This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11598.16 298.94 299.33 297.84 499.08 9390.73 14199.73 1399.59 13
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8896.10 2798.14 2499.28 397.94 398.21 21191.38 12999.69 1499.42 19
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4296.95 1495.46 14499.23 493.45 8499.57 1495.34 2999.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7594.15 5198.93 399.07 588.07 19099.57 1495.86 1599.69 1499.46 18
gg-mvs-nofinetune82.10 34981.02 35185.34 35687.46 39571.04 36494.74 11267.56 40896.44 2379.43 39898.99 645.24 40196.15 32867.18 38992.17 37288.85 387
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16597.11 1998.24 3597.58 898.72 898.97 793.15 9699.15 8493.18 7999.74 1299.50 17
ANet_high94.83 10096.28 3790.47 27496.65 16973.16 35294.33 12998.74 1296.39 2498.09 2598.93 893.37 8898.70 15890.38 15099.68 1899.53 15
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 11087.57 20898.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8788.72 18298.81 698.86 1090.77 15399.60 995.43 2699.53 3999.57 14
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12688.98 17698.26 2298.86 1093.35 8999.60 996.41 999.45 4799.66 6
K. test v393.37 15193.27 16193.66 15998.05 8482.62 22694.35 12786.62 35896.05 2997.51 4398.85 1276.59 31599.65 393.21 7898.20 20498.73 95
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9390.91 7096.42 4297.95 8396.69 1791.78 27398.85 1291.77 12895.49 34391.72 11799.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 11087.68 20698.45 1898.77 1594.20 7499.50 2196.70 599.40 5799.53 15
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 4983.19 21895.93 6794.84 25794.86 4198.49 1598.74 1681.45 26999.60 994.69 3299.39 5899.15 39
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12486.96 21798.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13298.76 1186.25 22497.56 3998.66 1895.73 1998.44 19297.35 298.99 11398.27 137
test_fmvs392.42 18392.40 18292.46 20793.80 30787.28 13693.86 14897.05 15576.86 33796.25 10298.66 1882.87 25391.26 38295.44 2596.83 27498.82 82
SDMVSNet94.43 11695.02 9892.69 19497.93 9582.88 22491.92 22295.99 21993.65 6595.51 13998.63 2094.60 6596.48 31887.57 22199.35 6198.70 100
sd_testset93.94 13794.39 12192.61 20097.93 9583.24 21593.17 17095.04 25193.65 6595.51 13998.63 2094.49 6995.89 33681.72 29699.35 6198.70 100
VDDNet94.03 13394.27 12993.31 17498.87 2182.36 23095.51 8691.78 32097.19 1296.32 9698.60 2284.24 24098.75 14687.09 23098.83 13798.81 84
TransMVSNet (Re)95.27 8796.04 5292.97 18298.37 6481.92 23495.07 10296.76 17993.97 5597.77 3198.57 2395.72 2097.90 23788.89 19799.23 8699.08 48
Baseline_NR-MVSNet94.47 11495.09 9792.60 20198.50 5680.82 25092.08 21396.68 18393.82 5996.29 9998.56 2490.10 17097.75 25890.10 16699.66 2199.24 32
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26793.12 7397.94 2798.54 2581.19 27599.63 695.48 2399.69 1499.60 12
GBi-Net93.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
test193.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
FMVSNet194.84 9995.13 9493.97 14497.60 11984.29 19995.99 6396.56 19192.38 8597.03 6698.53 2690.12 16898.98 10688.78 19999.16 9798.65 106
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 17093.73 6097.87 2898.49 2990.73 15799.05 9886.43 24399.60 2799.10 47
pm-mvs195.43 7395.94 5593.93 14898.38 6285.08 19295.46 8797.12 15191.84 10797.28 5698.46 3095.30 3697.71 26290.17 16299.42 5298.99 56
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6498.84 12894.64 3399.53 3998.99 56
v7n96.82 997.31 1095.33 8698.54 4786.81 14996.83 2398.07 6396.59 2098.46 1798.43 3292.91 10499.52 1996.25 1299.76 1099.65 8
mvsany_test389.11 26088.21 27691.83 22391.30 36090.25 7988.09 32378.76 39976.37 34096.43 9198.39 3383.79 24390.43 38786.57 23894.20 33994.80 325
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19596.51 3597.94 8698.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15898.60 1485.68 23797.42 5098.30 3595.34 3398.39 19396.85 398.98 11498.19 142
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18996.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 23094.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EGC-MVSNET80.97 35775.73 37396.67 4298.85 2494.55 1596.83 2396.60 1872.44 4085.32 40998.25 3792.24 11798.02 22891.85 11399.21 9097.45 210
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19696.54 3498.05 6798.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
test111190.39 22890.61 22489.74 29498.04 8771.50 36395.59 8079.72 39889.41 16695.94 11798.14 3970.79 33798.81 13588.52 20499.32 6898.90 74
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12391.25 13097.49 4498.14 3983.49 24499.45 2795.52 2199.66 2199.36 24
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20696.61 3297.97 8097.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
test250685.42 32084.57 32387.96 32797.81 10266.53 38496.14 5856.35 41189.04 17493.55 21598.10 4242.88 40998.68 16288.09 21199.18 9498.67 104
ECVR-MVScopyleft90.12 23890.16 23390.00 29097.81 10272.68 35795.76 7478.54 40189.04 17495.36 15098.10 4270.51 33898.64 16887.10 22999.18 9498.67 104
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8898.22 3992.36 8794.11 19498.07 4492.02 12299.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
fmvsm_s_conf0.1_n_a94.26 12494.37 12393.95 14797.36 13385.72 18194.15 13695.44 23983.25 27395.51 13998.05 4592.54 11397.19 29095.55 2097.46 25098.94 66
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17495.19 9996.77 17896.64 1997.61 3898.05 4593.23 9398.79 13988.60 20399.04 11198.78 87
VPA-MVSNet95.14 8995.67 7093.58 16297.76 10583.15 21994.58 11997.58 11293.39 6897.05 6598.04 4793.25 9298.51 18489.75 17499.59 2999.08 48
LCM-MVSNet-Re94.20 12894.58 11893.04 17995.91 23183.13 22093.79 15099.19 392.00 9798.84 598.04 4793.64 8099.02 10381.28 30098.54 16996.96 238
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16898.36 2285.61 24096.92 7398.02 4995.23 3998.38 19696.69 698.95 12398.09 150
fmvsm_s_conf0.1_n94.19 13094.41 12093.52 16897.22 14084.37 19793.73 15295.26 24684.45 26195.76 12698.00 5091.85 12697.21 28795.62 1797.82 23198.98 60
v1094.68 10695.27 8992.90 18796.57 17580.15 25494.65 11697.57 11390.68 14397.43 4898.00 5088.18 18799.15 8494.84 3199.55 3899.41 20
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14898.02 7487.35 21096.22 10597.99 5294.48 7099.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
JIA-IIPM85.08 32383.04 33591.19 25287.56 39386.14 17089.40 29884.44 38088.98 17682.20 38697.95 5356.82 38896.15 32876.55 34583.45 39791.30 379
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
v894.65 10795.29 8792.74 19296.65 16979.77 26994.59 11797.17 14691.86 10397.47 4797.93 5488.16 18899.08 9394.32 3899.47 4399.38 22
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
lessismore_v093.87 15198.05 8483.77 21080.32 39697.13 6097.91 5877.49 30099.11 9292.62 9698.08 21398.74 94
Anonymous2024052192.86 17093.57 15290.74 26796.57 17575.50 33594.15 13695.60 22989.38 16795.90 12097.90 6080.39 27997.96 23492.60 9799.68 1898.75 91
