This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
test_fmvs399.12 5199.41 1998.25 23199.76 3195.07 28499.05 6499.94 297.78 17699.82 2199.84 298.56 5499.71 24699.96 199.96 2599.97 3
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
test_f98.67 11498.87 7198.05 24899.72 4495.59 26298.51 11799.81 2496.30 28299.78 2699.82 496.14 20698.63 39599.82 899.93 4499.95 6
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22498.58 10599.10 22696.49 27099.96 499.81 598.18 8099.45 34698.97 6399.79 11499.83 22
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 9199.96 1198.85 6999.99 599.86 18
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
test_fmvs298.70 10398.97 6597.89 25899.54 9894.05 31198.55 10899.92 696.78 25899.72 3199.78 896.60 18999.67 26799.91 299.90 6999.94 7
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19799.92 5099.44 3699.92 5599.68 54
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 16199.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
MVS-HIRNet94.32 33495.62 30390.42 38898.46 31575.36 41296.29 31189.13 40495.25 31495.38 37299.75 1192.88 29499.19 37894.07 31899.39 24396.72 389
gg-mvs-nofinetune92.37 36491.20 36895.85 35295.80 40592.38 35299.31 2781.84 41199.75 591.83 40099.74 1368.29 39899.02 38487.15 38997.12 37696.16 394
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7399.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9899.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23497.97 18199.86 1398.22 14299.88 1799.71 1798.59 5099.84 13799.73 1999.98 1299.98 2
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8899.96 1199.53 30100.00 199.93 8
JIA-IIPM95.52 31895.03 32397.00 31696.85 39194.03 31496.93 27795.82 37099.20 6494.63 38299.71 1783.09 36999.60 29994.42 30694.64 39797.36 381
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24797.87 19399.85 1598.56 12399.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19898.84 8599.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12599.92 5599.57 91
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16999.69 999.63 4899.68 2099.25 1499.96 1197.25 16299.92 5599.57 91
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17299.83 15499.21 4899.91 6399.77 35
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8399.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7799.94 297.80 17499.91 1199.67 2597.15 15698.91 39099.76 1699.56 21099.92 9
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20599.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 6199.95 2299.73 1999.96 2599.75 43
K. test v398.00 19297.66 21499.03 13099.79 2497.56 18799.19 4992.47 39399.62 2099.52 6299.66 2789.61 32499.96 1199.25 4599.81 9999.56 97
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31899.49 3199.59 5299.65 3094.79 25899.95 2299.45 3599.96 2599.88 14
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31599.37 4599.70 3599.65 3092.65 29999.93 4099.04 5899.84 8599.60 74
test_fmvs1_n98.09 18698.28 15497.52 29199.68 5893.47 33398.63 9999.93 495.41 31299.68 3999.64 3291.88 30999.48 33999.82 899.87 7799.62 67
DSMNet-mixed97.42 23797.60 21996.87 32499.15 19491.46 36298.54 11099.12 22392.87 35997.58 28999.63 3396.21 20599.90 6495.74 27199.54 21599.27 215
test_cas_vis1_n_192098.33 16098.68 9597.27 30599.69 5692.29 35498.03 16999.85 1597.62 18699.96 499.62 3493.98 27799.74 23399.52 3199.86 8099.79 30
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7699.51 33297.70 14299.73 14297.89 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24399.57 6299.37 4599.21 12099.61 3796.76 18199.83 15498.06 11899.83 9299.71 46
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4499.80 18498.24 10599.84 8599.52 118
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
v1098.97 6699.11 5298.55 20199.44 12996.21 24698.90 7899.55 7398.73 10899.48 6899.60 3996.63 18899.83 15499.70 2299.99 599.61 73
test111196.49 29196.82 26395.52 36099.42 13587.08 39399.22 4287.14 40699.11 7399.46 7199.58 4188.69 33099.86 10898.80 7199.95 3299.62 67
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21699.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
test_vis1_n98.31 16398.50 12097.73 27499.76 3194.17 30998.68 9699.91 796.31 28099.79 2599.57 4292.85 29699.42 35199.79 1399.84 8599.60 74
test250692.39 36291.89 36493.89 37899.38 14082.28 40899.32 2366.03 41499.08 8598.77 19199.57 4266.26 40499.84 13798.71 7999.95 3299.54 108
ECVR-MVScopyleft96.42 29396.61 27795.85 35299.38 14088.18 38999.22 4286.00 40899.08 8599.36 9299.57 4288.47 33599.82 16498.52 9299.95 3299.54 108
v899.01 6099.16 4598.57 19699.47 12496.31 24298.90 7899.47 10499.03 8999.52 6299.57 4296.93 16899.81 17799.60 2599.98 1299.60 74
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15799.90 6499.21 4899.87 7799.54 108
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 25097.74 21099.81 2498.55 12499.85 1999.55 4898.60 4999.84 13799.69 2499.98 1299.89 11
test_vis1_n_192098.40 15098.92 6896.81 32899.74 3790.76 37798.15 15399.91 798.33 13199.89 1599.55 4895.07 24699.88 8399.76 1699.93 4499.79 30
Anonymous2024052198.69 10698.87 7198.16 23999.77 2895.11 28399.08 5899.44 11499.34 4999.33 9799.55 4894.10 27699.94 3599.25 4599.96 2599.42 161
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11499.21 6299.43 7699.55 4897.82 10799.86 10898.42 9899.89 7399.41 164
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23497.79 20299.82 2298.21 14399.81 2399.53 5498.46 6099.84 13799.70 2299.97 1999.90 10
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9599.54 7899.31 5299.62 5199.53 5497.36 14499.86 10899.24 4799.71 15499.39 175
new-patchmatchnet98.35 15698.74 8397.18 30899.24 16692.23 35696.42 30399.48 9698.30 13499.69 3799.53 5497.44 14099.82 16498.84 7099.77 12499.49 127
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22599.91 5999.32 4099.95 3299.70 51
lessismore_v098.97 13899.73 3897.53 18986.71 40799.37 8999.52 5789.93 32299.92 5098.99 6299.72 14999.44 154
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6496.97 22098.00 17599.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15799.85 12099.02 6099.94 4099.80 29
VDDNet98.21 17697.95 19099.01 13399.58 7797.74 17699.01 6697.29 34199.67 1298.97 15499.50 5990.45 31999.80 18497.88 13199.20 27399.48 137
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17499.46 10697.56 19499.54 5699.50 5998.97 2399.84 13798.06 11899.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17698.85 8399.62 4898.48 12699.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7399.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
UGNet98.53 13698.45 13098.79 16397.94 34996.96 22299.08 5898.54 30099.10 8096.82 33399.47 6596.55 19199.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EU-MVSNet97.66 22098.50 12095.13 36699.63 7485.84 39698.35 13698.21 31498.23 14199.54 5699.46 6695.02 24799.68 26498.24 10599.87 7799.87 16
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 12099.83 2098.37 12899.69 3799.46 6698.21 7899.92 5094.13 31699.30 25898.91 279
mvs_anonymous97.83 21198.16 17196.87 32498.18 33691.89 35897.31 25398.90 25897.37 21598.83 18299.46 6696.28 20399.79 19798.90 6698.16 34598.95 270
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7399.97 498.78 7299.93 4499.72 45
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13499.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_fmvs197.72 21597.94 19297.07 31598.66 29192.39 35197.68 21699.81 2495.20 31699.54 5699.44 7191.56 31199.41 35299.78 1599.77 12499.40 173
