This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 8297.89 1399.47 399.32 999.08 1097.87 13599.67 296.47 8599.92 497.88 2399.98 299.85 3
pmmvs699.07 499.24 498.56 4999.81 296.38 6198.87 799.30 1099.01 1699.63 999.66 399.27 299.68 11997.75 3099.89 2299.62 25
UniMVSNet_ETH3D99.12 399.28 398.65 4399.77 396.34 6399.18 599.20 1599.67 299.73 399.65 499.15 399.86 2097.22 4599.92 1499.77 8
OurMVSNet-221017-098.61 1698.61 2398.63 4599.77 396.35 6299.17 699.05 4298.05 4099.61 1199.52 593.72 17699.88 1898.72 999.88 2399.65 23
ANet_high98.31 2898.94 696.41 20099.33 4389.64 24597.92 5299.56 599.27 699.66 899.50 697.67 2599.83 2897.55 3699.98 299.77 8
mvs_tets98.90 598.94 698.75 3399.69 896.48 5998.54 1899.22 1296.23 10899.71 499.48 798.77 699.93 298.89 399.95 599.84 5
gg-mvs-nofinetune88.28 32586.96 33092.23 32592.84 35984.44 32798.19 3874.60 36799.08 1087.01 35999.47 856.93 36798.23 34378.91 35195.61 33494.01 349
PS-MVSNAJss98.53 1998.63 1998.21 7599.68 994.82 12298.10 4299.21 1396.91 8299.75 299.45 995.82 10599.92 498.80 499.96 499.89 1
test_djsdf98.73 1198.74 1698.69 4099.63 1296.30 6598.67 1199.02 5196.50 9699.32 2099.44 1097.43 3199.92 498.73 799.95 599.86 2
Anonymous2023121198.55 1798.76 1397.94 9398.79 10694.37 14098.84 899.15 2399.37 399.67 699.43 1195.61 11799.72 8298.12 1699.86 2599.73 15
anonymousdsp98.72 1498.63 1998.99 1399.62 1397.29 3798.65 1499.19 1795.62 14199.35 1999.37 1297.38 3399.90 1398.59 1199.91 1799.77 8
jajsoiax98.77 998.79 1298.74 3599.66 1096.48 5998.45 2399.12 2795.83 13399.67 699.37 1298.25 1099.92 498.77 599.94 899.82 6
K. test v396.44 15496.28 15596.95 16699.41 3591.53 21797.65 6890.31 35298.89 1898.93 3899.36 1484.57 29299.92 497.81 2699.56 8599.39 83
LTVRE_ROB96.88 199.18 299.34 298.72 3899.71 796.99 4499.69 299.57 499.02 1599.62 1099.36 1498.53 799.52 17698.58 1299.95 599.66 22
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo97.49 9097.57 7997.26 15199.56 1592.33 19798.28 2996.97 27498.30 3399.45 1499.35 1688.43 26399.89 1698.01 2099.76 3999.54 36
Gipumacopyleft98.07 4098.31 2997.36 14599.76 596.28 6698.51 1999.10 3098.76 2296.79 19499.34 1796.61 7498.82 29996.38 7299.50 10996.98 306
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
JIA-IIPM91.79 29590.69 30495.11 25493.80 34990.98 22594.16 25791.78 33996.38 10090.30 34499.30 1872.02 34998.90 29288.28 30290.17 35495.45 341
TransMVSNet (Re)98.38 2598.67 1797.51 12499.51 2293.39 17898.20 3798.87 8598.23 3599.48 1299.27 1998.47 899.55 16796.52 6799.53 9799.60 26
Baseline_NR-MVSNet97.72 7497.79 5397.50 12799.56 1593.29 17995.44 18898.86 8798.20 3798.37 7399.24 2094.69 14599.55 16795.98 9199.79 3599.65 23
v7n98.73 1198.99 597.95 9299.64 1194.20 14898.67 1199.14 2599.08 1099.42 1599.23 2196.53 8099.91 1299.27 299.93 1099.73 15
pm-mvs198.47 2198.67 1797.86 9999.52 2194.58 13298.28 2999.00 5997.57 6099.27 2499.22 2298.32 999.50 18197.09 5499.75 4399.50 43
TDRefinement98.90 598.86 899.02 999.54 1998.06 799.34 499.44 798.85 1999.00 3699.20 2397.42 3299.59 15497.21 4799.76 3999.40 81
GBi-Net96.99 11696.80 12897.56 11997.96 20293.67 16898.23 3298.66 14695.59 14397.99 11999.19 2489.51 25499.73 7894.60 16299.44 12799.30 102
test196.99 11696.80 12897.56 11997.96 20293.67 16898.23 3298.66 14695.59 14397.99 11999.19 2489.51 25499.73 7894.60 16299.44 12799.30 102
FMVSNet197.95 4998.08 3597.56 11999.14 8093.67 16898.23 3298.66 14697.41 7099.00 3699.19 2495.47 12299.73 7895.83 9799.76 3999.30 102
VDDNet96.98 11996.84 12597.41 14199.40 3693.26 18097.94 4995.31 30999.26 798.39 7299.18 2787.85 27299.62 14495.13 14199.09 20299.35 93
DSMNet-mixed92.19 28991.83 28693.25 30396.18 30983.68 33396.27 13993.68 32176.97 35892.54 32899.18 2789.20 25998.55 32683.88 33998.60 25597.51 294
v1097.55 8597.97 4196.31 20498.60 13189.64 24597.44 8399.02 5196.60 9098.72 4999.16 2993.48 18099.72 8298.76 699.92 1499.58 28
MIMVSNet198.51 2098.45 2698.67 4199.72 696.71 5098.76 998.89 7898.49 2799.38 1799.14 3095.44 12499.84 2596.47 7099.80 3399.47 59
Vis-MVSNetpermissive98.27 2998.34 2898.07 8399.33 4395.21 11398.04 4599.46 697.32 7397.82 14099.11 3196.75 6899.86 2097.84 2599.36 15399.15 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 8298.06 3896.23 20798.71 11789.44 24997.43 8598.82 11197.29 7598.74 4799.10 3293.86 17099.68 11998.61 1099.94 899.56 33
MVS-HIRNet88.40 32490.20 31082.99 34697.01 28460.04 36893.11 29585.61 36384.45 33288.72 35299.09 3384.72 29198.23 34382.52 34496.59 32190.69 360
ACMH93.61 998.44 2298.76 1397.51 12499.43 3293.54 17498.23 3299.05 4297.40 7199.37 1899.08 3498.79 599.47 18897.74 3199.71 5199.50 43
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_part196.77 13596.53 14497.47 13298.04 19292.92 18897.93 5098.85 9198.83 2099.30 2199.07 3579.25 31299.79 3897.59 3499.93 1099.69 20
DTE-MVSNet98.79 898.86 898.59 4799.55 1796.12 7098.48 2299.10 3099.36 499.29 2399.06 3697.27 3899.93 297.71 3299.91 1799.70 18
Anonymous2024052197.07 11397.51 8395.76 22899.35 4188.18 27197.78 5898.40 17797.11 7798.34 7899.04 3789.58 25099.79 3898.09 1899.93 1099.30 102
PEN-MVS98.75 1098.85 1098.44 5599.58 1495.67 8798.45 2399.15 2399.33 599.30 2199.00 3897.27 3899.92 497.64 3399.92 1499.75 13
DeepC-MVS95.41 497.82 6797.70 6098.16 7698.78 10895.72 8296.23 14499.02 5193.92 20498.62 5198.99 3997.69 2399.62 14496.18 7899.87 2499.15 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VPA-MVSNet98.27 2998.46 2497.70 11099.06 8793.80 16397.76 6299.00 5998.40 2999.07 3398.98 4096.89 6099.75 6597.19 5099.79 3599.55 35
lessismore_v097.05 16299.36 4092.12 20584.07 36498.77 4698.98 4085.36 28699.74 7297.34 4399.37 15099.30 102
PS-CasMVS98.73 1198.85 1098.39 5999.55 1795.47 9898.49 2099.13 2699.22 899.22 2798.96 4297.35 3499.92 497.79 2899.93 1099.79 7
EU-MVSNet94.25 24494.47 23093.60 29698.14 18582.60 33697.24 9492.72 33285.08 32498.48 6398.94 4382.59 30098.76 30697.47 3999.53 9799.44 76
LCM-MVSNet-Re97.33 10397.33 9597.32 14798.13 18893.79 16496.99 10899.65 296.74 8799.47 1398.93 4496.91 5999.84 2590.11 27599.06 20898.32 241
XXY-MVS97.54 8697.70 6097.07 16199.46 2892.21 20197.22 9599.00 5994.93 17198.58 5698.92 4597.31 3699.41 21094.44 16999.43 13599.59 27
mvs_anonymous95.36 19796.07 16693.21 30596.29 30281.56 34194.60 24097.66 24593.30 22096.95 18898.91 4693.03 19099.38 22096.60 6397.30 30798.69 211
DIV-MVS_2432*160097.86 6398.07 3697.25 15299.22 5792.81 19097.55 7598.94 7397.10 7898.85 4098.88 4795.03 13699.67 12497.39 4299.65 6199.26 115
UGNet96.81 13296.56 14097.58 11896.64 29493.84 16297.75 6397.12 26896.47 9993.62 30198.88 4793.22 18599.53 17295.61 10799.69 5599.36 91
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052997.96 4698.04 3997.71 10898.69 12194.28 14597.86 5598.31 19098.79 2199.23 2698.86 4995.76 11299.61 15195.49 11199.36 15399.23 122
FC-MVSNet-test98.16 3398.37 2797.56 11999.49 2693.10 18498.35 2699.21 1398.43 2898.89 3998.83 5094.30 16099.81 3197.87 2499.91 1799.77 8