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16196.78 2798.08 6097.42 998.48 1697.86 6191.76 13099.63 694.23 4199.84 399.66 6
VDD-MVS94.37 11894.37 12394.40 13197.49 12686.07 17293.97 14593.28 29094.49 4596.24 10397.78 6287.99 19398.79 13988.92 19599.14 9998.34 131
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11792.42 8493.41 21797.78 6291.21 14297.77 25591.06 13297.06 26398.80 85
test_040295.73 6196.22 4094.26 13598.19 7585.77 17993.24 16797.24 14296.88 1697.69 3397.77 6494.12 7599.13 8891.54 12599.29 7497.88 175
tfpnnormal94.27 12394.87 10392.48 20597.71 11180.88 24994.55 12395.41 24293.70 6196.67 8497.72 6591.40 13698.18 21587.45 22399.18 9498.36 130
MVS_030493.92 13893.68 14694.64 11695.94 23085.83 17894.34 12888.14 34592.98 7791.09 28597.68 6686.73 21699.36 5896.64 799.59 2998.72 96
XXY-MVS92.58 17893.16 16390.84 26497.75 10679.84 26591.87 22696.22 20985.94 23195.53 13897.68 6692.69 11094.48 35983.21 27997.51 24698.21 140
UGNet93.08 16192.50 17994.79 10893.87 30487.99 12595.07 10294.26 27390.64 14487.33 35097.67 6886.89 21398.49 18588.10 21098.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
KD-MVS_self_test94.10 13194.73 11092.19 21297.66 11779.49 27594.86 10997.12 15189.59 16496.87 7497.65 6990.40 16498.34 20189.08 19299.35 6198.75 91
wuyk23d87.83 28890.79 22078.96 38390.46 37188.63 11092.72 18290.67 33191.65 11998.68 1197.64 7096.06 1577.53 40559.84 39999.41 5670.73 403
SSC-MVS90.16 23692.96 16481.78 37797.88 9848.48 40990.75 25287.69 35096.02 3196.70 8297.63 7185.60 23197.80 25085.73 25198.60 16399.06 50
EG-PatchMatch MVS94.54 11294.67 11594.14 13897.87 10086.50 15792.00 21796.74 18088.16 19596.93 7297.61 7293.04 10197.90 23791.60 12198.12 20998.03 157
test_fmvs290.62 22190.40 23091.29 24691.93 34785.46 18792.70 18496.48 19774.44 35294.91 17597.59 7375.52 31990.57 38493.44 6796.56 28297.84 180
DSMNet-mixed82.21 34681.56 34584.16 36789.57 38170.00 37290.65 25777.66 40354.99 40483.30 38097.57 7477.89 29890.50 38666.86 39095.54 30491.97 373
fmvsm_s_conf0.5_n_a94.02 13494.08 13593.84 15396.72 16585.73 18093.65 15695.23 24783.30 27195.13 16397.56 7592.22 11897.17 29195.51 2297.41 25298.64 111
FC-MVSNet-test95.32 8195.88 5993.62 16098.49 5781.77 23595.90 6998.32 2593.93 5697.53 4297.56 7588.48 18399.40 4692.91 8999.83 599.68 4
ab-mvs92.40 18492.62 17691.74 22797.02 14781.65 23795.84 7195.50 23886.95 21892.95 23997.56 7590.70 15897.50 27279.63 31997.43 25196.06 276
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16499.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
fmvsm_s_conf0.5_n94.00 13594.20 13193.42 17296.69 16684.37 19793.38 16495.13 24984.50 26095.40 14697.55 7991.77 12897.20 28895.59 1897.79 23298.69 103
MM94.41 11794.14 13295.22 9495.84 23487.21 13894.31 13190.92 32894.48 4692.80 24297.52 8085.27 23299.49 2496.58 899.57 3698.97 62
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20996.31 5097.53 11797.60 798.34 1997.52 8091.98 12499.63 693.08 8499.81 899.70 3
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16990.30 15599.60 2798.72 96
test_vis3_rt90.40 22690.03 23791.52 23792.58 32688.95 10390.38 26697.72 10373.30 35997.79 3097.51 8377.05 30787.10 39789.03 19394.89 32198.50 121
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 10097.79 9886.48 22097.42 5097.51 8394.47 7199.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
ambc92.98 18196.88 15583.01 22295.92 6896.38 20196.41 9297.48 8588.26 18697.80 25089.96 16998.93 12498.12 149
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22396.47 2293.40 21997.46 8695.31 3595.47 34486.18 24798.78 14389.11 386
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25687.06 14296.63 3197.28 14091.82 11094.34 19397.41 8790.60 16098.65 16792.47 9998.11 21097.70 194
mvs_anonymous90.37 23091.30 20887.58 33292.17 33968.00 37789.84 28494.73 26283.82 26893.22 22997.40 8887.54 19997.40 28087.94 21695.05 31897.34 220
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16698.32 2587.89 19996.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072698.51 5086.69 15395.34 8998.18 4491.85 10497.63 3597.37 9095.58 24
EU-MVSNet87.39 30086.71 30489.44 29893.40 31176.11 32894.93 10890.00 33457.17 40295.71 13297.37 9064.77 36597.68 26492.67 9594.37 33494.52 333
FMVSNet292.78 17292.73 17392.95 18495.40 25881.98 23394.18 13595.53 23788.63 18496.05 11397.37 9081.31 27198.81 13587.38 22698.67 15798.06 151
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15598.45 498.22 3993.26 7197.54 4097.36 9393.12 9799.38 5593.88 4798.68 15598.04 154
test_one_060198.26 7087.14 14098.18 4494.25 4896.99 7097.36 9395.13 43
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4893.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16998.07 6385.63 23997.08 6197.35 9690.86 15097.66 26595.70 1698.48 17697.74 192
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15395.20 9797.00 15891.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7197.40 5297.35 9694.69 6199.34 6393.88 4799.42 5298.89 75
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 12098.03 7290.42 15096.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12497.64 10696.94 1596.58 8897.32 10093.07 10098.72 15190.45 14798.84 13297.57 202
FA-MVS(test-final)91.81 19691.85 19491.68 23194.95 26979.99 26296.00 6293.44 28887.80 20194.02 20197.29 10177.60 29998.45 19188.04 21397.49 24796.61 251
MVS-HIRNet78.83 36980.60 35673.51 38793.07 31647.37 41187.10 33878.00 40268.94 38477.53 40097.26 10271.45 33594.62 35763.28 39688.74 38778.55 402
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14595.21 9598.10 5791.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
test_241102_TWO98.10 5791.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10693.38 6995.89 12197.23 10593.35 8997.66 26588.20 20698.66 15997.79 186
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9396.13 2694.74 18297.23 10591.33 13799.16 8393.25 7798.30 19298.46 125
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 9098.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
test_f86.65 31387.13 29685.19 35890.28 37386.11 17186.52 35591.66 32169.76 38195.73 13197.21 10969.51 34181.28 40489.15 19094.40 33288.17 390
FIs94.90 9795.35 8393.55 16398.28 6881.76 23695.33 9098.14 5293.05 7697.07 6297.18 11087.65 19799.29 7091.72 11799.69 1499.61 11
PatchT87.51 29788.17 27785.55 35490.64 36666.91 38192.02 21686.09 36292.20 9389.05 31997.16 11164.15 36796.37 32489.21 18992.98 36493.37 359
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16696.25 20483.23 21692.66 18698.19 4293.06 7597.49 4497.15 11294.78 5998.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
fmvsm_l_conf0.5_n_a93.59 14693.63 14893.49 17096.10 21685.66 18392.32 20496.57 19081.32 29895.63 13497.14 11390.19 16697.73 26195.37 2898.03 21797.07 231
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 15197.86 8895.96 3297.48 4697.14 11395.33 3499.44 2990.79 13999.76 1099.38 22
