This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15374.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 305
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 155
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 201
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
tt080576.12 8478.43 6869.20 20181.32 12541.37 30476.72 11477.64 18263.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12872.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 233
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28374.47 14871.70 23272.33 3585.50 5093.65 377.98 2176.88 20054.60 21491.64 8689.08 32
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 150
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 156
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 175
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8472.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 177
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23967.58 9494.44 3979.44 231
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19551.98 22187.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 195
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS83.91 8669.36 6981.09 11658.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 120
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 123
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16374.60 21275.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 193
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31977.15 11081.28 11079.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32277.06 11282.61 8880.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12672.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 205
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33977.16 10981.81 10080.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20282.35 177
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40573.86 5286.31 1978.84 1994.03 5384.64 103
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19751.33 23187.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 122
wuyk23d61.97 26566.25 21949.12 35558.19 37660.77 14966.32 25952.97 35455.93 17090.62 586.91 13273.07 5735.98 40020.63 40491.63 8750.62 390
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29870.98 19378.29 17368.67 5683.04 7789.26 8772.99 5880.75 13455.58 20695.47 1091.35 13
pmmvs671.82 14873.66 11866.31 24375.94 20042.01 30066.99 25072.53 22763.45 10476.43 17092.78 1072.95 5969.69 27651.41 23790.46 11987.22 56
MGCFI-Net71.70 15073.10 13267.49 22973.23 24243.08 29272.06 17082.43 9154.58 18675.97 17582.00 21872.42 6075.22 21657.84 18387.34 17784.18 123
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6188.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6487.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9668.80 5380.92 10788.52 10972.00 6582.39 10174.80 4493.04 6881.14 195
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6683.45 8462.45 14392.40 7778.92 238
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8954.55 18883.50 7589.21 8971.51 6775.74 21061.24 15092.34 7988.94 37
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6883.53 8267.95 9292.44 7689.60 24
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19750.51 24089.19 1090.88 4271.45 6977.78 19073.38 5690.60 11890.90 18
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 7081.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15259.44 13378.88 12689.80 7971.26 7173.09 24157.45 18480.89 26289.17 31
testf175.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
APD_test275.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
MVS_111021_HR72.98 13172.97 13672.99 13580.82 12965.47 10068.81 22272.77 22457.67 15075.76 17682.38 21671.01 7477.17 19561.38 14986.15 19776.32 266
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 12065.57 7472.54 22581.76 22470.98 7585.26 5447.88 27190.00 12773.37 291
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14856.32 16576.35 17283.36 20170.76 7677.96 18663.32 13781.84 25183.18 153
test_fmvsmvis_n_192072.36 14272.49 14271.96 16071.29 26564.06 11372.79 16281.82 9940.23 33181.25 10381.04 23270.62 7768.69 28369.74 7983.60 23683.14 154
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12966.87 6483.64 7486.18 15870.25 8079.90 14861.12 15488.95 15587.56 53
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25349.47 22772.94 16184.71 5159.49 13280.90 10988.81 10370.07 8179.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19577.68 14387.18 12569.98 8285.37 5168.01 9092.72 7485.08 91
Effi-MVS+72.10 14672.28 14771.58 16374.21 22650.33 21574.72 14482.73 8562.62 11170.77 24876.83 28969.96 8380.97 12960.20 16178.43 28983.45 144
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19384.52 18269.87 8484.94 6169.76 7889.59 13886.60 67
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 14075.34 1579.80 11894.91 269.79 8580.25 14272.63 6394.46 3688.78 42
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8760.39 12674.15 20183.30 20369.65 8682.07 10869.27 8186.75 19287.36 55
CLD-MVS72.88 13472.36 14674.43 11077.03 17954.30 19168.77 22583.43 7652.12 21876.79 15874.44 30969.54 8783.91 7555.88 20193.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8885.26 5466.15 10991.24 9587.61 52
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8980.55 13772.51 6593.37 6383.48 141
MVS_111021_LR72.10 14671.82 15272.95 13779.53 14273.90 3670.45 20166.64 27456.87 15876.81 15781.76 22468.78 9071.76 26061.81 14483.74 23273.18 293
Fast-Effi-MVS+68.81 18668.30 19370.35 18074.66 21848.61 23466.06 26278.32 17150.62 23971.48 24275.54 29768.75 9179.59 15350.55 24578.73 28682.86 163
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9287.03 1067.39 9991.26 9483.50 138
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 32176.76 11380.46 13078.91 790.32 791.70 2568.49 9384.89 6363.40 13695.12 1895.01 4
LCM-MVSNet-Re69.10 18371.57 15861.70 28370.37 27934.30 35961.45 30479.62 14456.81 15989.59 888.16 11968.44 9472.94 24242.30 30587.33 17877.85 254
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10463.92 9677.51 14486.56 14868.43 9584.82 6573.83 5391.61 8882.26 181
segment_acmp68.30 96
cdsmvs_eth3d_5k17.71 37423.62 3760.00 3930.00 4160.00 4180.00 40470.17 2560.00 4110.00 41274.25 31268.16 970.00 4120.00 4110.00 4100.00 408
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29678.24 9682.24 9278.21 989.57 992.10 1868.05 9885.59 4866.04 11295.62 994.88 5
