This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32099.50 8697.30 22299.05 14198.98 17099.35 1299.32 35695.72 27099.68 16799.18 238
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 35996.23 24498.38 33199.28 216
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
cdsmvs_eth3d_5k24.66 36532.88 3680.00 3840.00 4060.00 4090.00 39599.10 2250.00 4020.00 40397.58 32699.21 160.00 4030.00 4020.00 4010.00 399
wuyk23d96.06 29897.62 21691.38 37898.65 29498.57 9698.85 8296.95 34996.86 25299.90 1299.16 12399.18 1798.40 38889.23 37799.77 12477.18 396
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 32896.50 23098.99 30099.34 198
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26696.71 21199.77 12499.50 124
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 39896.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26299.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26299.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 37899.41 3798.29 33498.45 327
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 25798.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
canonicalmvs98.34 15898.26 15898.58 19498.46 31597.82 16998.96 7399.46 10499.19 6997.46 30195.46 37698.59 4999.46 33698.08 11798.71 31998.46 325
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
Effi-MVS+98.02 18897.82 20098.62 18798.53 30997.19 20997.33 25099.68 4197.30 22296.68 33597.46 33498.56 5299.80 18696.63 21598.20 33798.86 287
Fast-Effi-MVS+97.67 21797.38 22998.57 19698.71 27597.43 19497.23 25899.45 10794.82 31596.13 35096.51 35498.52 5499.91 6096.19 24798.83 31198.37 334
xiu_mvs_v1_base_debu97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
xiu_mvs_v1_base97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
xiu_mvs_v1_base_debi97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
ETV-MVS98.03 18797.86 19898.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37398.41 6099.88 8496.27 24399.24 26797.71 363
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 331
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29198.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25498.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
xiu_mvs_v2_base97.16 25597.49 22396.17 33998.54 30792.46 34595.45 34398.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 386
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 31799.30 16797.58 19198.10 25698.24 28398.25 6999.34 35396.69 21299.65 17999.12 247
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25498.71 8099.76 13599.33 203
PC_three_145293.27 34399.40 8398.54 25298.22 7497.00 39495.17 28499.45 23699.49 128
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 32697.70 14299.73 14297.89 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 26699.96 499.81 598.18 7899.45 33798.97 6499.79 11599.83 22
DVP-MVS++98.90 7698.70 9399.51 4398.43 31899.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
OPU-MVS98.82 15798.59 30098.30 11698.10 15898.52 25598.18 7898.75 38594.62 29699.48 23399.41 165
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24198.75 19598.92 18598.18 7899.65 28296.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32398.97 6695.03 35499.18 20696.88 25199.33 9798.78 21498.16 8299.28 36396.74 20699.62 18799.44 155
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32099.27 18197.60 19097.99 26498.25 28298.15 8499.38 34896.87 19599.57 20799.42 162
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31898.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 332
pcd_1.5k_mvsjas8.17 36810.90 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40298.07 860.00 4030.00 4020.00 4010.00 399
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
PS-MVSNAJ97.08 26097.39 22896.16 34198.56 30592.46 34595.24 34998.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 387
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24898.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 31498.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24598.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
TinyColmap97.89 19797.98 18697.60 28098.86 24994.35 30296.21 31199.44 11197.45 20999.06 13698.88 19697.99 9599.28 36394.38 30899.58 20399.18 238
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
mvsany_test197.60 22197.54 21997.77 26497.72 35595.35 27195.36 34697.13 34394.13 33199.71 3399.33 9097.93 9899.30 35997.60 14598.94 30698.67 316
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24699.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25698.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
PHI-MVS98.29 16697.95 18899.34 7398.44 31799.16 4398.12 15599.38 12896.01 28498.06 25998.43 26697.80 10699.67 26695.69 27299.58 20399.20 231
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30596.57 21999.55 21398.97 269
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23898.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EIA-MVS98.00 19097.74 20498.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33795.55 37297.68 11299.80 18696.73 20899.27 26298.52 323
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25398.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25398.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35293.86 32299.27 26298.79 300
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
9.1497.78 20199.07 20997.53 23599.32 15495.53 29798.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
CLD-MVS97.49 22897.16 24198.48 21099.07 20997.03 21794.71 36199.21 19694.46 32298.06 25997.16 34497.57 12499.48 33194.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29597.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28596.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