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 11099.63 1799.52 6299.44 7198.25 7199.88 8399.09 5499.84 8599.62 67
EGC-MVSNET85.24 37280.54 37599.34 7399.77 2899.20 3499.08 5899.29 17712.08 40820.84 40999.42 7397.55 12899.85 12097.08 17499.72 14998.96 269
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8499.96 1198.78 7299.93 4499.77 35
PatchT96.65 28396.35 28597.54 28997.40 37895.32 27497.98 17896.64 35799.33 5096.89 32999.42 7384.32 36299.81 17797.69 14497.49 36297.48 378
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17899.82 16498.69 8199.88 7499.76 39
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7399.95 2298.89 6899.95 3299.81 28
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20599.32 2398.81 27797.66 18398.62 20799.40 7896.82 17599.80 18495.88 26299.51 22498.75 303
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24899.25 5899.54 5699.37 7997.04 16199.80 18497.89 12899.52 22299.35 194
CR-MVSNet96.28 29795.95 29597.28 30497.71 36094.22 30598.11 15798.92 25592.31 36596.91 32599.37 7985.44 35499.81 17797.39 15597.36 37197.81 365
Patchmtry97.35 24196.97 25298.50 21097.31 38196.47 23798.18 14998.92 25598.95 9798.78 18899.37 7985.44 35499.85 12095.96 26099.83 9299.17 240
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 19198.04 16899.59 5398.15 15499.40 8399.36 8298.58 5399.76 22198.78 7299.68 16799.59 80
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
IterMVS-SCA-FT97.85 20898.18 16796.87 32499.27 16191.16 37295.53 34699.25 18999.10 8099.41 8099.35 8393.10 28999.96 1198.65 8399.94 4099.49 127
PMVScopyleft91.26 2097.86 20397.94 19297.65 27899.71 4797.94 15798.52 11298.68 29298.99 9297.52 29599.35 8397.41 14198.18 39991.59 36499.67 17396.82 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14699.93 4098.90 6699.93 4499.77 35
RPMNet97.02 26696.93 25397.30 30397.71 36094.22 30598.11 15799.30 16999.37 4596.91 32599.34 8786.72 34199.87 10097.53 14997.36 37197.81 365
mvsany_test197.60 22497.54 22197.77 26697.72 35895.35 27395.36 35497.13 34494.13 34099.71 3399.33 8997.93 10099.30 36897.60 14598.94 30698.67 314
FA-MVS(test-final)96.99 27096.82 26397.50 29398.70 27894.78 28999.34 2096.99 34795.07 31798.48 22799.33 8988.41 33699.65 28396.13 25598.92 30898.07 351
IterMVS97.73 21498.11 17696.57 33399.24 16690.28 38095.52 34899.21 19898.86 10399.33 9799.33 8993.11 28899.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17199.25 4099.30 16998.57 12198.55 22099.33 8997.95 9999.90 6497.16 16699.67 17399.44 154
IterMVS-LS98.55 13298.70 9298.09 24199.48 12294.73 29297.22 26299.39 12898.97 9499.38 8799.31 9396.00 21499.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17897.93 18299.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
patch_mono-298.51 14098.63 10298.17 23799.38 14094.78 28997.36 24999.69 3798.16 15398.49 22699.29 9597.06 16099.97 498.29 10499.91 6399.76 39
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21598.61 10299.13 22298.59 11899.19 12299.28 9694.14 27299.82 16497.97 12599.80 10999.29 212
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20498.99 9298.07 25799.28 9697.11 15999.84 13796.84 19899.32 25399.47 144
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10497.01 34699.59 2399.11 12999.27 9894.82 25399.79 19798.34 10199.63 18499.34 196
PVSNet_Blended_VisFu98.17 18198.15 17298.22 23499.73 3895.15 28097.36 24999.68 4294.45 33398.99 14999.27 9896.87 17199.94 3597.13 17199.91 6399.57 91
FE-MVS95.66 31494.95 32697.77 26698.53 30995.28 27599.40 1696.09 36693.11 35597.96 26499.26 10079.10 38599.77 21592.40 35598.71 31998.27 342
dcpmvs_298.78 9099.11 5297.78 26599.56 8993.67 32999.06 6299.86 1399.50 3099.66 4299.26 10097.21 15499.99 298.00 12399.91 6399.68 54
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4799.73 23899.17 5199.92 5599.76 39
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14999.42 4199.33 9799.26 10097.01 16599.94 3598.74 7699.93 4499.79 30
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10899.57 6297.72 18098.90 16899.26 10096.12 20899.52 32895.72 27299.71 15499.32 203
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25298.74 8798.64 29699.74 699.67 4199.24 10594.57 26299.95 2299.11 5299.24 26799.82 25
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11499.45 3699.51 6699.24 10598.20 7999.86 10895.92 26199.69 16299.04 255
v124098.55 13298.62 10498.32 22599.22 17195.58 26497.51 23999.45 11097.16 23999.45 7499.24 10596.12 20899.85 12099.60 2599.88 7499.55 104
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 8099.48 9697.57 19299.35 9499.24 10597.83 10499.89 7497.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17898.00 17599.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ambc98.24 23398.82 25795.97 25498.62 10199.00 24799.27 10899.21 11096.99 16699.50 33396.55 22699.50 23199.26 218
TAMVS98.24 17398.05 18298.80 16099.07 20897.18 21197.88 19098.81 27796.66 26499.17 12799.21 11094.81 25599.77 21596.96 18599.88 7499.44 154
v119298.60 12498.66 9898.41 21899.27 16195.88 25697.52 23799.36 13897.41 21199.33 9799.20 11296.37 20099.82 16499.57 2799.92 5599.55 104
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 13099.45 11098.28 13998.98 15099.19 11397.76 11099.58 30996.57 21999.55 21398.97 267
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17497.16 26699.28 18095.54 30599.42 7999.19 11397.27 14999.63 28997.89 12899.97 1999.20 229
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8799.56 6999.09 8399.33 9799.19 11398.40 6399.72 24595.98 25999.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v14419298.54 13498.57 11298.45 21499.21 17395.98 25397.63 22499.36 13897.15 24199.32 10399.18 11695.84 22699.84 13799.50 3299.91 6399.54 108
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17899.68 4297.62 18699.34 9699.18 11697.54 12999.77 21597.79 13699.74 13999.04 255
PVSNet_BlendedMVS97.55 22897.53 22297.60 28298.92 23693.77 32796.64 29299.43 12094.49 32997.62 28599.18 11696.82 17599.67 26794.73 29599.93 4499.36 190
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10399.58 5599.11 7399.53 6099.18 11698.81 3299.67 26796.71 21199.77 12499.50 123
v192192098.54 13498.60 10998.38 22199.20 17795.76 26197.56 23399.36 13897.23 23399.38 8799.17 12096.02 21299.84 13799.57 2799.90 6999.54 108
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19997.82 19899.57 6299.17 7199.35 9499.17 12098.35 6899.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Patchmatch-RL test97.26 24897.02 25197.99 25299.52 10395.53 26696.13 32199.71 3497.47 20299.27 10899.16 12284.30 36399.62 29297.89 12899.77 12498.81 292
V4298.78 9098.78 8198.76 17099.44 12997.04 21798.27 14099.19 20497.87 16999.25 11699.16 12296.84 17299.78 20899.21 4899.84 8599.46 146
QAPM97.31 24496.81 26598.82 15698.80 26397.49 19099.06 6299.19 20490.22 38397.69 28299.16 12296.91 16999.90 6490.89 37799.41 24199.07 249
wuyk23d96.06 30197.62 21891.38 38798.65 29498.57 9698.85 8396.95 35096.86 25499.90 1299.16 12299.18 1798.40 39789.23 38499.77 12477.18 405
v114498.60 12498.66 9898.41 21899.36 14795.90 25597.58 23199.34 14997.51 19899.27 10899.15 12696.34 20299.80 18499.47 3499.93 4499.51 120
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12599.33 15499.63 1799.48 6899.15 12697.23 15299.75 22897.17 16599.66 17899.63 66
OpenMVScopyleft96.65 797.09 26196.68 27298.32 22598.32 32797.16 21398.86 8299.37 13489.48 38796.29 35299.15 12696.56 19099.90 6492.90 34399.20 27397.89 360
