This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 299.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 3
UA-Net98.88 798.76 1399.22 299.11 9597.89 1399.47 399.32 2499.08 1097.87 16299.67 296.47 9899.92 597.88 4399.98 299.85 3
test_fmvs397.38 11797.56 10296.84 18598.63 15492.81 19797.60 8799.61 1390.87 28998.76 7099.66 394.03 18097.90 36999.24 699.68 8399.81 8
pmmvs699.07 499.24 498.56 4899.81 296.38 6298.87 999.30 2699.01 1699.63 1199.66 399.27 299.68 12497.75 5199.89 2699.62 36
UniMVSNet_ETH3D99.12 399.28 398.65 4299.77 596.34 6599.18 599.20 3499.67 299.73 399.65 599.15 399.86 2497.22 6899.92 1599.77 12
mvsany_test396.21 17995.93 19497.05 16997.40 29694.33 14995.76 20694.20 34189.10 31199.36 2499.60 693.97 18297.85 37095.40 15698.63 27498.99 185
test_fmvsmconf0.01_n98.57 1798.74 1698.06 8899.39 4794.63 13696.70 14599.82 195.44 16699.64 1099.52 798.96 499.74 7799.38 399.86 3199.81 8
OurMVSNet-221017-098.61 1698.61 2498.63 4499.77 596.35 6499.17 699.05 6598.05 4799.61 1399.52 793.72 18999.88 2098.72 2499.88 2799.65 33
ANet_high98.31 3198.94 696.41 21399.33 5489.64 26397.92 6799.56 1699.27 699.66 999.50 997.67 3199.83 3397.55 5999.98 299.77 12
mvs_tets98.90 598.94 698.75 3199.69 1096.48 6098.54 2399.22 3196.23 12199.71 499.48 1098.77 799.93 398.89 1799.95 599.84 5
test_f95.82 19695.88 19795.66 24697.61 27993.21 19195.61 21898.17 22786.98 33698.42 9699.47 1190.46 25494.74 39197.71 5398.45 28599.03 178
gg-mvs-nofinetune88.28 35286.96 35892.23 35492.84 39284.44 35398.19 5274.60 40099.08 1087.01 39199.47 1156.93 39698.23 36378.91 38495.61 36594.01 382
PS-MVSNAJss98.53 2298.63 2098.21 7899.68 1194.82 12998.10 5699.21 3296.91 9299.75 299.45 1395.82 12499.92 598.80 1999.96 499.89 1
test_djsdf98.73 1198.74 1698.69 3999.63 1596.30 6798.67 1599.02 7496.50 10999.32 2699.44 1497.43 3999.92 598.73 2299.95 599.86 2
Anonymous2023121198.55 2098.76 1397.94 9998.79 13294.37 14798.84 1199.15 4399.37 399.67 799.43 1595.61 13599.72 8898.12 3599.86 3199.73 22
SDMVSNet97.97 5298.26 3997.11 16399.41 4392.21 21496.92 12798.60 17398.58 2898.78 6599.39 1697.80 2599.62 15194.98 18299.86 3199.52 59
sd_testset97.97 5298.12 4197.51 12899.41 4393.44 18297.96 6398.25 21398.58 2898.78 6599.39 1698.21 1499.56 17092.65 25299.86 3199.52 59
test_fmvs296.38 17496.45 16996.16 22497.85 23991.30 23896.81 13399.45 1889.24 31098.49 8899.38 1888.68 28097.62 37498.83 1899.32 19299.57 47
anonymousdsp98.72 1498.63 2098.99 1099.62 1697.29 3798.65 1999.19 3695.62 15699.35 2599.37 1997.38 4199.90 1498.59 2899.91 1899.77 12
jajsoiax98.77 998.79 1298.74 3499.66 1396.48 6098.45 3199.12 4895.83 14799.67 799.37 1998.25 1399.92 598.77 2099.94 899.82 6
K. test v396.44 17196.28 17796.95 17599.41 4391.53 23397.65 8490.31 37998.89 2098.93 5099.36 2184.57 31699.92 597.81 4799.56 11299.39 105
LTVRE_ROB96.88 199.18 299.34 298.72 3799.71 996.99 4499.69 299.57 1499.02 1599.62 1299.36 2198.53 999.52 18298.58 2999.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
RRT_MVS97.95 5897.79 7398.43 5799.67 1295.56 9398.86 1096.73 30497.99 4999.15 3699.35 2389.84 26699.90 1498.64 2699.90 2499.82 6
SixPastTwentyTwo97.49 10997.57 10197.26 15499.56 2192.33 20998.28 4296.97 29398.30 3899.45 1899.35 2388.43 28399.89 1898.01 4099.76 5999.54 54
test_fmvsmconf0.1_n98.41 2798.54 2598.03 9399.16 8394.61 13796.18 17499.73 395.05 18299.60 1499.34 2598.68 899.72 8899.21 799.85 3899.76 17
Gipumacopyleft98.07 4798.31 3597.36 14799.76 796.28 6898.51 2799.10 5198.76 2396.79 22399.34 2596.61 8998.82 31496.38 9699.50 13996.98 338
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt97.04 13196.98 13697.23 15798.44 18195.88 8096.82 13299.67 690.30 29899.27 2999.33 2794.04 17996.03 38897.14 7397.83 30999.78 11
fmvsm_s_conf0.1_n_a97.80 8398.01 5297.18 15899.17 8292.51 20596.57 14999.15 4393.68 22798.89 5499.30 2896.42 10299.37 23499.03 1399.83 4399.66 30
JIA-IIPM91.79 32090.69 32995.11 26993.80 38490.98 24394.16 28791.78 36696.38 11390.30 37799.30 2872.02 37798.90 30888.28 33390.17 38795.45 373
TransMVSNet (Re)98.38 2898.67 1897.51 12899.51 3193.39 18598.20 5198.87 11098.23 4099.48 1699.27 3098.47 1199.55 17496.52 9199.53 12599.60 38
fmvsm_s_conf0.1_n97.73 8898.02 5196.85 18399.09 9891.43 23796.37 16099.11 4994.19 21099.01 4499.25 3196.30 10899.38 22999.00 1499.88 2799.73 22
Baseline_NR-MVSNet97.72 9097.79 7397.50 13299.56 2193.29 18795.44 22498.86 11398.20 4298.37 10199.24 3294.69 16099.55 17495.98 11699.79 5399.65 33
v7n98.73 1198.99 597.95 9899.64 1494.20 15698.67 1599.14 4699.08 1099.42 2099.23 3396.53 9399.91 1399.27 599.93 1199.73 22
pm-mvs198.47 2498.67 1897.86 10499.52 3094.58 13998.28 4299.00 8397.57 6799.27 2999.22 3498.32 1299.50 18797.09 7599.75 6699.50 63
TDRefinement98.90 598.86 899.02 699.54 2698.06 899.34 499.44 1998.85 2199.00 4699.20 3597.42 4099.59 16197.21 6999.76 5999.40 101
GBi-Net96.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
test196.99 13496.80 14897.56 12397.96 23193.67 17398.23 4698.66 16595.59 15897.99 14799.19 3689.51 27399.73 8394.60 19799.44 15599.30 121
FMVSNet197.95 5898.08 4497.56 12399.14 9393.67 17398.23 4698.66 16597.41 7899.00 4699.19 3695.47 13999.73 8395.83 12599.76 5999.30 121
test_fmvsmconf_n98.30 3298.41 3297.99 9698.94 11694.60 13896.00 18999.64 1294.99 18599.43 1999.18 3998.51 1099.71 10499.13 1099.84 4099.67 28
VDDNet96.98 13796.84 14597.41 14499.40 4693.26 18997.94 6595.31 33099.26 798.39 10099.18 3987.85 29299.62 15195.13 17299.09 22599.35 115
DSMNet-mixed92.19 31291.83 30993.25 33196.18 33983.68 36196.27 16693.68 34576.97 39092.54 36099.18 3989.20 27898.55 34283.88 37098.60 27897.51 325
test111194.53 25794.81 23493.72 32199.06 10281.94 37198.31 3983.87 39696.37 11498.49 8899.17 4281.49 33199.73 8396.64 8699.86 3199.49 71
test250689.86 34089.16 34591.97 35698.95 11376.83 39198.54 2361.07 40496.20 12297.07 20699.16 4355.19 40199.69 11996.43 9599.83 4399.38 107
ECVR-MVScopyleft94.37 26394.48 25294.05 31798.95 11383.10 36298.31 3982.48 39796.20 12298.23 12099.16 4381.18 33499.66 13695.95 11799.83 4399.38 107
v1097.55 10597.97 5596.31 21798.60 15889.64 26397.44 10099.02 7496.60 10198.72 7399.16 4393.48 19399.72 8898.76 2199.92 1599.58 40
MIMVSNet198.51 2398.45 2998.67 4099.72 896.71 5098.76 1298.89 10298.49 3199.38 2299.14 4695.44 14199.84 3096.47 9399.80 5199.47 80
Vis-MVSNetpermissive98.27 3398.34 3498.07 8699.33 5495.21 12098.04 6099.46 1797.32 8297.82 16699.11 4796.75 8399.86 2497.84 4699.36 17799.15 153
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
v897.60 10198.06 4796.23 21998.71 14389.44 26797.43 10298.82 13497.29 8498.74 7199.10 4893.86 18499.68 12498.61 2799.94 899.56 51
mvsmamba98.16 3798.06 4798.44 5599.53 2995.87 8198.70 1398.94 9697.71 6198.85 5799.10 4891.35 24299.83 3398.47 3099.90 2499.64 35
MVS-HIRNet88.40 35190.20 33582.99 37897.01 31660.04 40393.11 32485.61 39484.45 36588.72 38599.09 5084.72 31598.23 36382.52 37696.59 35190.69 393
ACMH93.61 998.44 2598.76 1397.51 12899.43 4093.54 17998.23 4699.05 6597.40 7999.37 2399.08 5198.79 699.47 19797.74 5299.71 7599.50 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DTE-MVSNet98.79 898.86 898.59 4699.55 2396.12 7298.48 3099.10 5199.36 499.29 2899.06 5297.27 4699.93 397.71 5399.91 1899.70 26