EGC-MVSNET85.24 36280.54 36599.34 7399.77 2999.20 3499.08 5999.29 17512.08 39920.84 40099.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33098.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
X-MVStestdata94.32 33092.59 34899.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 39797.50 13399.83 15696.79 20099.53 21999.56 98
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 33799.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
TSAR-MVS + GP.98.18 17797.98 18698.77 17098.71 27597.88 16196.32 30698.66 29296.33 27199.23 11998.51 25697.48 13799.40 34497.16 16699.46 23499.02 260
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35296.42 30199.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39091.59 35899.67 17396.82 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MSDG97.71 21497.52 22198.28 23098.91 24096.82 22694.42 37199.37 13297.65 18498.37 23998.29 28197.40 14099.33 35594.09 31599.22 27098.68 315
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
LS3D98.63 12198.38 14399.36 6497.25 37499.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 29699.42 7999.19 11497.27 14799.63 28897.89 12899.97 2099.20 231
CNVR-MVS98.17 17997.87 19799.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 30796.42 23499.33 25299.39 177
OMC-MVS97.88 19997.49 22399.04 13098.89 24698.63 8996.94 27499.25 18795.02 30998.53 22498.51 25697.27 14799.47 33493.50 33199.51 22499.01 261
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
MVS_Test98.18 17798.36 14597.67 27498.48 31394.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31098.57 9098.90 30998.71 308
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
MCST-MVS98.00 19097.63 21599.10 11599.24 16798.17 12896.89 27998.73 28995.66 29297.92 26697.70 32097.17 15399.66 27796.18 24999.23 26999.47 145
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38199.76 1699.56 21099.92 9
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
MSLP-MVS++98.02 18898.14 17397.64 27898.58 30295.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 38497.55 14699.41 24198.94 276
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 20098.93 7197.76 20799.28 17894.97 31198.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
segment_acmp97.02 162
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 32796.55 22699.50 23199.26 220
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
QAPM97.31 24196.81 26298.82 15798.80 26497.49 18999.06 6399.19 20290.22 37497.69 28399.16 12396.91 16799.90 6590.89 37099.41 24199.07 251
CDPH-MVS97.26 24596.66 27299.07 12199.00 22298.15 12996.03 31899.01 24491.21 36897.79 27797.85 31296.89 16899.69 25492.75 34499.38 24699.39 177
PVSNet_Blended_VisFu98.17 17998.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 32498.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
PMMVS298.07 18698.08 17998.04 24999.41 13894.59 29694.59 36899.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
PVSNet_BlendedMVS97.55 22597.53 22097.60 28098.92 23793.77 32596.64 29199.43 11794.49 32097.62 28699.18 11796.82 17399.67 26694.73 29399.93 4499.36 192
PVSNet_Blended96.88 27196.68 26997.47 29498.92 23793.77 32594.71 36199.43 11790.98 37097.62 28697.36 34096.82 17399.67 26694.73 29399.56 21098.98 266
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
API-MVS97.04 26396.91 25497.42 29797.88 35098.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37290.16 37399.02 29794.88 392
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30399.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
LF4IMVS97.90 19597.69 20898.52 20699.17 18997.66 18197.19 26499.47 10296.31 27397.85 27398.20 28796.71 18399.52 32294.62 29699.72 14998.38 332
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29098.37 10199.85 8299.39 177
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25599.72 3199.78 896.60 18799.67 26699.91 299.90 7099.94 7
OpenMVScopyleft96.65 797.09 25996.68 26998.32 22598.32 32697.16 21298.86 8199.37 13289.48 37896.29 34999.15 12796.56 18899.90 6592.90 33899.20 27397.89 351
UGNet98.53 13798.45 13198.79 16497.94 34696.96 22199.08 5998.54 29999.10 7996.82 33199.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TEST998.71 27598.08 14095.96 32299.03 23891.40 36595.85 35697.53 32896.52 19099.76 222
Test By Simon96.52 190
train_agg97.10 25796.45 28299.07 12198.71 27598.08 14095.96 32299.03 23891.64 36095.85 35697.53 32896.47 19299.76 22293.67 32599.16 27999.36 192
test_898.67 28798.01 14895.91 32799.02 24191.64 36095.79 35897.50 33196.47 19299.76 222
Effi-MVS+-dtu98.26 16997.90 19499.35 7098.02 34399.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
ppachtmachnet_test97.50 22697.74 20496.78 32798.70 27991.23 36694.55 36999.05 23396.36 27099.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
ZD-MVS99.01 22198.84 7599.07 22994.10 33298.05 26198.12 29296.36 19999.86 11092.70 34699.19 276
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
mvs_anonymous97.83 20998.16 17096.87 32198.18 33591.89 35497.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34198.95 272
test_vis1_rt97.75 21197.72 20797.83 25998.81 26196.35 23997.30 25399.69 3694.61 31897.87 27098.05 29996.26 20298.32 38998.74 7798.18 33898.82 290
DSMNet-mixed97.42 23497.60 21796.87 32199.15 19591.46 35898.54 10999.12 22192.87 35097.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 27599.78 2699.82 496.14 20498.63 38699.82 899.93 4499.95 6