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20252.27 21687.37 2692.25 1668.04 9980.56 13572.28 6791.15 9890.32 22
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 9070.72 4487.54 2192.44 1468.00 10081.34 11772.84 6191.72 8491.69 10
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 29066.25 9375.90 12879.90 14146.03 27976.48 16885.02 17767.96 10173.97 23474.47 4987.22 18383.90 129
test_prior275.57 13258.92 13976.53 16786.78 13667.83 10269.81 7792.76 73
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11965.77 7275.55 17986.25 15767.42 10385.42 5070.10 7590.88 11181.81 187
baseline73.10 12373.96 11370.51 17771.46 26346.39 26672.08 16984.40 5955.95 16976.62 16186.46 15167.20 10478.03 18564.22 12587.27 18287.11 61
test_fmvsmconf0.1_n73.26 12172.82 13874.56 10669.10 29666.18 9574.65 14779.34 15145.58 28175.54 18083.91 19067.19 10573.88 23773.26 5786.86 18883.63 137
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26446.71 26270.93 19484.26 6255.62 17277.46 14587.10 12667.09 10677.81 18863.95 12886.83 19087.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test175.04 9875.38 9974.02 11769.89 28570.15 6276.46 11679.71 14365.50 7582.99 7988.60 10866.94 10772.35 25259.77 16988.54 15879.56 227
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17483.39 19766.91 10880.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST985.47 6369.32 7076.42 11878.69 16453.73 20576.97 14986.74 13866.84 10981.10 123
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 11085.90 3877.43 3090.78 11383.49 139
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 11086.01 3161.72 14789.79 13483.08 156
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 11078.37 17674.80 4490.76 11682.40 176
test_fmvsmconf_n72.91 13372.40 14574.46 10768.62 30066.12 9674.21 15278.80 16145.64 28074.62 19483.25 20566.80 11373.86 23872.97 6086.66 19483.39 145
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25680.80 23566.74 11481.96 10961.74 14689.40 14585.69 81
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16454.00 20076.97 14986.74 13866.60 11581.10 12372.50 6691.56 8977.15 260
test_885.09 6967.89 7976.26 12378.66 16654.00 20076.89 15386.72 14066.60 11580.89 133
PC_three_145246.98 27381.83 9286.28 15466.55 11784.47 7163.31 13890.78 11383.49 139
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27274.73 14380.19 13668.80 5382.95 8092.91 866.26 11876.76 20258.41 17992.77 7289.30 27
EI-MVSNet-Vis-set72.78 13571.87 15075.54 9974.77 21459.02 16472.24 16571.56 23563.92 9678.59 12871.59 33266.22 11978.60 16767.58 9480.32 26989.00 35
EI-MVSNet-UG-set72.63 13871.68 15475.47 10074.67 21658.64 16972.02 17171.50 23663.53 10278.58 13071.39 33665.98 12078.53 16867.30 10480.18 27189.23 29
Anonymous2024052972.56 13973.79 11668.86 21276.89 18745.21 27468.80 22477.25 18867.16 6176.89 15390.44 5665.95 12174.19 23250.75 24290.00 12787.18 59
ETV-MVS72.72 13672.16 14974.38 11276.90 18655.95 17973.34 15884.67 5262.04 11572.19 23170.81 33765.90 12285.24 5658.64 17684.96 21681.95 185
TransMVSNet (Re)69.62 17471.63 15563.57 26476.51 19035.93 34765.75 26871.29 24361.05 12175.02 18589.90 7865.88 12370.41 27449.79 24989.48 14184.38 118
SDMVSNet66.36 22267.85 20261.88 28273.04 25046.14 26858.54 32571.36 24051.42 22868.93 27282.72 21165.62 12462.22 33054.41 21784.67 21877.28 257
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18885.32 17365.54 12587.79 265.61 11691.14 9983.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10851.71 22377.15 14791.42 3265.49 12687.20 679.44 1387.17 18684.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13764.71 9178.11 13688.39 11265.46 12783.14 8977.64 2991.20 9678.94 237
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12073.47 23564.53 11071.36 18678.14 17655.81 17168.84 27674.71 30665.36 12875.75 20952.00 23379.00 28381.03 198
EGC-MVSNET64.77 23661.17 26975.60 9886.90 4274.47 3084.04 3568.62 2660.60 4071.13 40991.61 2865.32 12974.15 23364.01 12688.28 16078.17 247
MCST-MVS73.42 11673.34 12673.63 12381.28 12659.17 16074.80 14183.13 8045.50 28272.84 22083.78 19365.15 13080.99 12764.54 12189.09 15380.73 209
PCF-MVS63.80 1372.70 13771.69 15375.72 9678.10 16560.01 15473.04 16081.50 10445.34 28679.66 11984.35 18565.15 13082.65 9848.70 26089.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test1276.51 8682.28 11360.94 14381.64 10373.60 20964.88 13285.19 5990.42 12083.38 146
Effi-MVS+-dtu75.43 9172.28 14784.91 277.05 17883.58 178.47 9377.70 18157.68 14974.89 18778.13 27964.80 13384.26 7456.46 19485.32 20986.88 62
VPA-MVSNet68.71 18870.37 16963.72 26276.13 19538.06 33364.10 28671.48 23756.60 16474.10 20388.31 11464.78 13469.72 27547.69 27390.15 12483.37 147
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8159.86 13172.27 22884.00 18964.56 13583.07 9251.48 23687.19 18582.56 174
dcpmvs_271.02 15772.65 14066.16 24476.06 19950.49 21371.97 17379.36 15050.34 24182.81 8383.63 19464.38 13667.27 29861.54 14883.71 23480.71 211
DP-MVS Recon73.57 11472.69 13976.23 9182.85 10563.39 11774.32 14982.96 8257.75 14870.35 25281.98 22064.34 13784.41 7349.69 25089.95 12980.89 203
114514_t73.40 11773.33 12773.64 12284.15 8557.11 17478.20 9780.02 13943.76 29972.55 22486.07 16564.00 13883.35 8660.14 16491.03 10480.45 216
pm-mvs168.40 19169.85 17364.04 26073.10 24739.94 31664.61 28270.50 25355.52 17373.97 20789.33 8563.91 13968.38 28649.68 25188.02 16583.81 131
sd_testset63.55 24965.38 22958.07 31073.04 25038.83 32557.41 33365.44 28451.42 22868.93 27282.72 21163.76 14058.11 34541.05 31484.67 21877.28 257
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26969.26 21578.81 15966.66 6781.74 9586.88 13363.26 14181.07 12556.21 19894.98 2091.05 15
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 22063.12 14277.64 19262.95 14088.14 16271.73 310
fmvsm_s_conf0.1_n_a67.37 20966.36 21870.37 17970.86 26761.17 13874.00 15457.18 32740.77 32568.83 27780.88 23463.11 14367.61 29466.94 10674.72 31882.33 180
fmvsm_s_conf0.5_n_a67.00 21565.95 22570.17 18469.72 29161.16 13973.34 15856.83 33040.96 32268.36 28080.08 24962.84 14467.57 29566.90 10874.50 32281.78 188
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20281.04 11863.67 10079.54 12086.37 15362.83 14581.82 11157.10 18895.25 1490.94 17
MIMVSNet166.57 21969.23 17958.59 30781.26 12737.73 33664.06 28757.62 32057.02 15778.40 13290.75 4662.65 14658.10 34641.77 31089.58 14079.95 222
xiu_mvs_v2_base64.43 24263.96 24665.85 24877.72 17351.32 20863.63 29172.31 23045.06 29161.70 32769.66 35062.56 14773.93 23649.06 25773.91 32872.31 304
