 63
F-COLMAP95.30 21994.38 25798.05 9298.64 15096.04 7595.61 21898.66 16589.00 31493.22 34496.40 29292.90 20599.35 24187.45 34597.53 32698.77 220
WR-MVS96.90 14296.81 14797.16 15998.56 16492.20 21794.33 27798.12 23697.34 8198.20 12297.33 23592.81 20699.75 6894.79 18899.81 4899.54 54
v124096.74 15297.02 13595.91 23698.18 20788.52 28395.39 23098.88 10893.15 24898.46 9398.40 11892.80 20799.71 10498.45 3199.49 14299.49 71
MVS_030496.62 16296.40 17297.28 15197.91 23592.30 21096.47 15489.74 38397.52 7195.38 28998.63 9492.76 20899.81 3799.28 499.93 1199.75 19
MVEpermissive73.61 2286.48 36085.92 36188.18 37596.23 33685.28 34181.78 39375.79 39986.01 34482.53 39591.88 37592.74 20987.47 39871.42 39594.86 37291.78 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DP-MVS Recon95.55 20695.13 21696.80 18798.51 17193.99 16394.60 27198.69 15890.20 30095.78 27796.21 30092.73 21098.98 30290.58 29898.86 25097.42 329
CANet95.86 19495.65 20596.49 20696.41 33190.82 24694.36 27698.41 19594.94 18692.62 35996.73 27492.68 21199.71 10495.12 17399.60 10298.94 191
v192192096.72 15596.96 13995.99 22998.21 20188.79 28095.42 22698.79 13693.22 24198.19 12698.26 13992.68 21199.70 11298.34 3499.55 11899.49 71
BH-untuned94.69 24694.75 23794.52 30197.95 23487.53 30894.07 29397.01 29193.99 21897.10 20095.65 32092.65 21398.95 30787.60 34196.74 34797.09 335
LF4IMVS96.07 18495.63 20697.36 14798.19 20495.55 9495.44 22498.82 13492.29 27095.70 28196.55 28292.63 21498.69 32891.75 27099.33 19097.85 309
v2v48296.78 15197.06 13295.95 23398.57 16288.77 28195.36 23298.26 21295.18 17697.85 16498.23 14392.58 21599.63 14697.80 4899.69 7999.45 86
EI-MVSNet96.63 16196.93 14095.74 24297.26 30688.13 29495.29 24097.65 26896.99 8997.94 15498.19 14892.55 21699.58 16396.91 8199.56 11299.50 63
IterMVS-LS96.92 14097.29 11995.79 24098.51 17188.13 29495.10 24798.66 16596.99 8998.46 9398.68 8892.55 21699.74 7796.91 8199.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS97.37 11997.25 12197.74 11198.69 14794.50 14397.04 12295.61 32398.59 2798.51 8598.72 8392.54 21899.58 16396.02 11299.49 14299.12 163
MVS90.02 33589.20 34292.47 35094.71 37186.90 32195.86 20196.74 30264.72 39590.62 37292.77 36492.54 21898.39 35479.30 38395.56 36692.12 388
test_vis1_rt94.03 27593.65 27595.17 26895.76 35493.42 18393.97 29998.33 20684.68 36193.17 34595.89 31592.53 22094.79 39093.50 23794.97 37097.31 333
v14419296.69 15896.90 14496.03 22898.25 19788.92 27595.49 22298.77 14193.05 25098.09 13698.29 13392.51 22199.70 11298.11 3699.56 11299.47 80
原ACMM196.58 20098.16 21292.12 21998.15 23385.90 34793.49 33796.43 28992.47 22299.38 22987.66 34098.62 27598.23 278
VNet96.84 14496.83 14696.88 18198.06 22192.02 22496.35 16297.57 27497.70 6297.88 15997.80 19592.40 22399.54 17794.73 19398.96 23799.08 171
114514_t93.96 27693.22 28396.19 22299.06 10290.97 24495.99 19098.94 9673.88 39393.43 34096.93 25992.38 22499.37 23489.09 32199.28 19998.25 277
CPTT-MVS96.69 15896.08 18598.49 5298.89 12296.64 5597.25 10898.77 14192.89 25896.01 26797.13 24592.23 22599.67 13092.24 25899.34 18599.17 150
MSP-MVS97.45 11296.92 14299.03 599.26 6097.70 1897.66 8398.89 10295.65 15498.51 8596.46 28892.15 22699.81 3795.14 17098.58 27999.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MAR-MVS94.21 26793.03 28697.76 11096.94 32097.44 3396.97 12597.15 28587.89 32992.00 36492.73 36692.14 22799.12 28383.92 36997.51 32796.73 352
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu95.95 19095.80 19996.42 21199.28 5890.62 25095.31 23899.08 5788.40 32196.97 21598.17 15192.11 22899.78 4893.64 23499.21 20798.86 210
BH-RMVSNet94.56 25494.44 25694.91 28097.57 28187.44 31193.78 30796.26 30893.69 22696.41 24696.50 28792.10 22999.00 29885.96 35297.71 31698.31 269
新几何197.25 15598.29 19194.70 13397.73 26177.98 38794.83 30296.67 27792.08 23099.45 20488.17 33598.65 27397.61 321