TAPA-MVS96.21 1196.63 28195.95 29298.65 18198.93 23398.09 13696.93 27699.28 17883.58 39198.13 25397.78 31496.13 20599.40 34493.52 32999.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23899.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32295.72 27099.71 15499.32 205
MVS_030498.10 18197.88 19698.76 17198.82 25896.50 23597.90 18691.35 39199.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33393.78 32497.29 25498.84 27196.10 28098.64 20598.65 23796.04 20999.36 34996.84 19899.14 28299.20 231
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32697.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
Anonymous2023120698.21 17498.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 27898.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
NCCC97.86 20197.47 22699.05 12898.61 29598.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21599.66 27795.31 28298.82 31399.43 159
our_test_397.39 23697.73 20696.34 33398.70 27989.78 37494.61 36798.97 24896.50 26599.04 14398.85 20295.98 21699.84 13997.26 16199.67 17399.41 165
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21699.79 19999.33 3999.90 7099.51 121
MVS93.19 34892.09 35296.50 33196.91 38094.03 31298.07 16298.06 32268.01 39594.56 37896.48 35695.96 21899.30 35983.84 38896.89 37196.17 384
MVP-Stereo98.08 18597.92 19298.57 19698.96 22996.79 22797.90 18699.18 20696.41 26998.46 22998.95 17995.93 21999.60 29796.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_prior295.74 33396.48 26796.11 35197.63 32495.92 22094.16 31099.20 273
AdaColmapbinary97.14 25696.71 26798.46 21298.34 32597.80 17296.95 27398.93 25195.58 29596.92 32197.66 32195.87 22199.53 31890.97 36799.14 28298.04 346
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22299.91 6099.32 4099.95 3299.70 52
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24099.32 10399.18 11795.84 22399.84 13999.50 3299.91 6399.54 109
PatchMatch-RL97.24 24896.78 26398.61 19099.03 22097.83 16696.36 30499.06 23093.49 34297.36 30897.78 31495.75 22499.49 32893.44 33298.77 31498.52 323
F-COLMAP97.30 24296.68 26999.14 10999.19 18198.39 10897.27 25799.30 16792.93 34896.62 33898.00 30195.73 22599.68 26392.62 34798.46 33099.35 196
PMMVS96.51 28595.98 29198.09 24197.53 36595.84 25594.92 35798.84 27191.58 36296.05 35495.58 37195.68 22699.66 27795.59 27698.09 34598.76 304
N_pmnet97.63 22097.17 24098.99 13699.27 16297.86 16395.98 31993.41 38295.25 30599.47 7098.90 18995.63 22799.85 12296.91 18799.73 14299.27 217
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22899.85 12297.54 14899.85 8299.59 81
CANet97.87 20097.76 20298.19 23697.75 35495.51 26596.76 28599.05 23397.74 17796.93 32098.21 28695.59 22999.89 7597.86 13399.93 4499.19 236
131495.74 30895.60 30196.17 33997.53 36592.75 34298.07 16298.31 31091.22 36794.25 37996.68 35295.53 23099.03 37491.64 35797.18 36696.74 379
114514_t96.50 28795.77 29498.69 17999.48 12397.43 19497.84 19699.55 7281.42 39396.51 34398.58 24995.53 23099.67 26693.41 33399.58 20398.98 266
test1298.93 14598.58 30297.83 16698.66 29296.53 34195.51 23299.69 25499.13 28499.27 217
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23399.01 29899.23 226
YYNet197.60 22197.67 20997.39 29999.04 21793.04 33795.27 34798.38 30897.25 22798.92 16698.95 17995.48 23499.73 23996.99 18198.74 31599.41 165
MDA-MVSNet_test_wron97.60 22197.66 21297.41 29899.04 21793.09 33395.27 34798.42 30597.26 22698.88 17498.95 17995.43 23599.73 23997.02 17898.72 31799.41 165
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 35496.07 35398.10 29495.39 23699.71 24792.61 34898.99 30099.08 249
USDC97.41 23597.40 22797.44 29698.94 23193.67 32795.17 35099.53 8094.03 33498.97 15499.10 13795.29 23799.34 35395.84 26699.73 14299.30 212
testdata98.09 24198.93 23395.40 27098.80 27890.08 37697.45 30298.37 27295.26 23899.70 25093.58 32898.95 30599.17 242
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 23999.97 499.31 4199.98 1299.73 45
BH-untuned96.83 27396.75 26597.08 31098.74 26993.33 33196.71 28898.26 31196.72 25898.44 23197.37 33995.20 24099.47 33491.89 35397.43 35998.44 329
MVEpermissive83.40 2292.50 35391.92 35694.25 36598.83 25591.64 35692.71 38783.52 40195.92 28786.46 39895.46 37695.20 24095.40 39780.51 39498.64 32495.73 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31494.05 30996.67 29097.36 33696.70 26097.87 27097.98 30395.14 24299.44 33990.47 37298.58 32899.25 221
pmmvs497.58 22497.28 23598.51 20798.84 25396.93 22495.40 34598.52 30193.60 33998.61 21098.65 23795.10 24399.60 29796.97 18499.79 11598.99 265
test_vis1_n_192098.40 15198.92 6996.81 32599.74 3890.76 37198.15 15299.91 798.33 13099.89 1599.55 4895.07 24499.88 8499.76 1699.93 4499.79 30
EU-MVSNet97.66 21898.50 12195.13 35899.63 7585.84 38898.35 13598.21 31398.23 14099.54 5699.46 6695.02 24599.68 26398.24 10799.87 7899.87 16
DP-MVS Recon97.33 24096.92 25298.57 19699.09 20597.99 14996.79 28299.35 14193.18 34497.71 28198.07 29895.00 24699.31 35793.97 31799.13 28498.42 331
HQP_MVS97.99 19397.67 20998.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24799.70 25094.42 30499.51 22499.45 151
plane_prior698.99 22597.70 18094.90 247
CPTT-MVS97.84 20797.36 23199.27 8999.31 15598.46 10598.29 13899.27 18194.90 31397.83 27498.37 27294.90 24799.84 13993.85 32399.54 21599.51 121
new_pmnet96.99 26896.76 26497.67 27498.72 27294.89 28595.95 32498.20 31492.62 35398.55 22198.54 25294.88 25099.52 32293.96 31899.44 23998.59 322
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25199.79 19998.34 10399.63 18499.34 198
jason97.45 23297.35 23297.76 26799.24 16793.93 31795.86 32898.42 30594.24 32898.50 22698.13 29094.82 25199.91 6097.22 16399.73 14299.43 159
jason: jason.
