This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9297.05 296.93 1
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14475.34 1979.80 11994.91 269.79 8880.25 14672.63 6694.46 3988.78 42
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
UniMVSNet_ETH3D76.74 8279.02 6569.92 19589.27 2043.81 29074.47 15471.70 23772.33 4085.50 5393.65 477.98 2376.88 20554.60 22191.64 8889.08 32
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 10061.89 12188.77 1693.32 557.15 21582.60 10370.08 8092.80 7389.25 28
K. test v373.67 11573.61 12473.87 12379.78 14155.62 18974.69 15062.04 31766.16 7584.76 6393.23 649.47 26080.97 13365.66 11986.67 19785.02 94
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11981.53 492.15 8488.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
DTE-MVSNet80.35 5282.89 3972.74 15289.84 837.34 35077.16 11481.81 10580.45 490.92 492.95 874.57 5086.12 3163.65 13894.68 3594.76 6
Anonymous2023121175.54 9277.19 8370.59 17977.67 17645.70 27874.73 14880.19 14068.80 5882.95 8292.91 966.26 12276.76 20758.41 18692.77 7489.30 27
PEN-MVS80.46 5082.91 3873.11 13789.83 939.02 33377.06 11782.61 9380.04 590.60 792.85 1074.93 4785.21 6063.15 14595.15 2195.09 2
pmmvs671.82 15273.66 12266.31 24875.94 20542.01 30766.99 25972.53 23263.45 10876.43 17692.78 1172.95 6269.69 28251.41 24590.46 12187.22 57
PS-CasMVS80.41 5182.86 4073.07 13889.93 739.21 33077.15 11581.28 11579.74 690.87 592.73 1275.03 4684.93 6563.83 13795.19 1995.07 3
gg-mvs-nofinetune55.75 31456.75 31252.72 34762.87 35728.04 39868.92 22741.36 41071.09 4650.80 39692.63 1320.74 40966.86 31029.97 38972.41 34963.25 379
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9570.72 4987.54 2592.44 1568.00 10381.34 12172.84 6491.72 8691.69 11
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15153.48 21686.29 3992.43 1662.39 15680.25 14667.90 9790.61 11987.77 50
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20552.27 22587.37 3092.25 1768.04 10280.56 13972.28 7191.15 10090.32 21
SixPastTwentyTwo75.77 8776.34 8974.06 12081.69 12454.84 19276.47 12075.49 20764.10 9987.73 2192.24 1850.45 25581.30 12367.41 10191.46 9386.04 73
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 186
WR-MVS_H80.22 5482.17 4574.39 11589.46 1542.69 30378.24 10182.24 9778.21 1389.57 1092.10 1968.05 10185.59 5066.04 11695.62 1094.88 5
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15774.08 2487.16 3291.97 2184.80 276.97 20264.98 12393.61 6372.28 315
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVSMamba_PlusPlus76.88 8078.21 7472.88 14880.83 13248.71 23983.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7886.15 20185.99 74
ANet_high67.08 21969.94 17858.51 31857.55 38927.09 40158.43 33876.80 19663.56 10582.40 8991.93 2359.82 18764.98 32550.10 25688.86 15783.46 146
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19851.98 23087.40 2791.86 2676.09 3678.53 17368.58 8790.20 12486.69 66
test_040278.17 7279.48 6374.24 11783.50 9459.15 16372.52 17074.60 21575.34 1988.69 1791.81 2775.06 4582.37 10665.10 12188.68 15881.20 198
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 145
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
VDDNet71.60 15573.13 13467.02 24186.29 4841.11 31369.97 21366.50 28368.72 6074.74 19691.70 2959.90 18575.81 21348.58 27191.72 8684.15 127
CP-MVSNet79.48 5881.65 4972.98 14189.66 1339.06 33276.76 11880.46 13578.91 990.32 891.70 2968.49 9684.89 6663.40 14295.12 2295.01 4
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 48
EGC-MVSNET64.77 24361.17 27775.60 10286.90 4374.47 3484.04 3968.62 2740.60 4221.13 42491.61 3265.32 13374.15 23864.01 13188.28 16278.17 253
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 20051.33 24087.19 3191.51 3373.79 5778.44 17768.27 9090.13 12886.49 68
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11195.46 1287.89 49
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11351.71 23277.15 15191.42 3665.49 13087.20 779.44 1787.17 18984.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10464.82 12596.10 587.21 58
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 151
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 170
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testf175.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
APD_test275.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 20050.51 24989.19 1190.88 4571.45 7277.78 19573.38 6090.60 12090.90 17
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 132
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 180
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13172.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 210
MIMVSNet166.57 22569.23 18658.59 31781.26 13037.73 34764.06 29557.62 32957.02 16378.40 13690.75 4962.65 15158.10 35441.77 32189.58 14079.95 228
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 95
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 95
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 130
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 125
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 178
Baseline_NR-MVSNet70.62 16773.19 13262.92 28076.97 18534.44 36868.84 22870.88 25760.25 13379.50 12290.53 5661.82 16269.11 28654.67 22095.27 1485.22 87
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 75
Anonymous2024052972.56 14373.79 12068.86 21776.89 19045.21 28168.80 23277.25 19267.16 6676.89 15790.44 5965.95 12574.19 23750.75 25090.00 12987.18 60
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 167
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DVP-MVScopyleft81.15 4183.12 3675.24 10786.16 5260.78 14983.77 4480.58 13372.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 239
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 122
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 86
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 110
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 105
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 142
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
FC-MVSNet-test73.32 12374.78 10468.93 21579.21 15136.57 35271.82 18779.54 15357.63 15982.57 8890.38 6759.38 19178.99 16557.91 18994.56 3791.23 13
GBi-Net68.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
test168.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
FMVSNet171.06 16072.48 14766.81 24277.65 17740.68 32071.96 18173.03 22461.14 12579.45 12390.36 7060.44 18075.20 22350.20 25588.05 16684.54 112
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 158
ACMH63.62 1477.50 7680.11 5869.68 19779.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24467.58 9894.44 4279.44 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 124
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 34
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 175
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11391.24 9787.61 53
TransMVSNet (Re)69.62 18071.63 15963.57 26976.51 19435.93 35865.75 27671.29 24861.05 12675.02 19289.90 8165.88 12770.41 27949.79 25789.48 14284.38 120
RPSCF75.76 8874.37 10979.93 4474.81 21977.53 1877.53 10979.30 15659.44 13978.88 12989.80 8271.26 7473.09 24657.45 19180.89 26789.17 31
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 159
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 153
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 14172.51 6893.37 6683.48 144
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
