This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 199.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 8897.89 1399.47 399.32 1899.08 1097.87 14699.67 296.47 9199.92 597.88 3099.98 299.85 3
test_fmvs397.38 10497.56 8996.84 17198.63 13992.81 19197.60 8699.61 990.87 27098.76 5699.66 394.03 16797.90 34999.24 399.68 6899.81 8
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 1999.01 1699.63 999.66 399.27 299.68 11997.75 3899.89 2499.62 28
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 2699.67 299.73 399.65 599.15 399.86 2497.22 5599.92 1399.77 11
mvsany_test396.21 16595.93 17897.05 15797.40 27894.33 14695.76 19094.20 32689.10 28999.36 1999.60 693.97 16997.85 35095.40 14298.63 25798.99 170
OurMVSNet-221017-098.61 1698.61 2398.63 4499.77 596.35 6499.17 699.05 5398.05 4399.61 1199.52 793.72 17699.88 2098.72 1199.88 2599.65 25
ANet_high98.31 2998.94 696.41 19999.33 5189.64 24897.92 6699.56 1199.27 699.66 899.50 897.67 2699.83 3397.55 4699.98 299.77 11
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 2396.23 11599.71 499.48 998.77 699.93 398.89 499.95 599.84 5
test_f95.82 18195.88 18195.66 23297.61 26193.21 18495.61 20198.17 21386.98 31498.42 8199.47 1090.46 23894.74 37197.71 4098.45 26899.03 163
gg-mvs-nofinetune88.28 33386.96 33892.23 33592.84 37184.44 33798.19 5274.60 37899.08 1087.01 36999.47 1056.93 37698.23 34378.91 36295.61 34594.01 360
PS-MVSNAJss98.53 2198.63 1998.21 7899.68 1194.82 12998.10 5699.21 2496.91 8699.75 299.45 1295.82 11199.92 598.80 699.96 499.89 1
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 6296.50 10399.32 2199.44 1397.43 3399.92 598.73 999.95 599.86 2
Anonymous2023121198.55 1998.76 1397.94 9698.79 11894.37 14498.84 1199.15 3599.37 399.67 699.43 1495.61 12299.72 8598.12 2299.86 2799.73 18
test_fmvs296.38 16096.45 15496.16 21097.85 22291.30 22396.81 13299.45 1389.24 28898.49 7399.38 1588.68 26497.62 35498.83 599.32 17899.57 37
anonymousdsp98.72 1498.63 1998.99 1099.62 1697.29 3798.65 1999.19 2895.62 14999.35 2099.37 1697.38 3599.90 1498.59 1599.91 1699.77 11
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 3995.83 14199.67 699.37 1698.25 1099.92 598.77 799.94 899.82 6
K. test v396.44 15796.28 16196.95 16399.41 4391.53 22097.65 8390.31 36098.89 1998.93 4299.36 1884.57 29899.92 597.81 3499.56 9799.39 90
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1099.02 1599.62 1099.36 1898.53 799.52 17098.58 1699.95 599.66 23
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_MVS97.95 5197.79 6198.43 5799.67 1295.56 9398.86 1096.73 29097.99 4599.15 3199.35 2089.84 25099.90 1498.64 1399.90 2299.82 6
SixPastTwentyTwo97.49 9697.57 8897.26 14699.56 2192.33 19998.28 4296.97 27998.30 3499.45 1499.35 2088.43 26799.89 1898.01 2799.76 4699.54 44
Gipumacopyleft98.07 4298.31 3197.36 14199.76 796.28 6898.51 2799.10 4198.76 2296.79 20799.34 2296.61 8298.82 29796.38 8299.50 12496.98 318
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt97.04 11896.98 12297.23 14998.44 16695.88 8096.82 13199.67 490.30 27699.27 2499.33 2394.04 16696.03 36897.14 6097.83 29199.78 10
JIA-IIPM91.79 30290.69 31195.11 25593.80 36390.98 22894.16 26791.78 34996.38 10790.30 35599.30 2472.02 35798.90 29188.28 31490.17 36695.45 352
TransMVSNet (Re)98.38 2698.67 1797.51 12499.51 3193.39 18098.20 5198.87 9898.23 3699.48 1299.27 2598.47 899.55 16296.52 7799.53 11099.60 30
Baseline_NR-MVSNet97.72 8197.79 6197.50 12799.56 2193.29 18195.44 20698.86 10198.20 3898.37 8699.24 2694.69 14799.55 16295.98 10299.79 4099.65 25
v7n98.73 1198.99 597.95 9599.64 1494.20 15398.67 1599.14 3799.08 1099.42 1599.23 2796.53 8699.91 1399.27 299.93 1099.73 18
pm-mvs198.47 2398.67 1797.86 10199.52 3094.58 13698.28 4299.00 7197.57 6299.27 2499.22 2898.32 999.50 17597.09 6299.75 5199.50 50
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1498.85 2099.00 3999.20 2997.42 3499.59 15097.21 5699.76 4699.40 87
GBi-Net96.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
test196.99 12196.80 13497.56 11997.96 21593.67 16998.23 4698.66 15395.59 15197.99 13199.19 3089.51 25799.73 8094.60 18099.44 14099.30 106
FMVSNet197.95 5198.08 3797.56 11999.14 8693.67 16998.23 4698.66 15397.41 7299.00 3999.19 3095.47 12699.73 8095.83 11199.76 4699.30 106
VDDNet96.98 12496.84 13197.41 13899.40 4493.26 18297.94 6495.31 31699.26 798.39 8599.18 3387.85 27699.62 14295.13 15899.09 20999.35 100
DSMNet-mixed92.19 29691.83 29393.25 31496.18 32083.68 34496.27 15893.68 33076.97 36892.54 34099.18 3389.20 26298.55 32583.88 35098.60 26197.51 305
test111194.53 24194.81 21893.72 30499.06 9481.94 35398.31 3983.87 37496.37 10898.49 7399.17 3581.49 31199.73 8096.64 7299.86 2799.49 58
test250689.86 32289.16 32791.97 33698.95 10476.83 36898.54 2361.07 38296.20 11697.07 19099.16 3655.19 38199.69 11496.43 8199.83 3399.38 92
ECVR-MVScopyleft94.37 24794.48 23694.05 30098.95 10483.10 34598.31 3982.48 37596.20 11698.23 10599.16 3681.18 31499.66 13095.95 10399.83 3399.38 92
v1097.55 9297.97 4696.31 20398.60 14389.64 24897.44 9999.02 6296.60 9598.72 5999.16 3693.48 18099.72 8598.76 899.92 1399.58 32
MIMVSNet198.51 2298.45 2698.67 4099.72 896.71 5098.76 1298.89 9098.49 2799.38 1799.14 3995.44 12899.84 3096.47 7999.80 3999.47 67
Vis-MVSNetpermissive98.27 3098.34 3098.07 8699.33 5195.21 12098.04 6099.46 1297.32 7697.82 15099.11 4096.75 7699.86 2497.84 3399.36 16299.15 138
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 8998.06 4096.23 20598.71 12889.44 25297.43 10198.82 12297.29 7898.74 5799.10 4193.86 17199.68 11998.61 1499.94 899.56 41
mvsmamba98.16 3498.06 4098.44 5599.53 2995.87 8198.70 1398.94 8497.71 5698.85 4799.10 4191.35 22799.83 3398.47 1799.90 2299.64 27
MVS-HIRNet88.40 33290.20 31782.99 35697.01 29760.04 38093.11 30485.61 37284.45 34388.72 36399.09 4384.72 29798.23 34382.52 35596.59 33190.69 371
ACMH93.61 998.44 2498.76 1397.51 12499.43 4093.54 17598.23 4699.05 5397.40 7399.37 1899.08 4498.79 599.47 18597.74 3999.71 6099.50 50
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 4199.36 499.29 2399.06 4597.27 4099.93 397.71 4099.91 1699.70 21
Anonymous2024052197.07 11797.51 9495.76 22799.35 4988.18 27697.78 7298.40 18497.11 8198.34 9299.04 4689.58 25399.79 4398.09 2499.93 1099.30 106
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 3599.33 599.30 2299.00 4797.27 4099.92 597.64 4499.92 1399.75 16
DeepC-MVS95.41 497.82 7497.70 6898.16 7998.78 12095.72 8696.23 16399.02 6293.92 20698.62 6198.99 4897.69 2499.62 14296.18 9199.87 2699.15 138
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VPA-MVSNet98.27 3098.46 2497.70 11199.06 9493.80 16597.76 7599.00 7198.40 2999.07 3698.98 4996.89 6699.75 6697.19 5999.79 4099.55 43
lessismore_v097.05 15799.36 4892.12 20684.07 37398.77 5598.98 4985.36 29299.74 7597.34 5399.37 15999.30 106