new-patchmatchnet95.67 18396.58 13892.94 31397.48 25580.21 34692.96 29698.19 20594.83 17398.82 4298.79 5193.31 18399.51 18095.83 9799.04 20999.12 144
WR-MVS_H98.65 1598.62 2198.75 3399.51 2296.61 5598.55 1799.17 1899.05 1399.17 2998.79 5195.47 12299.89 1697.95 2199.91 1799.75 13
ab-mvs96.59 14796.59 13796.60 18698.64 12392.21 20198.35 2697.67 24394.45 18596.99 18498.79 5194.96 13999.49 18290.39 27299.07 20598.08 260
EG-PatchMatch MVS97.69 7697.79 5397.40 14299.06 8793.52 17595.96 16098.97 6994.55 18498.82 4298.76 5497.31 3699.29 24497.20 4999.44 12799.38 85
nrg03098.54 1898.62 2198.32 6499.22 5795.66 8897.90 5399.08 3698.31 3299.02 3498.74 5597.68 2499.61 15197.77 2999.85 2799.70 18
VDD-MVS97.37 10097.25 10097.74 10698.69 12194.50 13697.04 10595.61 30398.59 2598.51 6098.72 5692.54 20499.58 15696.02 8799.49 11399.12 144
PatchT93.75 25993.57 25594.29 28895.05 33487.32 29196.05 15292.98 32897.54 6394.25 28098.72 5675.79 33399.24 25295.92 9395.81 32996.32 328
RPSCF97.87 6197.51 8398.95 1799.15 7298.43 397.56 7499.06 4096.19 10998.48 6398.70 5894.72 14499.24 25294.37 17499.33 16899.17 129
APDe-MVS98.14 3498.03 4098.47 5498.72 11496.04 7398.07 4499.10 3095.96 12298.59 5598.69 5996.94 5599.81 3196.64 6299.58 7899.57 32
IterMVS-LS96.92 12297.29 9795.79 22798.51 14188.13 27495.10 21398.66 14696.99 7998.46 6698.68 6092.55 20299.74 7296.91 6099.79 3599.50 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal97.72 7497.97 4196.94 16799.26 4892.23 20097.83 5798.45 16798.25 3499.13 3098.66 6196.65 7199.69 11393.92 19599.62 6598.91 181
FIs97.93 5498.07 3697.48 13199.38 3892.95 18798.03 4799.11 2898.04 4198.62 5198.66 6193.75 17599.78 4297.23 4499.84 2899.73 15
CP-MVSNet98.42 2398.46 2498.30 6799.46 2895.22 11198.27 3198.84 9699.05 1399.01 3598.65 6395.37 12599.90 1397.57 3599.91 1799.77 8
FMVSNet296.72 13996.67 13596.87 17297.96 20291.88 21197.15 9798.06 22295.59 14398.50 6298.62 6489.51 25499.65 13194.99 14999.60 7499.07 155
PMVScopyleft89.60 1796.71 14196.97 11895.95 22099.51 2297.81 1697.42 8697.49 25597.93 4395.95 23598.58 6596.88 6296.91 35589.59 28399.36 15393.12 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CR-MVSNet93.29 27292.79 27094.78 27095.44 32888.15 27296.18 14697.20 26384.94 32894.10 28498.57 6677.67 32099.39 21795.17 13495.81 32996.81 317
Patchmtry95.03 21394.59 22596.33 20294.83 33690.82 22896.38 13497.20 26396.59 9197.49 15198.57 6677.67 32099.38 22092.95 21899.62 6598.80 197
ambc96.56 19198.23 17291.68 21697.88 5498.13 21298.42 6998.56 6894.22 16399.04 27894.05 19099.35 15898.95 170
3Dnovator96.53 297.61 8197.64 7097.50 12797.74 23693.65 17298.49 2098.88 8396.86 8497.11 17398.55 6995.82 10599.73 7895.94 9299.42 13899.13 139
IterMVS-SCA-FT95.86 17896.19 15994.85 26697.68 24085.53 31192.42 30897.63 25196.99 7998.36 7598.54 7087.94 26799.75 6597.07 5699.08 20399.27 114
COLMAP_ROBcopyleft94.48 698.25 3198.11 3498.64 4499.21 6497.35 3597.96 4899.16 1998.34 3198.78 4498.52 7197.32 3599.45 19594.08 18699.67 5899.13 139
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3298.31 2997.98 9199.39 3795.22 11197.55 7599.20 1598.21 3699.25 2598.51 7298.21 1199.40 21294.79 15599.72 4899.32 96
RPMNet94.68 23094.60 22394.90 26395.44 32888.15 27296.18 14698.86 8797.43 6694.10 28498.49 7379.40 31199.76 5895.69 10095.81 32996.81 317
IterMVS95.42 19595.83 17594.20 28997.52 25383.78 33292.41 30997.47 25895.49 14798.06 11398.49 7387.94 26799.58 15696.02 8799.02 21099.23 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS97.87 6197.89 4697.81 10298.62 12894.82 12297.13 10098.79 11398.98 1798.74 4798.49 7395.80 11199.49 18295.04 14599.44 12799.11 148
TranMVSNet+NR-MVSNet98.33 2698.30 3198.43 5699.07 8695.87 7896.73 12299.05 4298.67 2398.84 4198.45 7697.58 2899.88 1896.45 7199.86 2599.54 36
3Dnovator+96.13 397.73 7397.59 7798.15 7998.11 19095.60 9098.04 4598.70 13698.13 3896.93 18998.45 7695.30 12999.62 14495.64 10598.96 21499.24 121
VPNet97.26 10797.49 8696.59 18799.47 2790.58 23396.27 13998.53 16097.77 4698.46 6698.41 7894.59 15199.68 11994.61 16199.29 17699.52 40
test_040297.84 6497.97 4197.47 13299.19 6794.07 15196.71 12398.73 12698.66 2498.56 5798.41 7896.84 6599.69 11394.82 15399.81 3098.64 214
v124096.74 13697.02 11795.91 22398.18 17888.52 26495.39 19498.88 8393.15 22998.46 6698.40 8092.80 19499.71 9698.45 1399.49 11399.49 51
SMA-MVScopyleft97.48 9197.11 10998.60 4698.83 10296.67 5296.74 11898.73 12691.61 25798.48 6398.36 8196.53 8099.68 11995.17 13499.54 9499.45 66
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 5997.63 7298.67 4199.35 4196.84 4796.36 13598.79 11395.07 16497.88 13298.35 8297.24 4299.72 8296.05 8499.58 7899.45 66
v119296.83 13097.06 11496.15 21298.28 16489.29 25195.36 19698.77 11893.73 20898.11 10598.34 8393.02 19199.67 12498.35 1499.58 7899.50 43
pmmvs-eth3d96.49 15196.18 16097.42 14098.25 16994.29 14294.77 23598.07 22189.81 27897.97 12398.33 8493.11 18699.08 27495.46 11799.84 2898.89 185
PM-MVS97.36 10297.10 11098.14 8098.91 9896.77 4996.20 14598.63 15293.82 20698.54 5898.33 8493.98 16899.05 27795.99 9099.45 12698.61 219
test072699.24 5295.51 9496.89 11198.89 7895.92 12598.64 5098.31 8697.06 50
MP-MVS-pluss97.69 7697.36 9398.70 3999.50 2596.84 4795.38 19598.99 6292.45 24698.11 10598.31 8697.25 4199.77 5396.60 6399.62 6599.48 56
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 12797.08 11296.13 21398.42 15389.28 25295.41 19298.67 14494.21 19497.97 12398.31 8693.06 18799.65 13198.06 1999.62 6599.45 66
LFMVS95.32 19994.88 20896.62 18598.03 19391.47 21997.65 6890.72 34999.11 997.89 13198.31 8679.20 31399.48 18593.91 19699.12 19898.93 176
V4297.04 11497.16 10796.68 18498.59 13391.05 22396.33 13798.36 18294.60 18097.99 11998.30 9093.32 18299.62 14497.40 4199.53 9799.38 85
casdiffmvs97.50 8997.81 5296.56 19198.51 14191.04 22495.83 16999.09 3597.23 7698.33 8298.30 9097.03 5299.37 22396.58 6599.38 14999.28 110
v14419296.69 14296.90 12496.03 21598.25 16988.92 25695.49 18698.77 11893.05 23198.09 10998.29 9292.51 20699.70 10598.11 1799.56 8599.47 59
DVP-MVS97.78 7097.65 6798.16 7699.24 5295.51 9496.74 11898.23 19695.92 12598.40 7098.28 9397.06 5099.71 9695.48 11499.52 10299.26 115
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 8998.40 7098.28 9397.10 4599.71 9695.70 9999.62 6599.58 28
MVS_Test96.27 15996.79 13094.73 27296.94 28986.63 30096.18 14698.33 18794.94 16996.07 23198.28 9395.25 13099.26 24997.21 4797.90 28098.30 245
FMVSNet593.39 26992.35 28096.50 19395.83 31990.81 23097.31 8998.27 19192.74 24296.27 22298.28 9362.23 36399.67 12490.86 25299.36 15399.03 161
abl_698.42 2398.19 3299.09 399.16 6998.10 597.73 6699.11 2897.76 4998.62 5198.27 9797.88 1999.80 3795.67 10199.50 10999.38 85
v192192096.72 13996.96 12095.99 21698.21 17388.79 26195.42 19098.79 11393.22 22398.19 9798.26 9892.68 19799.70 10598.34 1599.55 9199.49 51