FIs72.56 14373.80 11968.84 21878.74 16237.74 34671.02 19979.83 14656.12 17380.88 11189.45 8758.18 20078.28 18456.63 19793.36 6790.51 20
pm-mvs168.40 19969.85 18064.04 26573.10 25239.94 32764.61 29070.50 26055.52 18073.97 21489.33 8863.91 14468.38 29249.68 25988.02 16783.81 133
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8874.03 5693.57 6584.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v875.07 10075.64 9773.35 13173.42 24347.46 26075.20 13881.45 11160.05 13485.64 4889.26 9058.08 20681.80 11669.71 8487.97 16990.79 18
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 17084.61 8142.57 30570.98 20078.29 17768.67 6183.04 7989.26 9072.99 6180.75 13855.58 21295.47 1191.35 12
SSC-MVS61.79 27666.08 23048.89 36976.91 18710.00 42653.56 36947.37 38768.20 6376.56 16989.21 9254.13 23557.59 35554.75 21874.07 33879.08 242
nrg03074.87 10775.99 9471.52 17174.90 21749.88 23374.10 16082.58 9454.55 19683.50 7789.21 9271.51 7075.74 21561.24 15692.34 8188.94 37
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9276.01 4193.77 6184.81 102
v1075.69 8976.20 9174.16 11874.44 22848.69 24075.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 10170.73 7689.14 15191.05 14
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14274.27 5495.73 880.98 206
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ZD-MVS83.91 9069.36 7381.09 12158.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7490.94 10784.82 100
plane_prior489.11 97
mvs5depth66.35 22967.98 20661.47 29362.43 35951.05 21569.38 22169.24 26956.74 16773.62 21789.06 10046.96 27758.63 35055.87 20788.49 16074.73 288
lessismore_v072.75 15179.60 14456.83 17957.37 33283.80 7489.01 10147.45 27578.74 17064.39 12886.49 20082.69 173
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 18174.80 4790.76 11882.40 179
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 200
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Gipumacopyleft69.55 18272.83 14159.70 30863.63 35553.97 19980.08 8275.93 20364.24 9873.49 22088.93 10457.89 21062.46 33459.75 17691.55 9262.67 382
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18374.73 4985.79 20682.35 180
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15772.87 25849.47 23472.94 16884.71 5459.49 13880.90 11088.81 10670.07 8479.71 15467.40 10288.39 16188.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16771.22 4572.40 23588.70 10760.51 17987.70 477.40 3689.13 15285.48 85
VDD-MVS70.81 16571.44 16468.91 21679.07 15746.51 26967.82 24670.83 25861.23 12474.07 21188.69 10859.86 18675.62 21651.11 24790.28 12384.61 108
test250661.23 28060.85 28162.38 28478.80 16027.88 39967.33 25537.42 41554.23 20267.55 30088.68 10917.87 41874.39 23446.33 29389.41 14484.86 98
ECVR-MVScopyleft64.82 24165.22 23963.60 26878.80 16031.14 38566.97 26056.47 34354.23 20269.94 26988.68 10937.23 33474.81 22945.28 30389.41 14484.86 98
mmtdpeth68.76 19470.55 17463.40 27367.06 32956.26 18168.73 23571.22 25255.47 18170.09 26688.64 11165.29 13456.89 35758.94 18289.50 14177.04 272
APD_test175.04 10175.38 10174.02 12169.89 29370.15 6676.46 12179.71 14765.50 7982.99 8188.60 11266.94 11072.35 25759.77 17588.54 15979.56 233
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10168.80 5880.92 10888.52 11372.00 6882.39 10574.80 4793.04 7081.14 200
test111164.62 24465.19 24062.93 27979.01 15829.91 39165.45 28054.41 35354.09 20771.47 25288.48 11437.02 33574.29 23646.83 28989.94 13284.58 111
Vis-MVSNetpermissive74.85 10874.56 10675.72 9981.63 12564.64 11376.35 12579.06 15962.85 11573.33 22388.41 11562.54 15479.59 15763.94 13682.92 24582.94 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14164.71 9578.11 14088.39 11665.46 13183.14 9377.64 3391.20 9878.94 243
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23584.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VPA-MVSNet68.71 19670.37 17563.72 26776.13 20038.06 34464.10 29471.48 24256.60 17174.10 21088.31 11864.78 13969.72 28147.69 28290.15 12683.37 150
ambc70.10 19177.74 17450.21 22474.28 15877.93 18479.26 12488.29 11954.11 23679.77 15364.43 12791.10 10480.30 224
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11773.75 5893.78 60
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
LCM-MVSNet-Re69.10 18971.57 16261.70 28970.37 28534.30 37061.45 31279.62 14856.81 16589.59 988.16 12368.44 9772.94 24742.30 31587.33 18177.85 260
MG-MVS70.47 16971.34 16567.85 23079.26 14940.42 32474.67 15175.15 21158.41 14868.74 28988.14 12456.08 22783.69 8259.90 17381.71 26179.43 238
IS-MVSNet75.10 9975.42 10074.15 11979.23 15048.05 24979.43 8678.04 18170.09 5479.17 12688.02 12553.04 24083.60 8358.05 18893.76 6290.79 18
tt080576.12 8678.43 7269.20 20581.32 12841.37 31176.72 11977.64 18663.78 10382.06 9187.88 12679.78 1179.05 16364.33 12992.40 7987.17 61
tfpnnormal66.48 22667.93 20762.16 28673.40 24436.65 35163.45 30064.99 29555.97 17572.82 22987.80 12757.06 21869.10 28748.31 27587.54 17380.72 215
balanced_conf0373.59 11774.06 11472.17 16577.48 17947.72 25681.43 6582.20 9854.38 19779.19 12587.68 12854.41 23383.57 8463.98 13385.78 20785.22 87
WB-MVS60.04 29064.19 25147.59 37276.09 20110.22 42552.44 37446.74 38965.17 8874.07 21187.48 12953.48 23855.28 36149.36 26372.84 34677.28 263
RRT-MVS70.33 17070.73 17169.14 20871.93 26545.24 28075.10 13975.08 21260.85 12978.62 13187.36 13049.54 25978.64 17160.16 16877.90 30683.55 140
MVS_030475.45 9374.66 10577.83 7475.58 20961.53 13678.29 9977.18 19363.15 11469.97 26887.20 13157.54 21387.05 1074.05 5588.96 15584.89 95
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20477.68 14787.18 13269.98 8585.37 5368.01 9492.72 7685.08 92
casdiffmvspermissive73.06 13073.84 11870.72 17771.32 27046.71 26870.93 20184.26 6555.62 17977.46 14987.10 13367.09 10977.81 19363.95 13486.83 19487.64 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DU-MVS74.91 10475.57 9872.93 14583.50 9445.79 27569.47 21980.14 14265.22 8681.74 9787.08 13461.82 16281.07 12956.21 20394.98 2491.93 9
NR-MVSNet73.62 11674.05 11572.33 16283.50 9443.71 29165.65 27777.32 19064.32 9775.59 18487.08 13462.45 15581.34 12154.90 21695.63 991.93 9
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13377.70 3292.32 8280.62 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
旧先验184.55 8260.36 15463.69 30687.05 13754.65 23183.34 24369.66 341
ttmdpeth56.40 31155.45 32259.25 31155.63 39940.69 31958.94 33349.72 37736.22 36665.39 31286.97 13823.16 40456.69 35842.30 31580.74 27180.36 223
PatchT53.35 33456.47 31443.99 38864.19 35117.46 41959.15 32843.10 40052.11 22854.74 38286.95 13929.97 38049.98 37343.62 30974.40 33464.53 377
wuyk23d61.97 27366.25 22849.12 36758.19 38860.77 15166.32 26852.97 36355.93 17790.62 686.91 14073.07 6035.98 41420.63 41791.63 8950.62 403
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15583.04 10445.79 27569.26 22378.81 16366.66 7181.74 9786.88 14163.26 14681.07 12956.21 20394.98 2491.05 14
EPP-MVSNet73.86 11473.38 12775.31 10578.19 16653.35 20580.45 7377.32 19065.11 8976.47 17586.80 14249.47 26083.77 8153.89 23092.72 7688.81 41
TinyColmap67.98 20669.28 18364.08 26367.98 31646.82 26670.04 21175.26 20953.05 21877.36 15086.79 14359.39 19072.59 25445.64 29888.01 16872.83 308
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8192.76 75
RPMNet65.77 23365.08 24767.84 23166.37 33148.24 24570.93 20186.27 2054.66 19261.35 34286.77 14533.29 34885.67 4955.93 20570.17 36769.62 342
TEST985.47 6769.32 7476.42 12378.69 16853.73 21476.97 15386.74 14666.84 11281.10 127