Test By Simon62.56 147
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15562.85 11073.33 21488.41 11162.54 14979.59 15363.94 13082.92 24082.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28465.65 26977.32 18664.32 9375.59 17887.08 12762.45 15081.34 11754.90 20995.63 891.93 8
pcd_1.5k_mvsjas5.20 3776.93 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41162.39 1510.00 4120.00 4110.00 4100.00 408
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14753.48 20886.29 3692.43 1562.39 15180.25 14267.90 9390.61 11787.77 49
PS-MVSNAJ64.27 24563.73 24965.90 24777.82 17151.42 20763.33 29472.33 22945.09 29061.60 32868.04 36462.39 15173.95 23549.07 25673.87 32972.34 303
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7954.16 19773.23 21680.75 23662.19 15483.86 7668.02 8990.92 10883.65 136
MVS_Test69.84 17170.71 16767.24 23267.49 31443.25 29169.87 20881.22 11352.69 21471.57 23986.68 14162.09 15574.51 22766.05 11178.74 28583.96 127
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9762.47 11479.06 12580.19 24661.83 15678.79 16559.83 16887.35 17679.54 230
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26969.47 21280.14 13865.22 8281.74 9587.08 12761.82 15781.07 12556.21 19894.98 2091.93 8
Baseline_NR-MVSNet70.62 16173.19 12862.92 27476.97 18234.44 35768.84 22070.88 25160.25 12779.50 12190.53 5361.82 15769.11 28054.67 21395.27 1385.22 87
原ACMM173.90 11885.90 5765.15 10681.67 10250.97 23574.25 20086.16 16061.60 15983.54 8156.75 18991.08 10373.00 295
PAPR69.20 18168.66 19070.82 17275.15 20847.77 24675.31 13381.11 11449.62 25166.33 29679.27 26161.53 16082.96 9448.12 26881.50 25981.74 189
API-MVS70.97 15871.51 15969.37 19675.20 20655.94 18080.99 6176.84 19262.48 11371.24 24477.51 28561.51 16180.96 13252.04 23285.76 20371.22 315
xiu_mvs_v1_base_debu67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
xiu_mvs_v1_base67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
xiu_mvs_v1_base_debi67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
fmvsm_s_conf0.5_n66.34 22365.27 23069.57 19568.20 30559.14 16371.66 18156.48 33340.92 32367.78 28579.46 25761.23 16566.90 30267.39 9974.32 32682.66 169
CNLPA73.44 11573.03 13474.66 10578.27 16375.29 2675.99 12778.49 16865.39 7875.67 17783.22 20861.23 16566.77 30753.70 22585.33 20881.92 186
MSDG67.47 20767.48 20767.46 23070.70 27054.69 18966.90 25378.17 17460.88 12370.41 25174.76 30461.22 16773.18 24047.38 27476.87 30174.49 282
fmvsm_s_conf0.1_n66.60 21865.54 22769.77 19268.99 29759.15 16172.12 16856.74 33240.72 32768.25 28380.14 24861.18 16866.92 30167.34 10374.40 32383.23 152
test_fmvsm_n_192069.63 17368.45 19173.16 13070.56 27465.86 9870.26 20378.35 17037.69 34774.29 19978.89 26961.10 16968.10 28965.87 11479.07 28285.53 83
CANet73.00 12971.84 15176.48 8775.82 20161.28 13674.81 13980.37 13363.17 10862.43 32680.50 24061.10 16985.16 6064.00 12784.34 22683.01 159
EG-PatchMatch MVS70.70 16070.88 16570.16 18582.64 10958.80 16671.48 18373.64 21654.98 17776.55 16581.77 22361.10 16978.94 16254.87 21080.84 26472.74 300
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17286.15 2771.09 7190.94 10584.82 98
plane_prior684.18 8465.31 10360.83 172
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16371.22 4072.40 22788.70 10460.51 17487.70 377.40 3289.13 15185.48 84
FMVSNet171.06 15572.48 14366.81 23777.65 17540.68 31071.96 17473.03 21961.14 12079.45 12290.36 6760.44 17575.20 21850.20 24788.05 16484.54 110
EIA-MVS68.59 19067.16 21072.90 14175.18 20755.64 18469.39 21381.29 10952.44 21564.53 30670.69 33860.33 17682.30 10454.27 22076.31 30580.75 208
BH-untuned69.39 17969.46 17569.18 20277.96 16956.88 17568.47 23177.53 18356.77 16077.79 14079.63 25560.30 17780.20 14546.04 28580.65 26670.47 321
patch_mono-262.73 26164.08 24558.68 30670.36 28055.87 18160.84 31064.11 29641.23 31864.04 31178.22 27660.00 17848.80 36354.17 22183.71 23471.37 312
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10766.17 7073.30 21583.31 20259.96 17983.10 9158.45 17881.66 25782.87 162
VDDNet71.60 15173.13 13067.02 23686.29 4741.11 30669.97 20666.50 27568.72 5574.74 18991.70 2559.90 18075.81 20848.58 26291.72 8484.15 125
VDD-MVS70.81 15971.44 16068.91 21179.07 15546.51 26367.82 23770.83 25261.23 11974.07 20488.69 10559.86 18175.62 21151.11 23990.28 12184.61 106
ANet_high67.08 21269.94 17158.51 30857.55 37727.09 39058.43 32776.80 19363.56 10182.40 8791.93 2059.82 18264.98 31850.10 24888.86 15683.46 143
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18387.58 573.06 5991.34 9389.01 34
PLCcopyleft62.01 1671.79 14970.28 17076.33 8980.31 13568.63 7578.18 9881.24 11154.57 18767.09 29480.63 23859.44 18481.74 11446.91 27884.17 22778.63 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TinyColmap67.98 19869.28 17764.08 25867.98 30946.82 26070.04 20475.26 20653.05 21077.36 14686.79 13559.39 18572.59 24945.64 28888.01 16672.83 298
FC-MVSNet-test73.32 11974.78 10268.93 21079.21 14936.57 34171.82 18079.54 14957.63 15382.57 8690.38 6459.38 18678.99 16157.91 18294.56 3491.23 14
V4271.06 15570.83 16671.72 16267.25 31647.14 25665.94 26380.35 13451.35 23083.40 7683.23 20659.25 18778.80 16465.91 11380.81 26589.23 29
BH-RMVSNet68.69 18968.20 19770.14 18676.40 19153.90 19664.62 28173.48 21758.01 14573.91 20881.78 22259.09 18878.22 18048.59 26177.96 29578.31 244
alignmvs70.54 16271.00 16469.15 20373.50 23448.04 24269.85 20979.62 14453.94 20376.54 16682.00 21859.00 18974.68 22557.32 18587.21 18484.72 101
DELS-MVS68.83 18568.31 19270.38 17870.55 27648.31 23563.78 29082.13 9354.00 20068.96 27075.17 30158.95 19080.06 14758.55 17782.74 24282.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VPNet65.58 22767.56 20459.65 30079.72 13930.17 37960.27 31562.14 30454.19 19671.24 24486.63 14558.80 19167.62 29344.17 29790.87 11281.18 194
mvs_anonymous65.08 23265.49 22863.83 26163.79 34437.60 33766.52 25869.82 25843.44 30473.46 21286.08 16458.79 19271.75 26151.90 23475.63 31082.15 182
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8359.02 13885.92 4189.17 9258.56 19382.74 9770.73 7389.14 15091.05 15
diffmvspermissive67.42 20867.50 20667.20 23362.26 35145.21 27464.87 27877.04 18948.21 26171.74 23379.70 25458.40 19471.17 26664.99 11880.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 13973.80 11568.84 21378.74 16037.74 33571.02 19279.83 14256.12 16680.88 11089.45 8458.18 19578.28 17956.63 19093.36 6490.51 21
EI-MVSNet69.61 17569.01 18371.41 16773.94 23049.90 22271.31 18871.32 24158.22 14375.40 18370.44 33958.16 19675.85 20662.51 14179.81 27588.48 44