MM98.22 17497.99 18798.91 14798.66 29196.97 22097.89 18994.44 38199.54 2798.95 15799.14 12993.50 28499.92 5099.80 1299.96 2599.85 19
MVS_030498.10 18397.88 19898.76 17098.82 25796.50 23697.90 18791.35 39999.56 2698.32 23999.13 13096.06 21099.93 4099.84 799.97 1999.85 19
EPP-MVSNet98.30 16498.04 18399.07 12099.56 8997.83 16599.29 3398.07 32299.03 8998.59 21399.13 13092.16 30599.90 6496.87 19599.68 16799.49 127
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19899.25 18996.94 24998.78 18899.12 13298.02 9299.84 13797.13 17199.67 17399.59 80
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21697.80 20199.76 2998.70 11199.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
MVS_Test98.18 17998.36 14497.67 27698.48 31294.73 29298.18 14999.02 24297.69 18198.04 26199.11 13397.22 15399.56 31498.57 8898.90 30998.71 306
MDA-MVSNet-bldmvs97.94 19697.91 19598.06 24699.44 12994.96 28696.63 29399.15 22098.35 12998.83 18299.11 13394.31 26999.85 12096.60 21698.72 31799.37 184
SMA-MVScopyleft98.40 15098.03 18499.51 4399.16 19099.21 2898.05 16699.22 19794.16 33998.98 15099.10 13697.52 13399.79 19796.45 23399.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MIMVSNet96.62 28596.25 29297.71 27599.04 21694.66 29599.16 5196.92 35297.23 23397.87 26999.10 13686.11 34899.65 28391.65 36299.21 27298.82 288
USDC97.41 23897.40 23097.44 29898.94 23093.67 32995.17 35899.53 8194.03 34398.97 15499.10 13695.29 24099.34 36295.84 26899.73 14299.30 210
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20297.82 19899.76 2998.73 10899.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
test072699.50 10899.21 2898.17 15299.35 14397.97 16099.26 11299.06 14097.61 123
AllTest98.44 14698.20 16499.16 10599.50 10898.55 9798.25 14299.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13299.42 12399.42 4199.36 9299.06 14098.38 6499.95 2298.34 10199.90 6999.57 91
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14399.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
baseline98.96 6899.02 6098.76 17099.38 14097.26 20498.49 12099.50 8798.86 10399.19 12299.06 14098.23 7399.69 25598.71 7999.76 13599.33 201
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18598.43 12899.35 14399.47 3499.28 10699.05 14796.72 18499.82 16498.09 11599.36 24799.59 80
MVSTER96.86 27496.55 28197.79 26497.91 35194.21 30797.56 23398.87 26397.49 20199.06 13699.05 14780.72 37699.80 18498.44 9699.82 9599.37 184
SD-MVS98.40 15098.68 9597.54 28998.96 22897.99 14897.88 19099.36 13898.20 14799.63 4899.04 14998.76 3595.33 40796.56 22399.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
FMVSNet596.01 30395.20 32098.41 21897.53 37196.10 24798.74 8799.50 8797.22 23698.03 26299.04 14969.80 39799.88 8397.27 16099.71 15499.25 219
IS-MVSNet98.19 17897.90 19699.08 11899.57 8197.97 15299.31 2798.32 31099.01 9198.98 15099.03 15191.59 31099.79 19795.49 28199.80 10999.48 137
DVP-MVS++98.90 7598.70 9299.51 4398.43 31999.15 4799.43 1199.32 15698.17 15099.26 11299.02 15298.18 8099.88 8397.07 17599.45 23699.49 127
test_one_060199.39 13999.20 3499.31 16198.49 12598.66 20299.02 15297.64 120
h-mvs3397.77 21297.33 23799.10 11499.21 17397.84 16498.35 13698.57 29999.11 7398.58 21599.02 15288.65 33399.96 1198.11 11396.34 38599.49 127
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15999.31 16198.03 15799.66 4299.02 15298.36 6599.88 8396.91 18799.62 18799.41 164
test_241102_TWO99.30 16998.03 15799.26 11299.02 15297.51 13499.88 8396.91 18799.60 19499.66 58
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 17198.84 27297.97 16099.08 13499.02 15297.61 12399.88 8396.99 18199.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 15099.08 13499.02 15297.89 10199.88 8397.07 17599.71 15499.70 51
EI-MVSNet98.40 15098.51 11898.04 24999.10 20194.73 29297.20 26398.87 26398.97 9499.06 13699.02 15296.00 21499.80 18498.58 8699.82 9599.60 74
CVMVSNet96.25 29897.21 24293.38 38499.10 20180.56 41197.20 26398.19 31796.94 24999.00 14899.02 15289.50 32699.80 18496.36 23899.59 19899.78 33
LFMVS97.20 25496.72 26998.64 18198.72 27196.95 22398.93 7694.14 38799.74 698.78 18899.01 16184.45 36099.73 23897.44 15299.27 26299.25 219
v2v48298.56 12898.62 10498.37 22299.42 13595.81 25997.58 23199.16 21597.90 16799.28 10699.01 16195.98 21999.79 19799.33 3999.90 6999.51 120
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 8099.37 13497.16 23998.82 18599.01 16197.71 11399.87 10096.29 24299.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WB-MVS98.52 13998.55 11398.43 21699.65 6595.59 26298.52 11298.77 28399.65 1499.52 6299.00 16494.34 26899.93 4098.65 8398.83 31199.76 39
DPE-MVScopyleft98.59 12698.26 15899.57 1699.27 16199.15 4797.01 27199.39 12897.67 18299.44 7598.99 16597.53 13199.89 7495.40 28399.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss98.57 12798.23 16299.60 1199.69 5699.35 1297.16 26699.38 13094.87 32398.97 15498.99 16598.01 9399.88 8397.29 15999.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23997.23 25998.87 26399.20 6499.19 12298.99 16597.30 14699.85 12098.77 7599.79 11499.65 62
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21399.46 10697.25 22798.98 15098.99 16597.54 12999.84 13795.88 26299.74 13999.23 224
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 12099.33 15498.64 11299.03 14698.98 16997.89 10199.85 12096.54 22799.42 24099.46 146
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32799.50 8797.30 22299.05 14198.98 16999.35 1299.32 36595.72 27299.68 16799.18 236
v14898.45 14598.60 10998.00 25199.44 12994.98 28597.44 24599.06 23198.30 13499.32 10398.97 17196.65 18799.62 29298.37 9999.85 8199.39 175
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23897.23 25998.86 26899.20 6499.18 12698.97 17197.29 14899.85 12098.72 7899.78 11999.64 63
CHOSEN 1792x268897.49 23197.14 24798.54 20499.68 5896.09 25096.50 29899.62 4891.58 37198.84 18198.97 17192.36 30299.88 8396.76 20499.95 3299.67 57
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.49 13899.86 10896.56 22399.39 24399.45 150
RE-MVS-def98.58 11199.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.75 11196.56 22399.39 24399.45 150
D2MVS97.84 20997.84 20197.83 26199.14 19594.74 29196.94 27598.88 26195.84 29798.89 17098.96 17494.40 26699.69 25597.55 14699.95 3299.05 251
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16399.37 13497.62 18699.04 14398.96 17498.84 3099.79 19797.43 15399.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo98.08 18797.92 19498.57 19698.96 22896.79 22897.90 18799.18 20896.41 27698.46 22898.95 17895.93 22299.60 29996.51 22998.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf0596.54 28796.07 29397.92 25597.90 35294.50 29997.87 19399.14 22197.73 17898.89 17098.95 17875.75 39399.87 10098.50 9399.92 5599.40 173
YYNet197.60 22497.67 21197.39 30199.04 21693.04 34095.27 35598.38 30997.25 22798.92 16698.95 17895.48 23799.73 23896.99 18198.74 31599.41 164
MDA-MVSNet_test_wron97.60 22497.66 21497.41 30099.04 21693.09 33695.27 35598.42 30697.26 22698.88 17498.95 17895.43 23899.73 23897.02 17898.72 31799.41 164
FMVSNet397.50 22997.24 24098.29 22998.08 34295.83 25897.86 19598.91 25797.89 16898.95 15798.95 17887.06 33999.81 17797.77 13799.69 16299.23 224
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26899.18 20897.10 24298.75 19498.92 18398.18 8099.65 28396.68 21399.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ADS-MVSNet295.43 32094.98 32496.76 33198.14 33891.74 35997.92 18497.76 32890.23 38196.51 34698.91 18485.61 35199.85 12092.88 34496.90 37898.69 310