SED-MVS97.94 5197.90 4498.07 8399.22 5795.35 10396.79 11598.83 10396.11 11299.08 3198.24 9997.87 2099.72 8295.44 11899.51 10799.14 136
test_241102_TWO98.83 10396.11 11298.62 5198.24 9996.92 5899.72 8295.44 11899.49 11399.49 51
v2v48296.78 13497.06 11495.95 22098.57 13588.77 26295.36 19698.26 19395.18 15997.85 13798.23 10192.58 20199.63 13697.80 2799.69 5599.45 66
LPG-MVS_test97.94 5197.67 6498.74 3599.15 7297.02 4297.09 10299.02 5195.15 16098.34 7898.23 10197.91 1799.70 10594.41 17199.73 4599.50 43
LGP-MVS_train98.74 3599.15 7297.02 4299.02 5195.15 16098.34 7898.23 10197.91 1799.70 10594.41 17199.73 4599.50 43
HPM-MVS_fast98.32 2798.13 3398.88 2499.54 1997.48 3098.35 2699.03 4995.88 12897.88 13298.22 10498.15 1299.74 7296.50 6999.62 6599.42 78
MIMVSNet93.42 26892.86 26795.10 25598.17 18088.19 27098.13 4193.69 31992.07 24995.04 26298.21 10580.95 30799.03 28181.42 34698.06 27498.07 262
hse-mvs396.29 15895.63 18298.26 6998.50 14496.11 7196.90 11097.09 26996.58 9297.21 16698.19 10684.14 29399.78 4295.89 9596.17 32798.89 185
EI-MVSNet96.63 14696.93 12195.74 22997.26 27488.13 27495.29 20397.65 24796.99 7997.94 12698.19 10692.55 20299.58 15696.91 6099.56 8599.50 43
CVMVSNet92.33 28792.79 27090.95 33197.26 27475.84 35995.29 20392.33 33581.86 33896.27 22298.19 10681.44 30398.46 33194.23 18198.29 26698.55 224
PVSNet_Blended_VisFu95.95 17495.80 17696.42 19899.28 4790.62 23295.31 20199.08 3688.40 29296.97 18798.17 10992.11 21399.78 4293.64 20499.21 18398.86 192
EI-MVSNet-UG-set97.32 10497.40 9097.09 16097.34 26992.01 20995.33 19997.65 24797.74 5098.30 8798.14 11095.04 13599.69 11397.55 3699.52 10299.58 28
test_241102_ONE99.22 5795.35 10398.83 10396.04 11799.08 3198.13 11197.87 2099.33 233
APD-MVS_3200maxsize98.13 3797.90 4498.79 3198.79 10697.31 3697.55 7598.92 7597.72 5398.25 9098.13 11197.10 4599.75 6595.44 11899.24 18299.32 96
QAPM95.88 17795.57 18596.80 17697.90 20891.84 21398.18 3998.73 12688.41 29196.42 21398.13 11194.73 14399.75 6588.72 29598.94 21998.81 196
ACMM93.33 1198.05 4197.79 5398.85 2599.15 7297.55 2696.68 12498.83 10395.21 15698.36 7598.13 11198.13 1499.62 14496.04 8599.54 9499.39 83
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set97.32 10497.39 9197.11 15897.36 26492.08 20795.34 19897.65 24797.74 5098.29 8898.11 11595.05 13399.68 11997.50 3899.50 10999.56 33
wuyk23d93.25 27395.20 19287.40 34596.07 31495.38 10097.04 10594.97 31095.33 15299.70 598.11 11598.14 1391.94 36277.76 35599.68 5774.89 362
DPE-MVScopyleft97.64 7897.35 9498.50 5198.85 10196.18 6795.21 21098.99 6295.84 13298.78 4498.08 11796.84 6599.81 3193.98 19399.57 8199.52 40
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS97.37 10097.70 6096.35 20198.14 18595.13 11496.54 12798.92 7595.94 12499.19 2898.08 11797.74 2295.06 36095.24 13099.54 9498.87 191
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS-dyc-post98.14 3497.84 4999.02 998.81 10398.05 897.55 7598.86 8797.77 4698.20 9498.07 11996.60 7699.76 5895.49 11199.20 18499.26 115
RE-MVS-def97.88 4798.81 10398.05 897.55 7598.86 8797.77 4698.20 9498.07 11996.94 5595.49 11199.20 18499.26 115
OPM-MVS97.54 8697.25 10098.41 5799.11 8296.61 5595.24 20898.46 16694.58 18398.10 10898.07 11997.09 4799.39 21795.16 13699.44 12799.21 124
AllTest97.20 11196.92 12298.06 8599.08 8496.16 6897.14 9999.16 1994.35 18997.78 14198.07 11995.84 10299.12 26791.41 23999.42 13898.91 181
TestCases98.06 8599.08 8496.16 6899.16 1994.35 18997.78 14198.07 11995.84 10299.12 26791.41 23999.42 13898.91 181
TSAR-MVS + MP.97.42 9597.23 10398.00 9099.38 3895.00 11797.63 7098.20 20093.00 23398.16 9998.06 12495.89 10099.72 8295.67 10199.10 20199.28 110
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet96.84 12796.58 13897.65 11499.18 6893.78 16598.68 1096.34 28797.91 4497.30 16298.06 12488.46 26299.85 2293.85 19799.40 14599.32 96
ACMMPcopyleft98.05 4197.75 5998.93 2199.23 5497.60 2298.09 4398.96 7095.75 13797.91 12898.06 12496.89 6099.76 5895.32 12599.57 8199.43 77
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous20240521196.34 15795.98 17097.43 13998.25 16993.85 16196.74 11894.41 31697.72 5398.37 7398.03 12787.15 27699.53 17294.06 18799.07 20598.92 180
XVG-ACMP-BASELINE97.58 8497.28 9998.49 5299.16 6996.90 4696.39 13298.98 6595.05 16598.06 11398.02 12895.86 10199.56 16394.37 17499.64 6399.00 164
baseline97.44 9497.78 5696.43 19798.52 14090.75 23196.84 11299.03 4996.51 9597.86 13698.02 12896.67 7099.36 22597.09 5499.47 11999.19 126
PVSNet_BlendedMVS95.02 21494.93 20595.27 24797.79 22887.40 28994.14 26098.68 14188.94 28694.51 27498.01 13093.04 18899.30 24089.77 28199.49 11399.11 148
OpenMVScopyleft94.22 895.48 19195.20 19296.32 20397.16 28091.96 21097.74 6498.84 9687.26 30194.36 27898.01 13093.95 16999.67 12490.70 26298.75 24097.35 300
MVSTER94.21 24793.93 25095.05 25795.83 31986.46 30195.18 21197.65 24792.41 24797.94 12698.00 13272.39 34899.58 15696.36 7399.56 8599.12 144
IS-MVSNet96.93 12196.68 13497.70 11099.25 5194.00 15498.57 1596.74 28398.36 3098.14 10397.98 13388.23 26599.71 9693.10 21599.72 4899.38 85
test117298.08 3997.76 5799.05 698.78 10898.07 697.41 8798.85 9197.57 6098.15 10197.96 13496.60 7699.76 5895.30 12699.18 18899.33 95
zzz-MVS98.01 4497.66 6599.06 499.44 3097.90 1195.66 17798.73 12697.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
MTAPA98.14 3497.84 4999.06 499.44 3097.90 1197.25 9298.73 12697.69 5697.90 12997.96 13495.81 10999.82 2996.13 7999.61 7199.45 66
v14896.58 14896.97 11895.42 24398.63 12787.57 28595.09 21597.90 22895.91 12798.24 9297.96 13493.42 18199.39 21796.04 8599.52 10299.29 109
MDA-MVSNet-bldmvs95.69 18195.67 18095.74 22998.48 14788.76 26392.84 29797.25 26196.00 12097.59 14497.95 13891.38 22799.46 19193.16 21496.35 32498.99 167
PGM-MVS97.88 6097.52 8298.96 1699.20 6597.62 2197.09 10299.06 4095.45 14897.55 14597.94 13997.11 4499.78 4294.77 15899.46 12299.48 56
LS3D97.77 7197.50 8598.57 4896.24 30497.58 2498.45 2398.85 9198.58 2697.51 14897.94 13995.74 11399.63 13695.19 13298.97 21398.51 225
USDC94.56 23694.57 22894.55 28097.78 23286.43 30392.75 30098.65 15185.96 31296.91 19197.93 14190.82 23398.74 30790.71 26199.59 7698.47 228
test20.0396.58 14896.61 13696.48 19598.49 14591.72 21595.68 17697.69 24296.81 8598.27 8997.92 14294.18 16498.71 31090.78 25699.66 6099.00 164
FMVSNet395.26 20394.94 20396.22 20996.53 29790.06 23795.99 15797.66 24594.11 19897.99 11997.91 14380.22 31099.63 13694.60 16299.44 12798.96 169
Regformer-397.25 10897.29 9797.11 15897.35 26592.32 19895.26 20597.62 25297.67 5898.17 9897.89 14495.05 13399.56 16397.16 5199.42 13899.46 61
Regformer-497.53 8897.47 8897.71 10897.35 26593.91 15695.26 20598.14 21097.97 4298.34 7897.89 14495.49 12099.71 9697.41 4099.42 13899.51 42
xxxxxxxxxxxxxcwj97.24 10997.03 11697.89 9698.48 14794.71 12694.53 24399.07 3995.02 16797.83 13897.88 14696.44 8799.72 8294.59 16699.39 14799.25 119