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 3899.22 899.22 2898.96 5197.35 3699.92 597.79 3699.93 1099.79 9
bld_raw_dy_0_6497.69 8397.61 8497.91 9799.54 2694.27 15198.06 5998.60 16196.60 9598.79 5298.95 5289.62 25199.84 3098.43 1999.91 1699.62 28
EU-MVSNet94.25 24894.47 23793.60 30798.14 20082.60 34897.24 10992.72 34285.08 33398.48 7598.94 5382.59 30998.76 30497.47 5099.53 11099.44 82
LCM-MVSNet-Re97.33 10997.33 10497.32 14398.13 20393.79 16696.99 12499.65 796.74 9199.47 1398.93 5496.91 6599.84 3090.11 28799.06 21598.32 250
test_vis1_n95.67 18695.89 18095.03 26098.18 19189.89 24596.94 12699.28 2188.25 30298.20 10798.92 5586.69 28597.19 35797.70 4298.82 23998.00 283
test_fmvs1_n95.21 20695.28 19494.99 26398.15 19889.13 25996.81 13299.43 1586.97 31597.21 17598.92 5583.00 30697.13 35898.09 2498.94 22498.72 211
XXY-MVS97.54 9397.70 6897.07 15699.46 3792.21 20297.22 11099.00 7194.93 17898.58 6698.92 5597.31 3899.41 20794.44 18599.43 14899.59 31
mvs_anonymous95.36 20096.07 17093.21 31696.29 31381.56 35494.60 25197.66 25293.30 22196.95 20098.91 5893.03 19099.38 21696.60 7497.30 31898.69 215
test_vis1_n_192095.77 18296.41 15693.85 30198.55 15084.86 33295.91 18599.71 292.72 24397.67 15398.90 5987.44 27998.73 30697.96 2898.85 23597.96 284
EGC-MVSNET83.08 34177.93 34498.53 5099.57 2097.55 2698.33 3898.57 1664.71 37710.38 37898.90 5995.60 12399.50 17595.69 11699.61 8498.55 228
KD-MVS_self_test97.86 6998.07 3897.25 14799.22 6592.81 19197.55 9198.94 8497.10 8298.85 4798.88 6195.03 13999.67 12497.39 5299.65 7399.26 118
UGNet96.81 13696.56 14697.58 11896.64 30593.84 16497.75 7697.12 27396.47 10693.62 31398.88 6193.22 18599.53 16795.61 12399.69 6499.36 98
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052997.96 4798.04 4297.71 11098.69 13294.28 15097.86 6998.31 19798.79 2199.23 2798.86 6395.76 11799.61 14895.49 12899.36 16299.23 124
FC-MVSNet-test98.16 3498.37 2997.56 11999.49 3593.10 18698.35 3599.21 2498.43 2898.89 4598.83 6494.30 16199.81 3797.87 3199.91 1699.77 11
new-patchmatchnet95.67 18696.58 14492.94 32497.48 27080.21 35992.96 30598.19 21294.83 17998.82 5098.79 6593.31 18399.51 17495.83 11199.04 21699.12 148
WR-MVS_H98.65 1598.62 2198.75 3199.51 3196.61 5698.55 2299.17 3099.05 1399.17 3098.79 6595.47 12699.89 1897.95 2999.91 1699.75 16
ab-mvs96.59 14996.59 14396.60 18498.64 13592.21 20298.35 3597.67 25094.45 19196.99 19698.79 6594.96 14399.49 17990.39 28499.07 21298.08 269
testf198.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
APD_test298.57 1798.45 2698.93 1899.79 398.78 297.69 8099.42 1697.69 5898.92 4398.77 6897.80 2199.25 24796.27 8699.69 6498.76 206
EG-PatchMatch MVS97.69 8397.79 6197.40 13999.06 9493.52 17695.96 18098.97 8094.55 19098.82 5098.76 7097.31 3899.29 23997.20 5899.44 14099.38 92
nrg03098.54 2098.62 2198.32 6599.22 6595.66 9197.90 6799.08 4798.31 3299.02 3798.74 7197.68 2599.61 14897.77 3799.85 3099.70 21
VDD-MVS97.37 10697.25 10897.74 10898.69 13294.50 14097.04 12195.61 31098.59 2598.51 7098.72 7292.54 20499.58 15296.02 9899.49 12799.12 148
PatchT93.75 26493.57 26194.29 29595.05 34787.32 29996.05 17192.98 33897.54 6594.25 29498.72 7275.79 34299.24 25095.92 10595.81 33996.32 340
RPSCF97.87 6797.51 9498.95 1499.15 7998.43 697.56 9099.06 5196.19 11898.48 7598.70 7494.72 14699.24 25094.37 19099.33 17699.17 135
APDe-MVS98.14 3698.03 4398.47 5498.72 12596.04 7598.07 5899.10 4195.96 13198.59 6598.69 7596.94 6099.81 3796.64 7299.58 9199.57 37
IterMVS-LS96.92 12797.29 10695.79 22698.51 15688.13 27995.10 22998.66 15396.99 8398.46 7898.68 7692.55 20299.74 7596.91 6899.79 4099.50 50
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
tfpnnormal97.72 8197.97 4696.94 16499.26 5692.23 20197.83 7198.45 17598.25 3599.13 3398.66 7796.65 7999.69 11493.92 20999.62 7898.91 184
FIs97.93 5898.07 3897.48 13199.38 4692.95 18998.03 6299.11 4098.04 4498.62 6198.66 7793.75 17599.78 4697.23 5499.84 3199.73 18
CP-MVSNet98.42 2598.46 2498.30 6899.46 3795.22 11898.27 4498.84 10899.05 1399.01 3898.65 7995.37 12999.90 1497.57 4599.91 1699.77 11
FMVSNet296.72 14296.67 14196.87 16997.96 21591.88 21497.15 11398.06 23195.59 15198.50 7298.62 8089.51 25799.65 13294.99 16699.60 8799.07 158
FA-MVS(test-final)94.91 21994.89 21294.99 26397.51 26888.11 28198.27 4495.20 31792.40 25096.68 21498.60 8183.44 30499.28 24193.34 22398.53 26397.59 303
PMVScopyleft89.60 1796.71 14496.97 12395.95 21999.51 3197.81 1697.42 10297.49 26197.93 4695.95 25198.58 8296.88 6896.91 36289.59 29599.36 16293.12 365
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CR-MVSNet93.29 27992.79 27794.78 27695.44 34288.15 27796.18 16597.20 26884.94 33894.10 29898.57 8377.67 32999.39 21395.17 15195.81 33996.81 329
Patchmtry95.03 21694.59 23196.33 20194.83 34990.82 23196.38 15397.20 26896.59 9797.49 16198.57 8377.67 32999.38 21692.95 23499.62 7898.80 200
ambc96.56 18998.23 18591.68 21997.88 6898.13 22198.42 8198.56 8594.22 16399.04 27794.05 20499.35 16798.95 174
3Dnovator96.53 297.61 8897.64 7897.50 12797.74 25093.65 17398.49 2898.88 9696.86 8897.11 18398.55 8695.82 11199.73 8095.94 10499.42 15199.13 143
IterMVS-SCA-FT95.86 17996.19 16494.85 27197.68 25485.53 32092.42 31797.63 25896.99 8398.36 8998.54 8787.94 27199.75 6697.07 6499.08 21099.27 117
test_fmvs194.51 24294.60 22994.26 29695.91 32887.92 28395.35 21699.02 6286.56 31996.79 20798.52 8882.64 30897.00 36197.87 3198.71 25097.88 289
COLMAP_ROBcopyleft94.48 698.25 3298.11 3598.64 4399.21 7297.35 3597.96 6399.16 3198.34 3198.78 5398.52 8897.32 3799.45 19294.08 20199.67 7099.13 143
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3398.31 3197.98 9499.39 4595.22 11897.55 9199.20 2698.21 3799.25 2698.51 9098.21 1199.40 20994.79 17299.72 5799.32 101
RPMNet94.68 23294.60 22994.90 26895.44 34288.15 27796.18 16598.86 10197.43 6894.10 29898.49 9179.40 32199.76 6095.69 11695.81 33996.81 329
IterMVS95.42 19995.83 18294.20 29797.52 26783.78 34392.41 31897.47 26395.49 15598.06 12598.49 9187.94 27199.58 15296.02 9899.02 21799.23 124
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS97.87 6797.89 5397.81 10498.62 14194.82 12997.13 11698.79 12498.98 1798.74 5798.49 9195.80 11699.49 17995.04 16299.44 14099.11 151
casdiffmvs_mvgpermissive97.83 7198.11 3597.00 16298.57 14792.10 20995.97 17899.18 2997.67 6199.00 3998.48 9497.64 2799.50 17596.96 6799.54 10699.40 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet98.33 2798.30 3398.43 5799.07 9395.87 8196.73 14299.05 5398.67 2398.84 4998.45 9597.58 3099.88 2096.45 8099.86 2799.54 44
3Dnovator+96.13 397.73 8097.59 8698.15 8198.11 20495.60 9298.04 6098.70 14598.13 3996.93 20198.45 9595.30 13299.62 14295.64 12198.96 22199.24 123
dcpmvs_297.12 11597.99 4594.51 28899.11 8884.00 34197.75 7699.65 797.38 7499.14 3298.42 9795.16 13599.96 295.52 12799.78 4399.58 32