fmvsm_l_conf0.5_n67.48 20566.88 21669.28 20067.41 31562.04 12670.69 19869.85 25739.46 33469.59 26281.09 23158.15 19768.73 28267.51 9678.16 29477.07 264
IterMVS-LS73.01 12873.12 13172.66 14873.79 23249.90 22271.63 18278.44 16958.22 14380.51 11286.63 14558.15 19779.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP2-MVS58.09 199
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23685.96 16758.09 19985.30 5367.38 10189.16 14783.73 135
v875.07 9775.64 9573.35 12673.42 23647.46 25175.20 13481.45 10660.05 12885.64 4589.26 8758.08 20181.80 11269.71 8087.97 16790.79 19
v114473.29 12073.39 12273.01 13474.12 22848.11 23972.01 17281.08 11753.83 20481.77 9384.68 17958.07 20281.91 11068.10 8786.86 18888.99 36
v14419272.99 13073.06 13372.77 14474.58 22047.48 25071.90 17880.44 13151.57 22581.46 9984.11 18858.04 20382.12 10767.98 9187.47 17388.70 43
ab-mvs64.11 24665.13 23761.05 29071.99 25938.03 33467.59 23868.79 26449.08 25765.32 30286.26 15658.02 20466.85 30539.33 32279.79 27778.27 245
Gipumacopyleft69.55 17672.83 13759.70 29963.63 34653.97 19480.08 7875.93 20064.24 9473.49 21188.93 10157.89 20562.46 32759.75 17091.55 9062.67 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20966.93 6269.11 26688.95 10057.84 20686.12 2976.63 3789.77 13585.28 86
TSAR-MVS + GP.73.08 12471.60 15777.54 7378.99 15770.73 5774.96 13669.38 26060.73 12474.39 19878.44 27357.72 20782.78 9660.16 16389.60 13779.11 235
WR-MVS71.20 15472.48 14367.36 23184.98 7035.70 34964.43 28468.66 26565.05 8681.49 9886.43 15257.57 20876.48 20450.36 24693.32 6589.90 23
LF4IMVS67.50 20467.31 20968.08 22358.86 37261.93 12771.43 18475.90 20144.67 29372.42 22680.20 24557.16 20970.44 27258.99 17586.12 19871.88 308
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9561.89 11688.77 1293.32 457.15 21082.60 9970.08 7692.80 7189.25 28
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16681.73 10152.76 21381.85 9184.56 18157.12 21182.24 10668.58 8387.33 17889.06 33
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21287.10 879.75 783.87 23084.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tfpnnormal66.48 22067.93 19962.16 28073.40 23736.65 34063.45 29264.99 28755.97 16872.82 22187.80 12357.06 21369.10 28148.31 26687.54 17080.72 210
MAR-MVS67.72 20266.16 22072.40 15574.45 22164.99 10774.87 13777.50 18448.67 25965.78 30068.58 36257.01 21477.79 18946.68 28181.92 24874.42 284
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
KD-MVS_self_test66.38 22167.51 20562.97 27261.76 35334.39 35858.11 33075.30 20550.84 23777.12 14885.42 17256.84 21569.44 27751.07 24091.16 9785.08 91
XXY-MVS55.19 30957.40 29948.56 35864.45 34134.84 35651.54 36653.59 34838.99 33963.79 31679.43 25856.59 21645.57 37436.92 34571.29 34765.25 357
v192192072.96 13272.98 13572.89 14274.67 21647.58 24971.92 17780.69 12351.70 22481.69 9783.89 19156.58 21782.25 10568.34 8587.36 17588.82 40
fmvsm_l_conf0.5_n_a66.66 21665.97 22468.72 21567.09 31861.38 13470.03 20569.15 26238.59 34168.41 27980.36 24256.56 21868.32 28766.10 11077.45 29876.46 265
VNet64.01 24865.15 23660.57 29473.28 23935.61 35057.60 33267.08 27254.61 18566.76 29583.37 19956.28 21966.87 30342.19 30685.20 21179.23 234
v124073.06 12673.14 12972.84 14374.74 21547.27 25571.88 17981.11 11451.80 22282.28 8884.21 18656.22 22082.34 10368.82 8287.17 18688.91 38
MG-MVS70.47 16371.34 16167.85 22579.26 14740.42 31474.67 14675.15 20858.41 14268.74 27888.14 12056.08 22183.69 7959.90 16781.71 25679.43 232
v2v48272.55 14172.58 14172.43 15472.92 25246.72 26171.41 18579.13 15455.27 17481.17 10485.25 17555.41 22281.13 12267.25 10585.46 20489.43 26
3Dnovator65.95 1171.50 15271.22 16272.34 15673.16 24363.09 12078.37 9478.32 17157.67 15072.22 23084.61 18054.77 22378.47 17060.82 15781.07 26175.45 272
v14869.38 18069.39 17669.36 19769.14 29544.56 27868.83 22172.70 22554.79 18178.59 12884.12 18754.69 22476.74 20359.40 17382.20 24586.79 63
旧先验184.55 7860.36 15263.69 29887.05 13054.65 22583.34 23869.66 329
c3_l69.82 17269.89 17269.61 19466.24 32643.48 28768.12 23479.61 14651.43 22777.72 14180.18 24754.61 22678.15 18463.62 13387.50 17287.20 58
BH-w/o64.81 23564.29 24366.36 24276.08 19854.71 18865.61 27075.23 20750.10 24671.05 24771.86 33154.33 22779.02 16038.20 33376.14 30665.36 356
SSC-MVS61.79 26866.08 22148.89 35776.91 18410.00 41153.56 35847.37 37668.20 5876.56 16489.21 8954.13 22857.59 34754.75 21174.07 32779.08 236
ambc70.10 18777.74 17250.21 21774.28 15177.93 18079.26 12388.29 11554.11 22979.77 14964.43 12291.10 10280.30 218
QAPM69.18 18269.26 17868.94 20971.61 26152.58 20380.37 7178.79 16249.63 25073.51 21085.14 17653.66 23079.12 15855.11 20875.54 31175.11 277
WB-MVS60.04 28264.19 24447.59 35976.09 19610.22 41052.44 36346.74 37765.17 8474.07 20487.48 12453.48 23155.28 35049.36 25472.84 33577.28 257
miper_ehance_all_eth68.36 19268.16 19868.98 20765.14 33743.34 28967.07 24978.92 15849.11 25676.21 17377.72 28253.48 23177.92 18761.16 15284.59 22285.68 82
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17770.09 4979.17 12488.02 12153.04 23383.60 8058.05 18193.76 5990.79 19
新几何169.99 18988.37 3471.34 5162.08 30643.85 29674.99 18686.11 16352.85 23470.57 27050.99 24183.23 23968.05 341
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 21470.56 27453.91 19578.29 9577.35 18548.85 25870.22 25483.52 19552.65 23576.93 19855.31 20781.99 24775.49 271
UGNet70.20 16569.05 18173.65 12176.24 19363.64 11575.87 12972.53 22761.48 11860.93 33686.14 16152.37 23677.12 19650.67 24385.21 21080.17 221
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FA-MVS(test-final)71.27 15371.06 16371.92 16173.96 22952.32 20476.45 11776.12 19759.07 13774.04 20686.18 15852.18 23779.43 15559.75 17081.76 25284.03 126
Anonymous20240521166.02 22466.89 21563.43 26774.22 22538.14 33159.00 32166.13 27763.33 10769.76 26185.95 16851.88 23870.50 27144.23 29687.52 17181.64 190
PVSNet_BlendedMVS65.38 22864.30 24268.61 21669.81 28749.36 22865.60 27178.96 15645.50 28259.98 33978.61 27151.82 23978.20 18144.30 29484.11 22878.27 245
PVSNet_Blended62.90 25861.64 26466.69 24069.81 28749.36 22861.23 30778.96 15642.04 31259.98 33968.86 35951.82 23978.20 18144.30 29477.77 29772.52 301
testgi54.00 31956.86 30245.45 36858.20 37525.81 39649.05 37049.50 36845.43 28567.84 28481.17 23051.81 24143.20 38829.30 38079.41 28067.34 345
