This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort by
mmdepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
test_blank8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas16.61 39322.14 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 199.28 680.00 4270.00 4260.00 4250.00 423
sosnet-low-res8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
sosnet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
Regformer8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3599.87 3199.99 16100.00 1
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3599.75 41100.00 199.84 39
MVS-HIRNet97.86 31998.22 29096.76 39099.28 31591.53 41798.38 32492.60 42099.13 20299.31 27199.96 1597.18 27899.68 36598.34 19799.83 17399.07 334
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28399.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 8199.95 1299.98 4199.94 16
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16599.65 5099.97 5599.69 88
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24199.79 1299.97 19100.00 199.43 23699.94 1999.64 2899.94 8199.83 3399.99 1699.98 4
gg-mvs-nofinetune95.87 37695.17 38197.97 36298.19 41296.95 36299.69 4289.23 42599.89 3796.24 41399.94 1981.19 40799.51 40493.99 40298.20 39297.44 411
test_f99.75 3499.88 799.37 22899.96 798.21 30899.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 8199.97 499.99 1699.97 9
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 6099.70 8999.92 4399.93 2199.45 4999.97 3599.36 91100.00 199.85 37
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 6099.80 6899.93 3899.93 2198.54 17099.93 9999.59 5599.98 4199.76 68
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 6099.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8599.73 7899.97 2099.92 2599.77 1999.98 2199.43 78100.00 199.90 24
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19898.93 15699.95 8199.60 159
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21699.98 1299.99 399.98 1399.91 2899.68 2699.93 9999.93 1999.99 1699.99 2
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 208100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
test_fmvs299.72 3899.85 1799.34 23599.91 3098.08 32299.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13899.91 2899.15 8399.97 3599.50 70100.00 199.90 24
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7399.84 5599.94 3599.91 2899.13 8899.96 5699.83 3399.99 1699.83 43
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22699.98 1299.99 399.98 1399.90 3399.88 899.92 12599.93 1999.99 1699.98 4
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 12099.82 6299.90 4999.90 3397.97 23399.86 23199.42 8399.96 6899.80 50
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33799.65 10599.89 5399.90 3396.20 31099.94 8199.42 8399.92 10599.67 102
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16699.71 13299.27 17499.93 3899.90 3399.70 2499.93 9998.99 14499.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ttmdpeth99.48 9199.55 7999.29 25099.76 11798.16 31399.33 13399.95 3099.79 7099.36 25599.89 3899.13 8899.77 32599.09 13699.64 26399.93 18
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8399.96 6899.65 119
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9199.97 1699.89 5399.89 3899.53 4599.99 899.36 9199.96 6899.65 119
test_cas_vis1_n_192099.76 3399.86 1399.45 20099.93 2498.40 29699.30 14499.98 1299.94 2399.99 799.89 3899.80 1599.97 3599.96 999.97 5599.97 9
test_fmvs1_n99.68 4799.81 2599.28 25399.95 1597.93 33199.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19899.98 1100.00 199.98 4
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13299.93 2599.95 3299.89 3899.71 2299.96 5699.51 6899.97 5599.84 39
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21299.59 5599.74 22499.71 79
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 10099.78 7299.93 3899.89 3897.94 23499.92 12599.65 5099.98 4199.62 145
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 24099.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
test_vis1_n99.68 4799.79 2999.36 23299.94 1898.18 31199.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5699.97 499.96 6899.95 13
Anonymous2024052199.44 10699.42 10299.49 18899.89 3898.96 24999.62 6499.76 10599.85 5299.82 8299.88 4796.39 30399.97 3599.59 5599.98 4199.55 181
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26899.86 5499.68 9499.65 16099.88 4797.67 25399.87 21299.03 14199.86 15599.76 68
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41299.78 7299.88 6299.88 4793.66 34099.97 3599.61 5399.95 8199.64 129
MVStest198.22 30698.09 30198.62 33299.04 36096.23 37899.20 17699.92 3499.44 14899.98 1399.87 5285.87 40199.67 37099.91 2499.57 28599.95 13
test111197.74 32498.16 29796.49 39599.60 18589.86 42599.71 3491.21 42199.89 3799.88 6299.87 5293.73 33999.90 16599.56 6099.99 1699.70 82
new-patchmatchnet99.35 13299.57 7398.71 33099.82 7296.62 36998.55 30599.75 11099.50 13399.88 6299.87 5299.31 6499.88 19899.43 78100.00 199.62 145
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21299.54 6399.92 10599.63 134
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 11099.60 12399.92 4399.87 5298.75 14199.86 23199.90 2599.99 1699.73 73
JIA-IIPM98.06 31497.92 31798.50 33998.59 40097.02 36198.80 27698.51 37199.88 4297.89 38699.87 5291.89 35799.90 16598.16 21697.68 40698.59 380
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6699.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
MVSMamba_PlusPlus99.55 7799.58 6999.47 19499.68 16499.40 17599.52 8999.70 13799.92 2899.77 11199.86 5998.28 20599.96 5699.54 6399.90 11699.05 336
test250694.73 38594.59 38695.15 40199.59 19085.90 42799.75 2274.01 42999.89 3799.71 13899.86 5979.00 41899.90 16599.52 6799.99 1699.65 119
ECVR-MVScopyleft97.73 32598.04 30496.78 38999.59 19090.81 42199.72 3090.43 42399.89 3799.86 7199.86 5993.60 34199.89 18499.46 7499.99 1699.65 119
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 283
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25299.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9199.83 6099.88 6299.85 6398.42 18999.90 16599.60 5499.73 23099.49 217
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10599.64 10899.93 3899.85 6398.66 15499.84 26499.88 2999.99 1699.71 79
EU-MVSNet99.39 12299.62 5798.72 32899.88 4396.44 37299.56 8499.85 6099.90 3199.90 4999.85 6398.09 22399.83 27999.58 5899.95 8199.90 24
DSMNet-mixed99.48 9199.65 5298.95 30099.71 14497.27 35499.50 9699.82 7399.59 12599.41 24599.85 6399.62 33100.00 199.53 6699.89 12699.59 166
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9198.77 25099.80 9399.85 6399.64 2899.85 24998.70 17699.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23599.96 2599.99 399.97 2099.84 6999.58 3899.93 9999.92 2199.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23599.96 2599.99 399.97 2099.84 6999.78 1799.92 12599.92 2199.99 1699.92 22
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18899.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7399.39 15999.82 8299.84 6999.38 5699.91 14799.38 8799.93 10199.80 50
EGC-MVSNET89.05 38885.52 39199.64 13299.89 3899.78 5199.56 8499.52 24624.19 42349.96 42499.83 7399.15 8399.92 12597.71 25799.85 16099.21 292