SF-MVS97.60 8297.39 9198.22 7498.93 9695.69 8497.05 10499.10 3095.32 15397.83 13897.88 14696.44 8799.72 8294.59 16699.39 14799.25 119
SteuartSystems-ACMMP98.02 4397.76 5798.79 3199.43 3297.21 4197.15 9798.90 7796.58 9298.08 11197.87 14897.02 5399.76 5895.25 12999.59 7699.40 81
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4597.66 6599.01 1198.77 11097.93 1097.38 8898.83 10397.32 7398.06 11397.85 14996.65 7199.77 5395.00 14899.11 19999.32 96
RRT_MVS94.90 21694.07 24397.39 14393.18 35393.21 18295.26 20597.49 25593.94 20398.25 9097.85 14972.96 34799.84 2597.90 2299.78 3899.14 136
DU-MVS97.79 6997.60 7698.36 6198.73 11295.78 8095.65 18098.87 8597.57 6098.31 8597.83 15194.69 14599.85 2297.02 5799.71 5199.46 61
NR-MVSNet97.96 4697.86 4898.26 6998.73 11295.54 9298.14 4098.73 12697.79 4599.42 1597.83 15194.40 15899.78 4295.91 9499.76 3999.46 61
CHOSEN 1792x268894.10 25193.41 25896.18 21199.16 6990.04 23892.15 31298.68 14179.90 34896.22 22597.83 15187.92 27199.42 20189.18 28999.65 6199.08 153
TAMVS95.49 18994.94 20397.16 15598.31 15993.41 17795.07 21896.82 27991.09 26697.51 14897.82 15489.96 24699.42 20188.42 30099.44 12798.64 214
UniMVSNet (Re)97.83 6597.65 6798.35 6398.80 10595.86 7995.92 16499.04 4897.51 6498.22 9397.81 15594.68 14799.78 4297.14 5299.75 4399.41 80
VNet96.84 12796.83 12696.88 17198.06 19192.02 20896.35 13697.57 25497.70 5597.88 13297.80 15692.40 20899.54 17094.73 16098.96 21499.08 153
YYNet194.73 22394.84 21094.41 28497.47 25985.09 32090.29 34095.85 29892.52 24397.53 14697.76 15791.97 21799.18 25893.31 20996.86 31398.95 170
MDA-MVSNet_test_wron94.73 22394.83 21294.42 28397.48 25585.15 31890.28 34195.87 29792.52 24397.48 15497.76 15791.92 22199.17 26293.32 20896.80 31698.94 172
TinyColmap96.00 17296.34 15394.96 26097.90 20887.91 27794.13 26198.49 16494.41 18698.16 9997.76 15796.29 9498.68 31590.52 26899.42 13898.30 245
Patchmatch-RL test94.66 23194.49 22995.19 25298.54 13888.91 25792.57 30498.74 12491.46 26098.32 8397.75 16077.31 32598.81 30196.06 8299.61 7197.85 280
MP-MVScopyleft97.64 7897.18 10699.00 1299.32 4597.77 1797.49 8198.73 12696.27 10595.59 24997.75 16096.30 9399.78 4293.70 20399.48 11799.45 66
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP92.54 1397.47 9297.10 11098.55 5099.04 9096.70 5196.24 14398.89 7893.71 20997.97 12397.75 16097.44 3099.63 13693.22 21299.70 5499.32 96
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVP-Stereo95.69 18195.28 19196.92 16898.15 18493.03 18595.64 18298.20 20090.39 27296.63 20497.73 16391.63 22599.10 27291.84 23297.31 30698.63 216
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mPP-MVS97.91 5897.53 8199.04 799.22 5797.87 1497.74 6498.78 11796.04 11797.10 17497.73 16396.53 8099.78 4295.16 13699.50 10999.46 61
RRT_test8_iter0592.46 28392.52 27992.29 32495.33 33177.43 35495.73 17198.55 15994.41 18697.46 15797.72 16557.44 36699.74 7296.92 5999.14 19199.69 20
MVS_030495.50 18895.05 20196.84 17496.28 30393.12 18397.00 10796.16 28995.03 16689.22 35097.70 16690.16 24599.48 18594.51 16899.34 16197.93 277
XVG-OURS97.12 11296.74 13198.26 6998.99 9397.45 3293.82 27399.05 4295.19 15898.32 8397.70 16695.22 13198.41 33394.27 17998.13 27198.93 176
UniMVSNet_NR-MVSNet97.83 6597.65 6798.37 6098.72 11495.78 8095.66 17799.02 5198.11 3998.31 8597.69 16894.65 14999.85 2297.02 5799.71 5199.48 56
D2MVS95.18 20595.17 19495.21 25097.76 23487.76 28394.15 25897.94 22689.77 27996.99 18497.68 16987.45 27499.14 26595.03 14799.81 3098.74 205
XVS97.96 4697.63 7298.94 1899.15 7297.66 1997.77 6098.83 10397.42 6796.32 21897.64 17096.49 8399.72 8295.66 10399.37 15099.45 66
ACMMPR97.95 4997.62 7498.94 1899.20 6597.56 2597.59 7298.83 10396.05 11597.46 15797.63 17196.77 6799.76 5895.61 10799.46 12299.49 51
Anonymous2023120695.27 20295.06 20095.88 22498.72 11489.37 25095.70 17397.85 23188.00 29796.98 18697.62 17291.95 21899.34 23089.21 28899.53 9798.94 172
region2R97.92 5597.59 7798.92 2299.22 5797.55 2697.60 7198.84 9696.00 12097.22 16497.62 17296.87 6399.76 5895.48 11499.43 13599.46 61
GeoE97.75 7297.70 6097.89 9698.88 10094.53 13397.10 10198.98 6595.75 13797.62 14397.59 17497.61 2799.77 5396.34 7499.44 12799.36 91
ppachtmachnet_test94.49 23994.84 21093.46 29996.16 31082.10 33890.59 33797.48 25790.53 27197.01 18397.59 17491.01 23099.36 22593.97 19499.18 18898.94 172
APD-MVScopyleft97.00 11596.53 14498.41 5798.55 13796.31 6496.32 13898.77 11892.96 23897.44 15997.58 17695.84 10299.74 7291.96 22699.35 15899.19 126
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.94 5197.64 7098.83 2699.15 7297.50 2897.59 7298.84 9696.05 11597.49 15197.54 17797.07 4899.70 10595.61 10799.46 12299.30 102
#test#97.62 8097.22 10498.83 2699.15 7297.50 2896.81 11498.84 9694.25 19397.49 15197.54 17797.07 4899.70 10594.37 17499.46 12299.30 102
UnsupCasMVSNet_eth95.91 17595.73 17996.44 19698.48 14791.52 21895.31 20198.45 16795.76 13597.48 15497.54 17789.53 25398.69 31294.43 17094.61 34299.13 139
XVG-OURS-SEG-HR97.38 9897.07 11398.30 6799.01 9297.41 3494.66 23899.02 5195.20 15798.15 10197.52 18098.83 498.43 33294.87 15196.41 32399.07 155
MG-MVS94.08 25394.00 24694.32 28697.09 28285.89 30893.19 29495.96 29592.52 24394.93 26597.51 18189.54 25198.77 30487.52 31397.71 28898.31 243
Regformer-197.27 10697.16 10797.61 11797.21 27793.86 16094.85 23198.04 22497.62 5998.03 11797.50 18295.34 12699.63 13696.52 6799.31 17299.35 93
Regformer-297.41 9697.24 10297.93 9497.21 27794.72 12594.85 23198.27 19197.74 5098.11 10597.50 18295.58 11899.69 11396.57 6699.31 17299.37 90
HPM-MVScopyleft98.11 3897.83 5198.92 2299.42 3497.46 3198.57 1599.05 4295.43 15097.41 16097.50 18297.98 1599.79 3895.58 11099.57 8199.50 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1496.69 13398.53 13996.02 15598.98 6593.23 22297.18 16897.46 18596.47 8599.62 14492.99 21699.32 170
CP-MVS97.92 5597.56 8098.99 1398.99 9397.82 1597.93 5098.96 7096.11 11296.89 19297.45 18696.85 6499.78 4295.19 13299.63 6499.38 85
ZNCC-MVS97.92 5597.62 7498.83 2699.32 4597.24 3997.45 8298.84 9695.76 13596.93 18997.43 18797.26 4099.79 3896.06 8299.53 9799.45 66
N_pmnet95.18 20594.23 23798.06 8597.85 21096.55 5792.49 30691.63 34089.34 28198.09 10997.41 18890.33 23999.06 27691.58 23799.31 17298.56 222
GST-MVS97.82 6797.49 8698.81 2999.23 5497.25 3897.16 9698.79 11395.96 12297.53 14697.40 18996.93 5799.77 5395.04 14599.35 15899.42 78
tpm91.08 30390.85 30191.75 32695.33 33178.09 35095.03 22391.27 34488.75 28893.53 30597.40 18971.24 35099.30 24091.25 24493.87 34597.87 279
MDTV_nov1_ep1391.28 29394.31 34173.51 36394.80 23393.16 32686.75 30893.45 30997.40 18976.37 32998.55 32688.85 29396.43 322
DeepPCF-MVS94.58 596.90 12496.43 15098.31 6697.48 25597.23 4092.56 30598.60 15492.84 24198.54 5897.40 18996.64 7398.78 30394.40 17399.41 14498.93 176
MSLP-MVS++96.42 15696.71 13295.57 23597.82 21790.56 23595.71 17298.84 9694.72 17696.71 20097.39 19394.91 14198.10 34795.28 12799.02 21098.05 269