ADS-MVSNet95.24 32394.93 32796.18 34698.14 33890.10 38197.92 18497.32 34090.23 38196.51 34698.91 18485.61 35199.74 23392.88 34496.90 37898.69 310
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12799.34 14999.28 5698.95 15798.91 18498.34 6999.79 19795.63 27699.91 6398.86 285
test_241102_ONE99.49 11599.17 3999.31 16197.98 15999.66 4298.90 18798.36 6599.48 339
SF-MVS98.53 13698.27 15799.32 8099.31 15498.75 8198.19 14899.41 12496.77 25998.83 18298.90 18797.80 10899.82 16495.68 27599.52 22299.38 182
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12899.20 20098.83 10798.89 17098.90 18796.98 16799.92 5097.16 16699.70 15999.56 97
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20997.78 20399.24 19499.04 8899.41 8098.90 18797.65 11799.76 22197.70 14299.79 11499.39 175
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14399.31 16197.92 16598.90 16898.90 18798.00 9499.88 8396.15 25299.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
N_pmnet97.63 22297.17 24398.99 13599.27 16197.86 16295.98 32693.41 39095.25 31499.47 7098.90 18795.63 23099.85 12096.91 18799.73 14299.27 215
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11798.94 25096.96 24799.24 11798.89 19397.83 10499.81 17796.88 19499.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14399.49 9497.01 24698.69 19898.88 19498.00 9499.89 7495.87 26599.59 19899.58 86
TinyColmap97.89 19997.98 18897.60 28298.86 24894.35 30496.21 31599.44 11497.45 20999.06 13698.88 19497.99 9799.28 37294.38 31099.58 20399.18 236
LS3D98.63 12098.38 14299.36 6497.25 38299.38 899.12 5799.32 15699.21 6298.44 23098.88 19497.31 14599.80 18496.58 21799.34 25198.92 276
Anonymous20240521197.90 19797.50 22599.08 11898.90 24098.25 11998.53 11196.16 36498.87 10299.11 12998.86 19790.40 32099.78 20897.36 15699.31 25599.19 234
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21898.94 16498.86 19798.75 3699.82 16497.53 14999.71 15499.56 97
CMPMVSbinary75.91 2396.29 29695.44 31198.84 15496.25 40198.69 8897.02 27099.12 22388.90 39097.83 27398.86 19789.51 32598.90 39191.92 35799.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13599.29 17798.29 13798.88 17498.85 20097.53 13199.87 10096.14 25399.31 25599.48 137
our_test_397.39 23997.73 20896.34 33898.70 27889.78 38294.61 37698.97 24996.50 26999.04 14398.85 20095.98 21999.84 13797.26 16199.67 17399.41 164
EPNet96.14 30095.44 31198.25 23190.76 41195.50 26897.92 18494.65 37998.97 9492.98 39598.85 20089.12 32899.87 10095.99 25899.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs597.64 22197.49 22698.08 24499.14 19595.12 28296.70 29099.05 23493.77 34698.62 20798.83 20393.23 28599.75 22898.33 10399.76 13599.36 190
PMMVS298.07 18898.08 18098.04 24999.41 13794.59 29894.59 37799.40 12697.50 19998.82 18598.83 20396.83 17499.84 13797.50 15199.81 9999.71 46
MDTV_nov1_ep1395.22 31997.06 38883.20 40697.74 21096.16 36494.37 33596.99 32198.83 20383.95 36599.53 32493.90 32197.95 356
Anonymous2023120698.21 17698.21 16398.20 23599.51 10595.43 27198.13 15499.32 15696.16 28598.93 16598.82 20696.00 21499.83 15497.32 15899.73 14299.36 190
ACMP95.32 1598.41 14898.09 17799.36 6499.51 10598.79 8097.68 21699.38 13095.76 29998.81 18798.82 20698.36 6599.82 16494.75 29499.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 9099.56 6998.42 12798.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
VNet98.42 14798.30 15298.79 16398.79 26497.29 20198.23 14398.66 29399.31 5298.85 17998.80 20994.80 25699.78 20898.13 11299.13 28499.31 207
tpmrst95.07 32595.46 30993.91 37797.11 38584.36 40497.62 22596.96 34994.98 31996.35 35198.80 20985.46 35399.59 30395.60 27796.23 38797.79 368
ppachtmachnet_test97.50 22997.74 20696.78 33098.70 27891.23 37194.55 37899.05 23496.36 27799.21 12098.79 21196.39 19799.78 20896.74 20699.82 9599.34 196
miper_lstm_enhance97.18 25697.16 24497.25 30798.16 33792.85 34295.15 36099.31 16197.25 22798.74 19698.78 21290.07 32199.78 20897.19 16499.80 10999.11 246
DeepPCF-MVS96.93 598.32 16198.01 18599.23 9798.39 32498.97 6695.03 36299.18 20896.88 25299.33 9798.78 21298.16 8499.28 37296.74 20699.62 18799.44 154
patchmatchnet-post98.77 21484.37 36199.85 120
APD-MVScopyleft98.10 18397.67 21199.42 5899.11 19998.93 7197.76 20899.28 18094.97 32098.72 19798.77 21497.04 16199.85 12093.79 32699.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23599.25 18998.84 10699.06 13698.76 21696.76 18199.93 4098.57 8899.77 12499.50 123
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 20099.10 8099.72 3198.76 21696.38 19999.86 10898.00 12399.82 9599.50 123
eth_miper_zixun_eth97.23 25297.25 23997.17 31098.00 34592.77 34494.71 37099.18 20897.27 22598.56 21898.74 21891.89 30899.69 25597.06 17799.81 9999.05 251
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21299.38 13098.93 9899.12 12898.73 21996.77 17999.86 10898.63 8599.80 10999.46 146
MG-MVS96.77 27896.61 27797.26 30698.31 32893.06 33795.93 33298.12 32196.45 27497.92 26598.73 21993.77 28299.39 35591.19 37299.04 29399.33 201
c3_l97.36 24097.37 23397.31 30298.09 34193.25 33595.01 36399.16 21597.05 24398.77 19198.72 22192.88 29499.64 28696.93 18699.76 13599.05 251
cl____97.02 26696.83 26297.58 28497.82 35594.04 31394.66 37399.16 21597.04 24498.63 20598.71 22288.68 33299.69 25597.00 17999.81 9999.00 262
DIV-MVS_self_test97.02 26696.84 26197.58 28497.82 35594.03 31494.66 37399.16 21597.04 24498.63 20598.71 22288.69 33099.69 25597.00 17999.81 9999.01 259
DELS-MVS98.27 16898.20 16498.48 21198.86 24896.70 23295.60 34499.20 20097.73 17898.45 22998.71 22297.50 13599.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
9.1497.78 20399.07 20897.53 23699.32 15695.53 30698.54 22298.70 22597.58 12599.76 22194.32 31199.46 234
tpmvs95.02 32795.25 31894.33 37296.39 40085.87 39598.08 16196.83 35495.46 30895.51 37198.69 22685.91 34999.53 32494.16 31296.23 38797.58 376
PatchmatchNetpermissive95.58 31695.67 30295.30 36597.34 38087.32 39297.65 22296.65 35695.30 31397.07 31698.69 22684.77 35799.75 22894.97 29098.64 32698.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9999.24 19497.47 20298.09 25698.68 22897.62 12299.89 7496.22 24799.62 18799.57 91
UnsupCasMVSNet_eth97.89 19997.60 21998.75 17399.31 15497.17 21297.62 22599.35 14398.72 11098.76 19398.68 22892.57 30099.74 23397.76 14195.60 39399.34 196
SCA96.41 29496.66 27595.67 35698.24 33288.35 38795.85 33796.88 35396.11 28697.67 28398.67 23093.10 28999.85 12094.16 31299.22 27098.81 292
Patchmatch-test96.55 28696.34 28697.17 31098.35 32593.06 33798.40 13197.79 32797.33 21898.41 23398.67 23083.68 36799.69 25595.16 28799.31 25598.77 300
CDS-MVSNet97.69 21797.35 23598.69 17898.73 26997.02 21996.92 27998.75 28795.89 29698.59 21398.67 23092.08 30799.74 23396.72 20999.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
MP-MVScopyleft98.46 14498.09 17799.54 2799.57 8199.22 2798.50 11999.19 20497.61 18997.58 28998.66 23397.40 14299.88 8394.72 29799.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
DeepC-MVS_fast96.85 698.30 16498.15 17298.75 17398.61 29597.23 20597.76 20899.09 22897.31 22198.75 19498.66 23397.56 12799.64 28696.10 25699.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MS-PatchMatch97.68 21897.75 20597.45 29798.23 33493.78 32697.29 25598.84 27296.10 28798.64 20498.65 23596.04 21199.36 35896.84 19899.14 28299.20 229