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9799.90 3199.82 8299.83 7398.45 18599.87 21299.51 6899.97 5599.86 34
lessismore_v099.64 13299.86 5399.38 18090.66 42299.89 5399.83 7394.56 33099.97 3599.56 6099.92 10599.57 176
GBi-Net99.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
test199.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13799.67 9899.82 8299.83 7398.98 11199.90 16599.24 11099.97 5599.53 195
TAMVS99.49 8999.45 9599.63 13999.48 25299.42 16899.45 10999.57 21599.66 10299.78 10399.83 7397.85 24199.86 23199.44 7799.96 6899.61 155
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18899.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
test_vis1_n_192099.72 3899.88 799.27 25699.93 2497.84 33499.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
mvsany_test199.44 10699.45 9599.40 21999.37 28498.64 28197.90 37199.59 20499.27 17499.92 4399.82 8099.74 2099.93 9999.55 6299.87 14799.63 134
RRT-MVS99.08 20099.00 20299.33 23899.27 31798.65 27999.62 6499.93 3299.66 10299.67 15399.82 8095.27 32399.93 9998.64 18299.09 34799.41 246
SD-MVS99.01 21999.30 13098.15 35699.50 24299.40 17598.94 25799.61 18799.22 18699.75 11999.82 8099.54 4395.51 42397.48 27999.87 14799.54 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
ab-mvs99.33 14099.28 13799.47 19499.57 20599.39 17899.78 1499.43 27498.87 23399.57 19199.82 8098.06 22699.87 21298.69 17899.73 23099.15 307
PMVScopyleft92.94 2198.82 24598.81 23698.85 31699.84 6197.99 32599.20 17699.47 26399.71 8499.42 23999.82 8098.09 22399.47 40693.88 40399.85 16099.07 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
test_fmvs199.48 9199.65 5298.97 29799.54 22197.16 35799.11 21399.98 1299.78 7299.96 2499.81 8798.72 14699.97 3599.95 1299.97 5599.79 57
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14499.85 5299.80 9399.81 8798.81 12999.91 14799.47 7399.88 13599.70 82
UGNet99.38 12499.34 11899.49 18898.90 37298.90 25799.70 3599.35 29699.86 4698.57 35899.81 8798.50 18099.93 9999.38 8799.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
FE-MVS97.85 32097.42 33499.15 27499.44 26798.75 26899.77 1698.20 38695.85 38899.33 26399.80 9088.86 38799.88 19896.40 34799.12 34498.81 367
FA-MVS(test-final)98.52 27798.32 28299.10 28299.48 25298.67 27399.77 1698.60 36797.35 35899.63 16599.80 9093.07 34699.84 26497.92 23499.30 33098.78 370
ambc99.20 26899.35 29098.53 28799.17 18899.46 26699.67 15399.80 9098.46 18499.70 34797.92 23499.70 24199.38 252
VDDNet98.97 22598.82 23599.42 21099.71 14498.81 26299.62 6498.68 36099.81 6599.38 25399.80 9094.25 33299.85 24998.79 16699.32 32899.59 166
mvs_anonymous99.28 14699.39 10698.94 30199.19 33397.81 33699.02 23899.55 22699.78 7299.85 7499.80 9098.24 20999.86 23199.57 5999.50 30499.15 307
QAPM98.40 29197.99 30799.65 12599.39 27999.47 15099.67 5099.52 24691.70 41198.78 34099.80 9098.55 16899.95 6694.71 39299.75 21799.53 195
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27999.42 16899.70 3599.56 22099.23 18299.35 25799.80 9099.17 8199.95 6698.21 20899.84 16599.59 166
CMPMVSbinary77.52 2398.50 28098.19 29599.41 21798.33 40999.56 13799.01 24099.59 20495.44 39399.57 19199.80 9095.64 31699.46 40896.47 34499.92 10599.21 292
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20899.68 14799.49 13599.80 9399.79 10099.01 10699.93 9998.24 20599.82 18299.73 73
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8299.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 30199.86 34
MonoMVSNet98.23 30498.32 28297.99 36098.97 36896.62 36999.49 10098.42 37699.62 11399.40 25099.79 10095.51 32098.58 41997.68 26895.98 41798.76 373
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 23099.04 23299.87 5199.71 8499.47 22699.79 10098.24 20999.98 2199.38 8799.96 6899.83 43
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 11099.86 4699.74 12799.79 10098.27 20799.85 24999.37 9099.93 10199.83 43
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30499.76 6399.34 12999.97 1998.93 22599.91 4699.79 10098.68 14999.93 9996.80 32399.56 28699.30 274
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 28099.88 4998.66 26199.96 2499.79 10097.45 26399.93 9999.34 9599.99 1699.78 59
CR-MVSNet98.35 29698.20 29298.83 32099.05 35798.12 31599.30 14499.67 15297.39 35699.16 29599.79 10091.87 35899.91 14798.78 17098.77 36898.44 391
Patchmtry98.78 24998.54 26199.49 18898.89 37599.19 22199.32 13699.67 15299.65 10599.72 13399.79 10091.87 35899.95 6698.00 22899.97 5599.33 265
wuyk23d97.58 33299.13 15892.93 40299.69 15699.49 14799.52 8999.77 10097.97 32499.96 2499.79 10099.84 1299.94 8195.85 37199.82 18279.36 420
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28799.47 14099.76 11499.78 11098.13 22199.86 23198.70 17699.68 25099.49 217
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13299.72 8299.84 7799.78 11098.67 15299.97 3599.30 10399.95 8199.80 50
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15999.76 10599.32 16899.80 9399.78 11099.29 6699.87 21299.15 12699.91 11599.66 111
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7398.33 30399.50 22199.78 11097.90 23699.65 38196.78 32499.83 17399.44 235
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 29099.47 15099.62 6499.50 25599.44 14899.12 30299.78 11098.77 13899.94 8197.87 24199.72 23699.62 145
Gipumacopyleft99.57 7199.59 6699.49 18899.98 399.71 8599.72 3099.84 6699.81 6599.94 3599.78 11098.91 12199.71 34498.41 19299.95 8199.05 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9799.53 12999.67 15399.78 11099.19 7999.86 23197.32 28899.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
USDC98.96 22898.93 21899.05 29199.54 22197.99 32597.07 40599.80 8598.21 31099.75 11999.77 11998.43 18799.64 38397.90 23699.88 13599.51 207
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32199.48 13699.56 19999.77 11994.89 32599.93 9998.72 17599.89 12699.63 134
OpenMVScopyleft98.12 1098.23 30497.89 32099.26 25999.19 33399.26 20599.65 5999.69 14491.33 41298.14 37899.77 11998.28 20599.96 5695.41 38199.55 29098.58 382
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 26199.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9599.96 6899.78 59
PatchT98.45 28698.32 28298.83 32098.94 37098.29 30399.24 16698.82 35399.84 5599.08 30699.76 12291.37 36199.94 8198.82 16299.00 35498.26 397
MIMVSNet98.43 28798.20 29299.11 28099.53 22798.38 30099.58 7998.61 36598.96 21999.33 26399.76 12290.92 36899.81 30497.38 28599.76 21599.15 307
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15199.61 18799.87 4399.74 12799.76 12298.69 14899.87 21298.20 20999.80 19999.75 71
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13699.77 10099.53 12999.77 11199.76 12299.26 7299.78 31797.77 24999.88 13599.60 159
reproduce_monomvs97.40 33897.46 33297.20 38599.05 35791.91 41399.20 17699.18 33299.84 5599.86 7199.75 12780.67 40899.83 27999.69 4599.95 8199.85 37
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13699.74 11699.18 18999.69 14599.75 12798.41 19099.84 26497.85 24499.70 24199.10 318
v124099.56 7499.58 6999.51 18299.80 8699.00 24299.00 24399.65 16799.15 20099.90 4999.75 12799.09 9299.88 19899.90 2599.96 6899.67 102
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9499.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RPMNet98.60 26798.53 26298.83 32099.05 35798.12 31599.30 14499.62 18099.86 4699.16 29599.74 13192.53 35299.92 12598.75 17298.77 36898.44 391