EPNet69.10 18367.32 20874.46 10768.33 30461.27 13777.56 10263.57 29960.95 12256.62 36082.75 21051.53 24281.24 12054.36 21990.20 12280.88 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu70.04 16668.88 18473.53 12582.71 10763.62 11674.81 13981.95 9848.53 26067.16 29379.18 26451.42 24378.38 17554.39 21879.72 27878.60 240
DPM-MVS69.98 16869.22 18072.26 15882.69 10858.82 16570.53 19981.23 11247.79 26764.16 31080.21 24451.32 24483.12 9060.14 16484.95 21774.83 278
TR-MVS64.59 23863.54 25167.73 22875.75 20350.83 21163.39 29370.29 25549.33 25371.55 24074.55 30750.94 24578.46 17140.43 31875.69 30973.89 288
CL-MVSNet_self_test62.44 26363.40 25259.55 30172.34 25632.38 36656.39 33864.84 28951.21 23367.46 29081.01 23350.75 24663.51 32538.47 33188.12 16382.75 166
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13557.43 15486.65 3191.79 2350.52 24786.01 3171.36 7094.65 3291.62 11
MVS60.62 27859.97 27962.58 27668.13 30747.28 25468.59 22773.96 21532.19 37259.94 34168.86 35950.48 24877.64 19241.85 30975.74 30862.83 367
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20464.10 9587.73 1792.24 1750.45 24981.30 11967.41 9791.46 9186.04 73
PatchMatch-RL58.68 29257.72 29661.57 28476.21 19473.59 3961.83 30249.00 37047.30 27161.08 33268.97 35550.16 25059.01 34036.06 35368.84 36252.10 388
eth_miper_zixun_eth69.42 17868.73 18971.50 16667.99 30846.42 26467.58 23978.81 15950.72 23878.13 13580.34 24350.15 25180.34 14060.18 16284.65 22087.74 50
miper_enhance_ethall65.86 22565.05 24168.28 22261.62 35542.62 29764.74 27977.97 17842.52 31073.42 21372.79 32549.66 25277.68 19158.12 18084.59 22284.54 110
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9453.54 20783.93 7091.03 3749.49 25385.97 3373.26 5793.08 6791.59 12
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30866.16 7184.76 6093.23 549.47 25480.97 12965.66 11586.67 19385.02 93
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18665.11 8576.47 16986.80 13449.47 25483.77 7753.89 22392.72 7488.81 41
cascas64.59 23862.77 25970.05 18875.27 20550.02 21961.79 30371.61 23342.46 31163.68 31768.89 35849.33 25680.35 13947.82 27284.05 22979.78 225
WB-MVSnew53.94 32054.76 31751.49 34271.53 26228.05 38658.22 32850.36 36437.94 34659.16 34670.17 34449.21 25751.94 35524.49 39671.80 34574.47 283
h-mvs3373.08 12471.61 15677.48 7483.89 8872.89 4470.47 20071.12 24854.28 19177.89 13783.41 19649.04 25880.98 12863.62 13390.77 11578.58 241
hse-mvs272.32 14370.66 16877.31 7983.10 10071.77 4769.19 21771.45 23854.28 19177.89 13778.26 27549.04 25879.23 15663.62 13389.13 15180.92 202
MDA-MVSNet-bldmvs62.34 26461.73 26264.16 25661.64 35449.90 22248.11 37457.24 32653.31 20980.95 10679.39 25949.00 26061.55 33245.92 28680.05 27281.03 198
testdata64.13 25785.87 5963.34 11861.80 30947.83 26676.42 17186.60 14748.83 26162.31 32954.46 21681.26 26066.74 350
cl____68.26 19768.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.42 21548.74 26275.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19668.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.43 21448.74 26275.38 21260.94 15589.81 13285.81 76
bld_raw_dy_0_6469.94 16969.64 17470.84 17173.28 23946.85 25975.82 13186.52 1640.43 33081.41 10074.77 30348.70 26483.01 9356.25 19689.59 13882.66 169
GBi-Net68.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
test168.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
FMVSNet267.48 20568.21 19665.29 24973.14 24438.94 32368.81 22271.21 24754.81 17876.73 15986.48 15048.63 26574.60 22647.98 27086.11 19982.35 177
test22287.30 3769.15 7367.85 23659.59 31641.06 32073.05 21885.72 17148.03 26880.65 26666.92 346
OpenMVS_ROBcopyleft54.93 1763.23 25463.28 25363.07 27069.81 28745.34 27368.52 22967.14 27143.74 30070.61 25079.22 26247.90 26972.66 24548.75 25973.84 33071.21 316
lessismore_v072.75 14579.60 14156.83 17757.37 32383.80 7289.01 9747.45 27078.74 16664.39 12386.49 19682.69 168
TAMVS65.31 22963.75 24869.97 19082.23 11459.76 15666.78 25563.37 30045.20 28869.79 26079.37 26047.42 27172.17 25334.48 35985.15 21277.99 252
iter_conf05_1166.64 21765.20 23270.94 17073.28 23946.89 25866.09 26177.03 19043.44 30463.43 32274.09 31747.19 27283.26 8756.25 19686.01 20082.66 169
Syy-MVS54.13 31555.45 31350.18 34768.77 29823.59 39955.02 34844.55 38243.80 29758.05 35164.07 37646.22 27358.83 34146.16 28472.36 33968.12 339
PM-MVS64.49 24063.61 25067.14 23576.68 18975.15 2768.49 23042.85 38951.17 23477.85 13980.51 23945.76 27466.31 31052.83 23176.35 30459.96 378
USDC62.80 25963.10 25661.89 28165.19 33443.30 29067.42 24274.20 21435.80 35772.25 22984.48 18345.67 27571.95 25837.95 33584.97 21370.42 323
test20.0355.74 30557.51 29850.42 34659.89 36732.09 36850.63 36849.01 36950.11 24565.07 30483.23 20645.61 27648.11 36830.22 37583.82 23171.07 318
cl2267.14 21166.51 21769.03 20663.20 34743.46 28866.88 25476.25 19649.22 25474.48 19677.88 28145.49 27777.40 19460.64 15884.59 22286.24 69
IterMVS-SCA-FT67.68 20366.07 22272.49 15373.34 23858.20 17163.80 28965.55 28348.10 26276.91 15282.64 21345.20 27878.84 16361.20 15177.89 29680.44 217
SCA58.57 29358.04 29460.17 29770.17 28241.07 30765.19 27553.38 35243.34 30861.00 33573.48 31945.20 27869.38 27840.34 31970.31 35470.05 324
1112_ss59.48 28658.99 28660.96 29277.84 17042.39 29961.42 30568.45 26737.96 34559.93 34267.46 36745.11 28065.07 31740.89 31671.81 34475.41 273
new-patchmatchnet52.89 32655.76 31144.26 37459.94 3666.31 41237.36 39650.76 36341.10 31964.28 30979.82 25244.77 28148.43 36736.24 35087.61 16978.03 250
jason64.47 24162.84 25869.34 19976.91 18459.20 15767.15 24865.67 28035.29 35865.16 30376.74 29044.67 28270.68 26854.74 21279.28 28178.14 248
jason: jason.
IterMVS63.12 25562.48 26165.02 25266.34 32552.86 20063.81 28862.25 30346.57 27571.51 24180.40 24144.60 28366.82 30651.38 23875.47 31275.38 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PAPM61.79 26860.37 27766.05 24576.09 19641.87 30169.30 21476.79 19440.64 32853.80 37479.62 25644.38 28482.92 9529.64 37973.11 33473.36 292
HY-MVS49.31 1957.96 29657.59 29759.10 30466.85 32236.17 34465.13 27665.39 28539.24 33754.69 37178.14 27844.28 28567.18 30033.75 36470.79 35073.95 287
CANet_DTU64.04 24763.83 24764.66 25368.39 30142.97 29473.45 15774.50 21352.05 22054.78 36975.44 30043.99 28670.42 27353.49 22778.41 29080.59 214
LFMVS67.06 21367.89 20064.56 25478.02 16738.25 33070.81 19759.60 31565.18 8371.06 24686.56 14843.85 28775.22 21646.35 28289.63 13680.21 220
pmmvs-eth3d64.41 24363.27 25467.82 22775.81 20260.18 15369.49 21162.05 30738.81 34074.13 20282.23 21743.76 28868.65 28442.53 30480.63 26874.63 279
