This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11484.80 3287.77 986.18 196.26 196.06 190.32 184.49 6768.08 8397.05 196.93 1
UA-Net81.56 3382.28 4079.40 4988.91 2869.16 7284.67 3380.01 13675.34 1579.80 11794.91 269.79 8280.25 13972.63 5894.46 3688.78 42
UniMVSNet_ETH3D76.74 7879.02 6169.92 18289.27 1943.81 26874.47 14571.70 22272.33 3585.50 5093.65 377.98 2176.88 19754.60 19891.64 8689.08 32
OurMVSNet-221017-078.57 6278.53 6778.67 6080.48 13364.16 10880.24 7382.06 9261.89 11288.77 1293.32 457.15 19482.60 9670.08 7292.80 7189.25 28
K. test v373.67 10973.61 11773.87 11479.78 13855.62 17374.69 14362.04 29666.16 6884.76 6093.23 549.47 23580.97 12665.66 10386.67 18785.02 91
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11281.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet80.35 4882.89 3572.74 14289.84 737.34 32177.16 10881.81 9680.45 390.92 392.95 774.57 4786.12 2863.65 12194.68 3194.76 6
Anonymous2023121175.54 8877.19 7870.59 16877.67 17345.70 25774.73 14180.19 13268.80 5282.95 8192.91 866.26 11276.76 19958.41 16892.77 7289.30 27
PEN-MVS80.46 4682.91 3473.11 12789.83 839.02 30677.06 11182.61 8680.04 490.60 692.85 974.93 4485.21 5563.15 12895.15 1795.09 2
pmmvs671.82 14273.66 11666.31 22875.94 19642.01 28466.99 23672.53 21763.45 10076.43 16692.78 1072.95 5969.69 26951.41 22090.46 12087.22 56
PS-CasMVS80.41 4782.86 3673.07 12989.93 639.21 30377.15 10981.28 10679.74 590.87 492.73 1175.03 4384.93 6063.83 12095.19 1595.07 3
gg-mvs-nofinetune55.75 28556.75 28452.72 31462.87 32028.04 36468.92 20541.36 36671.09 4050.80 35292.63 1220.74 37166.86 28829.97 35172.41 31363.25 338
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6474.51 4696.15 292.88 7
v7n79.37 5680.41 5276.28 8878.67 16055.81 17079.22 8482.51 8870.72 4387.54 2192.44 1468.00 9781.34 11472.84 5691.72 8491.69 10
PS-MVSNAJss77.54 7177.35 7778.13 6984.88 7266.37 9278.55 9179.59 14253.48 20286.29 3692.43 1562.39 14180.25 13967.90 8890.61 11887.77 49
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19252.27 21087.37 2692.25 1668.04 9680.56 13272.28 6291.15 9990.32 22
SixPastTwentyTwo75.77 8376.34 8574.06 11181.69 12254.84 17576.47 11475.49 19464.10 9187.73 1792.24 1750.45 23081.30 11667.41 9191.46 9286.04 73
WR-MVS_H80.22 5082.17 4174.39 10689.46 1442.69 28078.24 9582.24 8978.21 989.57 992.10 1868.05 9585.59 4666.04 10195.62 994.88 5
PMVScopyleft70.70 681.70 3283.15 3177.36 7590.35 582.82 282.15 5479.22 14774.08 2087.16 2891.97 1984.80 276.97 19464.98 10893.61 6072.28 281
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ANet_high67.08 20269.94 16458.51 29357.55 34727.09 36658.43 31076.80 18363.56 9782.40 8891.93 2059.82 16864.98 29950.10 23188.86 15483.46 138
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6476.50 18551.98 21587.40 2391.86 2176.09 3378.53 16568.58 7890.20 12386.69 66
test_040278.17 6979.48 5974.24 10883.50 9159.15 15172.52 15574.60 20175.34 1588.69 1391.81 2275.06 4282.37 9965.10 10688.68 15581.20 180
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 12883.29 4880.34 13157.43 15186.65 3191.79 2350.52 22886.01 2971.36 6594.65 3291.62 11
APDe-MVS82.88 2384.14 1479.08 5284.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 877.93 2594.32 4883.47 137
VDDNet71.60 14473.13 12667.02 22186.29 4741.11 29069.97 19266.50 26268.72 5474.74 18391.70 2559.90 16675.81 20548.58 24491.72 8484.15 122
CP-MVSNet79.48 5481.65 4572.98 13289.66 1239.06 30576.76 11280.46 12678.91 790.32 791.70 2568.49 9084.89 6163.40 12595.12 1895.01 4
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5679.45 1294.91 2488.15 47
EGC-MVSNET64.77 22061.17 25175.60 9686.90 4274.47 3084.04 3568.62 2530.60 3761.13 37891.61 2865.32 12274.15 22864.01 11588.28 15878.17 232
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6876.12 18751.33 22487.19 2791.51 2973.79 5478.44 16968.27 8190.13 12786.49 68
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 9884.23 6691.47 3072.02 6287.16 679.74 994.36 4584.61 104
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4166.91 9895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10451.71 21877.15 14691.42 3265.49 11987.20 579.44 1387.17 18184.51 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10485.38 5291.26 3376.33 3084.67 6683.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 4987.75 1591.13 3481.83 386.20 2377.13 3495.96 586.08 71
ACMH+66.64 1081.20 3682.48 3977.35 7681.16 12962.39 11980.51 6687.80 773.02 2687.57 2091.08 3680.28 982.44 9764.82 10996.10 487.21 57
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 12680.58 6582.12 9153.54 20183.93 7091.03 3749.49 23485.97 3173.26 5493.08 6791.59 12
ACMMP_NAP82.33 2783.28 2879.46 4889.28 1869.09 7483.62 4284.98 4164.77 8683.97 6991.02 3875.53 3985.93 3582.00 294.36 4583.35 142
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6578.41 2194.78 2782.74 159
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testf175.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
APD_test275.66 8676.57 8172.95 13367.07 29267.62 8176.10 12380.68 12064.95 8386.58 3390.94 4071.20 7071.68 25460.46 14891.13 10179.56 213
anonymousdsp78.60 6177.80 7281.00 3178.01 16774.34 3380.09 7576.12 18750.51 23489.19 1090.88 4271.45 6777.78 18773.38 5390.60 11990.90 18
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5784.91 5990.88 4275.59 3686.57 1378.16 2294.71 3083.82 126
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6179.30 1694.63 3382.35 166
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12272.08 3684.93 5690.79 4574.65 4684.42 7080.98 494.75 2880.82 192
MIMVSNet166.57 20569.23 17158.59 29281.26 12837.73 31864.06 27257.62 30857.02 15478.40 13190.75 4662.65 13658.10 32141.77 28989.58 13979.95 208
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4778.11 2394.46 3684.89 92
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 92
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4783.86 7190.72 4975.20 4086.27 2079.41 1494.25 5083.95 125
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4584.49 6390.67 5075.15 4186.37 1779.58 1094.26 4984.18 121
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4185.85 4290.58 5178.77 1685.78 4079.37 1595.17 1684.62 103
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2579.24 1795.36 1282.49 164
Baseline_NR-MVSNet70.62 15473.19 12462.92 26076.97 18034.44 33968.84 20670.88 24060.25 12379.50 12090.53 5361.82 14769.11 27354.67 19795.27 1385.22 84
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 12680.91 10790.53 5372.19 6088.56 173.67 5294.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 6877.73 2794.34 4785.93 74
Anonymous2024052972.56 13573.79 11468.86 19976.89 18445.21 25968.80 21077.25 17967.16 5976.89 15290.44 5665.95 11574.19 22750.75 22590.00 12887.18 59