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17485.23 24694.75 18197.12 11591.85 12699.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
fmvsm_l_conf0.5_n93.79 14193.81 13893.73 15796.16 21086.26 16792.46 19596.72 18181.69 29595.77 12597.11 11690.83 15297.82 24895.58 1997.99 22197.11 230
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16887.75 13093.44 16298.49 1685.57 24198.27 2097.11 11694.11 7697.75 25896.26 1198.72 14896.89 241
VPNet93.08 16193.76 14291.03 25598.60 3975.83 33391.51 23595.62 22891.84 10795.74 12997.10 11889.31 17898.32 20285.07 26499.06 10398.93 68
IterMVS-LS93.78 14294.28 12792.27 20996.27 20179.21 28291.87 22696.78 17691.77 11396.57 8997.07 11987.15 20698.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LFMVS91.33 20791.16 21291.82 22496.27 20179.36 27795.01 10585.61 36996.04 3094.82 17897.06 12072.03 33398.46 19084.96 26598.70 15297.65 198
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12294.85 5899.42 3393.49 6198.84 13298.00 159
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
test_241102_ONE98.51 5086.97 14598.10 5791.85 10497.63 3597.03 12296.48 1098.95 114
dcpmvs_293.96 13695.01 9990.82 26597.60 11974.04 34793.68 15598.85 889.80 16097.82 2997.01 12591.14 14799.21 7890.56 14598.59 16499.19 36
WB-MVS89.44 25492.15 18681.32 37897.73 10948.22 41089.73 28787.98 34895.24 3696.05 11396.99 12685.18 23396.95 30182.45 28897.97 22398.78 87
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 16098.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10894.46 4796.29 9996.94 12893.56 8199.37 5794.29 4099.42 5298.99 56
CR-MVSNet87.89 28687.12 29790.22 28391.01 36378.93 28492.52 19192.81 29873.08 36189.10 31796.93 12967.11 34997.64 26788.80 19892.70 36694.08 340
Patchmtry90.11 23989.92 23990.66 26990.35 37277.00 31592.96 17592.81 29890.25 15394.74 18296.93 12967.11 34997.52 27185.17 25798.98 11497.46 209
FMVSNet587.82 28986.56 30691.62 23392.31 33279.81 26893.49 15994.81 26083.26 27291.36 27896.93 12952.77 39597.49 27476.07 34898.03 21797.55 205
RPMNet90.31 23490.14 23690.81 26691.01 36378.93 28492.52 19198.12 5491.91 10189.10 31796.89 13268.84 34299.41 3990.17 16292.70 36694.08 340
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2891.40 12695.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18797.33 13490.05 15596.77 8096.85 13495.04 4898.56 17892.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11298.03 7290.82 13997.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4492.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
casdiffmvspermissive94.32 12294.80 10592.85 18996.05 22081.44 24192.35 20298.05 6791.53 12395.75 12896.80 13793.35 8998.49 18591.01 13598.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
QAPM92.88 16892.77 16993.22 17795.82 23683.31 21396.45 3997.35 13283.91 26693.75 20896.77 13889.25 17998.88 12184.56 27097.02 26597.49 208
LS3D96.11 4795.83 6396.95 3694.75 27894.20 1997.34 1397.98 7897.31 1195.32 15296.77 13893.08 9999.20 8091.79 11598.16 20697.44 212
patch_mono-292.46 18292.72 17491.71 22996.65 16978.91 28788.85 31197.17 14683.89 26792.45 25596.76 14089.86 17497.09 29590.24 15998.59 16499.12 43
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12498.05 6790.45 14996.31 9796.76 14092.91 10498.72 15191.19 13099.42 5298.32 132
MIMVSNet87.13 30886.54 30788.89 30996.05 22076.11 32894.39 12688.51 33981.37 29788.27 33596.75 14272.38 33095.52 34165.71 39295.47 30695.03 314
AllTest94.88 9894.51 11996.00 5698.02 8892.17 5095.26 9398.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6395.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9992.73 7893.48 21696.72 14694.23 7399.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_Test92.57 18093.29 15890.40 27893.53 31075.85 33192.52 19196.96 16188.73 18192.35 26196.70 14790.77 15398.37 20092.53 9895.49 30596.99 237
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8398.56 1591.84 10796.36 9496.68 14894.37 7299.32 6992.41 10099.05 10698.64 111
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 10192.59 8295.47 14296.68 14894.50 6899.42 3393.10 8299.26 8298.99 56
Anonymous20240521192.58 17892.50 17992.83 19096.55 17783.22 21792.43 19891.64 32294.10 5295.59 13696.64 15081.88 26797.50 27285.12 26198.52 17197.77 188
IterMVS-SCA-FT91.65 19991.55 19991.94 22193.89 30379.22 28187.56 32993.51 28691.53 12395.37 14996.62 15178.65 29098.90 11891.89 11294.95 32097.70 194
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 8192.35 8895.57 13796.61 15294.93 5699.41 3993.78 5199.15 9899.00 54
PM-MVS93.33 15292.67 17595.33 8696.58 17494.06 2192.26 20992.18 31185.92 23296.22 10596.61 15285.64 23095.99 33490.35 15298.23 19995.93 282
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 8192.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7593.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19196.49 15694.56 6699.39 4993.57 5799.05 10698.93 68
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7892.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
XVG-OURS94.72 10394.12 13396.50 4798.00 9094.23 1891.48 23698.17 4890.72 14195.30 15396.47 15787.94 19496.98 30091.41 12897.61 24398.30 135
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13298.08 6089.46 16596.61 8796.47 15795.85 1899.12 9090.45 14799.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
OpenMVScopyleft89.45 892.27 18992.13 18792.68 19594.53 28784.10 20595.70 7597.03 15682.44 28891.14 28496.42 16088.47 18498.38 19685.95 24897.47 24995.55 301
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
v124093.29 15393.71 14492.06 21996.01 22577.89 30291.81 23097.37 12685.12 25096.69 8396.40 16286.67 21799.07 9794.51 3498.76 14599.22 33
SD-MVS95.19 8895.73 6793.55 16396.62 17388.88 10794.67 11498.05 6791.26 12897.25 5896.40 16295.42 2894.36 36392.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test20.0390.80 21490.85 21890.63 27195.63 24979.24 28089.81 28592.87 29789.90 15794.39 19096.40 16285.77 22695.27 35173.86 36199.05 10697.39 217
IterMVS90.18 23590.16 23390.21 28493.15 31575.98 33087.56 32992.97 29686.43 22294.09 19596.40 16278.32 29497.43 27787.87 21794.69 32897.23 226
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 6092.67 8195.08 16896.39 16694.77 6099.42 3393.17 8099.44 5098.58 118
v119293.49 14893.78 14192.62 19996.16 21079.62 27191.83 22997.22 14486.07 22996.10 11296.38 16787.22 20499.02 10394.14 4398.88 12799.22 33
V4293.43 15093.58 15192.97 18295.34 26281.22 24492.67 18596.49 19687.25 21296.20 10796.37 16887.32 20398.85 12792.39 10198.21 20298.85 81
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 5191.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
IS-MVSNet94.49 11394.35 12594.92 10298.25 7286.46 16097.13 1894.31 27096.24 2596.28 10196.36 16982.88 25299.35 6088.19 20799.52 4198.96 64
v114493.50 14793.81 13892.57 20296.28 20079.61 27291.86 22896.96 16186.95 21895.91 11996.32 17187.65 19798.96 11193.51 6098.88 12799.13 41
baseline94.26 12494.80 10592.64 19696.08 21880.99 24793.69 15498.04 7190.80 14094.89 17696.32 17193.19 9498.48 18991.68 11998.51 17398.43 127