Anonymous2024052197.07 13097.51 10795.76 24199.35 5288.18 29197.78 7398.40 19797.11 8798.34 10799.04 5389.58 26999.79 4598.09 3799.93 1199.30 121
test_fmvsmvis_n_192098.08 4598.47 2696.93 17799.03 10893.29 18796.32 16499.65 995.59 15899.71 499.01 5497.66 3299.60 16099.44 299.83 4397.90 305
fmvsm_s_conf0.5_n_a97.65 9697.83 6997.13 16298.80 13092.51 20596.25 17099.06 6193.67 22898.64 7499.00 5596.23 11299.36 23798.99 1599.80 5199.53 57
PEN-MVS98.75 1098.85 1098.44 5599.58 1995.67 9098.45 3199.15 4399.33 599.30 2799.00 5597.27 4699.92 597.64 5799.92 1599.75 19
DeepC-MVS95.41 497.82 8197.70 8198.16 7998.78 13595.72 8696.23 17299.02 7493.92 22098.62 7698.99 5797.69 2999.62 15196.18 10599.87 2999.15 153
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.5_n97.62 9997.89 6296.80 18798.79 13291.44 23696.14 17999.06 6194.19 21098.82 6198.98 5896.22 11399.38 22998.98 1699.86 3199.58 40
VPA-MVSNet98.27 3398.46 2797.70 11499.06 10293.80 16997.76 7699.00 8398.40 3399.07 4298.98 5896.89 7399.75 6897.19 7299.79 5399.55 53
lessismore_v097.05 16999.36 5192.12 21984.07 39598.77 6998.98 5885.36 31099.74 7797.34 6699.37 17499.30 121
test_cas_vis1_n_192095.34 21695.67 20394.35 30898.21 20186.83 32395.61 21899.26 2990.45 29698.17 12798.96 6184.43 31798.31 36096.74 8499.17 21397.90 305
PS-CasMVS98.73 1198.85 1098.39 6199.55 2395.47 10298.49 2899.13 4799.22 899.22 3398.96 6197.35 4299.92 597.79 4999.93 1199.79 10
bld_raw_dy_0_6497.69 9297.61 9797.91 10099.54 2694.27 15498.06 5998.60 17396.60 10198.79 6498.95 6389.62 26799.84 3098.43 3299.91 1899.62 36
EU-MVSNet94.25 26494.47 25393.60 32498.14 21682.60 36697.24 11092.72 35785.08 35598.48 9098.94 6482.59 32998.76 32197.47 6399.53 12599.44 96
LCM-MVSNet-Re97.33 12297.33 11797.32 14998.13 21993.79 17096.99 12499.65 996.74 9799.47 1798.93 6596.91 7299.84 3090.11 30699.06 23198.32 267
test_vis1_n95.67 20195.89 19695.03 27498.18 20789.89 26096.94 12699.28 2888.25 32498.20 12298.92 6686.69 30197.19 37797.70 5598.82 25598.00 300
test_fmvs1_n95.21 22295.28 21194.99 27798.15 21489.13 27496.81 13399.43 2086.97 33797.21 19198.92 6683.00 32697.13 37898.09 3798.94 24098.72 226
XXY-MVS97.54 10697.70 8197.07 16899.46 3792.21 21497.22 11199.00 8394.93 18898.58 8198.92 6697.31 4499.41 22094.44 20199.43 16399.59 39
mvs_anonymous95.36 21596.07 18693.21 33396.29 33381.56 37294.60 27197.66 26693.30 23896.95 21698.91 6993.03 20399.38 22996.60 8897.30 33698.69 230
test_vis1_n_192095.77 19796.41 17193.85 31898.55 16584.86 34895.91 19999.71 492.72 26197.67 16998.90 7087.44 29598.73 32397.96 4198.85 25197.96 301
EGC-MVSNET83.08 36277.93 36598.53 5099.57 2097.55 2698.33 3898.57 1794.71 39910.38 40098.90 7095.60 13699.50 18795.69 13099.61 9998.55 244
KD-MVS_self_test97.86 7698.07 4597.25 15599.22 6992.81 19797.55 9298.94 9697.10 8898.85 5798.88 7295.03 15299.67 13097.39 6599.65 8899.26 133
UGNet96.81 14996.56 16197.58 12296.64 32593.84 16897.75 7797.12 28796.47 11293.62 33298.88 7293.22 19899.53 17995.61 13799.69 7999.36 113
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2024052997.96 5498.04 4997.71 11398.69 14794.28 15397.86 7098.31 21098.79 2299.23 3298.86 7495.76 13099.61 15895.49 14299.36 17799.23 139
FC-MVSNet-test98.16 3798.37 3397.56 12399.49 3593.10 19298.35 3599.21 3298.43 3298.89 5498.83 7594.30 17499.81 3797.87 4499.91 1899.77 12
new-patchmatchnet95.67 20196.58 15992.94 34197.48 28880.21 37792.96 32598.19 22694.83 18998.82 6198.79 7693.31 19699.51 18695.83 12599.04 23299.12 163
WR-MVS_H98.65 1598.62 2298.75 3199.51 3196.61 5698.55 2299.17 3899.05 1399.17 3598.79 7695.47 13999.89 1897.95 4299.91 1899.75 19
ab-mvs96.59 16396.59 15896.60 19898.64 15092.21 21498.35 3597.67 26494.45 20296.99 21298.79 7694.96 15699.49 19290.39 30399.07 22898.08 286
testf198.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
APD_test298.57 1798.45 2998.93 1899.79 398.78 297.69 8199.42 2197.69 6398.92 5198.77 7997.80 2599.25 26496.27 10099.69 7998.76 221
EG-PatchMatch MVS97.69 9297.79 7397.40 14599.06 10293.52 18095.96 19498.97 9294.55 20198.82 6198.76 8197.31 4499.29 25697.20 7199.44 15599.38 107
nrg03098.54 2198.62 2298.32 6599.22 6995.66 9197.90 6899.08 5798.31 3699.02 4398.74 8297.68 3099.61 15897.77 5099.85 3899.70 26
VDD-MVS97.37 11997.25 12197.74 11198.69 14794.50 14397.04 12295.61 32398.59 2798.51 8598.72 8392.54 21899.58 16396.02 11299.49 14299.12 163
PatchT93.75 28093.57 27794.29 31195.05 36887.32 31496.05 18492.98 35397.54 7094.25 31398.72 8375.79 36299.24 26795.92 11995.81 35996.32 360
test_fmvsm_n_192098.08 4598.29 3897.43 14198.88 12393.95 16496.17 17899.57 1495.66 15399.52 1598.71 8597.04 6099.64 14299.21 799.87 2998.69 230
RPSCF97.87 7497.51 10798.95 1499.15 8698.43 697.56 9199.06 6196.19 12498.48 9098.70 8694.72 15999.24 26794.37 20699.33 19099.17 150
APDe-MVScopyleft98.14 3998.03 5098.47 5498.72 14096.04 7598.07 5899.10 5195.96 13798.59 8098.69 8796.94 6799.81 3796.64 8699.58 10699.57 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
IterMVS-LS96.92 14097.29 11995.79 24098.51 17188.13 29495.10 24798.66 16596.99 8998.46 9398.68 8892.55 21699.74 7796.91 8199.79 5399.50 63
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
SSC-MVS95.92 19197.03 13492.58 34799.28 5878.39 38296.68 14695.12 33298.90 1999.11 3998.66 8991.36 24199.68 12495.00 17999.16 21499.67 28
tfpnnormal97.72 9097.97 5596.94 17699.26 6092.23 21397.83 7298.45 18898.25 3999.13 3898.66 8996.65 8699.69 11993.92 22599.62 9398.91 199
FIs97.93 6598.07 4597.48 13699.38 4992.95 19598.03 6299.11 4998.04 4898.62 7698.66 8993.75 18899.78 4897.23 6799.84 4099.73 22
CP-MVSNet98.42 2698.46 2798.30 6899.46 3795.22 11898.27 4498.84 12099.05 1399.01 4498.65 9295.37 14299.90 1497.57 5899.91 1899.77 12
MM97.62 12093.30 18696.39 15692.61 36097.90 5296.76 22898.64 9390.46 25499.81 3799.16 999.94 899.76 17
MVS_030496.62 16296.40 17297.28 15197.91 23592.30 21096.47 15489.74 38397.52 7195.38 28998.63 9492.76 20899.81 3799.28 499.93 1199.75 19
FMVSNet296.72 15596.67 15596.87 18297.96 23191.88 22797.15 11498.06 24595.59 15898.50 8798.62 9589.51 27399.65 13894.99 18199.60 10299.07 173
FA-MVS(test-final)94.91 23594.89 22894.99 27797.51 28688.11 29698.27 4495.20 33192.40 26996.68 23198.60 9683.44 32399.28 25893.34 24098.53 28097.59 323
PMVScopyleft89.60 1796.71 15796.97 13795.95 23399.51 3197.81 1697.42 10397.49 27597.93 5095.95 26898.58 9796.88 7596.91 38289.59 31499.36 17793.12 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CR-MVSNet93.29 29592.79 29394.78 29095.44 36188.15 29296.18 17497.20 28284.94 36094.10 31798.57 9877.67 34999.39 22695.17 16595.81 35996.81 349
Patchmtry95.03 23294.59 24796.33 21594.83 37090.82 24696.38 15997.20 28296.59 10397.49 17798.57 9877.67 34999.38 22992.95 25199.62 9398.80 215
ambc96.56 20398.23 20091.68 23297.88 6998.13 23598.42 9698.56 10094.22 17699.04 29494.05 22099.35 18298.95 189
3Dnovator96.53 297.61 10097.64 9197.50 13297.74 26793.65 17798.49 2898.88 10896.86 9497.11 19998.55 10195.82 12499.73 8395.94 11899.42 16699.13 158
IterMVS-SCA-FT95.86 19496.19 18094.85 28597.68 27185.53 33692.42 33997.63 27296.99 8998.36 10498.54 10287.94 28799.75 6897.07 7799.08 22699.27 132
test_fmvs194.51 25894.60 24594.26 31295.91 34787.92 29895.35 23499.02 7486.56 34196.79 22398.52 10382.64 32897.00 38197.87 4498.71 26697.88 307