131459.83 28458.86 28762.74 27565.71 33144.78 27768.59 22772.63 22633.54 37061.05 33467.29 37043.62 28971.26 26549.49 25367.84 36872.19 306
CDS-MVSNet64.33 24462.66 26069.35 19880.44 13358.28 17065.26 27465.66 28144.36 29467.30 29275.54 29743.27 29071.77 25937.68 33684.44 22578.01 251
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer69.93 17069.03 18272.63 15074.93 20959.19 15883.98 3675.72 20252.27 21663.53 32076.74 29043.19 29180.56 13572.28 6778.67 28778.14 248
lupinMVS63.36 25161.49 26768.97 20874.93 20959.19 15865.80 26764.52 29334.68 36363.53 32074.25 31243.19 29170.62 26953.88 22478.67 28777.10 261
Test_1112_low_res58.78 29158.69 28859.04 30579.41 14338.13 33257.62 33166.98 27334.74 36159.62 34577.56 28442.92 29363.65 32438.66 32870.73 35175.35 275
test_yl65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
DCV-MVSNet65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
PMMVS44.69 36043.95 36846.92 36250.05 40153.47 19848.08 37542.40 39122.36 40044.01 40053.05 39742.60 29645.49 37531.69 37061.36 38441.79 399
Anonymous2023120654.13 31555.82 31049.04 35670.89 26635.96 34651.73 36550.87 36234.86 35962.49 32579.22 26242.52 29744.29 38427.95 38681.88 24966.88 347
WTY-MVS49.39 34750.31 34946.62 36461.22 35632.00 36946.61 37949.77 36633.87 36654.12 37369.55 35241.96 29845.40 37631.28 37264.42 37562.47 371
UnsupCasMVSNet_eth52.26 33153.29 32649.16 35455.08 38833.67 36250.03 36958.79 31837.67 34863.43 32274.75 30541.82 29945.83 37338.59 33059.42 38867.98 342
UnsupCasMVSNet_bld50.01 34551.03 34246.95 36158.61 37332.64 36548.31 37253.27 35334.27 36460.47 33771.53 33341.40 30047.07 37130.68 37360.78 38561.13 376
ppachtmachnet_test60.26 28159.61 28262.20 27967.70 31244.33 28058.18 32960.96 31140.75 32665.80 29972.57 32641.23 30163.92 32246.87 27982.42 24478.33 243
baseline157.82 29758.36 29356.19 31969.17 29430.76 37762.94 29955.21 33946.04 27863.83 31578.47 27241.20 30263.68 32339.44 32168.99 36174.13 285
MIMVSNet54.39 31456.12 30849.20 35372.57 25430.91 37559.98 31648.43 37241.66 31455.94 36383.86 19241.19 30350.42 35826.05 38975.38 31466.27 351
CHOSEN 1792x268858.09 29556.30 30663.45 26679.95 13750.93 21054.07 35665.59 28228.56 38461.53 32974.33 31041.09 30466.52 30933.91 36267.69 36972.92 296
YYNet152.58 32853.50 32349.85 34954.15 39236.45 34340.53 38946.55 37938.09 34475.52 18173.31 32241.08 30543.88 38541.10 31371.14 34969.21 334
MDA-MVSNet_test_wron52.57 32953.49 32549.81 35054.24 39136.47 34240.48 39046.58 37838.13 34375.47 18273.32 32141.05 30643.85 38640.98 31571.20 34869.10 336
PVSNet_036.71 2241.12 36840.78 37142.14 37759.97 36440.13 31540.97 38842.24 39430.81 38144.86 39749.41 40140.70 30745.12 37823.15 39934.96 40441.16 400
Vis-MVSNet (Re-imp)62.74 26063.21 25561.34 28872.19 25731.56 37167.31 24753.87 34653.60 20669.88 25983.37 19940.52 30870.98 26741.40 31286.78 19181.48 192
sss47.59 35248.32 35245.40 36956.73 38233.96 36045.17 38248.51 37132.11 37652.37 37765.79 37240.39 30941.91 39231.85 36961.97 38260.35 377
test_vis1_n_192052.96 32453.50 32351.32 34359.15 37044.90 27656.13 34264.29 29530.56 38259.87 34360.68 38740.16 31047.47 36948.25 26762.46 38061.58 375
our_test_356.46 30156.51 30456.30 31867.70 31239.66 31855.36 34752.34 35840.57 32963.85 31469.91 34940.04 31158.22 34443.49 30175.29 31671.03 319
Anonymous2024052163.55 24966.07 22255.99 32066.18 32844.04 28268.77 22568.80 26346.99 27272.57 22385.84 16939.87 31250.22 35953.40 23092.23 8173.71 290
miper_lstm_enhance61.97 26561.63 26562.98 27160.04 36245.74 27147.53 37670.95 24944.04 29573.06 21778.84 27039.72 31360.33 33555.82 20284.64 22182.88 161
pmmvs460.78 27659.04 28566.00 24673.06 24957.67 17364.53 28360.22 31336.91 35265.96 29777.27 28639.66 31468.54 28538.87 32674.89 31771.80 309
MVP-Stereo61.56 27059.22 28368.58 21779.28 14660.44 15169.20 21671.57 23443.58 30256.42 36178.37 27439.57 31576.46 20534.86 35860.16 38668.86 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
dmvs_testset45.26 35747.51 35538.49 38459.96 36514.71 40858.50 32643.39 38641.30 31751.79 38056.48 39339.44 31649.91 36221.42 40255.35 39850.85 389
FPMVS59.43 28760.07 27857.51 31377.62 17671.52 4962.33 30150.92 36157.40 15569.40 26480.00 25039.14 31761.92 33137.47 33966.36 37139.09 401
DSMNet-mixed43.18 36644.66 36638.75 38354.75 39028.88 38557.06 33527.42 40813.47 40447.27 39277.67 28338.83 31839.29 39725.32 39560.12 38748.08 392
HyFIR lowres test63.01 25660.47 27670.61 17483.04 10154.10 19359.93 31772.24 23133.67 36869.00 26875.63 29638.69 31976.93 19836.60 34675.45 31380.81 207
MVEpermissive27.91 2336.69 37235.64 37539.84 38243.37 40835.85 34819.49 40124.61 40924.68 39539.05 40362.63 38238.67 32027.10 40621.04 40347.25 40256.56 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu58.93 29058.52 28960.16 29867.91 31047.70 24869.97 20658.02 31949.73 24947.28 39173.02 32438.14 32162.34 32836.57 34785.99 20170.43 322
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs552.49 33052.58 33052.21 33854.99 38932.38 36655.45 34653.84 34732.15 37455.49 36674.81 30238.08 32257.37 34834.02 36174.40 32366.88 347
N_pmnet52.06 33251.11 34054.92 32459.64 36971.03 5337.42 39561.62 31033.68 36757.12 35372.10 32737.94 32331.03 40229.13 38571.35 34662.70 368
CMPMVSbinary48.73 2061.54 27160.89 27263.52 26561.08 35751.55 20668.07 23568.00 26933.88 36565.87 29881.25 22937.91 32467.71 29149.32 25582.60 24371.31 314
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet365.00 23365.16 23464.52 25569.47 29237.56 33866.63 25670.38 25451.55 22674.72 19083.27 20437.89 32574.44 22847.12 27585.37 20581.57 191
test_cas_vis1_n_192050.90 33950.92 34350.83 34554.12 39447.80 24551.44 36754.61 34226.95 38963.95 31360.85 38637.86 32644.97 37945.53 28962.97 37959.72 379
AUN-MVS70.22 16467.88 20177.22 8082.96 10471.61 4869.08 21871.39 23949.17 25571.70 23478.07 28037.62 32779.21 15761.81 14489.15 14980.82 205
ECVR-MVScopyleft64.82 23465.22 23163.60 26378.80 15831.14 37466.97 25156.47 33454.23 19369.94 25888.68 10637.23 32874.81 22445.28 29389.41 14384.86 96
test111164.62 23765.19 23362.93 27379.01 15629.91 38065.45 27254.41 34454.09 19871.47 24388.48 11037.02 32974.29 23146.83 28089.94 13084.58 109
GA-MVS62.91 25761.66 26366.66 24167.09 31844.49 27961.18 30869.36 26151.33 23169.33 26574.47 30836.83 33074.94 22150.60 24474.72 31880.57 215
MS-PatchMatch55.59 30754.89 31657.68 31269.18 29349.05 23161.00 30962.93 30235.98 35558.36 34968.93 35736.71 33166.59 30837.62 33863.30 37857.39 384