testdata95.70 24598.16 21290.58 25197.72 26280.38 37995.62 28297.02 25392.06 23198.98 30289.06 32398.52 28197.54 324
YYNet194.73 24194.84 23194.41 30697.47 29285.09 34590.29 37295.85 31792.52 26497.53 17397.76 19691.97 23299.18 27393.31 24296.86 34198.95 189
Anonymous2023120695.27 22095.06 22195.88 23798.72 14089.37 26895.70 20897.85 25388.00 32796.98 21497.62 20991.95 23399.34 24389.21 31999.53 12598.94 191
MS-PatchMatch94.83 23894.91 22794.57 29996.81 32387.10 31894.23 28397.34 27988.74 31897.14 19697.11 24791.94 23498.23 36392.99 24997.92 30598.37 260
MDA-MVSNet_test_wron94.73 24194.83 23394.42 30597.48 28885.15 34390.28 37395.87 31692.52 26497.48 17997.76 19691.92 23599.17 27793.32 24196.80 34698.94 191
HQP_MVS96.66 16096.33 17697.68 11798.70 14594.29 15096.50 15298.75 14596.36 11596.16 26196.77 27191.91 23699.46 20092.59 25499.20 20899.28 128
plane_prior698.38 18594.37 14791.91 236
MVP-Stereo95.69 19995.28 21196.92 17898.15 21493.03 19395.64 21798.20 22190.39 29796.63 23697.73 20291.63 23899.10 28891.84 26697.31 33598.63 236
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
PatchMatch-RL94.61 25293.81 27397.02 17398.19 20495.72 8693.66 30997.23 28188.17 32594.94 30095.62 32291.43 23998.57 33987.36 34697.68 31996.76 351
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24298.48 17788.76 28292.84 32697.25 28096.00 13597.59 17197.95 17991.38 24099.46 20093.16 24796.35 35498.99 185
SSC-MVS95.92 19197.03 13492.58 34799.28 5878.39 38296.68 14695.12 33298.90 1999.11 3998.66 8991.36 24199.68 12495.00 17999.16 21499.67 28
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9697.71 6198.85 5799.10 4891.35 24299.83 3398.47 3099.90 2499.64 35
PAPR92.22 31191.27 31895.07 27295.73 35688.81 27991.97 34797.87 25285.80 34890.91 37192.73 36691.16 24398.33 35979.48 38295.76 36398.08 286
131492.38 30892.30 30392.64 34695.42 36385.15 34395.86 20196.97 29385.40 35390.62 37293.06 36091.12 24497.80 37286.74 34995.49 36794.97 377
WB-MVS95.50 20796.62 15692.11 35599.21 7677.26 39096.12 18095.40 32998.62 2698.84 5998.26 13991.08 24599.50 18793.37 23898.70 26799.58 40
ppachtmachnet_test94.49 25994.84 23193.46 32796.16 34082.10 36890.59 36997.48 27690.53 29597.01 21197.59 21191.01 24699.36 23793.97 22499.18 21298.94 191
PLCcopyleft91.02 1694.05 27492.90 28997.51 12898.00 22995.12 12394.25 28198.25 21386.17 34391.48 36995.25 32991.01 24699.19 27285.02 36496.69 34898.22 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test22298.17 21093.24 19092.74 33197.61 27375.17 39194.65 30596.69 27690.96 24898.66 27197.66 317
CL-MVSNet_self_test95.04 23094.79 23695.82 23997.51 28689.79 26191.14 36296.82 29893.05 25096.72 22996.40 29290.82 24999.16 27891.95 26298.66 27198.50 250
USDC94.56 25494.57 25094.55 30097.78 26086.43 32892.75 32998.65 17085.96 34596.91 21997.93 18290.82 24998.74 32290.71 29499.59 10498.47 252
PCF-MVS89.43 1892.12 31490.64 33096.57 20297.80 25293.48 18189.88 37998.45 18874.46 39296.04 26695.68 31990.71 25199.31 24973.73 39199.01 23596.91 342
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PAPM_NR94.61 25294.17 26495.96 23198.36 18791.23 23995.93 19797.95 24792.98 25393.42 34194.43 34790.53 25298.38 35587.60 34196.29 35598.27 275
our_test_394.20 26994.58 24893.07 33596.16 34081.20 37490.42 37196.84 29690.72 29197.14 19697.13 24590.47 25399.11 28694.04 22198.25 29398.91 199
MM97.62 12093.30 18696.39 15692.61 36097.90 5296.76 22898.64 9390.46 25499.81 3799.16 999.94 899.76 17
test_f95.82 19695.88 19795.66 24697.61 27993.21 19195.61 21898.17 22786.98 33698.42 9699.47 1190.46 25494.74 39197.71 5398.45 28599.03 178
OpenMVS_ROBcopyleft91.80 1493.64 28693.05 28495.42 25997.31 30591.21 24095.08 25096.68 30581.56 37396.88 22196.41 29090.44 25699.25 26485.39 36097.67 32095.80 367
HQP2-MVS90.33 257
N_pmnet95.18 22494.23 26098.06 8897.85 23996.55 5892.49 33591.63 36789.34 30898.09 13697.41 22390.33 25799.06 29291.58 27199.31 19598.56 242