FMVSNet299.35 13299.28 13799.55 17199.49 24799.35 19099.45 10999.57 21599.44 14899.70 14299.74 13197.21 27499.87 21299.03 14199.94 9499.44 235
IterMVS98.97 22599.16 15298.42 34399.74 13595.64 38898.06 35399.83 6899.83 6099.85 7499.74 13196.10 31299.99 899.27 109100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
OpenMVS_ROBcopyleft97.31 1797.36 34196.84 35198.89 31499.29 31299.45 15998.87 26299.48 26086.54 41799.44 23299.74 13197.34 26999.86 23191.61 40799.28 33397.37 413
IterMVS-SCA-FT99.00 22199.16 15298.51 33899.75 12995.90 38498.07 35199.84 6699.84 5599.89 5399.73 13596.01 31399.99 899.33 98100.00 199.63 134
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25599.53 24198.27 30799.53 21199.73 13598.75 14199.87 21297.70 26099.83 17399.68 94
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21699.61 18799.20 18799.84 7799.73 13598.67 15299.84 26499.86 3299.98 4199.64 129
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25599.86 5498.85 23699.81 8999.73 13598.40 19499.92 12598.36 19599.83 17399.17 303
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 12099.70 8999.84 7799.73 13598.56 16799.96 5699.29 10699.94 9499.83 43
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15199.90 4399.71 8499.79 9999.73 13599.54 4399.84 26499.36 9199.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20499.90 3698.66 27698.94 25799.91 3897.97 32499.79 9999.73 13599.05 10299.97 3599.15 12699.99 1699.68 94
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8299.82 6299.71 13899.72 14296.60 29399.98 2199.75 4199.23 34199.82 49
Patchmatch-RL test98.60 26798.36 27799.33 23899.77 11399.07 23898.27 33199.87 5198.91 22899.74 12799.72 14290.57 37799.79 31498.55 18699.85 16099.11 316
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21399.62 18099.18 18999.89 5399.72 14298.66 15499.87 21299.88 2999.97 5599.66 111
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23299.60 19899.18 18999.87 7099.72 14299.08 9599.85 24999.89 2899.98 4199.66 111
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20899.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
TestCases99.63 13999.78 10599.64 11299.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20499.85 6099.79 7099.76 11499.72 14299.33 6399.82 28999.21 11499.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20499.65 16798.99 21599.64 16199.72 14299.39 5299.86 23198.23 20699.81 19299.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
balanced_conf0399.50 8599.50 8699.50 18499.42 27599.49 14799.52 8999.75 11099.86 4699.78 10399.71 15098.20 21699.90 16599.39 8699.88 13599.10 318
v192192099.56 7499.57 7399.55 17199.75 12999.11 23099.05 22799.61 18799.15 20099.88 6299.71 15099.08 9599.87 21299.90 2599.97 5599.66 111
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14498.99 21599.75 11999.71 15098.79 13499.93 9998.46 19099.85 16099.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 12099.62 11399.84 7799.71 15098.62 15899.96 5699.30 10399.96 6899.86 34
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26899.72 12998.36 29399.60 18399.71 15098.92 11999.91 14797.08 30799.84 16599.40 248
PVSNet_BlendedMVS99.03 21199.01 19899.09 28399.54 22197.99 32598.58 29999.82 7397.62 34399.34 26199.71 15098.52 17799.77 32597.98 22999.97 5599.52 205
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33699.37 16199.61 18099.71 15094.73 32899.81 30497.70 26099.88 13599.58 171
LS3D99.24 15699.11 16599.61 15198.38 40799.79 4899.57 8299.68 14799.61 11799.15 29799.71 15098.70 14799.91 14797.54 27599.68 25099.13 315
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15999.35 29698.77 25099.57 19199.70 15899.27 7199.88 19897.71 25799.75 21799.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20499.24 18099.86 7199.70 15898.55 16899.82 28999.79 3999.95 8199.60 159
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28899.80 8697.83 33598.89 26099.72 12999.29 17099.63 16599.70 15896.47 29899.89 18498.17 21599.82 18299.50 212
mvsmamba99.08 20098.95 21699.45 20099.36 28799.18 22399.39 11798.81 35499.37 16199.35 25799.70 15896.36 30599.94 8198.66 18099.59 28199.22 289
CDS-MVSNet99.22 16599.13 15899.50 18499.35 29099.11 23098.96 25499.54 23299.46 14399.61 18099.70 15896.31 30699.83 27999.34 9599.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32699.75 6997.25 39999.47 26398.72 25599.66 15899.70 15899.29 6699.63 38498.07 22399.81 19299.62 145
TinyColmap98.97 22598.93 21899.07 28899.46 26298.19 30997.75 37699.75 11098.79 24699.54 20699.70 15898.97 11399.62 38596.63 33599.83 17399.41 246
D2MVS99.22 16599.19 14999.29 25099.69 15698.74 26998.81 27399.41 27798.55 27299.68 14899.69 16598.13 22199.87 21298.82 16299.98 4199.24 283
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28499.60 19898.55 27299.76 11499.69 16598.23 21399.92 12596.39 34899.75 21799.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9799.71 8499.90 4999.69 16598.85 12799.90 16597.25 29999.78 20999.15 307
tmp_tt95.75 37995.42 37396.76 39089.90 42894.42 40098.86 26397.87 39478.01 41999.30 27699.69 16597.70 24995.89 42199.29 10698.14 39799.95 13
VDD-MVS99.20 17299.11 16599.44 20499.43 27098.98 24599.50 9698.32 38399.80 6899.56 19999.69 16596.99 28499.85 24998.99 14499.73 23099.50 212
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 11099.58 12699.85 7499.69 16598.18 21999.94 8199.28 10899.95 8199.83 43
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19499.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
LGP-MVS_train99.74 8199.82 7299.63 11799.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8599.71 8499.72 13399.69 16599.15 8399.83 27999.32 10099.94 9499.53 195
FMVSNet597.80 32297.25 33999.42 21098.83 38198.97 24799.38 12099.80 8598.87 23399.25 28099.69 16580.60 41099.91 14798.96 15099.90 11699.38 252
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16798.07 31899.52 21399.69 16598.57 16599.92 12597.18 30499.79 20499.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MVP-Stereo99.16 18599.08 17699.43 20899.48 25299.07 23899.08 22399.55 22698.63 26499.31 27199.68 17698.19 21799.78 31798.18 21399.58 28399.45 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13799.93 2599.78 10399.68 17699.10 9099.78 31799.45 7699.96 6899.83 43
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37299.74 11698.36 29399.66 15899.68 17699.71 2299.90 16596.84 32199.88 13599.43 241
N_pmnet98.73 25598.53 26299.35 23499.72 14198.67 27398.34 32694.65 41398.35 29899.79 9999.68 17698.03 22799.93 9998.28 20199.92 10599.44 235
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20899.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
EI-MVSNet99.38 12499.44 9899.21 26699.58 19598.09 31999.26 15999.46 26699.62 11399.75 11999.67 18098.54 17099.85 24999.15 12699.92 10599.68 94
CVMVSNet98.61 26498.88 22797.80 36999.58 19593.60 40699.26 15999.64 17599.66 10299.72 13399.67 18093.26 34399.93 9999.30 10399.81 19299.87 32
MVS_Test99.28 14699.31 12599.19 26999.35 29098.79 26599.36 12799.49 25999.17 19499.21 28999.67 18098.78 13699.66 37599.09 13699.66 25999.10 318
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18399.60 19898.55 27299.57 19199.67 18099.03 10599.94 8197.01 30999.80 19999.69 88
Skip Steuart: Steuart Systems R&D Blog.