patch_mono-296.59 14996.93 12695.55 23898.88 11187.12 30294.47 25499.30 1994.12 20096.65 21898.41 9894.98 14299.87 2295.81 11399.78 4399.66 23
VPNet97.26 11297.49 9796.59 18599.47 3690.58 23696.27 15898.53 16897.77 4998.46 7898.41 9894.59 15299.68 11994.61 17999.29 18499.52 48
test_040297.84 7097.97 4697.47 13299.19 7594.07 15696.71 14398.73 13698.66 2498.56 6798.41 9896.84 7299.69 11494.82 17099.81 3698.64 218
v124096.74 13997.02 12195.91 22298.18 19188.52 26895.39 21298.88 9693.15 23098.46 7898.40 10192.80 19499.71 10098.45 1899.49 12799.49 58
APD_test197.95 5197.68 7298.75 3199.60 1798.60 597.21 11199.08 4796.57 10198.07 12498.38 10296.22 10199.14 26394.71 17899.31 18198.52 230
SMA-MVScopyleft97.48 9797.11 11498.60 4598.83 11496.67 5396.74 13898.73 13691.61 26098.48 7598.36 10396.53 8699.68 11995.17 15199.54 10699.45 73
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 6597.63 8098.67 4099.35 4996.84 4796.36 15498.79 12495.07 17297.88 14398.35 10497.24 4499.72 8596.05 9599.58 9199.45 73
v119296.83 13497.06 11996.15 21198.28 17889.29 25495.36 21498.77 12993.73 21098.11 11798.34 10593.02 19199.67 12498.35 2099.58 9199.50 50
pmmvs-eth3d96.49 15496.18 16597.42 13798.25 18294.29 14794.77 24698.07 23089.81 28397.97 13598.33 10693.11 18699.08 27395.46 13499.84 3198.89 188
PM-MVS97.36 10897.10 11598.14 8298.91 10996.77 4996.20 16498.63 15993.82 20898.54 6898.33 10693.98 16899.05 27695.99 10199.45 13998.61 223
test072699.24 6095.51 9796.89 12898.89 9095.92 13498.64 6098.31 10897.06 52
MP-MVS-pluss97.69 8397.36 10298.70 3899.50 3496.84 4795.38 21398.99 7492.45 24898.11 11798.31 10897.25 4399.77 5596.60 7499.62 7899.48 64
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 13197.08 11796.13 21298.42 16889.28 25595.41 21098.67 15194.21 19797.97 13598.31 10893.06 18799.65 13298.06 2699.62 7899.45 73
LFMVS95.32 20294.88 21396.62 18398.03 20691.47 22297.65 8390.72 35799.11 997.89 14298.31 10879.20 32299.48 18293.91 21099.12 20598.93 180
DVP-MVS++97.96 4797.90 5098.12 8497.75 24795.40 10399.03 798.89 9096.62 9398.62 6198.30 11296.97 5899.75 6695.70 11499.25 18999.21 126
test_one_060199.05 9895.50 10098.87 9897.21 8098.03 12998.30 11296.93 62
V4297.04 11897.16 11396.68 18298.59 14591.05 22696.33 15698.36 18994.60 18697.99 13198.30 11293.32 18299.62 14297.40 5199.53 11099.38 92
casdiffmvspermissive97.50 9597.81 6096.56 18998.51 15691.04 22795.83 18899.09 4697.23 7998.33 9598.30 11297.03 5499.37 21996.58 7699.38 15899.28 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14419296.69 14596.90 13096.03 21498.25 18288.92 26095.49 20498.77 12993.05 23298.09 12098.29 11692.51 20799.70 10798.11 2399.56 9799.47 67
mvsany_test193.47 27493.03 27094.79 27594.05 36192.12 20690.82 34590.01 36385.02 33697.26 17298.28 11793.57 17897.03 35992.51 23895.75 34495.23 354
DVP-MVScopyleft97.78 7797.65 7598.16 7999.24 6095.51 9796.74 13898.23 20295.92 13498.40 8398.28 11797.06 5299.71 10095.48 13199.52 11599.26 118
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 9398.40 8398.28 11797.10 4899.71 10095.70 11499.62 7899.58 32
MVS_Test96.27 16396.79 13694.73 27896.94 30186.63 30996.18 16598.33 19394.94 17696.07 24798.28 11795.25 13399.26 24597.21 5697.90 28998.30 254
FMVSNet593.39 27692.35 28696.50 19195.83 33290.81 23397.31 10498.27 19892.74 24296.27 23798.28 11762.23 37499.67 12490.86 26699.36 16299.03 163
v192192096.72 14296.96 12595.99 21598.21 18688.79 26595.42 20898.79 12493.22 22498.19 11198.26 12292.68 19799.70 10798.34 2199.55 10399.49 58
SED-MVS97.94 5597.90 5098.07 8699.22 6595.35 10896.79 13598.83 11496.11 12199.08 3498.24 12397.87 1999.72 8595.44 13599.51 12099.14 141
test_241102_TWO98.83 11496.11 12198.62 6198.24 12396.92 6499.72 8595.44 13599.49 12799.49 58
v2v48296.78 13897.06 11995.95 21998.57 14788.77 26695.36 21498.26 19995.18 16797.85 14898.23 12592.58 20199.63 13797.80 3599.69 6499.45 73
LPG-MVS_test97.94 5597.67 7398.74 3499.15 7997.02 4297.09 11899.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
LGP-MVS_train98.74 3499.15 7997.02 4299.02 6295.15 16898.34 9298.23 12597.91 1799.70 10794.41 18799.73 5399.50 50
HPM-MVS_fast98.32 2898.13 3498.88 2399.54 2697.48 3098.35 3599.03 6095.88 13797.88 14398.22 12898.15 1299.74 7596.50 7899.62 7899.42 84
MIMVSNet93.42 27592.86 27495.10 25798.17 19488.19 27598.13 5593.69 32892.07 25295.04 27998.21 12980.95 31799.03 28081.42 35798.06 28398.07 271
h-mvs3396.29 16295.63 18998.26 7098.50 15996.11 7396.90 12797.09 27496.58 9897.21 17598.19 13084.14 29999.78 4695.89 10796.17 33798.89 188
EI-MVSNet96.63 14896.93 12695.74 22897.26 28888.13 27995.29 22297.65 25496.99 8397.94 13898.19 13092.55 20299.58 15296.91 6899.56 9799.50 50
CVMVSNet92.33 29492.79 27790.95 34197.26 28875.84 37195.29 22292.33 34581.86 34996.27 23798.19 13081.44 31298.46 33194.23 19698.29 27498.55 228
PVSNet_Blended_VisFu95.95 17695.80 18396.42 19799.28 5590.62 23595.31 22099.08 4788.40 29996.97 19998.17 13392.11 21499.78 4693.64 21899.21 19398.86 195
FE-MVS92.95 28492.22 28895.11 25597.21 29188.33 27398.54 2393.66 33189.91 28296.21 24198.14 13470.33 36399.50 17587.79 31898.24 27697.51 305
EI-MVSNet-UG-set97.32 11097.40 9997.09 15597.34 28392.01 21295.33 21897.65 25497.74 5298.30 10098.14 13495.04 13899.69 11497.55 4699.52 11599.58 32
test_241102_ONE99.22 6595.35 10898.83 11496.04 12699.08 3498.13 13697.87 1999.33 228
APD-MVS_3200maxsize98.13 3997.90 5098.79 2998.79 11897.31 3697.55 9198.92 8797.72 5498.25 10398.13 13697.10 4899.75 6695.44 13599.24 19299.32 101
QAPM95.88 17895.57 19196.80 17497.90 22091.84 21698.18 5398.73 13688.41 29896.42 22898.13 13694.73 14599.75 6688.72 30798.94 22498.81 199
ACMM93.33 1198.05 4397.79 6198.85 2499.15 7997.55 2696.68 14498.83 11495.21 16498.36 8998.13 13698.13 1499.62 14296.04 9699.54 10699.39 90
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set97.32 11097.39 10097.11 15397.36 28092.08 21095.34 21797.65 25497.74 5298.29 10198.11 14095.05 13799.68 11997.50 4899.50 12499.56 41
wuyk23d93.25 28095.20 19687.40 35596.07 32695.38 10597.04 12194.97 31895.33 16099.70 598.11 14098.14 1391.94 37377.76 36699.68 6874.89 373
DPE-MVScopyleft97.64 8697.35 10398.50 5198.85 11396.18 6995.21 22698.99 7495.84 14098.78 5398.08 14296.84 7299.81 3793.98 20799.57 9499.52 48
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS97.37 10697.70 6896.35 20098.14 20095.13 12296.54 14798.92 8795.94 13399.19 2998.08 14297.74 2395.06 36995.24 14799.54 10698.87 194
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS-dyc-post98.14 3697.84 5699.02 698.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.60 8499.76 6095.49 12899.20 19499.26 118
RE-MVS-def97.88 5498.81 11598.05 997.55 9198.86 10197.77 4998.20 10798.07 14496.94 6095.49 12899.20 19499.26 118