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26199.17 12799.21 11194.81 25399.77 21696.96 18599.88 7599.44 155
新几何198.91 14898.94 23197.76 17498.76 28387.58 38596.75 33498.10 29494.80 25499.78 21092.73 34599.00 29999.20 231
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25499.78 21098.13 11399.13 28499.31 209
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25699.95 2399.45 3599.96 2599.88 14
MAR-MVS96.47 28995.70 29798.79 16497.92 34799.12 5798.28 13998.60 29792.16 35895.54 36596.17 36294.77 25799.52 32289.62 37598.23 33597.72 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
CL-MVSNet_self_test97.44 23397.22 23898.08 24498.57 30495.78 25894.30 37498.79 27996.58 26498.60 21298.19 28894.74 25899.64 28596.41 23598.84 31098.82 290
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 25999.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26099.95 2399.11 5399.24 26799.82 25
PAPR95.29 31794.47 32697.75 26897.50 36995.14 27994.89 35898.71 29091.39 36695.35 36995.48 37594.57 26099.14 37384.95 38697.37 36198.97 269
test22298.92 23796.93 22495.54 33898.78 28185.72 38896.86 32998.11 29394.43 26299.10 28999.23 226
PLCcopyleft94.65 1696.51 28595.73 29698.85 15498.75 26897.91 15996.42 30199.06 23090.94 37195.59 35997.38 33894.41 26399.59 30190.93 36898.04 35199.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
D2MVS97.84 20797.84 19997.83 25999.14 19694.74 28996.94 27498.88 26095.84 28998.89 17098.96 17594.40 26499.69 25497.55 14699.95 3299.05 253
CNLPA97.17 25496.71 26798.55 20198.56 30598.05 14696.33 30598.93 25196.91 25097.06 31697.39 33794.38 26599.45 33791.66 35599.18 27898.14 341
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26699.93 4198.65 8598.83 31199.76 39
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26799.85 12296.60 21698.72 31799.37 186
OpenMVS_ROBcopyleft95.38 1495.84 30695.18 31797.81 26198.41 32297.15 21397.37 24798.62 29683.86 39098.65 20498.37 27294.29 26899.68 26388.41 37898.62 32696.60 381
TR-MVS95.55 31395.12 31896.86 32497.54 36493.94 31696.49 29796.53 35894.36 32797.03 31896.61 35394.26 26999.16 37186.91 38396.31 37797.47 370
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27099.86 11097.77 13799.69 16299.41 165
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27099.86 11097.77 13799.69 16299.41 165
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27099.82 16697.97 12599.80 11099.29 214
PAPM_NR96.82 27596.32 28598.30 22899.07 20996.69 23297.48 24098.76 28395.81 29096.61 33996.47 35794.12 27399.17 37090.82 37197.78 35399.06 252
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27499.94 3699.25 4699.96 2599.42 162
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35098.03 16899.85 1597.62 18699.96 499.62 3493.98 27599.74 23499.52 3199.86 8199.79 30
HQP2-MVS93.84 276
HQP-MVS97.00 26796.49 28198.55 20198.67 28796.79 22796.29 30799.04 23696.05 28195.55 36296.84 34993.84 27699.54 31692.82 34199.26 26599.32 205
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27899.97 499.26 4499.57 20799.43 159
lupinMVS97.06 26196.86 25697.65 27698.88 24793.89 32195.48 34297.97 32393.53 34098.16 24997.58 32693.81 27899.91 6096.77 20399.57 20799.17 242
MG-MVS96.77 27696.61 27597.26 30498.31 32793.06 33495.93 32598.12 32096.45 26897.92 26698.73 22193.77 28099.39 34691.19 36699.04 29399.33 203
PVSNet93.40 1795.67 30995.70 29795.57 35198.83 25588.57 37792.50 38897.72 32892.69 35296.49 34696.44 35893.72 28199.43 34093.61 32699.28 26198.71 308
MM98.91 14896.97 21997.89 18894.44 37499.54 2798.95 15799.14 13093.50 28299.92 5199.80 1299.96 2599.85 19
pmmvs597.64 21997.49 22398.08 24499.14 19695.12 28096.70 28999.05 23393.77 33798.62 20898.83 20593.23 28399.75 22998.33 10599.76 13599.36 192
CANet_DTU97.26 24597.06 24697.84 25897.57 36294.65 29496.19 31398.79 27997.23 23395.14 37198.24 28393.22 28499.84 13997.34 15799.84 8699.04 257
UnsupCasMVSNet_bld97.30 24296.92 25298.45 21399.28 16096.78 23096.20 31299.27 18195.42 30098.28 24398.30 28093.16 28599.71 24794.99 28797.37 36198.87 286
IterMVS97.73 21298.11 17596.57 32999.24 16790.28 37295.52 34199.21 19698.86 10299.33 9799.33 9093.11 28699.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT97.85 20698.18 16696.87 32199.27 16291.16 36795.53 33999.25 18799.10 7999.41 8099.35 8493.10 28799.96 1298.65 8599.94 4099.49 128
SCA96.41 29196.66 27295.67 34898.24 33188.35 37995.85 33096.88 35296.11 27997.67 28498.67 23293.10 28799.85 12294.16 31099.22 27098.81 294