dmvs_re49.91 34650.77 34547.34 36059.98 36338.86 32453.18 35953.58 34939.75 33355.06 36761.58 38536.42 33244.40 38329.15 38468.23 36458.75 381
CVMVSNet59.21 28858.44 29161.51 28573.94 23047.76 24771.31 18864.56 29226.91 39060.34 33870.44 33936.24 33367.65 29253.57 22668.66 36369.12 335
PMMVS237.74 37040.87 37028.36 38742.41 4095.35 41324.61 40027.75 40732.15 37447.85 39070.27 34235.85 33429.51 40419.08 40567.85 36750.22 391
tpmrst50.15 34451.38 33846.45 36556.05 38324.77 39764.40 28549.98 36536.14 35453.32 37569.59 35135.16 33548.69 36439.24 32358.51 39165.89 352
D2MVS62.58 26261.05 27167.20 23363.85 34347.92 24356.29 33969.58 25939.32 33570.07 25778.19 27734.93 33672.68 24453.44 22883.74 23281.00 200
PVSNet43.83 2151.56 33651.17 33952.73 33568.34 30338.27 32948.22 37353.56 35036.41 35354.29 37264.94 37534.60 33754.20 35430.34 37469.87 35765.71 354
MVS-HIRNet45.53 35647.29 35640.24 38162.29 35026.82 39156.02 34337.41 40329.74 38343.69 40181.27 22833.96 33855.48 34924.46 39756.79 39338.43 402
test_vis1_rt46.70 35445.24 36251.06 34444.58 40751.04 20939.91 39167.56 27021.84 40251.94 37950.79 40033.83 33939.77 39535.25 35761.50 38362.38 372
baseline255.57 30852.74 32764.05 25965.26 33344.11 28162.38 30054.43 34339.03 33851.21 38167.35 36933.66 34072.45 25037.14 34164.22 37675.60 270
RPMNet65.77 22665.08 24067.84 22666.37 32348.24 23770.93 19486.27 2054.66 18461.35 33086.77 13733.29 34185.67 4755.93 20070.17 35569.62 330
CR-MVSNet58.96 28958.49 29060.36 29666.37 32348.24 23770.93 19456.40 33532.87 37161.35 33086.66 14233.19 34263.22 32648.50 26370.17 35569.62 330
Patchmtry60.91 27463.01 25754.62 32766.10 32926.27 39467.47 24156.40 33554.05 19972.04 23286.66 14233.19 34260.17 33643.69 29887.45 17477.42 255
mvsany_test137.88 36935.74 37444.28 37347.28 40549.90 22236.54 39724.37 41019.56 40345.76 39353.46 39632.99 34437.97 39926.17 38835.52 40344.99 398
CostFormer57.35 29956.14 30760.97 29163.76 34538.43 32767.50 24060.22 31337.14 35159.12 34776.34 29232.78 34571.99 25739.12 32569.27 36072.47 302
tpm cat154.02 31852.63 32958.19 30964.85 34039.86 31766.26 26057.28 32432.16 37356.90 35670.39 34132.75 34665.30 31634.29 36058.79 38969.41 332
thres20057.55 29857.02 30059.17 30267.89 31134.93 35458.91 32357.25 32550.24 24364.01 31271.46 33432.49 34771.39 26431.31 37179.57 27971.19 317
tfpn200view960.35 28059.97 27961.51 28570.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25377.08 262
thres40060.77 27759.97 27963.15 26870.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25382.02 183
EU-MVSNet60.82 27560.80 27460.86 29368.37 30241.16 30572.27 16468.27 26826.96 38869.08 26775.71 29532.09 35067.44 29655.59 20578.90 28473.97 286
thres100view90061.17 27361.09 27061.39 28772.14 25835.01 35365.42 27356.99 32855.23 17570.71 24979.90 25132.07 35172.09 25435.61 35481.73 25377.08 262
thres600view761.82 26761.38 26863.12 26971.81 26034.93 35464.64 28056.99 32854.78 18270.33 25379.74 25332.07 35172.42 25138.61 32983.46 23782.02 183
FE-MVS68.29 19566.96 21472.26 15874.16 22754.24 19277.55 10373.42 21857.65 15272.66 22284.91 17832.02 35381.49 11648.43 26481.85 25081.04 197
test_fmvs254.80 31254.11 32156.88 31751.76 39949.95 22156.70 33765.80 27926.22 39169.42 26365.25 37431.82 35449.98 36049.63 25270.36 35370.71 320
test_f43.79 36445.63 35938.24 38542.29 41038.58 32634.76 39847.68 37422.22 40167.34 29163.15 37931.82 35430.60 40339.19 32462.28 38145.53 397
PatchmatchNetpermissive54.60 31354.27 32055.59 32365.17 33639.08 32066.92 25251.80 36039.89 33258.39 34873.12 32331.69 35658.33 34343.01 30358.38 39269.38 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs131.41 35770.05 324
patchmatchnet-post68.99 35431.32 35869.38 278
ADS-MVSNet248.76 34847.25 35753.29 33455.90 38540.54 31347.34 37754.99 34131.41 37950.48 38472.06 32831.23 35954.26 35325.93 39055.93 39465.07 358
ADS-MVSNet44.62 36145.58 36041.73 37955.90 38520.83 40447.34 37739.94 40031.41 37950.48 38472.06 32831.23 35939.31 39625.93 39055.93 39465.07 358
sam_mvs31.21 361
Patchmatch-RL test59.95 28359.12 28462.44 27772.46 25554.61 19059.63 31847.51 37541.05 32174.58 19574.30 31131.06 36265.31 31551.61 23579.85 27467.39 343
tpmvs55.84 30355.45 31357.01 31560.33 36133.20 36465.89 26459.29 31747.52 27056.04 36273.60 31831.05 36368.06 29040.64 31764.64 37469.77 328
test_post1.99 40830.91 36454.76 352
MDTV_nov1_ep1354.05 32265.54 33229.30 38359.00 32155.22 33835.96 35652.44 37675.98 29330.77 36559.62 33838.21 33273.33 333
test_post166.63 2562.08 40730.66 36659.33 33940.34 319
Patchmatch-test47.93 35049.96 35041.84 37857.42 37824.26 39848.75 37141.49 39639.30 33656.79 35773.48 31930.48 36733.87 40129.29 38172.61 33767.39 343
tpm256.12 30254.64 31860.55 29566.24 32636.01 34568.14 23356.77 33133.60 36958.25 35075.52 29930.25 36874.33 23033.27 36569.76 35971.32 313
MVSTER63.29 25361.60 26668.36 21859.77 36846.21 26760.62 31271.32 24141.83 31375.40 18379.12 26530.25 36875.85 20656.30 19579.81 27583.03 158
tpm50.60 34052.42 33245.14 37065.18 33526.29 39360.30 31443.50 38537.41 34957.01 35579.09 26630.20 37042.32 38932.77 36766.36 37166.81 349
PatchT53.35 32256.47 30543.99 37564.19 34217.46 40659.15 31943.10 38752.11 21954.74 37086.95 13129.97 37149.98 36043.62 29974.40 32364.53 364
MDTV_nov1_ep13_2view18.41 40553.74 35731.57 37844.89 39629.90 37232.93 36671.48 311
test_vis1_n51.27 33850.41 34853.83 32856.99 37950.01 22056.75 33660.53 31225.68 39259.74 34457.86 39229.40 37347.41 37043.10 30263.66 37764.08 365
test-LLR50.43 34150.69 34649.64 35160.76 35841.87 30153.18 35945.48 38043.41 30649.41 38860.47 38929.22 37444.73 38142.09 30772.14 34262.33 373
test0.0.03 147.72 35148.31 35345.93 36655.53 38729.39 38246.40 38041.21 39843.41 30655.81 36567.65 36629.22 37443.77 38725.73 39369.87 35764.62 362
test_fmvs151.51 33750.86 34453.48 33149.72 40249.35 23054.11 35564.96 28824.64 39663.66 31859.61 39128.33 37648.45 36645.38 29267.30 37062.66 370
test_fmvs1_n52.70 32752.01 33454.76 32553.83 39650.36 21455.80 34465.90 27824.96 39465.39 30160.64 38827.69 37748.46 36545.88 28767.99 36665.46 355
mvsany_test343.76 36541.01 36952.01 33948.09 40457.74 17242.47 38723.85 41123.30 39964.80 30562.17 38327.12 37840.59 39429.17 38348.11 40157.69 383
thisisatest053067.05 21465.16 23472.73 14773.10 24750.55 21271.26 19063.91 29750.22 24474.46 19780.75 23626.81 37980.25 14259.43 17286.50 19587.37 54
tttt051769.46 17767.79 20374.46 10775.34 20452.72 20175.05 13563.27 30154.69 18378.87 12784.37 18426.63 38081.15 12163.95 12887.93 16889.51 25