FE-MVS89.06 26188.29 26991.36 24294.78 27679.57 27396.77 2890.99 32684.87 25692.96 23896.29 17360.69 38298.80 13880.18 31197.11 26295.71 292
TinyColmap92.00 19492.76 17089.71 29595.62 25077.02 31490.72 25496.17 21287.70 20595.26 15696.29 17392.54 11396.45 32081.77 29498.77 14495.66 296
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7592.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
USDC89.02 26289.08 25088.84 31095.07 26774.50 34288.97 30796.39 20073.21 36093.27 22496.28 17582.16 26296.39 32277.55 33598.80 14195.62 299
v2v48293.29 15393.63 14892.29 20896.35 19378.82 28991.77 23296.28 20388.45 18895.70 13396.26 17786.02 22598.90 11893.02 8598.81 14099.14 40
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19598.13 5390.69 14293.75 20896.25 17898.03 297.02 29992.08 10595.55 30398.45 126
pmmvs-eth3d91.54 20290.73 22293.99 14295.76 24187.86 12890.83 25093.98 28078.23 32894.02 20196.22 17982.62 25996.83 30986.57 23898.33 18997.29 223
h-mvs3392.89 16791.99 19095.58 7796.97 14990.55 7693.94 14694.01 27989.23 17093.95 20396.19 18076.88 31199.14 8691.02 13395.71 30097.04 235
v192192093.26 15593.61 15092.19 21296.04 22478.31 29591.88 22597.24 14285.17 24896.19 10996.19 18086.76 21599.05 9894.18 4298.84 13299.22 33
EPP-MVSNet93.91 13993.68 14694.59 12198.08 8185.55 18597.44 1294.03 27694.22 5094.94 17396.19 18082.07 26399.57 1487.28 22798.89 12598.65 106
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11797.81 9489.22 17295.46 14496.17 18393.42 8799.34 6389.30 18298.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_vis1_n_192089.45 25389.85 24188.28 32293.59 30976.71 32290.67 25697.78 9979.67 31290.30 29996.11 18476.62 31492.17 37890.31 15493.57 35195.96 280
v14419293.20 16093.54 15492.16 21696.05 22078.26 29691.95 21897.14 14884.98 25495.96 11596.11 18487.08 20899.04 10193.79 5098.84 13299.17 37
VNet92.67 17692.96 16491.79 22596.27 20180.15 25491.95 21894.98 25392.19 9494.52 18896.07 18687.43 20197.39 28184.83 26698.38 18397.83 181
v14892.87 16993.29 15891.62 23396.25 20477.72 30691.28 24195.05 25089.69 16195.93 11896.04 18787.34 20298.38 19690.05 16797.99 22198.78 87
9.1494.81 10497.49 12694.11 13998.37 2187.56 20995.38 14796.03 18894.66 6299.08 9390.70 14298.97 119
FMVSNet390.78 21590.32 23292.16 21693.03 31979.92 26492.54 19094.95 25486.17 22895.10 16596.01 18969.97 34098.75 14686.74 23398.38 18397.82 183
MG-MVS89.54 25189.80 24288.76 31194.88 27072.47 35989.60 29092.44 30985.82 23389.48 31495.98 19082.85 25497.74 26081.87 29395.27 31396.08 275
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17798.07 6393.46 6796.31 9795.97 19190.14 16799.34 6392.11 10399.64 2499.16 38
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18997.81 9493.99 5396.80 7895.90 19290.10 17099.41 3991.60 12199.58 3499.26 30
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 10197.37 12693.92 5897.65 3495.90 19290.10 17099.33 6890.11 16499.66 2199.26 30
EI-MVSNet92.99 16493.26 16292.19 21292.12 34079.21 28292.32 20494.67 26591.77 11395.24 15995.85 19487.14 20798.49 18591.99 10898.26 19598.86 78
CVMVSNet85.16 32284.72 32086.48 34592.12 34070.19 36892.32 20488.17 34456.15 40390.64 29295.85 19467.97 34796.69 31388.78 19990.52 38292.56 369
EI-MVSNet-UG-set94.35 12094.27 12994.59 12192.46 33185.87 17692.42 19994.69 26393.67 6496.13 11095.84 19691.20 14398.86 12593.78 5198.23 19999.03 52
EI-MVSNet-Vis-set94.36 11994.28 12794.61 11792.55 32885.98 17392.44 19794.69 26393.70 6196.12 11195.81 19791.24 14098.86 12593.76 5498.22 20198.98 60
ZD-MVS97.23 13890.32 7897.54 11584.40 26294.78 18095.79 19892.76 10999.39 4988.72 20198.40 179
MDA-MVSNet-bldmvs91.04 21090.88 21691.55 23594.68 28380.16 25385.49 36792.14 31490.41 15194.93 17495.79 19885.10 23496.93 30485.15 25994.19 34197.57 202
MVSTER89.32 25688.75 25991.03 25590.10 37576.62 32390.85 24994.67 26582.27 28995.24 15995.79 19861.09 38098.49 18590.49 14698.26 19597.97 166
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20997.84 9194.91 4096.80 7895.78 20190.42 16299.41 3991.60 12199.58 3499.29 29
test_vis1_n89.01 26489.01 25389.03 30692.57 32782.46 22992.62 18896.06 21473.02 36290.40 29695.77 20274.86 32189.68 39090.78 14094.98 31994.95 317
PC_three_145275.31 34895.87 12295.75 20392.93 10396.34 32787.18 22898.68 15598.04 154
new-patchmatchnet88.97 26690.79 22083.50 37294.28 29255.83 40785.34 36993.56 28586.18 22795.47 14295.73 20483.10 24996.51 31785.40 25498.06 21498.16 145
UnsupCasMVSNet_eth90.33 23290.34 23190.28 28094.64 28580.24 25289.69 28995.88 22185.77 23493.94 20595.69 20581.99 26492.98 37584.21 27291.30 37797.62 199
OPU-MVS95.15 9796.84 15989.43 9295.21 9595.66 20693.12 9798.06 22386.28 24698.61 16197.95 167
test_cas_vis1_n_192088.25 28288.27 27188.20 32492.19 33878.92 28689.45 29595.44 23975.29 34993.23 22895.65 20771.58 33490.23 38888.05 21293.55 35395.44 303
MVP-Stereo90.07 24288.92 25593.54 16596.31 19786.49 15890.93 24895.59 23379.80 30891.48 27695.59 20880.79 27697.39 28178.57 32991.19 37896.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
HQP_MVS94.26 12493.93 13695.23 9397.71 11188.12 12294.56 12197.81 9491.74 11593.31 22095.59 20886.93 21198.95 11489.26 18698.51 17398.60 116
plane_prior495.59 208
Anonymous2023120688.77 27388.29 26990.20 28596.31 19778.81 29089.56 29293.49 28774.26 35492.38 25995.58 21182.21 26095.43 34672.07 37098.75 14796.34 263
旧先验196.20 20784.17 20494.82 25895.57 21289.57 17697.89 22896.32 264
GeoE94.55 11194.68 11494.15 13797.23 13885.11 19194.14 13897.34 13388.71 18395.26 15695.50 21394.65 6399.12 9090.94 13698.40 17998.23 138
CPTT-MVS94.74 10294.12 13396.60 4398.15 7793.01 4295.84 7197.66 10589.21 17393.28 22395.46 21488.89 18198.98 10689.80 17198.82 13897.80 185
DeepC-MVS_fast89.96 793.73 14393.44 15694.60 12096.14 21387.90 12693.36 16597.14 14885.53 24293.90 20695.45 21591.30 13998.59 17489.51 17798.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CNVR-MVS94.58 11094.29 12695.46 8296.94 15189.35 9691.81 23096.80 17589.66 16293.90 20695.44 21692.80 10898.72 15192.74 9298.52 17198.32 132
testdata91.03 25596.87 15682.01 23294.28 27271.55 36892.46 25495.42 21785.65 22997.38 28382.64 28497.27 25693.70 352
DeepPCF-MVS90.46 694.20 12893.56 15396.14 5295.96 22792.96 4389.48 29497.46 12185.14 24996.23 10495.42 21793.19 9498.08 22290.37 15198.76 14597.38 219
OMC-MVS94.22 12793.69 14595.81 6997.25 13791.27 6492.27 20897.40 12587.10 21694.56 18695.42 21793.74 7998.11 22086.62 23798.85 13198.06 151
test_fmvs1_n88.73 27588.38 26589.76 29392.06 34282.53 22792.30 20796.59 18971.14 37192.58 25095.41 22068.55 34389.57 39291.12 13195.66 30197.18 229
WR-MVS93.49 14893.72 14392.80 19197.57 12280.03 26090.14 27495.68 22793.70 6196.62 8695.39 22187.21 20599.04 10187.50 22299.64 2499.33 26
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19491.93 10094.82 17895.39 22191.99 12397.08 29685.53 25397.96 22497.41 213
iter_conf0588.94 26888.09 27991.50 23892.74 32476.97 31892.80 18095.92 22082.82 28293.65 21295.37 22349.41 39799.13 8890.82 13899.28 7998.40 129