EPNet93.72 26092.62 27797.03 16487.61 36892.25 19996.27 13991.28 34396.74 8787.65 35697.39 19385.00 28899.64 13492.14 22599.48 11799.20 125
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS293.66 26394.07 24392.45 32197.57 24880.67 34586.46 35696.00 29393.99 20197.10 17497.38 19589.90 24797.82 34988.76 29499.47 11998.86 192
DeepC-MVS_fast94.34 796.74 13696.51 14797.44 13897.69 23994.15 14996.02 15598.43 17093.17 22897.30 16297.38 19595.48 12199.28 24693.74 20099.34 16198.88 189
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance94.81 22194.80 21394.85 26696.16 31086.45 30291.14 33198.20 20093.49 21397.03 18197.37 19784.97 28999.26 24995.28 12799.56 8598.83 194
OPU-MVS97.64 11598.01 19695.27 10696.79 11597.35 19896.97 5498.51 32991.21 24599.25 18199.14 136
cl-mvsnet194.73 22394.64 21995.01 25895.86 31787.00 29591.33 32598.08 21793.34 21897.10 17497.34 19984.02 29599.31 23795.15 13899.55 9198.72 208
cl-mvsnet____94.73 22394.64 21995.01 25895.85 31887.00 29591.33 32598.08 21793.34 21897.10 17497.33 20084.01 29699.30 24095.14 13999.56 8598.71 210
WR-MVS96.90 12496.81 12797.16 15598.56 13692.20 20394.33 24798.12 21397.34 7298.20 9497.33 20092.81 19399.75 6594.79 15599.81 3099.54 36
ETH3D-3000-0.196.89 12696.46 14998.16 7698.62 12895.69 8495.96 16098.98 6593.36 21797.04 18097.31 20294.93 14099.63 13692.60 21999.34 16199.17 129
ITE_SJBPF97.85 10098.64 12396.66 5398.51 16395.63 14097.22 16497.30 20395.52 11998.55 32690.97 24998.90 22398.34 240
Vis-MVSNet (Re-imp)95.11 20894.85 20995.87 22599.12 8189.17 25397.54 8094.92 31196.50 9696.58 20597.27 20483.64 29799.48 18588.42 30099.67 5898.97 168
cl_fuxian95.20 20495.32 18994.83 26896.19 30886.43 30391.83 31898.35 18693.47 21497.36 16197.26 20588.69 26099.28 24695.41 12499.36 15398.78 200
eth_miper_zixun_eth94.89 21794.93 20594.75 27195.99 31586.12 30691.35 32498.49 16493.40 21597.12 17297.25 20686.87 27999.35 22895.08 14498.82 23498.78 200
pmmvs494.82 22094.19 24096.70 18297.42 26292.75 19292.09 31596.76 28186.80 30795.73 24697.22 20789.28 25798.89 29493.28 21099.14 19198.46 230
OMC-MVS96.48 15296.00 16897.91 9598.30 16196.01 7694.86 23098.60 15491.88 25497.18 16897.21 20896.11 9699.04 27890.49 27199.34 16198.69 211
pmmvs594.63 23394.34 23595.50 23997.63 24688.34 26894.02 26497.13 26787.15 30395.22 25697.15 20987.50 27399.27 24893.99 19299.26 18098.88 189
testtj96.69 14296.13 16198.36 6198.46 15196.02 7596.44 13098.70 13694.26 19296.79 19497.13 21094.07 16699.75 6590.53 26798.80 23599.31 101
our_test_394.20 24994.58 22693.07 30796.16 31081.20 34390.42 33996.84 27790.72 26997.14 17097.13 21090.47 23799.11 27094.04 19198.25 26798.91 181
CPTT-MVS96.69 14296.08 16598.49 5298.89 9996.64 5497.25 9298.77 11892.89 24096.01 23497.13 21092.23 21099.67 12492.24 22499.34 16199.17 129
MS-PatchMatch94.83 21994.91 20794.57 27996.81 29387.10 29494.23 25397.34 26088.74 28997.14 17097.11 21391.94 21998.23 34392.99 21697.92 27898.37 234
FPMVS89.92 31488.63 32193.82 29298.37 15696.94 4591.58 32093.34 32588.00 29790.32 34397.10 21470.87 35391.13 36371.91 36196.16 32893.39 353
ETH3D cwj APD-0.1696.23 16195.61 18498.09 8297.91 20695.65 8994.94 22698.74 12491.31 26396.02 23397.08 21594.05 16799.69 11391.51 23898.94 21998.93 176
ZD-MVS98.43 15295.94 7798.56 15890.72 26996.66 20297.07 21695.02 13799.74 7291.08 24698.93 221
DELS-MVS96.17 16496.23 15795.99 21697.55 25290.04 23892.38 31098.52 16194.13 19796.55 20997.06 21794.99 13899.58 15695.62 10699.28 17798.37 234
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS96.92 12296.55 14198.03 8998.00 20095.54 9294.87 22998.17 20694.60 18096.38 21597.05 21895.67 11599.36 22595.12 14299.08 20399.19 126
旧先验197.80 22293.87 15997.75 23897.04 21993.57 17998.68 24598.72 208
testdata95.70 23298.16 18290.58 23397.72 24080.38 34695.62 24897.02 22092.06 21698.98 28689.06 29298.52 25797.54 293
PatchmatchNetpermissive91.98 29391.87 28592.30 32394.60 33979.71 34795.12 21293.59 32389.52 28093.61 30297.02 22077.94 31899.18 25890.84 25394.57 34498.01 273
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SCA93.38 27093.52 25692.96 31296.24 30481.40 34293.24 29294.00 31891.58 25994.57 27196.97 22287.94 26799.42 20189.47 28597.66 29398.06 266
Patchmatch-test93.60 26593.25 26194.63 27496.14 31387.47 28796.04 15394.50 31593.57 21196.47 21196.97 22276.50 32898.61 32090.67 26398.41 26297.81 284
CostFormer89.75 31589.25 31491.26 33094.69 33878.00 35295.32 20091.98 33781.50 34190.55 34196.96 22471.06 35298.89 29488.59 29892.63 34996.87 311
diffmvs96.04 16996.23 15795.46 24297.35 26588.03 27693.42 28599.08 3694.09 19996.66 20296.93 22593.85 17199.29 24496.01 8998.67 24699.06 157
114514_t93.96 25593.22 26296.19 21099.06 8790.97 22695.99 15798.94 7373.88 36193.43 31096.93 22592.38 20999.37 22389.09 29099.28 17798.25 251
Test_1112_low_res93.53 26792.86 26795.54 23898.60 13188.86 25992.75 30098.69 13982.66 33792.65 32496.92 22784.75 29099.56 16390.94 25097.76 28498.19 256
tpmrst90.31 30890.61 30689.41 33894.06 34772.37 36595.06 22093.69 31988.01 29692.32 33196.86 22877.45 32298.82 29991.04 24787.01 35997.04 305
PHI-MVS96.96 12096.53 14498.25 7297.48 25596.50 5896.76 11798.85 9193.52 21296.19 22796.85 22995.94 9999.42 20193.79 19999.43 13598.83 194
tttt051793.31 27192.56 27895.57 23598.71 11787.86 27897.44 8387.17 36095.79 13497.47 15696.84 23064.12 36199.81 3196.20 7799.32 17099.02 163
patchmatchnet-post96.84 23077.36 32499.42 201
ADS-MVSNet291.47 29990.51 30794.36 28595.51 32685.63 30995.05 22195.70 29983.46 33492.69 32296.84 23079.15 31499.41 21085.66 32690.52 35298.04 270
ADS-MVSNet90.95 30590.26 30993.04 30895.51 32682.37 33795.05 22193.41 32483.46 33492.69 32296.84 23079.15 31498.70 31185.66 32690.52 35298.04 270
HY-MVS91.43 1592.58 28191.81 28794.90 26396.49 29888.87 25897.31 8994.62 31385.92 31390.50 34296.84 23085.05 28799.40 21283.77 34195.78 33296.43 327
UnsupCasMVSNet_bld94.72 22794.26 23696.08 21498.62 12890.54 23693.38 28898.05 22390.30 27397.02 18296.80 23589.54 25199.16 26388.44 29996.18 32698.56 222
HQP_MVS96.66 14596.33 15497.68 11398.70 11994.29 14296.50 12898.75 12296.36 10196.16 22896.77 23691.91 22299.46 19192.59 22199.20 18499.28 110
plane_prior496.77 236
MVS_111021_HR96.73 13896.54 14397.27 14998.35 15893.66 17193.42 28598.36 18294.74 17596.58 20596.76 23896.54 7898.99 28494.87 15199.27 17999.15 133
CANet95.86 17895.65 18196.49 19496.41 30090.82 22894.36 24698.41 17594.94 16992.62 32796.73 23992.68 19799.71 9695.12 14299.60 7498.94 172
112194.26 24393.26 26097.27 14998.26 16894.73 12495.86 16597.71 24177.96 35594.53 27396.71 24091.93 22099.40 21287.71 30698.64 25197.69 288
TSAR-MVS + GP.96.47 15396.12 16297.49 13097.74 23695.23 10894.15 25896.90 27693.26 22198.04 11696.70 24194.41 15798.89 29494.77 15899.14 19198.37 234
test22298.17 18093.24 18192.74 30297.61 25375.17 35994.65 27096.69 24290.96 23298.66 24897.66 289