HQP-MVS95.17 22694.58 24896.92 17897.85 23992.47 20794.26 27898.43 19193.18 24492.86 35095.08 33190.33 25799.23 26990.51 30098.74 26299.05 177
CNLPA95.04 23094.47 25396.75 19197.81 24895.25 11494.12 29297.89 25194.41 20394.57 30695.69 31890.30 26098.35 35886.72 35098.76 26096.64 353
PMMVS92.39 30791.08 32196.30 21893.12 38992.81 19790.58 37095.96 31479.17 38491.85 36692.27 37190.29 26198.66 33389.85 31196.68 34997.43 328
TR-MVS92.54 30692.20 30593.57 32596.49 32986.66 32493.51 31494.73 33589.96 30394.95 29993.87 35190.24 26298.61 33681.18 37994.88 37195.45 373
TAMVS95.49 20894.94 22397.16 15998.31 18993.41 18495.07 25196.82 29891.09 28797.51 17597.82 19389.96 26399.42 21188.42 33199.44 15598.64 234
DPM-MVS93.68 28392.77 29696.42 21197.91 23592.54 20391.17 36197.47 27784.99 35993.08 34794.74 33989.90 26499.00 29887.54 34398.09 30097.72 315
PMMVS293.66 28494.07 26692.45 35197.57 28180.67 37686.46 38796.00 31293.99 21897.10 20097.38 23089.90 26497.82 37188.76 32599.47 14898.86 210
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26699.90 1498.64 2699.90 2499.82 6
bld_raw_dy_0_6497.69 9297.61 9797.91 10099.54 2694.27 15498.06 5998.60 17396.60 10198.79 6498.95 6389.62 26799.84 3098.43 3299.91 1899.62 36
BH-w/o92.14 31391.94 30792.73 34597.13 31385.30 33992.46 33695.64 32089.33 30994.21 31492.74 36589.60 26898.24 36281.68 37794.66 37394.66 378
Anonymous2024052197.07 13097.51 10795.76 24199.35 5288.18 29197.78 7398.40 19797.11 8798.34 10799.04 5389.58 26999.79 4598.09 3799.93 1199.30 121
UnsupCasMVSNet_bld94.72 24594.26 25996.08 22798.62 15690.54 25493.38 31898.05 24690.30 29897.02 21096.80 27089.54 27099.16 27888.44 33096.18 35698.56 242
MG-MVS94.08 27394.00 26894.32 30997.09 31485.89 33393.19 32395.96 31492.52 26494.93 30197.51 21789.54 27098.77 31987.52 34497.71 31698.31 269
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20898.48 17791.52 23495.31 23898.45 18895.76 14997.48 17997.54 21489.53 27298.69 32894.43 20294.61 37499.13 158
GBi-Net96.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
test196.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
FMVSNet296.72 15596.67 15596.87 18297.96 23191.88 22797.15 11498.06 24595.59 15898.50 8798.62 9589.51 27399.65 13894.99 18199.60 10299.07 173
pmmvs494.82 23994.19 26396.70 19497.42 29592.75 20192.09 34696.76 30086.80 33995.73 28097.22 24189.28 27698.89 30993.28 24399.14 21698.46 254
cascas91.89 31991.35 31693.51 32694.27 37785.60 33588.86 38498.61 17279.32 38392.16 36391.44 38089.22 27798.12 36690.80 28897.47 33096.82 348
DSMNet-mixed92.19 31291.83 30993.25 33196.18 33983.68 36196.27 16693.68 34576.97 39092.54 36099.18 3989.20 27898.55 34283.88 37098.60 27897.51 325
c3_l95.20 22395.32 21094.83 28796.19 33886.43 32891.83 34998.35 20593.47 23297.36 18597.26 23988.69 27999.28 25895.41 15599.36 17798.78 217
test_fmvs296.38 17496.45 16996.16 22497.85 23991.30 23896.81 13399.45 1889.24 31098.49 8899.38 1888.68 28097.62 37498.83 1899.32 19299.57 47
CANet_DTU94.65 25094.21 26295.96 23195.90 34889.68 26293.92 30197.83 25793.19 24390.12 37895.64 32188.52 28199.57 16993.27 24499.47 14898.62 237
EPP-MVSNet96.84 14496.58 15997.65 11899.18 8193.78 17198.68 1496.34 30797.91 5197.30 18698.06 16788.46 28299.85 2793.85 22799.40 17199.32 116
SixPastTwentyTwo97.49 10997.57 10197.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28399.89 1898.01 4099.76 5999.54 54
miper_ehance_all_eth94.69 24694.70 23894.64 29395.77 35386.22 33091.32 35898.24 21591.67 27897.05 20796.65 27888.39 28499.22 27194.88 18398.34 28998.49 251
IS-MVSNet96.93 13996.68 15497.70 11499.25 6394.00 16298.57 2096.74 30298.36 3498.14 13197.98 17688.23 28599.71 10493.10 24899.72 7299.38 107
jason94.39 26294.04 26795.41 26198.29 19187.85 30292.74 33196.75 30185.38 35495.29 29096.15 30288.21 28699.65 13894.24 21199.34 18598.74 223
jason: jason.