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27399.66 15799.42 15899.75 11999.66 18599.20 7899.76 32898.98 14699.99 1699.36 258
EI-MVSNet-UG-set99.48 9199.50 8699.42 21099.57 20598.65 27999.24 16699.46 26699.68 9499.80 9399.66 18598.99 10999.89 18499.19 11899.90 11699.72 76
YYNet198.95 23198.99 20998.84 31899.64 17697.14 35998.22 33699.32 30198.92 22799.59 18699.66 18597.40 26599.83 27998.27 20299.90 11699.55 181
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31699.64 17697.16 35798.23 33599.33 29998.93 22599.56 19999.66 18597.39 26799.83 27998.29 20099.88 13599.55 181
MVSTER98.47 28498.22 29099.24 26499.06 35698.35 30299.08 22399.46 26699.27 17499.75 11999.66 18588.61 38899.85 24999.14 13299.92 10599.52 205
test072699.69 15699.80 4699.24 16699.57 21599.16 19699.73 13199.65 19098.35 198
EI-MVSNet-Vis-set99.47 9999.49 8899.42 21099.57 20598.66 27699.24 16699.46 26699.67 9899.79 9999.65 19098.97 11399.89 18499.15 12699.89 12699.71 79
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21399.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.41 19099.91 14797.27 29399.61 27499.54 190
RE-MVS-def99.13 15899.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.57 16597.27 29399.61 27499.54 190
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26299.73 7899.13 20499.52 24697.40 35599.57 19199.64 19298.93 11699.83 27997.61 27199.79 20499.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15799.61 18799.19 18899.57 19199.64 19298.76 13999.90 16597.29 29099.62 26799.56 178
ADS-MVSNet297.78 32397.66 33098.12 35899.14 34095.36 39199.22 17398.75 35796.97 37198.25 37099.64 19290.90 36999.94 8196.51 34099.56 28699.08 329
ADS-MVSNet97.72 32897.67 32997.86 36799.14 34094.65 39999.22 17398.86 35096.97 37198.25 37099.64 19290.90 36999.84 26496.51 34099.56 28699.08 329
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18799.54 12799.80 9399.64 19297.79 24599.95 6699.21 11499.94 9499.84 39
FMVSNet398.80 24898.63 24999.32 24399.13 34298.72 27099.10 21699.48 26099.23 18299.62 17499.64 19292.57 35099.86 23198.96 15099.90 11699.39 250
IterMVS-LS99.41 11699.47 8999.25 26299.81 8098.09 31998.85 26599.76 10599.62 11399.83 8199.64 19298.54 17099.97 3599.15 12699.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31599.22 21598.99 24899.40 28499.08 20799.58 18899.64 19298.90 12499.83 27997.44 28199.75 21799.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17699.54 23299.13 20299.82 8299.63 20398.91 12199.92 12597.85 24499.70 24199.58 171
test_241102_TWO99.54 23299.13 20299.76 11499.63 20398.32 20399.92 12597.85 24499.69 24599.75 71
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29999.48 26098.50 27999.52 21399.63 20399.14 8699.76 32897.89 23799.77 21399.51 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13399.53 24199.27 17499.42 23999.63 20398.21 21499.95 6697.83 24899.79 20499.65 119
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24299.62 11999.01 24099.57 21596.80 37799.54 20699.63 20398.29 20499.91 14795.24 38499.71 23999.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
MG-MVS98.52 27798.39 27498.94 30199.15 33997.39 35298.18 33799.21 32898.89 23299.23 28499.63 20397.37 26899.74 33594.22 39799.61 27499.69 88
FPMVS96.32 36495.50 37298.79 32499.60 18598.17 31298.46 32098.80 35597.16 36796.28 41199.63 20382.19 40699.09 41388.45 41398.89 36499.10 318
our_test_398.85 24399.09 17498.13 35799.66 17194.90 39897.72 37799.58 21399.07 20999.64 16199.62 21098.19 21799.93 9998.41 19299.95 8199.55 181
ppachtmachnet_test98.89 23999.12 16298.20 35599.66 17195.24 39497.63 38199.68 14799.08 20799.78 10399.62 21098.65 15699.88 19898.02 22499.96 6899.48 221
pmmvs599.19 17599.11 16599.42 21099.76 11798.88 25898.55 30599.73 12098.82 24199.72 13399.62 21096.56 29499.82 28999.32 10099.95 8199.56 178
patchmatchnet-post99.62 21090.58 37699.94 81
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19899.58 21399.25 17899.81 8999.62 21098.24 20999.84 26499.83 3399.97 5599.64 129
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23899.89 4599.60 12399.82 8299.62 21098.81 12999.89 18499.43 7899.86 15599.47 225
TSAR-MVS + GP.99.12 19399.04 19299.38 22599.34 29999.16 22498.15 34099.29 30998.18 31399.63 16599.62 21099.18 8099.68 36598.20 20999.74 22499.30 274
EPNet98.13 31097.77 32599.18 27194.57 42697.99 32599.24 16697.96 39099.74 7797.29 39999.62 21093.13 34599.97 3598.59 18499.83 17399.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OMC-MVS98.90 23698.72 24299.44 20499.39 27999.42 16898.58 29999.64 17597.31 36099.44 23299.62 21098.59 16299.69 35396.17 35899.79 20499.22 289
DVP-MVS++99.38 12499.25 14399.77 5999.03 36199.77 5699.74 2499.61 18799.18 18999.76 11499.61 21999.00 10799.92 12597.72 25599.60 27799.62 145
test_one_060199.63 17899.76 6399.55 22699.23 18299.31 27199.61 21998.59 162
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20499.65 16797.97 32499.42 23999.61 21998.86 12699.87 21296.45 34699.68 25099.49 217
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19899.31 30599.16 19699.62 17499.61 21998.35 19899.91 14797.88 23899.72 23699.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 18999.62 17499.61 21998.58 16499.91 14797.72 25599.80 19999.77 63
v14899.40 11899.41 10499.39 22299.76 11798.94 25199.09 22099.59 20499.17 19499.81 8999.61 21998.41 19099.69 35399.32 10099.94 9499.53 195
DELS-MVS99.34 13799.30 13099.48 19299.51 23699.36 18798.12 34499.53 24199.36 16499.41 24599.61 21999.22 7699.87 21299.21 11499.68 25099.20 296
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MDTV_nov1_ep1397.73 32698.70 39790.83 42099.15 19698.02 38998.51 27898.82 33399.61 21990.98 36799.66 37596.89 31798.92 359