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4584.47 6490.43 5776.79 2685.94 3379.58 1094.23 5182.82 156
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4485.14 5490.42 5878.99 1586.62 1280.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVScopyleft81.15 3783.12 3275.24 10186.16 5160.78 13783.77 4080.58 12472.48 3285.83 4390.41 5978.57 1785.69 4375.86 3794.39 4179.24 219
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4377.43 3094.74 2984.31 118
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4285.64 4590.41 5975.55 3887.69 379.75 795.08 1985.36 83
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 5884.02 6890.39 6274.73 4586.46 1480.73 694.43 4084.60 106
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1878.84 1994.03 5384.64 101
DVP-MVS++81.24 3582.74 3776.76 8083.14 9660.90 13591.64 185.49 2974.03 2184.93 5690.38 6466.82 10585.90 3677.43 3090.78 11483.49 134
test_one_060185.84 6161.45 12785.63 2775.27 1785.62 4890.38 6476.72 27
FC-MVSNet-test73.32 11674.78 10068.93 19779.21 14836.57 32371.82 17079.54 14457.63 15082.57 8790.38 6459.38 17278.99 15857.91 17194.56 3491.23 14
GBi-Net68.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
test168.30 18568.79 17766.81 22273.14 23640.68 29471.96 16473.03 20954.81 17474.72 18490.36 6748.63 24475.20 21347.12 25685.37 19884.54 109
FMVSNet171.06 14872.48 13766.81 22277.65 17440.68 29471.96 16473.03 20961.14 11679.45 12190.36 6760.44 16175.20 21350.20 23088.05 16284.54 109
bld_raw_dy_0_6472.85 13072.76 13373.09 12885.08 7064.80 10378.72 8864.22 28251.92 21683.13 7790.26 7039.21 29469.91 26770.73 6891.60 8984.56 108
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3377.77 2693.58 6183.09 147
ACMH63.62 1477.50 7280.11 5469.68 18379.61 14056.28 16678.81 8783.62 7263.41 10287.14 2990.23 7276.11 3273.32 23167.58 8994.44 3979.44 217
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5684.14 6790.21 7373.37 5686.41 1579.09 1893.98 5684.30 120
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11090.18 7459.80 16987.58 473.06 5591.34 9489.01 34
DPE-MVScopyleft82.00 3083.02 3378.95 5785.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1074.56 4594.02 5582.62 161
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6286.70 3089.99 7681.64 685.95 3274.35 4796.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test072686.16 5160.78 13783.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
LS3D80.99 4180.85 4981.41 2578.37 16171.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8585.26 5266.15 9991.24 9687.61 52
TransMVSNet (Re)69.62 16571.63 14863.57 24976.51 18735.93 32965.75 25371.29 23261.05 11775.02 17989.90 7965.88 11770.41 26649.79 23289.48 14084.38 116
RPSCF75.76 8474.37 10479.93 4074.81 20977.53 1677.53 10379.30 14659.44 13078.88 12589.80 8071.26 6973.09 23357.45 17280.89 25389.17 31
SED-MVS81.78 3183.48 2476.67 8186.12 5361.06 13183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 3875.29 4094.39 4183.08 148
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 3875.29 4094.22 5283.25 144
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5687.01 3872.91 4380.23 7485.56 2866.56 6585.64 4589.57 8369.12 8680.55 13472.51 6093.37 6383.48 136
test_241102_ONE86.12 5361.06 13184.72 4872.64 2987.38 2489.47 8477.48 2385.74 42
FIs72.56 13573.80 11368.84 20078.74 15937.74 31771.02 18179.83 13756.12 16380.88 10989.45 8558.18 18178.28 17656.63 17793.36 6490.51 21
pm-mvs168.40 18369.85 16664.04 24573.10 23939.94 30064.61 26770.50 24255.52 16973.97 19889.33 8663.91 13268.38 27749.68 23488.02 16383.81 127
OPM-MVS80.99 4181.63 4679.07 5386.86 4369.39 6879.41 8284.00 6965.64 7085.54 4989.28 8776.32 3183.47 8274.03 4993.57 6284.35 117
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v875.07 9575.64 9373.35 12273.42 23147.46 24075.20 13281.45 10260.05 12485.64 4589.26 8858.08 18681.80 10969.71 7587.97 16590.79 19
TranMVSNet+NR-MVSNet76.13 8177.66 7471.56 15984.61 7842.57 28270.98 18278.29 16468.67 5583.04 7889.26 8872.99 5880.75 13155.58 19195.47 1091.35 13
nrg03074.87 10275.99 9071.52 16074.90 20749.88 21574.10 14982.58 8754.55 18383.50 7589.21 9071.51 6575.74 20761.24 13992.34 7988.94 37
SF-MVS80.72 4381.80 4277.48 7382.03 11764.40 10783.41 4688.46 565.28 7884.29 6589.18 9173.73 5583.22 8676.01 3693.77 5884.81 98
v1075.69 8576.20 8774.16 10974.44 21848.69 22175.84 12982.93 8159.02 13585.92 4189.17 9258.56 17982.74 9470.73 6889.14 14991.05 15
ACMM69.25 982.11 2983.31 2778.49 6388.17 3673.96 3483.11 4984.52 5666.40 6687.45 2289.16 9381.02 880.52 13574.27 4895.73 780.98 188
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZD-MVS83.91 8769.36 6981.09 11258.91 13782.73 8689.11 9475.77 3586.63 1172.73 5792.93 70
HQP_MVS78.77 6078.78 6478.72 5985.18 6665.18 9982.74 5185.49 2965.45 7378.23 13289.11 9460.83 15986.15 2671.09 6690.94 10684.82 96
plane_prior489.11 94
lessismore_v072.75 14179.60 14156.83 16557.37 31183.80 7289.01 9747.45 24978.74 16364.39 11286.49 18982.69 160
XVG-OURS79.51 5379.82 5678.58 6286.11 5674.96 2876.33 12184.95 4366.89 6082.75 8588.99 9866.82 10578.37 17374.80 4290.76 11782.40 165
APD-MVScopyleft81.13 3881.73 4479.36 5084.47 8070.53 5983.85 3883.70 7169.43 5183.67 7388.96 9975.89 3486.41 1572.62 5992.95 6981.14 182
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Gipumacopyleft69.55 16772.83 13259.70 28463.63 31853.97 18280.08 7675.93 19064.24 9073.49 20288.93 10057.89 19062.46 30859.75 15991.55 9162.67 341
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6386.46 4674.79 2977.15 10985.39 3466.73 6380.39 11388.85 10174.43 5078.33 17574.73 4485.79 19582.35 166
casdiffmvs_mvgpermissive75.26 9176.18 8872.52 14772.87 24349.47 21672.94 15484.71 5059.49 12980.90 10888.81 10270.07 7879.71 14767.40 9288.39 15788.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDD-MVS70.81 15271.44 15368.91 19879.07 15446.51 24967.82 22370.83 24161.23 11574.07 19688.69 10359.86 16775.62 20851.11 22290.28 12284.61 104
test250661.23 25560.85 25562.38 26478.80 15727.88 36567.33 23237.42 37154.23 18767.55 27088.68 10417.87 37774.39 22446.33 26489.41 14284.86 94
ECVR-MVScopyleft64.82 21865.22 21463.60 24878.80 15731.14 35566.97 23756.47 31854.23 18769.94 24788.68 10437.23 30574.81 21945.28 27289.41 14284.86 94
APD_test175.04 9675.38 9774.02 11269.89 26670.15 6276.46 11579.71 13865.50 7282.99 8088.60 10666.94 10272.35 24459.77 15888.54 15679.56 213
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5280.92 10688.52 10772.00 6382.39 9874.80 4293.04 6881.14 182
test111164.62 22165.19 21562.93 25979.01 15529.91 35965.45 25754.41 32654.09 19271.47 23388.48 10837.02 30674.29 22646.83 26189.94 13184.58 107
Vis-MVSNetpermissive74.85 10374.56 10175.72 9481.63 12364.64 10576.35 11979.06 14962.85 10673.33 20588.41 10962.54 13979.59 15063.94 11982.92 23082.94 152