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 33997.63 27296.99 8998.36 10498.54 10287.94 28799.75 6897.07 7799.08 22699.27 132
SCA93.38 29393.52 27892.96 34096.24 33481.40 37393.24 32194.00 34291.58 28194.57 30696.97 25687.94 28799.42 21189.47 31697.66 32198.06 292
sss94.22 26593.72 27495.74 24297.71 26989.95 25993.84 30396.98 29288.38 32293.75 32895.74 31787.94 28798.89 30991.02 28198.10 29998.37 260
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34097.47 27795.49 16398.06 14198.49 10687.94 28799.58 16396.02 11299.02 23399.23 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CHOSEN 1792x268894.10 27193.41 28096.18 22399.16 8390.04 25792.15 34398.68 16079.90 38196.22 25797.83 19087.92 29199.42 21189.18 32099.65 8899.08 171
VDDNet96.98 13796.84 14597.41 14499.40 4693.26 18997.94 6595.31 33099.26 798.39 10099.18 3987.85 29299.62 15195.13 17299.09 22599.35 115
pmmvs594.63 25194.34 25895.50 25497.63 27888.34 28794.02 29497.13 28687.15 33395.22 29297.15 24487.50 29399.27 26193.99 22299.26 20298.88 207
D2MVS95.18 22495.17 21595.21 26597.76 26287.76 30594.15 28897.94 24889.77 30696.99 21297.68 20687.45 29499.14 28095.03 17899.81 4898.74 223
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16584.86 34895.91 19999.71 492.72 26197.67 16998.90 7087.44 29598.73 32397.96 4198.85 25197.96 301
PVSNet86.72 1991.10 32790.97 32491.49 35997.56 28378.04 38487.17 38694.60 33784.65 36292.34 36192.20 37287.37 29698.47 34985.17 36397.69 31897.96 301
Anonymous20240521196.34 17595.98 19097.43 14198.25 19793.85 16796.74 13994.41 33997.72 5998.37 10198.03 17087.15 29799.53 17994.06 21899.07 22898.92 198
MVSFormer96.14 18296.36 17495.49 25597.68 27187.81 30398.67 1599.02 7496.50 10994.48 31096.15 30286.90 29899.92 598.73 2299.13 21898.74 223
lupinMVS93.77 27993.28 28195.24 26497.68 27187.81 30392.12 34496.05 31084.52 36394.48 31095.06 33386.90 29899.63 14693.62 23599.13 21898.27 275
eth_miper_zixun_eth94.89 23694.93 22594.75 29195.99 34686.12 33191.35 35598.49 18593.40 23397.12 19897.25 24086.87 30099.35 24195.08 17598.82 25598.78 217
test_vis1_n95.67 20195.89 19695.03 27498.18 20789.89 26096.94 12699.28 2888.25 32498.20 12298.92 6686.69 30197.19 37797.70 5598.82 25598.00 300
WTY-MVS93.55 28893.00 28895.19 26697.81 24887.86 30093.89 30296.00 31289.02 31394.07 31995.44 32886.27 30299.33 24587.69 33996.82 34498.39 258
CDS-MVSNet94.88 23794.12 26597.14 16197.64 27793.57 17893.96 30097.06 29090.05 30296.30 25396.55 28286.10 30399.47 19790.10 30799.31 19598.40 256
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
1112_ss94.12 27093.42 27996.23 21998.59 16090.85 24594.24 28298.85 11785.49 35092.97 34894.94 33586.01 30499.64 14291.78 26897.92 30598.20 281
dmvs_testset87.30 35786.99 35788.24 37496.71 32477.48 38794.68 26886.81 39292.64 26389.61 38187.01 39385.91 30593.12 39461.04 39888.49 39094.13 381
miper_enhance_ethall93.14 29892.78 29594.20 31393.65 38585.29 34089.97 37597.85 25385.05 35696.15 26394.56 34285.74 30699.14 28093.74 23098.34 28998.17 284
new_pmnet92.34 30991.69 31394.32 30996.23 33689.16 27292.27 34292.88 35484.39 36695.29 29096.35 29585.66 30796.74 38684.53 36797.56 32497.05 336
Syy-MVS92.09 31591.80 31192.93 34295.19 36582.65 36492.46 33691.35 36890.67 29391.76 36787.61 39185.64 30898.50 34694.73 19396.84 34297.65 318
alignmvs96.01 18895.52 20997.50 13297.77 26194.71 13196.07 18396.84 29697.48 7396.78 22794.28 34985.50 30999.40 22296.22 10298.73 26598.40 256
lessismore_v097.05 16999.36 5192.12 21984.07 39598.77 6998.98 5885.36 31099.74 7797.34 6699.37 17499.30 121
HY-MVS91.43 1592.58 30591.81 31094.90 28296.49 32988.87 27797.31 10594.62 33685.92 34690.50 37596.84 26585.05 31199.40 22283.77 37295.78 36296.43 359
