This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11484.80 3287.77 986.18 196.26 196.06 190.32 184.49 6768.08 8397.05 196.93 1
PMVScopyleft70.70 681.70 3283.15 3177.36 7590.35 582.82 282.15 5479.22 14774.08 2087.16 2891.97 1984.80 276.97 19464.98 10893.61 6072.28 281
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3377.77 2693.58 6183.09 147
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6286.70 3089.99 7681.64 685.95 3274.35 4796.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 92
ACMM69.25 982.11 2983.31 2778.49 6388.17 3673.96 3483.11 4984.52 5666.40 6687.45 2289.16 9381.02 880.52 13574.27 4895.73 780.98 188
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMH+66.64 1081.20 3682.48 3977.35 7681.16 12962.39 11980.51 6687.80 773.02 2687.57 2091.08 3680.28 982.44 9764.82 10996.10 487.21 57
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 6877.73 2794.34 4785.93 74
tt080576.12 8278.43 6869.20 18981.32 12641.37 28876.72 11377.64 17363.78 9582.06 9087.88 12079.78 1179.05 15664.33 11392.40 7787.17 60
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4166.91 9895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6474.51 4696.15 292.88 7
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4778.11 2394.46 3684.89 92
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4485.14 5490.42 5878.99 1586.62 1280.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4185.85 4290.58 5178.77 1685.78 4079.37 1595.17 1684.62 103
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 3783.12 3275.24 10186.16 5160.78 13783.77 4080.58 12472.48 3285.83 4390.41 5978.57 1785.69 4375.86 3794.39 4179.24 219
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 13783.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5679.45 1294.91 2488.15 47
APDe-MVS82.88 2384.14 1479.08 5284.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 877.93 2594.32 4883.47 137
UniMVSNet_ETH3D76.74 7879.02 6169.92 18289.27 1943.81 26874.47 14571.70 22272.33 3585.50 5093.65 377.98 2176.88 19754.60 19891.64 8689.08 32
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 3875.29 4094.22 5283.25 144
SED-MVS81.78 3183.48 2476.67 8186.12 5361.06 13183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 3875.29 4094.39 4183.08 148
test_241102_ONE86.12 5361.06 13184.72 4872.64 2987.38 2489.47 8477.48 2385.74 42
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2579.24 1795.36 1282.49 164
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4584.47 6490.43 5776.79 2685.94 3379.58 1094.23 5182.82 156
test_one_060185.84 6161.45 12785.63 2775.27 1785.62 4890.38 6476.72 27
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6179.30 1694.63 3382.35 166
DPE-MVScopyleft82.00 3083.02 3378.95 5785.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1074.56 4594.02 5582.62 161
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10485.38 5291.26 3376.33 3084.67 6683.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
OPM-MVS80.99 4181.63 4679.07 5386.86 4369.39 6879.41 8284.00 6965.64 7085.54 4989.28 8776.32 3183.47 8274.03 4993.57 6284.35 117
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMH63.62 1477.50 7280.11 5469.68 18379.61 14056.28 16678.81 8783.62 7263.41 10287.14 2990.23 7276.11 3273.32 23167.58 8994.44 3979.44 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6476.50 18551.98 21587.40 2391.86 2176.09 3378.53 16568.58 7890.20 12386.69 66
APD-MVScopyleft81.13 3881.73 4479.36 5084.47 8070.53 5983.85 3883.70 7169.43 5183.67 7388.96 9975.89 3486.41 1572.62 5992.95 6981.14 182
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ZD-MVS83.91 8769.36 6981.09 11258.91 13782.73 8689.11 9475.77 3586.63 1172.73 5792.93 70
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5784.91 5990.88 4275.59 3686.57 1378.16 2294.71 3083.82 126
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4377.43 3094.74 2984.31 118
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4285.64 4590.41 5975.55 3887.69 379.75 795.08 1985.36 83
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP82.33 2783.28 2879.46 4889.28 1869.09 7483.62 4284.98 4164.77 8683.97 6991.02 3875.53 3985.93 3582.00 294.36 4583.35 142
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4783.86 7190.72 4975.20 4086.27 2079.41 1494.25 5083.95 125
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4584.49 6390.67 5075.15 4186.37 1779.58 1094.26 4984.18 121
test_040278.17 6979.48 5974.24 10883.50 9159.15 15172.52 15574.60 20175.34 1588.69 1391.81 2275.06 4282.37 9965.10 10688.68 15581.20 180
PS-CasMVS80.41 4782.86 3673.07 12989.93 639.21 30377.15 10981.28 10679.74 590.87 492.73 1175.03 4384.93 6063.83 12095.19 1595.07 3
PEN-MVS80.46 4682.91 3473.11 12789.83 839.02 30677.06 11182.61 8680.04 490.60 692.85 974.93 4485.21 5563.15 12895.15 1795.09 2
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 5884.02 6890.39 6274.73 4586.46 1480.73 694.43 4084.60 106
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12272.08 3684.93 5690.79 4574.65 4684.42 7080.98 494.75 2880.82 192
9.1480.22 5380.68 13180.35 7187.69 1059.90 12583.00 7988.20 11474.57 4781.75 11073.75 5193.78 57
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6578.41 2194.78 2782.74 159
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DTE-MVSNet80.35 4882.89 3572.74 14289.84 737.34 32177.16 10881.81 9680.45 390.92 392.95 774.57 4786.12 2863.65 12194.68 3194.76 6
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6386.46 4674.79 2977.15 10985.39 3466.73 6380.39 11388.85 10174.43 5078.33 17574.73 4485.79 19582.35 166
SD-MVS80.28 4981.55 4776.47 8683.57 9067.83 8083.39 4785.35 3564.42 8886.14 3987.07 12674.02 5180.97 12677.70 2892.32 8080.62 199
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1878.84 1994.03 5384.64 101
X-MVStestdata76.81 7774.79 9982.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 37473.86 5286.31 1878.84 1994.03 5384.64 101
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6876.12 18751.33 22487.19 2791.51 2973.79 5478.44 16968.27 8190.13 12786.49 68
SF-MVS80.72 4381.80 4277.48 7382.03 11764.40 10783.41 4688.46 565.28 7884.29 6589.18 9173.73 5583.22 8676.01 3693.77 5884.81 98
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5684.14 6790.21 7373.37 5686.41 1579.09 1893.98 5684.30 120
wuyk23d61.97 24966.25 20849.12 32858.19 34660.77 13966.32 24552.97 33455.93 16690.62 586.91 12973.07 5735.98 36920.63 37291.63 8750.62 359
TranMVSNet+NR-MVSNet76.13 8177.66 7471.56 15984.61 7842.57 28270.98 18278.29 16468.67 5583.04 7889.26 8872.99 5880.75 13155.58 19195.47 1091.35 13
pmmvs671.82 14273.66 11666.31 22875.94 19642.01 28466.99 23672.53 21763.45 10076.43 16692.78 1072.95 5969.69 26951.41 22090.46 12087.22 56
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 12680.91 10790.53 5372.19 6088.56 173.67 5294.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