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13364.71 8778.11 13588.39 11065.46 12083.14 8777.64 2991.20 9778.94 222
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8581.05 10488.38 11157.10 19687.10 779.75 783.87 22184.31 118
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPA-MVSNet68.71 17970.37 16263.72 24776.13 19238.06 31564.10 27171.48 22756.60 16174.10 19588.31 11264.78 12769.72 26847.69 25490.15 12583.37 141
ambc70.10 17877.74 17150.21 20674.28 14877.93 17179.26 12288.29 11354.11 21179.77 14664.43 11191.10 10380.30 204
9.1480.22 5380.68 13180.35 7187.69 1059.90 12583.00 7988.20 11474.57 4781.75 11073.75 5193.78 57
AllTest77.66 7077.43 7578.35 6579.19 14970.81 5578.60 9088.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
TestCases78.35 6579.19 14970.81 5588.64 365.37 7680.09 11588.17 11570.33 7578.43 17055.60 18890.90 11085.81 76
LCM-MVSNet-Re69.10 17471.57 15161.70 26870.37 26234.30 34161.45 29079.62 13956.81 15689.59 888.16 11768.44 9172.94 23442.30 28487.33 17577.85 239
MG-MVS70.47 15671.34 15467.85 21179.26 14640.42 29874.67 14475.15 19858.41 13968.74 26388.14 11856.08 20483.69 7859.90 15681.71 24779.43 218
IS-MVSNet75.10 9475.42 9674.15 11079.23 14748.05 23179.43 8078.04 16870.09 4879.17 12388.02 11953.04 21483.60 7958.05 17093.76 5990.79 19
tt080576.12 8278.43 6869.20 18981.32 12641.37 28876.72 11377.64 17363.78 9582.06 9087.88 12079.78 1179.05 15664.33 11392.40 7787.17 60
tfpnnormal66.48 20667.93 19062.16 26673.40 23236.65 32263.45 27864.99 27355.97 16472.82 21287.80 12157.06 19769.10 27448.31 24887.54 16880.72 197
CDPH-MVS77.33 7377.06 8078.14 6884.21 8463.98 10976.07 12583.45 7454.20 18977.68 14287.18 12269.98 7985.37 4968.01 8592.72 7485.08 89
casdiffmvspermissive73.06 12273.84 11270.72 16671.32 25346.71 24870.93 18384.26 6155.62 16877.46 14487.10 12367.09 10177.81 18563.95 11786.83 18487.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS74.91 9975.57 9472.93 13683.50 9145.79 25469.47 19880.14 13465.22 7981.74 9687.08 12461.82 14781.07 12256.21 18394.98 2091.93 8
NR-MVSNet73.62 11074.05 10972.33 15383.50 9143.71 26965.65 25477.32 17764.32 8975.59 17387.08 12462.45 14081.34 11454.90 19495.63 891.93 8
SD-MVS80.28 4981.55 4776.47 8683.57 9067.83 8083.39 4785.35 3564.42 8886.14 3987.07 12674.02 5180.97 12677.70 2892.32 8080.62 199
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
旧先验184.55 7960.36 14263.69 28587.05 12754.65 20883.34 22869.66 304
PatchT53.35 29856.47 28643.99 34564.19 31417.46 37759.15 30443.10 35752.11 21354.74 34086.95 12829.97 34749.98 33243.62 27874.40 30464.53 336
wuyk23d61.97 24966.25 20849.12 32858.19 34660.77 13966.32 24552.97 33455.93 16690.62 586.91 12973.07 5735.98 36920.63 37291.63 8750.62 359
UniMVSNet_NR-MVSNet74.90 10075.65 9272.64 14583.04 10245.79 25469.26 20178.81 15366.66 6481.74 9686.88 13063.26 13381.07 12256.21 18394.98 2091.05 15
EPP-MVSNet73.86 10873.38 12075.31 9978.19 16353.35 18780.45 6777.32 17765.11 8176.47 16586.80 13149.47 23583.77 7553.89 20692.72 7488.81 41
TinyColmap67.98 19069.28 16964.08 24367.98 28346.82 24670.04 19175.26 19653.05 20477.36 14586.79 13259.39 17172.59 24145.64 26888.01 16472.83 274
test_prior275.57 13058.92 13676.53 16486.78 13367.83 9869.81 7392.76 73
RPMNet65.77 21065.08 22267.84 21266.37 29548.24 22770.93 18386.27 1954.66 18061.35 30886.77 13433.29 31785.67 4555.93 18570.17 32769.62 305
TEST985.47 6369.32 7076.42 11778.69 15653.73 19976.97 14886.74 13566.84 10481.10 120
train_agg76.38 8076.55 8375.86 9385.47 6369.32 7076.42 11778.69 15654.00 19476.97 14886.74 13566.60 10981.10 12072.50 6191.56 9077.15 242
test_885.09 6967.89 7976.26 12278.66 15854.00 19476.89 15286.72 13766.60 10980.89 130
MVS_Test69.84 16370.71 16067.24 21767.49 28843.25 27669.87 19481.22 10952.69 20871.57 22986.68 13862.09 14574.51 22266.05 10078.74 27483.96 124
CR-MVSNet58.96 27158.49 27260.36 28166.37 29548.24 22770.93 18356.40 31932.87 34161.35 30886.66 13933.19 31863.22 30748.50 24570.17 32769.62 305
Patchmtry60.91 25763.01 23854.62 30666.10 30126.27 36967.47 22756.40 31954.05 19372.04 22286.66 13933.19 31860.17 31543.69 27787.45 17277.42 240
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6284.76 4662.54 10881.77 9486.65 14171.46 6683.53 8167.95 8792.44 7689.60 24
VPNet65.58 21167.56 19459.65 28579.72 13930.17 35860.27 30062.14 29254.19 19071.24 23486.63 14258.80 17767.62 28244.17 27690.87 11381.18 181
IterMVS-LS73.01 12473.12 12772.66 14473.79 22749.90 21171.63 17178.44 16158.22 14080.51 11186.63 14258.15 18379.62 14862.51 13088.20 15988.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testdata64.13 24285.87 5963.34 11361.80 29747.83 25876.42 16786.60 14448.83 24162.31 31054.46 20081.26 25166.74 322
LFMVS67.06 20367.89 19164.56 23978.02 16638.25 31270.81 18659.60 30365.18 8071.06 23686.56 14543.85 26575.22 21246.35 26389.63 13680.21 206
CNVR-MVS78.49 6478.59 6678.16 6785.86 6067.40 8478.12 9881.50 10063.92 9277.51 14386.56 14568.43 9284.82 6373.83 5091.61 8882.26 169
FMVSNet267.48 19768.21 18765.29 23473.14 23638.94 30768.81 20871.21 23654.81 17476.73 15886.48 14748.63 24474.60 22147.98 25186.11 19382.35 166
baseline73.10 11973.96 11170.51 17071.46 25246.39 25272.08 16084.40 5855.95 16576.62 16086.46 14867.20 10078.03 18264.22 11487.27 17887.11 61
WR-MVS71.20 14772.48 13767.36 21684.98 7135.70 33164.43 26968.66 25265.05 8281.49 9986.43 14957.57 19276.48 20150.36 22993.32 6589.90 23
UniMVSNet (Re)75.00 9775.48 9573.56 12083.14 9647.92 23370.41 19081.04 11463.67 9679.54 11986.37 15062.83 13581.82 10857.10 17595.25 1490.94 17
PC_three_145246.98 26581.83 9386.28 15166.55 11184.47 6963.31 12790.78 11483.49 134
DP-MVS78.44 6679.29 6075.90 9281.86 12065.33 9779.05 8584.63 5474.83 1880.41 11286.27 15271.68 6483.45 8362.45 13292.40 7778.92 223
ab-mvs64.11 23065.13 21961.05 27571.99 24938.03 31667.59 22468.79 25149.08 24965.32 28386.26 15358.02 18966.85 28939.33 30179.79 26778.27 230
NCCC78.25 6778.04 7178.89 5885.61 6269.45 6679.80 7980.99 11565.77 6975.55 17486.25 15467.42 9985.42 4870.10 7190.88 11281.81 175
FA-MVS(test-final)71.27 14671.06 15671.92 15673.96 22452.32 19376.45 11676.12 18759.07 13474.04 19786.18 15552.18 21879.43 15259.75 15981.76 24384.03 123
ITE_SJBPF80.35 3876.94 18173.60 3880.48 12566.87 6183.64 7486.18 15570.25 7779.90 14561.12 14388.95 15387.56 53
原ACMM173.90 11385.90 5765.15 10181.67 9850.97 22874.25 19286.16 15761.60 14983.54 8056.75 17691.08 10473.00 272
UGNet70.20 15869.05 17373.65 11776.24 19063.64 11075.87 12872.53 21761.48 11460.93 31486.14 15852.37 21777.12 19350.67 22685.21 20380.17 207
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
OPU-MVS78.65 6183.44 9466.85 8983.62 4286.12 15966.82 10586.01 2961.72 13689.79 13583.08 148