新几何197.25 15298.29 16294.70 12997.73 23977.98 35494.83 26696.67 24392.08 21599.45 19588.17 30498.65 25097.61 291
miper_ehance_all_eth94.69 22894.70 21694.64 27395.77 32186.22 30591.32 32798.24 19591.67 25697.05 17996.65 24488.39 26499.22 25694.88 15098.34 26398.49 227
MVS_111021_LR96.82 13196.55 14197.62 11698.27 16695.34 10593.81 27598.33 18794.59 18296.56 20796.63 24596.61 7498.73 30894.80 15499.34 16198.78 200
CDPH-MVS95.45 19494.65 21897.84 10198.28 16494.96 11893.73 27798.33 18785.03 32695.44 25196.60 24695.31 12899.44 19890.01 27799.13 19599.11 148
CMPMVSbinary73.10 2392.74 27991.39 29196.77 17893.57 35294.67 13094.21 25597.67 24380.36 34793.61 30296.60 24682.85 29997.35 35384.86 33498.78 23798.29 248
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet94.88 21894.12 24297.14 15797.64 24593.57 17393.96 26997.06 27190.05 27696.30 22196.55 24886.10 28199.47 18890.10 27699.31 17298.40 231
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LF4IMVS96.07 16795.63 18297.36 14598.19 17595.55 9195.44 18898.82 11192.29 24895.70 24796.55 24892.63 20098.69 31291.75 23599.33 16897.85 280
HPM-MVS++copyleft96.99 11696.38 15198.81 2998.64 12397.59 2395.97 15998.20 20095.51 14695.06 25996.53 25094.10 16599.70 10594.29 17899.15 19099.13 139
EPMVS89.26 31888.55 32291.39 32892.36 36179.11 34895.65 18079.86 36588.60 29093.12 31596.53 25070.73 35498.10 34790.75 25789.32 35696.98 306
HyFIR lowres test93.72 26092.65 27596.91 17098.93 9691.81 21491.23 32998.52 16182.69 33696.46 21296.52 25280.38 30999.90 1390.36 27398.79 23699.03 161
BH-RMVSNet94.56 23694.44 23394.91 26197.57 24887.44 28893.78 27696.26 28893.69 21096.41 21496.50 25392.10 21499.00 28285.96 32297.71 28898.31 243
DROMVSNet97.38 9897.44 8997.20 15498.31 15993.89 15797.78 5899.59 396.36 10195.16 25796.49 25496.54 7899.78 4297.14 5299.57 8197.94 275
MSP-MVS97.45 9396.92 12299.03 899.26 4897.70 1897.66 6798.89 7895.65 13998.51 6096.46 25592.15 21199.81 3195.14 13998.58 25699.58 28
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
原ACMM196.58 18898.16 18292.12 20598.15 20985.90 31493.49 30696.43 25692.47 20799.38 22087.66 30998.62 25298.23 252
tpm288.47 32387.69 32790.79 33294.98 33577.34 35595.09 21591.83 33877.51 35789.40 34896.41 25767.83 35898.73 30883.58 34392.60 35096.29 329
OpenMVS_ROBcopyleft91.80 1493.64 26493.05 26395.42 24397.31 27391.21 22195.08 21796.68 28581.56 34096.88 19396.41 25790.44 23899.25 25185.39 32997.67 29295.80 335
CL-MVSNet_2432*160095.04 21194.79 21495.82 22697.51 25489.79 24391.14 33196.82 27993.05 23196.72 19996.40 25990.82 23399.16 26391.95 22798.66 24898.50 226
F-COLMAP95.30 20094.38 23498.05 8898.64 12396.04 7395.61 18398.66 14689.00 28593.22 31496.40 25992.90 19299.35 22887.45 31497.53 29898.77 203
bset_n11_16_dypcd94.53 23893.95 24996.25 20697.56 25089.85 24288.52 35391.32 34294.90 17297.51 14896.38 26182.34 30199.78 4297.22 4599.80 3399.12 144
NCCC96.52 15095.99 16998.10 8197.81 21895.68 8695.00 22498.20 20095.39 15195.40 25396.36 26293.81 17299.45 19593.55 20698.42 26199.17 129
new_pmnet92.34 28691.69 28994.32 28696.23 30689.16 25492.27 31192.88 32984.39 33395.29 25496.35 26385.66 28496.74 35884.53 33697.56 29697.05 304
cl-mvsnet293.25 27392.84 26994.46 28294.30 34286.00 30791.09 33396.64 28690.74 26895.79 24196.31 26478.24 31798.77 30494.15 18498.34 26398.62 217
tpmvs90.79 30690.87 30090.57 33492.75 36076.30 35795.79 17093.64 32291.04 26791.91 33496.26 26577.19 32698.86 29889.38 28789.85 35596.56 325
test_prior395.91 17595.39 18897.46 13597.79 22894.26 14693.33 29098.42 17394.21 19494.02 28896.25 26693.64 17799.34 23091.90 22898.96 21498.79 198
test_prior293.33 29094.21 19494.02 28896.25 26693.64 17791.90 22898.96 214
testgi96.07 16796.50 14894.80 26999.26 4887.69 28495.96 16098.58 15795.08 16398.02 11896.25 26697.92 1697.60 35288.68 29798.74 24199.11 148
DP-MVS Recon95.55 18795.13 19596.80 17698.51 14193.99 15594.60 24098.69 13990.20 27495.78 24396.21 26992.73 19698.98 28690.58 26698.86 22997.42 297
hse-mvs295.77 18095.09 19797.79 10397.84 21495.51 9495.66 17795.43 30896.58 9297.21 16696.16 27084.14 29399.54 17095.89 9596.92 31098.32 241
MVSFormer96.14 16596.36 15295.49 24097.68 24087.81 28198.67 1199.02 5196.50 9694.48 27696.15 27186.90 27799.92 498.73 799.13 19598.74 205
jason94.39 24294.04 24595.41 24598.29 16287.85 28092.74 30296.75 28285.38 32395.29 25496.15 27188.21 26699.65 13194.24 18099.34 16198.74 205
jason: jason.
test_yl94.40 24094.00 24695.59 23396.95 28789.52 24794.75 23695.55 30596.18 11096.79 19496.14 27381.09 30599.18 25890.75 25797.77 28298.07 262
DCV-MVSNet94.40 24094.00 24695.59 23396.95 28789.52 24794.75 23695.55 30596.18 11096.79 19496.14 27381.09 30599.18 25890.75 25797.77 28298.07 262
dp88.08 32688.05 32488.16 34492.85 35868.81 36794.17 25692.88 32985.47 31991.38 33796.14 27368.87 35798.81 30186.88 31783.80 36296.87 311
AUN-MVS93.95 25792.69 27497.74 10697.80 22295.38 10095.57 18495.46 30791.26 26492.64 32596.10 27674.67 33699.55 16793.72 20296.97 30998.30 245
MCST-MVS96.24 16095.80 17697.56 11998.75 11194.13 15094.66 23898.17 20690.17 27596.21 22696.10 27695.14 13299.43 20094.13 18598.85 23199.13 139
TEST997.84 21495.23 10893.62 27998.39 17886.81 30693.78 29395.99 27894.68 14799.52 176
train_agg95.46 19394.66 21797.88 9897.84 21495.23 10893.62 27998.39 17887.04 30493.78 29395.99 27894.58 15299.52 17691.76 23498.90 22398.89 185
MSDG95.33 19895.13 19595.94 22297.40 26391.85 21291.02 33498.37 18195.30 15496.31 22095.99 27894.51 15598.38 33689.59 28397.65 29497.60 292
agg_prior195.39 19694.60 22397.75 10597.80 22294.96 11893.39 28798.36 18287.20 30293.49 30695.97 28194.65 14999.53 17291.69 23698.86 22998.77 203
test_897.81 21895.07 11693.54 28298.38 18087.04 30493.71 29795.96 28294.58 15299.52 176
CSCG97.40 9797.30 9697.69 11298.95 9594.83 12197.28 9198.99 6296.35 10498.13 10495.95 28395.99 9899.66 13094.36 17799.73 4598.59 220
TAPA-MVS93.32 1294.93 21594.23 23797.04 16398.18 17894.51 13495.22 20998.73 12681.22 34396.25 22495.95 28393.80 17398.98 28689.89 27998.87 22797.62 290
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ETH3 D test640094.77 22293.87 25197.47 13298.12 18993.73 16694.56 24298.70 13685.45 32194.70 26995.93 28591.77 22499.63 13686.45 32099.14 19199.05 159
baseline193.14 27592.64 27694.62 27597.34 26987.20 29396.67 12593.02 32794.71 17796.51 21095.83 28681.64 30298.60 32290.00 27888.06 35798.07 262
sss94.22 24593.72 25395.74 22997.71 23889.95 24093.84 27296.98 27388.38 29393.75 29695.74 28787.94 26798.89 29491.02 24898.10 27298.37 234
CNLPA95.04 21194.47 23096.75 17997.81 21895.25 10794.12 26297.89 22994.41 18694.57 27195.69 28890.30 24298.35 33986.72 31998.76 23996.64 322
PCF-MVS89.43 1892.12 29190.64 30596.57 19097.80 22293.48 17689.88 34798.45 16774.46 36096.04 23295.68 28990.71 23599.31 23773.73 35899.01 21296.91 310