EPNet93.72 28192.62 30097.03 17287.61 40192.25 21296.27 16691.28 37096.74 9787.65 38897.39 22885.00 31299.64 14292.14 25999.48 14699.20 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance94.81 24094.80 23594.85 28596.16 34086.45 32791.14 36298.20 22193.49 23197.03 20997.37 23284.97 31399.26 26295.28 15899.56 11298.83 212
Test_1112_low_res93.53 28992.86 29095.54 25398.60 15888.86 27892.75 32998.69 15882.66 37092.65 35696.92 26184.75 31499.56 17090.94 28397.76 31298.19 282
MVS-HIRNet88.40 35190.20 33582.99 37897.01 31660.04 40393.11 32485.61 39484.45 36588.72 38599.09 5084.72 31598.23 36382.52 37696.59 35190.69 393
K. test v396.44 17196.28 17796.95 17599.41 4391.53 23397.65 8490.31 37998.89 2098.93 5099.36 2184.57 31699.92 597.81 4799.56 11299.39 105
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20186.83 32395.61 21899.26 2990.45 29698.17 12798.96 6184.43 31798.31 36096.74 8499.17 21397.90 305
h-mvs3396.29 17695.63 20698.26 7098.50 17496.11 7396.90 12897.09 28896.58 10497.21 19198.19 14884.14 31899.78 4895.89 12196.17 35798.89 203
hse-mvs295.77 19795.09 21897.79 10897.84 24495.51 9795.66 21295.43 32896.58 10497.21 19196.16 30184.14 31899.54 17795.89 12196.92 33898.32 267
DIV-MVS_self_test94.73 24194.64 24195.01 27595.86 34987.00 31991.33 35698.08 24093.34 23697.10 20097.34 23484.02 32099.31 24995.15 16999.55 11898.72 226
cl____94.73 24194.64 24195.01 27595.85 35087.00 31991.33 35698.08 24093.34 23697.10 20097.33 23584.01 32199.30 25295.14 17099.56 11298.71 229
Vis-MVSNet (Re-imp)95.11 22794.85 23095.87 23899.12 9489.17 27197.54 9794.92 33496.50 10996.58 23797.27 23883.64 32299.48 19588.42 33199.67 8598.97 187
FA-MVS(test-final)94.91 23594.89 22894.99 27797.51 28688.11 29698.27 4495.20 33192.40 26996.68 23198.60 9683.44 32399.28 25893.34 24098.53 28097.59 323
dmvs_re92.08 31691.27 31894.51 30297.16 31192.79 20095.65 21492.64 35994.11 21492.74 35390.98 38583.41 32494.44 39380.72 38094.07 37796.29 361
PVSNet_081.89 2184.49 36183.21 36488.34 37395.76 35474.97 39783.49 39092.70 35878.47 38687.94 38786.90 39483.38 32596.63 38773.44 39266.86 39893.40 385
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21489.13 27496.81 13399.43 2086.97 33797.21 19198.92 6683.00 32697.13 37898.09 3798.94 24098.72 226
CMPMVSbinary73.10 2392.74 30391.39 31596.77 19093.57 38794.67 13494.21 28597.67 26480.36 38093.61 33396.60 28082.85 32797.35 37684.86 36598.78 25898.29 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_fmvs194.51 25894.60 24594.26 31295.91 34787.92 29895.35 23499.02 7486.56 34196.79 22398.52 10382.64 32897.00 38197.87 4498.71 26697.88 307
EU-MVSNet94.25 26494.47 25393.60 32498.14 21682.60 36697.24 11092.72 35785.08 35598.48 9098.94 6482.59 32998.76 32197.47 6399.53 12599.44 96
baseline193.14 29892.64 29994.62 29597.34 30187.20 31696.67 14893.02 35294.71 19396.51 24295.83 31681.64 33098.60 33890.00 30988.06 39198.07 288
test111194.53 25794.81 23493.72 32199.06 10281.94 37198.31 3983.87 39696.37 11498.49 8899.17 4281.49 33199.73 8396.64 8699.86 3199.49 71
CVMVSNet92.33 31092.79 29390.95 36297.26 30675.84 39495.29 24092.33 36281.86 37196.27 25498.19 14881.44 33298.46 35094.23 21298.29 29298.55 244
EPNet_dtu91.39 32590.75 32893.31 32990.48 39882.61 36594.80 26292.88 35493.39 23481.74 39694.90 33881.36 33399.11 28688.28 33398.87 24898.21 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ECVR-MVScopyleft94.37 26394.48 25294.05 31798.95 11383.10 36298.31 3982.48 39796.20 12298.23 12099.16 4381.18 33499.66 13695.95 11799.83 4399.38 107
test_yl94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
DCV-MVSNet94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