COLMAP_ROBcopyleft94.48 698.25 3598.11 4298.64 4399.21 7697.35 3597.96 6399.16 3998.34 3598.78 6598.52 10397.32 4399.45 20494.08 21799.67 8599.13 158
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
ACMH+93.58 1098.23 3698.31 3597.98 9799.39 4795.22 11897.55 9299.20 3498.21 4199.25 3198.51 10598.21 1499.40 22294.79 18899.72 7299.32 116
fmvsm_l_conf0.5_n_a97.60 10197.76 7897.11 16398.92 11992.28 21195.83 20399.32 2493.22 24198.91 5398.49 10696.31 10799.64 14299.07 1299.76 5999.40 101
RPMNet94.68 24894.60 24594.90 28295.44 36188.15 29296.18 17498.86 11397.43 7494.10 31798.49 10679.40 34199.76 6295.69 13095.81 35996.81 349
IterMVS95.42 21495.83 19894.20 31397.52 28583.78 36092.41 34097.47 27795.49 16398.06 14198.49 10687.94 28799.58 16396.02 11299.02 23399.23 139
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS97.87 7497.89 6297.81 10798.62 15694.82 12997.13 11798.79 13698.98 1798.74 7198.49 10695.80 12999.49 19295.04 17699.44 15599.11 166
casdiffmvs_mvgpermissive97.83 7898.11 4297.00 17498.57 16292.10 22295.97 19299.18 3797.67 6699.00 4698.48 11097.64 3399.50 18796.96 8099.54 12199.40 101
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet98.33 2998.30 3798.43 5799.07 10195.87 8196.73 14399.05 6598.67 2498.84 5998.45 11197.58 3699.88 2096.45 9499.86 3199.54 54
3Dnovator+96.13 397.73 8897.59 9998.15 8198.11 22095.60 9298.04 6098.70 15798.13 4396.93 21798.45 11195.30 14599.62 15195.64 13598.96 23799.24 138
fmvsm_l_conf0.5_n97.68 9597.81 7197.27 15298.92 11992.71 20295.89 20099.41 2393.36 23599.00 4698.44 11396.46 10099.65 13899.09 1199.76 5999.45 86
dcpmvs_297.12 12897.99 5494.51 30299.11 9584.00 35897.75 7799.65 997.38 8099.14 3798.42 11495.16 14899.96 295.52 14199.78 5699.58 40
patch_mono-296.59 16396.93 14095.55 25298.88 12387.12 31794.47 27499.30 2694.12 21396.65 23598.41 11594.98 15599.87 2295.81 12799.78 5699.66 30
VPNet97.26 12597.49 11096.59 19999.47 3690.58 25196.27 16698.53 18197.77 5498.46 9398.41 11594.59 16599.68 12494.61 19699.29 19899.52 59
test_040297.84 7797.97 5597.47 13799.19 8094.07 15996.71 14498.73 14898.66 2598.56 8298.41 11596.84 7999.69 11994.82 18699.81 4898.64 234
v124096.74 15297.02 13595.91 23698.18 20788.52 28395.39 23098.88 10893.15 24898.46 9398.40 11892.80 20799.71 10498.45 3199.49 14299.49 71
APD_test197.95 5897.68 8598.75 3199.60 1798.60 597.21 11299.08 5796.57 10798.07 14098.38 11996.22 11399.14 28094.71 19599.31 19598.52 247
SMA-MVScopyleft97.48 11097.11 12798.60 4598.83 12796.67 5396.74 13998.73 14891.61 27998.48 9098.36 12096.53 9399.68 12495.17 16599.54 12199.45 86
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ACMMP_NAP97.89 7297.63 9398.67 4099.35 5296.84 4796.36 16198.79 13695.07 18197.88 15998.35 12197.24 5099.72 8896.05 10999.58 10699.45 86
v119296.83 14797.06 13296.15 22598.28 19389.29 26995.36 23298.77 14193.73 22498.11 13398.34 12293.02 20499.67 13098.35 3399.58 10699.50 63
pmmvs-eth3d96.49 16896.18 18197.42 14398.25 19794.29 15094.77 26598.07 24489.81 30597.97 15198.33 12393.11 19999.08 29095.46 14899.84 4098.89 203
PM-MVS97.36 12197.10 12898.14 8298.91 12196.77 4996.20 17398.63 17193.82 22298.54 8398.33 12393.98 18199.05 29395.99 11599.45 15498.61 239
test072699.24 6495.51 9796.89 12998.89 10295.92 14098.64 7498.31 12597.06 58
MP-MVS-pluss97.69 9297.36 11598.70 3899.50 3496.84 4795.38 23198.99 8692.45 26798.11 13398.31 12597.25 4999.77 5796.60 8899.62 9399.48 77
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v114496.84 14497.08 13096.13 22698.42 18389.28 27095.41 22898.67 16394.21 20897.97 15198.31 12593.06 20099.65 13898.06 3999.62 9399.45 86
LFMVS95.32 21894.88 22996.62 19798.03 22291.47 23597.65 8490.72 37699.11 997.89 15898.31 12579.20 34299.48 19593.91 22699.12 22198.93 195
DVP-MVS++97.96 5497.90 5998.12 8497.75 26495.40 10399.03 798.89 10296.62 9998.62 7698.30 12996.97 6599.75 6895.70 12899.25 20399.21 141
test_one_060199.05 10695.50 10098.87 11097.21 8698.03 14598.30 12996.93 69
V4297.04 13197.16 12696.68 19698.59 16091.05 24196.33 16398.36 20294.60 19797.99 14798.30 12993.32 19599.62 15197.40 6499.53 12599.38 107
casdiffmvspermissive97.50 10897.81 7196.56 20398.51 17191.04 24295.83 20399.09 5697.23 8598.33 11098.30 12997.03 6199.37 23496.58 9099.38 17399.28 128
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
v14419296.69 15896.90 14496.03 22898.25 19788.92 27595.49 22298.77 14193.05 25098.09 13698.29 13392.51 22199.70 11298.11 3699.56 11299.47 80
mvsany_test193.47 29093.03 28694.79 28994.05 38292.12 21990.82 36790.01 38285.02 35897.26 18898.28 13493.57 19197.03 37992.51 25695.75 36495.23 375
DVP-MVScopyleft97.78 8597.65 8898.16 7999.24 6495.51 9796.74 13998.23 21695.92 14098.40 9898.28 13497.06 5899.71 10495.48 14599.52 13099.26 133
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 9998.40 9898.28 13497.10 5499.71 10495.70 12899.62 9399.58 40
MVS_Test96.27 17796.79 15094.73 29296.94 32086.63 32596.18 17498.33 20694.94 18696.07 26498.28 13495.25 14699.26 26297.21 6997.90 30798.30 271
FMVSNet593.39 29292.35 30296.50 20595.83 35190.81 24897.31 10598.27 21192.74 26096.27 25498.28 13462.23 39499.67 13090.86 28599.36 17799.03 178
WB-MVS95.50 20796.62 15692.11 35599.21 7677.26 39096.12 18095.40 32998.62 2698.84 5998.26 13991.08 24599.50 18793.37 23898.70 26799.58 40
v192192096.72 15596.96 13995.99 22998.21 20188.79 28095.42 22698.79 13693.22 24198.19 12698.26 13992.68 21199.70 11298.34 3499.55 11899.49 71
SED-MVS97.94 6297.90 5998.07 8699.22 6995.35 10896.79 13698.83 12696.11 12799.08 4098.24 14197.87 2399.72 8895.44 14999.51 13599.14 156
test_241102_TWO98.83 12696.11 12798.62 7698.24 14196.92 7199.72 8895.44 14999.49 14299.49 71
v2v48296.78 15197.06 13295.95 23398.57 16288.77 28195.36 23298.26 21295.18 17697.85 16498.23 14392.58 21599.63 14697.80 4899.69 7999.45 86
LPG-MVS_test97.94 6297.67 8698.74 3499.15 8697.02 4297.09 11999.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
LGP-MVS_train98.74 3499.15 8697.02 4299.02 7495.15 17798.34 10798.23 14397.91 2199.70 11294.41 20399.73 6899.50 63
HPM-MVS_fast98.32 3098.13 4098.88 2399.54 2697.48 3098.35 3599.03 7295.88 14397.88 15998.22 14698.15 1699.74 7796.50 9299.62 9399.42 98
MIMVSNet93.42 29192.86 29095.10 27198.17 21088.19 29098.13 5593.69 34392.07 27195.04 29898.21 14780.95 33799.03 29781.42 37898.06 30198.07 288
h-mvs3396.29 17695.63 20698.26 7098.50 17496.11 7396.90 12897.09 28896.58 10497.21 19198.19 14884.14 31899.78 4895.89 12196.17 35798.89 203
EI-MVSNet96.63 16196.93 14095.74 24297.26 30688.13 29495.29 24097.65 26896.99 8997.94 15498.19 14892.55 21699.58 16396.91 8199.56 11299.50 63
CVMVSNet92.33 31092.79 29390.95 36297.26 30675.84 39495.29 24092.33 36281.86 37196.27 25498.19 14881.44 33298.46 35094.23 21298.29 29298.55 244
PVSNet_Blended_VisFu95.95 19095.80 19996.42 21199.28 5890.62 25095.31 23899.08 5788.40 32196.97 21598.17 15192.11 22899.78 4893.64 23499.21 20798.86 210
FE-MVS92.95 30092.22 30495.11 26997.21 30988.33 28898.54 2393.66 34689.91 30496.21 25898.14 15270.33 38399.50 18787.79 33798.24 29497.51 325
EI-MVSNet-UG-set97.32 12397.40 11297.09 16797.34 30192.01 22595.33 23697.65 26897.74 5798.30 11598.14 15295.04 15199.69 11997.55 5999.52 13099.58 40
test_241102_ONE99.22 6995.35 10898.83 12696.04 13299.08 4098.13 15497.87 2399.33 245