MSLP-MVS++93.25 15793.88 13791.37 24196.34 19482.81 22593.11 17197.74 10189.37 16894.08 19695.29 22490.40 16496.35 32590.35 15298.25 19794.96 316
HPM-MVS++copyleft95.02 9294.39 12196.91 3797.88 9893.58 3794.09 14096.99 16091.05 13492.40 25895.22 22591.03 14999.25 7592.11 10398.69 15397.90 172
MSP-MVS95.34 8094.63 11797.48 1498.67 3394.05 2396.41 4398.18 4491.26 12895.12 16495.15 22686.60 21999.50 2193.43 7096.81 27598.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet_test_wron88.16 28488.23 27487.93 32892.22 33573.71 34880.71 39388.84 33682.52 28694.88 17795.14 22782.70 25793.61 36983.28 27893.80 34896.46 259
Vis-MVSNet (Re-imp)90.42 22590.16 23391.20 25197.66 11777.32 31194.33 12987.66 35191.20 13192.99 23695.13 22875.40 32098.28 20477.86 33199.19 9297.99 162
YYNet188.17 28388.24 27387.93 32892.21 33673.62 34980.75 39288.77 33782.51 28794.99 17295.11 22982.70 25793.70 36883.33 27793.83 34796.48 258
D2MVS89.93 24589.60 24790.92 26094.03 29878.40 29488.69 31694.85 25678.96 32393.08 23295.09 23074.57 32296.94 30288.19 20798.96 12197.41 213
CDPH-MVS92.67 17691.83 19595.18 9696.94 15188.46 11890.70 25597.07 15477.38 33292.34 26395.08 23192.67 11198.88 12185.74 25098.57 16698.20 141
PVSNet_BlendedMVS90.35 23189.96 23891.54 23694.81 27478.80 29190.14 27496.93 16379.43 31488.68 32995.06 23286.27 22298.15 21880.27 30898.04 21697.68 196
tpm84.38 32984.08 32785.30 35790.47 37063.43 39889.34 29985.63 36877.24 33587.62 34695.03 23361.00 38197.30 28479.26 32491.09 38095.16 308
PVSNet_Blended_VisFu91.63 20091.20 20992.94 18597.73 10983.95 20892.14 21297.46 12178.85 32592.35 26194.98 23484.16 24199.08 9386.36 24496.77 27795.79 289
miper_lstm_enhance89.90 24689.80 24290.19 28691.37 35977.50 30883.82 38395.00 25284.84 25793.05 23494.96 23576.53 31695.20 35289.96 16998.67 15797.86 177
新几何193.17 17897.16 14387.29 13594.43 26867.95 38791.29 27994.94 23686.97 21098.23 21081.06 30497.75 23393.98 345
cl____90.65 21990.56 22690.91 26291.85 34876.98 31786.75 34795.36 24485.53 24294.06 19894.89 23777.36 30597.98 23390.27 15798.98 11497.76 189
DIV-MVS_self_test90.65 21990.56 22690.91 26291.85 34876.99 31686.75 34795.36 24485.52 24494.06 19894.89 23777.37 30497.99 23290.28 15698.97 11997.76 189
test22296.95 15085.27 19088.83 31293.61 28265.09 39590.74 29094.85 23984.62 23997.36 25493.91 346
test_prior290.21 27189.33 16990.77 28994.81 24090.41 16388.21 20598.55 167
CHOSEN 1792x268887.19 30685.92 31591.00 25897.13 14579.41 27684.51 37795.60 22964.14 39690.07 30394.81 24078.26 29597.14 29473.34 36395.38 31096.46 259
114514_t90.51 22289.80 24292.63 19898.00 9082.24 23193.40 16397.29 13865.84 39389.40 31594.80 24286.99 20998.75 14683.88 27598.61 16196.89 241
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25394.79 24393.56 8199.49 2493.47 6499.05 10697.89 174
tttt051789.81 24888.90 25792.55 20397.00 14879.73 27095.03 10483.65 38289.88 15895.30 15394.79 24353.64 39399.39 4991.99 10898.79 14298.54 119
EPNet89.80 24988.25 27294.45 12983.91 40786.18 16993.87 14787.07 35691.16 13380.64 39594.72 24578.83 28898.89 12085.17 25798.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PMMVS281.31 35383.44 33274.92 38690.52 36946.49 41269.19 40085.23 37584.30 26487.95 34094.71 24676.95 31084.36 40364.07 39498.09 21293.89 347
testgi90.38 22991.34 20787.50 33397.49 12671.54 36289.43 29695.16 24888.38 19094.54 18794.68 24792.88 10693.09 37471.60 37497.85 23097.88 175
mvsany_test183.91 33382.93 33786.84 34286.18 40185.93 17481.11 39175.03 40670.80 37688.57 33194.63 24883.08 25087.38 39680.39 30686.57 39287.21 392
test_fmvs187.59 29587.27 29188.54 31688.32 39081.26 24390.43 26595.72 22670.55 37791.70 27494.63 24868.13 34489.42 39390.59 14495.34 31194.94 321
NCCC94.08 13293.54 15495.70 7596.49 18389.90 8392.39 20196.91 16790.64 14492.33 26494.60 25090.58 16198.96 11190.21 16197.70 23798.23 138
MVS_111021_HR93.63 14593.42 15794.26 13596.65 16986.96 14789.30 30196.23 20788.36 19193.57 21494.60 25093.45 8497.77 25590.23 16098.38 18398.03 157
TAMVS90.16 23689.05 25193.49 17096.49 18386.37 16390.34 26892.55 30780.84 30492.99 23694.57 25281.94 26698.20 21273.51 36298.21 20295.90 285
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24494.52 25393.95 7899.49 2493.62 5699.22 8997.51 207
原ACMM192.87 18896.91 15484.22 20297.01 15776.84 33889.64 31394.46 25488.00 19298.70 15881.53 29898.01 22095.70 294
MVS_111021_LR93.66 14493.28 16094.80 10796.25 20490.95 6990.21 27195.43 24187.91 19793.74 21094.40 25592.88 10696.38 32390.39 14998.28 19397.07 231
TEST996.45 18689.46 9090.60 25896.92 16579.09 32190.49 29394.39 25691.31 13898.88 121
train_agg92.71 17591.83 19595.35 8496.45 18689.46 9090.60 25896.92 16579.37 31590.49 29394.39 25691.20 14398.88 12188.66 20298.43 17897.72 193
test_896.37 18889.14 10090.51 26196.89 16879.37 31590.42 29594.36 25891.20 14398.82 130
FPMVS84.50 32883.28 33388.16 32596.32 19694.49 1685.76 36585.47 37083.09 27785.20 36194.26 25963.79 37086.58 39963.72 39591.88 37683.40 397
MCST-MVS92.91 16692.51 17894.10 14097.52 12485.72 18191.36 24097.13 15080.33 30692.91 24094.24 26091.23 14198.72 15189.99 16897.93 22697.86 177
BH-RMVSNet90.47 22490.44 22890.56 27395.21 26578.65 29389.15 30593.94 28188.21 19292.74 24594.22 26186.38 22097.88 24178.67 32895.39 30995.14 310
pmmvs488.95 26787.70 28592.70 19394.30 29185.60 18487.22 33592.16 31374.62 35189.75 31294.19 26277.97 29796.41 32182.71 28396.36 28796.09 274
Patchmatch-RL test88.81 27288.52 26189.69 29695.33 26379.94 26386.22 35992.71 30278.46 32695.80 12494.18 26366.25 35795.33 34989.22 18898.53 17093.78 349
PHI-MVS94.34 12193.80 14095.95 5995.65 24791.67 6294.82 11097.86 8887.86 20093.04 23594.16 26491.58 13298.78 14290.27 15798.96 12197.41 213
TAPA-MVS88.58 1092.49 18191.75 19794.73 11096.50 18289.69 8692.91 17797.68 10478.02 32992.79 24394.10 26590.85 15197.96 23484.76 26898.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DP-MVS Recon92.31 18791.88 19393.60 16197.18 14286.87 14891.10 24597.37 12684.92 25592.08 26994.08 26688.59 18298.20 21283.50 27698.14 20895.73 291
CANet92.38 18591.99 19093.52 16893.82 30683.46 21291.14 24397.00 15889.81 15986.47 35494.04 26787.90 19599.21 7889.50 17898.27 19497.90 172
F-COLMAP92.28 18891.06 21395.95 5997.52 12491.90 5693.53 15797.18 14583.98 26588.70 32894.04 26788.41 18598.55 18080.17 31295.99 29497.39 217
UnsupCasMVSNet_bld88.50 27888.03 28089.90 29195.52 25578.88 28887.39 33394.02 27879.32 31993.06 23394.02 26980.72 27794.27 36475.16 35393.08 36296.54 252
MDTV_nov1_ep1383.88 33189.42 38361.52 40088.74 31587.41 35273.99 35584.96 36694.01 27065.25 36295.53 34078.02 33093.16 359
OpenMVS_ROBcopyleft85.12 1689.52 25289.05 25190.92 26094.58 28681.21 24591.10 24593.41 28977.03 33693.41 21793.99 27183.23 24897.80 25079.93 31694.80 32593.74 351
diffmvspermissive91.74 19791.93 19291.15 25393.06 31778.17 29788.77 31497.51 12086.28 22392.42 25793.96 27288.04 19197.46 27590.69 14396.67 28097.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CL-MVSNet_self_test90.04 24489.90 24090.47 27495.24 26477.81 30486.60 35392.62 30585.64 23893.25 22793.92 27383.84 24296.06 33279.93 31698.03 21797.53 206