pmmvs497.58 22797.28 23898.51 20798.84 25296.93 22595.40 35398.52 30293.60 34898.61 20998.65 23595.10 24599.60 29996.97 18499.79 11498.99 263
FPMVS93.44 35092.23 35597.08 31399.25 16597.86 16295.61 34397.16 34392.90 35893.76 39298.65 23575.94 39295.66 40579.30 40597.49 36297.73 370
dp93.47 34993.59 34293.13 38696.64 39581.62 41097.66 22096.42 36192.80 36096.11 35598.64 23878.55 38999.59 30393.31 33792.18 40498.16 346
EPMVS93.72 34693.27 34595.09 36896.04 40387.76 39098.13 15485.01 40994.69 32696.92 32398.64 23878.47 39099.31 36695.04 28896.46 38498.20 344
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29398.63 24097.50 13599.83 15496.79 20099.53 21999.56 97
CostFormer93.97 34293.78 33994.51 37197.53 37185.83 39797.98 17895.96 36889.29 38994.99 37798.63 24078.63 38799.62 29294.54 30096.50 38398.09 350
MSLP-MVS++98.02 19098.14 17497.64 28098.58 30295.19 27997.48 24199.23 19697.47 20297.90 26798.62 24297.04 16198.81 39397.55 14699.41 24198.94 274
Vis-MVSNet (Re-imp)97.46 23397.16 24498.34 22499.55 9396.10 24798.94 7598.44 30598.32 13398.16 24898.62 24288.76 32999.73 23893.88 32399.79 11499.18 236
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29599.48 9697.32 22099.11 12998.61 24499.33 1399.30 36896.23 24698.38 33499.28 214
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14397.50 19998.28 24298.60 24597.64 12099.35 36193.86 32499.27 26298.79 298
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21699.40 12699.14 7299.06 13698.59 24696.71 18599.93 4098.57 8899.77 12499.53 115
114514_t96.50 29095.77 29798.69 17899.48 12297.43 19597.84 19799.55 7381.42 40296.51 34698.58 24795.53 23399.67 26793.41 33699.58 20398.98 264
HY-MVS95.94 1395.90 30795.35 31697.55 28897.95 34894.79 28898.81 8696.94 35192.28 36695.17 37498.57 24889.90 32399.75 22891.20 37197.33 37398.10 349
tpm94.67 33094.34 33495.66 35797.68 36588.42 38697.88 19094.90 37794.46 33196.03 35998.56 24978.66 38699.79 19795.88 26295.01 39698.78 299
PC_three_145293.27 35299.40 8398.54 25098.22 7697.00 40395.17 28699.45 23699.49 127
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11299.31 16197.47 20298.56 21898.54 25097.75 11199.88 8396.57 21999.59 19899.58 86
new_pmnet96.99 27096.76 26797.67 27698.72 27194.89 28795.95 33198.20 31592.62 36298.55 22098.54 25094.88 25299.52 32893.96 32099.44 23998.59 320
OPU-MVS98.82 15698.59 30098.30 11698.10 15998.52 25398.18 8098.75 39494.62 29899.48 23399.41 164
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4499.93 4098.91 6599.85 8198.88 283
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11299.31 16197.46 20798.44 23098.51 25497.83 10499.88 8396.46 23299.58 20399.58 86
TSAR-MVS + GP.98.18 17997.98 18898.77 16998.71 27497.88 16096.32 30998.66 29396.33 27899.23 11998.51 25497.48 13999.40 35397.16 16699.46 23499.02 258
OMC-MVS97.88 20197.49 22699.04 12998.89 24598.63 8996.94 27599.25 18995.02 31898.53 22398.51 25497.27 14999.47 34293.50 33499.51 22499.01 259
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11299.31 16197.47 20298.58 21598.50 25897.97 9899.85 12096.57 21999.59 19899.53 115
diffmvspermissive98.22 17498.24 16198.17 23799.00 22195.44 27096.38 30599.58 5597.79 17598.53 22398.50 25896.76 18199.74 23397.95 12799.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS98.40 15098.19 16699.03 13099.00 22197.65 18296.85 28198.94 25098.57 12198.89 17098.50 25895.60 23199.85 12097.54 14899.85 8199.59 80
Test_1112_low_res96.99 27096.55 28198.31 22799.35 15195.47 26995.84 33899.53 8191.51 37396.80 33498.48 26191.36 31399.83 15496.58 21799.53 21999.62 67
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
miper_ehance_all_eth97.06 26397.03 25097.16 31297.83 35493.06 33794.66 37399.09 22895.99 29298.69 19898.45 26392.73 29899.61 29896.79 20099.03 29498.82 288
PHI-MVS98.29 16797.95 19099.34 7398.44 31899.16 4398.12 15699.38 13096.01 29198.06 25898.43 26497.80 10899.67 26795.69 27499.58 20399.20 229
tpm cat193.29 35293.13 34993.75 37997.39 37984.74 40097.39 24697.65 33283.39 40194.16 38598.41 26582.86 37199.39 35591.56 36595.35 39597.14 383
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 9199.36 13897.54 19798.30 24098.40 26697.86 10399.89 7496.53 22899.72 14999.56 97
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12599.29 17797.28 22498.11 25498.39 26798.00 9499.87 10096.86 19799.64 18199.55 104
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 14199.25 18997.44 21098.67 20098.39 26797.68 11499.85 12096.00 25799.51 22499.52 118
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 12096.74 26098.61 20998.38 26998.62 4799.87 10096.47 23199.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
testdata98.09 24198.93 23295.40 27298.80 27990.08 38597.45 30298.37 27095.26 24199.70 25093.58 33198.95 30599.17 240
CPTT-MVS97.84 20997.36 23499.27 8899.31 15498.46 10598.29 13899.27 18394.90 32297.83 27398.37 27094.90 24999.84 13793.85 32599.54 21599.51 120
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8598.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
OpenMVS_ROBcopyleft95.38 1495.84 30995.18 32197.81 26398.41 32397.15 21497.37 24898.62 29783.86 39998.65 20398.37 27094.29 27099.68 26488.41 38598.62 32996.60 390
tttt051795.64 31594.98 32497.64 28099.36 14793.81 32598.72 9190.47 40198.08 15698.67 20098.34 27473.88 39599.92 5097.77 13799.51 22499.20 229
旧先验198.82 25797.45 19398.76 28498.34 27495.50 23699.01 29899.23 224
CNVR-MVS98.17 18197.87 19999.07 12098.67 28698.24 12097.01 27198.93 25297.25 22797.62 28598.34 27497.27 14999.57 31196.42 23499.33 25299.39 175
HyFIR lowres test97.19 25596.60 27998.96 13999.62 7697.28 20295.17 35899.50 8794.21 33899.01 14798.32 27786.61 34299.99 297.10 17399.84 8599.60 74
UnsupCasMVSNet_bld97.30 24596.92 25598.45 21499.28 15996.78 23196.20 31699.27 18395.42 30998.28 24298.30 27893.16 28799.71 24694.99 28997.37 36998.87 284
MSDG97.71 21697.52 22398.28 23098.91 23996.82 22794.42 38099.37 13497.65 18498.37 23898.29 27997.40 14299.33 36494.09 31799.22 27098.68 313
MVS_111021_HR98.25 17298.08 18098.75 17399.09 20497.46 19295.97 32799.27 18397.60 19097.99 26398.25 28098.15 8699.38 35796.87 19599.57 20799.42 161
CANet_DTU97.26 24897.06 24997.84 26097.57 36694.65 29696.19 31798.79 28097.23 23395.14 37598.24 28193.22 28699.84 13797.34 15799.84 8599.04 255
MVS_111021_LR98.30 16498.12 17598.83 15599.16 19098.03 14696.09 32399.30 16997.58 19198.10 25598.24 28198.25 7199.34 36296.69 21299.65 17999.12 245
tpm293.09 35492.58 35394.62 37097.56 36786.53 39497.66 22095.79 37186.15 39694.07 38898.23 28375.95 39199.53 32490.91 37696.86 38197.81 365
CANet97.87 20297.76 20498.19 23697.75 35795.51 26796.76 28699.05 23497.74 17796.93 32298.21 28495.59 23299.89 7497.86 13399.93 4499.19 234
LF4IMVS97.90 19797.69 21098.52 20699.17 18897.66 18197.19 26599.47 10496.31 28097.85 27298.20 28596.71 18599.52 32894.62 29899.72 14998.38 336
CL-MVSNet_self_test97.44 23697.22 24198.08 24498.57 30495.78 26094.30 38398.79 28096.58 26798.60 21198.19 28694.74 26099.64 28696.41 23598.84 31098.82 288
cl2295.79 31095.39 31496.98 31896.77 39392.79 34394.40 38198.53 30194.59 32897.89 26898.17 28782.82 37299.24 37496.37 23699.03 29498.92 276
MVSFormer98.26 17098.43 13397.77 26698.88 24693.89 32399.39 1799.56 6999.11 7398.16 24898.13 28893.81 28099.97 499.26 4399.57 20799.43 158
jason97.45 23597.35 23597.76 26999.24 16693.93 31995.86 33598.42 30694.24 33798.50 22598.13 28894.82 25399.91 5997.22 16399.73 14299.43 158
jason: jason.