DPM-MVS96.32 29295.59 30298.51 20798.76 26697.21 20794.54 37098.26 31191.94 35996.37 34797.25 34293.06 28999.43 34091.42 36198.74 31598.89 282
BH-w/o95.13 32094.89 32495.86 34398.20 33491.31 36295.65 33597.37 33593.64 33896.52 34295.70 37093.04 29099.02 37588.10 38095.82 38397.24 373
cascas94.79 32594.33 33196.15 34296.02 39492.36 34992.34 39099.26 18685.34 38995.08 37294.96 38392.96 29198.53 38794.41 30798.59 32797.56 368
c3_l97.36 23797.37 23097.31 30098.09 34093.25 33295.01 35599.16 21397.05 24298.77 19298.72 22392.88 29299.64 28596.93 18699.76 13599.05 253
MVS-HIRNet94.32 33095.62 30090.42 37998.46 31575.36 40396.29 30789.13 39695.25 30595.38 36899.75 1192.88 29299.19 36994.07 31699.39 24396.72 380
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27399.79 2599.57 4292.85 29499.42 34299.79 1399.84 8699.60 75
sss97.21 25096.93 25098.06 24698.83 25595.22 27696.75 28698.48 30394.49 32097.27 30997.90 30992.77 29599.80 18696.57 21999.32 25399.16 245
miper_ehance_all_eth97.06 26197.03 24797.16 30997.83 35193.06 33494.66 36499.09 22795.99 28598.69 19998.45 26592.73 29699.61 29696.79 20099.03 29498.82 290
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29799.93 4199.04 5999.84 8699.60 75
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29899.74 23497.76 14195.60 38499.34 198
CHOSEN 1792x268897.49 22897.14 24498.54 20499.68 5996.09 24796.50 29699.62 4791.58 36298.84 18298.97 17292.36 29999.88 8496.76 20499.95 3299.67 58
dmvs_testset92.94 35092.21 35195.13 35898.59 30090.99 36897.65 22192.09 38896.95 24794.00 38493.55 39192.34 30096.97 39572.20 39892.52 39397.43 371
PCF-MVS92.86 1894.36 32993.00 34698.42 21798.70 27997.56 18693.16 38699.11 22379.59 39497.55 29397.43 33592.19 30199.73 23979.85 39599.45 23697.97 350
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30299.90 6596.87 19599.68 16799.49 128
1112_ss97.29 24496.86 25698.58 19499.34 15496.32 24096.75 28699.58 5493.14 34596.89 32797.48 33292.11 30399.86 11096.91 18799.54 21599.57 92
CDS-MVSNet97.69 21597.35 23298.69 17998.73 27097.02 21896.92 27898.75 28695.89 28898.59 21498.67 23292.08 30499.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
eth_miper_zixun_eth97.23 24997.25 23697.17 30798.00 34492.77 34194.71 36199.18 20697.27 22598.56 21998.74 22091.89 30599.69 25497.06 17799.81 10099.05 253
test_fmvs1_n98.09 18498.28 15597.52 28999.68 5993.47 33098.63 9899.93 495.41 30399.68 3999.64 3291.88 30699.48 33199.82 899.87 7899.62 68
IS-MVSNet98.19 17697.90 19499.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30799.79 19995.49 27999.80 11099.48 138
test_fmvs197.72 21397.94 19097.07 31298.66 29292.39 34797.68 21599.81 2395.20 30799.54 5699.44 7191.56 30899.41 34399.78 1599.77 12499.40 174
Test_1112_low_res96.99 26896.55 27998.31 22799.35 15295.47 26795.84 33199.53 8091.51 36496.80 33298.48 26391.36 30999.83 15696.58 21799.53 21999.62 68
Syy-MVS96.04 29995.56 30397.49 29297.10 37794.48 29896.18 31496.58 35695.65 29394.77 37492.29 39491.27 31099.36 34998.17 11298.05 34998.63 318
WTY-MVS96.67 27996.27 28897.87 25798.81 26194.61 29596.77 28497.92 32594.94 31297.12 31297.74 31791.11 31199.82 16693.89 32098.15 34299.18 238
PVSNet_089.98 2191.15 36190.30 36493.70 37197.72 35584.34 39690.24 39197.42 33490.20 37593.79 38693.09 39290.90 31298.89 38386.57 38472.76 39897.87 353
dmvs_re95.98 30295.39 31097.74 27098.86 24997.45 19298.37 13395.69 36897.95 16296.56 34095.95 36590.70 31397.68 39288.32 37996.13 38098.11 342
miper_enhance_ethall96.01 30095.74 29596.81 32596.41 38992.27 35193.69 38398.89 25991.14 36998.30 24197.35 34190.58 31499.58 30596.31 24099.03 29498.60 320
VDDNet98.21 17497.95 18899.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31599.80 18697.88 13199.20 27399.48 138
Anonymous20240521197.90 19597.50 22299.08 11998.90 24198.25 11998.53 11096.16 36198.87 10199.11 12998.86 19990.40 31699.78 21097.36 15699.31 25599.19 236
miper_lstm_enhance97.18 25397.16 24197.25 30598.16 33692.85 33995.15 35299.31 15997.25 22798.74 19798.78 21490.07 31799.78 21097.19 16499.80 11099.11 248
lessismore_v098.97 13999.73 3997.53 18886.71 39899.37 9099.52 5789.93 31899.92 5198.99 6399.72 14999.44 155
HY-MVS95.94 1395.90 30495.35 31297.55 28697.95 34594.79 28698.81 8596.94 35092.28 35795.17 37098.57 25089.90 31999.75 22991.20 36597.33 36598.10 343
K. test v398.00 19097.66 21299.03 13199.79 2597.56 18699.19 4992.47 38599.62 2099.52 6299.66 2789.61 32099.96 1299.25 4699.81 10099.56 98