canonicalmvs72.29 13973.38 12069.04 19274.23 21947.37 24173.93 15083.18 7654.36 18476.61 16181.64 21872.03 6175.34 21157.12 17487.28 17784.40 115
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 9884.23 6691.47 3072.02 6287.16 679.74 994.36 4584.61 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5280.92 10688.52 10772.00 6382.39 9874.80 4293.04 6881.14 182
DP-MVS78.44 6679.29 6075.90 9281.86 12065.33 9779.05 8584.63 5474.83 1880.41 11286.27 15271.68 6483.45 8362.45 13292.40 7778.92 223
nrg03074.87 10275.99 9071.52 16074.90 20749.88 21574.10 14982.58 8754.55 18383.50 7589.21 9071.51 6575.74 20761.24 13992.34 7988.94 37
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6284.76 4662.54 10881.77 9486.65 14171.46 6683.53 8167.95 8792.44 7689.60 24
anonymousdsp78.60 6177.80 7281.00 3178.01 16774.34 3380.09 7576.12 18750.51 23489.19 1090.88 4271.45 6777.78 18773.38 5390.60 11990.90 18
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11281.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RPSCF75.76 8474.37 10479.93 4074.81 20977.53 1677.53 10379.30 14659.44 13078.88 12589.80 8071.26 6973.09 23357.45 17280.89 25389.17 31
testf175.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
APD_test275.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
MVS_111021_HR72.98 12772.97 13172.99 13180.82 13065.47 9668.81 20872.77 21457.67 14775.76 17182.38 20971.01 7277.17 19261.38 13886.15 19176.32 246
AdaColmapbinary74.22 10574.56 10173.20 12581.95 11860.97 13379.43 8080.90 11665.57 7172.54 21681.76 21670.98 7385.26 5247.88 25290.00 12873.37 269
GeoE73.14 11873.77 11571.26 16378.09 16552.64 19074.32 14679.56 14356.32 16276.35 16883.36 19670.76 7477.96 18363.32 12681.84 24283.18 146
AllTest77.66 7077.43 7578.35 6579.19 14970.81 5578.60 9088.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
TestCases78.35 6579.19 14970.81 5588.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
ITE_SJBPF80.35 3876.94 18173.60 3880.48 12566.87 6183.64 7486.18 15570.25 7779.90 14561.12 14388.95 15387.56 53
casdiffmvs_mvgpermissive75.26 9176.18 8872.52 14772.87 24349.47 21672.94 15484.71 5059.49 12980.90 10888.81 10270.07 7879.71 14767.40 9288.39 15788.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CDPH-MVS77.33 7377.06 8078.14 6884.21 8463.98 10976.07 12583.45 7454.20 18977.68 14287.18 12269.98 7985.37 4968.01 8592.72 7485.08 89
Effi-MVS+72.10 14072.28 14071.58 15874.21 22150.33 20474.72 14282.73 8362.62 10770.77 23876.83 27369.96 8080.97 12660.20 15078.43 27883.45 139
DROMVSNet77.08 7677.39 7676.14 9076.86 18556.87 16480.32 7287.52 1163.45 10074.66 18784.52 17869.87 8184.94 5969.76 7489.59 13886.60 67
UA-Net81.56 3382.28 4079.40 4988.91 2869.16 7284.67 3380.01 13675.34 1579.80 11794.91 269.79 8280.25 13972.63 5894.46 3688.78 42
CS-MVS76.51 7976.00 8978.06 7077.02 17864.77 10480.78 6382.66 8560.39 12274.15 19383.30 19869.65 8382.07 10569.27 7686.75 18687.36 55
CLD-MVS72.88 12972.36 13974.43 10577.03 17754.30 17968.77 21183.43 7552.12 21276.79 15774.44 29169.54 8483.91 7355.88 18693.25 6685.09 88
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
LS3D80.99 4180.85 4981.41 2578.37 16171.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8585.26 5266.15 9991.24 9687.61 52
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5687.01 3872.91 4380.23 7485.56 2866.56 6585.64 4589.57 8369.12 8680.55 13472.51 6093.37 6383.48 136
MVS_111021_LR72.10 14071.82 14572.95 13379.53 14273.90 3670.45 18966.64 26156.87 15576.81 15681.76 21668.78 8771.76 25261.81 13383.74 22373.18 271
Fast-Effi-MVS+68.81 17768.30 18470.35 17274.66 21448.61 22366.06 24778.32 16250.62 23271.48 23275.54 28068.75 8879.59 15050.55 22878.73 27582.86 155
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 11984.05 6756.66 15980.27 11485.31 17168.56 8987.03 967.39 9391.26 9583.50 133
CP-MVSNet79.48 5481.65 4572.98 13289.66 1239.06 30576.76 11280.46 12678.91 790.32 791.70 2568.49 9084.89 6163.40 12595.12 1895.01 4
LCM-MVSNet-Re69.10 17471.57 15161.70 26870.37 26234.30 34161.45 29079.62 13956.81 15689.59 888.16 11768.44 9172.94 23442.30 28487.33 17577.85 239
CNVR-MVS78.49 6478.59 6678.16 6785.86 6067.40 8478.12 9881.50 10063.92 9277.51 14386.56 14568.43 9284.82 6373.83 5091.61 8882.26 169
segment_acmp68.30 93
cdsmvs_eth3d_5k17.71 34323.62 3450.00 3620.00 3850.00 3860.00 37370.17 2450.00 3800.00 38174.25 29468.16 940.00 3810.00 3790.00 3790.00 377
WR-MVS_H80.22 5082.17 4174.39 10689.46 1442.69 28078.24 9582.24 8978.21 989.57 992.10 1868.05 9585.59 4666.04 10195.62 994.88 5
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19252.27 21087.37 2692.25 1668.04 9680.56 13272.28 6291.15 9990.32 22
v7n79.37 5680.41 5276.28 8878.67 16055.81 17079.22 8482.51 8870.72 4387.54 2192.44 1468.00 9781.34 11472.84 5691.72 8491.69 10
test_prior275.57 13058.92 13676.53 16486.78 13367.83 9869.81 7392.76 73
NCCC78.25 6778.04 7178.89 5885.61 6269.45 6679.80 7980.99 11565.77 6975.55 17486.25 15467.42 9985.42 4870.10 7190.88 11281.81 175
baseline73.10 11973.96 11170.51 17071.46 25246.39 25272.08 16084.40 5855.95 16576.62 16086.46 14867.20 10078.03 18264.22 11487.27 17887.11 61
casdiffmvspermissive73.06 12273.84 11270.72 16671.32 25346.71 24870.93 18384.26 6155.62 16877.46 14487.10 12367.09 10177.81 18563.95 11786.83 18487.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
APD_test175.04 9675.38 9774.02 11269.89 26670.15 6276.46 11579.71 13865.50 7282.99 8088.60 10666.94 10272.35 24459.77 15888.54 15679.56 213
TAPA-MVS65.27 1275.16 9374.29 10677.77 7174.86 20868.08 7777.89 9984.04 6855.15 17276.19 17083.39 19266.91 10380.11 14360.04 15590.14 12685.13 87
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
TEST985.47 6369.32 7076.42 11778.69 15653.73 19976.97 14886.74 13566.84 10481.10 120
DVP-MVS++81.24 3582.74 3776.76 8083.14 9660.90 13591.64 185.49 2974.03 2184.93 5690.38 6466.82 10585.90 3677.43 3090.78 11483.49 134
OPU-MVS78.65 6183.44 9466.85 8983.62 4286.12 15966.82 10586.01 2961.72 13689.79 13583.08 148
XVG-OURS79.51 5379.82 5678.58 6286.11 5674.96 2876.33 12184.95 4366.89 6082.75 8588.99 9866.82 10578.37 17374.80 4290.76 11782.40 165
CS-MVS-test74.89 10174.23 10776.86 7977.01 17962.94 11778.98 8684.61 5558.62 13870.17 24580.80 22466.74 10881.96 10661.74 13589.40 14485.69 81
train_agg76.38 8076.55 8375.86 9385.47 6369.32 7076.42 11778.69 15654.00 19476.97 14886.74 13566.60 10981.10 12072.50 6191.56 9077.15 242
test_885.09 6967.89 7976.26 12278.66 15854.00 19476.89 15286.72 13766.60 10980.89 130
PC_three_145246.98 26581.83 9386.28 15166.55 11184.47 6963.31 12790.78 11483.49 134
Anonymous2023121175.54 8877.19 7870.59 16877.67 17345.70 25774.73 14180.19 13268.80 5282.95 8192.91 866.26 11276.76 19958.41 16892.77 7289.30 27
EI-MVSNet-Vis-set72.78 13171.87 14375.54 9774.77 21059.02 15272.24 15771.56 22563.92 9278.59 12771.59 31366.22 11378.60 16467.58 8980.32 25989.00 35