ZD-MVS99.01 22098.84 7599.07 23094.10 34198.05 26098.12 29096.36 20199.86 10892.70 35199.19 276
test22298.92 23696.93 22595.54 34598.78 28285.72 39796.86 33198.11 29194.43 26499.10 28999.23 224
新几何198.91 14798.94 23097.76 17498.76 28487.58 39496.75 33798.10 29294.80 25699.78 20892.73 35099.00 29999.20 229
原ACMM198.35 22398.90 24096.25 24498.83 27692.48 36396.07 35798.10 29295.39 23999.71 24692.61 35398.99 30099.08 247
EPNet_dtu94.93 32894.78 32995.38 36493.58 40887.68 39196.78 28495.69 37497.35 21789.14 40498.09 29488.15 33799.49 33694.95 29199.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
pmmvs395.03 32694.40 33296.93 32097.70 36292.53 34895.08 36197.71 33088.57 39197.71 28098.08 29579.39 38399.82 16496.19 24999.11 28898.43 331
DP-MVS Recon97.33 24396.92 25598.57 19699.09 20497.99 14896.79 28399.35 14393.18 35397.71 28098.07 29695.00 24899.31 36693.97 31999.13 28498.42 333
test_vis1_rt97.75 21397.72 20997.83 26198.81 26096.35 24097.30 25499.69 3794.61 32797.87 26998.05 29796.26 20498.32 39898.74 7698.18 34298.82 288
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10799.57 6297.87 16998.85 17998.04 29897.66 11699.84 13796.72 20999.81 9999.13 244
F-COLMAP97.30 24596.68 27299.14 10899.19 18098.39 10897.27 25899.30 16992.93 35796.62 34198.00 29995.73 22899.68 26492.62 35298.46 33399.35 194
Effi-MVS+-dtu98.26 17097.90 19699.35 7098.02 34499.49 598.02 17199.16 21598.29 13797.64 28497.99 30096.44 19699.95 2296.66 21498.93 30798.60 318
hse-mvs297.46 23397.07 24898.64 18198.73 26997.33 19997.45 24497.64 33499.11 7398.58 21597.98 30188.65 33399.79 19798.11 11397.39 36898.81 292
HQP_MVS97.99 19597.67 21198.93 14499.19 18097.65 18297.77 20599.27 18398.20 14797.79 27697.98 30194.90 24999.70 25094.42 30699.51 22499.45 150
plane_prior497.98 301
BH-RMVSNet96.83 27596.58 28097.58 28498.47 31394.05 31196.67 29197.36 33796.70 26397.87 26997.98 30195.14 24499.44 34890.47 37998.58 33199.25 219
AUN-MVS96.24 29995.45 31098.60 19198.70 27897.22 20797.38 24797.65 33295.95 29495.53 37097.96 30582.11 37599.79 19796.31 24097.44 36598.80 297
NCCC97.86 20397.47 22999.05 12798.61 29598.07 14196.98 27398.90 25897.63 18597.04 31897.93 30695.99 21899.66 27895.31 28498.82 31399.43 158
sss97.21 25396.93 25398.06 24698.83 25495.22 27896.75 28798.48 30494.49 32997.27 31097.90 30792.77 29799.80 18496.57 21999.32 25399.16 243
test_yl96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
DCV-MVSNet96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
CDPH-MVS97.26 24896.66 27599.07 12099.00 22198.15 12896.03 32599.01 24591.21 37797.79 27697.85 31096.89 17099.69 25592.75 34999.38 24699.39 175
HPM-MVS++copyleft98.10 18397.64 21699.48 5199.09 20499.13 5597.52 23798.75 28797.46 20796.90 32897.83 31196.01 21399.84 13795.82 26999.35 24999.46 146
PatchMatch-RL97.24 25196.78 26698.61 18999.03 21997.83 16596.36 30699.06 23193.49 35197.36 30997.78 31295.75 22799.49 33693.44 33598.77 31498.52 322
TAPA-MVS96.21 1196.63 28495.95 29598.65 18098.93 23298.09 13596.93 27799.28 18083.58 40098.13 25297.78 31296.13 20799.40 35393.52 33299.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
baseline195.96 30695.44 31197.52 29198.51 31193.99 31798.39 13296.09 36698.21 14398.40 23797.76 31486.88 34099.63 28995.42 28289.27 40598.95 270
WTY-MVS96.67 28296.27 29197.87 25998.81 26094.61 29796.77 28597.92 32694.94 32197.12 31397.74 31591.11 31599.82 16493.89 32298.15 34699.18 236
test_method79.78 37379.50 37680.62 38980.21 41245.76 41570.82 40398.41 30831.08 40780.89 40897.71 31684.85 35697.37 40291.51 36680.03 40698.75 303
MSP-MVS98.40 15098.00 18699.61 999.57 8199.25 2498.57 10699.35 14397.55 19699.31 10597.71 31694.61 26199.88 8396.14 25399.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MCST-MVS98.00 19297.63 21799.10 11499.24 16698.17 12796.89 28098.73 29095.66 30097.92 26597.70 31897.17 15599.66 27896.18 25199.23 26999.47 144
AdaColmapbinary97.14 25996.71 27098.46 21398.34 32697.80 17296.95 27498.93 25295.58 30496.92 32397.66 31995.87 22499.53 32490.97 37499.14 28298.04 352
thisisatest053095.27 32294.45 33197.74 27299.19 18094.37 30397.86 19590.20 40297.17 23898.22 24497.65 32073.53 39699.90 6496.90 19299.35 24998.95 270
testgi98.32 16198.39 14098.13 24099.57 8195.54 26597.78 20399.49 9497.37 21599.19 12297.65 32098.96 2499.49 33696.50 23098.99 30099.34 196
test_prior295.74 34096.48 27196.11 35597.63 32295.92 22394.16 31299.20 273
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34898.86 10398.87 17897.62 32398.63 4698.96 38799.41 3798.29 33898.45 327
cdsmvs_eth3d_5k24.66 37532.88 3780.00 3930.00 4160.00 4180.00 40499.10 2260.00 4110.00 41297.58 32499.21 160.00 4120.00 4110.00 4100.00 408
lupinMVS97.06 26396.86 25997.65 27898.88 24693.89 32395.48 34997.97 32493.53 34998.16 24897.58 32493.81 28099.91 5996.77 20399.57 20799.17 240
TEST998.71 27498.08 13995.96 32999.03 23991.40 37495.85 36097.53 32696.52 19299.76 221
train_agg97.10 26096.45 28499.07 12098.71 27498.08 13995.96 32999.03 23991.64 36995.85 36097.53 32696.47 19499.76 22193.67 32899.16 27999.36 190
Fast-Effi-MVS+-dtu98.27 16898.09 17798.81 15898.43 31998.11 13297.61 22799.50 8798.64 11297.39 30797.52 32898.12 8799.95 2296.90 19298.71 31998.38 336
test_898.67 28698.01 14795.91 33499.02 24291.64 36995.79 36297.50 32996.47 19499.76 221
1112_ss97.29 24796.86 25998.58 19399.34 15396.32 24196.75 28799.58 5593.14 35496.89 32997.48 33092.11 30699.86 10896.91 18799.54 21599.57 91
ab-mvs-re8.12 37910.83 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.48 3300.00 4160.00 4120.00 4110.00 4100.00 408
Effi-MVS+98.02 19097.82 20298.62 18698.53 30997.19 21097.33 25199.68 4297.30 22296.68 33897.46 33298.56 5499.80 18496.63 21598.20 34198.86 285
PCF-MVS92.86 1894.36 33393.00 35098.42 21798.70 27897.56 18793.16 39599.11 22579.59 40397.55 29297.43 33392.19 30499.73 23879.85 40499.45 23697.97 357
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
GA-MVS95.86 30895.32 31797.49 29498.60 29794.15 31093.83 39097.93 32595.49 30796.68 33897.42 33483.21 36899.30 36896.22 24798.55 33299.01 259