新几何169.99 18088.37 3471.34 5162.08 29443.85 28374.99 18086.11 16052.85 21570.57 26250.99 22483.23 22968.05 313
mvs_anonymous65.08 21665.49 21363.83 24663.79 31637.60 31966.52 24469.82 24643.44 28873.46 20386.08 16158.79 17871.75 25351.90 21775.63 29382.15 170
114514_t73.40 11473.33 12373.64 11884.15 8657.11 16278.20 9680.02 13543.76 28472.55 21586.07 16264.00 13183.35 8560.14 15391.03 10580.45 202
NP-MVS83.34 9563.07 11685.97 163
HQP-MVS75.24 9275.01 9875.94 9182.37 11158.80 15477.32 10584.12 6559.08 13171.58 22685.96 16458.09 18485.30 5167.38 9489.16 14683.73 131
Anonymous20240521166.02 20866.89 20663.43 25274.22 22038.14 31359.00 30666.13 26463.33 10369.76 25185.95 16551.88 21970.50 26344.23 27587.52 16981.64 177
Anonymous2024052163.55 23366.07 21055.99 30166.18 30044.04 26768.77 21168.80 25046.99 26472.57 21485.84 16639.87 29050.22 33153.40 21392.23 8173.71 268
JIA-IIPM54.03 29551.62 30961.25 27459.14 34155.21 17459.10 30547.72 34950.85 22950.31 35685.81 16720.10 37463.97 30236.16 32855.41 36764.55 335
test22287.30 3769.15 7367.85 22259.59 30441.06 30273.05 20985.72 16848.03 24780.65 25666.92 318
KD-MVS_self_test66.38 20767.51 19562.97 25861.76 32534.39 34058.11 31275.30 19550.84 23077.12 14785.42 16956.84 19969.44 27051.07 22391.16 9885.08 89
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7783.75 7056.73 15874.88 18285.32 17065.54 11887.79 265.61 10491.14 10083.35 142
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 11984.05 6756.66 15980.27 11485.31 17168.56 8987.03 967.39 9391.26 9583.50 133
v2v48272.55 13772.58 13672.43 15072.92 24246.72 24771.41 17479.13 14855.27 17081.17 10385.25 17255.41 20581.13 11967.25 9785.46 19789.43 26
QAPM69.18 17369.26 17068.94 19671.61 25152.58 19180.37 7078.79 15549.63 24373.51 20185.14 17353.66 21279.12 15555.11 19375.54 29475.11 257
FE-MVS68.29 18766.96 20572.26 15474.16 22254.24 18077.55 10273.42 20857.65 14972.66 21384.91 17432.02 32981.49 11348.43 24681.85 24181.04 184
v114473.29 11773.39 11973.01 13074.12 22348.11 22972.01 16281.08 11353.83 19881.77 9484.68 17558.07 18781.91 10768.10 8286.86 18388.99 36
3Dnovator65.95 1171.50 14571.22 15572.34 15273.16 23563.09 11578.37 9378.32 16257.67 14772.22 22084.61 17654.77 20678.47 16760.82 14681.07 25275.45 252
v119273.40 11473.42 11873.32 12474.65 21548.67 22272.21 15881.73 9752.76 20781.85 9284.56 17757.12 19582.24 10368.58 7887.33 17589.06 33
DROMVSNet77.08 7677.39 7676.14 9076.86 18556.87 16480.32 7287.52 1163.45 10074.66 18784.52 17869.87 8184.94 5969.76 7489.59 13886.60 67
USDC62.80 24263.10 23761.89 26765.19 30643.30 27567.42 22874.20 20335.80 32772.25 21984.48 17945.67 25371.95 25037.95 31484.97 20670.42 299
tttt051769.46 16867.79 19374.46 10375.34 20052.72 18975.05 13363.27 28854.69 17978.87 12684.37 18026.63 35681.15 11863.95 11787.93 16689.51 25
PCF-MVS63.80 1372.70 13371.69 14675.72 9478.10 16460.01 14473.04 15381.50 10045.34 27479.66 11884.35 18165.15 12382.65 9548.70 24289.38 14584.50 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v124073.06 12273.14 12572.84 13974.74 21147.27 24371.88 16981.11 11051.80 21782.28 8984.21 18256.22 20382.34 10068.82 7787.17 18188.91 38
v14869.38 17169.39 16869.36 18669.14 27544.56 26368.83 20772.70 21554.79 17778.59 12784.12 18354.69 20776.74 20059.40 16282.20 23686.79 63
v14419272.99 12673.06 12872.77 14074.58 21647.48 23971.90 16880.44 12751.57 22081.46 10084.11 18458.04 18882.12 10467.98 8687.47 17188.70 43
F-COLMAP75.29 9073.99 11079.18 5181.73 12171.90 4681.86 5882.98 7959.86 12772.27 21884.00 18564.56 12883.07 9051.48 21987.19 18082.56 163
v192192072.96 12872.98 13072.89 13874.67 21247.58 23871.92 16780.69 11951.70 21981.69 9883.89 18656.58 20182.25 10268.34 8087.36 17388.82 40
MIMVSNet54.39 29356.12 28949.20 32672.57 24430.91 35659.98 30148.43 34841.66 29755.94 33583.86 18741.19 28150.42 33026.05 36275.38 29766.27 323
MCST-MVS73.42 11373.34 12273.63 11981.28 12759.17 15074.80 13983.13 7845.50 27072.84 21183.78 18865.15 12380.99 12464.54 11089.09 15180.73 196
dcpmvs_271.02 15072.65 13566.16 22976.06 19550.49 20271.97 16379.36 14550.34 23582.81 8483.63 18964.38 12967.27 28561.54 13783.71 22580.71 198
OpenMVScopyleft62.51 1568.76 17868.75 17968.78 20170.56 26053.91 18378.29 9477.35 17648.85 25070.22 24483.52 19052.65 21676.93 19555.31 19281.99 23875.49 251
h-mvs3373.08 12071.61 14977.48 7383.89 8972.89 4470.47 18871.12 23754.28 18577.89 13683.41 19149.04 23880.98 12563.62 12290.77 11678.58 226
TAPA-MVS65.27 1275.16 9374.29 10677.77 7174.86 20868.08 7777.89 9984.04 6855.15 17276.19 17083.39 19266.91 10380.11 14360.04 15590.14 12685.13 87
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet555.08 29055.54 29353.71 30865.80 30233.50 34556.22 32052.50 33643.72 28661.06 31183.38 19325.46 36254.87 32430.11 35081.64 24972.75 275
VNet64.01 23265.15 21860.57 27973.28 23435.61 33257.60 31467.08 25954.61 18166.76 27683.37 19456.28 20266.87 28742.19 28585.20 20479.23 220
Vis-MVSNet (Re-imp)62.74 24363.21 23661.34 27372.19 24731.56 35267.31 23353.87 32753.60 20069.88 24983.37 19440.52 28670.98 25941.40 29186.78 18581.48 179
GeoE73.14 11873.77 11571.26 16378.09 16552.64 19074.32 14679.56 14356.32 16276.35 16883.36 19670.76 7477.96 18363.32 12681.84 24283.18 146
PAPM_NR73.91 10774.16 10873.16 12681.90 11953.50 18581.28 6081.40 10366.17 6773.30 20683.31 19759.96 16583.10 8958.45 16781.66 24882.87 154
CS-MVS76.51 7976.00 8978.06 7077.02 17864.77 10480.78 6382.66 8560.39 12274.15 19383.30 19869.65 8382.07 10569.27 7686.75 18687.36 55
FMVSNet365.00 21765.16 21664.52 24069.47 27137.56 32066.63 24270.38 24351.55 22174.72 18483.27 19937.89 30374.44 22347.12 25685.37 19881.57 178
V4271.06 14870.83 15971.72 15767.25 28947.14 24465.94 24880.35 13051.35 22383.40 7683.23 20059.25 17378.80 16165.91 10280.81 25589.23 29
test20.0355.74 28657.51 27950.42 32159.89 33732.09 35050.63 33749.01 34550.11 23865.07 28583.23 20045.61 25448.11 33930.22 34983.82 22271.07 294
CNLPA73.44 11273.03 12974.66 10278.27 16275.29 2675.99 12678.49 16065.39 7575.67 17283.22 20261.23 15566.77 29153.70 20885.33 20181.92 174
iter_conf_final68.69 18067.00 20473.76 11673.68 22852.33 19275.96 12773.54 20650.56 23369.90 24882.85 20324.76 36583.73 7665.40 10586.33 19085.22 84
iter_conf0567.34 20065.62 21272.50 14869.82 26747.06 24572.19 15976.86 18145.32 27572.86 21082.85 20320.53 37283.73 7661.13 14289.02 15286.70 65
EPNet69.10 17467.32 19874.46 10368.33 27961.27 13077.56 10163.57 28660.95 11856.62 33282.75 20551.53 22381.24 11754.36 20290.20 12380.88 191
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-SCA-FT67.68 19566.07 21072.49 14973.34 23358.20 15963.80 27565.55 27048.10 25476.91 15182.64 20645.20 25678.84 16061.20 14077.89 28480.44 203
DIV-MVS_self_test68.27 18868.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.43 20748.74 24275.38 20960.94 14489.81 13385.81 76