train_agg76.38 8476.55 8875.86 9885.47 6769.32 7476.42 12378.69 16854.00 20976.97 15386.74 14666.60 11881.10 12772.50 6991.56 9177.15 267
test_885.09 7367.89 8376.26 12878.66 17054.00 20976.89 15786.72 14866.60 11880.89 137
MVS_Test69.84 17770.71 17267.24 23767.49 32143.25 29869.87 21581.22 11852.69 22271.57 24886.68 14962.09 16074.51 23266.05 11578.74 29483.96 129
CR-MVSNet58.96 29758.49 29860.36 30566.37 33148.24 24570.93 20156.40 34432.87 38561.35 34286.66 15033.19 34963.22 33348.50 27270.17 36769.62 342
Patchmtry60.91 28263.01 26554.62 33866.10 33726.27 40767.47 25056.40 34454.05 20872.04 24186.66 15033.19 34960.17 34343.69 30887.45 17777.42 261
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9692.44 7889.60 24
VPNet65.58 23467.56 21259.65 30979.72 14230.17 39060.27 32362.14 31354.19 20571.24 25386.63 15358.80 19667.62 29944.17 30790.87 11481.18 199
IterMVS-LS73.01 13273.12 13572.66 15473.79 23949.90 22971.63 18978.44 17358.22 14980.51 11386.63 15358.15 20279.62 15562.51 14788.20 16388.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
testdata64.13 26285.87 6263.34 12261.80 31847.83 27676.42 17786.60 15548.83 26762.31 33654.46 22381.26 26566.74 362
LFMVS67.06 22067.89 20864.56 25978.02 16938.25 34170.81 20459.60 32465.18 8771.06 25586.56 15643.85 29275.22 22146.35 29289.63 13780.21 226
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10963.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 184
FMVSNet267.48 21368.21 20365.29 25473.14 24938.94 33468.81 23071.21 25354.81 18676.73 16386.48 15848.63 27074.60 23147.98 27986.11 20482.35 180
baseline73.10 12773.96 11770.51 18171.46 26946.39 27272.08 17684.40 6255.95 17676.62 16686.46 15967.20 10778.03 19064.22 13087.27 18587.11 62
WR-MVS71.20 15972.48 14767.36 23684.98 7435.70 36064.43 29268.66 27365.05 9081.49 10086.43 16057.57 21276.48 20950.36 25493.32 6889.90 22
UniMVSNet (Re)75.00 10275.48 9973.56 12983.14 9947.92 25170.41 20981.04 12363.67 10479.54 12186.37 16162.83 15081.82 11557.10 19595.25 1590.94 16
PC_three_145246.98 28381.83 9486.28 16266.55 12184.47 7463.31 14490.78 11583.49 142
DP-MVS78.44 7079.29 6475.90 9781.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8962.45 14992.40 7978.92 244
ab-mvs64.11 25365.13 24461.05 29871.99 26438.03 34567.59 24768.79 27249.08 26765.32 31486.26 16458.02 20966.85 31139.33 33379.79 28678.27 251
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12465.77 7675.55 18586.25 16567.42 10685.42 5270.10 7990.88 11381.81 191
FA-MVS(test-final)71.27 15871.06 16771.92 16773.96 23652.32 21076.45 12276.12 20059.07 14374.04 21386.18 16652.18 24479.43 15959.75 17681.76 25784.03 128
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13466.87 6883.64 7686.18 16670.25 8379.90 15261.12 15988.95 15687.56 54
原ACMM173.90 12285.90 6065.15 11081.67 10750.97 24474.25 20786.16 16861.60 16483.54 8556.75 19691.08 10573.00 305
UGNet70.20 17269.05 18873.65 12576.24 19863.64 11975.87 13472.53 23261.48 12360.93 34886.14 16952.37 24377.12 20150.67 25185.21 21580.17 227
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15389.79 13683.08 159
新几何169.99 19388.37 3571.34 5562.08 31543.85 30774.99 19386.11 17152.85 24170.57 27550.99 24983.23 24468.05 353
mvs_anonymous65.08 23965.49 23663.83 26663.79 35337.60 34866.52 26769.82 26543.44 31573.46 22186.08 17258.79 19771.75 26651.90 24175.63 32182.15 185
114514_t73.40 12173.33 13173.64 12684.15 8957.11 17678.20 10280.02 14343.76 31072.55 23286.07 17364.00 14383.35 9160.14 17091.03 10680.45 221
NP-MVS83.34 9863.07 12585.97 174
HQP-MVS75.24 9775.01 10275.94 9682.37 11358.80 16877.32 11184.12 6959.08 14071.58 24585.96 17558.09 20485.30 5567.38 10589.16 14883.73 137
Anonymous20240521166.02 23166.89 22463.43 27274.22 23138.14 34259.00 33166.13 28563.33 11169.76 27285.95 17651.88 24570.50 27644.23 30687.52 17481.64 195
Anonymous2024052163.55 25666.07 23155.99 33166.18 33644.04 28968.77 23368.80 27146.99 28272.57 23185.84 17739.87 31750.22 37253.40 23792.23 8373.71 300
JIA-IIPM54.03 32851.62 34761.25 29759.14 38255.21 19159.10 33047.72 38450.85 24550.31 40085.81 17820.10 41163.97 32836.16 36255.41 41064.55 376
test22287.30 3869.15 7767.85 24559.59 32541.06 33173.05 22785.72 17948.03 27380.65 27266.92 358
KD-MVS_self_test66.38 22767.51 21362.97 27861.76 36334.39 36958.11 34175.30 20850.84 24677.12 15285.42 18056.84 22069.44 28351.07 24891.16 9985.08 92
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16874.88 19585.32 18165.54 12987.79 365.61 12091.14 10183.35 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16980.27 11685.31 18268.56 9587.03 1267.39 10391.26 9683.50 141
v2v48272.55 14572.58 14572.43 15972.92 25746.72 26771.41 19279.13 15855.27 18281.17 10585.25 18355.41 22881.13 12667.25 10985.46 20989.43 26
QAPM69.18 18869.26 18468.94 21471.61 26752.58 20980.37 7678.79 16649.63 25973.51 21985.14 18453.66 23779.12 16255.11 21475.54 32275.11 286
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10869.79 29766.25 9775.90 13379.90 14546.03 28976.48 17485.02 18567.96 10473.97 23974.47 5287.22 18683.90 131
FE-MVS68.29 20366.96 22372.26 16374.16 23354.24 19777.55 10873.42 22357.65 15872.66 23084.91 18632.02 36181.49 12048.43 27381.85 25581.04 202
v114473.29 12473.39 12673.01 13974.12 23448.11 24772.01 17981.08 12253.83 21381.77 9584.68 18758.07 20781.91 11468.10 9186.86 19288.99 36
BP-MVS171.60 15570.06 17776.20 9474.07 23555.22 19074.29 15773.44 22257.29 16173.87 21684.65 18832.57 35483.49 8772.43 7087.94 17089.89 23
MVStest155.38 31954.97 32656.58 32843.72 42140.07 32659.13 32947.09 38834.83 37376.53 17284.65 18813.55 42553.30 36755.04 21580.23 27776.38 274
3Dnovator65.95 1171.50 15771.22 16672.34 16173.16 24863.09 12478.37 9878.32 17557.67 15672.22 23884.61 19054.77 22978.47 17560.82 16281.07 26675.45 281
v119273.40 12173.42 12573.32 13374.65 22548.67 24172.21 17481.73 10652.76 22181.85 9384.56 19157.12 21682.24 11068.58 8787.33 18189.06 33
mvsmamba68.87 19167.30 21873.57 12876.58 19353.70 20284.43 3774.25 21745.38 29776.63 16584.55 19235.85 34085.27 5649.54 26178.49 29881.75 193
EC-MVSNet77.08 7977.39 8176.14 9576.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19369.87 8784.94 6469.76 8289.59 13986.60 67
USDC62.80 26663.10 26461.89 28765.19 34343.30 29767.42 25174.20 21835.80 37072.25 23784.48 19445.67 28071.95 26337.95 34684.97 21870.42 335
tttt051769.46 18367.79 21174.46 11175.34 21052.72 20775.05 14063.27 31054.69 19178.87 13084.37 19526.63 38981.15 12563.95 13487.93 17189.51 25
PCF-MVS63.80 1372.70 14171.69 15775.72 9978.10 16760.01 15673.04 16781.50 10945.34 29879.66 12084.35 19665.15 13582.65 10248.70 26989.38 14784.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
v124073.06 13073.14 13372.84 14974.74 22147.27 26471.88 18681.11 11951.80 23182.28 9084.21 19756.22 22682.34 10768.82 8687.17 18988.91 38
v14869.38 18669.39 18269.36 20169.14 30244.56 28568.83 22972.70 23054.79 18978.59 13284.12 19854.69 23076.74 20859.40 17982.20 25086.79 64
v14419272.99 13473.06 13772.77 15074.58 22647.48 25971.90 18580.44 13651.57 23481.46 10184.11 19958.04 20882.12 11167.98 9587.47 17688.70 43
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23684.00 20064.56 14083.07 9651.48 24387.19 18882.56 177
test_fmvsmconf0.1_n73.26 12572.82 14274.56 11069.10 30366.18 9974.65 15279.34 15545.58 29275.54 18683.91 20167.19 10873.88 24273.26 6186.86 19283.63 139