APD-MVS_3200maxsize98.13 4297.90 5998.79 2998.79 13297.31 3697.55 9298.92 9997.72 5998.25 11898.13 15497.10 5499.75 6895.44 14999.24 20699.32 116
QAPM95.88 19395.57 20896.80 18797.90 23791.84 22998.18 5398.73 14888.41 32096.42 24598.13 15494.73 15899.75 6888.72 32698.94 24098.81 214
ACMM93.33 1198.05 4897.79 7398.85 2499.15 8697.55 2696.68 14698.83 12695.21 17398.36 10498.13 15498.13 1899.62 15196.04 11099.54 12199.39 105
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set97.32 12397.39 11397.11 16397.36 29892.08 22395.34 23597.65 26897.74 5798.29 11698.11 15895.05 15099.68 12497.50 6199.50 13999.56 51
wuyk23d93.25 29695.20 21387.40 37796.07 34595.38 10597.04 12294.97 33395.33 16999.70 698.11 15898.14 1791.94 39577.76 38899.68 8374.89 395
DPE-MVScopyleft97.64 9797.35 11698.50 5198.85 12696.18 6995.21 24498.99 8695.84 14698.78 6598.08 16096.84 7999.81 3793.98 22399.57 10999.52 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SD-MVS97.37 11997.70 8196.35 21498.14 21695.13 12296.54 15198.92 9995.94 13999.19 3498.08 16097.74 2895.06 38995.24 16199.54 12198.87 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SR-MVS-dyc-post98.14 3997.84 6699.02 698.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.60 9199.76 6295.49 14299.20 20899.26 133
RE-MVS-def97.88 6498.81 12898.05 997.55 9298.86 11397.77 5498.20 12298.07 16296.94 6795.49 14299.20 20899.26 133
OPM-MVS97.54 10697.25 12198.41 5999.11 9596.61 5695.24 24298.46 18794.58 20098.10 13598.07 16297.09 5699.39 22695.16 16799.44 15599.21 141
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AllTest97.20 12796.92 14298.06 8899.08 9996.16 7097.14 11699.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
TestCases98.06 8899.08 9996.16 7099.16 3994.35 20597.78 16798.07 16295.84 12199.12 28391.41 27299.42 16698.91 199
TSAR-MVS + MP.97.42 11597.23 12398.00 9599.38 4995.00 12597.63 8698.20 22193.00 25298.16 12898.06 16795.89 11999.72 8895.67 13299.10 22499.28 128
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
EPP-MVSNet96.84 14496.58 15997.65 11899.18 8193.78 17198.68 1496.34 30797.91 5197.30 18698.06 16788.46 28299.85 2793.85 22799.40 17199.32 116
ACMMPcopyleft98.05 4897.75 8098.93 1899.23 6697.60 2298.09 5798.96 9395.75 15197.91 15698.06 16796.89 7399.76 6295.32 15799.57 10999.43 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
Anonymous20240521196.34 17595.98 19097.43 14198.25 19793.85 16796.74 13994.41 33997.72 5998.37 10198.03 17087.15 29799.53 17994.06 21899.07 22898.92 198
XVG-ACMP-BASELINE97.58 10497.28 12098.49 5299.16 8396.90 4696.39 15698.98 8995.05 18298.06 14198.02 17195.86 12099.56 17094.37 20699.64 9099.00 182
baseline97.44 11397.78 7796.43 20998.52 16990.75 24996.84 13099.03 7296.51 10897.86 16398.02 17196.67 8599.36 23797.09 7599.47 14899.19 146
PVSNet_BlendedMVS95.02 23394.93 22595.27 26397.79 25787.40 31294.14 29098.68 16088.94 31594.51 30898.01 17393.04 20199.30 25289.77 31299.49 14299.11 166
OpenMVScopyleft94.22 895.48 21095.20 21396.32 21697.16 31191.96 22697.74 7998.84 12087.26 33194.36 31298.01 17393.95 18399.67 13090.70 29598.75 26197.35 332
MVSTER94.21 26793.93 27195.05 27395.83 35186.46 32695.18 24597.65 26892.41 26897.94 15498.00 17572.39 37699.58 16396.36 9799.56 11299.12 163
IS-MVSNet96.93 13996.68 15497.70 11499.25 6394.00 16298.57 2096.74 30298.36 3498.14 13197.98 17688.23 28599.71 10493.10 24899.72 7299.38 107
MTAPA98.14 3997.84 6699.06 399.44 3997.90 1297.25 10898.73 14897.69 6397.90 15797.96 17795.81 12899.82 3596.13 10699.61 9999.45 86
v14896.58 16596.97 13795.42 25998.63 15487.57 30795.09 24897.90 25095.91 14298.24 11997.96 17793.42 19499.39 22696.04 11099.52 13099.29 127
MDA-MVSNet-bldmvs95.69 19995.67 20395.74 24298.48 17788.76 28292.84 32697.25 28096.00 13597.59 17197.95 17991.38 24099.46 20093.16 24796.35 35498.99 185
PGM-MVS97.88 7397.52 10698.96 1399.20 7897.62 2197.09 11999.06 6195.45 16497.55 17297.94 18097.11 5399.78 4894.77 19199.46 15199.48 77
LS3D97.77 8697.50 10998.57 4796.24 33497.58 2498.45 3198.85 11798.58 2897.51 17597.94 18095.74 13199.63 14695.19 16398.97 23698.51 248
USDC94.56 25494.57 25094.55 30097.78 26086.43 32892.75 32998.65 17085.96 34596.91 21997.93 18290.82 24998.74 32290.71 29499.59 10498.47 252
test20.0396.58 16596.61 15796.48 20798.49 17591.72 23195.68 21197.69 26396.81 9598.27 11797.92 18394.18 17798.71 32690.78 28999.66 8799.00 182
FMVSNet395.26 22194.94 22396.22 22196.53 32890.06 25695.99 19097.66 26694.11 21497.99 14797.91 18480.22 34099.63 14694.60 19799.44 15598.96 188
iter_conf_final94.54 25693.91 27296.43 20997.23 30890.41 25596.81 13398.10 23793.87 22196.80 22297.89 18568.02 38799.72 8896.73 8599.77 5899.18 149
iter_conf0593.65 28593.05 28495.46 25796.13 34487.45 31095.95 19698.22 21792.66 26297.04 20897.89 18563.52 39399.72 8896.19 10499.82 4799.21 141
SF-MVS97.60 10197.39 11398.22 7598.93 11795.69 8897.05 12199.10 5195.32 17097.83 16597.88 18796.44 10199.72 8894.59 20099.39 17299.25 137
SteuartSystems-ACMMP98.02 5097.76 7898.79 2999.43 4097.21 4197.15 11498.90 10196.58 10498.08 13897.87 18897.02 6299.76 6295.25 16099.59 10499.40 101
Skip Steuart: Steuart Systems R&D Blog.
SR-MVS98.00 5197.66 8799.01 898.77 13697.93 1197.38 10498.83 12697.32 8298.06 14197.85 18996.65 8699.77 5795.00 17999.11 22299.32 116
DU-MVS97.79 8497.60 9898.36 6398.73 13895.78 8495.65 21498.87 11097.57 6798.31 11397.83 19094.69 16099.85 2797.02 7899.71 7599.46 82
NR-MVSNet97.96 5497.86 6598.26 7098.73 13895.54 9598.14 5498.73 14897.79 5399.42 2097.83 19094.40 17299.78 4895.91 12099.76 5999.46 82
CHOSEN 1792x268894.10 27193.41 28096.18 22399.16 8390.04 25792.15 34398.68 16079.90 38196.22 25797.83 19087.92 29199.42 21189.18 32099.65 8899.08 171
TAMVS95.49 20894.94 22397.16 15998.31 18993.41 18495.07 25196.82 29891.09 28797.51 17597.82 19389.96 26399.42 21188.42 33199.44 15598.64 234
UniMVSNet (Re)97.83 7897.65 8898.35 6498.80 13095.86 8395.92 19899.04 7197.51 7298.22 12197.81 19494.68 16299.78 4897.14 7399.75 6699.41 100
VNet96.84 14496.83 14696.88 18198.06 22192.02 22496.35 16297.57 27497.70 6297.88 15997.80 19592.40 22399.54 17794.73 19398.96 23799.08 171
YYNet194.73 24194.84 23194.41 30697.47 29285.09 34590.29 37295.85 31792.52 26497.53 17397.76 19691.97 23299.18 27393.31 24296.86 34198.95 189
MDA-MVSNet_test_wron94.73 24194.83 23394.42 30597.48 28885.15 34390.28 37395.87 31692.52 26497.48 17997.76 19691.92 23599.17 27793.32 24196.80 34698.94 191
TinyColmap96.00 18996.34 17594.96 27997.90 23787.91 29994.13 29198.49 18594.41 20398.16 12897.76 19696.29 11098.68 33190.52 29999.42 16698.30 271
Patchmatch-RL test94.66 24994.49 25195.19 26698.54 16788.91 27692.57 33398.74 14791.46 28298.32 11197.75 19977.31 35498.81 31696.06 10799.61 9997.85 309
MP-MVScopyleft97.64 9797.18 12599.00 999.32 5697.77 1797.49 9898.73 14896.27 11895.59 28397.75 19996.30 10899.78 4893.70 23399.48 14699.45 86
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ACMP92.54 1397.47 11197.10 12898.55 4999.04 10796.70 5196.24 17198.89 10293.71 22597.97 15197.75 19997.44 3899.63 14693.22 24599.70 7899.32 116
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVP-Stereo95.69 19995.28 21196.92 17898.15 21493.03 19395.64 21798.20 22190.39 29796.63 23697.73 20291.63 23899.10 28891.84 26697.31 33598.63 236