EI-MVSNet-UG-set72.63 13471.68 14775.47 9874.67 21258.64 15772.02 16171.50 22663.53 9878.58 12971.39 31665.98 11478.53 16567.30 9680.18 26189.23 29
Anonymous2024052972.56 13573.79 11468.86 19976.89 18445.21 25968.80 21077.25 17967.16 5976.89 15290.44 5665.95 11574.19 22750.75 22590.00 12887.18 59
ETV-MVS72.72 13272.16 14274.38 10776.90 18355.95 16773.34 15284.67 5162.04 11172.19 22170.81 31765.90 11685.24 5458.64 16584.96 20981.95 173
TransMVSNet (Re)69.62 16571.63 14863.57 24976.51 18735.93 32965.75 25371.29 23261.05 11775.02 17989.90 7965.88 11770.41 26649.79 23289.48 14084.38 116
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7783.75 7056.73 15874.88 18285.32 17065.54 11887.79 265.61 10491.14 10083.35 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10451.71 21877.15 14691.42 3265.49 11987.20 579.44 1387.17 18184.51 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13364.71 8778.11 13588.39 11065.46 12083.14 8777.64 2991.20 9778.94 222
Fast-Effi-MVS+-dtu70.00 16068.74 18073.77 11573.47 23064.53 10671.36 17578.14 16755.81 16768.84 26274.71 28865.36 12175.75 20652.00 21679.00 27281.03 185
EGC-MVSNET64.77 22061.17 25175.60 9686.90 4274.47 3084.04 3568.62 2530.60 3761.13 37891.61 2865.32 12274.15 22864.01 11588.28 15878.17 232
MCST-MVS73.42 11373.34 12273.63 11981.28 12759.17 15074.80 13983.13 7845.50 27072.84 21183.78 18865.15 12380.99 12464.54 11089.09 15180.73 196
PCF-MVS63.80 1372.70 13371.69 14675.72 9478.10 16460.01 14473.04 15381.50 10045.34 27479.66 11884.35 18165.15 12382.65 9548.70 24289.38 14584.50 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
test1276.51 8482.28 11460.94 13481.64 9973.60 20064.88 12585.19 5790.42 12183.38 140
Effi-MVS+-dtu75.43 8972.28 14084.91 277.05 17683.58 178.47 9277.70 17257.68 14674.89 18178.13 26364.80 12684.26 7256.46 18185.32 20286.88 62
VPA-MVSNet68.71 17970.37 16263.72 24776.13 19238.06 31564.10 27171.48 22756.60 16174.10 19588.31 11264.78 12769.72 26847.69 25490.15 12583.37 141
F-COLMAP75.29 9073.99 11079.18 5181.73 12171.90 4681.86 5882.98 7959.86 12772.27 21884.00 18564.56 12883.07 9051.48 21987.19 18082.56 163
dcpmvs_271.02 15072.65 13566.16 22976.06 19550.49 20271.97 16379.36 14550.34 23582.81 8483.63 18964.38 12967.27 28561.54 13783.71 22580.71 198
DP-MVS Recon73.57 11172.69 13476.23 8982.85 10663.39 11274.32 14682.96 8057.75 14570.35 24281.98 21264.34 13084.41 7149.69 23389.95 13080.89 190
114514_t73.40 11473.33 12373.64 11884.15 8657.11 16278.20 9680.02 13543.76 28472.55 21586.07 16264.00 13183.35 8560.14 15391.03 10580.45 202
pm-mvs168.40 18369.85 16664.04 24573.10 23939.94 30064.61 26770.50 24255.52 16973.97 19889.33 8663.91 13268.38 27749.68 23488.02 16383.81 127
UniMVSNet_NR-MVSNet74.90 10075.65 9272.64 14583.04 10245.79 25469.26 20178.81 15366.66 6481.74 9686.88 13063.26 13381.07 12256.21 18394.98 2091.05 15
MSLP-MVS++74.48 10475.78 9170.59 16884.66 7662.40 11878.65 8984.24 6260.55 12177.71 14181.98 21263.12 13477.64 18962.95 12988.14 16071.73 286
UniMVSNet (Re)75.00 9775.48 9573.56 12083.14 9647.92 23370.41 19081.04 11463.67 9679.54 11986.37 15062.83 13581.82 10857.10 17595.25 1490.94 17
MIMVSNet166.57 20569.23 17158.59 29281.26 12837.73 31864.06 27257.62 30857.02 15478.40 13190.75 4662.65 13658.10 32141.77 28989.58 13979.95 208
xiu_mvs_v2_base64.43 22663.96 22765.85 23377.72 17251.32 19763.63 27772.31 22045.06 27961.70 30569.66 32762.56 13773.93 23049.06 23973.91 30672.31 280
Test By Simon62.56 137
Vis-MVSNetpermissive74.85 10374.56 10175.72 9481.63 12364.64 10576.35 11979.06 14962.85 10673.33 20588.41 10962.54 13979.59 15063.94 11982.92 23082.94 152
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
NR-MVSNet73.62 11074.05 10972.33 15383.50 9143.71 26965.65 25477.32 17764.32 8975.59 17387.08 12462.45 14081.34 11454.90 19495.63 891.93 8
pcd_1.5k_mvsjas5.20 3466.93 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38062.39 1410.00 3810.00 3790.00 3790.00 377
PS-MVSNAJss77.54 7177.35 7778.13 6984.88 7266.37 9278.55 9179.59 14253.48 20286.29 3692.43 1562.39 14180.25 13967.90 8890.61 11887.77 49
PS-MVSNAJ64.27 22963.73 23065.90 23277.82 17051.42 19663.33 28072.33 21945.09 27861.60 30668.04 33962.39 14173.95 22949.07 23873.87 30772.34 279
PHI-MVS74.92 9874.36 10576.61 8276.40 18862.32 12080.38 6983.15 7754.16 19173.23 20780.75 22562.19 14483.86 7468.02 8490.92 10983.65 132
MVS_Test69.84 16370.71 16067.24 21767.49 28843.25 27669.87 19481.22 10952.69 20871.57 22986.68 13862.09 14574.51 22266.05 10078.74 27483.96 124
CSCG74.12 10674.39 10373.33 12379.35 14461.66 12577.45 10481.98 9462.47 11079.06 12480.19 23461.83 14678.79 16259.83 15787.35 17479.54 216
DU-MVS74.91 9975.57 9472.93 13683.50 9145.79 25469.47 19880.14 13465.22 7981.74 9687.08 12461.82 14781.07 12256.21 18394.98 2091.93 8
Baseline_NR-MVSNet70.62 15473.19 12462.92 26076.97 18034.44 33968.84 20670.88 24060.25 12379.50 12090.53 5361.82 14769.11 27354.67 19795.27 1385.22 84
原ACMM173.90 11385.90 5765.15 10181.67 9850.97 22874.25 19286.16 15761.60 14983.54 8056.75 17691.08 10473.00 272
PAPR69.20 17268.66 18270.82 16575.15 20447.77 23575.31 13181.11 11049.62 24466.33 27779.27 24661.53 15082.96 9148.12 25081.50 25081.74 176
API-MVS70.97 15171.51 15269.37 18575.20 20255.94 16880.99 6176.84 18262.48 10971.24 23477.51 26961.51 15180.96 12952.04 21585.76 19671.22 291
xiu_mvs_v1_base_debu67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base_debi67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
CNLPA73.44 11273.03 12974.66 10278.27 16275.29 2675.99 12678.49 16065.39 7575.67 17283.22 20261.23 15566.77 29153.70 20885.33 20181.92 174
MSDG67.47 19867.48 19767.46 21570.70 25754.69 17766.90 23978.17 16560.88 11970.41 24174.76 28661.22 15673.18 23247.38 25576.87 28674.49 261
CANet73.00 12571.84 14476.48 8575.82 19761.28 12974.81 13780.37 12963.17 10462.43 30480.50 22961.10 15785.16 5864.00 11684.34 21783.01 151
EG-PatchMatch MVS70.70 15370.88 15870.16 17682.64 11058.80 15471.48 17273.64 20554.98 17376.55 16281.77 21561.10 15778.94 15954.87 19580.84 25472.74 276
HQP_MVS78.77 6078.78 6478.72 5985.18 6665.18 9982.74 5185.49 2965.45 7378.23 13289.11 9460.83 15986.15 2671.09 6690.94 10684.82 96
plane_prior684.18 8565.31 9860.83 159
FMVSNet171.06 14872.48 13766.81 22277.65 17440.68 29471.96 16473.03 20961.14 11679.45 12190.36 6760.44 16175.20 21350.20 23088.05 16284.54 109
EIA-MVS68.59 18267.16 20072.90 13775.18 20355.64 17269.39 19981.29 10552.44 20964.53 28770.69 31860.33 16282.30 10154.27 20376.31 28980.75 195
BH-untuned69.39 17069.46 16769.18 19077.96 16856.88 16368.47 21777.53 17456.77 15777.79 13979.63 24160.30 16380.20 14246.04 26580.65 25670.47 297
patch_mono-262.73 24464.08 22658.68 29170.36 26355.87 16960.84 29664.11 28341.23 30064.04 29278.22 26060.00 16448.80 33454.17 20483.71 22571.37 288