v192192072.96 13672.98 13972.89 14774.67 22247.58 25871.92 18480.69 12851.70 23381.69 9983.89 20256.58 22282.25 10968.34 8987.36 17888.82 40
MIMVSNet54.39 32556.12 31749.20 36572.57 25930.91 38659.98 32548.43 38341.66 32555.94 37583.86 20341.19 30850.42 37126.05 40275.38 32566.27 363
GDP-MVS70.84 16469.24 18575.62 10176.44 19555.65 18774.62 15382.78 8949.63 25972.10 24083.79 20431.86 36282.84 9964.93 12487.01 19188.39 47
MCST-MVS73.42 12073.34 13073.63 12781.28 12959.17 16274.80 14683.13 8345.50 29372.84 22883.78 20565.15 13580.99 13164.54 12689.09 15480.73 214
dcpmvs_271.02 16272.65 14466.16 24976.06 20450.49 22071.97 18079.36 15450.34 25082.81 8583.63 20664.38 14167.27 30461.54 15483.71 23980.71 216
OpenMVScopyleft62.51 1568.76 19468.75 19468.78 21970.56 28053.91 20078.29 9977.35 18948.85 26870.22 26383.52 20752.65 24276.93 20355.31 21381.99 25275.49 280
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20771.12 25454.28 20077.89 14183.41 20849.04 26480.98 13263.62 13990.77 11778.58 247
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21868.08 8177.89 10584.04 7255.15 18476.19 18083.39 20966.91 11180.11 15060.04 17290.14 12785.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
FMVSNet555.08 32255.54 32153.71 34065.80 33833.50 37456.22 35152.50 36543.72 31261.06 34583.38 21025.46 39554.87 36230.11 38881.64 26372.75 309
VNet64.01 25565.15 24360.57 30373.28 24635.61 36157.60 34367.08 28054.61 19366.76 30683.37 21156.28 22566.87 30942.19 31785.20 21679.23 240
Vis-MVSNet (Re-imp)62.74 26863.21 26361.34 29672.19 26231.56 38267.31 25653.87 35553.60 21569.88 27083.37 21140.52 31370.98 27241.40 32386.78 19581.48 197
GeoE73.14 12673.77 12171.26 17478.09 16852.64 20874.32 15579.56 15256.32 17276.35 17883.36 21370.76 7977.96 19163.32 14381.84 25683.18 156
PAPM_NR73.91 11274.16 11373.16 13581.90 12153.50 20381.28 6681.40 11266.17 7473.30 22483.31 21459.96 18483.10 9558.45 18581.66 26282.87 165
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9260.39 13274.15 20883.30 21569.65 8982.07 11269.27 8586.75 19687.36 56
FMVSNet365.00 24065.16 24164.52 26069.47 29937.56 34966.63 26570.38 26151.55 23574.72 19783.27 21637.89 33174.44 23347.12 28485.37 21081.57 196
test_fmvsmconf_n72.91 13772.40 14974.46 11168.62 30766.12 10074.21 15978.80 16545.64 29174.62 20183.25 21766.80 11673.86 24372.97 6386.66 19883.39 148
V4271.06 16070.83 17071.72 16867.25 32347.14 26565.94 27180.35 13951.35 23983.40 7883.23 21859.25 19278.80 16865.91 11780.81 27089.23 29
test20.0355.74 31557.51 30750.42 35859.89 37732.09 37950.63 37949.01 38050.11 25465.07 31683.23 21845.61 28148.11 38130.22 38783.82 23671.07 330
CNLPA73.44 11973.03 13874.66 10978.27 16575.29 3075.99 13278.49 17265.39 8275.67 18383.22 22061.23 17066.77 31353.70 23285.33 21381.92 190
EPNet69.10 18967.32 21674.46 11168.33 31161.27 14077.56 10763.57 30760.95 12756.62 37282.75 22151.53 24981.24 12454.36 22690.20 12480.88 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
SDMVSNet66.36 22867.85 21061.88 28873.04 25546.14 27458.54 33671.36 24551.42 23768.93 28382.72 22265.62 12862.22 33754.41 22484.67 22377.28 263
sd_testset63.55 25665.38 23758.07 32073.04 25538.83 33657.41 34465.44 29251.42 23768.93 28382.72 22263.76 14558.11 35341.05 32584.67 22377.28 263
IterMVS-SCA-FT67.68 21166.07 23172.49 15873.34 24558.20 17363.80 29765.55 29148.10 27276.91 15682.64 22445.20 28378.84 16761.20 15777.89 30780.44 222
DIV-MVS_self_test68.27 20468.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.43 22548.74 26875.38 21760.94 16089.81 13485.81 77
cl____68.26 20568.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.42 22648.74 26875.38 21760.92 16189.81 13485.80 81
MVS_111021_HR72.98 13572.97 14072.99 14080.82 13365.47 10468.81 23072.77 22957.67 15675.76 18282.38 22771.01 7777.17 20061.38 15586.15 20176.32 275
pmmvs-eth3d64.41 25063.27 26267.82 23275.81 20760.18 15569.49 21862.05 31638.81 35174.13 20982.23 22843.76 29368.65 29042.53 31480.63 27474.63 289
MGCFI-Net71.70 15473.10 13667.49 23473.23 24743.08 29972.06 17782.43 9654.58 19475.97 18182.00 22972.42 6375.22 22157.84 19087.34 18084.18 125
alignmvs70.54 16871.00 16869.15 20773.50 24148.04 25069.85 21679.62 14853.94 21276.54 17182.00 22959.00 19474.68 23057.32 19287.21 18784.72 103
MSLP-MVS++74.48 10975.78 9570.59 17984.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 23163.12 14777.64 19762.95 14688.14 16471.73 320
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15582.96 8557.75 15470.35 26181.98 23164.34 14284.41 7649.69 25889.95 13180.89 208
BH-RMVSNet68.69 19768.20 20470.14 19076.40 19653.90 20164.62 28973.48 22158.01 15173.91 21581.78 23359.09 19378.22 18548.59 27077.96 30578.31 250
EG-PatchMatch MVS70.70 16670.88 16970.16 18982.64 11258.80 16871.48 19073.64 22054.98 18576.55 17081.77 23461.10 17478.94 16654.87 21780.84 26972.74 310
MVS_111021_LR72.10 15071.82 15672.95 14279.53 14573.90 4070.45 20866.64 28256.87 16476.81 16181.76 23568.78 9371.76 26561.81 15083.74 23773.18 303
AdaColmapbinary74.22 11074.56 10673.20 13481.95 12060.97 14579.43 8680.90 12565.57 7872.54 23381.76 23570.98 7885.26 5747.88 28090.00 12973.37 301
sasdasda72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
canonicalmvs72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
MVS-HIRNet45.53 36947.29 36940.24 39462.29 36026.82 40256.02 35437.41 41629.74 39743.69 41581.27 23933.96 34555.48 36024.46 41056.79 40638.43 415
CMPMVSbinary48.73 2061.54 27960.89 28063.52 27061.08 36751.55 21268.07 24468.00 27733.88 37965.87 30981.25 24037.91 33067.71 29749.32 26482.60 24871.31 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
testgi54.00 33056.86 31145.45 38158.20 38725.81 40949.05 38349.50 37945.43 29667.84 29581.17 24151.81 24843.20 40129.30 39279.41 28967.34 357
fmvsm_l_conf0.5_n67.48 21366.88 22569.28 20467.41 32262.04 13070.69 20569.85 26439.46 34469.59 27381.09 24258.15 20268.73 28867.51 10078.16 30477.07 271
test_fmvsmvis_n_192072.36 14672.49 14671.96 16671.29 27164.06 11772.79 16981.82 10440.23 34181.25 10481.04 24370.62 8068.69 28969.74 8383.60 24183.14 157
CL-MVSNet_self_test62.44 27163.40 26059.55 31072.34 26132.38 37756.39 34964.84 29751.21 24267.46 30181.01 24450.75 25363.51 33238.47 34288.12 16582.75 169
fmvsm_s_conf0.1_n_a67.37 21766.36 22770.37 18370.86 27361.17 14174.00 16157.18 33640.77 33668.83 28880.88 24563.11 14867.61 30066.94 11074.72 32982.33 183
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26580.80 24666.74 11781.96 11361.74 15289.40 14685.69 82
thisisatest053067.05 22165.16 24172.73 15373.10 25250.55 21971.26 19763.91 30550.22 25374.46 20480.75 24726.81 38880.25 14659.43 17886.50 19987.37 55
PHI-MVS74.92 10374.36 11076.61 8676.40 19662.32 12980.38 7583.15 8254.16 20673.23 22580.75 24762.19 15983.86 8068.02 9390.92 11083.65 138
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11654.57 19567.09 30580.63 24959.44 18981.74 11846.91 28784.17 23278.63 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
PM-MVS64.49 24763.61 25767.14 24076.68 19275.15 3168.49 23942.85 40251.17 24377.85 14380.51 25045.76 27966.31 31652.83 23876.35 31559.96 391
CANet73.00 13371.84 15576.48 8975.82 20661.28 13974.81 14480.37 13863.17 11262.43 33880.50 25161.10 17485.16 6364.00 13284.34 23183.01 162
IterMVS63.12 26262.48 26965.02 25766.34 33352.86 20663.81 29662.25 31246.57 28571.51 25080.40 25244.60 28866.82 31251.38 24675.47 32375.38 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