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35999.72 8299.91 4699.60 22799.43 5099.81 30499.81 3899.53 29799.73 73
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19499.72 12997.99 32299.42 23999.60 22798.81 12999.93 9996.91 31599.74 22499.66 111
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 35199.83 6898.64 26399.89 5399.60 22792.57 350100.00 199.33 9899.97 5599.72 76
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 6098.79 24699.41 24599.60 22798.92 11999.92 12598.02 22499.92 10599.43 241
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 26199.66 15797.11 37099.47 22699.60 22799.07 9799.89 18496.18 35799.85 16099.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MM99.18 17999.05 18699.55 17199.35 29098.81 26299.05 22797.79 39599.99 399.48 22499.59 23296.29 30899.95 6699.94 1699.98 4199.88 28
dp96.86 35097.07 34396.24 39898.68 39890.30 42499.19 18298.38 38097.35 35898.23 37299.59 23287.23 39199.82 28996.27 35398.73 37598.59 380
EPMVS96.53 35896.32 35697.17 38798.18 41392.97 40999.39 11789.95 42498.21 31098.61 35399.59 23286.69 39999.72 34096.99 31099.23 34198.81 367
SR-MVS99.19 17599.00 20299.74 8199.51 23699.72 8399.18 18399.60 19898.85 23699.47 22699.58 23598.38 19599.92 12596.92 31499.54 29599.57 176
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29299.63 17796.84 37599.44 23299.58 23598.81 12999.91 14797.70 26099.82 18299.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 22198.97 21399.09 28399.11 34998.19 30998.76 28299.33 29998.49 28199.44 23299.58 23598.21 21499.69 35398.20 20999.62 26799.39 250
LFMVS98.46 28598.19 29599.26 25999.24 32398.52 28999.62 6496.94 40499.87 4399.31 27199.58 23591.04 36699.81 30498.68 17999.42 31599.45 230
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13799.81 6599.69 14599.58 23597.66 25799.86 23199.17 12399.44 31199.67 102
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24498.09 34899.90 4398.95 22199.78 10399.58 23599.57 4099.93 9999.48 7299.95 8199.79 57
PatchmatchNetpermissive97.65 32997.80 32297.18 38698.82 38492.49 41099.17 18898.39 37998.12 31498.79 33899.58 23590.71 37499.89 18497.23 30099.41 31699.16 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MVS_030498.61 26498.30 28599.52 17997.88 41898.95 25098.76 28294.11 41799.84 5599.32 26699.57 24295.57 31999.95 6699.68 4799.98 4199.68 94
SCA98.11 31198.36 27797.36 38099.20 33192.99 40898.17 33998.49 37398.24 30899.10 30599.57 24296.01 31399.94 8196.86 31899.62 26799.14 312
Patchmatch-test98.10 31297.98 30998.48 34099.27 31796.48 37199.40 11599.07 34198.81 24399.23 28499.57 24290.11 38199.87 21296.69 32899.64 26399.09 323
VNet99.18 17999.06 18299.56 16899.24 32399.36 18799.33 13399.31 30599.67 9899.47 22699.57 24296.48 29799.84 26499.15 12699.30 33099.47 225
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7399.46 14399.75 11999.56 24699.63 3099.95 6699.43 7899.88 13599.62 145
9.1498.64 24799.45 26698.81 27399.60 19897.52 34999.28 27799.56 24698.53 17499.83 27995.36 38399.64 263
MSLP-MVS++99.05 20799.09 17498.91 30799.21 32898.36 30198.82 27299.47 26398.85 23698.90 32499.56 24698.78 13699.09 41398.57 18599.68 25099.26 280
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14499.63 17799.61 11799.71 13899.56 24698.76 13999.96 5699.14 13299.92 10599.68 94
114514_t98.49 28298.11 30099.64 13299.73 13899.58 13499.24 16699.76 10589.94 41499.42 23999.56 24697.76 24899.86 23197.74 25499.82 18299.47 225
Vis-MVSNet (Re-imp)98.77 25098.58 25599.34 23599.78 10598.88 25899.61 7099.56 22099.11 20699.24 28399.56 24693.00 34899.78 31797.43 28299.89 12699.35 261
test_040299.22 16599.14 15699.45 20099.79 9899.43 16599.28 15399.68 14799.54 12799.40 25099.56 24699.07 9799.82 28996.01 36299.96 6899.11 316
tpmvs97.39 33997.69 32796.52 39498.41 40691.76 41499.30 14498.94 34997.74 33897.85 38999.55 25392.40 35599.73 33896.25 35498.73 37598.06 405
MSDG99.08 20098.98 21299.37 22899.60 18599.13 22797.54 38599.74 11698.84 23999.53 21199.55 25399.10 9099.79 31497.07 30899.86 15599.18 301
tpmrst97.73 32598.07 30396.73 39298.71 39692.00 41299.10 21698.86 35098.52 27798.92 32199.54 25591.90 35699.82 28998.02 22499.03 35298.37 393
new_pmnet98.88 24098.89 22698.84 31899.70 15297.62 34398.15 34099.50 25597.98 32399.62 17499.54 25598.15 22099.94 8197.55 27499.84 16598.95 351
Anonymous2023120699.35 13299.31 12599.47 19499.74 13599.06 24099.28 15399.74 11699.23 18299.72 13399.53 25797.63 25999.88 19899.11 13499.84 16599.48 221
ITE_SJBPF99.38 22599.63 17899.44 16199.73 12098.56 27199.33 26399.53 25798.88 12599.68 36596.01 36299.65 26199.02 345
test_method91.72 38692.32 38989.91 40493.49 42770.18 43090.28 41899.56 22061.71 42295.39 41799.52 25993.90 33499.94 8198.76 17198.27 39099.62 145
CHOSEN 280x42098.41 28998.41 27298.40 34499.34 29995.89 38596.94 40799.44 27198.80 24599.25 28099.52 25993.51 34299.98 2198.94 15599.98 4199.32 268
CANet_DTU98.91 23498.85 23099.09 28398.79 38798.13 31498.18 33799.31 30599.48 13698.86 32999.51 26196.56 29499.95 6699.05 14099.95 8199.19 299
pmmvs398.08 31397.80 32298.91 30799.41 27797.69 34297.87 37299.66 15795.87 38799.50 22199.51 26190.35 37999.97 3598.55 18699.47 30899.08 329
HY-MVS98.23 998.21 30897.95 31198.99 29599.03 36198.24 30499.61 7098.72 35896.81 37698.73 34399.51 26194.06 33399.86 23196.91 31598.20 39298.86 363
miper_lstm_enhance98.65 26398.60 25098.82 32399.20 33197.33 35397.78 37599.66 15799.01 21499.59 18699.50 26494.62 32999.85 24998.12 21899.90 11699.26 280
Anonymous20240521198.75 25298.46 26699.63 13999.34 29999.66 10399.47 10597.65 39699.28 17399.56 19999.50 26493.15 34499.84 26498.62 18399.58 28399.40 248
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23298.34 30299.01 31299.50 26498.53 17499.93 9997.18 30499.78 20999.66 111