CMPMVSbinary75.91 2396.29 29395.44 30798.84 15596.25 39198.69 8897.02 26999.12 22188.90 38197.83 27498.86 19989.51 32198.90 38291.92 35299.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CVMVSNet96.25 29597.21 23993.38 37599.10 20280.56 40297.20 26298.19 31696.94 24899.00 14899.02 15389.50 32299.80 18696.36 23899.59 19899.78 33
DeepMVS_CXcopyleft93.44 37498.24 33194.21 30594.34 37564.28 39691.34 39294.87 38689.45 32392.77 39977.54 39793.14 39293.35 394
EPNet96.14 29795.44 30798.25 23190.76 40195.50 26697.92 18394.65 37298.97 9392.98 38898.85 20289.12 32499.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Vis-MVSNet (Re-imp)97.46 23097.16 24198.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32599.73 23993.88 32199.79 11599.18 238
test111196.49 28896.82 26095.52 35299.42 13687.08 38599.22 4287.14 39799.11 7299.46 7199.58 4188.69 32699.86 11098.80 7299.95 3299.62 68
DIV-MVS_self_test97.02 26496.84 25897.58 28297.82 35294.03 31294.66 36499.16 21397.04 24398.63 20698.71 22488.69 32699.69 25497.00 17999.81 10099.01 261
cl____97.02 26496.83 25997.58 28297.82 35294.04 31194.66 36499.16 21397.04 24398.63 20698.71 22488.68 32899.69 25497.00 17999.81 10099.00 264
h-mvs3397.77 21097.33 23499.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 32999.96 1298.11 11496.34 37699.49 128
hse-mvs297.46 23097.07 24598.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 32999.79 19998.11 11497.39 36098.81 294
ECVR-MVScopyleft96.42 29096.61 27595.85 34499.38 14188.18 38199.22 4286.00 39999.08 8499.36 9299.57 4288.47 33199.82 16698.52 9499.95 3299.54 109
FA-MVS(test-final)96.99 26896.82 26097.50 29198.70 27994.78 28799.34 2096.99 34695.07 30898.48 22899.33 9088.41 33299.65 28296.13 25398.92 30898.07 345
EPNet_dtu94.93 32494.78 32595.38 35693.58 39887.68 38396.78 28395.69 36897.35 21789.14 39598.09 29688.15 33399.49 32894.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
alignmvs97.35 23896.88 25598.78 16798.54 30798.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33499.55 31398.18 11198.96 30498.70 311
FMVSNet397.50 22697.24 23798.29 22998.08 34195.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33599.81 17997.77 13799.69 16299.23 226
baseline195.96 30395.44 30797.52 28998.51 31293.99 31598.39 13196.09 36398.21 14298.40 23897.76 31686.88 33699.63 28895.42 28089.27 39698.95 272
RPMNet97.02 26496.93 25097.30 30197.71 35794.22 30398.11 15699.30 16799.37 4596.91 32399.34 8886.72 33799.87 10197.53 14997.36 36397.81 356
HyFIR lowres test97.19 25296.60 27798.96 14099.62 7797.28 20195.17 35099.50 8694.21 32999.01 14798.32 27986.61 33899.99 297.10 17399.84 8699.60 75
PAPM91.88 36090.34 36396.51 33098.06 34292.56 34392.44 38997.17 34186.35 38690.38 39396.01 36386.61 33899.21 36870.65 39995.43 38597.75 360
test_yl96.69 27796.29 28697.90 25498.28 32895.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34099.55 31394.87 29098.32 33298.89 282
DCV-MVSNet96.69 27796.29 28697.90 25498.28 32895.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34099.55 31394.87 29098.32 33298.89 282
CHOSEN 280x42095.51 31595.47 30495.65 35098.25 33088.27 38093.25 38598.88 26093.53 34094.65 37697.15 34586.17 34299.93 4197.41 15499.93 4498.73 307
EMVS93.83 34094.02 33293.23 37696.83 38384.96 39189.77 39396.32 36097.92 16597.43 30496.36 36186.17 34298.93 38087.68 38197.73 35495.81 389
MIMVSNet96.62 28296.25 28997.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34499.65 28291.65 35699.21 27298.82 290
tpmvs95.02 32395.25 31494.33 36496.39 39085.87 38798.08 16096.83 35395.46 29995.51 36798.69 22885.91 34599.53 31894.16 31096.23 37897.58 367
MDTV_nov1_ep13_2view74.92 40497.69 21490.06 37797.75 28085.78 34693.52 32998.69 312
ADS-MVSNet295.43 31694.98 32096.76 32898.14 33791.74 35597.92 18397.76 32790.23 37296.51 34398.91 18685.61 34799.85 12292.88 33996.90 36998.69 312
ADS-MVSNet95.24 31994.93 32396.18 33898.14 33790.10 37397.92 18397.32 33990.23 37296.51 34398.91 18685.61 34799.74 23492.88 33996.90 36998.69 312
tpmrst95.07 32195.46 30593.91 36897.11 37684.36 39597.62 22496.96 34894.98 31096.35 34898.80 21185.46 34999.59 30195.60 27596.23 37897.79 359
CR-MVSNet96.28 29495.95 29297.28 30297.71 35794.22 30398.11 15698.92 25492.31 35696.91 32399.37 8085.44 35099.81 17997.39 15597.36 36397.81 356
Patchmtry97.35 23896.97 24998.50 20997.31 37396.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35099.85 12295.96 25899.83 9399.17 242
test_method79.78 36379.50 36680.62 38080.21 40245.76 40670.82 39498.41 30731.08 39880.89 39997.71 31884.85 35297.37 39391.51 36080.03 39798.75 305