OPM-MVS97.54 9397.25 10898.41 5999.11 8896.61 5695.24 22498.46 17494.58 18998.10 11998.07 14497.09 5099.39 21395.16 15399.44 14099.21 126
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest97.20 11496.92 12898.06 8899.08 9196.16 7097.14 11599.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
TestCases98.06 8899.08 9196.16 7099.16 3194.35 19497.78 15198.07 14495.84 10899.12 26691.41 25399.42 15198.91 184
TSAR-MVS + MP.97.42 10297.23 11098.00 9399.38 4695.00 12597.63 8598.20 20793.00 23498.16 11298.06 14995.89 10699.72 8595.67 11899.10 20899.28 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet96.84 13196.58 14497.65 11599.18 7693.78 16798.68 1496.34 29397.91 4797.30 17098.06 14988.46 26699.85 2793.85 21199.40 15699.32 101
ACMMPcopyleft98.05 4397.75 6798.93 1899.23 6297.60 2298.09 5798.96 8195.75 14597.91 14098.06 14996.89 6699.76 6095.32 14399.57 9499.43 83
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous20240521196.34 16195.98 17497.43 13698.25 18293.85 16396.74 13894.41 32497.72 5498.37 8698.03 15287.15 28199.53 16794.06 20299.07 21298.92 183
XVG-ACMP-BASELINE97.58 9197.28 10798.49 5299.16 7796.90 4696.39 15198.98 7795.05 17398.06 12598.02 15395.86 10799.56 15994.37 19099.64 7599.00 167
baseline97.44 10097.78 6596.43 19598.52 15490.75 23496.84 12999.03 6096.51 10297.86 14798.02 15396.67 7899.36 22197.09 6299.47 13399.19 131
PVSNet_BlendedMVS95.02 21794.93 20995.27 24997.79 24087.40 29794.14 27098.68 14888.94 29394.51 28998.01 15593.04 18899.30 23589.77 29399.49 12799.11 151
OpenMVScopyleft94.22 895.48 19595.20 19696.32 20297.16 29391.96 21397.74 7898.84 10887.26 30994.36 29398.01 15593.95 17099.67 12490.70 27698.75 24597.35 312
MVSTER94.21 25193.93 25595.05 25995.83 33286.46 31095.18 22797.65 25492.41 24997.94 13898.00 15772.39 35699.58 15296.36 8399.56 9799.12 148
IS-MVSNet96.93 12696.68 14097.70 11199.25 5994.00 15998.57 2096.74 28898.36 3098.14 11597.98 15888.23 26999.71 10093.10 23199.72 5799.38 92
MTAPA98.14 3697.84 5699.06 399.44 3997.90 1297.25 10798.73 13697.69 5897.90 14197.96 15995.81 11599.82 3596.13 9299.61 8499.45 73
v14896.58 15196.97 12395.42 24598.63 13987.57 29295.09 23097.90 23695.91 13698.24 10497.96 15993.42 18199.39 21396.04 9699.52 11599.29 112
MDA-MVSNet-bldmvs95.69 18495.67 18795.74 22898.48 16288.76 26792.84 30697.25 26696.00 12997.59 15597.95 16191.38 22699.46 18893.16 23096.35 33498.99 170
PGM-MVS97.88 6697.52 9398.96 1399.20 7397.62 2197.09 11899.06 5195.45 15697.55 15697.94 16297.11 4799.78 4694.77 17599.46 13699.48 64
LS3D97.77 7897.50 9698.57 4796.24 31597.58 2498.45 3198.85 10598.58 2697.51 15997.94 16295.74 11899.63 13795.19 14998.97 22098.51 231
USDC94.56 23894.57 23494.55 28697.78 24386.43 31292.75 30998.65 15885.96 32396.91 20397.93 16490.82 23398.74 30590.71 27599.59 8998.47 235
test20.0396.58 15196.61 14296.48 19398.49 16091.72 21895.68 19597.69 24996.81 8998.27 10297.92 16594.18 16498.71 30990.78 27099.66 7299.00 167
FMVSNet395.26 20594.94 20796.22 20796.53 30890.06 24195.99 17697.66 25294.11 20197.99 13197.91 16680.22 32099.63 13794.60 18099.44 14098.96 173
iter_conf_final94.54 24093.91 25696.43 19597.23 29090.41 24096.81 13298.10 22393.87 20796.80 20697.89 16768.02 36799.72 8596.73 7199.77 4599.18 134
iter_conf0593.65 26993.05 26895.46 24396.13 32587.45 29595.95 18298.22 20392.66 24497.04 19297.89 16763.52 37399.72 8596.19 9099.82 3599.21 126
SF-MVS97.60 8997.39 10098.22 7598.93 10795.69 8897.05 12099.10 4195.32 16197.83 14997.88 16996.44 9399.72 8594.59 18399.39 15799.25 122
SteuartSystems-ACMMP98.02 4597.76 6698.79 2999.43 4097.21 4197.15 11398.90 8996.58 9898.08 12297.87 17097.02 5599.76 6095.25 14699.59 8999.40 87
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 4697.66 7499.01 898.77 12197.93 1197.38 10398.83 11497.32 7698.06 12597.85 17196.65 7999.77 5595.00 16599.11 20699.32 101
DU-MVS97.79 7697.60 8598.36 6398.73 12395.78 8495.65 19898.87 9897.57 6298.31 9897.83 17294.69 14799.85 2797.02 6599.71 6099.46 69
NR-MVSNet97.96 4797.86 5598.26 7098.73 12395.54 9598.14 5498.73 13697.79 4899.42 1597.83 17294.40 15999.78 4695.91 10699.76 4699.46 69
CHOSEN 1792x268894.10 25593.41 26496.18 20999.16 7790.04 24292.15 32198.68 14879.90 35996.22 24097.83 17287.92 27599.42 19889.18 30199.65 7399.08 156
TAMVS95.49 19394.94 20797.16 15098.31 17493.41 17995.07 23396.82 28491.09 26897.51 15997.82 17589.96 24799.42 19888.42 31299.44 14098.64 218
UniMVSNet (Re)97.83 7197.65 7598.35 6498.80 11795.86 8395.92 18499.04 5997.51 6698.22 10697.81 17694.68 14999.78 4697.14 6099.75 5199.41 86
VNet96.84 13196.83 13296.88 16898.06 20592.02 21196.35 15597.57 26097.70 5797.88 14397.80 17792.40 20999.54 16594.73 17798.96 22199.08 156
YYNet194.73 22594.84 21594.41 29197.47 27485.09 32990.29 35095.85 30492.52 24597.53 15797.76 17891.97 21899.18 25693.31 22596.86 32398.95 174
MDA-MVSNet_test_wron94.73 22594.83 21794.42 29097.48 27085.15 32790.28 35195.87 30392.52 24597.48 16397.76 17891.92 22199.17 26093.32 22496.80 32698.94 176
TinyColmap96.00 17596.34 15994.96 26597.90 22087.91 28494.13 27198.49 17294.41 19298.16 11297.76 17896.29 9998.68 31490.52 28099.42 15198.30 254
Patchmatch-RL test94.66 23394.49 23595.19 25298.54 15288.91 26192.57 31398.74 13591.46 26398.32 9697.75 18177.31 33498.81 29996.06 9399.61 8497.85 291
MP-MVScopyleft97.64 8697.18 11299.00 999.32 5397.77 1797.49 9798.73 13696.27 11295.59 26697.75 18196.30 9899.78 4693.70 21799.48 13199.45 73
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP92.54 1397.47 9897.10 11598.55 4999.04 9996.70 5196.24 16298.89 9093.71 21197.97 13597.75 18197.44 3299.63 13793.22 22899.70 6399.32 101
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVP-Stereo95.69 18495.28 19496.92 16598.15 19893.03 18795.64 20098.20 20790.39 27596.63 21997.73 18491.63 22499.10 27191.84 24897.31 31798.63 220
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mPP-MVS97.91 6297.53 9299.04 499.22 6597.87 1497.74 7898.78 12896.04 12697.10 18497.73 18496.53 8699.78 4695.16 15399.50 12499.46 69
MVS_030495.50 19295.05 20596.84 17196.28 31493.12 18597.00 12396.16 29595.03 17489.22 36197.70 18690.16 24699.48 18294.51 18499.34 17097.93 287
XVG-OURS97.12 11596.74 13798.26 7098.99 10297.45 3293.82 28499.05 5395.19 16698.32 9697.70 18695.22 13498.41 33394.27 19498.13 28098.93 180
UniMVSNet_NR-MVSNet97.83 7197.65 7598.37 6298.72 12595.78 8495.66 19699.02 6298.11 4098.31 9897.69 18894.65 15199.85 2797.02 6599.71 6099.48 64
D2MVS95.18 20895.17 19895.21 25197.76 24587.76 29094.15 26897.94 23489.77 28496.99 19697.68 18987.45 27899.14 26395.03 16499.81 3698.74 208
XVS97.96 4797.63 8098.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23397.64 19096.49 8999.72 8595.66 11999.37 15999.45 73
ACMMPR97.95 5197.62 8298.94 1599.20 7397.56 2597.59 8898.83 11496.05 12497.46 16697.63 19196.77 7599.76 6095.61 12399.46 13699.49 58