PAPM_NR73.91 10774.16 10873.16 12681.90 11953.50 18581.28 6081.40 10366.17 6773.30 20683.31 19759.96 16583.10 8958.45 16781.66 24882.87 154
VDDNet71.60 14473.13 12667.02 22186.29 4741.11 29069.97 19266.50 26268.72 5474.74 18391.70 2559.90 16675.81 20548.58 24491.72 8484.15 122
VDD-MVS70.81 15271.44 15368.91 19879.07 15446.51 24967.82 22370.83 24161.23 11574.07 19688.69 10359.86 16775.62 20851.11 22290.28 12284.61 104
ANet_high67.08 20269.94 16458.51 29357.55 34727.09 36658.43 31076.80 18363.56 9782.40 8891.93 2059.82 16864.98 29950.10 23188.86 15483.46 138
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11090.18 7459.80 16987.58 473.06 5591.34 9489.01 34
PLCcopyleft62.01 1671.79 14370.28 16376.33 8780.31 13668.63 7578.18 9781.24 10754.57 18267.09 27580.63 22759.44 17081.74 11146.91 25984.17 21878.63 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TinyColmap67.98 19069.28 16964.08 24367.98 28346.82 24670.04 19175.26 19653.05 20477.36 14586.79 13259.39 17172.59 24145.64 26888.01 16472.83 274
FC-MVSNet-test73.32 11674.78 10068.93 19779.21 14836.57 32371.82 17079.54 14457.63 15082.57 8790.38 6459.38 17278.99 15857.91 17194.56 3491.23 14
V4271.06 14870.83 15971.72 15767.25 28947.14 24465.94 24880.35 13051.35 22383.40 7683.23 20059.25 17378.80 16165.91 10280.81 25589.23 29
BH-RMVSNet68.69 18068.20 18870.14 17776.40 18853.90 18464.62 26673.48 20758.01 14273.91 19981.78 21459.09 17478.22 17748.59 24377.96 28378.31 229
alignmvs70.54 15571.00 15769.15 19173.50 22948.04 23269.85 19579.62 13953.94 19776.54 16382.00 21159.00 17574.68 22057.32 17387.21 17984.72 99
DELS-MVS68.83 17668.31 18370.38 17170.55 26148.31 22563.78 27682.13 9054.00 19468.96 25875.17 28458.95 17680.06 14458.55 16682.74 23282.76 157
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
VPNet65.58 21167.56 19459.65 28579.72 13930.17 35860.27 30062.14 29254.19 19071.24 23486.63 14258.80 17767.62 28244.17 27690.87 11381.18 181
mvs_anonymous65.08 21665.49 21363.83 24663.79 31637.60 31966.52 24469.82 24643.44 28873.46 20386.08 16158.79 17871.75 25351.90 21775.63 29382.15 170
v1075.69 8576.20 8774.16 10974.44 21848.69 22175.84 12982.93 8159.02 13585.92 4189.17 9258.56 17982.74 9470.73 6889.14 14991.05 15
diffmvspermissive67.42 19967.50 19667.20 21862.26 32345.21 25964.87 26377.04 18048.21 25371.74 22379.70 24058.40 18071.17 25864.99 10780.27 26085.22 84
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 13573.80 11368.84 20078.74 15937.74 31771.02 18179.83 13756.12 16380.88 10989.45 8558.18 18178.28 17656.63 17793.36 6490.51 21
EI-MVSNet69.61 16669.01 17571.41 16273.94 22549.90 21171.31 17771.32 23058.22 14075.40 17770.44 31958.16 18275.85 20362.51 13079.81 26588.48 44
IterMVS-LS73.01 12473.12 12772.66 14473.79 22749.90 21171.63 17178.44 16158.22 14080.51 11186.63 14258.15 18379.62 14862.51 13088.20 15988.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HQP2-MVS58.09 184
HQP-MVS75.24 9275.01 9875.94 9182.37 11158.80 15477.32 10584.12 6559.08 13171.58 22685.96 16458.09 18485.30 5167.38 9489.16 14683.73 131
v875.07 9575.64 9373.35 12273.42 23147.46 24075.20 13281.45 10260.05 12485.64 4589.26 8858.08 18681.80 10969.71 7587.97 16590.79 19
v114473.29 11773.39 11973.01 13074.12 22348.11 22972.01 16281.08 11353.83 19881.77 9484.68 17558.07 18781.91 10768.10 8286.86 18388.99 36
v14419272.99 12673.06 12872.77 14074.58 21647.48 23971.90 16880.44 12751.57 22081.46 10084.11 18458.04 18882.12 10467.98 8687.47 17188.70 43
ab-mvs64.11 23065.13 21961.05 27571.99 24938.03 31667.59 22468.79 25149.08 24965.32 28386.26 15358.02 18966.85 28939.33 30179.79 26778.27 230
Gipumacopyleft69.55 16772.83 13259.70 28463.63 31853.97 18280.08 7675.93 19064.24 9073.49 20288.93 10057.89 19062.46 30859.75 15991.55 9162.67 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
TSAR-MVS + GP.73.08 12071.60 15077.54 7278.99 15670.73 5774.96 13469.38 24860.73 12074.39 19178.44 25757.72 19182.78 9360.16 15289.60 13779.11 221
WR-MVS71.20 14772.48 13767.36 21684.98 7135.70 33164.43 26968.66 25265.05 8281.49 9986.43 14957.57 19276.48 20150.36 22993.32 6589.90 23
LF4IMVS67.50 19667.31 19968.08 20958.86 34261.93 12171.43 17375.90 19144.67 28072.42 21780.20 23357.16 19370.44 26458.99 16486.12 19271.88 284
OurMVSNet-221017-078.57 6278.53 6778.67 6080.48 13364.16 10880.24 7382.06 9261.89 11288.77 1293.32 457.15 19482.60 9670.08 7292.80 7189.25 28
v119273.40 11473.42 11873.32 12474.65 21548.67 22272.21 15881.73 9752.76 20781.85 9284.56 17757.12 19582.24 10368.58 7887.33 17589.06 33
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8581.05 10488.38 11157.10 19687.10 779.75 783.87 22184.31 118
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tfpnnormal66.48 20667.93 19062.16 26673.40 23236.65 32263.45 27864.99 27355.97 16472.82 21287.80 12157.06 19769.10 27448.31 24887.54 16880.72 197
MAR-MVS67.72 19466.16 20972.40 15174.45 21764.99 10274.87 13577.50 17548.67 25165.78 28168.58 33857.01 19877.79 18646.68 26281.92 23974.42 262
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
KD-MVS_self_test66.38 20767.51 19562.97 25861.76 32534.39 34058.11 31275.30 19550.84 23077.12 14785.42 16956.84 19969.44 27051.07 22391.16 9885.08 89
XXY-MVS55.19 28957.40 28048.56 33064.45 31334.84 33851.54 33653.59 32938.99 31363.79 29679.43 24356.59 20045.57 34536.92 32271.29 31965.25 329
v192192072.96 12872.98 13072.89 13874.67 21247.58 23871.92 16780.69 11951.70 21981.69 9883.89 18656.58 20182.25 10268.34 8087.36 17388.82 40
VNet64.01 23265.15 21860.57 27973.28 23435.61 33257.60 31467.08 25954.61 18166.76 27683.37 19456.28 20266.87 28742.19 28585.20 20479.23 220
v124073.06 12273.14 12572.84 13974.74 21147.27 24371.88 16981.11 11051.80 21782.28 8984.21 18256.22 20382.34 10068.82 7787.17 18188.91 38
MG-MVS70.47 15671.34 15467.85 21179.26 14640.42 29874.67 14475.15 19858.41 13968.74 26388.14 11856.08 20483.69 7859.90 15681.71 24779.43 218
v2v48272.55 13772.58 13672.43 15072.92 24246.72 24771.41 17479.13 14855.27 17081.17 10385.25 17255.41 20581.13 11967.25 9785.46 19789.43 26
3Dnovator65.95 1171.50 14571.22 15572.34 15273.16 23563.09 11578.37 9378.32 16257.67 14772.22 22084.61 17654.77 20678.47 16760.82 14681.07 25275.45 252
v14869.38 17169.39 16869.36 18669.14 27544.56 26368.83 20772.70 21554.79 17778.59 12784.12 18354.69 20776.74 20059.40 16282.20 23686.79 63
旧先验184.55 7960.36 14263.69 28587.05 12754.65 20883.34 22869.66 304
c3_l69.82 16469.89 16569.61 18466.24 29843.48 27268.12 22079.61 14151.43 22277.72 14080.18 23554.61 20978.15 18163.62 12287.50 17087.20 58
BH-w/o64.81 21964.29 22566.36 22776.08 19454.71 17665.61 25575.23 19750.10 23971.05 23771.86 31254.33 21079.02 15738.20 31276.14 29065.36 328
ambc70.10 17877.74 17150.21 20674.28 14877.93 17179.26 12288.29 11354.11 21179.77 14664.43 11191.10 10380.30 204
QAPM69.18 17369.26 17068.94 19671.61 25152.58 19180.37 7078.79 15549.63 24373.51 20185.14 17353.66 21279.12 15555.11 19375.54 29475.11 257