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned94.69 22894.75 21594.52 28197.95 20587.53 28694.07 26397.01 27293.99 20197.10 17495.65 29092.65 19998.95 29187.60 31096.74 31797.09 302
CANet_DTU94.65 23294.21 23995.96 21895.90 31689.68 24493.92 27097.83 23593.19 22490.12 34595.64 29188.52 26199.57 16293.27 21199.47 11998.62 217
PatchMatch-RL94.61 23493.81 25297.02 16598.19 17595.72 8293.66 27897.23 26288.17 29594.94 26495.62 29291.43 22698.57 32387.36 31597.68 29196.76 319
tpm cat188.01 32787.33 32890.05 33794.48 34076.28 35894.47 24594.35 31773.84 36289.26 34995.61 29373.64 34198.30 34184.13 33786.20 36095.57 340
Effi-MVS+-dtu96.81 13296.09 16498.99 1396.90 29198.69 296.42 13198.09 21595.86 13095.15 25895.54 29494.26 16199.81 3194.06 18798.51 25998.47 228
AdaColmapbinary95.11 20894.62 22296.58 18897.33 27194.45 13794.92 22798.08 21793.15 22993.98 29195.53 29594.34 15999.10 27285.69 32598.61 25396.20 330
thisisatest053092.71 28091.76 28895.56 23798.42 15388.23 26996.03 15487.35 35994.04 20096.56 20795.47 29664.03 36299.77 5394.78 15799.11 19998.68 213
WTY-MVS93.55 26693.00 26595.19 25297.81 21887.86 27893.89 27196.00 29389.02 28494.07 28695.44 29786.27 28099.33 23387.69 30896.82 31498.39 233
PLCcopyleft91.02 1694.05 25492.90 26697.51 12498.00 20095.12 11594.25 25198.25 19486.17 31091.48 33695.25 29891.01 23099.19 25785.02 33396.69 31898.22 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs390.00 31188.90 32093.32 30094.20 34685.34 31391.25 32892.56 33478.59 35293.82 29295.17 29967.36 35998.69 31289.08 29198.03 27595.92 332
CS-MVS95.98 17396.24 15695.20 25197.26 27489.88 24195.84 16899.39 893.89 20594.28 27995.15 30094.81 14299.62 14496.11 8199.40 14596.10 331
NP-MVS98.14 18593.72 16795.08 301
HQP-MVS95.17 20794.58 22696.92 16897.85 21092.47 19594.26 24898.43 17093.18 22592.86 31995.08 30190.33 23999.23 25490.51 26998.74 24199.05 159
cdsmvs_eth3d_5k24.22 33632.30 3390.00 3520.00 3730.00 3740.00 36498.10 2140.00 3690.00 37095.06 30397.54 290.00 3700.00 3680.00 3680.00 366
lupinMVS93.77 25893.28 25995.24 24997.68 24087.81 28192.12 31396.05 29184.52 33094.48 27695.06 30386.90 27799.63 13693.62 20599.13 19598.27 249
1112_ss94.12 25093.42 25796.23 20798.59 13390.85 22794.24 25298.85 9185.49 31892.97 31794.94 30586.01 28299.64 13491.78 23397.92 27898.20 255
ab-mvs-re7.91 34010.55 3430.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 37094.94 3050.00 3750.00 3700.00 3680.00 3680.00 366
Fast-Effi-MVS+-dtu96.44 15496.12 16297.39 14397.18 27994.39 13895.46 18798.73 12696.03 11994.72 26794.92 30796.28 9599.69 11393.81 19897.98 27698.09 259
EPNet_dtu91.39 30090.75 30393.31 30190.48 36582.61 33594.80 23392.88 32993.39 21681.74 36494.90 30881.36 30499.11 27088.28 30298.87 22798.21 254
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DPM-MVS93.68 26292.77 27396.42 19897.91 20692.54 19391.17 33097.47 25884.99 32793.08 31694.74 30989.90 24799.00 28287.54 31298.09 27397.72 286
Effi-MVS+96.19 16396.01 16796.71 18197.43 26192.19 20496.12 14999.10 3095.45 14893.33 31394.71 31097.23 4399.56 16393.21 21397.54 29798.37 234
GA-MVS92.83 27892.15 28394.87 26596.97 28587.27 29290.03 34296.12 29091.83 25594.05 28794.57 31176.01 33298.97 29092.46 22397.34 30598.36 239
miper_enhance_ethall93.14 27592.78 27294.20 28993.65 35085.29 31589.97 34397.85 23185.05 32596.15 23094.56 31285.74 28399.14 26593.74 20098.34 26398.17 258
xiu_mvs_v1_base_debu95.62 18495.96 17194.60 27698.01 19688.42 26593.99 26698.21 19792.98 23495.91 23694.53 31396.39 8999.72 8295.43 12198.19 26895.64 337
xiu_mvs_v1_base95.62 18495.96 17194.60 27698.01 19688.42 26593.99 26698.21 19792.98 23495.91 23694.53 31396.39 8999.72 8295.43 12198.19 26895.64 337
xiu_mvs_v1_base_debi95.62 18495.96 17194.60 27698.01 19688.42 26593.99 26698.21 19792.98 23495.91 23694.53 31396.39 8999.72 8295.43 12198.19 26895.64 337
PVSNet_Blended93.96 25593.65 25494.91 26197.79 22887.40 28991.43 32298.68 14184.50 33194.51 27494.48 31693.04 18899.30 24089.77 28198.61 25398.02 272
PAPM_NR94.61 23494.17 24195.96 21898.36 15791.23 22095.93 16397.95 22592.98 23493.42 31194.43 31790.53 23698.38 33687.60 31096.29 32598.27 249
API-MVS95.09 21095.01 20295.31 24696.61 29594.02 15396.83 11397.18 26595.60 14295.79 24194.33 31894.54 15498.37 33885.70 32498.52 25793.52 351
mvs-test196.20 16295.50 18798.32 6496.90 29198.16 495.07 21898.09 21595.86 13093.63 30094.32 31994.26 16199.71 9694.06 18797.27 30897.07 303
alignmvs96.01 17195.52 18697.50 12797.77 23394.71 12696.07 15196.84 27797.48 6596.78 19894.28 32085.50 28599.40 21296.22 7698.73 24498.40 231
CLD-MVS95.47 19295.07 19896.69 18398.27 16692.53 19491.36 32398.67 14491.22 26595.78 24394.12 32195.65 11698.98 28690.81 25499.72 4898.57 221
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS92.54 28292.20 28293.57 29796.49 29886.66 29993.51 28394.73 31289.96 27794.95 26393.87 32290.24 24498.61 32081.18 34794.88 33995.45 341
canonicalmvs97.23 11097.21 10597.30 14897.65 24494.39 13897.84 5699.05 4297.42 6796.68 20193.85 32397.63 2699.33 23396.29 7598.47 26098.18 257
xiu_mvs_v2_base94.22 24594.63 22192.99 31197.32 27284.84 32392.12 31397.84 23391.96 25294.17 28293.43 32496.07 9799.71 9691.27 24297.48 30094.42 347
CS-MVS-test95.30 20095.31 19095.27 24796.97 28591.13 22295.52 18599.28 1192.94 23992.37 32993.42 32593.77 17499.61 15194.60 16298.96 21495.07 343
CHOSEN 280x42089.98 31289.19 31892.37 32295.60 32581.13 34486.22 35797.09 26981.44 34287.44 35793.15 32673.99 33799.47 18888.69 29699.07 20596.52 326
KD-MVS_2432*160088.93 32087.74 32592.49 31888.04 36681.99 33989.63 34995.62 30191.35 26195.06 25993.11 32756.58 36898.63 31885.19 33095.07 33796.85 313
miper_refine_blended88.93 32087.74 32592.49 31888.04 36681.99 33989.63 34995.62 30191.35 26195.06 25993.11 32756.58 36898.63 31885.19 33095.07 33796.85 313
thres600view792.03 29291.43 29093.82 29298.19 17584.61 32596.27 13990.39 35096.81 8596.37 21693.11 32773.44 34599.49 18280.32 34897.95 27797.36 298
E-PMN89.52 31789.78 31288.73 34093.14 35577.61 35383.26 36092.02 33694.82 17493.71 29793.11 32775.31 33496.81 35685.81 32396.81 31591.77 357
thres100view90091.76 29691.26 29593.26 30298.21 17384.50 32696.39 13290.39 35096.87 8396.33 21793.08 33173.44 34599.42 20178.85 35297.74 28595.85 333
131492.38 28592.30 28192.64 31795.42 33085.15 31895.86 16596.97 27485.40 32290.62 33993.06 33291.12 22997.80 35086.74 31895.49 33694.97 345
PAPM87.64 33085.84 33593.04 30896.54 29684.99 32188.42 35495.57 30479.52 34983.82 36193.05 33380.57 30898.41 33362.29 36492.79 34895.71 336
Fast-Effi-MVS+95.49 18995.07 19896.75 17997.67 24392.82 18994.22 25498.60 15491.61 25793.42 31192.90 33496.73 6999.70 10592.60 21997.89 28197.74 285
ET-MVSNet_ETH3D91.12 30189.67 31395.47 24196.41 30089.15 25591.54 32190.23 35389.07 28386.78 36092.84 33569.39 35699.44 19894.16 18396.61 32097.82 282
MVS90.02 31089.20 31792.47 32094.71 33786.90 29795.86 16596.74 28364.72 36390.62 33992.77 33692.54 20498.39 33579.30 35095.56 33592.12 355