Anonymous2023120695.27 20495.06 20495.88 22398.72 12589.37 25395.70 19297.85 23988.00 30596.98 19897.62 19291.95 21999.34 22689.21 30099.53 11098.94 176
region2R97.92 5997.59 8698.92 2199.22 6597.55 2697.60 8698.84 10896.00 12997.22 17397.62 19296.87 7099.76 6095.48 13199.43 14899.46 69
GeoE97.75 7997.70 6897.89 9998.88 11194.53 13797.10 11798.98 7795.75 14597.62 15497.59 19497.61 2999.77 5596.34 8499.44 14099.36 98
ppachtmachnet_test94.49 24394.84 21593.46 31096.16 32182.10 35090.59 34797.48 26290.53 27497.01 19597.59 19491.01 23099.36 22193.97 20899.18 19898.94 176
APD-MVScopyleft97.00 12096.53 15098.41 5998.55 15096.31 6696.32 15798.77 12992.96 23997.44 16797.58 19695.84 10899.74 7591.96 24399.35 16799.19 131
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.94 5597.64 7898.83 2599.15 7997.50 2997.59 8898.84 10896.05 12497.49 16197.54 19797.07 5199.70 10795.61 12399.46 13699.30 106
UnsupCasMVSNet_eth95.91 17795.73 18696.44 19498.48 16291.52 22195.31 22098.45 17595.76 14397.48 16397.54 19789.53 25698.69 31194.43 18694.61 35499.13 143
XVG-OURS-SEG-HR97.38 10497.07 11898.30 6899.01 10197.41 3494.66 24999.02 6295.20 16598.15 11497.52 19998.83 498.43 33294.87 16896.41 33399.07 158
MG-MVS94.08 25794.00 25294.32 29397.09 29585.89 31793.19 30395.96 30192.52 24594.93 28297.51 20089.54 25498.77 30287.52 32597.71 29898.31 252
HPM-MVScopyleft98.11 4097.83 5998.92 2199.42 4297.46 3198.57 2099.05 5395.43 15897.41 16897.50 20197.98 1599.79 4395.58 12699.57 9499.50 50
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1496.69 13998.53 15396.02 17498.98 7793.23 22397.18 17897.46 20296.47 9199.62 14292.99 23299.32 178
CP-MVS97.92 5997.56 8998.99 1098.99 10297.82 1597.93 6598.96 8196.11 12196.89 20497.45 20396.85 7199.78 4695.19 14999.63 7799.38 92
PC_three_145287.24 31098.37 8697.44 20497.00 5696.78 36592.01 24299.25 18999.21 126
ZNCC-MVS97.92 5997.62 8298.83 2599.32 5397.24 3997.45 9898.84 10895.76 14396.93 20197.43 20597.26 4299.79 4396.06 9399.53 11099.45 73
N_pmnet95.18 20894.23 24498.06 8897.85 22296.55 5892.49 31591.63 35089.34 28698.09 12097.41 20690.33 24099.06 27591.58 25299.31 18198.56 226
GST-MVS97.82 7497.49 9798.81 2799.23 6297.25 3897.16 11298.79 12495.96 13197.53 15797.40 20796.93 6299.77 5595.04 16299.35 16799.42 84
tpm91.08 31090.85 30891.75 33795.33 34578.09 36295.03 23791.27 35288.75 29593.53 31797.40 20771.24 35899.30 23591.25 25893.87 35797.87 290
MDTV_nov1_ep1391.28 30094.31 35473.51 37594.80 24493.16 33686.75 31893.45 32097.40 20776.37 33898.55 32588.85 30596.43 332
DeepPCF-MVS94.58 596.90 12996.43 15598.31 6797.48 27097.23 4092.56 31498.60 16192.84 24198.54 6897.40 20796.64 8198.78 30194.40 18999.41 15598.93 180
MSLP-MVS++96.42 15996.71 13895.57 23597.82 23090.56 23895.71 19198.84 10894.72 18296.71 21397.39 21194.91 14498.10 34795.28 14499.02 21798.05 278
EPNet93.72 26592.62 28497.03 16087.61 38092.25 20096.27 15891.28 35196.74 9187.65 36697.39 21185.00 29499.64 13592.14 24199.48 13199.20 130
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS293.66 26894.07 25092.45 33297.57 26380.67 35886.46 36596.00 29993.99 20497.10 18497.38 21389.90 24897.82 35188.76 30699.47 13398.86 195
DeepC-MVS_fast94.34 796.74 13996.51 15297.44 13597.69 25394.15 15496.02 17498.43 17893.17 22997.30 17097.38 21395.48 12599.28 24193.74 21499.34 17098.88 192
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance94.81 22494.80 21994.85 27196.16 32186.45 31191.14 34098.20 20793.49 21597.03 19397.37 21584.97 29599.26 24595.28 14499.56 9798.83 197
OPU-MVS97.64 11698.01 20995.27 11396.79 13597.35 21696.97 5898.51 32891.21 25999.25 18999.14 141
DIV-MVS_self_test94.73 22594.64 22595.01 26195.86 33087.00 30491.33 33498.08 22693.34 21997.10 18497.34 21784.02 30199.31 23295.15 15599.55 10398.72 211
cl____94.73 22594.64 22595.01 26195.85 33187.00 30491.33 33498.08 22693.34 21997.10 18497.33 21884.01 30299.30 23595.14 15699.56 9798.71 214
WR-MVS96.90 12996.81 13397.16 15098.56 14992.20 20494.33 25798.12 22297.34 7598.20 10797.33 21892.81 19399.75 6694.79 17299.81 3699.54 44
ITE_SJBPF97.85 10298.64 13596.66 5498.51 17195.63 14897.22 17397.30 22095.52 12498.55 32590.97 26398.90 22898.34 249
Vis-MVSNet (Re-imp)95.11 21194.85 21495.87 22499.12 8789.17 25697.54 9694.92 31996.50 10396.58 22097.27 22183.64 30399.48 18288.42 31299.67 7098.97 172
c3_l95.20 20795.32 19394.83 27396.19 31986.43 31291.83 32798.35 19293.47 21697.36 16997.26 22288.69 26399.28 24195.41 14199.36 16298.78 202
eth_miper_zixun_eth94.89 22094.93 20994.75 27795.99 32786.12 31591.35 33398.49 17293.40 21797.12 18297.25 22386.87 28499.35 22495.08 16198.82 23998.78 202
pmmvs494.82 22394.19 24796.70 18097.42 27792.75 19492.09 32496.76 28686.80 31795.73 26397.22 22489.28 26098.89 29293.28 22699.14 20098.46 237
OMC-MVS96.48 15596.00 17297.91 9798.30 17596.01 7894.86 24398.60 16191.88 25797.18 17897.21 22596.11 10299.04 27790.49 28399.34 17098.69 215
CS-MVS98.09 4198.01 4498.32 6598.45 16596.69 5298.52 2699.69 398.07 4296.07 24797.19 22696.88 6899.86 2497.50 4899.73 5398.41 238
pmmvs594.63 23594.34 24295.50 24097.63 26088.34 27294.02 27497.13 27287.15 31195.22 27497.15 22787.50 27799.27 24493.99 20699.26 18898.88 192
our_test_394.20 25394.58 23293.07 31896.16 32181.20 35690.42 34996.84 28290.72 27297.14 18097.13 22890.47 23799.11 26994.04 20598.25 27598.91 184
CPTT-MVS96.69 14596.08 16998.49 5298.89 11096.64 5597.25 10798.77 12992.89 24096.01 25097.13 22892.23 21199.67 12492.24 24099.34 17099.17 135
MS-PatchMatch94.83 22294.91 21194.57 28596.81 30487.10 30394.23 26397.34 26588.74 29697.14 18097.11 23091.94 22098.23 34392.99 23297.92 28798.37 243
FPMVS89.92 32188.63 32993.82 30298.37 17196.94 4591.58 32993.34 33588.00 30590.32 35497.10 23170.87 36191.13 37471.91 37296.16 33893.39 364
ZD-MVS98.43 16795.94 7998.56 16790.72 27296.66 21697.07 23295.02 14099.74 7591.08 26098.93 226
DELS-MVS96.17 16796.23 16295.99 21597.55 26690.04 24292.38 31998.52 16994.13 19996.55 22497.06 23394.99 14199.58 15295.62 12299.28 18598.37 243
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS96.92 12796.55 14798.03 9298.00 21395.54 9594.87 24298.17 21394.60 18696.38 23097.05 23495.67 12099.36 22195.12 15999.08 21099.19 131
旧先验197.80 23593.87 16297.75 24697.04 23593.57 17898.68 25198.72 211
testdata95.70 23198.16 19690.58 23697.72 24880.38 35795.62 26597.02 23692.06 21798.98 28589.06 30498.52 26497.54 304
PatchmatchNetpermissive91.98 30091.87 29292.30 33494.60 35279.71 36095.12 22893.59 33389.52 28593.61 31497.02 23677.94 32799.18 25690.84 26794.57 35698.01 282
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
DROMVSNet97.90 6497.94 4997.79 10598.66 13495.14 12198.31 3999.66 697.57 6295.95 25197.01 23896.99 5799.82 3597.66 4399.64 7598.39 241