fmvsm_l_conf0.5_n_a66.66 22365.97 23368.72 22067.09 32561.38 13870.03 21269.15 27038.59 35268.41 29080.36 25356.56 22368.32 29366.10 11477.45 30976.46 273
eth_miper_zixun_eth69.42 18468.73 19671.50 17267.99 31546.42 27067.58 24878.81 16350.72 24778.13 13980.34 25450.15 25780.34 14460.18 16784.65 22587.74 51
DPM-MVS69.98 17569.22 18772.26 16382.69 11158.82 16770.53 20681.23 11747.79 27764.16 32280.21 25551.32 25183.12 9460.14 17084.95 22274.83 287
LF4IMVS67.50 21267.31 21768.08 22858.86 38361.93 13171.43 19175.90 20444.67 30472.42 23480.20 25657.16 21470.44 27758.99 18186.12 20371.88 318
CSCG74.12 11174.39 10873.33 13279.35 14761.66 13577.45 11081.98 10262.47 11979.06 12880.19 25761.83 16178.79 16959.83 17487.35 17979.54 236
c3_l69.82 17869.89 17969.61 19866.24 33443.48 29468.12 24379.61 15051.43 23677.72 14580.18 25854.61 23278.15 18963.62 13987.50 17587.20 59
fmvsm_s_conf0.1_n66.60 22465.54 23569.77 19668.99 30459.15 16372.12 17556.74 34140.72 33868.25 29480.14 25961.18 17366.92 30767.34 10774.40 33483.23 155
fmvsm_s_conf0.5_n_a67.00 22265.95 23470.17 18869.72 29861.16 14273.34 16556.83 33940.96 33368.36 29180.08 26062.84 14967.57 30166.90 11274.50 33381.78 192
FPMVS59.43 29560.07 28657.51 32377.62 17871.52 5362.33 30950.92 37157.40 16069.40 27580.00 26139.14 32361.92 33837.47 35066.36 38439.09 414
thres100view90061.17 28161.09 27861.39 29472.14 26335.01 36465.42 28156.99 33755.23 18370.71 25879.90 26232.07 35972.09 25935.61 36581.73 25877.08 269
new-patchmatchnet52.89 33855.76 32044.26 38759.94 3766.31 42737.36 41150.76 37341.10 33064.28 32179.82 26344.77 28648.43 38036.24 36187.61 17278.03 256
thres600view761.82 27561.38 27663.12 27571.81 26634.93 36564.64 28856.99 33754.78 19070.33 26279.74 26432.07 35972.42 25638.61 34083.46 24282.02 187
diffmvspermissive67.42 21667.50 21467.20 23862.26 36145.21 28164.87 28677.04 19448.21 27171.74 24279.70 26558.40 19971.17 27164.99 12280.27 27685.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
BH-untuned69.39 18569.46 18169.18 20677.96 17156.88 17768.47 24077.53 18756.77 16677.79 14479.63 26660.30 18280.20 14946.04 29580.65 27270.47 333
PAPM61.79 27660.37 28566.05 25076.09 20141.87 30869.30 22276.79 19740.64 33953.80 38679.62 26744.38 28982.92 9829.64 39173.11 34573.36 302
fmvsm_s_conf0.5_n66.34 23065.27 23869.57 19968.20 31259.14 16571.66 18856.48 34240.92 33467.78 29679.46 26861.23 17066.90 30867.39 10374.32 33782.66 174
XXY-MVS55.19 32057.40 30848.56 37164.45 35034.84 36751.54 37753.59 35738.99 35063.79 32879.43 26956.59 22145.57 38736.92 35671.29 35965.25 369
MonoMVSNet62.75 26763.42 25960.73 30265.60 34040.77 31872.49 17170.56 25952.49 22375.07 19179.42 27039.52 32169.97 28046.59 29169.06 37371.44 322
MDA-MVSNet-bldmvs62.34 27261.73 27064.16 26161.64 36449.90 22948.11 38757.24 33553.31 21780.95 10779.39 27149.00 26661.55 33945.92 29680.05 27981.03 203
TAMVS65.31 23663.75 25569.97 19482.23 11759.76 15866.78 26463.37 30945.20 29969.79 27179.37 27247.42 27672.17 25834.48 37085.15 21777.99 258
PAPR69.20 18768.66 19770.82 17675.15 21447.77 25475.31 13781.11 11949.62 26166.33 30779.27 27361.53 16582.96 9748.12 27781.50 26481.74 194
Anonymous2023120654.13 32655.82 31949.04 36870.89 27235.96 35751.73 37650.87 37234.86 37262.49 33779.22 27442.52 30244.29 39727.95 39881.88 25466.88 359
OpenMVS_ROBcopyleft54.93 1763.23 26163.28 26163.07 27669.81 29445.34 27968.52 23867.14 27943.74 31170.61 25979.22 27447.90 27472.66 25048.75 26873.84 34171.21 327
PVSNet_Blended_VisFu70.04 17368.88 19173.53 13082.71 11063.62 12074.81 14481.95 10348.53 27067.16 30479.18 27651.42 25078.38 18054.39 22579.72 28778.60 246
MVSTER63.29 26061.60 27468.36 22359.77 37846.21 27360.62 32071.32 24641.83 32475.40 18979.12 27730.25 37775.85 21156.30 20279.81 28483.03 161
tpm50.60 35252.42 34445.14 38365.18 34426.29 40660.30 32243.50 39837.41 36157.01 36779.09 27830.20 37942.32 40232.77 37866.36 38466.81 361
test_yl65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
DCV-MVSNet65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
test_fmvsm_n_192069.63 17968.45 19873.16 13570.56 28065.86 10270.26 21078.35 17437.69 35874.29 20678.89 28161.10 17468.10 29565.87 11879.07 29185.53 84
miper_lstm_enhance61.97 27361.63 27362.98 27760.04 37245.74 27747.53 38970.95 25544.04 30673.06 22678.84 28239.72 31860.33 34255.82 20884.64 22682.88 164
PVSNet_BlendedMVS65.38 23564.30 24968.61 22169.81 29449.36 23565.60 27978.96 16045.50 29359.98 35178.61 28351.82 24678.20 18644.30 30484.11 23378.27 251
baseline157.82 30658.36 30156.19 33069.17 30130.76 38862.94 30755.21 34846.04 28863.83 32778.47 28441.20 30763.68 33039.44 33268.99 37474.13 295
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26760.73 13074.39 20578.44 28557.72 21182.78 10060.16 16889.60 13879.11 241
MVP-Stereo61.56 27859.22 29168.58 22279.28 14860.44 15369.20 22471.57 23943.58 31356.42 37378.37 28639.57 32076.46 21034.86 36960.16 39968.86 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22571.45 24354.28 20077.89 14178.26 28749.04 26479.23 16063.62 13989.13 15280.92 207
patch_mono-262.73 26964.08 25258.68 31670.36 28655.87 18460.84 31864.11 30441.23 32964.04 32378.22 28860.00 18348.80 37654.17 22883.71 23971.37 323
D2MVS62.58 27061.05 27967.20 23863.85 35247.92 25156.29 35069.58 26639.32 34570.07 26778.19 28934.93 34372.68 24953.44 23583.74 23781.00 205
HY-MVS49.31 1957.96 30557.59 30659.10 31466.85 33036.17 35565.13 28465.39 29339.24 34854.69 38378.14 29044.28 29067.18 30633.75 37570.79 36273.95 297
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18557.68 15574.89 19478.13 29164.80 13884.26 7756.46 20185.32 21486.88 63
AUN-MVS70.22 17167.88 20977.22 8282.96 10771.61 5269.08 22671.39 24449.17 26571.70 24378.07 29237.62 33379.21 16161.81 15089.15 15080.82 210
cl2267.14 21866.51 22669.03 21163.20 35643.46 29566.88 26376.25 19949.22 26474.48 20377.88 29345.49 28277.40 19960.64 16384.59 22786.24 69
miper_ehance_all_eth68.36 20068.16 20568.98 21265.14 34643.34 29667.07 25878.92 16249.11 26676.21 17977.72 29453.48 23877.92 19261.16 15884.59 22785.68 83
DSMNet-mixed43.18 37944.66 37938.75 39654.75 40328.88 39657.06 34627.42 42113.47 41947.27 40677.67 29538.83 32439.29 41125.32 40860.12 40048.08 405
Test_1112_low_res58.78 30058.69 29659.04 31579.41 14638.13 34357.62 34266.98 28134.74 37559.62 35777.56 29642.92 29863.65 33138.66 33970.73 36375.35 284
API-MVS70.97 16371.51 16369.37 20075.20 21255.94 18380.99 6776.84 19562.48 11871.24 25377.51 29761.51 16680.96 13652.04 23985.76 20871.22 326
pmmvs460.78 28459.04 29366.00 25173.06 25457.67 17564.53 29160.22 32236.91 36465.96 30877.27 29839.66 31968.54 29138.87 33774.89 32871.80 319
WBMVS53.38 33254.14 33251.11 35570.16 29026.66 40350.52 38151.64 37039.32 34563.08 33577.16 29923.53 40255.56 35931.99 38079.88 28271.11 329
tfpn200view960.35 28859.97 28761.51 29170.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25877.08 269
thres40060.77 28559.97 28763.15 27470.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25882.02 187
Effi-MVS+72.10 15072.28 15171.58 16974.21 23250.33 22274.72 14982.73 9062.62 11670.77 25776.83 30269.96 8680.97 13360.20 16678.43 29983.45 147
MVSFormer69.93 17669.03 18972.63 15674.93 21559.19 16083.98 4075.72 20552.27 22563.53 33276.74 30343.19 29680.56 13972.28 7178.67 29678.14 254
jason64.47 24862.84 26669.34 20376.91 18759.20 15967.15 25765.67 28835.29 37165.16 31576.74 30344.67 28770.68 27354.74 21979.28 29078.14 254
jason: jason.