miper_ehance_all_eth68.36 18468.16 18968.98 19465.14 30943.34 27467.07 23578.92 15249.11 24876.21 16977.72 26653.48 21377.92 18461.16 14184.59 21385.68 82
IS-MVSNet75.10 9475.42 9674.15 11079.23 14748.05 23179.43 8078.04 16870.09 4879.17 12388.02 11953.04 21483.60 7958.05 17093.76 5990.79 19
新几何169.99 18088.37 3471.34 5162.08 29443.85 28374.99 18086.11 16052.85 21570.57 26250.99 22483.23 22968.05 313
OpenMVScopyleft62.51 1568.76 17868.75 17968.78 20170.56 26053.91 18378.29 9477.35 17648.85 25070.22 24483.52 19052.65 21676.93 19555.31 19281.99 23875.49 251
UGNet70.20 15869.05 17373.65 11776.24 19063.64 11075.87 12872.53 21761.48 11460.93 31486.14 15852.37 21777.12 19350.67 22685.21 20380.17 207
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
FA-MVS(test-final)71.27 14671.06 15671.92 15673.96 22452.32 19376.45 11676.12 18759.07 13474.04 19786.18 15552.18 21879.43 15259.75 15981.76 24384.03 123
Anonymous20240521166.02 20866.89 20663.43 25274.22 22038.14 31359.00 30666.13 26463.33 10369.76 25185.95 16551.88 21970.50 26344.23 27587.52 16981.64 177
PVSNet_BlendedMVS65.38 21264.30 22468.61 20269.81 26849.36 21765.60 25678.96 15045.50 27059.98 31778.61 25551.82 22078.20 17844.30 27384.11 21978.27 230
PVSNet_Blended62.90 24161.64 24666.69 22569.81 26849.36 21761.23 29378.96 15042.04 29559.98 31768.86 33551.82 22078.20 17844.30 27377.77 28572.52 277
testgi54.00 29756.86 28345.45 33858.20 34525.81 37049.05 33949.50 34445.43 27367.84 26681.17 22151.81 22243.20 35729.30 35479.41 27067.34 317
EPNet69.10 17467.32 19874.46 10368.33 27961.27 13077.56 10163.57 28660.95 11856.62 33282.75 20551.53 22381.24 11754.36 20290.20 12380.88 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu70.04 15968.88 17673.53 12182.71 10863.62 11174.81 13781.95 9548.53 25267.16 27479.18 24951.42 22478.38 17254.39 20179.72 26878.60 225
DPM-MVS69.98 16169.22 17272.26 15482.69 10958.82 15370.53 18781.23 10847.79 25964.16 29180.21 23251.32 22583.12 8860.14 15384.95 21074.83 259
TR-MVS64.59 22263.54 23267.73 21475.75 19950.83 20063.39 27970.29 24449.33 24571.55 23074.55 28950.94 22678.46 16840.43 29775.69 29273.89 266
CL-MVSNet_self_test62.44 24763.40 23359.55 28672.34 24632.38 34856.39 31864.84 27551.21 22667.46 27181.01 22350.75 22763.51 30638.47 31088.12 16182.75 158
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 12883.29 4880.34 13157.43 15186.65 3191.79 2350.52 22886.01 2971.36 6594.65 3291.62 11
MVS60.62 26159.97 26162.58 26268.13 28147.28 24268.59 21373.96 20432.19 34259.94 31968.86 33550.48 22977.64 18941.85 28875.74 29162.83 339
SixPastTwentyTwo75.77 8376.34 8574.06 11181.69 12254.84 17576.47 11475.49 19464.10 9187.73 1792.24 1750.45 23081.30 11667.41 9191.46 9286.04 73
PatchMatch-RL58.68 27457.72 27761.57 26976.21 19173.59 3961.83 28849.00 34647.30 26361.08 31068.97 33250.16 23159.01 31836.06 32968.84 33452.10 358
eth_miper_zixun_eth69.42 16968.73 18171.50 16167.99 28246.42 25067.58 22578.81 15350.72 23178.13 13480.34 23150.15 23280.34 13760.18 15184.65 21187.74 50
miper_enhance_ethall65.86 20965.05 22368.28 20861.62 32742.62 28164.74 26477.97 16942.52 29373.42 20472.79 30649.66 23377.68 18858.12 16984.59 21384.54 109
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 12680.58 6582.12 9153.54 20183.93 7091.03 3749.49 23485.97 3173.26 5493.08 6791.59 12
K. test v373.67 10973.61 11773.87 11479.78 13855.62 17374.69 14362.04 29666.16 6884.76 6093.23 549.47 23580.97 12665.66 10386.67 18785.02 91
EPP-MVSNet73.86 10873.38 12075.31 9978.19 16353.35 18780.45 6777.32 17765.11 8176.47 16586.80 13149.47 23583.77 7553.89 20692.72 7488.81 41
cascas64.59 22262.77 24070.05 17975.27 20150.02 20861.79 28971.61 22342.46 29463.68 29768.89 33449.33 23780.35 13647.82 25384.05 22079.78 211
h-mvs3373.08 12071.61 14977.48 7383.89 8972.89 4470.47 18871.12 23754.28 18577.89 13683.41 19149.04 23880.98 12563.62 12290.77 11678.58 226
hse-mvs272.32 13870.66 16177.31 7783.10 10171.77 4769.19 20371.45 22854.28 18577.89 13678.26 25949.04 23879.23 15363.62 12289.13 15080.92 189
MDA-MVSNet-bldmvs62.34 24861.73 24464.16 24161.64 32649.90 21148.11 34357.24 31453.31 20380.95 10579.39 24449.00 24061.55 31245.92 26680.05 26281.03 185
testdata64.13 24285.87 5963.34 11361.80 29747.83 25876.42 16786.60 14448.83 24162.31 31054.46 20081.26 25166.74 322
cl____68.26 18968.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.42 20848.74 24275.38 20960.92 14589.81 13385.80 80
DIV-MVS_self_test68.27 18868.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.43 20748.74 24275.38 20960.94 14489.81 13385.81 76
GBi-Net68.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
test168.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
FMVSNet267.48 19768.21 18765.29 23473.14 23638.94 30768.81 20871.21 23654.81 17476.73 15886.48 14748.63 24474.60 22147.98 25186.11 19382.35 166
test22287.30 3769.15 7367.85 22259.59 30441.06 30273.05 20985.72 16848.03 24780.65 25666.92 318
OpenMVS_ROBcopyleft54.93 1763.23 23763.28 23463.07 25669.81 26845.34 25868.52 21567.14 25843.74 28570.61 24079.22 24747.90 24872.66 23748.75 24173.84 30871.21 292
lessismore_v072.75 14179.60 14156.83 16557.37 31183.80 7289.01 9747.45 24978.74 16364.39 11286.49 18982.69 160
TAMVS65.31 21363.75 22969.97 18182.23 11559.76 14666.78 24163.37 28745.20 27669.79 25079.37 24547.42 25072.17 24534.48 33585.15 20577.99 237
PM-MVS64.49 22463.61 23167.14 22076.68 18675.15 2768.49 21642.85 35851.17 22777.85 13880.51 22845.76 25166.31 29452.83 21476.35 28859.96 350
MVS_030462.51 24662.27 24363.25 25369.39 27248.47 22464.05 27362.48 29059.69 12854.10 34481.04 22245.71 25266.31 29441.38 29282.58 23474.96 258
USDC62.80 24263.10 23761.89 26765.19 30643.30 27567.42 22874.20 20335.80 32772.25 21984.48 17945.67 25371.95 25037.95 31484.97 20670.42 299
test20.0355.74 28657.51 27950.42 32159.89 33732.09 35050.63 33749.01 34550.11 23865.07 28583.23 20045.61 25448.11 33930.22 34983.82 22271.07 294
cl2267.14 20166.51 20769.03 19363.20 31943.46 27366.88 24076.25 18649.22 24674.48 18977.88 26545.49 25577.40 19160.64 14784.59 21386.24 69
IterMVS-SCA-FT67.68 19566.07 21072.49 14973.34 23358.20 15963.80 27565.55 27048.10 25476.91 15182.64 20645.20 25678.84 16061.20 14077.89 28480.44 203
SCA58.57 27558.04 27560.17 28270.17 26441.07 29165.19 26053.38 33243.34 29161.00 31373.48 30045.20 25669.38 27140.34 29870.31 32670.05 300
1112_ss59.48 26858.99 26860.96 27777.84 16942.39 28361.42 29168.45 25437.96 31759.93 32067.46 34145.11 25865.07 29840.89 29571.81 31775.41 253
new-patchmatchnet52.89 30055.76 29244.26 34459.94 3366.31 38037.36 36550.76 34141.10 30164.28 29079.82 23844.77 25948.43 33836.24 32787.61 16778.03 235
jason64.47 22562.84 23969.34 18876.91 18259.20 14767.15 23465.67 26735.29 32865.16 28476.74 27444.67 26070.68 26054.74 19679.28 27178.14 233
jason: jason.