MIMVSNet93.42 29192.86 29095.10 27198.17 21088.19 29098.13 5593.69 34392.07 27195.04 29898.21 14780.95 33799.03 29781.42 37898.06 30198.07 288
PAPM87.64 35685.84 36293.04 33696.54 32784.99 34688.42 38595.57 32479.52 38283.82 39393.05 36180.57 33898.41 35262.29 39792.79 38195.71 368
HyFIR lowres test93.72 28192.65 29896.91 18098.93 11791.81 23091.23 36098.52 18282.69 36996.46 24496.52 28680.38 33999.90 1490.36 30498.79 25799.03 178
FMVSNet395.26 22194.94 22396.22 22196.53 32890.06 25695.99 19097.66 26694.11 21497.99 14797.91 18480.22 34099.63 14694.60 19799.44 15598.96 188
RPMNet94.68 24894.60 24594.90 28295.44 36188.15 29296.18 17498.86 11397.43 7494.10 31798.49 10679.40 34199.76 6295.69 13095.81 35996.81 349
LFMVS95.32 21894.88 22996.62 19798.03 22291.47 23597.65 8490.72 37699.11 997.89 15898.31 12579.20 34299.48 19593.91 22699.12 22198.93 195
ADS-MVSNet291.47 32490.51 33294.36 30795.51 35985.63 33495.05 25395.70 31883.46 36792.69 35496.84 26579.15 34399.41 22085.66 35690.52 38598.04 296
ADS-MVSNet90.95 33090.26 33493.04 33695.51 35982.37 36795.05 25393.41 34983.46 36792.69 35496.84 26579.15 34398.70 32785.66 35690.52 38598.04 296
MDTV_nov1_ep13_2view57.28 40494.89 25980.59 37894.02 32178.66 34585.50 35897.82 311
cl2293.25 29692.84 29294.46 30494.30 37686.00 33291.09 36496.64 30690.74 29095.79 27596.31 29678.24 34698.77 31994.15 21598.34 28998.62 237
PatchmatchNetpermissive91.98 31891.87 30892.30 35394.60 37379.71 37895.12 24693.59 34889.52 30793.61 33397.02 25377.94 34799.18 27390.84 28694.57 37698.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs177.80 34898.06 292
CR-MVSNet93.29 29592.79 29394.78 29095.44 36188.15 29296.18 17497.20 28284.94 36094.10 31798.57 9877.67 34999.39 22695.17 16595.81 35996.81 349
Patchmtry95.03 23294.59 24796.33 21594.83 37090.82 24696.38 15997.20 28296.59 10397.49 17798.57 9877.67 34999.38 22992.95 25199.62 9398.80 215
tpmrst90.31 33390.61 33189.41 36994.06 38172.37 40095.06 25293.69 34388.01 32692.32 36296.86 26377.45 35198.82 31491.04 28087.01 39297.04 337
sam_mvs77.38 352
patchmatchnet-post96.84 26577.36 35399.42 211
Patchmatch-RL test94.66 24994.49 25195.19 26698.54 16788.91 27692.57 33398.74 14791.46 28298.32 11197.75 19977.31 35498.81 31696.06 10799.61 9997.85 309
tpmvs90.79 33190.87 32590.57 36592.75 39376.30 39295.79 20593.64 34791.04 28891.91 36596.26 29777.19 35598.86 31389.38 31889.85 38896.56 356
test_post10.87 40076.83 35699.07 291
Patchmatch-test93.60 28793.25 28294.63 29496.14 34387.47 30996.04 18594.50 33893.57 22996.47 24396.97 25676.50 35798.61 33690.67 29698.41 28897.81 313
MDTV_nov1_ep1391.28 31794.31 37573.51 39894.80 26293.16 35186.75 34093.45 33997.40 22476.37 35898.55 34288.85 32496.43 352
EMVS89.06 34689.22 34088.61 37293.00 39077.34 38882.91 39290.92 37394.64 19692.63 35891.81 37676.30 35997.02 38083.83 37196.90 34091.48 391
test_post194.98 25710.37 40176.21 36099.04 29489.47 316
GA-MVS92.83 30292.15 30694.87 28496.97 31787.27 31590.03 37496.12 30991.83 27794.05 32094.57 34176.01 36198.97 30692.46 25797.34 33498.36 265
PatchT93.75 28093.57 27794.29 31195.05 36887.32 31496.05 18492.98 35397.54 7094.25 31398.72 8375.79 36299.24 26795.92 11995.81 35996.32 360
E-PMN89.52 34489.78 33788.73 37193.14 38877.61 38683.26 39192.02 36394.82 19093.71 32993.11 35575.31 36396.81 38385.81 35396.81 34591.77 390
DeepMVS_CXcopyleft77.17 37990.94 39785.28 34174.08 40252.51 39680.87 39788.03 39075.25 36470.63 39959.23 39984.94 39475.62 394
AUN-MVS93.95 27892.69 29797.74 11197.80 25295.38 10595.57 22195.46 32791.26 28592.64 35796.10 30774.67 36599.55 17493.72 23296.97 33798.30 271
CHOSEN 280x42089.98 33789.19 34392.37 35295.60 35881.13 37586.22 38897.09 28881.44 37587.44 38993.15 35473.99 36699.47 19788.69 32799.07 22896.52 357