CostFormer57.35 30856.14 31660.97 29963.76 35438.43 33867.50 24960.22 32237.14 36359.12 35976.34 30532.78 35271.99 26239.12 33669.27 37272.47 312
MDTV_nov1_ep1354.05 33465.54 34129.30 39459.00 33155.22 34735.96 36952.44 38975.98 30630.77 37459.62 34538.21 34373.33 344
testing358.28 30358.38 30058.00 32177.45 18026.12 40860.78 31943.00 40156.02 17470.18 26475.76 30713.27 42667.24 30548.02 27880.89 26780.65 217
EU-MVSNet60.82 28360.80 28260.86 30168.37 30941.16 31272.27 17268.27 27626.96 40269.08 27775.71 30832.09 35867.44 30255.59 21178.90 29373.97 296
HyFIR lowres test63.01 26360.47 28470.61 17883.04 10454.10 19859.93 32672.24 23633.67 38269.00 27875.63 30938.69 32576.93 20336.60 35775.45 32480.81 212
Fast-Effi-MVS+68.81 19368.30 20070.35 18474.66 22448.61 24266.06 27078.32 17550.62 24871.48 25175.54 31068.75 9479.59 15750.55 25378.73 29582.86 166
CDS-MVSNet64.33 25162.66 26869.35 20280.44 13758.28 17265.26 28265.66 28944.36 30567.30 30375.54 31043.27 29571.77 26437.68 34784.44 23078.01 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
tpm256.12 31254.64 32960.55 30466.24 33436.01 35668.14 24256.77 34033.60 38358.25 36275.52 31230.25 37774.33 23533.27 37669.76 37171.32 324
CANet_DTU64.04 25463.83 25464.66 25868.39 30842.97 30173.45 16474.50 21652.05 22954.78 38175.44 31343.99 29170.42 27853.49 23478.41 30080.59 219
reproduce_monomvs58.94 29858.14 30261.35 29559.70 37940.98 31560.24 32463.51 30845.85 29068.95 28175.31 31418.27 41665.82 31851.47 24479.97 28077.26 266
DELS-MVS68.83 19268.31 19970.38 18270.55 28248.31 24363.78 29882.13 9954.00 20968.96 28075.17 31558.95 19580.06 15158.55 18482.74 24782.76 168
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
pmmvs552.49 34252.58 34252.21 34954.99 40232.38 37755.45 35753.84 35632.15 38855.49 37874.81 31638.08 32857.37 35634.02 37274.40 33466.88 359
MSDG67.47 21567.48 21567.46 23570.70 27654.69 19466.90 26278.17 17860.88 12870.41 26074.76 31761.22 17273.18 24547.38 28376.87 31274.49 292
UnsupCasMVSNet_eth52.26 34353.29 33849.16 36655.08 40133.67 37350.03 38258.79 32737.67 35963.43 33474.75 31841.82 30445.83 38638.59 34159.42 40167.98 354
Fast-Effi-MVS+-dtu70.00 17468.74 19573.77 12473.47 24264.53 11471.36 19378.14 18055.81 17868.84 28774.71 31965.36 13275.75 21452.00 24079.00 29281.03 203
TR-MVS64.59 24563.54 25867.73 23375.75 20850.83 21863.39 30170.29 26249.33 26371.55 24974.55 32050.94 25278.46 17640.43 32975.69 32073.89 298
GA-MVS62.91 26461.66 27166.66 24667.09 32544.49 28661.18 31669.36 26851.33 24069.33 27674.47 32136.83 33674.94 22650.60 25274.72 32980.57 220
CLD-MVS72.88 13872.36 15074.43 11477.03 18254.30 19668.77 23383.43 7952.12 22776.79 16274.44 32269.54 9083.91 7955.88 20693.25 6985.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 1792x268858.09 30456.30 31563.45 27179.95 14050.93 21754.07 36765.59 29028.56 39861.53 34174.33 32341.09 30966.52 31533.91 37367.69 38272.92 306
Patchmatch-RL test59.95 29159.12 29262.44 28372.46 26054.61 19559.63 32747.51 38641.05 33274.58 20274.30 32431.06 37165.31 32251.61 24279.85 28367.39 355
cdsmvs_eth3d_5k17.71 38923.62 3900.00 4080.00 4310.00 4330.00 41970.17 2630.00 4260.00 42774.25 32568.16 1000.00 4270.00 4260.00 4250.00 423
lupinMVS63.36 25861.49 27568.97 21374.93 21559.19 16065.80 27564.52 30134.68 37763.53 33274.25 32543.19 29670.62 27453.88 23178.67 29677.10 268
xiu_mvs_v1_base_debu67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base_debi67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
tpmvs55.84 31355.45 32257.01 32560.33 37133.20 37565.89 27259.29 32647.52 28056.04 37473.60 33031.05 37268.06 29640.64 32864.64 38769.77 340
SCA58.57 30258.04 30360.17 30670.17 28941.07 31465.19 28353.38 36143.34 31861.00 34773.48 33145.20 28369.38 28440.34 33070.31 36670.05 336
Patchmatch-test47.93 36349.96 36241.84 39157.42 39024.26 41148.75 38441.49 40939.30 34756.79 36973.48 33130.48 37633.87 41529.29 39372.61 34867.39 355
MDA-MVSNet_test_wron52.57 34153.49 33749.81 36254.24 40436.47 35340.48 40546.58 39038.13 35475.47 18873.32 33341.05 31143.85 39940.98 32671.20 36069.10 348
YYNet152.58 34053.50 33549.85 36154.15 40536.45 35440.53 40446.55 39138.09 35575.52 18773.31 33441.08 31043.88 39841.10 32471.14 36169.21 346
PatchmatchNetpermissive54.60 32454.27 33155.59 33465.17 34539.08 33166.92 26151.80 36939.89 34258.39 36073.12 33531.69 36558.33 35143.01 31358.38 40569.38 345
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
EPNet_dtu58.93 29958.52 29760.16 30767.91 31747.70 25769.97 21358.02 32849.73 25847.28 40573.02 33638.14 32762.34 33536.57 35885.99 20570.43 334
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_enhance_ethall65.86 23265.05 24868.28 22761.62 36542.62 30464.74 28777.97 18242.52 32073.42 22272.79 33749.66 25877.68 19658.12 18784.59 22784.54 112
ppachtmachnet_test60.26 28959.61 29062.20 28567.70 31944.33 28758.18 34060.96 32040.75 33765.80 31072.57 33841.23 30663.92 32946.87 28882.42 24978.33 249
N_pmnet52.06 34451.11 35254.92 33559.64 38071.03 5737.42 41061.62 31933.68 38157.12 36572.10 33937.94 32931.03 41629.13 39771.35 35862.70 381
ADS-MVSNet248.76 36147.25 37053.29 34555.90 39740.54 32347.34 39054.99 35031.41 39350.48 39772.06 34031.23 36854.26 36425.93 40355.93 40765.07 371
ADS-MVSNet44.62 37445.58 37341.73 39255.90 39720.83 41747.34 39039.94 41331.41 39350.48 39772.06 34031.23 36839.31 41025.93 40355.93 40765.07 371
ET-MVSNet_ETH3D63.32 25960.69 28371.20 17570.15 29155.66 18665.02 28564.32 30243.28 31968.99 27972.05 34225.46 39578.19 18854.16 22982.80 24679.74 232
BH-w/o64.81 24264.29 25066.36 24776.08 20354.71 19365.61 27875.23 21050.10 25571.05 25671.86 34354.33 23479.02 16438.20 34476.14 31765.36 368
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10374.77 22059.02 16672.24 17371.56 24063.92 10078.59 13271.59 34466.22 12378.60 17267.58 9880.32 27589.00 35
UnsupCasMVSNet_bld50.01 35751.03 35446.95 37458.61 38432.64 37648.31 38553.27 36234.27 37860.47 34971.53 34541.40 30547.07 38430.68 38560.78 39861.13 389
thres20057.55 30757.02 30959.17 31267.89 31834.93 36558.91 33457.25 33450.24 25264.01 32471.46 34632.49 35571.39 26931.31 38379.57 28871.19 328
UWE-MVS52.94 33752.70 34053.65 34173.56 24027.49 40057.30 34549.57 37838.56 35362.79 33671.42 34719.49 41360.41 34124.33 41177.33 31073.06 304