IterMVS63.12 23862.48 24265.02 23766.34 29752.86 18863.81 27462.25 29146.57 26771.51 23180.40 23044.60 26166.82 29051.38 22175.47 29575.38 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PAPM61.79 25260.37 25966.05 23076.09 19341.87 28569.30 20076.79 18440.64 30653.80 34579.62 24244.38 26282.92 9229.64 35373.11 31173.36 270
HY-MVS49.31 1957.96 27757.59 27859.10 28966.85 29436.17 32665.13 26165.39 27139.24 31154.69 34178.14 26244.28 26367.18 28633.75 33970.79 32273.95 265
CANet_DTU64.04 23163.83 22864.66 23868.39 27642.97 27873.45 15174.50 20252.05 21454.78 33975.44 28343.99 26470.42 26553.49 21078.41 27980.59 200
LFMVS67.06 20367.89 19164.56 23978.02 16638.25 31270.81 18659.60 30365.18 8071.06 23686.56 14543.85 26575.22 21246.35 26389.63 13680.21 206
pmmvs-eth3d64.41 22763.27 23567.82 21375.81 19860.18 14369.49 19762.05 29538.81 31474.13 19482.23 21043.76 26668.65 27542.53 28380.63 25874.63 260
131459.83 26658.86 26962.74 26165.71 30344.78 26268.59 21372.63 21633.54 34061.05 31267.29 34443.62 26771.26 25749.49 23667.84 33972.19 282
CDS-MVSNet64.33 22862.66 24169.35 18780.44 13458.28 15865.26 25965.66 26844.36 28167.30 27375.54 28043.27 26871.77 25137.68 31584.44 21678.01 236
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MVSFormer69.93 16269.03 17472.63 14674.93 20559.19 14883.98 3675.72 19252.27 21063.53 30076.74 27443.19 26980.56 13272.28 6278.67 27678.14 233
lupinMVS63.36 23461.49 24968.97 19574.93 20559.19 14865.80 25264.52 27934.68 33363.53 30074.25 29443.19 26970.62 26153.88 20778.67 27677.10 243
Test_1112_low_res58.78 27358.69 27059.04 29079.41 14338.13 31457.62 31366.98 26034.74 33159.62 32377.56 26842.92 27163.65 30538.66 30770.73 32375.35 255
test_yl65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
DCV-MVSNet65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
PMMVS44.69 32943.95 33746.92 33250.05 37053.47 18648.08 34442.40 36022.36 36944.01 36953.05 36642.60 27445.49 34631.69 34461.36 35441.79 368
Anonymous2023120654.13 29455.82 29149.04 32970.89 25435.96 32851.73 33550.87 34034.86 32962.49 30379.22 24742.52 27544.29 35327.95 35981.88 24066.88 319
WTY-MVS49.39 31750.31 32046.62 33461.22 32832.00 35146.61 34849.77 34333.87 33654.12 34369.55 32941.96 27645.40 34731.28 34664.42 34662.47 343
UnsupCasMVSNet_eth52.26 30553.29 30349.16 32755.08 35833.67 34450.03 33858.79 30637.67 31863.43 30274.75 28741.82 27745.83 34438.59 30959.42 35867.98 314
UnsupCasMVSNet_bld50.01 31651.03 31646.95 33158.61 34332.64 34748.31 34153.27 33334.27 33460.47 31571.53 31441.40 27847.07 34230.68 34760.78 35561.13 348
ppachtmachnet_test60.26 26459.61 26462.20 26567.70 28644.33 26558.18 31160.96 29940.75 30565.80 28072.57 30741.23 27963.92 30346.87 26082.42 23578.33 228
baseline157.82 27858.36 27456.19 30069.17 27430.76 35762.94 28555.21 32246.04 26963.83 29578.47 25641.20 28063.68 30439.44 30068.99 33374.13 263
MIMVSNet54.39 29356.12 28949.20 32672.57 24430.91 35659.98 30148.43 34841.66 29755.94 33583.86 18741.19 28150.42 33026.05 36275.38 29766.27 323
CHOSEN 1792x268858.09 27656.30 28763.45 25179.95 13750.93 19954.07 33065.59 26928.56 35461.53 30774.33 29241.09 28266.52 29333.91 33867.69 34072.92 273
YYNet152.58 30253.50 30049.85 32254.15 36236.45 32540.53 35846.55 35338.09 31675.52 17573.31 30341.08 28343.88 35441.10 29371.14 32169.21 309
MDA-MVSNet_test_wron52.57 30353.49 30249.81 32354.24 36136.47 32440.48 35946.58 35238.13 31575.47 17673.32 30241.05 28443.85 35540.98 29471.20 32069.10 311
PVSNet_036.71 2241.12 33740.78 34042.14 34759.97 33540.13 29940.97 35742.24 36330.81 35144.86 36649.41 37040.70 28545.12 34923.15 36934.96 37341.16 369
Vis-MVSNet (Re-imp)62.74 24363.21 23661.34 27372.19 24731.56 35267.31 23353.87 32753.60 20069.88 24983.37 19440.52 28670.98 25941.40 29186.78 18581.48 179
sss47.59 32248.32 32245.40 33956.73 35233.96 34245.17 35148.51 34732.11 34652.37 34865.79 34640.39 28741.91 36131.85 34361.97 35260.35 349
test_vis1_n_192052.96 29953.50 30051.32 31959.15 34044.90 26156.13 32164.29 28130.56 35259.87 32160.68 35740.16 28847.47 34048.25 24962.46 35061.58 347
our_test_356.46 28256.51 28556.30 29967.70 28639.66 30255.36 32652.34 33740.57 30763.85 29469.91 32640.04 28958.22 32043.49 28075.29 29971.03 295
Anonymous2024052163.55 23366.07 21055.99 30166.18 30044.04 26768.77 21168.80 25046.99 26472.57 21485.84 16639.87 29050.22 33153.40 21392.23 8173.71 268
miper_lstm_enhance61.97 24961.63 24762.98 25760.04 33445.74 25647.53 34570.95 23844.04 28273.06 20878.84 25439.72 29160.33 31455.82 18784.64 21282.88 153
pmmvs460.78 25959.04 26766.00 23173.06 24157.67 16164.53 26860.22 30136.91 32265.96 27877.27 27039.66 29268.54 27638.87 30574.89 30071.80 285
MVP-Stereo61.56 25359.22 26568.58 20379.28 14560.44 14169.20 20271.57 22443.58 28756.42 33378.37 25839.57 29376.46 20234.86 33460.16 35668.86 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
bld_raw_dy_0_6472.85 13072.76 13373.09 12885.08 7064.80 10378.72 8864.22 28251.92 21683.13 7790.26 7039.21 29469.91 26770.73 6891.60 8984.56 108
FPMVS59.43 26960.07 26057.51 29677.62 17571.52 4962.33 28750.92 33957.40 15269.40 25380.00 23639.14 29561.92 31137.47 31866.36 34239.09 370
DSMNet-mixed43.18 33544.66 33538.75 35354.75 36028.88 36357.06 31527.42 37713.47 37347.27 36177.67 26738.83 29639.29 36625.32 36760.12 35748.08 361
HyFIR lowres test63.01 23960.47 25870.61 16783.04 10254.10 18159.93 30272.24 22133.67 33869.00 25675.63 27938.69 29776.93 19536.60 32375.45 29680.81 194
MVEpermissive27.91 2336.69 34135.64 34439.84 35243.37 37735.85 33019.49 37024.61 37824.68 36439.05 37262.63 35438.67 29827.10 37521.04 37147.25 37156.56 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu58.93 27258.52 27160.16 28367.91 28447.70 23769.97 19258.02 30749.73 24247.28 36073.02 30538.14 29962.34 30936.57 32485.99 19470.43 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs552.49 30452.58 30652.21 31654.99 35932.38 34855.45 32553.84 32832.15 34455.49 33874.81 28538.08 30057.37 32234.02 33774.40 30466.88 319
N_pmnet52.06 30651.11 31454.92 30359.64 33971.03 5337.42 36461.62 29833.68 33757.12 32872.10 30837.94 30131.03 37129.13 35871.35 31862.70 340
CMPMVSbinary48.73 2061.54 25460.89 25463.52 25061.08 32951.55 19568.07 22168.00 25633.88 33565.87 27981.25 22037.91 30267.71 28049.32 23782.60 23371.31 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