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13798.35 29899.51 21999.50 26499.31 6499.88 19898.18 21399.84 16599.69 88
h-mvs3398.61 26498.34 28099.44 20499.60 18598.67 27399.27 15799.44 27199.68 9499.32 26699.49 26892.50 353100.00 199.24 11096.51 41499.65 119
test_241102_ONE99.69 15699.82 3799.54 23299.12 20599.82 8299.49 26898.91 12199.52 403
tttt051797.62 33097.20 34098.90 31399.76 11797.40 35199.48 10294.36 41499.06 21199.70 14299.49 26884.55 40499.94 8198.73 17499.65 26199.36 258
eth_miper_zixun_eth98.68 26198.71 24398.60 33499.10 35196.84 36697.52 38999.54 23298.94 22299.58 18899.48 27196.25 30999.76 32898.01 22799.93 10199.21 292
c3_l98.72 25698.71 24398.72 32899.12 34497.22 35697.68 38099.56 22098.90 22999.54 20699.48 27196.37 30499.73 33897.88 23899.88 13599.21 292
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13699.50 25598.35 29898.97 31499.48 27198.37 19699.92 12595.95 36899.75 21799.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_LR99.13 19199.03 19499.42 21099.58 19599.32 19597.91 37099.73 12098.68 25999.31 27199.48 27199.09 9299.66 37597.70 26099.77 21399.29 277
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34199.47 27598.47 18199.88 19897.62 26999.73 23099.67 102
EPNet_dtu97.62 33097.79 32497.11 38896.67 42392.31 41198.51 31298.04 38899.24 18095.77 41599.47 27593.78 33899.66 37598.98 14699.62 26799.37 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVS_111021_HR99.12 19399.02 19599.40 21999.50 24299.11 23097.92 36899.71 13298.76 25399.08 30699.47 27599.17 8199.54 39897.85 24499.76 21599.54 190
cl____98.54 27598.41 27298.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.85 33699.78 31797.97 23199.89 12699.17 303
DIV-MVS_self_test98.54 27598.42 27198.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.87 33599.78 31797.97 23199.89 12699.18 301
tpm cat196.78 35296.98 34696.16 39998.85 37990.59 42399.08 22399.32 30192.37 40897.73 39599.46 27891.15 36599.69 35396.07 36098.80 36598.21 400
PHI-MVS99.11 19698.95 21699.59 15699.13 34299.59 13099.17 18899.65 16797.88 33299.25 28099.46 27898.97 11399.80 31197.26 29599.82 18299.37 255
pmmvs499.13 19199.06 18299.36 23299.57 20599.10 23598.01 35799.25 31898.78 24899.58 18899.44 28298.24 20999.76 32898.74 17399.93 10199.22 289
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33499.73 12098.39 29099.63 16599.43 28399.70 2499.90 16597.34 28798.64 37999.44 235
CNVR-MVS98.99 22498.80 23899.56 16899.25 32199.43 16598.54 30899.27 31398.58 27098.80 33699.43 28398.53 17499.70 34797.22 30199.59 28199.54 190
WBMVS97.50 33597.18 34198.48 34098.85 37995.89 38598.44 32199.52 24699.53 12999.52 21399.42 28580.10 41199.86 23199.24 11099.95 8199.68 94
PC_three_145297.56 34499.68 14899.41 28699.09 9297.09 42096.66 33199.60 27799.62 145
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 18099.41 28699.51 4799.95 6699.66 4899.89 12698.96 349
diffmvspermissive99.34 13799.32 12399.39 22299.67 17098.77 26798.57 30399.81 8299.61 11799.48 22499.41 28698.47 18199.86 23198.97 14899.90 11699.53 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LF4IMVS99.01 21998.92 22299.27 25699.71 14499.28 20198.59 29799.77 10098.32 30499.39 25299.41 28698.62 15899.84 26496.62 33699.84 16598.69 375
OPU-MVS99.29 25099.12 34499.44 16199.20 17699.40 29099.00 10798.84 41696.54 33899.60 27799.58 171
testdata99.42 21099.51 23698.93 25499.30 30896.20 38498.87 32899.40 29098.33 20299.89 18496.29 35299.28 33399.44 235
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34899.80 8597.14 36899.46 23099.40 29096.11 31199.89 18499.01 14399.84 16599.84 39
PCF-MVS96.03 1896.73 35495.86 36699.33 23899.44 26799.16 22496.87 40899.44 27186.58 41698.95 31699.40 29094.38 33199.88 19887.93 41499.80 19998.95 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验199.49 24799.29 19999.26 31599.39 29497.67 25399.36 32299.46 229
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21999.39 29499.57 4099.93 9999.64 5299.86 15599.20 296
BP-MVS198.72 25698.46 26699.50 18499.53 22799.00 24299.34 12998.53 36999.65 10599.73 13199.38 29690.62 37599.96 5699.50 7099.86 15599.55 181
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 22199.38 29699.57 4099.95 6699.69 4599.90 11699.15 307
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14199.59 20498.36 29399.35 25799.38 29698.61 16099.93 9997.43 28299.75 21799.67 102
miper_ehance_all_eth98.59 27098.59 25298.59 33598.98 36797.07 36097.49 39099.52 24698.50 27999.52 21399.37 29996.41 30299.71 34497.86 24299.62 26799.00 347
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14199.59 20498.36 29399.36 25599.37 29998.80 13399.91 14797.43 28299.75 21799.68 94
CPTT-MVS98.74 25398.44 26999.64 13299.61 18399.38 18099.18 18399.55 22696.49 37999.27 27899.37 29997.11 28099.92 12595.74 37599.67 25699.62 145
DP-MVS Recon98.50 28098.23 28999.31 24699.49 24799.46 15498.56 30499.63 17794.86 40298.85 33099.37 29997.81 24399.59 39296.08 35999.44 31198.88 361
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14199.59 20498.41 28799.32 26699.36 30398.73 14599.93 9997.29 29099.74 22499.67 102
DU-MVS99.33 14099.21 14799.71 10199.43 27099.56 13798.83 26899.53 24199.38 16099.67 15399.36 30397.67 25399.95 6699.17 12399.81 19299.63 134
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23699.58 13498.98 25199.60 19899.43 15499.70 14299.36 30397.70 24999.88 19899.20 11799.87 14799.59 166
NR-MVSNet99.40 11899.31 12599.68 10999.43 27099.55 14099.73 2799.50 25599.46 14399.88 6299.36 30397.54 26099.87 21298.97 14899.87 14799.63 134
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24899.67 15299.48 13699.55 20499.36 30394.92 32499.86 23198.95 15496.57 41399.45 230