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mPP-MVS97.91 6997.53 10599.04 499.22 6997.87 1497.74 7998.78 14096.04 13297.10 20097.73 20296.53 9399.78 4895.16 16799.50 13999.46 82
XVG-OURS97.12 12896.74 15198.26 7098.99 11197.45 3293.82 30499.05 6595.19 17598.32 11197.70 20495.22 14798.41 35294.27 21098.13 29898.93 195
UniMVSNet_NR-MVSNet97.83 7897.65 8898.37 6298.72 14095.78 8495.66 21299.02 7498.11 4498.31 11397.69 20594.65 16499.85 2797.02 7899.71 7599.48 77
D2MVS95.18 22495.17 21595.21 26597.76 26287.76 30594.15 28897.94 24889.77 30696.99 21297.68 20687.45 29499.14 28095.03 17899.81 4898.74 223
XVS97.96 5497.63 9398.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25097.64 20796.49 9699.72 8895.66 13399.37 17499.45 86
ACMMPR97.95 5897.62 9598.94 1599.20 7897.56 2597.59 8998.83 12696.05 13097.46 18297.63 20896.77 8299.76 6295.61 13799.46 15199.49 71
Anonymous2023120695.27 22095.06 22195.88 23798.72 14089.37 26895.70 20897.85 25388.00 32796.98 21497.62 20991.95 23399.34 24389.21 31999.53 12598.94 191
region2R97.92 6697.59 9998.92 2199.22 6997.55 2697.60 8798.84 12096.00 13597.22 18997.62 20996.87 7799.76 6295.48 14599.43 16399.46 82
GeoE97.75 8797.70 8197.89 10298.88 12394.53 14097.10 11898.98 8995.75 15197.62 17097.59 21197.61 3599.77 5796.34 9899.44 15599.36 113
ppachtmachnet_test94.49 25994.84 23193.46 32796.16 34082.10 36890.59 36997.48 27690.53 29597.01 21197.59 21191.01 24699.36 23793.97 22499.18 21298.94 191
APD-MVScopyleft97.00 13396.53 16598.41 5998.55 16596.31 6696.32 16498.77 14192.96 25797.44 18397.58 21395.84 12199.74 7791.96 26199.35 18299.19 146
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS97.94 6297.64 9198.83 2599.15 8697.50 2997.59 8998.84 12096.05 13097.49 17797.54 21497.07 5799.70 11295.61 13799.46 15199.30 121
UnsupCasMVSNet_eth95.91 19295.73 20296.44 20898.48 17791.52 23495.31 23898.45 18895.76 14997.48 17997.54 21489.53 27298.69 32894.43 20294.61 37499.13 158
XVG-OURS-SEG-HR97.38 11797.07 13198.30 6899.01 11097.41 3494.66 26999.02 7495.20 17498.15 13097.52 21698.83 598.43 35194.87 18496.41 35399.07 173
MG-MVS94.08 27394.00 26894.32 30997.09 31485.89 33393.19 32395.96 31492.52 26494.93 30197.51 21789.54 27098.77 31987.52 34497.71 31698.31 269
HPM-MVScopyleft98.11 4397.83 6998.92 2199.42 4297.46 3198.57 2099.05 6595.43 16797.41 18497.50 21897.98 1999.79 4595.58 14099.57 10999.50 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
9.1496.69 15398.53 16896.02 18798.98 8993.23 24097.18 19497.46 21996.47 9899.62 15192.99 24999.32 192
CP-MVS97.92 6697.56 10298.99 1098.99 11197.82 1597.93 6698.96 9396.11 12796.89 22097.45 22096.85 7899.78 4895.19 16399.63 9299.38 107
PC_three_145287.24 33298.37 10197.44 22197.00 6396.78 38592.01 26099.25 20399.21 141
ZNCC-MVS97.92 6697.62 9598.83 2599.32 5697.24 3997.45 9998.84 12095.76 14996.93 21797.43 22297.26 4899.79 4596.06 10799.53 12599.45 86
N_pmnet95.18 22494.23 26098.06 8897.85 23996.55 5892.49 33591.63 36789.34 30898.09 13697.41 22390.33 25799.06 29291.58 27199.31 19598.56 242
GST-MVS97.82 8197.49 11098.81 2799.23 6697.25 3897.16 11398.79 13695.96 13797.53 17397.40 22496.93 6999.77 5795.04 17699.35 18299.42 98
tpm91.08 32890.85 32691.75 35895.33 36478.09 38395.03 25591.27 37188.75 31793.53 33697.40 22471.24 37899.30 25291.25 27793.87 37897.87 308
MDTV_nov1_ep1391.28 31794.31 37573.51 39894.80 26293.16 35186.75 34093.45 33997.40 22476.37 35898.55 34288.85 32496.43 352
DeepPCF-MVS94.58 596.90 14296.43 17098.31 6797.48 28897.23 4092.56 33498.60 17392.84 25998.54 8397.40 22496.64 8898.78 31894.40 20599.41 17098.93 195
MSLP-MVS++96.42 17396.71 15295.57 24997.82 24790.56 25395.71 20798.84 12094.72 19296.71 23097.39 22894.91 15798.10 36795.28 15899.02 23398.05 295
EPNet93.72 28192.62 30097.03 17287.61 40192.25 21296.27 16691.28 37096.74 9787.65 38897.39 22885.00 31299.64 14292.14 25999.48 14699.20 145
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS293.66 28494.07 26692.45 35197.57 28180.67 37686.46 38796.00 31293.99 21897.10 20097.38 23089.90 26497.82 37188.76 32599.47 14898.86 210
DeepC-MVS_fast94.34 796.74 15296.51 16797.44 14097.69 27094.15 15796.02 18798.43 19193.17 24797.30 18697.38 23095.48 13899.28 25893.74 23099.34 18598.88 207
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
miper_lstm_enhance94.81 24094.80 23594.85 28596.16 34086.45 32791.14 36298.20 22193.49 23197.03 20997.37 23284.97 31399.26 26295.28 15899.56 11298.83 212
OPU-MVS97.64 11998.01 22595.27 11396.79 13697.35 23396.97 6598.51 34591.21 27899.25 20399.14 156
DIV-MVS_self_test94.73 24194.64 24195.01 27595.86 34987.00 31991.33 35698.08 24093.34 23697.10 20097.34 23484.02 32099.31 24995.15 16999.55 11898.72 226
cl____94.73 24194.64 24195.01 27595.85 35087.00 31991.33 35698.08 24093.34 23697.10 20097.33 23584.01 32199.30 25295.14 17099.56 11298.71 229
WR-MVS96.90 14296.81 14797.16 15998.56 16492.20 21794.33 27798.12 23697.34 8198.20 12297.33 23592.81 20699.75 6894.79 18899.81 4899.54 54
ITE_SJBPF97.85 10598.64 15096.66 5498.51 18495.63 15597.22 18997.30 23795.52 13798.55 34290.97 28298.90 24498.34 266
Vis-MVSNet (Re-imp)95.11 22794.85 23095.87 23899.12 9489.17 27197.54 9794.92 33496.50 10996.58 23797.27 23883.64 32299.48 19588.42 33199.67 8598.97 187
c3_l95.20 22395.32 21094.83 28796.19 33886.43 32891.83 34998.35 20593.47 23297.36 18597.26 23988.69 27999.28 25895.41 15599.36 17798.78 217
eth_miper_zixun_eth94.89 23694.93 22594.75 29195.99 34686.12 33191.35 35598.49 18593.40 23397.12 19897.25 24086.87 30099.35 24195.08 17598.82 25598.78 217
pmmvs494.82 23994.19 26396.70 19497.42 29592.75 20192.09 34696.76 30086.80 33995.73 28097.22 24189.28 27698.89 30993.28 24399.14 21698.46 254
OMC-MVS96.48 16996.00 18897.91 10098.30 19096.01 7894.86 26198.60 17391.88 27697.18 19497.21 24296.11 11599.04 29490.49 30299.34 18598.69 230
CS-MVS98.09 4498.01 5298.32 6598.45 18096.69 5298.52 2699.69 598.07 4696.07 26497.19 24396.88 7599.86 2497.50 6199.73 6898.41 255
pmmvs594.63 25194.34 25895.50 25497.63 27888.34 28794.02 29497.13 28687.15 33395.22 29297.15 24487.50 29399.27 26193.99 22299.26 20298.88 207
our_test_394.20 26994.58 24893.07 33596.16 34081.20 37490.42 37196.84 29690.72 29197.14 19697.13 24590.47 25399.11 28694.04 22198.25 29398.91 199
CPTT-MVS96.69 15896.08 18598.49 5298.89 12296.64 5597.25 10898.77 14192.89 25896.01 26797.13 24592.23 22599.67 13092.24 25899.34 18599.17 150
MS-PatchMatch94.83 23894.91 22794.57 29996.81 32387.10 31894.23 28397.34 27988.74 31897.14 19697.11 24791.94 23498.23 36392.99 24997.92 30598.37 260
FPMVS89.92 33988.63 34793.82 31998.37 18696.94 4591.58 35193.34 35088.00 32790.32 37697.10 24870.87 38191.13 39671.91 39496.16 35893.39 386
ZD-MVS98.43 18295.94 7998.56 18090.72 29196.66 23397.07 24995.02 15399.74 7791.08 27998.93 242
DELS-MVS96.17 18196.23 17895.99 22997.55 28490.04 25792.38 34198.52 18294.13 21296.55 24197.06 25094.99 15499.58 16395.62 13699.28 19998.37 260
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CNVR-MVS96.92 14096.55 16298.03 9398.00 22995.54 9594.87 26098.17 22794.60 19796.38 24797.05 25195.67 13399.36 23795.12 17399.08 22699.19 146
旧先验197.80 25293.87 16697.75 26097.04 25293.57 19198.68 26898.72 226
testdata95.70 24598.16 21290.58 25197.72 26280.38 37995.62 28297.02 25392.06 23198.98 30289.06 32398.52 28197.54 324