SCA93.38 27793.52 26292.96 32396.24 31581.40 35593.24 30194.00 32791.58 26294.57 28796.97 23987.94 27199.42 19889.47 29797.66 30398.06 275
Patchmatch-test93.60 27193.25 26694.63 28096.14 32487.47 29496.04 17294.50 32393.57 21396.47 22696.97 23976.50 33798.61 31990.67 27798.41 27097.81 295
CostFormer89.75 32389.25 32191.26 34094.69 35178.00 36495.32 21991.98 34781.50 35290.55 35296.96 24171.06 36098.89 29288.59 31092.63 36196.87 323
diffmvspermissive96.04 17296.23 16295.46 24397.35 28188.03 28293.42 29699.08 4794.09 20296.66 21696.93 24293.85 17299.29 23996.01 10098.67 25299.06 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t93.96 26093.22 26796.19 20899.06 9490.97 22995.99 17698.94 8473.88 37193.43 32196.93 24292.38 21099.37 21989.09 30299.28 18598.25 260
CS-MVS-test97.91 6297.84 5698.14 8298.52 15496.03 7798.38 3499.67 498.11 4095.50 26896.92 24496.81 7499.87 2296.87 7099.76 4698.51 231
Test_1112_low_res93.53 27392.86 27495.54 23998.60 14388.86 26392.75 30998.69 14682.66 34892.65 33696.92 24484.75 29699.56 15990.94 26497.76 29498.19 265
tpmrst90.31 31590.61 31389.41 34894.06 36072.37 37795.06 23493.69 32888.01 30492.32 34296.86 24677.45 33198.82 29791.04 26187.01 37097.04 317
PHI-MVS96.96 12596.53 15098.25 7397.48 27096.50 5996.76 13798.85 10593.52 21496.19 24396.85 24795.94 10599.42 19893.79 21399.43 14898.83 197
tttt051793.31 27892.56 28595.57 23598.71 12887.86 28597.44 9987.17 36995.79 14297.47 16596.84 24864.12 37199.81 3796.20 8999.32 17899.02 166
patchmatchnet-post96.84 24877.36 33399.42 198
ADS-MVSNet291.47 30690.51 31494.36 29295.51 34085.63 31895.05 23595.70 30583.46 34592.69 33496.84 24879.15 32399.41 20785.66 33790.52 36498.04 279
ADS-MVSNet90.95 31290.26 31693.04 31995.51 34082.37 34995.05 23593.41 33483.46 34592.69 33496.84 24879.15 32398.70 31085.66 33790.52 36498.04 279
HY-MVS91.43 1592.58 28991.81 29494.90 26896.49 30988.87 26297.31 10494.62 32185.92 32490.50 35396.84 24885.05 29399.40 20983.77 35295.78 34296.43 339
UnsupCasMVSNet_bld94.72 22994.26 24396.08 21398.62 14190.54 23993.38 29898.05 23290.30 27697.02 19496.80 25389.54 25499.16 26188.44 31196.18 33698.56 226
HQP_MVS96.66 14796.33 16097.68 11498.70 13094.29 14796.50 14898.75 13396.36 10996.16 24496.77 25491.91 22299.46 18892.59 23699.20 19499.28 113
plane_prior496.77 254
MVS_111021_HR96.73 14196.54 14997.27 14598.35 17393.66 17293.42 29698.36 18994.74 18196.58 22096.76 25696.54 8598.99 28394.87 16899.27 18799.15 138
CANet95.86 17995.65 18896.49 19296.41 31190.82 23194.36 25698.41 18294.94 17692.62 33996.73 25792.68 19799.71 10095.12 15999.60 8798.94 176
TSAR-MVS + GP.96.47 15696.12 16697.49 13097.74 25095.23 11594.15 26896.90 28193.26 22298.04 12896.70 25894.41 15898.89 29294.77 17599.14 20098.37 243
test22298.17 19493.24 18392.74 31197.61 25975.17 36994.65 28696.69 25990.96 23298.66 25497.66 299
新几何197.25 14798.29 17694.70 13397.73 24777.98 36594.83 28396.67 26092.08 21699.45 19288.17 31698.65 25697.61 301
miper_ehance_all_eth94.69 23094.70 22294.64 27995.77 33486.22 31491.32 33698.24 20191.67 25997.05 19196.65 26188.39 26899.22 25494.88 16798.34 27198.49 234
MVS_111021_LR96.82 13596.55 14797.62 11798.27 18095.34 11093.81 28698.33 19394.59 18896.56 22296.63 26296.61 8298.73 30694.80 17199.34 17098.78 202
CDPH-MVS95.45 19894.65 22497.84 10398.28 17894.96 12693.73 28898.33 19385.03 33595.44 26996.60 26395.31 13199.44 19590.01 28999.13 20299.11 151
CMPMVSbinary73.10 2392.74 28791.39 29896.77 17693.57 36694.67 13494.21 26597.67 25080.36 35893.61 31496.60 26382.85 30797.35 35684.86 34598.78 24298.29 257
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet94.88 22194.12 24997.14 15297.64 25993.57 17493.96 28097.06 27690.05 28096.30 23696.55 26586.10 28799.47 18590.10 28899.31 18198.40 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LF4IMVS96.07 17095.63 18997.36 14198.19 18895.55 9495.44 20698.82 12292.29 25195.70 26496.55 26592.63 20098.69 31191.75 25199.33 17697.85 291
HPM-MVS++copyleft96.99 12196.38 15798.81 2798.64 13597.59 2395.97 17898.20 20795.51 15495.06 27696.53 26794.10 16599.70 10794.29 19399.15 19999.13 143
EPMVS89.26 32688.55 33091.39 33992.36 37379.11 36195.65 19879.86 37688.60 29793.12 32796.53 26770.73 36298.10 34790.75 27189.32 36896.98 318
HyFIR lowres test93.72 26592.65 28296.91 16798.93 10791.81 21791.23 33898.52 16982.69 34796.46 22796.52 26980.38 31999.90 1490.36 28598.79 24199.03 163
BH-RMVSNet94.56 23894.44 24094.91 26697.57 26387.44 29693.78 28796.26 29493.69 21296.41 22996.50 27092.10 21599.00 28185.96 33397.71 29898.31 252
MSP-MVS97.45 9996.92 12899.03 599.26 5697.70 1897.66 8298.89 9095.65 14798.51 7096.46 27192.15 21299.81 3795.14 15698.58 26299.58 32
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
原ACMM196.58 18698.16 19692.12 20698.15 21985.90 32593.49 31896.43 27292.47 20899.38 21687.66 32198.62 25898.23 261
tpm288.47 33187.69 33590.79 34294.98 34877.34 36695.09 23091.83 34877.51 36789.40 35996.41 27367.83 36898.73 30683.58 35492.60 36296.29 341
OpenMVS_ROBcopyleft91.80 1493.64 27093.05 26895.42 24597.31 28791.21 22595.08 23296.68 29181.56 35196.88 20596.41 27390.44 23999.25 24785.39 34097.67 30295.80 346
CL-MVSNet_self_test95.04 21494.79 22095.82 22597.51 26889.79 24691.14 34096.82 28493.05 23296.72 21296.40 27590.82 23399.16 26191.95 24498.66 25498.50 233
F-COLMAP95.30 20394.38 24198.05 9198.64 13596.04 7595.61 20198.66 15389.00 29293.22 32596.40 27592.90 19299.35 22487.45 32697.53 30898.77 205
NCCC96.52 15395.99 17398.10 8597.81 23195.68 8995.00 23898.20 20795.39 15995.40 27196.36 27793.81 17399.45 19293.55 22098.42 26999.17 135
new_pmnet92.34 29391.69 29694.32 29396.23 31789.16 25792.27 32092.88 33984.39 34495.29 27296.35 27885.66 29096.74 36684.53 34797.56 30697.05 316
cl2293.25 28092.84 27694.46 28994.30 35586.00 31691.09 34296.64 29290.74 27195.79 25896.31 27978.24 32698.77 30294.15 19998.34 27198.62 221
tpmvs90.79 31390.87 30790.57 34492.75 37276.30 36995.79 18993.64 33291.04 26991.91 34596.26 28077.19 33598.86 29689.38 29989.85 36796.56 336
test_prior293.33 30094.21 19794.02 30296.25 28193.64 17791.90 24598.96 221
testgi96.07 17096.50 15394.80 27499.26 5687.69 29195.96 18098.58 16595.08 17198.02 13096.25 28197.92 1697.60 35588.68 30998.74 24699.11 151
DP-MVS Recon95.55 19195.13 19996.80 17498.51 15693.99 16094.60 25198.69 14690.20 27895.78 26096.21 28392.73 19698.98 28590.58 27998.86 23497.42 309
hse-mvs295.77 18295.09 20197.79 10597.84 22795.51 9795.66 19695.43 31596.58 9897.21 17596.16 28484.14 29999.54 16595.89 10796.92 32098.32 250
MVSFormer96.14 16896.36 15895.49 24197.68 25487.81 28898.67 1599.02 6296.50 10394.48 29196.15 28586.90 28299.92 598.73 999.13 20298.74 208
jason94.39 24694.04 25195.41 24798.29 17687.85 28792.74 31196.75 28785.38 33295.29 27296.15 28588.21 27099.65 13294.24 19599.34 17098.74 208
jason: jason.