eth_miper_zixun_eth90.72 21690.61 22491.05 25492.04 34376.84 32086.91 34296.67 18485.21 24794.41 18993.92 27379.53 28498.26 20889.76 17397.02 26598.06 151
c3_l91.32 20891.42 20491.00 25892.29 33376.79 32187.52 33296.42 19985.76 23594.72 18493.89 27582.73 25698.16 21790.93 13798.55 16798.04 154
pmmvs587.87 28787.14 29590.07 28793.26 31476.97 31888.89 30992.18 31173.71 35788.36 33393.89 27576.86 31396.73 31280.32 30796.81 27596.51 254
PCF-MVS84.52 1789.12 25987.71 28493.34 17396.06 21985.84 17786.58 35497.31 13568.46 38693.61 21393.89 27587.51 20098.52 18367.85 38798.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TSAR-MVS + GP.93.07 16392.41 18195.06 9995.82 23690.87 7290.97 24792.61 30688.04 19694.61 18593.79 27888.08 18997.81 24989.41 17998.39 18296.50 257
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28693.73 27993.52 8399.55 1891.81 11499.45 4797.58 201
HY-MVS82.50 1886.81 31285.93 31489.47 29793.63 30877.93 30094.02 14191.58 32375.68 34283.64 37693.64 28077.40 30297.42 27871.70 37392.07 37393.05 364
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27196.48 2195.38 14793.63 28194.89 5797.94 23695.38 2796.92 27195.17 307
LF4IMVS92.72 17492.02 18994.84 10695.65 24791.99 5492.92 17696.60 18785.08 25292.44 25693.62 28286.80 21496.35 32586.81 23298.25 19796.18 271
Test_1112_low_res87.50 29886.58 30590.25 28296.80 16377.75 30587.53 33196.25 20569.73 38286.47 35493.61 28375.67 31897.88 24179.95 31493.20 35895.11 313
MS-PatchMatch88.05 28587.75 28388.95 30793.28 31277.93 30087.88 32592.49 30875.42 34592.57 25193.59 28480.44 27894.24 36681.28 30092.75 36594.69 331
CNLPA91.72 19891.20 20993.26 17696.17 20991.02 6791.14 24395.55 23690.16 15490.87 28793.56 28586.31 22194.40 36279.92 31897.12 26194.37 336
ppachtmachnet_test88.61 27788.64 26088.50 31891.76 35070.99 36684.59 37692.98 29579.30 32092.38 25993.53 28679.57 28397.45 27686.50 24297.17 26097.07 231
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10597.57 11392.68 7996.20 10793.44 28791.92 12598.78 14289.11 19199.24 8596.92 239
NP-MVS96.82 16187.10 14193.40 288
HQP-MVS92.09 19291.49 20393.88 15096.36 19084.89 19391.37 23797.31 13587.16 21388.81 32293.40 28884.76 23798.60 17286.55 24097.73 23498.14 147
test_yl90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
DCV-MVSNet90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
CMPMVSbinary68.83 2287.28 30285.67 31692.09 21888.77 38885.42 18890.31 26994.38 26970.02 38088.00 33893.30 29073.78 32694.03 36775.96 35096.54 28396.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
CostFormer83.09 33982.21 34285.73 35289.27 38467.01 38090.35 26786.47 35970.42 37883.52 37893.23 29361.18 37996.85 30877.21 33988.26 38993.34 360
DELS-MVS92.05 19392.16 18491.72 22894.44 28880.13 25687.62 32697.25 14187.34 21192.22 26693.18 29489.54 17798.73 15089.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
baseline187.62 29487.31 28988.54 31694.71 28274.27 34593.10 17288.20 34386.20 22692.18 26793.04 29573.21 32795.52 34179.32 32385.82 39395.83 287
BH-untuned90.68 21890.90 21590.05 28995.98 22679.57 27390.04 27794.94 25587.91 19794.07 19793.00 29687.76 19697.78 25479.19 32595.17 31592.80 367
hse-mvs292.24 19091.20 20995.38 8396.16 21090.65 7592.52 19192.01 31889.23 17093.95 20392.99 29776.88 31198.69 16091.02 13396.03 29296.81 245
HyFIR lowres test87.19 30685.51 31792.24 21097.12 14680.51 25185.03 37196.06 21466.11 39291.66 27592.98 29870.12 33999.14 8675.29 35295.23 31497.07 231
AUN-MVS90.05 24388.30 26895.32 8896.09 21790.52 7792.42 19992.05 31782.08 29288.45 33292.86 29965.76 35998.69 16088.91 19696.07 29196.75 249
SCA87.43 29987.21 29388.10 32692.01 34471.98 36189.43 29688.11 34682.26 29088.71 32792.83 30078.65 29097.59 26879.61 32093.30 35694.75 328
Patchmatch-test86.10 31686.01 31386.38 34990.63 36774.22 34689.57 29186.69 35785.73 23689.81 30992.83 30065.24 36391.04 38377.82 33495.78 29993.88 348
MVSFormer92.18 19192.23 18392.04 22094.74 27980.06 25897.15 1597.37 12688.98 17688.83 32092.79 30277.02 30899.60 996.41 996.75 27896.46 259
jason89.17 25888.32 26691.70 23095.73 24280.07 25788.10 32293.22 29171.98 36790.09 30192.79 30278.53 29398.56 17887.43 22497.06 26396.46 259
jason: jason.
PatchmatchNetpermissive85.22 32184.64 32186.98 33889.51 38269.83 37390.52 26087.34 35478.87 32487.22 35192.74 30466.91 35196.53 31581.77 29486.88 39194.58 332
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AdaColmapbinary91.63 20091.36 20692.47 20695.56 25386.36 16492.24 21196.27 20488.88 18089.90 30792.69 30591.65 13198.32 20277.38 33897.64 24192.72 368
thisisatest053088.69 27687.52 28792.20 21196.33 19579.36 27792.81 17984.01 38186.44 22193.67 21192.68 30653.62 39499.25 7589.65 17698.45 17798.00 159
miper_ehance_all_eth90.48 22390.42 22990.69 26891.62 35576.57 32486.83 34596.18 21183.38 27094.06 19892.66 30782.20 26198.04 22489.79 17297.02 26597.45 210
cl2289.02 26288.50 26290.59 27289.76 37776.45 32586.62 35294.03 27682.98 28092.65 24792.49 30872.05 33297.53 27088.93 19497.02 26597.78 187
ADS-MVSNet284.01 33282.20 34389.41 29989.04 38576.37 32787.57 32790.98 32772.71 36584.46 36892.45 30968.08 34596.48 31870.58 38183.97 39595.38 304
ADS-MVSNet82.25 34581.55 34684.34 36689.04 38565.30 39087.57 32785.13 37672.71 36584.46 36892.45 30968.08 34592.33 37770.58 38183.97 39595.38 304
tpm281.46 35280.35 35984.80 36189.90 37665.14 39290.44 26285.36 37165.82 39482.05 38892.44 31157.94 38596.69 31370.71 38088.49 38892.56 369
N_pmnet88.90 27087.25 29293.83 15494.40 29093.81 3584.73 37387.09 35579.36 31793.26 22592.43 31279.29 28691.68 38077.50 33797.22 25896.00 278
alignmvs93.26 15592.85 16894.50 12595.70 24387.45 13393.45 16195.76 22491.58 12095.25 15892.42 31381.96 26598.72 15191.61 12097.87 22997.33 221
CDS-MVSNet89.55 25088.22 27593.53 16695.37 26186.49 15889.26 30293.59 28379.76 31091.15 28392.31 31477.12 30698.38 19677.51 33697.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MGCFI-Net94.44 11594.67 11593.75 15695.56 25385.47 18695.25 9498.24 3591.53 12395.04 16992.21 31594.94 5598.54 18191.56 12497.66 24097.24 225
PLCcopyleft85.34 1590.40 22688.92 25594.85 10596.53 18190.02 8191.58 23496.48 19780.16 30786.14 35692.18 31685.73 22798.25 20976.87 34194.61 33096.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
our_test_387.55 29687.59 28687.44 33491.76 35070.48 36783.83 38290.55 33279.79 30992.06 27092.17 31778.63 29295.63 33984.77 26794.73 32696.22 269
Effi-MVS+-dtu93.90 14092.60 17797.77 394.74 27996.67 594.00 14295.41 24289.94 15691.93 27292.13 31890.12 16898.97 11087.68 22097.48 24897.67 197
PAPM_NR91.03 21190.81 21991.68 23196.73 16481.10 24693.72 15396.35 20288.19 19388.77 32692.12 31985.09 23597.25 28582.40 28993.90 34696.68 250
sasdasda94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
MSDG90.82 21390.67 22391.26 24794.16 29383.08 22186.63 35196.19 21090.60 14691.94 27191.89 32289.16 18095.75 33880.96 30594.51 33194.95 317