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17699.55 22698.22 30999.32 26699.35 30898.65 15699.91 14796.86 31899.74 22499.62 145
UnsupCasMVSNet_bld98.55 27498.27 28899.40 21999.56 21699.37 18397.97 36499.68 14797.49 35199.08 30699.35 30895.41 32299.82 28997.70 26098.19 39499.01 346
sss98.90 23698.77 24099.27 25699.48 25298.44 29398.72 28699.32 30197.94 32899.37 25499.35 30896.31 30699.91 14798.85 15899.63 26699.47 225
CostFormer96.71 35596.79 35496.46 39698.90 37290.71 42299.41 11498.68 36094.69 40498.14 37899.34 31186.32 40099.80 31197.60 27298.07 40098.88 361
GDP-MVS98.81 24798.57 25699.50 18499.53 22799.12 22999.28 15399.86 5499.53 12999.57 19199.32 31290.88 37199.98 2199.46 7499.74 22499.42 245
原ACMM199.37 22899.47 25898.87 26099.27 31396.74 37898.26 36999.32 31297.93 23599.82 28995.96 36799.38 31999.43 241
tpm97.15 34496.95 34797.75 37198.91 37194.24 40199.32 13697.96 39097.71 34098.29 36899.32 31286.72 39899.92 12598.10 22296.24 41699.09 323
test22299.51 23699.08 23797.83 37499.29 30995.21 39798.68 34899.31 31597.28 27199.38 31999.43 241
BH-RMVSNet98.41 28998.14 29899.21 26699.21 32898.47 29098.60 29498.26 38498.35 29898.93 31899.31 31597.20 27799.66 37594.32 39599.10 34699.51 207
thisisatest053097.45 33696.95 34798.94 30199.68 16497.73 34099.09 22094.19 41698.61 26899.56 19999.30 31784.30 40599.93 9998.27 20299.54 29599.16 305
MVSFormer99.41 11699.44 9899.31 24699.57 20598.40 29699.77 1699.80 8599.73 7899.63 16599.30 31798.02 22899.98 2199.43 7899.69 24599.55 181
jason99.16 18599.11 16599.32 24399.75 12998.44 29398.26 33399.39 28798.70 25899.74 12799.30 31798.54 17099.97 3598.48 18999.82 18299.55 181
jason: jason.
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15399.56 22098.19 31299.14 29999.29 32098.84 12899.92 12597.53 27799.80 19999.64 129
新几何199.52 17999.50 24299.22 21599.26 31595.66 39298.60 35499.28 32197.67 25399.89 18495.95 36899.32 32899.45 230
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25899.56 13798.97 25299.61 18799.43 15499.67 15399.28 32197.85 24199.95 6699.17 12399.81 19299.65 119
CL-MVSNet_self_test98.71 25898.56 26099.15 27499.22 32698.66 27697.14 40299.51 25198.09 31799.54 20699.27 32396.87 28799.74 33598.43 19198.96 35699.03 340
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 18098.38 29199.06 31099.27 32398.79 13499.94 8197.51 27899.82 18299.66 111
AdaColmapbinary98.60 26798.35 27999.38 22599.12 34499.22 21598.67 28999.42 27697.84 33698.81 33499.27 32397.32 27099.81 30495.14 38699.53 29799.10 318
NCCC98.82 24598.57 25699.58 15999.21 32899.31 19698.61 29299.25 31898.65 26298.43 36599.26 32697.86 23999.81 30496.55 33799.27 33699.61 155
TAPA-MVS97.92 1398.03 31597.55 33199.46 19799.47 25899.44 16198.50 31399.62 18086.79 41599.07 30999.26 32698.26 20899.62 38597.28 29299.73 23099.31 272
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29999.07 34198.40 28999.04 31199.25 32898.51 17999.80 31197.31 28999.51 30199.65 119
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27699.54 23298.94 22299.14 29999.25 32897.24 27299.82 28995.84 37299.78 20999.60 159
plane_prior499.25 328
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15297.72 33999.35 25799.25 32899.23 7599.92 12597.21 30299.82 18299.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
PatchMatch-RL98.68 26198.47 26599.30 24999.44 26799.28 20198.14 34299.54 23297.12 36999.11 30399.25 32897.80 24499.70 34796.51 34099.30 33098.93 354
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37599.78 5199.15 19699.66 15799.34 16598.92 32199.24 33397.69 25199.98 2198.11 21999.28 33398.81 367
WTY-MVS98.59 27098.37 27699.26 25999.43 27098.40 29698.74 28499.13 33998.10 31599.21 28999.24 33394.82 32699.90 16597.86 24298.77 36899.49 217
cl2297.56 33397.28 33798.40 34498.37 40896.75 36797.24 40099.37 29297.31 36099.41 24599.22 33587.30 39099.37 41097.70 26099.62 26799.08 329
CANet99.11 19699.05 18699.28 25398.83 38198.56 28698.71 28899.41 27799.25 17899.23 28499.22 33597.66 25799.94 8199.19 11899.97 5599.33 265
baseline197.73 32597.33 33698.96 29899.30 31097.73 34099.40 11598.42 37699.33 16799.46 23099.21 33791.18 36499.82 28998.35 19691.26 42199.32 268
tpm296.35 36396.22 35896.73 39298.88 37791.75 41599.21 17598.51 37193.27 40797.89 38699.21 33784.83 40399.70 34796.04 36198.18 39598.75 374
WR-MVS99.11 19698.93 21899.66 11999.30 31099.42 16898.42 32299.37 29299.04 21299.57 19199.20 33996.89 28699.86 23198.66 18099.87 14799.70 82
F-COLMAP98.74 25398.45 26899.62 14899.57 20599.47 15098.84 26699.65 16796.31 38398.93 31899.19 34097.68 25299.87 21296.52 33999.37 32199.53 195
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 31199.82 7397.65 34299.43 23699.16 34196.42 30099.91 14799.07 13999.84 16599.80 50
ab-mvs-re8.26 40411.02 4070.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.16 3410.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.88 39233.17 3940.00 4080.00 4310.00 4330.00 41999.62 1800.00 4260.00 42799.13 34399.82 130.00 4270.00 4260.00 4250.00 423
lupinMVS98.96 22898.87 22899.24 26499.57 20598.40 29698.12 34499.18 33298.28 30699.63 16599.13 34398.02 22899.97 3598.22 20799.69 24599.35 261
PVSNet97.47 1598.42 28898.44 26998.35 34699.46 26296.26 37796.70 41099.34 29897.68 34199.00 31399.13 34397.40 26599.72 34097.59 27399.68 25099.08 329
CLD-MVS98.76 25198.57 25699.33 23899.57 20598.97 24797.53 38799.55 22696.41 38099.27 27899.13 34399.07 9799.78 31796.73 32799.89 12699.23 287
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_vis1_rt99.45 10499.46 9399.41 21799.71 14498.63 28298.99 24899.96 2599.03 21399.95 3299.12 34798.75 14199.84 26499.82 3799.82 18299.77 63
131498.00 31797.90 31998.27 35498.90 37297.45 34999.30 14499.06 34394.98 39997.21 40199.12 34798.43 18799.67 37095.58 37898.56 38297.71 409