test_yl94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
DCV-MVSNet94.40 24494.00 25295.59 23396.95 29989.52 25094.75 24795.55 31296.18 11996.79 20796.14 28781.09 31599.18 25690.75 27197.77 29298.07 271
dp88.08 33488.05 33288.16 35492.85 37068.81 37994.17 26692.88 33985.47 32991.38 34896.14 28768.87 36698.81 29986.88 32983.80 37396.87 323
AUN-MVS93.95 26292.69 28197.74 10897.80 23595.38 10595.57 20395.46 31491.26 26692.64 33796.10 29074.67 34599.55 16293.72 21696.97 31998.30 254
MCST-MVS96.24 16495.80 18397.56 11998.75 12294.13 15594.66 24998.17 21390.17 27996.21 24196.10 29095.14 13699.43 19794.13 20098.85 23599.13 143
TEST997.84 22795.23 11593.62 29098.39 18586.81 31693.78 30695.99 29294.68 14999.52 170
train_agg95.46 19794.66 22397.88 10097.84 22795.23 11593.62 29098.39 18587.04 31293.78 30695.99 29294.58 15399.52 17091.76 25098.90 22898.89 188
MSDG95.33 20195.13 19995.94 22197.40 27891.85 21591.02 34398.37 18895.30 16296.31 23595.99 29294.51 15698.38 33689.59 29597.65 30497.60 302
test_897.81 23195.07 12493.54 29398.38 18787.04 31293.71 31095.96 29594.58 15399.52 170
CSCG97.40 10397.30 10597.69 11398.95 10494.83 12897.28 10698.99 7496.35 11198.13 11695.95 29695.99 10499.66 13094.36 19299.73 5398.59 224
TAPA-MVS93.32 1294.93 21894.23 24497.04 15998.18 19194.51 13895.22 22598.73 13681.22 35496.25 23995.95 29693.80 17498.98 28589.89 29198.87 23297.62 300
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_vis1_rt94.03 25993.65 25995.17 25495.76 33593.42 17893.97 27998.33 19384.68 33993.17 32695.89 29892.53 20694.79 37093.50 22194.97 35097.31 313
baseline193.14 28292.64 28394.62 28197.34 28387.20 30196.67 14593.02 33794.71 18396.51 22595.83 29981.64 31098.60 32190.00 29088.06 36998.07 271
sss94.22 24993.72 25895.74 22897.71 25289.95 24493.84 28396.98 27888.38 30093.75 30995.74 30087.94 27198.89 29291.02 26298.10 28198.37 243
CNLPA95.04 21494.47 23796.75 17797.81 23195.25 11494.12 27297.89 23794.41 19294.57 28795.69 30190.30 24398.35 33986.72 33198.76 24496.64 333
PCF-MVS89.43 1892.12 29890.64 31296.57 18897.80 23593.48 17789.88 35798.45 17574.46 37096.04 24995.68 30290.71 23599.31 23273.73 36999.01 21996.91 322
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned94.69 23094.75 22194.52 28797.95 21887.53 29394.07 27397.01 27793.99 20497.10 18495.65 30392.65 19998.95 29087.60 32296.74 32797.09 315
CANet_DTU94.65 23494.21 24695.96 21795.90 32989.68 24793.92 28197.83 24393.19 22590.12 35695.64 30488.52 26599.57 15893.27 22799.47 13398.62 221
PatchMatch-RL94.61 23693.81 25797.02 16198.19 18895.72 8693.66 28997.23 26788.17 30394.94 28195.62 30591.43 22598.57 32287.36 32797.68 30196.76 331
tpm cat188.01 33587.33 33690.05 34794.48 35376.28 37094.47 25494.35 32573.84 37289.26 36095.61 30673.64 35098.30 34184.13 34886.20 37195.57 351
Effi-MVS+-dtu96.81 13696.09 16898.99 1096.90 30398.69 496.42 15098.09 22595.86 13995.15 27595.54 30794.26 16299.81 3794.06 20298.51 26698.47 235
AdaColmapbinary95.11 21194.62 22896.58 18697.33 28594.45 14194.92 24098.08 22693.15 23093.98 30495.53 30894.34 16099.10 27185.69 33698.61 25996.20 342
thisisatest053092.71 28891.76 29595.56 23798.42 16888.23 27496.03 17387.35 36894.04 20396.56 22295.47 30964.03 37299.77 5594.78 17499.11 20698.68 217
tt080597.44 10097.56 8997.11 15399.55 2396.36 6398.66 1895.66 30698.31 3297.09 18995.45 31097.17 4698.50 32998.67 1297.45 31396.48 338
WTY-MVS93.55 27293.00 27295.19 25297.81 23187.86 28593.89 28296.00 29989.02 29194.07 30095.44 31186.27 28699.33 22887.69 32096.82 32498.39 241
PLCcopyleft91.02 1694.05 25892.90 27397.51 12498.00 21395.12 12394.25 26198.25 20086.17 32191.48 34795.25 31291.01 23099.19 25585.02 34496.69 32898.22 262
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs390.00 31888.90 32893.32 31194.20 35985.34 32291.25 33792.56 34478.59 36393.82 30595.17 31367.36 36998.69 31189.08 30398.03 28495.92 343
NP-MVS98.14 20093.72 16895.08 314
HQP-MVS95.17 21094.58 23296.92 16597.85 22292.47 19794.26 25898.43 17893.18 22692.86 33195.08 31490.33 24099.23 25290.51 28198.74 24699.05 162
cdsmvs_eth3d_5k24.22 34432.30 3470.00 3620.00 3850.00 3860.00 37398.10 2230.00 3800.00 38195.06 31697.54 310.00 3810.00 3790.00 3790.00 377
lupinMVS93.77 26393.28 26595.24 25097.68 25487.81 28892.12 32296.05 29784.52 34194.48 29195.06 31686.90 28299.63 13793.62 21999.13 20298.27 258
1112_ss94.12 25493.42 26396.23 20598.59 14590.85 23094.24 26298.85 10585.49 32892.97 32994.94 31886.01 28899.64 13591.78 24997.92 28798.20 264
ab-mvs-re7.91 34810.55 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38194.94 3180.00 3850.00 3810.00 3790.00 3790.00 377
Fast-Effi-MVS+-dtu96.44 15796.12 16697.39 14097.18 29294.39 14295.46 20598.73 13696.03 12894.72 28494.92 32096.28 10099.69 11493.81 21297.98 28598.09 268
EPNet_dtu91.39 30790.75 31093.31 31290.48 37782.61 34794.80 24492.88 33993.39 21881.74 37494.90 32181.36 31399.11 26988.28 31498.87 23298.21 263
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DPM-MVS93.68 26792.77 28096.42 19797.91 21992.54 19591.17 33997.47 26384.99 33793.08 32894.74 32289.90 24899.00 28187.54 32498.09 28297.72 297
Effi-MVS+96.19 16696.01 17196.71 17997.43 27692.19 20596.12 16899.10 4195.45 15693.33 32494.71 32397.23 4599.56 15993.21 22997.54 30798.37 243
GA-MVS92.83 28692.15 29094.87 27096.97 29887.27 30090.03 35296.12 29691.83 25894.05 30194.57 32476.01 34198.97 28992.46 23997.34 31698.36 248
miper_enhance_ethall93.14 28292.78 27994.20 29793.65 36485.29 32489.97 35397.85 23985.05 33496.15 24694.56 32585.74 28999.14 26393.74 21498.34 27198.17 267
xiu_mvs_v1_base_debu95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
xiu_mvs_v1_base_debi95.62 18895.96 17594.60 28298.01 20988.42 26993.99 27698.21 20492.98 23595.91 25394.53 32696.39 9499.72 8595.43 13898.19 27795.64 348
PVSNet_Blended93.96 26093.65 25994.91 26697.79 24087.40 29791.43 33198.68 14884.50 34294.51 28994.48 32993.04 18899.30 23589.77 29398.61 25998.02 281
PAPM_NR94.61 23694.17 24895.96 21798.36 17291.23 22495.93 18397.95 23392.98 23593.42 32294.43 33090.53 23698.38 33687.60 32296.29 33598.27 258
API-MVS95.09 21395.01 20695.31 24896.61 30694.02 15896.83 13097.18 27095.60 15095.79 25894.33 33194.54 15598.37 33885.70 33598.52 26493.52 362
alignmvs96.01 17495.52 19297.50 12797.77 24494.71 13196.07 17096.84 28297.48 6796.78 21194.28 33285.50 29199.40 20996.22 8898.73 24998.40 239
CLD-MVS95.47 19695.07 20296.69 18198.27 18092.53 19691.36 33298.67 15191.22 26795.78 26094.12 33395.65 12198.98 28590.81 26899.72 5798.57 225
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS92.54 29092.20 28993.57 30896.49 30986.66 30893.51 29494.73 32089.96 28194.95 28093.87 33490.24 24598.61 31981.18 35894.88 35195.45 352
canonicalmvs97.23 11397.21 11197.30 14497.65 25894.39 14297.84 7099.05 5397.42 6996.68 21493.85 33597.63 2899.33 22896.29 8598.47 26798.18 266
xiu_mvs_v2_base94.22 24994.63 22792.99 32297.32 28684.84 33392.12 32297.84 24191.96 25594.17 29693.43 33696.07 10399.71 10091.27 25697.48 31094.42 358
CHOSEN 280x42089.98 31989.19 32592.37 33395.60 33981.13 35786.22 36697.09 27481.44 35387.44 36793.15 33773.99 34699.47 18588.69 30899.07 21296.52 337
KD-MVS_2432*160088.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
miper_refine_blended88.93 32887.74 33392.49 32988.04 37881.99 35189.63 35995.62 30891.35 26495.06 27693.11 33856.58 37798.63 31785.19 34195.07 34896.85 325
thres600view792.03 29991.43 29793.82 30298.19 18884.61 33596.27 15890.39 35896.81 8996.37 23193.11 33873.44 35499.49 17980.32 35997.95 28697.36 310