PatchmatchNetpermissive95.58 31295.67 29995.30 35797.34 37287.32 38497.65 22196.65 35495.30 30497.07 31598.69 22884.77 35399.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
sam_mvs184.74 35498.81 294
E-PMN94.17 33494.37 32993.58 37296.86 38185.71 39090.11 39297.07 34498.17 14997.82 27697.19 34384.62 35598.94 37989.77 37497.68 35596.09 388
LFMVS97.20 25196.72 26698.64 18298.72 27296.95 22298.93 7594.14 38099.74 698.78 18999.01 16284.45 35699.73 23997.44 15299.27 26299.25 221
patchmatchnet-post98.77 21684.37 35799.85 122
PatchT96.65 28096.35 28397.54 28797.40 37095.32 27297.98 17796.64 35599.33 5096.89 32799.42 7484.32 35899.81 17997.69 14497.49 35697.48 369
Patchmatch-RL test97.26 24597.02 24897.99 25299.52 10495.53 26496.13 31699.71 3397.47 20299.27 10899.16 12384.30 35999.62 29097.89 12899.77 12498.81 294
sam_mvs84.29 360
MDTV_nov1_ep1395.22 31597.06 37983.20 39797.74 20996.16 36194.37 32696.99 31998.83 20583.95 36199.53 31893.90 31997.95 352
test_post21.25 40083.86 36299.70 250
Patchmatch-test96.55 28396.34 28497.17 30798.35 32493.06 33498.40 13097.79 32697.33 21898.41 23498.67 23283.68 36399.69 25495.16 28599.31 25598.77 302
GA-MVS95.86 30595.32 31397.49 29298.60 29794.15 30893.83 38197.93 32495.49 29896.68 33597.42 33683.21 36499.30 35996.22 24598.55 32999.01 261
JIA-IIPM95.52 31495.03 31997.00 31396.85 38294.03 31296.93 27695.82 36699.20 6594.63 37799.71 1783.09 36599.60 29794.42 30494.64 38897.36 372
test_post197.59 22920.48 40183.07 36699.66 27794.16 310
tpm cat193.29 34793.13 34593.75 37097.39 37184.74 39297.39 24597.65 33183.39 39294.16 38098.41 26782.86 36799.39 34691.56 35995.35 38697.14 374
cl2295.79 30795.39 31096.98 31596.77 38492.79 34094.40 37298.53 30094.59 31997.89 26998.17 28982.82 36899.24 36596.37 23699.03 29498.92 278
test-LLR93.90 33993.85 33394.04 36696.53 38684.62 39394.05 37892.39 38696.17 27694.12 38195.07 37882.30 36999.67 26695.87 26398.18 33897.82 354
test0.0.03 194.51 32793.69 33696.99 31496.05 39293.61 32994.97 35693.49 38196.17 27697.57 29294.88 38482.30 36999.01 37793.60 32794.17 39198.37 334
AUN-MVS96.24 29695.45 30698.60 19298.70 27997.22 20697.38 24697.65 33195.95 28695.53 36697.96 30782.11 37199.79 19996.31 24097.44 35898.80 299
MVSTER96.86 27296.55 27997.79 26297.91 34894.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37299.80 18698.44 9899.82 9699.37 186
tmp_tt78.77 36478.73 36778.90 38158.45 40374.76 40594.20 37578.26 40439.16 39786.71 39792.82 39380.50 37375.19 40086.16 38592.29 39486.74 395
thres20093.72 34293.14 34495.46 35598.66 29291.29 36396.61 29394.63 37397.39 21396.83 33093.71 39079.88 37499.56 31082.40 39298.13 34395.54 391
thres100view90094.19 33393.67 33795.75 34799.06 21391.35 36198.03 16894.24 37898.33 13097.40 30594.98 38279.84 37599.62 29083.05 38998.08 34696.29 382
thres600view794.45 32893.83 33496.29 33599.06 21391.53 35797.99 17694.24 37898.34 12997.44 30395.01 38079.84 37599.67 26684.33 38798.23 33597.66 364
tfpn200view994.03 33793.44 33995.78 34698.93 23391.44 35997.60 22794.29 37697.94 16397.10 31394.31 38879.67 37799.62 29083.05 38998.08 34696.29 382
thres40094.14 33593.44 33996.24 33798.93 23391.44 35997.60 22794.29 37697.94 16397.10 31394.31 38879.67 37799.62 29083.05 38998.08 34697.66 364
pmmvs395.03 32294.40 32896.93 31797.70 35992.53 34495.08 35397.71 32988.57 38297.71 28198.08 29779.39 37999.82 16696.19 24799.11 28898.43 330
iter_conf_final97.10 25796.65 27498.45 21398.53 30996.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38099.87 10198.68 8399.91 6399.40 174
baseline293.73 34192.83 34796.42 33297.70 35991.28 36496.84 28189.77 39593.96 33692.44 38995.93 36679.14 38199.77 21692.94 33796.76 37398.21 337
FE-MVS95.66 31094.95 32297.77 26498.53 30995.28 27399.40 1696.09 36393.11 34697.96 26599.26 10179.10 38299.77 21692.40 35098.71 31998.27 336
tpm94.67 32694.34 33095.66 34997.68 36188.42 37897.88 18994.90 37194.46 32296.03 35598.56 25178.66 38399.79 19995.88 26095.01 38798.78 301
CostFormer93.97 33893.78 33594.51 36397.53 36585.83 38997.98 17795.96 36589.29 38094.99 37398.63 24278.63 38499.62 29094.54 29896.50 37498.09 344
ET-MVSNet_ETH3D94.30 33293.21 34297.58 28298.14 33794.47 29994.78 36093.24 38494.72 31689.56 39495.87 36878.57 38599.81 17996.91 18797.11 36898.46 325
dp93.47 34593.59 33893.13 37796.64 38581.62 40197.66 21996.42 35992.80 35196.11 35198.64 24078.55 38699.59 30193.31 33492.18 39598.16 340
EPMVS93.72 34293.27 34195.09 36096.04 39387.76 38298.13 15385.01 40094.69 31796.92 32198.64 24078.47 38799.31 35795.04 28696.46 37598.20 338