PatchmatchNetpermissive91.98 31891.87 30892.30 35394.60 37379.71 37895.12 24693.59 34889.52 30793.61 33397.02 25377.94 34799.18 27390.84 28694.57 37698.01 299
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EC-MVSNet97.90 7197.94 5897.79 10898.66 14995.14 12198.31 3999.66 897.57 6795.95 26897.01 25596.99 6499.82 3597.66 5699.64 9098.39 258
SCA93.38 29393.52 27892.96 34096.24 33481.40 37393.24 32194.00 34291.58 28194.57 30696.97 25687.94 28799.42 21189.47 31697.66 32198.06 292
Patchmatch-test93.60 28793.25 28294.63 29496.14 34387.47 30996.04 18594.50 33893.57 22996.47 24396.97 25676.50 35798.61 33690.67 29698.41 28897.81 313
CostFormer89.75 34189.25 33991.26 36194.69 37278.00 38595.32 23791.98 36481.50 37490.55 37496.96 25871.06 38098.89 30988.59 32992.63 38296.87 343
diffmvspermissive96.04 18696.23 17895.46 25797.35 29988.03 29793.42 31699.08 5794.09 21696.66 23396.93 25993.85 18599.29 25696.01 11498.67 26999.06 175
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
114514_t93.96 27693.22 28396.19 22299.06 10290.97 24495.99 19098.94 9673.88 39393.43 34096.93 25992.38 22499.37 23489.09 32199.28 19998.25 277
CS-MVS-test97.91 6997.84 6698.14 8298.52 16996.03 7798.38 3499.67 698.11 4495.50 28596.92 26196.81 8199.87 2296.87 8399.76 5998.51 248
Test_1112_low_res93.53 28992.86 29095.54 25398.60 15888.86 27892.75 32998.69 15882.66 37092.65 35696.92 26184.75 31499.56 17090.94 28397.76 31298.19 282
tpmrst90.31 33390.61 33189.41 36994.06 38172.37 40095.06 25293.69 34388.01 32692.32 36296.86 26377.45 35198.82 31491.04 28087.01 39297.04 337
PHI-MVS96.96 13896.53 16598.25 7397.48 28896.50 5996.76 13898.85 11793.52 23096.19 26096.85 26495.94 11899.42 21193.79 22999.43 16398.83 212
tttt051793.31 29492.56 30195.57 24998.71 14387.86 30097.44 10087.17 39095.79 14897.47 18196.84 26564.12 39199.81 3796.20 10399.32 19299.02 181
patchmatchnet-post96.84 26577.36 35399.42 211
ADS-MVSNet291.47 32490.51 33294.36 30795.51 35985.63 33495.05 25395.70 31883.46 36792.69 35496.84 26579.15 34399.41 22085.66 35690.52 38598.04 296
ADS-MVSNet90.95 33090.26 33493.04 33695.51 35982.37 36795.05 25393.41 34983.46 36792.69 35496.84 26579.15 34398.70 32785.66 35690.52 38598.04 296
HY-MVS91.43 1592.58 30591.81 31094.90 28296.49 32988.87 27797.31 10594.62 33685.92 34690.50 37596.84 26585.05 31199.40 22283.77 37295.78 36296.43 359
UnsupCasMVSNet_bld94.72 24594.26 25996.08 22798.62 15690.54 25493.38 31898.05 24690.30 29897.02 21096.80 27089.54 27099.16 27888.44 33096.18 35698.56 242
HQP_MVS96.66 16096.33 17697.68 11798.70 14594.29 15096.50 15298.75 14596.36 11596.16 26196.77 27191.91 23699.46 20092.59 25499.20 20899.28 128
plane_prior496.77 271
MVS_111021_HR96.73 15496.54 16497.27 15298.35 18893.66 17693.42 31698.36 20294.74 19196.58 23796.76 27396.54 9298.99 30094.87 18499.27 20199.15 153
CANet95.86 19495.65 20596.49 20696.41 33190.82 24694.36 27698.41 19594.94 18692.62 35996.73 27492.68 21199.71 10495.12 17399.60 10298.94 191
TSAR-MVS + GP.96.47 17096.12 18297.49 13597.74 26795.23 11594.15 28896.90 29593.26 23998.04 14496.70 27594.41 17198.89 30994.77 19199.14 21698.37 260
test22298.17 21093.24 19092.74 33197.61 27375.17 39194.65 30596.69 27690.96 24898.66 27197.66 317
新几何197.25 15598.29 19194.70 13397.73 26177.98 38794.83 30296.67 27792.08 23099.45 20488.17 33598.65 27397.61 321
miper_ehance_all_eth94.69 24694.70 23894.64 29395.77 35386.22 33091.32 35898.24 21591.67 27897.05 20796.65 27888.39 28499.22 27194.88 18398.34 28998.49 251
MVS_111021_LR96.82 14896.55 16297.62 12098.27 19595.34 11093.81 30698.33 20694.59 19996.56 23996.63 27996.61 8998.73 32394.80 18799.34 18598.78 217
CDPH-MVS95.45 21394.65 24097.84 10698.28 19394.96 12693.73 30898.33 20685.03 35795.44 28696.60 28095.31 14499.44 20790.01 30899.13 21899.11 166
CMPMVSbinary73.10 2392.74 30391.39 31596.77 19093.57 38794.67 13494.21 28597.67 26480.36 38093.61 33396.60 28082.85 32797.35 37684.86 36598.78 25898.29 274
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CDS-MVSNet94.88 23794.12 26597.14 16197.64 27793.57 17893.96 30097.06 29090.05 30296.30 25396.55 28286.10 30399.47 19790.10 30799.31 19598.40 256
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LF4IMVS96.07 18495.63 20697.36 14798.19 20495.55 9495.44 22498.82 13492.29 27095.70 28196.55 28292.63 21498.69 32891.75 27099.33 19097.85 309
HPM-MVS++copyleft96.99 13496.38 17398.81 2798.64 15097.59 2395.97 19298.20 22195.51 16295.06 29596.53 28494.10 17899.70 11294.29 20999.15 21599.13 158
EPMVS89.26 34588.55 34891.39 36092.36 39479.11 38195.65 21479.86 39888.60 31993.12 34696.53 28470.73 38298.10 36790.75 29089.32 38996.98 338
HyFIR lowres test93.72 28192.65 29896.91 18098.93 11791.81 23091.23 36098.52 18282.69 36996.46 24496.52 28680.38 33999.90 1490.36 30498.79 25799.03 178
BH-RMVSNet94.56 25494.44 25694.91 28097.57 28187.44 31193.78 30796.26 30893.69 22696.41 24696.50 28792.10 22999.00 29885.96 35297.71 31698.31 269
MSP-MVS97.45 11296.92 14299.03 599.26 6097.70 1897.66 8398.89 10295.65 15498.51 8596.46 28892.15 22699.81 3795.14 17098.58 27999.58 40
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
原ACMM196.58 20098.16 21292.12 21998.15 23385.90 34793.49 33796.43 28992.47 22299.38 22987.66 34098.62 27598.23 278
tpm288.47 35087.69 35490.79 36394.98 36977.34 38895.09 24891.83 36577.51 38989.40 38296.41 29067.83 38898.73 32383.58 37492.60 38396.29 361
OpenMVS_ROBcopyleft91.80 1493.64 28693.05 28495.42 25997.31 30591.21 24095.08 25096.68 30581.56 37396.88 22196.41 29090.44 25699.25 26485.39 36097.67 32095.80 367
CL-MVSNet_self_test95.04 23094.79 23695.82 23997.51 28689.79 26191.14 36296.82 29893.05 25096.72 22996.40 29290.82 24999.16 27891.95 26298.66 27198.50 250
F-COLMAP95.30 21994.38 25798.05 9298.64 15096.04 7595.61 21898.66 16589.00 31493.22 34496.40 29292.90 20599.35 24187.45 34597.53 32698.77 220
NCCC96.52 16795.99 18998.10 8597.81 24895.68 8995.00 25698.20 22195.39 16895.40 28896.36 29493.81 18699.45 20493.55 23698.42 28799.17 150
new_pmnet92.34 30991.69 31394.32 30996.23 33689.16 27292.27 34292.88 35484.39 36695.29 29096.35 29585.66 30796.74 38684.53 36797.56 32497.05 336
cl2293.25 29692.84 29294.46 30494.30 37686.00 33291.09 36496.64 30690.74 29095.79 27596.31 29678.24 34698.77 31994.15 21598.34 28998.62 237
tpmvs90.79 33190.87 32590.57 36592.75 39376.30 39295.79 20593.64 34791.04 28891.91 36596.26 29777.19 35598.86 31389.38 31889.85 38896.56 356
test_prior293.33 32094.21 20894.02 32196.25 29893.64 19091.90 26398.96 237
testgi96.07 18496.50 16894.80 28899.26 6087.69 30695.96 19498.58 17895.08 18098.02 14696.25 29897.92 2097.60 37588.68 32898.74 26299.11 166
DP-MVS Recon95.55 20695.13 21696.80 18798.51 17193.99 16394.60 27198.69 15890.20 30095.78 27796.21 30092.73 21098.98 30290.58 29898.86 25097.42 329
hse-mvs295.77 19795.09 21897.79 10897.84 24495.51 9795.66 21295.43 32896.58 10497.21 19196.16 30184.14 31899.54 17795.89 12196.92 33898.32 267
MVSFormer96.14 18296.36 17495.49 25597.68 27187.81 30398.67 1599.02 7496.50 10994.48 31096.15 30286.90 29899.92 598.73 2299.13 21898.74 223
jason94.39 26294.04 26795.41 26198.29 19187.85 30292.74 33196.75 30185.38 35495.29 29096.15 30288.21 28699.65 13894.24 21199.34 18598.74 223
jason: jason.