FMVSNet365.00 21765.16 21664.52 24069.47 27137.56 32066.63 24270.38 24351.55 22174.72 18483.27 19937.89 30374.44 22347.12 25685.37 19881.57 178
AUN-MVS70.22 15767.88 19277.22 7882.96 10571.61 4869.08 20471.39 22949.17 24771.70 22478.07 26437.62 30479.21 15461.81 13389.15 14880.82 192
ECVR-MVScopyleft64.82 21865.22 21463.60 24878.80 15731.14 35566.97 23756.47 31854.23 18769.94 24788.68 10437.23 30574.81 21945.28 27289.41 14284.86 94
test111164.62 22165.19 21562.93 25979.01 15529.91 35965.45 25754.41 32654.09 19271.47 23388.48 10837.02 30674.29 22646.83 26189.94 13184.58 107
GA-MVS62.91 24061.66 24566.66 22667.09 29144.49 26461.18 29469.36 24951.33 22469.33 25474.47 29036.83 30774.94 21650.60 22774.72 30180.57 201
MS-PatchMatch55.59 28754.89 29557.68 29569.18 27349.05 22061.00 29562.93 28935.98 32558.36 32668.93 33336.71 30866.59 29237.62 31763.30 34957.39 354
CVMVSNet59.21 27058.44 27361.51 27073.94 22547.76 23671.31 17764.56 27826.91 35960.34 31670.44 31936.24 30967.65 28153.57 20968.66 33569.12 310
PMMVS237.74 33940.87 33928.36 35642.41 3785.35 38124.61 36927.75 37632.15 34447.85 35970.27 32235.85 31029.51 37319.08 37367.85 33850.22 360
tpmrst50.15 31551.38 31246.45 33556.05 35324.77 37164.40 27049.98 34236.14 32453.32 34669.59 32835.16 31148.69 33539.24 30258.51 36165.89 324
D2MVS62.58 24561.05 25367.20 21863.85 31547.92 23356.29 31969.58 24739.32 30970.07 24678.19 26134.93 31272.68 23653.44 21183.74 22381.00 187
PVSNet43.83 2151.56 31051.17 31352.73 31368.34 27838.27 31148.22 34253.56 33036.41 32354.29 34264.94 34934.60 31354.20 32730.34 34869.87 32965.71 326
MVS-HIRNet45.53 32647.29 32540.24 35162.29 32226.82 36756.02 32237.41 37229.74 35343.69 37081.27 21933.96 31455.48 32324.46 36856.79 36338.43 371
test_vis1_rt46.70 32445.24 33151.06 32044.58 37651.04 19839.91 36067.56 25721.84 37151.94 34950.79 36933.83 31539.77 36435.25 33361.50 35362.38 344
baseline255.57 28852.74 30464.05 24465.26 30544.11 26662.38 28654.43 32539.03 31251.21 35067.35 34333.66 31672.45 24237.14 32064.22 34775.60 250
RPMNet65.77 21065.08 22267.84 21266.37 29548.24 22770.93 18386.27 1954.66 18061.35 30886.77 13433.29 31785.67 4555.93 18570.17 32769.62 305
CR-MVSNet58.96 27158.49 27260.36 28166.37 29548.24 22770.93 18356.40 31932.87 34161.35 30886.66 13933.19 31863.22 30748.50 24570.17 32769.62 305
Patchmtry60.91 25763.01 23854.62 30666.10 30126.27 36967.47 22756.40 31954.05 19372.04 22286.66 13933.19 31860.17 31543.69 27787.45 17277.42 240
mvsany_test137.88 33835.74 34344.28 34347.28 37449.90 21136.54 36624.37 37919.56 37245.76 36253.46 36532.99 32037.97 36826.17 36135.52 37244.99 367
CostFormer57.35 28056.14 28860.97 27663.76 31738.43 30967.50 22660.22 30137.14 32159.12 32476.34 27632.78 32171.99 24939.12 30469.27 33272.47 278
tpm cat154.02 29652.63 30558.19 29464.85 31239.86 30166.26 24657.28 31232.16 34356.90 33070.39 32132.75 32265.30 29734.29 33658.79 35969.41 307
thres20057.55 27957.02 28159.17 28767.89 28534.93 33658.91 30857.25 31350.24 23664.01 29371.46 31532.49 32371.39 25631.31 34579.57 26971.19 293
tfpn200view960.35 26359.97 26161.51 27070.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24477.08 244
thres40060.77 26059.97 26163.15 25470.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24482.02 171
EU-MVSNet60.82 25860.80 25660.86 27868.37 27741.16 28972.27 15668.27 25526.96 35869.08 25575.71 27832.09 32667.44 28355.59 19078.90 27373.97 264
thres100view90061.17 25661.09 25261.39 27272.14 24835.01 33565.42 25856.99 31555.23 17170.71 23979.90 23732.07 32772.09 24635.61 33081.73 24477.08 244
thres600view761.82 25161.38 25063.12 25571.81 25034.93 33664.64 26556.99 31554.78 17870.33 24379.74 23932.07 32772.42 24338.61 30883.46 22782.02 171
FE-MVS68.29 18766.96 20572.26 15474.16 22254.24 18077.55 10273.42 20857.65 14972.66 21384.91 17432.02 32981.49 11348.43 24681.85 24181.04 184
test_fmvs254.80 29154.11 29856.88 29851.76 36849.95 21056.70 31765.80 26626.22 36069.42 25265.25 34831.82 33049.98 33249.63 23570.36 32570.71 296
test_f43.79 33345.63 32838.24 35442.29 37938.58 30834.76 36747.68 35022.22 37067.34 27263.15 35131.82 33030.60 37239.19 30362.28 35145.53 366
PatchmatchNetpermissive54.60 29254.27 29755.59 30265.17 30839.08 30466.92 23851.80 33839.89 30858.39 32573.12 30431.69 33258.33 31943.01 28258.38 36269.38 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs131.41 33370.05 300
patchmatchnet-post68.99 33131.32 33469.38 271
ADS-MVSNet248.76 31847.25 32653.29 31255.90 35540.54 29747.34 34654.99 32431.41 34950.48 35372.06 30931.23 33554.26 32625.93 36355.93 36465.07 330
ADS-MVSNet44.62 33045.58 32941.73 34955.90 35520.83 37547.34 34639.94 36931.41 34950.48 35372.06 30931.23 33539.31 36525.93 36355.93 36465.07 330
sam_mvs31.21 337
Patchmatch-RL test59.95 26559.12 26662.44 26372.46 24554.61 17859.63 30347.51 35141.05 30374.58 18874.30 29331.06 33865.31 29651.61 21879.85 26467.39 315
tpmvs55.84 28455.45 29457.01 29760.33 33333.20 34665.89 24959.29 30547.52 26256.04 33473.60 29931.05 33968.06 27940.64 29664.64 34569.77 303
test_post1.99 37730.91 34054.76 325
MDTV_nov1_ep1354.05 29965.54 30429.30 36159.00 30655.22 32135.96 32652.44 34775.98 27730.77 34159.62 31638.21 31173.33 310
test_post166.63 2422.08 37630.66 34259.33 31740.34 298
Patchmatch-test47.93 32049.96 32141.84 34857.42 34824.26 37248.75 34041.49 36539.30 31056.79 33173.48 30030.48 34333.87 37029.29 35572.61 31267.39 315
tpm256.12 28354.64 29660.55 28066.24 29836.01 32768.14 21956.77 31733.60 33958.25 32775.52 28230.25 34474.33 22533.27 34069.76 33171.32 289
MVSTER63.29 23661.60 24868.36 20459.77 33846.21 25360.62 29771.32 23041.83 29675.40 17779.12 25030.25 34475.85 20356.30 18279.81 26583.03 150
tpm50.60 31352.42 30745.14 34065.18 30726.29 36860.30 29943.50 35637.41 31957.01 32979.09 25130.20 34642.32 35832.77 34266.36 34266.81 321
PatchT53.35 29856.47 28643.99 34564.19 31417.46 37759.15 30443.10 35752.11 21354.74 34086.95 12829.97 34749.98 33243.62 27874.40 30464.53 336
MDTV_nov1_ep13_2view18.41 37653.74 33131.57 34844.89 36529.90 34832.93 34171.48 287
test_vis1_n51.27 31250.41 31953.83 30756.99 34950.01 20956.75 31660.53 30025.68 36159.74 32257.86 36229.40 34947.41 34143.10 28163.66 34864.08 337
test-LLR50.43 31450.69 31849.64 32460.76 33041.87 28553.18 33245.48 35443.41 28949.41 35760.47 35929.22 35044.73 35142.09 28672.14 31562.33 345