CNLPA97.17 25796.71 27098.55 20198.56 30598.05 14596.33 30898.93 25296.91 25197.06 31797.39 33594.38 26799.45 34691.66 36199.18 27898.14 347
PLCcopyleft94.65 1696.51 28895.73 29998.85 15398.75 26797.91 15896.42 30399.06 23190.94 38095.59 36397.38 33694.41 26599.59 30390.93 37598.04 35599.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
BH-untuned96.83 27596.75 26897.08 31398.74 26893.33 33496.71 28998.26 31296.72 26198.44 23097.37 33795.20 24299.47 34291.89 35897.43 36698.44 329
PVSNet_Blended96.88 27396.68 27297.47 29698.92 23693.77 32794.71 37099.43 12090.98 37997.62 28597.36 33896.82 17599.67 26794.73 29599.56 21098.98 264
miper_enhance_ethall96.01 30395.74 29896.81 32896.41 39992.27 35593.69 39298.89 26091.14 37898.30 24097.35 33990.58 31899.58 30996.31 24099.03 29498.60 318
DPM-MVS96.32 29595.59 30598.51 20798.76 26597.21 20894.54 37998.26 31291.94 36896.37 35097.25 34093.06 29199.43 34991.42 36798.74 31598.89 280
E-PMN94.17 33894.37 33393.58 38196.86 39085.71 39890.11 40197.07 34598.17 15097.82 27597.19 34184.62 35998.94 38889.77 38197.68 35996.09 397
CLD-MVS97.49 23197.16 24498.48 21199.07 20897.03 21894.71 37099.21 19894.46 33198.06 25897.16 34297.57 12699.48 33994.46 30399.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42095.51 31995.47 30895.65 35898.25 33188.27 38893.25 39498.88 26193.53 34994.65 38197.15 34386.17 34699.93 4097.41 15499.93 4498.73 305
xiu_mvs_v1_base_debu97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base_debi97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
bld_raw_dy_0_6497.62 22397.51 22497.96 25497.97 34696.28 24398.20 14799.82 2296.46 27399.37 8997.12 34792.42 30199.70 25096.27 24399.97 1997.90 358
iter_conf05_1196.72 27996.30 28897.97 25397.97 34696.24 24594.99 36496.19 36396.45 27496.77 33696.84 34891.46 31299.78 20896.27 24399.78 11997.90 358
NP-MVS98.84 25297.39 19796.84 348
HQP-MVS97.00 26996.49 28398.55 20198.67 28696.79 22896.29 31199.04 23796.05 28895.55 36696.84 34893.84 27899.54 32292.82 34699.26 26599.32 203
API-MVS97.04 26596.91 25797.42 29997.88 35398.23 12498.18 14998.50 30397.57 19297.39 30796.75 35196.77 17999.15 38190.16 38099.02 29794.88 401
131495.74 31195.60 30496.17 34797.53 37192.75 34598.07 16398.31 31191.22 37694.25 38496.68 35295.53 23399.03 38391.64 36397.18 37596.74 388
TR-MVS95.55 31795.12 32296.86 32797.54 36993.94 31896.49 29996.53 36094.36 33697.03 32096.61 35394.26 27199.16 38086.91 39296.31 38697.47 379
Fast-Effi-MVS+97.67 21997.38 23298.57 19698.71 27497.43 19597.23 25999.45 11094.82 32496.13 35496.51 35498.52 5699.91 5996.19 24998.83 31198.37 338
xiu_mvs_v2_base97.16 25897.49 22696.17 34798.54 30792.46 34995.45 35098.84 27297.25 22797.48 29996.49 35598.31 7099.90 6496.34 23998.68 32496.15 395
MVS93.19 35392.09 35796.50 33596.91 38994.03 31498.07 16398.06 32368.01 40494.56 38396.48 35695.96 22199.30 36883.84 39796.89 38096.17 393
PAPM_NR96.82 27796.32 28798.30 22899.07 20896.69 23397.48 24198.76 28495.81 29896.61 34296.47 35794.12 27599.17 37990.82 37897.78 35799.06 250
KD-MVS_2432*160092.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
miper_refine_blended92.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
PVSNet93.40 1795.67 31395.70 30095.57 35998.83 25488.57 38592.50 39797.72 32992.69 36196.49 34996.44 35893.72 28399.43 34993.61 32999.28 26198.71 306
EMVS93.83 34494.02 33693.23 38596.83 39284.96 39989.77 40296.32 36297.92 16597.43 30496.36 36186.17 34698.93 38987.68 38897.73 35895.81 398
MAR-MVS96.47 29295.70 30098.79 16397.92 35099.12 5798.28 13998.60 29892.16 36795.54 36996.17 36294.77 25999.52 32889.62 38298.23 33997.72 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPM91.88 37090.34 37396.51 33498.06 34392.56 34792.44 39897.17 34286.35 39590.38 40296.01 36386.61 34299.21 37770.65 40895.43 39497.75 369
PS-MVSNAJ97.08 26297.39 23196.16 34998.56 30592.46 34995.24 35798.85 27197.25 22797.49 29895.99 36498.07 8899.90 6496.37 23698.67 32596.12 396
dmvs_re95.98 30595.39 31497.74 27298.86 24897.45 19398.37 13495.69 37497.95 16296.56 34395.95 36590.70 31797.68 40188.32 38696.13 38998.11 348
baseline293.73 34592.83 35196.42 33797.70 36291.28 36896.84 28289.77 40393.96 34592.44 39895.93 36679.14 38499.77 21592.94 34296.76 38298.21 343
alignmvs97.35 24196.88 25898.78 16698.54 30798.09 13597.71 21397.69 33199.20 6497.59 28895.90 36788.12 33899.55 31798.18 10998.96 30498.70 309
ET-MVSNet_ETH3D94.30 33693.21 34697.58 28498.14 33894.47 30194.78 36993.24 39294.72 32589.56 40395.87 36878.57 38899.81 17796.91 18797.11 37798.46 324
thisisatest051594.12 34093.16 34796.97 31998.60 29792.90 34193.77 39190.61 40094.10 34196.91 32595.87 36874.99 39499.80 18494.52 30199.12 28798.20 344
UWE-MVS92.38 36391.76 36694.21 37497.16 38484.65 40195.42 35288.45 40595.96 29396.17 35395.84 37066.36 40399.71 24691.87 35998.64 32698.28 341
BH-w/o95.13 32494.89 32895.86 35198.20 33591.31 36695.65 34297.37 33693.64 34796.52 34595.70 37193.04 29299.02 38488.10 38795.82 39297.24 382
PMMVS96.51 28895.98 29498.09 24197.53 37195.84 25794.92 36698.84 27291.58 37196.05 35895.58 37295.68 22999.66 27895.59 27898.09 34998.76 302
EIA-MVS98.00 19297.74 20698.80 16098.72 27198.09 13598.05 16699.60 5297.39 21396.63 34095.55 37397.68 11499.80 18496.73 20899.27 26298.52 322
ETV-MVS98.03 18997.86 20098.56 20098.69 28398.07 14197.51 23999.50 8798.10 15597.50 29795.51 37498.41 6299.88 8396.27 24399.24 26797.71 372
MGCFI-Net98.34 15798.28 15498.51 20798.47 31397.59 18698.96 7299.48 9699.18 7097.40 30595.50 37598.66 4399.50 33398.18 10998.71 31998.44 329
testing393.51 34892.09 35797.75 27098.60 29794.40 30297.32 25295.26 37697.56 19496.79 33595.50 37553.57 41399.77 21595.26 28598.97 30399.08 247
PAPR95.29 32194.47 33097.75 27097.50 37695.14 28194.89 36798.71 29191.39 37595.35 37395.48 37794.57 26299.14 38284.95 39597.37 36998.97 267
sasdasda98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
canonicalmvs98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