test_yl94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
DCV-MVSNet94.40 26094.00 26895.59 24796.95 31889.52 26594.75 26695.55 32596.18 12596.79 22396.14 30481.09 33599.18 27390.75 29097.77 31098.07 288
dp88.08 35388.05 35188.16 37692.85 39168.81 40294.17 28692.88 35485.47 35191.38 37096.14 30468.87 38698.81 31686.88 34883.80 39596.87 343
AUN-MVS93.95 27892.69 29797.74 11197.80 25295.38 10595.57 22195.46 32791.26 28592.64 35796.10 30774.67 36599.55 17493.72 23296.97 33798.30 271
MCST-MVS96.24 17895.80 19997.56 12398.75 13794.13 15894.66 26998.17 22790.17 30196.21 25896.10 30795.14 14999.43 20994.13 21698.85 25199.13 158
TEST997.84 24495.23 11593.62 31098.39 19886.81 33893.78 32595.99 30994.68 16299.52 182
train_agg95.46 21294.66 23997.88 10397.84 24495.23 11593.62 31098.39 19887.04 33493.78 32595.99 30994.58 16699.52 18291.76 26998.90 24498.89 203
MSDG95.33 21795.13 21695.94 23597.40 29691.85 22891.02 36598.37 20195.30 17196.31 25295.99 30994.51 16998.38 35589.59 31497.65 32297.60 322
test_897.81 24895.07 12493.54 31398.38 20087.04 33493.71 32995.96 31294.58 16699.52 182
CSCG97.40 11697.30 11897.69 11698.95 11394.83 12897.28 10798.99 8696.35 11798.13 13295.95 31395.99 11799.66 13694.36 20899.73 6898.59 240
TAPA-MVS93.32 1294.93 23494.23 26097.04 17198.18 20794.51 14195.22 24398.73 14881.22 37696.25 25695.95 31393.80 18798.98 30289.89 31098.87 24897.62 320
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test_vis1_rt94.03 27593.65 27595.17 26895.76 35493.42 18393.97 29998.33 20684.68 36193.17 34595.89 31592.53 22094.79 39093.50 23794.97 37097.31 333
baseline193.14 29892.64 29994.62 29597.34 30187.20 31696.67 14893.02 35294.71 19396.51 24295.83 31681.64 33098.60 33890.00 30988.06 39198.07 288
sss94.22 26593.72 27495.74 24297.71 26989.95 25993.84 30396.98 29288.38 32293.75 32895.74 31787.94 28798.89 30991.02 28198.10 29998.37 260
CNLPA95.04 23094.47 25396.75 19197.81 24895.25 11494.12 29297.89 25194.41 20394.57 30695.69 31890.30 26098.35 35886.72 35098.76 26096.64 353
PCF-MVS89.43 1892.12 31490.64 33096.57 20297.80 25293.48 18189.88 37998.45 18874.46 39296.04 26695.68 31990.71 25199.31 24973.73 39199.01 23596.91 342
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-untuned94.69 24694.75 23794.52 30197.95 23487.53 30894.07 29397.01 29193.99 21897.10 20095.65 32092.65 21398.95 30787.60 34196.74 34797.09 335
CANet_DTU94.65 25094.21 26295.96 23195.90 34889.68 26293.92 30197.83 25793.19 24390.12 37895.64 32188.52 28199.57 16993.27 24499.47 14898.62 237
PatchMatch-RL94.61 25293.81 27397.02 17398.19 20495.72 8693.66 30997.23 28188.17 32594.94 30095.62 32291.43 23998.57 33987.36 34697.68 31996.76 351
tpm cat188.01 35487.33 35590.05 36894.48 37476.28 39394.47 27494.35 34073.84 39489.26 38395.61 32373.64 37098.30 36184.13 36886.20 39395.57 372
Effi-MVS+-dtu96.81 14996.09 18498.99 1096.90 32298.69 496.42 15598.09 23995.86 14595.15 29395.54 32494.26 17599.81 3794.06 21898.51 28398.47 252
AdaColmapbinary95.11 22794.62 24496.58 20097.33 30394.45 14494.92 25898.08 24093.15 24893.98 32395.53 32594.34 17399.10 28885.69 35598.61 27696.20 363
thisisatest053092.71 30491.76 31295.56 25198.42 18388.23 28996.03 18687.35 38994.04 21796.56 23995.47 32664.03 39299.77 5794.78 19099.11 22298.68 233
tt080597.44 11397.56 10297.11 16399.55 2396.36 6398.66 1895.66 31998.31 3697.09 20595.45 32797.17 5298.50 34698.67 2597.45 33196.48 358
WTY-MVS93.55 28893.00 28895.19 26697.81 24887.86 30093.89 30296.00 31289.02 31394.07 31995.44 32886.27 30299.33 24587.69 33996.82 34498.39 258
PLCcopyleft91.02 1694.05 27492.90 28997.51 12898.00 22995.12 12394.25 28198.25 21386.17 34391.48 36995.25 32991.01 24699.19 27285.02 36496.69 34898.22 279
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs390.00 33688.90 34693.32 32894.20 38085.34 33891.25 35992.56 36178.59 38593.82 32495.17 33067.36 38998.69 32889.08 32298.03 30295.92 364
NP-MVS98.14 21693.72 17295.08 331
HQP-MVS95.17 22694.58 24896.92 17897.85 23992.47 20794.26 27898.43 19193.18 24492.86 35095.08 33190.33 25799.23 26990.51 30098.74 26299.05 177
cdsmvs_eth3d_5k24.22 36532.30 3680.00 3840.00 4060.00 4090.00 39598.10 2370.00 4020.00 40395.06 33397.54 370.00 4030.00 4020.00 4010.00 399
lupinMVS93.77 27993.28 28195.24 26497.68 27187.81 30392.12 34496.05 31084.52 36394.48 31095.06 33386.90 29899.63 14693.62 23599.13 21898.27 275
1112_ss94.12 27093.42 27996.23 21998.59 16090.85 24594.24 28298.85 11785.49 35092.97 34894.94 33586.01 30499.64 14291.78 26897.92 30598.20 281
ab-mvs-re7.91 36910.55 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40394.94 3350.00 4070.00 4030.00 4020.00 4010.00 399
Fast-Effi-MVS+-dtu96.44 17196.12 18297.39 14697.18 31094.39 14595.46 22398.73 14896.03 13494.72 30394.92 33796.28 11199.69 11993.81 22897.98 30398.09 285
EPNet_dtu91.39 32590.75 32893.31 32990.48 39882.61 36594.80 26292.88 35493.39 23481.74 39694.90 33881.36 33399.11 28688.28 33398.87 24898.21 280
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DPM-MVS93.68 28392.77 29696.42 21197.91 23592.54 20391.17 36197.47 27784.99 35993.08 34794.74 33989.90 26499.00 29887.54 34398.09 30097.72 315
Effi-MVS+96.19 18096.01 18796.71 19397.43 29492.19 21896.12 18099.10 5195.45 16493.33 34394.71 34097.23 5199.56 17093.21 24697.54 32598.37 260
GA-MVS92.83 30292.15 30694.87 28496.97 31787.27 31590.03 37496.12 30991.83 27794.05 32094.57 34176.01 36198.97 30692.46 25797.34 33498.36 265
miper_enhance_ethall93.14 29892.78 29594.20 31393.65 38585.29 34089.97 37597.85 25385.05 35696.15 26394.56 34285.74 30699.14 28093.74 23098.34 28998.17 284
xiu_mvs_v1_base_debu95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
xiu_mvs_v1_base_debi95.62 20395.96 19194.60 29698.01 22588.42 28493.99 29698.21 21892.98 25395.91 27094.53 34396.39 10399.72 8895.43 15298.19 29595.64 369
PVSNet_Blended93.96 27693.65 27594.91 28097.79 25787.40 31291.43 35398.68 16084.50 36494.51 30894.48 34693.04 20199.30 25289.77 31298.61 27698.02 298
PAPM_NR94.61 25294.17 26495.96 23198.36 18791.23 23995.93 19797.95 24792.98 25393.42 34194.43 34790.53 25298.38 35587.60 34196.29 35598.27 275
API-MVS95.09 22995.01 22295.31 26296.61 32694.02 16196.83 13197.18 28495.60 15795.79 27594.33 34894.54 16898.37 35785.70 35498.52 28193.52 384
alignmvs96.01 18895.52 20997.50 13297.77 26194.71 13196.07 18396.84 29697.48 7396.78 22794.28 34985.50 30999.40 22296.22 10298.73 26598.40 256
CLD-MVS95.47 21195.07 21996.69 19598.27 19592.53 20491.36 35498.67 16391.22 28695.78 27794.12 35095.65 13498.98 30290.81 28799.72 7298.57 241
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TR-MVS92.54 30692.20 30593.57 32596.49 32986.66 32493.51 31494.73 33589.96 30394.95 29993.87 35190.24 26298.61 33681.18 37994.88 37195.45 373
canonicalmvs97.23 12697.21 12497.30 15097.65 27694.39 14597.84 7199.05 6597.42 7596.68 23193.85 35297.63 3499.33 24596.29 9998.47 28498.18 283
xiu_mvs_v2_base94.22 26594.63 24392.99 33997.32 30484.84 34992.12 34497.84 25591.96 27494.17 31593.43 35396.07 11699.71 10491.27 27597.48 32894.42 379
CHOSEN 280x42089.98 33789.19 34392.37 35295.60 35881.13 37586.22 38897.09 28881.44 37587.44 38993.15 35473.99 36699.47 19788.69 32799.07 22896.52 357
KD-MVS_2432*160088.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
miper_refine_blended88.93 34787.74 35292.49 34888.04 39981.99 36989.63 38195.62 32191.35 28395.06 29593.11 35556.58 39798.63 33485.19 36195.07 36896.85 345
thres600view792.03 31791.43 31493.82 31998.19 20484.61 35196.27 16690.39 37796.81 9596.37 24893.11 35573.44 37499.49 19280.32 38197.95 30497.36 330
E-PMN89.52 34489.78 33788.73 37193.14 38877.61 38683.26 39192.02 36394.82 19093.71 32993.11 35575.31 36396.81 38385.81 35396.81 34591.77 390
thres100view90091.76 32191.26 32093.26 33098.21 20184.50 35296.39 15690.39 37796.87 9396.33 24993.08 35973.44 37499.42 21178.85 38597.74 31395.85 365