test0.0.03 147.72 32148.31 32345.93 33655.53 35729.39 36046.40 34941.21 36743.41 28955.81 33767.65 34029.22 35043.77 35625.73 36569.87 32964.62 334
test_fmvs151.51 31150.86 31753.48 30949.72 37149.35 21954.11 32964.96 27424.64 36563.66 29859.61 36128.33 35248.45 33745.38 27167.30 34162.66 342
test_fmvs1_n52.70 30152.01 30854.76 30453.83 36550.36 20355.80 32365.90 26524.96 36365.39 28260.64 35827.69 35348.46 33645.88 26767.99 33765.46 327
mvsany_test343.76 33441.01 33852.01 31748.09 37357.74 16042.47 35623.85 38023.30 36864.80 28662.17 35527.12 35440.59 36329.17 35748.11 37057.69 353
thisisatest053067.05 20465.16 21672.73 14373.10 23950.55 20171.26 17963.91 28450.22 23774.46 19080.75 22526.81 35580.25 13959.43 16186.50 18887.37 54
tttt051769.46 16867.79 19374.46 10375.34 20052.72 18975.05 13363.27 28854.69 17978.87 12684.37 18026.63 35681.15 11863.95 11787.93 16689.51 25
EMVS44.61 33144.45 33645.10 34148.91 37243.00 27737.92 36341.10 36846.75 26638.00 37348.43 37126.42 35746.27 34337.11 32175.38 29746.03 364
thisisatest051560.48 26257.86 27668.34 20567.25 28946.42 25060.58 29862.14 29240.82 30463.58 29969.12 33026.28 35878.34 17448.83 24082.13 23780.26 205
E-PMN45.17 32745.36 33044.60 34250.07 36942.75 27938.66 36242.29 36246.39 26839.55 37151.15 36826.00 35945.37 34837.68 31576.41 28745.69 365
EPMVS45.74 32546.53 32743.39 34654.14 36322.33 37455.02 32735.00 37434.69 33251.09 35170.20 32325.92 36042.04 36037.19 31955.50 36665.78 325
tmp_tt11.98 34414.73 3473.72 3592.28 3824.62 38219.44 37114.50 3820.47 37721.55 3759.58 37525.78 3614.57 37811.61 37527.37 3741.96 374
ET-MVSNet_ETH3D63.32 23560.69 25771.20 16470.15 26555.66 17165.02 26264.32 28043.28 29268.99 25772.05 31125.46 36278.19 18054.16 20582.80 23179.74 212
FMVSNet555.08 29055.54 29353.71 30865.80 30233.50 34556.22 32052.50 33643.72 28661.06 31183.38 19325.46 36254.87 32430.11 35081.64 24972.75 275
test_fmvs356.78 28155.99 29059.12 28853.96 36448.09 23058.76 30966.22 26327.54 35676.66 15968.69 33725.32 36451.31 32853.42 21273.38 30977.97 238
iter_conf_final68.69 18067.00 20473.76 11673.68 22852.33 19275.96 12773.54 20650.56 23369.90 24882.85 20324.76 36583.73 7665.40 10586.33 19085.22 84
new_pmnet37.55 34039.80 34230.79 35556.83 35016.46 37839.35 36130.65 37525.59 36245.26 36461.60 35624.54 36628.02 37421.60 37052.80 36847.90 362
dp44.09 33244.88 33441.72 35058.53 34423.18 37354.70 32842.38 36134.80 33044.25 36865.61 34724.48 36744.80 35029.77 35249.42 36957.18 355
IB-MVS49.67 1859.69 26756.96 28267.90 21068.19 28050.30 20561.42 29165.18 27247.57 26155.83 33667.15 34523.77 36879.60 14943.56 27979.97 26373.79 267
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CHOSEN 280x42041.62 33639.89 34146.80 33361.81 32451.59 19433.56 36835.74 37327.48 35737.64 37453.53 36423.24 36942.09 35927.39 36058.64 36046.72 363
test_vis3_rt51.94 30951.04 31554.65 30546.32 37550.13 20744.34 35478.17 16523.62 36768.95 25962.81 35221.41 37038.52 36741.49 29072.22 31475.30 256
gg-mvs-nofinetune55.75 28556.75 28452.72 31462.87 32028.04 36468.92 20541.36 36671.09 4050.80 35292.63 1220.74 37166.86 28829.97 35172.41 31363.25 338
iter_conf0567.34 20065.62 21272.50 14869.82 26747.06 24572.19 15976.86 18145.32 27572.86 21082.85 20320.53 37283.73 7661.13 14289.02 15286.70 65
GG-mvs-BLEND52.24 31560.64 33229.21 36269.73 19642.41 35945.47 36352.33 36720.43 37368.16 27825.52 36665.42 34459.36 351
JIA-IIPM54.03 29551.62 30961.25 27459.14 34155.21 17459.10 30547.72 34950.85 22950.31 35685.81 16720.10 37463.97 30236.16 32855.41 36764.55 335
test-mter48.56 31948.20 32449.64 32460.76 33041.87 28553.18 33245.48 35431.91 34749.41 35760.47 35918.34 37544.73 35142.09 28672.14 31562.33 345
TESTMET0.1,145.17 32744.93 33345.89 33756.02 35438.31 31053.18 33241.94 36427.85 35544.86 36656.47 36317.93 37641.50 36238.08 31368.06 33657.85 352
test250661.23 25560.85 25562.38 26478.80 15727.88 36567.33 23237.42 37154.23 18767.55 27088.68 10417.87 37774.39 22446.33 26489.41 14284.86 94
test_method19.26 34219.12 34619.71 3579.09 3811.91 3837.79 37253.44 3311.42 37510.27 37735.80 37217.42 37825.11 37612.44 37424.38 37532.10 372
DeepMVS_CXcopyleft11.83 35815.51 38013.86 37911.25 3835.76 37420.85 37626.46 37317.06 3799.22 3779.69 37613.82 37612.42 373
pmmvs346.71 32345.09 33251.55 31856.76 35148.25 22655.78 32439.53 37024.13 36650.35 35563.40 35015.90 38051.08 32929.29 35570.69 32455.33 357
KD-MVS_2432*160052.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
miper_refine_blended52.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
testmvs4.06 3485.28 3510.41 3600.64 3840.16 38542.54 3550.31 3850.26 3790.50 3801.40 3790.77 3830.17 3790.56 3770.55 3780.90 375
test1234.43 3475.78 3500.39 3610.97 3830.28 38446.33 3500.45 3840.31 3780.62 3791.50 3780.61 3840.11 3800.56 3770.63 3770.77 376
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re5.62 3457.50 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38167.46 3410.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
No_MVS79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
eth-test20.00 385
eth-test0.00 385
IU-MVS86.12 5360.90 13580.38 12845.49 27281.31 10175.64 3994.39 4184.65 100
save fliter87.00 3967.23 8679.24 8377.94 17056.65 160
test_0728_SECOND76.57 8386.20 4860.57 14083.77 4085.49 2985.90 3675.86 3794.39 4183.25 144
GSMVS70.05 300
test_part285.90 5766.44 9184.61 62
MTGPAbinary80.63 122
MTMP84.83 3119.26 381
gm-plane-assit62.51 32133.91 34337.25 32062.71 35372.74 23538.70 306
test9_res72.12 6491.37 9377.40 241
agg_prior270.70 7090.93 10878.55 227
agg_prior84.44 8266.02 9478.62 15976.95 15080.34 137
test_prior470.14 6377.57 100
test_prior75.27 10082.15 11659.85 14584.33 5983.39 8482.58 162
旧先验271.17 18045.11 27778.54 13061.28 31359.19 163
新几何271.33 176
无先验74.82 13670.94 23947.75 26076.85 19854.47 19972.09 283
原ACMM274.78 140
testdata267.30 28448.34 247
testdata168.34 21857.24 153
plane_prior785.18 6666.21 93
plane_prior585.49 2986.15 2671.09 6690.94 10684.82 96
plane_prior489.11 94
plane_prior365.67 9563.82 9478.23 132
plane_prior282.74 5165.45 73
plane_prior184.46 81
plane_prior65.18 9980.06 7761.88 11389.91 132
n20.00 386
nn0.00 386
door-mid55.02 323
test1182.71 84
door52.91 335
HQP5-MVS58.80 154
HQP-NCC82.37 11177.32 10559.08 13171.58 226
ACMP_Plane82.37 11177.32 10559.08 13171.58 226
BP-MVS67.38 94
HQP4-MVS71.59 22585.31 5083.74 130
HQP3-MVS84.12 6589.16 146
NP-MVS83.34 9563.07 11685.97 163
ACMMP++_ref89.47 141
ACMMP++91.96 83