EI-MVSNet-UG-set72.63 14271.68 15875.47 10474.67 22258.64 17172.02 17871.50 24163.53 10678.58 13471.39 34865.98 12478.53 17367.30 10880.18 27889.23 29
ETV-MVS72.72 14072.16 15374.38 11676.90 18955.95 18273.34 16584.67 5562.04 12072.19 23970.81 34965.90 12685.24 5958.64 18384.96 22181.95 189
EIA-MVS68.59 19867.16 21972.90 14675.18 21355.64 18869.39 22081.29 11452.44 22464.53 31870.69 35060.33 18182.30 10854.27 22776.31 31680.75 213
EI-MVSNet69.61 18169.01 19071.41 17373.94 23749.90 22971.31 19571.32 24658.22 14975.40 18970.44 35158.16 20175.85 21162.51 14779.81 28488.48 44
CVMVSNet59.21 29658.44 29961.51 29173.94 23747.76 25571.31 19564.56 30026.91 40460.34 35070.44 35136.24 33967.65 29853.57 23368.66 37669.12 347
tpm cat154.02 32952.63 34158.19 31964.85 34939.86 32866.26 26957.28 33332.16 38756.90 36870.39 35332.75 35365.30 32334.29 37158.79 40269.41 344
PMMVS237.74 38340.87 38328.36 40042.41 4235.35 42824.61 41527.75 42032.15 38847.85 40470.27 35435.85 34029.51 41819.08 41867.85 38050.22 404
EPMVS45.74 36846.53 37143.39 38954.14 40622.33 41655.02 35935.00 41834.69 37651.09 39570.20 35525.92 39342.04 40437.19 35155.50 40965.78 365
WB-MVSnew53.94 33154.76 32851.49 35371.53 26828.05 39758.22 33950.36 37437.94 35759.16 35870.17 35649.21 26351.94 36824.49 40971.80 35674.47 293
testing9955.16 32154.56 33056.98 32670.13 29230.58 38954.55 36554.11 35449.53 26256.76 37070.14 35722.76 40665.79 31936.99 35476.04 31874.57 290
testing9155.74 31555.29 32557.08 32470.63 27730.85 38754.94 36256.31 34650.34 25057.08 36670.10 35824.50 39965.86 31736.98 35576.75 31374.53 291
KD-MVS_2432*160052.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
miper_refine_blended52.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
our_test_356.46 31056.51 31356.30 32967.70 31939.66 32955.36 35852.34 36740.57 34063.85 32669.91 36140.04 31658.22 35243.49 31175.29 32771.03 331
xiu_mvs_v2_base64.43 24963.96 25365.85 25377.72 17551.32 21463.63 29972.31 23545.06 30261.70 33969.66 36262.56 15273.93 24149.06 26673.91 33972.31 314
tpmrst50.15 35651.38 35046.45 37856.05 39524.77 41064.40 29349.98 37536.14 36753.32 38869.59 36335.16 34248.69 37739.24 33458.51 40465.89 364
WTY-MVS49.39 35950.31 36146.62 37761.22 36632.00 38046.61 39249.77 37633.87 38054.12 38569.55 36441.96 30345.40 38931.28 38464.42 38862.47 384
thisisatest051560.48 28757.86 30468.34 22467.25 32346.42 27060.58 32162.14 31340.82 33563.58 33169.12 36526.28 39178.34 18248.83 26782.13 25180.26 225
patchmatchnet-post68.99 36631.32 36769.38 284
PatchMatch-RL58.68 30157.72 30561.57 29076.21 19973.59 4361.83 31049.00 38147.30 28161.08 34468.97 36750.16 25659.01 34736.06 36468.84 37552.10 401
testing22253.37 33352.50 34355.98 33270.51 28329.68 39256.20 35251.85 36846.19 28756.76 37068.94 36819.18 41465.39 32125.87 40576.98 31172.87 307
MS-PatchMatch55.59 31754.89 32757.68 32269.18 30049.05 23861.00 31762.93 31135.98 36858.36 36168.93 36936.71 33766.59 31437.62 34963.30 39157.39 397
cascas64.59 24562.77 26770.05 19275.27 21150.02 22661.79 31171.61 23842.46 32163.68 32968.89 37049.33 26280.35 14347.82 28184.05 23479.78 231
MVS60.62 28659.97 28762.58 28268.13 31447.28 26368.59 23673.96 21932.19 38659.94 35368.86 37150.48 25477.64 19741.85 32075.74 31962.83 380
PVSNet_Blended62.90 26561.64 27266.69 24569.81 29449.36 23561.23 31578.96 16042.04 32259.98 35168.86 37151.82 24678.20 18644.30 30477.77 30872.52 311
test_fmvs356.78 30955.99 31859.12 31353.96 40848.09 24858.76 33566.22 28427.54 40076.66 16468.69 37325.32 39751.31 36953.42 23673.38 34377.97 259
MAR-MVS67.72 21066.16 22972.40 16074.45 22764.99 11174.87 14277.50 18848.67 26965.78 31168.58 37457.01 21977.79 19446.68 29081.92 25374.42 294
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
testing1153.13 33552.26 34555.75 33370.44 28431.73 38154.75 36352.40 36644.81 30352.36 39168.40 37521.83 40765.74 32032.64 37972.73 34769.78 339
PS-MVSNAJ64.27 25263.73 25665.90 25277.82 17351.42 21363.33 30272.33 23445.09 30161.60 34068.04 37662.39 15673.95 24049.07 26573.87 34072.34 313
ETVMVS50.32 35549.87 36351.68 35170.30 28826.66 40352.33 37543.93 39743.54 31454.91 38067.95 37720.01 41260.17 34322.47 41373.40 34268.22 350
test0.0.03 147.72 36448.31 36645.93 37955.53 40029.39 39346.40 39341.21 41143.41 31655.81 37767.65 37829.22 38343.77 40025.73 40669.87 36964.62 375
1112_ss59.48 29458.99 29460.96 30077.84 17242.39 30661.42 31368.45 27537.96 35659.93 35467.46 37945.11 28565.07 32440.89 32771.81 35575.41 282
ab-mvs-re5.62 3917.50 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42767.46 3790.00 4310.00 4270.00 4260.00 4250.00 423
baseline255.57 31852.74 33964.05 26465.26 34244.11 28862.38 30854.43 35239.03 34951.21 39467.35 38133.66 34772.45 25537.14 35264.22 38975.60 279
131459.83 29258.86 29562.74 28165.71 33944.78 28468.59 23672.63 23133.54 38461.05 34667.29 38243.62 29471.26 27049.49 26267.84 38172.19 316
IB-MVS49.67 1859.69 29356.96 31067.90 22968.19 31350.30 22361.42 31365.18 29447.57 27955.83 37667.15 38323.77 40179.60 15643.56 31079.97 28073.79 299
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
UBG49.18 36049.35 36448.66 37070.36 28626.56 40550.53 38045.61 39237.43 36053.37 38765.97 38423.03 40554.20 36526.29 40071.54 35765.20 370
sss47.59 36548.32 36545.40 38256.73 39433.96 37145.17 39548.51 38232.11 39052.37 39065.79 38540.39 31441.91 40531.85 38161.97 39560.35 390
dp44.09 37644.88 37841.72 39358.53 38623.18 41354.70 36442.38 40534.80 37444.25 41365.61 38624.48 40044.80 39329.77 39049.42 41357.18 398
test_fmvs254.80 32354.11 33356.88 32751.76 41249.95 22856.70 34865.80 28726.22 40569.42 27465.25 38731.82 36349.98 37349.63 26070.36 36570.71 332
PVSNet43.83 2151.56 34851.17 35152.73 34668.34 31038.27 34048.22 38653.56 35936.41 36554.29 38464.94 38834.60 34454.20 36530.34 38669.87 36965.71 366
Syy-MVS54.13 32655.45 32250.18 35968.77 30523.59 41255.02 35944.55 39543.80 30858.05 36364.07 38946.22 27858.83 34846.16 29472.36 35068.12 351
myMVS_eth3d50.36 35450.52 35949.88 36068.77 30522.69 41455.02 35944.55 39543.80 30858.05 36364.07 38914.16 42458.83 34833.90 37472.36 35068.12 351
pmmvs346.71 36645.09 37651.55 35256.76 39348.25 24455.78 35639.53 41424.13 41250.35 39963.40 39115.90 42151.08 37029.29 39370.69 36455.33 400
test_f43.79 37745.63 37238.24 39842.29 42438.58 33734.76 41347.68 38522.22 41667.34 30263.15 39231.82 36330.60 41739.19 33562.28 39445.53 410