cl____68.26 18968.26 18568.29 20664.98 31043.67 27065.89 24974.67 19950.04 24076.86 15482.42 20848.74 24275.38 20960.92 14589.81 13385.80 80
MVS_111021_HR72.98 12772.97 13172.99 13180.82 13065.47 9668.81 20872.77 21457.67 14775.76 17182.38 20971.01 7277.17 19261.38 13886.15 19176.32 246
pmmvs-eth3d64.41 22763.27 23567.82 21375.81 19860.18 14369.49 19762.05 29538.81 31474.13 19482.23 21043.76 26668.65 27542.53 28380.63 25874.63 260
alignmvs70.54 15571.00 15769.15 19173.50 22948.04 23269.85 19579.62 13953.94 19776.54 16382.00 21159.00 17574.68 22057.32 17387.21 17984.72 99
MSLP-MVS++74.48 10475.78 9170.59 16884.66 7662.40 11878.65 8984.24 6260.55 12177.71 14181.98 21263.12 13477.64 18962.95 12988.14 16071.73 286
DP-MVS Recon73.57 11172.69 13476.23 8982.85 10663.39 11274.32 14682.96 8057.75 14570.35 24281.98 21264.34 13084.41 7149.69 23389.95 13080.89 190
BH-RMVSNet68.69 18068.20 18870.14 17776.40 18853.90 18464.62 26673.48 20758.01 14273.91 19981.78 21459.09 17478.22 17748.59 24377.96 28378.31 229
EG-PatchMatch MVS70.70 15370.88 15870.16 17682.64 11058.80 15471.48 17273.64 20554.98 17376.55 16281.77 21561.10 15778.94 15954.87 19580.84 25472.74 276
MVS_111021_LR72.10 14071.82 14572.95 13379.53 14273.90 3670.45 18966.64 26156.87 15576.81 15681.76 21668.78 8771.76 25261.81 13383.74 22373.18 271
AdaColmapbinary74.22 10574.56 10173.20 12581.95 11860.97 13379.43 8080.90 11665.57 7172.54 21681.76 21670.98 7385.26 5247.88 25290.00 12873.37 269
canonicalmvs72.29 13973.38 12069.04 19274.23 21947.37 24173.93 15083.18 7654.36 18476.61 16181.64 21872.03 6175.34 21157.12 17487.28 17784.40 115
MVS-HIRNet45.53 32647.29 32540.24 35162.29 32226.82 36756.02 32237.41 37229.74 35343.69 37081.27 21933.96 31455.48 32324.46 36856.79 36338.43 371
CMPMVSbinary48.73 2061.54 25460.89 25463.52 25061.08 32951.55 19568.07 22168.00 25633.88 33565.87 27981.25 22037.91 30267.71 28049.32 23782.60 23371.31 290
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi54.00 29756.86 28345.45 33858.20 34525.81 37049.05 33949.50 34445.43 27367.84 26681.17 22151.81 22243.20 35729.30 35479.41 27067.34 317
MVS_030462.51 24662.27 24363.25 25369.39 27248.47 22464.05 27362.48 29059.69 12854.10 34481.04 22245.71 25266.31 29441.38 29282.58 23474.96 258
CL-MVSNet_self_test62.44 24763.40 23359.55 28672.34 24632.38 34856.39 31864.84 27551.21 22667.46 27181.01 22350.75 22763.51 30638.47 31088.12 16182.75 158
CS-MVS-test74.89 10174.23 10776.86 7977.01 17962.94 11778.98 8684.61 5558.62 13870.17 24580.80 22466.74 10881.96 10661.74 13589.40 14485.69 81
thisisatest053067.05 20465.16 21672.73 14373.10 23950.55 20171.26 17963.91 28450.22 23774.46 19080.75 22526.81 35580.25 13959.43 16186.50 18887.37 54
PHI-MVS74.92 9874.36 10576.61 8276.40 18862.32 12080.38 6983.15 7754.16 19173.23 20780.75 22562.19 14483.86 7468.02 8490.92 10983.65 132
PLCcopyleft62.01 1671.79 14370.28 16376.33 8780.31 13668.63 7578.18 9781.24 10754.57 18267.09 27580.63 22759.44 17081.74 11146.91 25984.17 21878.63 224
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PM-MVS64.49 22463.61 23167.14 22076.68 18675.15 2768.49 21642.85 35851.17 22777.85 13880.51 22845.76 25166.31 29452.83 21476.35 28859.96 350
CANet73.00 12571.84 14476.48 8575.82 19761.28 12974.81 13780.37 12963.17 10462.43 30480.50 22961.10 15785.16 5864.00 11684.34 21783.01 151
IterMVS63.12 23862.48 24265.02 23766.34 29752.86 18863.81 27462.25 29146.57 26771.51 23180.40 23044.60 26166.82 29051.38 22175.47 29575.38 254
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
eth_miper_zixun_eth69.42 16968.73 18171.50 16167.99 28246.42 25067.58 22578.81 15350.72 23178.13 13480.34 23150.15 23280.34 13760.18 15184.65 21187.74 50
DPM-MVS69.98 16169.22 17272.26 15482.69 10958.82 15370.53 18781.23 10847.79 25964.16 29180.21 23251.32 22583.12 8860.14 15384.95 21074.83 259
LF4IMVS67.50 19667.31 19968.08 20958.86 34261.93 12171.43 17375.90 19144.67 28072.42 21780.20 23357.16 19370.44 26458.99 16486.12 19271.88 284
CSCG74.12 10674.39 10373.33 12379.35 14461.66 12577.45 10481.98 9462.47 11079.06 12480.19 23461.83 14678.79 16259.83 15787.35 17479.54 216
c3_l69.82 16469.89 16569.61 18466.24 29843.48 27268.12 22079.61 14151.43 22277.72 14080.18 23554.61 20978.15 18163.62 12287.50 17087.20 58
FPMVS59.43 26960.07 26057.51 29677.62 17571.52 4962.33 28750.92 33957.40 15269.40 25380.00 23639.14 29561.92 31137.47 31866.36 34239.09 370
thres100view90061.17 25661.09 25261.39 27272.14 24835.01 33565.42 25856.99 31555.23 17170.71 23979.90 23732.07 32772.09 24635.61 33081.73 24477.08 244
new-patchmatchnet52.89 30055.76 29244.26 34459.94 3366.31 38037.36 36550.76 34141.10 30164.28 29079.82 23844.77 25948.43 33836.24 32787.61 16778.03 235
thres600view761.82 25161.38 25063.12 25571.81 25034.93 33664.64 26556.99 31554.78 17870.33 24379.74 23932.07 32772.42 24338.61 30883.46 22782.02 171
diffmvspermissive67.42 19967.50 19667.20 21862.26 32345.21 25964.87 26377.04 18048.21 25371.74 22379.70 24058.40 18071.17 25864.99 10780.27 26085.22 84
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned69.39 17069.46 16769.18 19077.96 16856.88 16368.47 21777.53 17456.77 15777.79 13979.63 24160.30 16380.20 14246.04 26580.65 25670.47 297
PAPM61.79 25260.37 25966.05 23076.09 19341.87 28569.30 20076.79 18440.64 30653.80 34579.62 24244.38 26282.92 9229.64 35373.11 31173.36 270
XXY-MVS55.19 28957.40 28048.56 33064.45 31334.84 33851.54 33653.59 32938.99 31363.79 29679.43 24356.59 20045.57 34536.92 32271.29 31965.25 329
MDA-MVSNet-bldmvs62.34 24861.73 24464.16 24161.64 32649.90 21148.11 34357.24 31453.31 20380.95 10579.39 24449.00 24061.55 31245.92 26680.05 26281.03 185
TAMVS65.31 21363.75 22969.97 18182.23 11559.76 14666.78 24163.37 28745.20 27669.79 25079.37 24547.42 25072.17 24534.48 33585.15 20577.99 237
PAPR69.20 17268.66 18270.82 16575.15 20447.77 23575.31 13181.11 11049.62 24466.33 27779.27 24661.53 15082.96 9148.12 25081.50 25081.74 176
Anonymous2023120654.13 29455.82 29149.04 32970.89 25435.96 32851.73 33550.87 34034.86 32962.49 30379.22 24742.52 27544.29 35327.95 35981.88 24066.88 319
OpenMVS_ROBcopyleft54.93 1763.23 23763.28 23463.07 25669.81 26845.34 25868.52 21567.14 25843.74 28570.61 24079.22 24747.90 24872.66 23748.75 24173.84 30871.21 292
PVSNet_Blended_VisFu70.04 15968.88 17673.53 12182.71 10863.62 11174.81 13781.95 9548.53 25267.16 27479.18 24951.42 22478.38 17254.39 20179.72 26878.60 225
MVSTER63.29 23661.60 24868.36 20459.77 33846.21 25360.62 29771.32 23041.83 29675.40 17779.12 25030.25 34475.85 20356.30 18279.81 26583.03 150
tpm50.60 31352.42 30745.14 34065.18 30726.29 36860.30 29943.50 35637.41 31957.01 32979.09 25130.20 34642.32 35832.77 34266.36 34266.81 321
test_yl65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