E-PMN89.52 32589.78 31988.73 35093.14 36777.61 36583.26 36992.02 34694.82 18093.71 31093.11 33875.31 34396.81 36385.81 33496.81 32591.77 368
thres100view90091.76 30391.26 30293.26 31398.21 18684.50 33696.39 15190.39 35896.87 8796.33 23293.08 34273.44 35499.42 19878.85 36397.74 29595.85 344
131492.38 29292.30 28792.64 32895.42 34485.15 32795.86 18696.97 27985.40 33190.62 35093.06 34391.12 22997.80 35286.74 33095.49 34794.97 356
PAPM87.64 33785.84 34293.04 31996.54 30784.99 33088.42 36395.57 31179.52 36083.82 37193.05 34480.57 31898.41 33362.29 37592.79 36095.71 347
Fast-Effi-MVS+95.49 19395.07 20296.75 17797.67 25792.82 19094.22 26498.60 16191.61 26093.42 32292.90 34596.73 7799.70 10792.60 23597.89 29097.74 296
ET-MVSNet_ETH3D91.12 30889.67 32095.47 24296.41 31189.15 25891.54 33090.23 36189.07 29086.78 37092.84 34669.39 36599.44 19594.16 19896.61 33097.82 293
MVS90.02 31789.20 32492.47 33194.71 35086.90 30695.86 18696.74 28864.72 37390.62 35092.77 34792.54 20498.39 33579.30 36195.56 34692.12 366
BH-w/o92.14 29791.94 29192.73 32797.13 29485.30 32392.46 31695.64 30789.33 28794.21 29592.74 34889.60 25298.24 34281.68 35694.66 35394.66 357
PAPR92.22 29591.27 30195.07 25895.73 33788.81 26491.97 32597.87 23885.80 32690.91 34992.73 34991.16 22898.33 34079.48 36095.76 34398.08 269
MAR-MVS94.21 25193.03 27097.76 10796.94 30197.44 3396.97 12597.15 27187.89 30792.00 34492.73 34992.14 21399.12 26683.92 34997.51 30996.73 332
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline289.65 32488.44 33193.25 31495.62 33882.71 34693.82 28485.94 37188.89 29487.35 36892.54 35171.23 35999.33 22886.01 33294.60 35597.72 297
PS-MVSNAJ94.10 25594.47 23793.00 32197.35 28184.88 33191.86 32697.84 24191.96 25594.17 29692.50 35295.82 11199.71 10091.27 25697.48 31094.40 359
PMMVS92.39 29191.08 30396.30 20493.12 36892.81 19190.58 34895.96 30179.17 36291.85 34692.27 35390.29 24498.66 31689.85 29296.68 32997.43 308
PVSNet86.72 1991.10 30990.97 30691.49 33897.56 26578.04 36387.17 36494.60 32284.65 34092.34 34192.20 35487.37 28098.47 33085.17 34397.69 30097.96 284
tfpn200view991.55 30591.00 30493.21 31698.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29595.85 344
thres40091.68 30491.00 30493.71 30598.02 20784.35 33895.70 19290.79 35596.26 11395.90 25692.13 35573.62 35199.42 19878.85 36397.74 29597.36 310
MVEpermissive73.61 2286.48 33985.92 34188.18 35396.23 31785.28 32581.78 37175.79 37786.01 32282.53 37391.88 35792.74 19587.47 37671.42 37394.86 35291.78 367
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS89.06 32789.22 32288.61 35193.00 36977.34 36682.91 37090.92 35494.64 18592.63 33891.81 35876.30 33997.02 36083.83 35196.90 32291.48 369
thisisatest051590.43 31489.18 32694.17 29997.07 29685.44 32189.75 35887.58 36788.28 30193.69 31291.72 35965.27 37099.58 15290.59 27898.67 25297.50 307
test_method66.88 34266.13 34569.11 35862.68 38125.73 38349.76 37296.04 29814.32 37664.27 37791.69 36073.45 35388.05 37576.06 36866.94 37593.54 361
EIA-MVS96.04 17295.77 18596.85 17097.80 23592.98 18896.12 16899.16 3194.65 18493.77 30891.69 36095.68 11999.67 12494.18 19798.85 23597.91 288
cascas91.89 30191.35 29993.51 30994.27 35685.60 31988.86 36298.61 16079.32 36192.16 34391.44 36289.22 26198.12 34690.80 26997.47 31296.82 328
IB-MVS85.98 2088.63 33086.95 33993.68 30695.12 34684.82 33490.85 34490.17 36287.55 30888.48 36491.34 36358.01 37599.59 15087.24 32893.80 35896.63 335
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres20091.00 31190.42 31592.77 32697.47 27483.98 34294.01 27591.18 35395.12 17095.44 26991.21 36473.93 34799.31 23277.76 36697.63 30595.01 355
test0.0.03 190.11 31689.21 32392.83 32593.89 36286.87 30791.74 32888.74 36692.02 25394.71 28591.14 36573.92 34894.48 37283.75 35392.94 35997.16 314
ETV-MVS96.13 16995.90 17996.82 17397.76 24593.89 16195.40 21198.95 8395.87 13895.58 26791.00 36696.36 9799.72 8593.36 22298.83 23896.85 325
test-LLR89.97 32089.90 31890.16 34594.24 35774.98 37289.89 35489.06 36492.02 25389.97 35790.77 36773.92 34898.57 32291.88 24697.36 31496.92 320
test-mter87.92 33687.17 33790.16 34594.24 35774.98 37289.89 35489.06 36486.44 32089.97 35790.77 36754.96 38298.57 32291.88 24697.36 31496.92 320
TESTMET0.1,187.20 33886.57 34089.07 34993.62 36572.84 37689.89 35487.01 37085.46 33089.12 36290.20 36956.00 38097.72 35390.91 26596.92 32096.64 333
gm-plane-assit91.79 37471.40 37881.67 35090.11 37098.99 28384.86 345
DeepMVS_CXcopyleft77.17 35790.94 37685.28 32574.08 38052.51 37480.87 37588.03 37175.25 34470.63 37759.23 37684.94 37275.62 372
PVSNet_081.89 2184.49 34083.21 34388.34 35295.76 33574.97 37483.49 36892.70 34378.47 36487.94 36586.90 37283.38 30596.63 36773.44 37066.86 37693.40 363
GG-mvs-BLEND90.60 34391.00 37584.21 34098.23 4672.63 38182.76 37284.11 37356.14 37996.79 36472.20 37192.09 36390.78 370
tmp_tt57.23 34362.50 34641.44 35934.77 38249.21 38283.93 36760.22 38315.31 37571.11 37679.37 37470.09 36444.86 37864.76 37482.93 37430.25 374
X-MVStestdata92.86 28590.83 30998.94 1599.15 7997.66 1997.77 7398.83 11497.42 6996.32 23336.50 37596.49 8999.72 8595.66 11999.37 15999.45 73
testmvs12.33 34615.23 3493.64 3615.77 3842.23 38588.99 3613.62 3842.30 3795.29 37913.09 3764.52 3841.95 3795.16 3788.32 3786.75 376
test12312.59 34515.49 3483.87 3606.07 3832.55 38490.75 3462.59 3852.52 3785.20 38013.02 3774.96 3831.85 3805.20 3779.09 3777.23 375
test_post10.87 37876.83 33699.07 274
test_post194.98 23910.37 37976.21 34099.04 27789.47 297
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.98 34710.65 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38095.82 1110.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS199.59 1898.20 799.03 799.25 2298.96 1898.87 46
MSC_two_6792asdad98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
No_MVS98.22 7597.75 24795.34 11098.16 21799.75 6695.87 10999.51 12099.57 37
eth-test20.00 385
eth-test0.00 385
IU-MVS99.22 6595.40 10398.14 22085.77 32798.36 8995.23 14899.51 12099.49 58
save fliter98.48 16294.71 13194.53 25398.41 18295.02 175
test_0728_SECOND98.25 7399.23 6295.49 10196.74 13898.89 9099.75 6695.48 13199.52 11599.53 47
GSMVS98.06 275
test_part299.03 10096.07 7498.08 122
sam_mvs177.80 32898.06 275
sam_mvs77.38 332
MTGPAbinary98.73 136
MTMP96.55 14674.60 378
test9_res91.29 25598.89 23199.00 167
agg_prior290.34 28698.90 22899.10 155
agg_prior97.80 23594.96 12698.36 18993.49 31899.53 167
test_prior495.38 10593.61 292
test_prior97.46 13397.79 24094.26 15298.42 18199.34 22698.79 201
旧先验293.35 29977.95 36695.77 26298.67 31590.74 274
新几何293.43 295
无先验93.20 30297.91 23580.78 35599.40 20987.71 31997.94 286
原ACMM292.82 307
testdata299.46 18887.84 317
segment_acmp95.34 130
testdata192.77 30893.78 209
test1297.46 13397.61 26194.07 15697.78 24593.57 31693.31 18399.42 19898.78 24298.89 188
plane_prior798.70 13094.67 134
plane_prior698.38 17094.37 14491.91 222
plane_prior598.75 13399.46 18892.59 23699.20 19499.28 113
plane_prior394.51 13895.29 16396.16 244
plane_prior296.50 14896.36 109
plane_prior198.49 160
plane_prior94.29 14795.42 20894.31 19698.93 226
n20.00 386
nn0.00 386
door-mid98.17 213
test1198.08 226
door97.81 244
HQP5-MVS92.47 197
HQP-NCC97.85 22294.26 25893.18 22692.86 331
ACMP_Plane97.85 22294.26 25893.18 22692.86 331
BP-MVS90.51 281
HQP4-MVS92.87 33099.23 25299.06 160
HQP3-MVS98.43 17898.74 246
HQP2-MVS90.33 240
MDTV_nov1_ep13_2view57.28 38194.89 24180.59 35694.02 30278.66 32585.50 33997.82 293
ACMMP++_ref99.52 115
ACMMP++99.55 103
Test By Simon94.51 156