test_vis3_rt51.94 34751.04 35354.65 33746.32 41950.13 22544.34 39978.17 17823.62 41368.95 28162.81 39321.41 40838.52 41241.49 32272.22 35275.30 285
gm-plane-assit62.51 35833.91 37237.25 36262.71 39472.74 24838.70 338
MVEpermissive27.91 2336.69 38535.64 38839.84 39543.37 42235.85 35919.49 41624.61 42224.68 41039.05 41762.63 39538.67 32627.10 42021.04 41647.25 41556.56 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
mvsany_test343.76 37841.01 38252.01 35048.09 41757.74 17442.47 40123.85 42423.30 41464.80 31762.17 39627.12 38740.59 40829.17 39548.11 41457.69 396
new_pmnet37.55 38439.80 38630.79 39956.83 39216.46 42039.35 40730.65 41925.59 40845.26 40961.60 39724.54 39828.02 41921.60 41452.80 41247.90 406
dmvs_re49.91 35850.77 35747.34 37359.98 37338.86 33553.18 37053.58 35839.75 34355.06 37961.58 39836.42 33844.40 39629.15 39668.23 37758.75 394
test_cas_vis1_n_192050.90 35150.92 35550.83 35754.12 40747.80 25351.44 37854.61 35126.95 40363.95 32560.85 39937.86 33244.97 39245.53 29962.97 39259.72 392
test_vis1_n_192052.96 33653.50 33551.32 35459.15 38144.90 28356.13 35364.29 30330.56 39659.87 35560.68 40040.16 31547.47 38248.25 27662.46 39361.58 388
test_fmvs1_n52.70 33952.01 34654.76 33653.83 40950.36 22155.80 35565.90 28624.96 40965.39 31260.64 40127.69 38648.46 37845.88 29767.99 37965.46 367
test-LLR50.43 35350.69 35849.64 36360.76 36841.87 30853.18 37045.48 39343.41 31649.41 40160.47 40229.22 38344.73 39442.09 31872.14 35362.33 386
test-mter48.56 36248.20 36749.64 36360.76 36841.87 30853.18 37045.48 39331.91 39149.41 40160.47 40218.34 41544.73 39442.09 31872.14 35362.33 386
test_fmvs151.51 34950.86 35653.48 34249.72 41549.35 23754.11 36664.96 29624.64 41163.66 33059.61 40428.33 38548.45 37945.38 30267.30 38362.66 383
test_vis1_n51.27 35050.41 36053.83 33956.99 39150.01 22756.75 34760.53 32125.68 40759.74 35657.86 40529.40 38247.41 38343.10 31263.66 39064.08 378
dmvs_testset45.26 37047.51 36838.49 39759.96 37514.71 42158.50 33743.39 39941.30 32851.79 39356.48 40639.44 32249.91 37521.42 41555.35 41150.85 402
TESTMET0.1,145.17 37144.93 37745.89 38056.02 39638.31 33953.18 37041.94 40827.85 39944.86 41156.47 40717.93 41741.50 40738.08 34568.06 37857.85 395
CHOSEN 280x42041.62 38039.89 38546.80 37661.81 36251.59 21133.56 41435.74 41727.48 40137.64 41953.53 40823.24 40342.09 40327.39 39958.64 40346.72 407
mvsany_test137.88 38235.74 38744.28 38647.28 41849.90 22936.54 41224.37 42319.56 41845.76 40753.46 40932.99 35137.97 41326.17 40135.52 41644.99 411
PMMVS44.69 37343.95 38146.92 37550.05 41453.47 20448.08 38842.40 40422.36 41544.01 41453.05 41042.60 30145.49 38831.69 38261.36 39741.79 412
GG-mvs-BLEND52.24 34860.64 37029.21 39569.73 21742.41 40345.47 40852.33 41120.43 41068.16 29425.52 40765.42 38659.36 393
E-PMN45.17 37145.36 37444.60 38550.07 41342.75 30238.66 40842.29 40646.39 28639.55 41651.15 41226.00 39245.37 39037.68 34776.41 31445.69 409
test_vis1_rt46.70 36745.24 37551.06 35644.58 42051.04 21639.91 40667.56 27821.84 41751.94 39250.79 41333.83 34639.77 40935.25 36861.50 39662.38 385
PVSNet_036.71 2241.12 38140.78 38442.14 39059.97 37440.13 32540.97 40342.24 40730.81 39544.86 41149.41 41440.70 31245.12 39123.15 41234.96 41741.16 413
EMVS44.61 37544.45 38045.10 38448.91 41643.00 30037.92 40941.10 41246.75 28438.00 41848.43 41526.42 39046.27 38537.11 35375.38 32546.03 408
dongtai31.66 38632.98 38927.71 40158.58 38512.61 42345.02 39614.24 42741.90 32347.93 40343.91 41610.65 42741.81 40614.06 41920.53 42028.72 417
test_method19.26 38819.12 39219.71 4029.09 4271.91 4307.79 41853.44 3601.42 42110.27 42335.80 41717.42 41925.11 42112.44 42024.38 41932.10 416
kuosan22.02 38723.52 39117.54 40341.56 42511.24 42441.99 40213.39 42826.13 40628.87 42030.75 4189.72 42821.94 4224.77 42314.49 42119.43 418
DeepMVS_CXcopyleft11.83 40415.51 42613.86 42211.25 4295.76 42020.85 42226.46 41917.06 4209.22 4239.69 42213.82 42212.42 419
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 42073.86 5586.31 2178.84 2394.03 5684.64 105
tmp_tt11.98 39014.73 3933.72 4052.28 4284.62 42919.44 41714.50 4260.47 42321.55 4219.58 42125.78 3944.57 42411.61 42127.37 4181.96 420
test_post166.63 2652.08 42230.66 37559.33 34640.34 330
test_post1.99 42330.91 37354.76 363
test1234.43 3935.78 3960.39 4070.97 4290.28 43146.33 3940.45 4300.31 4240.62 4251.50 4240.61 4300.11 4260.56 4240.63 4230.77 422
testmvs4.06 3945.28 3970.41 4060.64 4300.16 43242.54 4000.31 4310.26 4250.50 4261.40 4250.77 4290.17 4250.56 4240.55 4240.90 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.20 3926.93 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42662.39 1560.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS22.69 41436.10 363
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
No_MVS79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
eth-test20.00 431
eth-test0.00 431
IU-MVS86.12 5460.90 14780.38 13745.49 29581.31 10275.64 4494.39 4484.65 104
save fliter87.00 4067.23 9079.24 8977.94 18356.65 170
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 153
GSMVS70.05 336
test_part285.90 6066.44 9584.61 65
sam_mvs131.41 36670.05 336
sam_mvs31.21 370
MTGPAbinary80.63 131
MTMP84.83 3419.26 425
test9_res72.12 7391.37 9477.40 262
agg_prior270.70 7790.93 10978.55 248
agg_prior84.44 8566.02 10178.62 17176.95 15580.34 144
test_prior470.14 6777.57 106
test_prior75.27 10682.15 11859.85 15784.33 6383.39 9082.58 176
旧先验271.17 19845.11 30078.54 13561.28 34059.19 180
新几何271.33 194
无先验74.82 14370.94 25647.75 27876.85 20654.47 22272.09 317
原ACMM274.78 147
testdata267.30 30348.34 274
segment_acmp68.30 99
testdata168.34 24157.24 162
test1276.51 8882.28 11660.94 14681.64 10873.60 21864.88 13785.19 6290.42 12283.38 149
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior585.49 3286.15 2971.09 7490.94 10784.82 100
plane_prior365.67 10363.82 10278.23 137
plane_prior282.74 5565.45 80
plane_prior184.46 84
plane_prior65.18 10880.06 8361.88 12289.91 133
n20.00 432
nn0.00 432
door-mid55.02 349
test1182.71 91
door52.91 364
HQP5-MVS58.80 168
HQP-NCC82.37 11377.32 11159.08 14071.58 245
ACMP_Plane82.37 11377.32 11159.08 14071.58 245
BP-MVS67.38 105
HQP4-MVS71.59 24485.31 5483.74 136
HQP3-MVS84.12 6989.16 148
HQP2-MVS58.09 204
MDTV_nov1_ep13_2view18.41 41853.74 36831.57 39244.89 41029.90 38132.93 37771.48 321
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152