EMVS44.61 36244.45 36745.10 37148.91 40343.00 29337.92 39441.10 39946.75 27438.00 40448.43 40226.42 38146.27 37237.11 34275.38 31446.03 395
thisisatest051560.48 27957.86 29568.34 21967.25 31646.42 26460.58 31362.14 30440.82 32463.58 31969.12 35326.28 38278.34 17748.83 25882.13 24680.26 219
E-PMN45.17 35845.36 36144.60 37250.07 40042.75 29538.66 39342.29 39346.39 27639.55 40251.15 39926.00 38345.37 37737.68 33676.41 30345.69 396
EPMVS45.74 35546.53 35843.39 37654.14 39322.33 40355.02 34835.00 40534.69 36251.09 38270.20 34325.92 38442.04 39137.19 34055.50 39665.78 353
tmp_tt11.98 37514.73 3783.72 3902.28 4134.62 41419.44 40214.50 4130.47 40821.55 4069.58 40625.78 3854.57 40911.61 40727.37 4051.96 405
ET-MVSNet_ETH3D63.32 25260.69 27571.20 16970.15 28355.66 18365.02 27764.32 29443.28 30968.99 26972.05 33025.46 38678.19 18354.16 22282.80 24179.74 226
FMVSNet555.08 31155.54 31253.71 32965.80 33033.50 36356.22 34052.50 35643.72 30161.06 33383.38 19825.46 38654.87 35130.11 37681.64 25872.75 299
test_fmvs356.78 30055.99 30959.12 30353.96 39548.09 24058.76 32466.22 27627.54 38676.66 16068.69 36125.32 38851.31 35653.42 22973.38 33277.97 253
new_pmnet37.55 37139.80 37330.79 38656.83 38016.46 40739.35 39230.65 40625.59 39345.26 39561.60 38424.54 38928.02 40521.60 40152.80 39947.90 393
testing9155.74 30555.29 31557.08 31470.63 27130.85 37654.94 35156.31 33750.34 24157.08 35470.10 34624.50 39065.86 31136.98 34476.75 30274.53 281
dp44.09 36344.88 36541.72 38058.53 37423.18 40054.70 35342.38 39234.80 36044.25 39965.61 37324.48 39144.80 38029.77 37849.42 40057.18 385
IB-MVS49.67 1859.69 28556.96 30167.90 22468.19 30650.30 21661.42 30565.18 28647.57 26955.83 36467.15 37123.77 39279.60 15243.56 30079.97 27373.79 289
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42041.62 36739.89 37246.80 36361.81 35251.59 20533.56 39935.74 40427.48 38737.64 40553.53 39523.24 39342.09 39027.39 38758.64 39046.72 394
testing9955.16 31054.56 31956.98 31670.13 28430.58 37854.55 35454.11 34549.53 25256.76 35870.14 34522.76 39465.79 31236.99 34376.04 30774.57 280
testing1153.13 32352.26 33355.75 32270.44 27831.73 37054.75 35252.40 35744.81 29252.36 37868.40 36321.83 39565.74 31332.64 36872.73 33669.78 327
test_vis3_rt51.94 33551.04 34154.65 32646.32 40650.13 21844.34 38578.17 17423.62 39868.95 27162.81 38021.41 39638.52 39841.49 31172.22 34175.30 276
gg-mvs-nofinetune55.75 30456.75 30352.72 33662.87 34828.04 38768.92 21941.36 39771.09 4150.80 38392.63 1220.74 39766.86 30429.97 37772.41 33863.25 366
iter_conf0567.34 21065.62 22672.50 15269.82 28647.06 25772.19 16776.86 19145.32 28772.86 21982.85 20920.53 39883.73 7861.13 15389.02 15486.70 65
GG-mvs-BLEND52.24 33760.64 36029.21 38469.73 21042.41 39045.47 39452.33 39820.43 39968.16 28825.52 39465.42 37359.36 380
JIA-IIPM54.03 31751.62 33561.25 28959.14 37155.21 18659.10 32047.72 37350.85 23650.31 38785.81 17020.10 40063.97 32136.16 35155.41 39764.55 363
ETVMVS50.32 34349.87 35151.68 34070.30 28126.66 39252.33 36443.93 38443.54 30354.91 36867.95 36520.01 40160.17 33622.47 40073.40 33168.22 338
UWE-MVS52.94 32552.70 32853.65 33073.56 23327.49 38957.30 33449.57 36738.56 34262.79 32471.42 33519.49 40260.41 33424.33 39877.33 29973.06 294
testing22253.37 32152.50 33155.98 32170.51 27729.68 38156.20 34151.85 35946.19 27756.76 35868.94 35619.18 40365.39 31425.87 39276.98 30072.87 297
test-mter48.56 34948.20 35449.64 35160.76 35841.87 30153.18 35945.48 38031.91 37749.41 38860.47 38918.34 40444.73 38142.09 30772.14 34262.33 373
TESTMET0.1,145.17 35844.93 36445.89 36756.02 38438.31 32853.18 35941.94 39527.85 38544.86 39756.47 39417.93 40541.50 39338.08 33468.06 36557.85 382
test250661.23 27260.85 27362.38 27878.80 15827.88 38867.33 24637.42 40254.23 19367.55 28988.68 10617.87 40674.39 22946.33 28389.41 14384.86 96
test_method19.26 37319.12 37719.71 3889.09 4121.91 4157.79 40353.44 3511.42 40610.27 40835.80 40317.42 40725.11 40712.44 40624.38 40632.10 403
DeepMVS_CXcopyleft11.83 38915.51 41113.86 40911.25 4145.76 40520.85 40726.46 40417.06 4089.22 4089.69 40813.82 40712.42 404
pmmvs346.71 35345.09 36351.55 34156.76 38148.25 23655.78 34539.53 40124.13 39750.35 38663.40 37815.90 40951.08 35729.29 38170.69 35255.33 387
KD-MVS_2432*160052.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
miper_refine_blended52.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
myMVS_eth3d50.36 34250.52 34749.88 34868.77 29822.69 40155.02 34844.55 38243.80 29758.05 35164.07 37614.16 41258.83 34133.90 36372.36 33968.12 339
testing358.28 29458.38 29258.00 31177.45 17726.12 39560.78 31143.00 38856.02 16770.18 25575.76 29413.27 41367.24 29948.02 26980.89 26280.65 212
testmvs4.06 3795.28 3820.41 3910.64 4150.16 41742.54 3860.31 4160.26 4100.50 4111.40 4100.77 4140.17 4100.56 4090.55 4090.90 406
test1234.43 3785.78 3810.39 3920.97 4140.28 41646.33 3810.45 4150.31 4090.62 4101.50 4090.61 4150.11 4110.56 4090.63 4080.77 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re5.62 3767.50 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41267.46 3670.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS22.69 40136.10 352
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
eth-test20.00 416
eth-test0.00 416
IU-MVS86.12 5360.90 14480.38 13245.49 28481.31 10175.64 4194.39 4184.65 102
save fliter87.00 3967.23 8679.24 8577.94 17956.65 163
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 150
GSMVS70.05 324
test_part285.90 5766.44 9184.61 62
MTGPAbinary80.63 126
MTMP84.83 3119.26 412
gm-plane-assit62.51 34933.91 36137.25 35062.71 38172.74 24338.70 327
test9_res72.12 6991.37 9277.40 256
agg_prior270.70 7490.93 10778.55 242
agg_prior84.44 8166.02 9778.62 16776.95 15180.34 140
test_prior470.14 6377.57 101
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 173
旧先验271.17 19145.11 28978.54 13161.28 33359.19 174
新几何271.33 187
无先验74.82 13870.94 25047.75 26876.85 20154.47 21572.09 307
原ACMM274.78 142
testdata267.30 29748.34 265
testdata168.34 23257.24 156
plane_prior785.18 6666.21 94
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior365.67 9963.82 9878.23 133
plane_prior282.74 5165.45 76
plane_prior184.46 80
plane_prior65.18 10480.06 7961.88 11789.91 131
n20.00 417
nn0.00 417
door-mid55.02 340
test1182.71 86
door52.91 355
HQP5-MVS58.80 166
HQP-NCC82.37 11077.32 10659.08 13471.58 236
ACMP_Plane82.37 11077.32 10659.08 13471.58 236
BP-MVS67.38 101
HQP4-MVS71.59 23585.31 5283.74 134
HQP3-MVS84.12 6689.16 147
NP-MVS83.34 9463.07 12185.97 166
ACMMP++_ref89.47 142
ACMMP++91.96 83