thres20091.00 32990.42 33392.77 34497.47 29283.98 35994.01 29591.18 37295.12 17995.44 28691.21 38273.93 36799.31 24977.76 38897.63 32395.01 376
test-LLR89.97 33889.90 33690.16 36694.24 37874.98 39589.89 37689.06 38492.02 27289.97 37990.77 38673.92 36898.57 33991.88 26497.36 33296.92 340
test0.0.03 190.11 33489.21 34192.83 34393.89 38386.87 32291.74 35088.74 38692.02 27294.71 30491.14 38373.92 36894.48 39283.75 37392.94 38097.16 334
tpm cat188.01 35487.33 35590.05 36894.48 37476.28 39394.47 27494.35 34073.84 39489.26 38395.61 32373.64 37098.30 36184.13 36886.20 39395.57 372
tfpn200view991.55 32391.00 32293.21 33398.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31395.85 365
thres40091.68 32291.00 32293.71 32298.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31397.36 330
test_method66.88 36366.13 36669.11 38062.68 40225.73 40649.76 39496.04 31114.32 39864.27 39991.69 37873.45 37388.05 39776.06 39066.94 39793.54 383
thres100view90091.76 32191.26 32093.26 33098.21 20184.50 35296.39 15690.39 37796.87 9396.33 24993.08 35973.44 37499.42 21178.85 38597.74 31395.85 365
thres600view792.03 31791.43 31493.82 31998.19 20484.61 35196.27 16690.39 37796.81 9596.37 24893.11 35573.44 37499.49 19280.32 38197.95 30497.36 330
MVSTER94.21 26793.93 27195.05 27395.83 35186.46 32695.18 24597.65 26892.41 26897.94 15498.00 17572.39 37699.58 16396.36 9799.56 11299.12 163
JIA-IIPM91.79 32090.69 32995.11 26993.80 38490.98 24394.16 28791.78 36696.38 11390.30 37799.30 2872.02 37798.90 30888.28 33390.17 38795.45 373
tpm91.08 32890.85 32691.75 35895.33 36478.09 38395.03 25591.27 37188.75 31793.53 33697.40 22471.24 37899.30 25291.25 27793.87 37897.87 308
baseline289.65 34388.44 34993.25 33195.62 35782.71 36393.82 30485.94 39388.89 31687.35 39092.54 36871.23 37999.33 24586.01 35194.60 37597.72 315
CostFormer89.75 34189.25 33991.26 36194.69 37278.00 38595.32 23791.98 36481.50 37490.55 37496.96 25871.06 38098.89 30988.59 32992.63 38296.87 343
FPMVS89.92 33988.63 34793.82 31998.37 18696.94 4591.58 35193.34 35088.00 32790.32 37697.10 24870.87 38191.13 39671.91 39496.16 35893.39 386
EPMVS89.26 34588.55 34891.39 36092.36 39479.11 38195.65 21479.86 39888.60 31993.12 34696.53 28470.73 38298.10 36790.75 29089.32 38996.98 338
FE-MVS92.95 30092.22 30495.11 26997.21 30988.33 28898.54 2393.66 34689.91 30496.21 25898.14 15270.33 38399.50 18787.79 33798.24 29497.51 325
tmp_tt57.23 36462.50 36741.44 38134.77 40349.21 40583.93 38960.22 40515.31 39771.11 39879.37 39670.09 38444.86 40064.76 39682.93 39630.25 396
ET-MVSNet_ETH3D91.12 32689.67 33895.47 25696.41 33189.15 27391.54 35290.23 38089.07 31286.78 39292.84 36369.39 38599.44 20794.16 21496.61 35097.82 311
dp88.08 35388.05 35188.16 37692.85 39168.81 40294.17 28692.88 35485.47 35191.38 37096.14 30468.87 38698.81 31686.88 34883.80 39596.87 343
iter_conf_final94.54 25693.91 27296.43 20997.23 30890.41 25596.81 13398.10 23793.87 22196.80 22297.89 18568.02 38799.72 8896.73 8599.77 5899.18 149
tpm288.47 35087.69 35490.79 36394.98 36977.34 38895.09 24891.83 36577.51 38989.40 38296.41 29067.83 38898.73 32383.58 37492.60 38396.29 361
pmmvs390.00 33688.90 34693.32 32894.20 38085.34 33891.25 35992.56 36178.59 38593.82 32495.17 33067.36 38998.69 32889.08 32298.03 30295.92 364
thisisatest051590.43 33289.18 34494.17 31597.07 31585.44 33789.75 38087.58 38888.28 32393.69 33191.72 37765.27 39099.58 16390.59 29798.67 26997.50 327
tttt051793.31 29492.56 30195.57 24998.71 14387.86 30097.44 10087.17 39095.79 14897.47 18196.84 26564.12 39199.81 3796.20 10399.32 19299.02 181
thisisatest053092.71 30491.76 31295.56 25198.42 18388.23 28996.03 18687.35 38994.04 21796.56 23995.47 32664.03 39299.77 5794.78 19099.11 22298.68 233