DCV-MVSNet65.11 21465.09 22065.18 23570.59 25840.86 29263.22 28372.79 21257.91 14368.88 26079.07 25242.85 27274.89 21745.50 26984.97 20679.81 209
miper_lstm_enhance61.97 24961.63 24762.98 25760.04 33445.74 25647.53 34570.95 23844.04 28273.06 20878.84 25439.72 29160.33 31455.82 18784.64 21282.88 153
PVSNet_BlendedMVS65.38 21264.30 22468.61 20269.81 26849.36 21765.60 25678.96 15045.50 27059.98 31778.61 25551.82 22078.20 17844.30 27384.11 21978.27 230
baseline157.82 27858.36 27456.19 30069.17 27430.76 35762.94 28555.21 32246.04 26963.83 29578.47 25641.20 28063.68 30439.44 30068.99 33374.13 263
TSAR-MVS + GP.73.08 12071.60 15077.54 7278.99 15670.73 5774.96 13469.38 24860.73 12074.39 19178.44 25757.72 19182.78 9360.16 15289.60 13779.11 221
MVP-Stereo61.56 25359.22 26568.58 20379.28 14560.44 14169.20 20271.57 22443.58 28756.42 33378.37 25839.57 29376.46 20234.86 33460.16 35668.86 312
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
hse-mvs272.32 13870.66 16177.31 7783.10 10171.77 4769.19 20371.45 22854.28 18577.89 13678.26 25949.04 23879.23 15363.62 12289.13 15080.92 189
patch_mono-262.73 24464.08 22658.68 29170.36 26355.87 16960.84 29664.11 28341.23 30064.04 29278.22 26060.00 16448.80 33454.17 20483.71 22571.37 288
D2MVS62.58 24561.05 25367.20 21863.85 31547.92 23356.29 31969.58 24739.32 30970.07 24678.19 26134.93 31272.68 23653.44 21183.74 22381.00 187
HY-MVS49.31 1957.96 27757.59 27859.10 28966.85 29436.17 32665.13 26165.39 27139.24 31154.69 34178.14 26244.28 26367.18 28633.75 33970.79 32273.95 265
Effi-MVS+-dtu75.43 8972.28 14084.91 277.05 17683.58 178.47 9277.70 17257.68 14674.89 18178.13 26364.80 12684.26 7256.46 18185.32 20286.88 62
AUN-MVS70.22 15767.88 19277.22 7882.96 10571.61 4869.08 20471.39 22949.17 24771.70 22478.07 26437.62 30479.21 15461.81 13389.15 14880.82 192
cl2267.14 20166.51 20769.03 19363.20 31943.46 27366.88 24076.25 18649.22 24674.48 18977.88 26545.49 25577.40 19160.64 14784.59 21386.24 69
miper_ehance_all_eth68.36 18468.16 18968.98 19465.14 30943.34 27467.07 23578.92 15249.11 24876.21 16977.72 26653.48 21377.92 18461.16 14184.59 21385.68 82
DSMNet-mixed43.18 33544.66 33538.75 35354.75 36028.88 36357.06 31527.42 37713.47 37347.27 36177.67 26738.83 29639.29 36625.32 36760.12 35748.08 361
Test_1112_low_res58.78 27358.69 27059.04 29079.41 14338.13 31457.62 31366.98 26034.74 33159.62 32377.56 26842.92 27163.65 30538.66 30770.73 32375.35 255
API-MVS70.97 15171.51 15269.37 18575.20 20255.94 16880.99 6176.84 18262.48 10971.24 23477.51 26961.51 15180.96 12952.04 21585.76 19671.22 291
pmmvs460.78 25959.04 26766.00 23173.06 24157.67 16164.53 26860.22 30136.91 32265.96 27877.27 27039.66 29268.54 27638.87 30574.89 30071.80 285
tfpn200view960.35 26359.97 26161.51 27070.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24477.08 244
thres40060.77 26059.97 26163.15 25470.78 25535.35 33363.27 28157.47 30953.00 20568.31 26477.09 27132.45 32472.09 24635.61 33081.73 24482.02 171
Effi-MVS+72.10 14072.28 14071.58 15874.21 22150.33 20474.72 14282.73 8362.62 10770.77 23876.83 27369.96 8080.97 12660.20 15078.43 27883.45 139
MVSFormer69.93 16269.03 17472.63 14674.93 20559.19 14883.98 3675.72 19252.27 21063.53 30076.74 27443.19 26980.56 13272.28 6278.67 27678.14 233
jason64.47 22562.84 23969.34 18876.91 18259.20 14767.15 23465.67 26735.29 32865.16 28476.74 27444.67 26070.68 26054.74 19679.28 27178.14 233
jason: jason.
CostFormer57.35 28056.14 28860.97 27663.76 31738.43 30967.50 22660.22 30137.14 32159.12 32476.34 27632.78 32171.99 24939.12 30469.27 33272.47 278
MDTV_nov1_ep1354.05 29965.54 30429.30 36159.00 30655.22 32135.96 32652.44 34775.98 27730.77 34159.62 31638.21 31173.33 310
EU-MVSNet60.82 25860.80 25660.86 27868.37 27741.16 28972.27 15668.27 25526.96 35869.08 25575.71 27832.09 32667.44 28355.59 19078.90 27373.97 264
HyFIR lowres test63.01 23960.47 25870.61 16783.04 10254.10 18159.93 30272.24 22133.67 33869.00 25675.63 27938.69 29776.93 19536.60 32375.45 29680.81 194
Fast-Effi-MVS+68.81 17768.30 18470.35 17274.66 21448.61 22366.06 24778.32 16250.62 23271.48 23275.54 28068.75 8879.59 15050.55 22878.73 27582.86 155
CDS-MVSNet64.33 22862.66 24169.35 18780.44 13458.28 15865.26 25965.66 26844.36 28167.30 27375.54 28043.27 26871.77 25137.68 31584.44 21678.01 236
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm256.12 28354.64 29660.55 28066.24 29836.01 32768.14 21956.77 31733.60 33958.25 32775.52 28230.25 34474.33 22533.27 34069.76 33171.32 289
CANet_DTU64.04 23163.83 22864.66 23868.39 27642.97 27873.45 15174.50 20252.05 21454.78 33975.44 28343.99 26470.42 26553.49 21078.41 27980.59 200
DELS-MVS68.83 17668.31 18370.38 17170.55 26148.31 22563.78 27682.13 9054.00 19468.96 25875.17 28458.95 17680.06 14458.55 16682.74 23282.76 157
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
pmmvs552.49 30452.58 30652.21 31654.99 35932.38 34855.45 32553.84 32832.15 34455.49 33874.81 28538.08 30057.37 32234.02 33774.40 30466.88 319
MSDG67.47 19867.48 19767.46 21570.70 25754.69 17766.90 23978.17 16560.88 11970.41 24174.76 28661.22 15673.18 23247.38 25576.87 28674.49 261
UnsupCasMVSNet_eth52.26 30553.29 30349.16 32755.08 35833.67 34450.03 33858.79 30637.67 31863.43 30274.75 28741.82 27745.83 34438.59 30959.42 35867.98 314
Fast-Effi-MVS+-dtu70.00 16068.74 18073.77 11573.47 23064.53 10671.36 17578.14 16755.81 16768.84 26274.71 28865.36 12175.75 20652.00 21679.00 27281.03 185
TR-MVS64.59 22263.54 23267.73 21475.75 19950.83 20063.39 27970.29 24449.33 24571.55 23074.55 28950.94 22678.46 16840.43 29775.69 29273.89 266
GA-MVS62.91 24061.66 24566.66 22667.09 29144.49 26461.18 29469.36 24951.33 22469.33 25474.47 29036.83 30774.94 21650.60 22774.72 30180.57 201
CLD-MVS72.88 12972.36 13974.43 10577.03 17754.30 17968.77 21183.43 7552.12 21276.79 15774.44 29169.54 8483.91 7355.88 18693.25 6685.09 88
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 1792x268858.09 27656.30 28763.45 25179.95 13750.93 19954.07 33065.59 26928.56 35461.53 30774.33 29241.09 28266.52 29333.91 33867.69 34072.92 273
Patchmatch-RL test59.95 26559.12 26662.44 26372.46 24554.61 17859.63 30347.51 35141.05 30374.58 18874.30 29331.06 33865.31 29651.61 21879.85 26467.39 315
cdsmvs_eth3d_5k17.71 34323.62 3450.00 3620.00 3850.00 3860.00 37370.17 2450.00 3800.00 38174.25 29468.16 940.00 3810.00 3790.00 3790.00 377
lupinMVS63.36 23461.49 24968.97 19574.93 20559.19 14865.80 25264.52 27934.68 33363.53 30074.25 29443.19 26970.62 26153.88 20778.67 27677.10 243
xiu_mvs_v1_base_debu67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
xiu_mvs_v1_base_debi67.87 19167.07 20170.26 17379.13 15161.90 12267.34 22971.25 23347.98 25567.70 26774.19 29661.31 15272.62 23856.51 17878.26 28076.27 247