sss87.23 30386.82 30188.46 32093.96 29977.94 29986.84 34492.78 30177.59 33187.61 34791.83 32378.75 28991.92 37977.84 33294.20 33995.52 302
CANet_DTU89.85 24789.17 24991.87 22292.20 33780.02 26190.79 25195.87 22286.02 23082.53 38591.77 32480.01 28198.57 17785.66 25297.70 23797.01 236
patchmatchnet-post91.71 32566.22 35897.59 268
PatchMatch-RL89.18 25788.02 28192.64 19695.90 23292.87 4588.67 31891.06 32580.34 30590.03 30491.67 32683.34 24694.42 36176.35 34694.84 32490.64 383
tpmrst82.85 34382.93 33782.64 37487.65 39258.99 40590.14 27487.90 34975.54 34483.93 37491.63 32766.79 35495.36 34781.21 30281.54 40193.57 358
WTY-MVS86.93 31186.50 31088.24 32394.96 26874.64 33887.19 33692.07 31678.29 32788.32 33491.59 32878.06 29694.27 36474.88 35493.15 36095.80 288
DPM-MVS89.35 25588.40 26492.18 21596.13 21584.20 20386.96 34196.15 21375.40 34687.36 34991.55 32983.30 24798.01 22982.17 29296.62 28194.32 338
EPMVS81.17 35680.37 35883.58 37185.58 40365.08 39390.31 26971.34 40777.31 33485.80 35891.30 33059.38 38392.70 37679.99 31382.34 40092.96 365
Fast-Effi-MVS+-dtu92.77 17392.16 18494.58 12394.66 28488.25 12092.05 21496.65 18589.62 16390.08 30291.23 33192.56 11298.60 17286.30 24596.27 28996.90 240
cdsmvs_eth3d_5k23.35 37531.13 3780.00 3930.00 4160.00 4180.00 40495.58 2350.00 4110.00 41291.15 33293.43 860.00 4120.00 4110.00 4100.00 408
lupinMVS88.34 28187.31 28991.45 23994.74 27980.06 25887.23 33492.27 31071.10 37288.83 32091.15 33277.02 30898.53 18286.67 23696.75 27895.76 290
API-MVS91.52 20391.61 19891.26 24794.16 29386.26 16794.66 11594.82 25891.17 13292.13 26891.08 33490.03 17397.06 29879.09 32697.35 25590.45 384
thres600view787.66 29287.10 29889.36 30196.05 22073.17 35192.72 18285.31 37291.89 10293.29 22290.97 33563.42 37198.39 19373.23 36496.99 27096.51 254
thres100view90087.35 30186.89 30088.72 31296.14 21373.09 35393.00 17485.31 37292.13 9593.26 22590.96 33663.42 37198.28 20471.27 37696.54 28394.79 326
tpmvs84.22 33083.97 32884.94 36087.09 39765.18 39191.21 24288.35 34082.87 28185.21 36090.96 33665.24 36396.75 31179.60 32285.25 39492.90 366
xiu_mvs_v1_base_debu91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base_debi91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
1112_ss88.42 27987.41 28891.45 23996.69 16680.99 24789.72 28896.72 18173.37 35887.00 35290.69 34177.38 30398.20 21281.38 29993.72 34995.15 309
ab-mvs-re7.56 37810.08 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41290.69 3410.00 4160.00 4120.00 4110.00 4100.00 408
Effi-MVS+92.79 17192.74 17192.94 18595.10 26683.30 21494.00 14297.53 11791.36 12789.35 31690.65 34394.01 7798.66 16487.40 22595.30 31296.88 243
bld_raw_dy_0_6490.86 21290.99 21490.47 27493.95 30177.88 30393.99 14498.93 777.75 33097.03 6690.61 34481.82 26898.58 17685.18 25599.61 2694.95 317
GA-MVS87.70 29086.82 30190.31 27993.27 31377.22 31384.72 37592.79 30085.11 25189.82 30890.07 34566.80 35297.76 25784.56 27094.27 33795.96 280
EPNet_dtu85.63 31884.37 32489.40 30086.30 40074.33 34491.64 23388.26 34184.84 25772.96 40489.85 34671.27 33697.69 26376.60 34397.62 24296.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PAPM81.91 35180.11 36187.31 33593.87 30472.32 36084.02 38193.22 29169.47 38376.13 40289.84 34772.15 33197.23 28653.27 40489.02 38692.37 371
iter_conf05_1188.91 26988.32 26690.66 26993.95 30178.09 29886.98 33993.06 29479.35 31887.64 34489.80 34880.25 28098.96 11185.18 25598.69 15394.95 317
tfpn200view987.05 30986.52 30888.67 31395.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28394.79 326
thres40087.20 30586.52 30889.24 30595.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28396.51 254
TR-MVS87.70 29087.17 29489.27 30394.11 29579.26 27988.69 31691.86 31981.94 29390.69 29189.79 35182.82 25597.42 27872.65 36891.98 37491.14 380
new_pmnet81.22 35481.01 35281.86 37690.92 36570.15 36984.03 38080.25 39770.83 37485.97 35789.78 35267.93 34884.65 40267.44 38891.90 37590.78 382
PAPR87.65 29386.77 30390.27 28192.85 32377.38 31088.56 31996.23 20776.82 33984.98 36589.75 35386.08 22497.16 29372.33 36993.35 35596.26 268
CLD-MVS91.82 19591.41 20593.04 17996.37 18883.65 21186.82 34697.29 13884.65 25992.27 26589.67 35492.20 12097.85 24783.95 27499.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
tpm cat180.61 36079.46 36384.07 36888.78 38765.06 39489.26 30288.23 34262.27 39981.90 39089.66 35562.70 37695.29 35071.72 37280.60 40291.86 376
pmmvs380.83 35878.96 36686.45 34687.23 39677.48 30984.87 37282.31 38663.83 39785.03 36489.50 35649.66 39693.10 37373.12 36695.10 31688.78 389
miper_enhance_ethall88.42 27987.87 28290.07 28788.67 38975.52 33485.10 37095.59 23375.68 34292.49 25289.45 35778.96 28797.88 24187.86 21897.02 26596.81 245
KD-MVS_2432*160082.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
miper_refine_blended82.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
test_vis1_rt85.58 31984.58 32288.60 31587.97 39186.76 15085.45 36893.59 28366.43 39087.64 34489.20 36079.33 28585.38 40181.59 29789.98 38593.66 353
PVSNet_Blended88.74 27488.16 27890.46 27794.81 27478.80 29186.64 35096.93 16374.67 35088.68 32989.18 36186.27 22298.15 21880.27 30896.00 29394.44 335
dp79.28 36778.62 36781.24 37985.97 40256.45 40686.91 34285.26 37472.97 36381.45 39389.17 36256.01 39095.45 34573.19 36576.68 40391.82 377
ET-MVSNet_ETH3D86.15 31584.27 32691.79 22593.04 31881.28 24287.17 33786.14 36179.57 31383.65 37588.66 36357.10 38698.18 21587.74 21995.40 30895.90 285
testing383.66 33482.52 33987.08 33695.84 23465.84 38989.80 28677.17 40588.17 19490.84 28888.63 36430.95 41398.11 22084.05 27397.19 25997.28 224
xiu_mvs_v2_base89.00 26589.19 24888.46 32094.86 27274.63 33986.97 34095.60 22980.88 30287.83 34188.62 36591.04 14898.81 13582.51 28794.38 33391.93 374
Fast-Effi-MVS+91.28 20990.86 21792.53 20495.45 25782.53 22789.25 30496.52 19585.00 25389.91 30688.55 36692.94 10298.84 12884.72 26995.44 30796.22 269
thres20085.85 31785.18 31887.88 33094.44 28872.52 35889.08 30686.21 36088.57 18791.44 27788.40 36764.22 36698.00 23068.35 38595.88 29893.12 361
BH-w/o87.21 30487.02 29987.79 33194.77 27777.27 31287.90 32493.21 29381.74 29489.99 30588.39 36883.47 24596.93 30471.29 37592.43 37089.15 385
UWE-MVS80.29 36379.10 36483.87 36991.97 34659.56 40386.50 35677.43 40475.40 34687.79 34388.10 36944.08 40596.90 30664.23 39396.36 28795.14 310
MAR-MVS90.32 23388.87 25894.66 11594.82 27391.85 5794.22 13494.75 26180.91 30187.52 34888.07 37086.63 21897.87 24476.67 34296.21 29094.25 339
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
WB-MVSnew84.20 33183.89 33085.16 35991.62 35566.15 38888.44 32181.00 39276.23 34187.98 33987.77 37184.98 23693.35 37262.85 39794.10 34495.98 279
EIA-MVS92.35 18692.03 18893.30 17595.81 23883.97 20792.80 18098.17 4887.71 20489.79 31087.56 37291.17 14699.18 8287.97 21597.27 25696.77 247
baseline283.38 33781.54 34788.90 30891.38 35872.84 35688.78 31381.22 39178.97 32279.82 39787.56 37261.73 37897.80 25074.30 35890.05 38496.05 277
MVS84.98 32484.30 32587.01 33791.03 36277.69 30791.94 22094.16 27459.36 40184.23 37287.50 37485.66 22896.80 31071.79 37193.05 36386.54 394