131492.38 30892.30 30392.64 34695.42 36385.15 34395.86 20196.97 29385.40 35390.62 37293.06 36091.12 24497.80 37286.74 34995.49 36794.97 377
PAPM87.64 35685.84 36293.04 33696.54 32784.99 34688.42 38595.57 32479.52 38283.82 39393.05 36180.57 33898.41 35262.29 39792.79 38195.71 368
Fast-Effi-MVS+95.49 20895.07 21996.75 19197.67 27492.82 19694.22 28498.60 17391.61 27993.42 34192.90 36296.73 8499.70 11292.60 25397.89 30897.74 314
ET-MVSNet_ETH3D91.12 32689.67 33895.47 25696.41 33189.15 27391.54 35290.23 38089.07 31286.78 39292.84 36369.39 38599.44 20794.16 21496.61 35097.82 311
MVS90.02 33589.20 34292.47 35094.71 37186.90 32195.86 20196.74 30264.72 39590.62 37292.77 36492.54 21898.39 35479.30 38395.56 36692.12 388
BH-w/o92.14 31391.94 30792.73 34597.13 31385.30 33992.46 33695.64 32089.33 30994.21 31492.74 36589.60 26898.24 36281.68 37794.66 37394.66 378
PAPR92.22 31191.27 31895.07 27295.73 35688.81 27991.97 34797.87 25285.80 34890.91 37192.73 36691.16 24398.33 35979.48 38295.76 36398.08 286
MAR-MVS94.21 26793.03 28697.76 11096.94 32097.44 3396.97 12597.15 28587.89 32992.00 36492.73 36692.14 22799.12 28383.92 36997.51 32796.73 352
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
baseline289.65 34388.44 34993.25 33195.62 35782.71 36393.82 30485.94 39388.89 31687.35 39092.54 36871.23 37999.33 24586.01 35194.60 37597.72 315
testing389.72 34288.26 35094.10 31697.66 27584.30 35694.80 26288.25 38794.66 19495.07 29492.51 36941.15 40499.43 20991.81 26798.44 28698.55 244
PS-MVSNAJ94.10 27194.47 25393.00 33897.35 29984.88 34791.86 34897.84 25591.96 27494.17 31592.50 37095.82 12499.71 10491.27 27597.48 32894.40 380
PMMVS92.39 30791.08 32196.30 21893.12 38992.81 19790.58 37095.96 31479.17 38491.85 36692.27 37190.29 26198.66 33389.85 31196.68 34997.43 328
PVSNet86.72 1991.10 32790.97 32491.49 35997.56 28378.04 38487.17 38694.60 33784.65 36292.34 36192.20 37287.37 29698.47 34985.17 36397.69 31897.96 301
tfpn200view991.55 32391.00 32293.21 33398.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31395.85 365
thres40091.68 32291.00 32293.71 32298.02 22384.35 35495.70 20890.79 37496.26 11995.90 27392.13 37373.62 37199.42 21178.85 38597.74 31397.36 330
MVEpermissive73.61 2286.48 36085.92 36188.18 37596.23 33685.28 34181.78 39375.79 39986.01 34482.53 39591.88 37592.74 20987.47 39871.42 39594.86 37291.78 389
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS89.06 34689.22 34088.61 37293.00 39077.34 38882.91 39290.92 37394.64 19692.63 35891.81 37676.30 35997.02 38083.83 37196.90 34091.48 391
thisisatest051590.43 33289.18 34494.17 31597.07 31585.44 33789.75 38087.58 38888.28 32393.69 33191.72 37765.27 39099.58 16390.59 29798.67 26997.50 327
test_method66.88 36366.13 36669.11 38062.68 40225.73 40649.76 39496.04 31114.32 39864.27 39991.69 37873.45 37388.05 39776.06 39066.94 39793.54 383
EIA-MVS96.04 18695.77 20196.85 18397.80 25292.98 19496.12 18099.16 3994.65 19593.77 32791.69 37895.68 13299.67 13094.18 21398.85 25197.91 304
cascas91.89 31991.35 31693.51 32694.27 37785.60 33588.86 38498.61 17279.32 38392.16 36391.44 38089.22 27798.12 36690.80 28897.47 33096.82 348
IB-MVS85.98 2088.63 34986.95 35993.68 32395.12 36784.82 35090.85 36690.17 38187.55 33088.48 38691.34 38158.01 39599.59 16187.24 34793.80 37996.63 355
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres20091.00 32990.42 33392.77 34497.47 29283.98 35994.01 29591.18 37295.12 17995.44 28691.21 38273.93 36799.31 24977.76 38897.63 32395.01 376
test0.0.03 190.11 33489.21 34192.83 34393.89 38386.87 32291.74 35088.74 38692.02 27294.71 30491.14 38373.92 36894.48 39283.75 37392.94 38097.16 334
ETV-MVS96.13 18395.90 19596.82 18697.76 26293.89 16595.40 22998.95 9595.87 14495.58 28491.00 38496.36 10699.72 8893.36 23998.83 25496.85 345
dmvs_re92.08 31691.27 31894.51 30297.16 31192.79 20095.65 21492.64 35994.11 21492.74 35390.98 38583.41 32494.44 39380.72 38094.07 37796.29 361
test-LLR89.97 33889.90 33690.16 36694.24 37874.98 39589.89 37689.06 38492.02 27289.97 37990.77 38673.92 36898.57 33991.88 26497.36 33296.92 340
test-mter87.92 35587.17 35690.16 36694.24 37874.98 39589.89 37689.06 38486.44 34289.97 37990.77 38654.96 40298.57 33991.88 26497.36 33296.92 340
TESTMET0.1,187.20 35886.57 36089.07 37093.62 38672.84 39989.89 37687.01 39185.46 35289.12 38490.20 38856.00 40097.72 37390.91 28496.92 33896.64 353
gm-plane-assit91.79 39571.40 40181.67 37290.11 38998.99 30084.86 365
DeepMVS_CXcopyleft77.17 37990.94 39785.28 34174.08 40252.51 39680.87 39788.03 39075.25 36470.63 39959.23 39984.94 39475.62 394
Syy-MVS92.09 31591.80 31192.93 34295.19 36582.65 36492.46 33691.35 36890.67 29391.76 36787.61 39185.64 30898.50 34694.73 19396.84 34297.65 318
myMVS_eth3d87.16 35985.61 36391.82 35795.19 36579.32 37992.46 33691.35 36890.67 29391.76 36787.61 39141.96 40398.50 34682.66 37596.84 34297.65 318
dmvs_testset87.30 35786.99 35788.24 37496.71 32477.48 38794.68 26886.81 39292.64 26389.61 38187.01 39385.91 30593.12 39461.04 39888.49 39094.13 381
PVSNet_081.89 2184.49 36183.21 36488.34 37395.76 35474.97 39783.49 39092.70 35878.47 38687.94 38786.90 39483.38 32596.63 38773.44 39266.86 39893.40 385
GG-mvs-BLEND90.60 36491.00 39684.21 35798.23 4672.63 40382.76 39484.11 39556.14 39996.79 38472.20 39392.09 38490.78 392
tmp_tt57.23 36462.50 36741.44 38134.77 40349.21 40583.93 38960.22 40515.31 39771.11 39879.37 39670.09 38444.86 40064.76 39682.93 39630.25 396
X-MVStestdata92.86 30190.83 32798.94 1599.15 8697.66 1997.77 7498.83 12697.42 7596.32 25036.50 39796.49 9699.72 8895.66 13399.37 17499.45 86
testmvs12.33 36715.23 3703.64 3835.77 4052.23 40888.99 3833.62 4062.30 4015.29 40113.09 3984.52 4061.95 4015.16 4018.32 4006.75 398
test12312.59 36615.49 3693.87 3826.07 4042.55 40790.75 3682.59 4072.52 4005.20 40213.02 3994.96 4051.85 4025.20 4009.09 3997.23 397
test_post10.87 40076.83 35699.07 291
test_post194.98 25710.37 40176.21 36099.04 29489.47 316
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.98 36810.65 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40295.82 1240.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS79.32 37985.41 359
FOURS199.59 1898.20 799.03 799.25 3098.96 1898.87 56
MSC_two_6792asdad98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
No_MVS98.22 7597.75 26495.34 11098.16 23199.75 6895.87 12399.51 13599.57 47
eth-test20.00 406
eth-test0.00 406
IU-MVS99.22 6995.40 10398.14 23485.77 34998.36 10495.23 16299.51 13599.49 71
save fliter98.48 17794.71 13194.53 27398.41 19595.02 184
test_0728_SECOND98.25 7399.23 6695.49 10196.74 13998.89 10299.75 6895.48 14599.52 13099.53 57
GSMVS98.06 292
test_part299.03 10896.07 7498.08 138
sam_mvs177.80 34898.06 292
sam_mvs77.38 352
MTGPAbinary98.73 148
MTMP96.55 15074.60 400
test9_res91.29 27498.89 24799.00 182
agg_prior290.34 30598.90 24499.10 170
agg_prior97.80 25294.96 12698.36 20293.49 33799.53 179
test_prior495.38 10593.61 312
test_prior97.46 13897.79 25794.26 15598.42 19499.34 24398.79 216
旧先验293.35 31977.95 38895.77 27998.67 33290.74 293
新几何293.43 315
无先验93.20 32297.91 24980.78 37799.40 22287.71 33897.94 303
原ACMM292.82 327
testdata299.46 20087.84 336
segment_acmp95.34 143
testdata192.77 32893.78 223
test1297.46 13897.61 27994.07 15997.78 25993.57 33593.31 19699.42 21198.78 25898.89 203
plane_prior798.70 14594.67 134
plane_prior698.38 18594.37 14791.91 236
plane_prior598.75 14599.46 20092.59 25499.20 20899.28 128
plane_prior394.51 14195.29 17296.16 261
plane_prior296.50 15296.36 115
plane_prior198.49 175
plane_prior94.29 15095.42 22694.31 20798.93 242
n20.00 408
nn0.00 408
door-mid98.17 227
test1198.08 240
door97.81 258
HQP5-MVS92.47 207
HQP-NCC97.85 23994.26 27893.18 24492.86 350
ACMP_Plane97.85 23994.26 27893.18 24492.86 350
BP-MVS90.51 300
HQP4-MVS92.87 34999.23 26999.06 175
HQP3-MVS98.43 19198.74 262
HQP2-MVS90.33 257
MDTV_nov1_ep13_2view57.28 40494.89 25980.59 37894.02 32178.66 34585.50 35897.82 311
ACMMP++_ref99.52 130
ACMMP++99.55 118
Test By Simon94.51 169