tpmvs55.84 28455.45 29457.01 29760.33 33333.20 34665.89 24959.29 30547.52 26256.04 33473.60 29931.05 33968.06 27940.64 29664.64 34569.77 303
SCA58.57 27558.04 27560.17 28270.17 26441.07 29165.19 26053.38 33243.34 29161.00 31373.48 30045.20 25669.38 27140.34 29870.31 32670.05 300
Patchmatch-test47.93 32049.96 32141.84 34857.42 34824.26 37248.75 34041.49 36539.30 31056.79 33173.48 30030.48 34333.87 37029.29 35572.61 31267.39 315
MDA-MVSNet_test_wron52.57 30353.49 30249.81 32354.24 36136.47 32440.48 35946.58 35238.13 31575.47 17673.32 30241.05 28443.85 35540.98 29471.20 32069.10 311
YYNet152.58 30253.50 30049.85 32254.15 36236.45 32540.53 35846.55 35338.09 31675.52 17573.31 30341.08 28343.88 35441.10 29371.14 32169.21 309
PatchmatchNetpermissive54.60 29254.27 29755.59 30265.17 30839.08 30466.92 23851.80 33839.89 30858.39 32573.12 30431.69 33258.33 31943.01 28258.38 36269.38 308
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu58.93 27258.52 27160.16 28367.91 28447.70 23769.97 19258.02 30749.73 24247.28 36073.02 30538.14 29962.34 30936.57 32485.99 19470.43 298
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall65.86 20965.05 22368.28 20861.62 32742.62 28164.74 26477.97 16942.52 29373.42 20472.79 30649.66 23377.68 18858.12 16984.59 21384.54 109
ppachtmachnet_test60.26 26459.61 26462.20 26567.70 28644.33 26558.18 31160.96 29940.75 30565.80 28072.57 30741.23 27963.92 30346.87 26082.42 23578.33 228
N_pmnet52.06 30651.11 31454.92 30359.64 33971.03 5337.42 36461.62 29833.68 33757.12 32872.10 30837.94 30131.03 37129.13 35871.35 31862.70 340
ADS-MVSNet248.76 31847.25 32653.29 31255.90 35540.54 29747.34 34654.99 32431.41 34950.48 35372.06 30931.23 33554.26 32625.93 36355.93 36465.07 330
ADS-MVSNet44.62 33045.58 32941.73 34955.90 35520.83 37547.34 34639.94 36931.41 34950.48 35372.06 30931.23 33539.31 36525.93 36355.93 36465.07 330
ET-MVSNet_ETH3D63.32 23560.69 25771.20 16470.15 26555.66 17165.02 26264.32 28043.28 29268.99 25772.05 31125.46 36278.19 18054.16 20582.80 23179.74 212
BH-w/o64.81 21964.29 22566.36 22776.08 19454.71 17665.61 25575.23 19750.10 23971.05 23771.86 31254.33 21079.02 15738.20 31276.14 29065.36 328
EI-MVSNet-Vis-set72.78 13171.87 14375.54 9774.77 21059.02 15272.24 15771.56 22563.92 9278.59 12771.59 31366.22 11378.60 16467.58 8980.32 25989.00 35
UnsupCasMVSNet_bld50.01 31651.03 31646.95 33158.61 34332.64 34748.31 34153.27 33334.27 33460.47 31571.53 31441.40 27847.07 34230.68 34760.78 35561.13 348
thres20057.55 27957.02 28159.17 28767.89 28534.93 33658.91 30857.25 31350.24 23664.01 29371.46 31532.49 32371.39 25631.31 34579.57 26971.19 293
EI-MVSNet-UG-set72.63 13471.68 14775.47 9874.67 21258.64 15772.02 16171.50 22663.53 9878.58 12971.39 31665.98 11478.53 16567.30 9680.18 26189.23 29
ETV-MVS72.72 13272.16 14274.38 10776.90 18355.95 16773.34 15284.67 5162.04 11172.19 22170.81 31765.90 11685.24 5458.64 16584.96 20981.95 173
EIA-MVS68.59 18267.16 20072.90 13775.18 20355.64 17269.39 19981.29 10552.44 20964.53 28770.69 31860.33 16282.30 10154.27 20376.31 28980.75 195
EI-MVSNet69.61 16669.01 17571.41 16273.94 22549.90 21171.31 17771.32 23058.22 14075.40 17770.44 31958.16 18275.85 20362.51 13079.81 26588.48 44
CVMVSNet59.21 27058.44 27361.51 27073.94 22547.76 23671.31 17764.56 27826.91 35960.34 31670.44 31936.24 30967.65 28153.57 20968.66 33569.12 310
tpm cat154.02 29652.63 30558.19 29464.85 31239.86 30166.26 24657.28 31232.16 34356.90 33070.39 32132.75 32265.30 29734.29 33658.79 35969.41 307
PMMVS237.74 33940.87 33928.36 35642.41 3785.35 38124.61 36927.75 37632.15 34447.85 35970.27 32235.85 31029.51 37319.08 37367.85 33850.22 360
EPMVS45.74 32546.53 32743.39 34654.14 36322.33 37455.02 32735.00 37434.69 33251.09 35170.20 32325.92 36042.04 36037.19 31955.50 36665.78 325
KD-MVS_2432*160052.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
miper_refine_blended52.05 30751.58 31053.44 31052.11 36631.20 35344.88 35264.83 27641.53 29864.37 28870.03 32415.61 38164.20 30036.25 32574.61 30264.93 332
our_test_356.46 28256.51 28556.30 29967.70 28639.66 30255.36 32652.34 33740.57 30763.85 29469.91 32640.04 28958.22 32043.49 28075.29 29971.03 295
xiu_mvs_v2_base64.43 22663.96 22765.85 23377.72 17251.32 19763.63 27772.31 22045.06 27961.70 30569.66 32762.56 13773.93 23049.06 23973.91 30672.31 280
tpmrst50.15 31551.38 31246.45 33556.05 35324.77 37164.40 27049.98 34236.14 32453.32 34669.59 32835.16 31148.69 33539.24 30258.51 36165.89 324
WTY-MVS49.39 31750.31 32046.62 33461.22 32832.00 35146.61 34849.77 34333.87 33654.12 34369.55 32941.96 27645.40 34731.28 34664.42 34662.47 343
thisisatest051560.48 26257.86 27668.34 20567.25 28946.42 25060.58 29862.14 29240.82 30463.58 29969.12 33026.28 35878.34 17448.83 24082.13 23780.26 205
patchmatchnet-post68.99 33131.32 33469.38 271
PatchMatch-RL58.68 27457.72 27761.57 26976.21 19173.59 3961.83 28849.00 34647.30 26361.08 31068.97 33250.16 23159.01 31836.06 32968.84 33452.10 358
MS-PatchMatch55.59 28754.89 29557.68 29569.18 27349.05 22061.00 29562.93 28935.98 32558.36 32668.93 33336.71 30866.59 29237.62 31763.30 34957.39 354
cascas64.59 22262.77 24070.05 17975.27 20150.02 20861.79 28971.61 22342.46 29463.68 29768.89 33449.33 23780.35 13647.82 25384.05 22079.78 211
MVS60.62 26159.97 26162.58 26268.13 28147.28 24268.59 21373.96 20432.19 34259.94 31968.86 33550.48 22977.64 18941.85 28875.74 29162.83 339
PVSNet_Blended62.90 24161.64 24666.69 22569.81 26849.36 21761.23 29378.96 15042.04 29559.98 31768.86 33551.82 22078.20 17844.30 27377.77 28572.52 277
test_fmvs356.78 28155.99 29059.12 28853.96 36448.09 23058.76 30966.22 26327.54 35676.66 15968.69 33725.32 36451.31 32853.42 21273.38 30977.97 238
MAR-MVS67.72 19466.16 20972.40 15174.45 21764.99 10274.87 13577.50 17548.67 25165.78 28168.58 33857.01 19877.79 18646.68 26281.92 23974.42 262
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PS-MVSNAJ64.27 22963.73 23065.90 23277.82 17051.42 19663.33 28072.33 21945.09 27861.60 30668.04 33962.39 14173.95 22949.07 23873.87 30772.34 279
test0.0.03 147.72 32148.31 32345.93 33655.53 35729.39 36046.40 34941.21 36743.41 28955.81 33767.65 34029.22 35043.77 35625.73 36569.87 32964.62 334
1112_ss59.48 26858.99 26860.96 27777.84 16942.39 28361.42 29168.45 25437.96 31759.93 32067.46 34145.11 25865.07 29840.89 29571.81 31775.41 253
ab-mvs-re5.62 3457.50 3480.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38167.46 3410.00 3850.00 3810.00 3790.00 3790.00 377
baseline255.57 28852.74 30464.05 24465.26 30544.11 26662.38 28654.43 32539.03 31251.21 35067.35 34333.66 31672.45 24237.14 32064.22 34775.60 250
131459.83 26658.86 26962.74 26165.71 30344.78 26268.59 21372.63 21633.54 34061.05 31267.29 34443.62 26771.26 25749.49 23667.84 33972.19 282
IB-MVS49.67 1859.69 26756.96 28267.90 21068.19 28050.30 20561.42 29165.18 27247.57 26155.83 33667.15 34523.77 36879.60 14943.56 27979.97 26373.79 267