PS-MVSNAJ88.86 27188.99 25488.48 31994.88 27074.71 33786.69 34995.60 22980.88 30287.83 34187.37 37590.77 15398.82 13082.52 28694.37 33491.93 374
131486.46 31486.33 31186.87 34191.65 35474.54 34091.94 22094.10 27574.28 35384.78 36787.33 37683.03 25195.00 35378.72 32791.16 37991.06 381
thisisatest051584.72 32682.99 33689.90 29192.96 32175.33 33684.36 37883.42 38377.37 33388.27 33586.65 37753.94 39298.72 15182.56 28597.40 25395.67 295
test0.0.03 182.48 34481.47 34885.48 35589.70 37873.57 35084.73 37381.64 38883.07 27888.13 33786.61 37862.86 37489.10 39566.24 39190.29 38393.77 350
IB-MVS77.21 1983.11 33881.05 35089.29 30291.15 36175.85 33185.66 36686.00 36379.70 31182.02 38986.61 37848.26 39898.39 19377.84 33292.22 37193.63 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVEpermissive59.87 2373.86 37272.65 37577.47 38487.00 39974.35 34361.37 40260.93 41067.27 38869.69 40586.49 38081.24 27472.33 40656.45 40383.45 39785.74 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PVSNet76.22 2082.89 34282.37 34184.48 36493.96 29964.38 39678.60 39588.61 33871.50 36984.43 37086.36 38174.27 32394.60 35869.87 38393.69 35094.46 334
ETV-MVS92.99 16492.74 17193.72 15895.86 23386.30 16692.33 20397.84 9191.70 11892.81 24186.17 38292.22 11899.19 8188.03 21497.73 23495.66 296
cascas87.02 31086.28 31289.25 30491.56 35776.45 32584.33 37996.78 17671.01 37386.89 35385.91 38381.35 27096.94 30283.09 28095.60 30294.35 337
testing9183.56 33682.45 34086.91 34092.92 32267.29 37886.33 35788.07 34786.22 22584.26 37185.76 38448.15 39997.17 29176.27 34794.08 34596.27 267
testing9982.94 34181.72 34486.59 34392.55 32866.53 38486.08 36185.70 36685.47 24583.95 37385.70 38545.87 40097.07 29776.58 34493.56 35296.17 273
PMMVS83.00 34081.11 34988.66 31483.81 40886.44 16182.24 38885.65 36761.75 40082.07 38785.64 38679.75 28291.59 38175.99 34993.09 36187.94 391
testing1181.98 35080.52 35786.38 34992.69 32567.13 37985.79 36484.80 37782.16 29181.19 39485.41 38745.24 40196.88 30774.14 35993.24 35795.14 310
CHOSEN 280x42080.04 36477.97 37186.23 35190.13 37474.53 34172.87 39889.59 33566.38 39176.29 40185.32 38856.96 38795.36 34769.49 38494.72 32788.79 388
dmvs_re84.69 32783.94 32986.95 33992.24 33482.93 22389.51 29387.37 35384.38 26385.37 35985.08 38972.44 32986.59 39868.05 38691.03 38191.33 378
test-LLR83.58 33583.17 33484.79 36289.68 37966.86 38283.08 38484.52 37883.07 27882.85 38284.78 39062.86 37493.49 37082.85 28194.86 32294.03 343
test-mter81.21 35580.01 36284.79 36289.68 37966.86 38283.08 38484.52 37873.85 35682.85 38284.78 39043.66 40693.49 37082.85 28194.86 32294.03 343
testing22280.54 36178.53 36886.58 34492.54 33068.60 37686.24 35882.72 38583.78 26982.68 38484.24 39239.25 41195.94 33560.25 39895.09 31795.20 306
ETVMVS79.85 36577.94 37285.59 35392.97 32066.20 38786.13 36080.99 39381.41 29683.52 37883.89 39341.81 41094.98 35656.47 40294.25 33895.61 300
gm-plane-assit87.08 39859.33 40471.22 37083.58 39497.20 28873.95 360
TESTMET0.1,179.09 36878.04 37082.25 37587.52 39464.03 39783.08 38480.62 39570.28 37980.16 39683.22 39544.13 40490.56 38579.95 31493.36 35492.15 372
E-PMN80.72 35980.86 35380.29 38185.11 40468.77 37572.96 39781.97 38787.76 20383.25 38183.01 39662.22 37789.17 39477.15 34094.31 33682.93 398
EMVS80.35 36280.28 36080.54 38084.73 40669.07 37472.54 39980.73 39487.80 20181.66 39181.73 39762.89 37389.84 38975.79 35194.65 32982.71 399
Syy-MVS84.81 32584.93 31984.42 36591.71 35263.36 39985.89 36281.49 38981.03 29985.13 36281.64 39877.44 30195.00 35385.94 24994.12 34294.91 322
myMVS_eth3d79.62 36678.26 36983.72 37091.71 35261.25 40185.89 36281.49 38981.03 29985.13 36281.64 39832.12 41295.00 35371.17 37994.12 34294.91 322
dmvs_testset78.23 37078.99 36575.94 38591.99 34555.34 40888.86 31078.70 40082.69 28381.64 39279.46 40075.93 31785.74 40048.78 40682.85 39986.76 393
test_method50.44 37348.94 37654.93 38839.68 41212.38 41528.59 40390.09 3336.82 40641.10 40878.41 40154.41 39170.69 40750.12 40551.26 40781.72 401
PVSNet_070.34 2174.58 37172.96 37479.47 38290.63 36766.24 38673.26 39683.40 38463.67 39878.02 39978.35 40272.53 32889.59 39156.68 40160.05 40682.57 400
GG-mvs-BLEND83.24 37385.06 40571.03 36594.99 10765.55 40974.09 40375.51 40344.57 40394.46 36059.57 40087.54 39084.24 396
DeepMVS_CXcopyleft53.83 38970.38 41164.56 39548.52 41333.01 40565.50 40674.21 40456.19 38946.64 40838.45 40870.07 40450.30 404
tmp_tt37.97 37444.33 37718.88 39011.80 41321.54 41463.51 40145.66 4144.23 40751.34 40750.48 40559.08 38422.11 40944.50 40768.35 40513.00 405
X-MVStestdata90.70 21788.45 26397.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19126.89 40694.56 6699.39 4993.57 5799.05 10698.93 68
testmvs9.02 37711.42 3801.81 3922.77 4151.13 41779.44 3941.90 4151.18 4102.65 4116.80 4071.95 4150.87 4112.62 4103.45 4093.44 407
test1239.49 37612.01 3791.91 3912.87 4141.30 41682.38 3871.34 4161.36 4092.84 4106.56 4082.45 4140.97 4102.73 4095.56 4083.47 406
test_post6.07 40965.74 36095.84 337
test_post190.21 2715.85 41065.36 36196.00 33379.61 320
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.56 37810.09 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41190.77 1530.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS61.25 40174.55 355
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
No_MVS95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
eth-test20.00 416
eth-test0.00 416
IU-MVS98.51 5086.66 15596.83 17372.74 36495.83 12393.00 8699.29 7498.64 111
save fliter97.46 12988.05 12492.04 21597.08 15387.63 207
test_0728_SECOND94.88 10498.55 4586.72 15295.20 9798.22 3999.38 5593.44 6799.31 6998.53 120
GSMVS94.75 328
test_part298.21 7489.41 9396.72 81
sam_mvs166.64 35594.75 328
sam_mvs66.41 356
MTGPAbinary97.62 108
MTMP94.82 11054.62 412
test9_res88.16 20998.40 17997.83 181
agg_prior287.06 23198.36 18897.98 163
agg_prior96.20 20788.89 10696.88 16990.21 30098.78 142
test_prior489.91 8290.74 253
test_prior94.61 11795.95 22887.23 13797.36 13198.68 16297.93 169
旧先验290.00 27968.65 38592.71 24696.52 31685.15 259
新几何290.02 278
无先验89.94 28095.75 22570.81 37598.59 17481.17 30394.81 324
原ACMM289.34 299
testdata298.03 22580.24 310
segment_acmp92.14 121
testdata188.96 30888.44 189
test1294.43 13095.95 22886.75 15196.24 20689.76 31189.79 17598.79 13997.95 22597.75 191
plane_prior797.71 11188.68 109
plane_prior697.21 14188.23 12186.93 211
plane_prior597.81 9498.95 11489.26 18698.51 17398.60 116
plane_prior388.43 11990.35 15293.31 220
plane_prior294.56 12191.74 115
plane_prior197.38 131
plane_prior88.12 12293.01 17388.98 17698.06 214
n20.00 417
nn0.00 417
door-mid92.13 315
test1196.65 185
door91.26 324
HQP5-MVS84.89 193
HQP-NCC96.36 19091.37 23787.16 21388.81 322
ACMP_Plane96.36 19091.37 23787.16 21388.81 322
BP-MVS86.55 240
HQP4-MVS88.81 32298.61 17098.15 146
HQP3-MVS97.31 13597.73 234
HQP2-MVS84.76 237
MDTV_nov1_ep13_2view42.48 41388.45 32067.22 38983.56 37766.80 35272.86 36794.06 342
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 159