MVEpermissive83.40 2292.50 36191.92 36394.25 37398.83 25491.64 36092.71 39683.52 41095.92 29586.46 40795.46 37895.20 24295.40 40680.51 40398.64 32695.73 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVSnew95.73 31295.57 30696.23 34496.70 39490.70 37896.07 32493.86 38895.60 30397.04 31895.45 38196.00 21499.55 31791.04 37398.31 33798.43 331
test-LLR93.90 34393.85 33794.04 37596.53 39684.62 40294.05 38792.39 39496.17 28394.12 38695.07 38282.30 37399.67 26795.87 26598.18 34297.82 363
test-mter92.33 36591.76 36694.04 37596.53 39684.62 40294.05 38792.39 39494.00 34494.12 38695.07 38265.63 40699.67 26795.87 26598.18 34297.82 363
thres600view794.45 33293.83 33896.29 34099.06 21291.53 36197.99 17794.24 38598.34 13097.44 30395.01 38479.84 37999.67 26784.33 39698.23 33997.66 373
gm-plane-assit94.83 40681.97 40988.07 39394.99 38599.60 29991.76 360
thres100view90094.19 33793.67 34195.75 35599.06 21291.35 36598.03 16994.24 38598.33 13197.40 30594.98 38679.84 37999.62 29283.05 39898.08 35096.29 391
cascas94.79 32994.33 33596.15 35096.02 40492.36 35392.34 39999.26 18885.34 39895.08 37694.96 38792.96 29398.53 39694.41 30998.59 33097.56 377
TESTMET0.1,192.19 36791.77 36593.46 38296.48 39882.80 40794.05 38791.52 39894.45 33394.00 38994.88 38866.65 40299.56 31495.78 27098.11 34898.02 353
test0.0.03 194.51 33193.69 34096.99 31796.05 40293.61 33294.97 36593.49 38996.17 28397.57 29194.88 38882.30 37399.01 38693.60 33094.17 40098.37 338
DeepMVS_CXcopyleft93.44 38398.24 33294.21 30794.34 38264.28 40591.34 40194.87 39089.45 32792.77 40877.54 40693.14 40193.35 403
IB-MVS91.63 1992.24 36690.90 37096.27 34197.22 38391.24 37094.36 38293.33 39192.37 36492.24 39994.58 39166.20 40599.89 7493.16 34094.63 39897.66 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tfpn200view994.03 34193.44 34395.78 35498.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35096.29 391
thres40094.14 33993.44 34396.24 34398.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35097.66 373
testing1193.08 35592.02 35996.26 34297.56 36790.83 37696.32 30995.70 37296.47 27292.66 39793.73 39464.36 40899.59 30393.77 32797.57 36098.37 338
thres20093.72 34693.14 34895.46 36398.66 29191.29 36796.61 29494.63 38097.39 21396.83 33293.71 39579.88 37899.56 31482.40 40198.13 34795.54 400
dmvs_testset92.94 35792.21 35695.13 36698.59 30090.99 37397.65 22292.09 39696.95 24894.00 38993.55 39692.34 30396.97 40472.20 40792.52 40297.43 380
testing9193.32 35192.27 35496.47 33697.54 36991.25 36996.17 32096.76 35597.18 23793.65 39393.50 39765.11 40799.63 28993.04 34197.45 36498.53 321
testing9993.04 35691.98 36296.23 34497.53 37190.70 37896.35 30795.94 36996.87 25393.41 39493.43 39863.84 40999.59 30393.24 33997.19 37498.40 334
PVSNet_089.98 2191.15 37190.30 37493.70 38097.72 35884.34 40590.24 40097.42 33590.20 38493.79 39193.09 39990.90 31698.89 39286.57 39372.76 40797.87 362
testing22291.96 36890.37 37296.72 33297.47 37792.59 34696.11 32294.76 37896.83 25592.90 39692.87 40057.92 41199.55 31786.93 39197.52 36198.00 356
tmp_tt78.77 37478.73 37778.90 39058.45 41374.76 41494.20 38478.26 41339.16 40686.71 40692.82 40180.50 37775.19 40986.16 39492.29 40386.74 404
ETVMVS92.60 36091.08 36997.18 30897.70 36293.65 33196.54 29595.70 37296.51 26894.68 38092.39 40261.80 41099.50 33386.97 39097.41 36798.40 334
Syy-MVS96.04 30295.56 30797.49 29497.10 38694.48 30096.18 31896.58 35895.65 30194.77 37892.29 40391.27 31499.36 35898.17 11198.05 35398.63 316
myMVS_eth3d91.92 36990.45 37196.30 33997.10 38690.90 37496.18 31896.58 35895.65 30194.77 37892.29 40353.88 41299.36 35889.59 38398.05 35398.63 316
GG-mvs-BLEND94.76 36994.54 40792.13 35799.31 2780.47 41288.73 40591.01 40567.59 40198.16 40082.30 40294.53 39993.98 402
X-MVStestdata94.32 33492.59 35299.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29345.85 40697.50 13599.83 15496.79 20099.53 21999.56 97
testmvs17.12 37620.53 3796.87 39212.05 4144.20 41793.62 3936.73 4154.62 41010.41 41024.33 4078.28 4153.56 4119.69 41015.07 40812.86 407
test12317.04 37720.11 3807.82 39110.25 4154.91 41694.80 3684.47 4164.93 40910.00 41124.28 4089.69 4143.64 41010.14 40912.43 40914.92 406
test_post21.25 40983.86 36699.70 250
test_post197.59 23020.48 41083.07 37099.66 27894.16 312
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.17 37810.90 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41198.07 880.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.90 37491.37 368
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
No_MVS99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
eth-test20.00 416
eth-test0.00 416
IU-MVS99.49 11599.15 4798.87 26392.97 35699.41 8096.76 20499.62 18799.66 58
save fliter99.11 19997.97 15296.53 29799.02 24298.24 140
test_0728_SECOND99.60 1199.50 10899.23 2698.02 17199.32 15699.88 8396.99 18199.63 18499.68 54
GSMVS98.81 292
test_part299.36 14799.10 6099.05 141
sam_mvs184.74 35898.81 292
sam_mvs84.29 364
MTGPAbinary99.20 200
MTMP97.93 18291.91 397
test9_res93.28 33899.15 28199.38 182
agg_prior292.50 35499.16 27999.37 184
agg_prior98.68 28597.99 14899.01 24595.59 36399.77 215
test_prior497.97 15295.86 335
test_prior98.95 14198.69 28397.95 15699.03 23999.59 30399.30 210
旧先验295.76 33988.56 39297.52 29599.66 27894.48 302
新几何295.93 332
无先验95.74 34098.74 28989.38 38899.73 23892.38 35699.22 228
原ACMM295.53 346
testdata299.79 19792.80 348
segment_acmp97.02 164
testdata195.44 35196.32 279
test1298.93 14498.58 30297.83 16598.66 29396.53 34495.51 23599.69 25599.13 28499.27 215
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 18094.90 249
plane_prior599.27 18399.70 25094.42 30699.51 22499.45 150
plane_prior397.78 17397.41 21197.79 276
plane_prior297.77 20598.20 147
plane_prior199.05 215
plane_prior97.65 18297.07 26996.72 26199.36 247
n20.00 417
nn0.00 417
door-mid99.57 62
test1198.87 263
door99.41 124
HQP5-MVS96.79 228
HQP-NCC98.67 28696.29 31196.05 28895.55 366
ACMP_Plane98.67 28696.29 31196.05 28895.55 366
BP-MVS92.82 346
HQP4-MVS95.56 36599.54 32299.32 203
HQP3-MVS99.04 23799.26 265
HQP2-MVS93.84 278
MDTV_nov1_ep13_2view74.92 41397.69 21590.06 38697.75 27985.78 35093.52 33298.69 310
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 192