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
sss47.59 32248.32 32245.40 33956.73 35233.96 34245.17 35148.51 34732.11 34652.37 34865.79 34640.39 28741.91 36131.85 34361.97 35260.35 349
dp44.09 33244.88 33441.72 35058.53 34423.18 37354.70 32842.38 36134.80 33044.25 36865.61 34724.48 36744.80 35029.77 35249.42 36957.18 355
test_fmvs254.80 29154.11 29856.88 29851.76 36849.95 21056.70 31765.80 26626.22 36069.42 25265.25 34831.82 33049.98 33249.63 23570.36 32570.71 296
PVSNet43.83 2151.56 31051.17 31352.73 31368.34 27838.27 31148.22 34253.56 33036.41 32354.29 34264.94 34934.60 31354.20 32730.34 34869.87 32965.71 326
pmmvs346.71 32345.09 33251.55 31856.76 35148.25 22655.78 32439.53 37024.13 36650.35 35563.40 35015.90 38051.08 32929.29 35570.69 32455.33 357
test_f43.79 33345.63 32838.24 35442.29 37938.58 30834.76 36747.68 35022.22 37067.34 27263.15 35131.82 33030.60 37239.19 30362.28 35145.53 366
test_vis3_rt51.94 30951.04 31554.65 30546.32 37550.13 20744.34 35478.17 16523.62 36768.95 25962.81 35221.41 37038.52 36741.49 29072.22 31475.30 256
gm-plane-assit62.51 32133.91 34337.25 32062.71 35372.74 23538.70 306
MVEpermissive27.91 2336.69 34135.64 34439.84 35243.37 37735.85 33019.49 37024.61 37824.68 36439.05 37262.63 35438.67 29827.10 37521.04 37147.25 37156.56 356
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test343.76 33441.01 33852.01 31748.09 37357.74 16042.47 35623.85 38023.30 36864.80 28662.17 35527.12 35440.59 36329.17 35748.11 37057.69 353
new_pmnet37.55 34039.80 34230.79 35556.83 35016.46 37839.35 36130.65 37525.59 36245.26 36461.60 35624.54 36628.02 37421.60 37052.80 36847.90 362
test_vis1_n_192052.96 29953.50 30051.32 31959.15 34044.90 26156.13 32164.29 28130.56 35259.87 32160.68 35740.16 28847.47 34048.25 24962.46 35061.58 347
test_fmvs1_n52.70 30152.01 30854.76 30453.83 36550.36 20355.80 32365.90 26524.96 36365.39 28260.64 35827.69 35348.46 33645.88 26767.99 33765.46 327
test-LLR50.43 31450.69 31849.64 32460.76 33041.87 28553.18 33245.48 35443.41 28949.41 35760.47 35929.22 35044.73 35142.09 28672.14 31562.33 345
test-mter48.56 31948.20 32449.64 32460.76 33041.87 28553.18 33245.48 35431.91 34749.41 35760.47 35918.34 37544.73 35142.09 28672.14 31562.33 345
test_fmvs151.51 31150.86 31753.48 30949.72 37149.35 21954.11 32964.96 27424.64 36563.66 29859.61 36128.33 35248.45 33745.38 27167.30 34162.66 342
test_vis1_n51.27 31250.41 31953.83 30756.99 34950.01 20956.75 31660.53 30025.68 36159.74 32257.86 36229.40 34947.41 34143.10 28163.66 34864.08 337
TESTMET0.1,145.17 32744.93 33345.89 33756.02 35438.31 31053.18 33241.94 36427.85 35544.86 36656.47 36317.93 37641.50 36238.08 31368.06 33657.85 352
CHOSEN 280x42041.62 33639.89 34146.80 33361.81 32451.59 19433.56 36835.74 37327.48 35737.64 37453.53 36423.24 36942.09 35927.39 36058.64 36046.72 363
mvsany_test137.88 33835.74 34344.28 34347.28 37449.90 21136.54 36624.37 37919.56 37245.76 36253.46 36532.99 32037.97 36826.17 36135.52 37244.99 367
PMMVS44.69 32943.95 33746.92 33250.05 37053.47 18648.08 34442.40 36022.36 36944.01 36953.05 36642.60 27445.49 34631.69 34461.36 35441.79 368
GG-mvs-BLEND52.24 31560.64 33229.21 36269.73 19642.41 35945.47 36352.33 36720.43 37368.16 27825.52 36665.42 34459.36 351
E-PMN45.17 32745.36 33044.60 34250.07 36942.75 27938.66 36242.29 36246.39 26839.55 37151.15 36826.00 35945.37 34837.68 31576.41 28745.69 365
test_vis1_rt46.70 32445.24 33151.06 32044.58 37651.04 19839.91 36067.56 25721.84 37151.94 34950.79 36933.83 31539.77 36435.25 33361.50 35362.38 344
PVSNet_036.71 2241.12 33740.78 34042.14 34759.97 33540.13 29940.97 35742.24 36330.81 35144.86 36649.41 37040.70 28545.12 34923.15 36934.96 37341.16 369
EMVS44.61 33144.45 33645.10 34148.91 37243.00 27737.92 36341.10 36846.75 26638.00 37348.43 37126.42 35746.27 34337.11 32175.38 29746.03 364
test_method19.26 34219.12 34619.71 3579.09 3811.91 3837.79 37253.44 3311.42 37510.27 37735.80 37217.42 37825.11 37612.44 37424.38 37532.10 372
DeepMVS_CXcopyleft11.83 35815.51 38013.86 37911.25 3835.76 37420.85 37626.46 37317.06 3799.22 3779.69 37613.82 37612.42 373
X-MVStestdata76.81 7774.79 9982.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 37473.86 5286.31 1878.84 1994.03 5384.64 101
tmp_tt11.98 34414.73 3473.72 3592.28 3824.62 38219.44 37114.50 3820.47 37721.55 3759.58 37525.78 3614.57 37811.61 37527.37 3741.96 374
test_post166.63 2422.08 37630.66 34259.33 31740.34 298
test_post1.99 37730.91 34054.76 325
test1234.43 3475.78 3500.39 3610.97 3830.28 38446.33 3500.45 3840.31 3780.62 3791.50 3780.61 3840.11 3800.56 3770.63 3770.77 376
testmvs4.06 3485.28 3510.41 3600.64 3840.16 38542.54 3550.31 3850.26 3790.50 3801.40 3790.77 3830.17 3790.56 3770.55 3780.90 375
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas5.20 3466.93 3490.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38062.39 1410.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3800.00 3850.00 3810.00 3790.00 3790.00 377
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
MSC_two_6792asdad79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
No_MVS79.02 5483.14 9667.03 8780.75 11786.24 2177.27 3294.85 2583.78 128
eth-test20.00 385
eth-test0.00 385
IU-MVS86.12 5360.90 13580.38 12845.49 27281.31 10175.64 3994.39 4184.65 100
save fliter87.00 3967.23 8679.24 8377.94 17056.65 160
test_0728_SECOND76.57 8386.20 4860.57 14083.77 4085.49 2985.90 3675.86 3794.39 4183.25 144
GSMVS70.05 300
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 33370.05 300
sam_mvs31.21 337
MTGPAbinary80.63 122
MTMP84.83 3119.26 381
test9_res72.12 6491.37 9377.40 241
agg_prior270.70 7090.93 10878.55 227
agg_prior84.44 8266.02 9478.62 15976.95 15080.34 137
test_prior470.14 6377.57 100
test_prior75.27 10082.15 11659.85 14584.33 5983.39 8482.58 162
旧先验271.17 18045.11 27778.54 13061.28 31359.19 163
新几何271.33 176
无先验74.82 13670.94 23947.75 26076.85 19854.47 19972.09 283
原ACMM274.78 140
testdata267.30 28448.34 247
segment_acmp68.30 93
testdata168.34 21857.24 153
test1276.51 8482.28 11460.94 13481.64 9973.60 20064.88 12585.19 5790.42 12183.38 140
plane_prior785.18 6666.21 93
plane_prior684.18 8565.31 9860.83 159
plane_prior585.49 2986.15 2671.09 6690.94 10684.82 96
plane_prior365.67 9563.82 9478.23 132
plane_prior282.74 5165.45 73
plane_prior184.46 81
plane_prior65.18 9980.06 7761.88 11389.91 132
n20.00 386
nn0.00 386
door-mid55.02 323
test1182.71 84
door52.91 335
HQP5-MVS58.80 154
HQP-NCC82.37 11177.32 10559.08 13171.58 226
ACMP_Plane82.37 11177.32 10559.08 13171.58 226
BP-MVS67.38 94
HQP4-MVS71.59 22585.31 5083.74 130
HQP3-MVS84.12 6589.16 146
HQP2-MVS58.09 184
MDTV_nov1_ep13_2view18.41 37653.74 33131.57 34844.89 36529.90 34832.93 34171.48 287
ACMMP++_ref89.47 141
ACMMP++91.96 83
Test By Simon62.56 137