tpm293.09 34992.58 34994.62 36297.56 36386.53 38697.66 21995.79 36786.15 38794.07 38398.23 28575.95 38899.53 31890.91 36996.86 37297.81 356
FPMVS93.44 34692.23 35097.08 31099.25 16697.86 16395.61 33697.16 34292.90 34993.76 38798.65 23775.94 38995.66 39679.30 39697.49 35697.73 361
iter_conf0596.54 28496.07 29097.92 25397.90 34994.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39099.87 10198.50 9599.92 5599.40 174
thisisatest051594.12 33693.16 34396.97 31698.60 29792.90 33893.77 38290.61 39294.10 33296.91 32395.87 36874.99 39199.80 18694.52 29999.12 28798.20 338
tttt051795.64 31194.98 32097.64 27899.36 14893.81 32398.72 9090.47 39398.08 15698.67 20198.34 27673.88 39299.92 5197.77 13799.51 22499.20 231
thisisatest053095.27 31894.45 32797.74 27099.19 18194.37 30197.86 19490.20 39497.17 23798.22 24597.65 32273.53 39399.90 6596.90 19299.35 24998.95 272
FMVSNet596.01 30095.20 31698.41 21897.53 36596.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39499.88 8497.27 16099.71 15499.25 221
gg-mvs-nofinetune92.37 35591.20 36095.85 34495.80 39592.38 34899.31 2781.84 40299.75 591.83 39199.74 1368.29 39599.02 37587.15 38297.12 36796.16 385
KD-MVS_2432*160092.87 35191.99 35495.51 35391.37 39989.27 37594.07 37698.14 31895.42 30097.25 31096.44 35867.86 39699.24 36591.28 36396.08 38198.02 347
miper_refine_blended92.87 35191.99 35495.51 35391.37 39989.27 37594.07 37698.14 31895.42 30097.25 31096.44 35867.86 39699.24 36591.28 36396.08 38198.02 347
GG-mvs-BLEND94.76 36194.54 39792.13 35399.31 2780.47 40388.73 39691.01 39667.59 39898.16 39182.30 39394.53 39093.98 393
TESTMET0.1,192.19 35891.77 35893.46 37396.48 38882.80 39894.05 37891.52 39094.45 32494.00 38494.88 38466.65 39999.56 31095.78 26898.11 34498.02 347
test250692.39 35491.89 35793.89 36999.38 14182.28 39999.32 2366.03 40599.08 8498.77 19299.57 4266.26 40099.84 13998.71 8099.95 3299.54 109
IB-MVS91.63 1992.24 35790.90 36196.27 33697.22 37591.24 36594.36 37393.33 38392.37 35592.24 39094.58 38766.20 40199.89 7593.16 33694.63 38997.66 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test-mter92.33 35691.76 35994.04 36696.53 38684.62 39394.05 37892.39 38694.00 33594.12 38195.07 37865.63 40299.67 26695.87 26398.18 33897.82 354
myMVS_eth3d91.92 35990.45 36296.30 33497.10 37790.90 36996.18 31496.58 35695.65 29394.77 37492.29 39453.88 40399.36 34989.59 37698.05 34998.63 318
testing393.51 34492.09 35297.75 26898.60 29794.40 30097.32 25195.26 37097.56 19496.79 33395.50 37453.57 40499.77 21695.26 28398.97 30399.08 249
test12317.04 36720.11 3707.82 38210.25 4054.91 40794.80 3594.47 4074.93 40010.00 40224.28 3999.69 4053.64 40110.14 40012.43 40014.92 397
testmvs17.12 36620.53 3696.87 38312.05 4044.20 40893.62 3846.73 4064.62 40110.41 40124.33 3988.28 4063.56 4029.69 40115.07 39912.86 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.12 36910.83 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.48 3320.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS90.90 36991.37 362
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
MSC_two_6792asdad99.32 8098.43 31898.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
No_MVS99.32 8098.43 31898.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
eth-test20.00 406
eth-test0.00 406
IU-MVS99.49 11699.15 4798.87 26292.97 34799.41 8096.76 20499.62 18799.66 59
save fliter99.11 20097.97 15396.53 29599.02 24198.24 139
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
GSMVS98.81 294
test_part299.36 14899.10 6099.05 141
MTGPAbinary99.20 198
MTMP97.93 18191.91 389
gm-plane-assit94.83 39681.97 40088.07 38494.99 38199.60 29791.76 354
test9_res93.28 33599.15 28199.38 184
agg_prior292.50 34999.16 27999.37 186
agg_prior98.68 28697.99 14999.01 24495.59 35999.77 216
test_prior497.97 15395.86 328
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30199.30 212
旧先验295.76 33288.56 38397.52 29699.66 27794.48 300
新几何295.93 325
无先验95.74 33398.74 28889.38 37999.73 23992.38 35199.22 230
原ACMM295.53 339
testdata299.79 19992.80 343
testdata195.44 34496.32 272
plane_prior799.19 18197.87 162
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 151
plane_prior497.98 303
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior199.05 216
plane_prior97.65 18297.07 26896.72 25899.36 247
n20.00 408
nn0.00 408
door-mid99.57 61
test1198.87 262
door99.41 121
HQP5-MVS96.79 227
HQP-NCC98.67 28796.29 30796.05 28195.55 362
ACMP_Plane98.67 28796.29 30796.05 28195.55 362
BP-MVS92.82 341
HQP4-MVS95.56 36199.54 31699.32 205
HQP3-MVS99.04 23699.26 265
NP-MVS98.84 25397.39 19696.84 349
ACMMP++_ref99.77 124
ACMMP++99.68 167