BH-w/o92.14 29091.94 28492.73 31697.13 28185.30 31492.46 30795.64 30089.33 28294.21 28192.74 33789.60 24998.24 34281.68 34594.66 34194.66 346
PAPR92.22 28891.27 29495.07 25695.73 32388.81 26091.97 31697.87 23085.80 31590.91 33892.73 33891.16 22898.33 34079.48 34995.76 33398.08 260
MAR-MVS94.21 24793.03 26497.76 10496.94 28997.44 3396.97 10997.15 26687.89 29992.00 33392.73 33892.14 21299.12 26783.92 33897.51 29996.73 320
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline289.65 31688.44 32393.25 30395.62 32482.71 33493.82 27385.94 36288.89 28787.35 35892.54 34071.23 35199.33 23386.01 32194.60 34397.72 286
PS-MVSNAJ94.10 25194.47 23093.00 31097.35 26584.88 32291.86 31797.84 23391.96 25294.17 28292.50 34195.82 10599.71 9691.27 24297.48 30094.40 348
PMMVS92.39 28491.08 29696.30 20593.12 35692.81 19090.58 33895.96 29579.17 35191.85 33592.27 34290.29 24398.66 31789.85 28096.68 31997.43 296
PVSNet86.72 1991.10 30290.97 29991.49 32797.56 25078.04 35187.17 35594.60 31484.65 32992.34 33092.20 34387.37 27598.47 33085.17 33297.69 29097.96 274
tfpn200view991.55 29891.00 29793.21 30598.02 19484.35 32895.70 17390.79 34796.26 10695.90 23992.13 34473.62 34299.42 20178.85 35297.74 28595.85 333
thres40091.68 29791.00 29793.71 29498.02 19484.35 32895.70 17390.79 34796.26 10695.90 23992.13 34473.62 34299.42 20178.85 35297.74 28597.36 298
MVEpermissive73.61 2286.48 33285.92 33488.18 34396.23 30685.28 31681.78 36275.79 36686.01 31182.53 36391.88 34692.74 19587.47 36571.42 36294.86 34091.78 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS89.06 31989.22 31588.61 34193.00 35777.34 35582.91 36190.92 34694.64 17992.63 32691.81 34776.30 33097.02 35483.83 34096.90 31291.48 358
thisisatest051590.43 30789.18 31994.17 29197.07 28385.44 31289.75 34887.58 35888.28 29493.69 29991.72 34865.27 36099.58 15690.59 26598.67 24697.50 295
test_method66.88 33466.13 33769.11 34862.68 36925.73 37149.76 36396.04 29214.32 36664.27 36791.69 34973.45 34488.05 36476.06 35766.94 36493.54 350
EIA-MVS96.04 16995.77 17896.85 17397.80 22292.98 18696.12 14999.16 1994.65 17893.77 29591.69 34995.68 11499.67 12494.18 18298.85 23197.91 278
cascas91.89 29491.35 29293.51 29894.27 34385.60 31088.86 35298.61 15379.32 35092.16 33291.44 35189.22 25898.12 34690.80 25597.47 30296.82 316
IB-MVS85.98 2088.63 32286.95 33193.68 29595.12 33384.82 32490.85 33590.17 35487.55 30088.48 35391.34 35258.01 36599.59 15487.24 31693.80 34696.63 324
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres20091.00 30490.42 30892.77 31597.47 25983.98 33194.01 26591.18 34595.12 16295.44 25191.21 35373.93 33899.31 23777.76 35597.63 29595.01 344
test0.0.03 190.11 30989.21 31692.83 31493.89 34886.87 29891.74 31988.74 35792.02 25094.71 26891.14 35473.92 33994.48 36183.75 34292.94 34797.16 301
ETV-MVS96.13 16695.90 17496.82 17597.76 23493.89 15795.40 19398.95 7295.87 12995.58 25091.00 35596.36 9299.72 8293.36 20798.83 23396.85 313
test-LLR89.97 31389.90 31190.16 33594.24 34474.98 36089.89 34489.06 35592.02 25089.97 34690.77 35673.92 33998.57 32391.88 23097.36 30396.92 308
test-mter87.92 32887.17 32990.16 33594.24 34474.98 36089.89 34489.06 35586.44 30989.97 34690.77 35654.96 37298.57 32391.88 23097.36 30396.92 308
TESTMET0.1,187.20 33186.57 33389.07 33993.62 35172.84 36489.89 34487.01 36185.46 32089.12 35190.20 35856.00 37197.72 35190.91 25196.92 31096.64 322
gm-plane-assit91.79 36271.40 36681.67 33990.11 35998.99 28484.86 334
DWT-MVSNet_test87.92 32886.77 33291.39 32893.18 35378.62 34995.10 21391.42 34185.58 31788.00 35488.73 36060.60 36498.90 29290.60 26487.70 35896.65 321
DeepMVS_CXcopyleft77.17 34790.94 36485.28 31674.08 36952.51 36480.87 36588.03 36175.25 33570.63 36659.23 36584.94 36175.62 361
PVSNet_081.89 2184.49 33383.21 33688.34 34295.76 32274.97 36283.49 35992.70 33378.47 35387.94 35586.90 36283.38 29896.63 35973.44 35966.86 36593.40 352
GG-mvs-BLEND90.60 33391.00 36384.21 33098.23 3272.63 37082.76 36284.11 36356.14 37096.79 35772.20 36092.09 35190.78 359
tmp_tt57.23 33562.50 33841.44 34934.77 37049.21 37083.93 35860.22 37115.31 36571.11 36679.37 36470.09 35544.86 36764.76 36382.93 36330.25 363
X-MVStestdata92.86 27790.83 30298.94 1899.15 7297.66 1997.77 6098.83 10397.42 6796.32 21836.50 36596.49 8399.72 8295.66 10399.37 15099.45 66
testmvs12.33 33815.23 3413.64 3515.77 3722.23 37388.99 3513.62 3722.30 3685.29 36813.09 3664.52 3741.95 3685.16 3678.32 3676.75 365
test12312.59 33715.49 3403.87 3506.07 3712.55 37290.75 3362.59 3732.52 3675.20 36913.02 3674.96 3731.85 3695.20 3669.09 3667.23 364
test_post10.87 36876.83 32799.07 275
test_post194.98 22510.37 36976.21 33199.04 27889.47 285
uanet_test0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
pcd_1.5k_mvsjas7.98 33910.65 3420.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 37095.82 1050.00 3700.00 3680.00 3680.00 366
sosnet-low-res0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
sosnet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uncertanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
Regformer0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
uanet0.00 3410.00 3440.00 3520.00 3730.00 3740.00 3640.00 3740.00 3690.00 3700.00 3700.00 3750.00 3700.00 3680.00 3680.00 366
eth-test20.00 373
eth-test0.00 373
IU-MVS99.22 5795.40 9998.14 21085.77 31698.36 7595.23 13199.51 10799.49 51
save fliter98.48 14794.71 12694.53 24398.41 17595.02 167
test_0728_SECOND98.25 7299.23 5495.49 9796.74 11898.89 7899.75 6595.48 11499.52 10299.53 39
GSMVS98.06 266
test_part299.03 9196.07 7298.08 111
sam_mvs177.80 31998.06 266
sam_mvs77.38 323
MTGPAbinary98.73 126
MTMP96.55 12674.60 367
test9_res91.29 24198.89 22699.00 164
agg_prior290.34 27498.90 22399.10 152
agg_prior97.80 22294.96 11898.36 18293.49 30699.53 172
test_prior495.38 10093.61 281
test_prior97.46 13597.79 22894.26 14698.42 17399.34 23098.79 198
旧先验293.35 28977.95 35695.77 24598.67 31690.74 260
新几何293.43 284
无先验93.20 29397.91 22780.78 34499.40 21287.71 30697.94 275
原ACMM292.82 298
testdata299.46 19187.84 305
segment_acmp95.34 126
testdata192.77 29993.78 207
test1297.46 13597.61 24794.07 15197.78 23793.57 30493.31 18399.42 20198.78 23798.89 185
plane_prior798.70 11994.67 130
plane_prior698.38 15594.37 14091.91 222
plane_prior598.75 12299.46 19192.59 22199.20 18499.28 110
plane_prior394.51 13495.29 15596.16 228
plane_prior296.50 12896.36 101
plane_prior198.49 145
plane_prior94.29 14295.42 19094.31 19198.93 221
n20.00 374
nn0.00 374
door-mid98.17 206
test1198.08 217
door97.81 236
HQP5-MVS92.47 195
HQP-NCC97.85 21094.26 24893.18 22592.86 319
ACMP_Plane97.85 21094.26 24893.18 22592.86 319
BP-MVS90.51 269
HQP4-MVS92.87 31899.23 25499.06 157
HQP3-MVS98.43 17098.74 241
HQP2-MVS90.33 239
MDTV_nov1_ep13_2view57.28 36994.89 22880.59 34594.02 28878.66 31685.50 32897.82 282
ACMMP++_ref99.52 102
ACMMP++99.55 91
Test By Simon94.51 155