iter_conf0593.65 28593.05 28495.46 25796.13 34487.45 31095.95 19698.22 21792.66 26297.04 20897.89 18563.52 39399.72 8896.19 10499.82 4799.21 141
FMVSNet593.39 29292.35 30296.50 20595.83 35190.81 24897.31 10598.27 21192.74 26096.27 25498.28 13462.23 39499.67 13090.86 28599.36 17799.03 178
IB-MVS85.98 2088.63 34986.95 35993.68 32395.12 36784.82 35090.85 36690.17 38187.55 33088.48 38691.34 38158.01 39599.59 16187.24 34793.80 37996.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
gg-mvs-nofinetune88.28 35286.96 35892.23 35492.84 39284.44 35398.19 5274.60 40099.08 1087.01 39199.47 1156.93 39698.23 36378.91 38495.61 36594.01 382
KD-MVS_2432*160088.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
miper_refine_blended88.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
GG-mvs-BLEND90.60 36491.00 39684.21 35798.23 4672.63 40382.76 39484.11 39556.14 39996.79 38472.20 39392.09 38490.78 392
TESTMET0.1,187.20 35886.57 36089.07 37093.62 38672.84 39989.89 37687.01 39185.46 35289.12 38490.20 38856.00 40097.72 37390.91 28496.92 33896.64 353
test250689.86 34089.16 34591.97 35698.95 11376.83 39198.54 2361.07 40496.20 12297.07 20699.16 4355.19 40199.69 11996.43 9599.83 4399.38 107
test-mter87.92 35587.17 35690.16 36694.24 37874.98 39589.89 37689.06 38486.44 34289.97 37990.77 38654.96 40298.57 33991.88 26497.36 33296.92 340
myMVS_eth3d87.16 35985.61 36391.82 35795.19 36579.32 37992.46 33691.35 36890.67 29391.76 36787.61 39141.96 40398.50 34682.66 37596.84 34297.65 318
testing389.72 34288.26 35094.10 31697.66 27584.30 35694.80 26288.25 38794.66 19495.07 29492.51 36941.15 40499.43 20991.81 26798.44 28698.55 244
test12312.59 36615.49 3693.87 3826.07 4042.55 40790.75 3682.59 4072.52 4005.20 40213.02 3994.96 4051.85 4025.20 4009.09 3997.23 397
testmvs12.33 36715.23 3703.64 3835.77 4052.23 40888.99 3833.62 4062.30 4015.29 40113.09 3984.52 4061.95 4015.16 4018.32 4006.75 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.91 36910.55 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.94 3350.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS79.32 37985.41 359
FOURS199.59 1898.20 799.03 799.25 3098.96 1898.87 56
MSC_two_6792asdad98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
No_MVS98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
eth-test20.00 406
eth-test0.00 406
IU-MVS99.22 6995.40 10398.14 23485.77 34998.36 10495.23 16299.51 13599.49 71
save fliter98.48 17794.71 13194.53 27398.41 19595.02 184
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10299.75 6895.48 14599.52 13099.53 57
GSMVS98.06 292
test_part299.03 10896.07 7498.08 138
MTGPAbinary98.73 148
MTMP96.55 15074.60 400
gm-plane-assit91.79 39571.40 40181.67 37290.11 38998.99 30084.86 365
test9_res91.29 27498.89 24799.00 182
agg_prior290.34 30598.90 24499.10 170
agg_prior97.80 25294.96 12698.36 20293.49 33799.53 179
test_prior495.38 10593.61 312
test_prior97.46 13897.79 25794.26 15598.42 19499.34 24398.79 216
旧先验293.35 31977.95 38895.77 27998.67 33290.74 293
新几何293.43 315
无先验93.20 32297.91 24980.78 37799.40 22287.71 33897.94 303
原ACMM292.82 327
testdata299.46 20087.84 336
testdata192.77 32893.78 223
plane_prior798.70 14594.67 134
plane_prior598.75 14599.46 20092.59 25499.20 20899.28 128
plane_prior496.77 271
plane_prior394.51 14195.29 17296.16 261
plane_prior296.50 15296.36 115
plane_prior198.49 175
plane_prior94.29 15095.42 22694.31 20798.93 242
n20.00 408
nn0.00 408
door-mid98.17 227
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
HQP-NCC97.85 23994.26 27893.18 24492.86 350
ACMP_Plane97.85 23994.26 27893.18 24492.86 350
BP-MVS90.51 300
HQP4-MVS92.87 34999.23 26999.06 175
HQP3-MVS98.43 19198.74 262
NP-MVS98.14 21693.72 17295.08 331
ACMMP++_ref99.52 130
ACMMP++99.55 118