E-PMN97.14 34697.43 33396.27 39798.79 38791.62 41695.54 41599.01 34799.44 14898.88 32599.12 34792.78 34999.68 36594.30 39699.03 35297.50 410
DPM-MVS98.28 29997.94 31599.32 24399.36 28799.11 23097.31 39798.78 35696.88 37398.84 33199.11 35097.77 24699.61 39094.03 40199.36 32299.23 287
CDPH-MVS98.56 27398.20 29299.61 15199.50 24299.46 15498.32 32899.41 27795.22 39699.21 28999.10 35198.34 20099.82 28995.09 38899.66 25999.56 178
MVS95.72 38094.63 38598.99 29598.56 40197.98 33099.30 14498.86 35072.71 42197.30 39899.08 35298.34 20099.74 33589.21 41198.33 38799.26 280
ZD-MVS99.43 27099.61 12599.43 27496.38 38199.11 30399.07 35397.86 23999.92 12594.04 40099.49 306
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23499.71 8598.86 26399.19 33198.47 28398.59 35599.06 35498.08 22599.91 14796.94 31399.60 27799.60 159
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20899.25 32199.69 9699.05 22799.82 7399.50 13398.97 31499.05 35598.98 11199.98 2198.20 20999.24 33998.62 377
test_prior297.95 36597.87 33398.05 38099.05 35597.90 23695.99 36599.49 306
hse-mvs298.52 27798.30 28599.16 27299.29 31298.60 28498.77 28199.02 34599.68 9499.32 26699.04 35792.50 35399.85 24999.24 11097.87 40499.03 340
KD-MVS_2432*160095.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
miper_refine_blended95.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
testgi99.29 14599.26 14199.37 22899.75 12998.81 26298.84 26699.89 4598.38 29199.75 11999.04 35799.36 6199.86 23199.08 13899.25 33799.45 230
AUN-MVS97.82 32197.38 33599.14 27799.27 31798.53 28798.72 28699.02 34598.10 31597.18 40299.03 36189.26 38699.85 24997.94 23397.91 40299.03 340
test_yl98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
DCV-MVSNet98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21598.54 27599.54 20698.99 36496.81 28899.93 9996.97 31299.53 29799.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
TEST999.35 29099.35 19098.11 34699.41 27794.83 40397.92 38498.99 36498.02 22899.85 249
train_agg98.35 29697.95 31199.57 16599.35 29099.35 19098.11 34699.41 27794.90 40097.92 38498.99 36498.02 22899.85 24995.38 38299.44 31199.50 212
PVSNet_Blended98.70 25998.59 25299.02 29399.54 22197.99 32597.58 38499.82 7395.70 39199.34 26198.98 36798.52 17799.77 32597.98 22999.83 17399.30 274
CNLPA98.57 27298.34 28099.28 25399.18 33699.10 23598.34 32699.41 27798.48 28298.52 36098.98 36797.05 28299.78 31795.59 37799.50 30498.96 349
test_899.34 29999.31 19698.08 35099.40 28494.90 40097.87 38898.97 36998.02 22899.84 264
GA-MVS97.99 31897.68 32898.93 30499.52 23498.04 32397.19 40199.05 34498.32 30498.81 33498.97 36989.89 38499.41 40998.33 19899.05 35099.34 264
miper_enhance_ethall98.03 31597.94 31598.32 34998.27 41096.43 37396.95 40699.41 27796.37 38299.43 23698.96 37194.74 32799.69 35397.71 25799.62 26798.83 366
PLCcopyleft97.35 1698.36 29397.99 30799.48 19299.32 30599.24 21298.50 31399.51 25195.19 39898.58 35698.96 37196.95 28599.83 27995.63 37699.25 33799.37 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
Effi-MVS+99.06 20498.97 21399.34 23599.31 30698.98 24598.31 32999.91 3898.81 24398.79 33898.94 37399.14 8699.84 26498.79 16698.74 37299.20 296
xiu_mvs_v1_base99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
EIA-MVS99.12 19399.01 19899.45 20099.36 28799.62 11999.34 12999.79 9198.41 28798.84 33198.89 37798.75 14199.84 26498.15 21799.51 30198.89 360
EMVS96.96 34997.28 33795.99 40098.76 39291.03 41995.26 41798.61 36599.34 16598.92 32198.88 37893.79 33799.66 37592.87 40499.05 35097.30 414
thisisatest051596.98 34896.42 35598.66 33199.42 27597.47 34797.27 39894.30 41597.24 36299.15 29798.86 37985.01 40299.87 21297.10 30699.39 31898.63 376
NP-MVS99.40 27899.13 22798.83 380
HQP-MVS98.36 29398.02 30699.39 22299.31 30698.94 25197.98 36199.37 29297.45 35298.15 37498.83 38096.67 29199.70 34794.73 39099.67 25699.53 195
dongtai89.37 38788.91 39090.76 40399.19 33377.46 42895.47 41687.82 42792.28 40994.17 42098.82 38271.22 42695.54 42263.85 42297.34 40899.27 278
MAR-MVS98.24 30397.92 31799.19 26998.78 38999.65 10999.17 18899.14 33795.36 39498.04 38198.81 38397.47 26299.72 34095.47 38099.06 34898.21 400
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS98.38 29298.39 27498.35 34698.83 38199.26 20599.14 19899.18 33298.59 26998.66 34998.78 38498.61 16099.57 39494.14 39899.56 28696.21 417
BH-untuned98.22 30698.09 30198.58 33799.38 28297.24 35598.55 30598.98 34897.81 33799.20 29498.76 38597.01 28399.65 38194.83 38998.33 38798.86 363
Fast-Effi-MVS+99.02 21398.87 22899.46 19799.38 28299.50 14699.04 23299.79 9197.17 36698.62 35298.74 38699.34 6299.95 6698.32 19999.41 31698.92 356
dmvs_re98.69 26098.48 26499.31 24699.55 21999.42 16899.54 8798.38 38099.32 16898.72 34498.71 38796.76 29099.21 41196.01 36299.35 32499.31 272
MVEpermissive92.54 2296.66 35696.11 36098.31 35199.68 16497.55 34597.94 36695.60 41199.37 16190.68 42298.70 38896.56 29498.61 41886.94 41999.55 29098.77 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PAPM95.61 38294.71 38498.31 35199.12 34496.63 36896.66 41198.46 37490.77 41396.25 41298.68 38993.01 34799.69 35381.60 42197.86 40598.62 377
test-LLR97.15 34496.95 34797.74 37298.18 41395.02 39697.38 39396.10 40698.00 32097.81 39198.58 39090.04 38299.91 14797.69 26698.78 36698.31 394
test-mter96.23 36795.73 36997.74 37298.18 41395.02 39697.38 39396.10 40697.90 32997.81 39198.58 39079.12 41799.91 14797.69 26698.78 36698.31 394
PAPM_NR98.36 29398.04 30499.33 23899.48 25298.93 25498.79 27999.28 31297.54 34798.56 35998.57 39297.12 27999.69 35394.09 39998.90 36399.38 252
TESTMET0.1,196.24 36695.84 36797.41 37998.24 41193.84 40497.38 39395.84 41098.43 28497.81 39198.56 39379.77 41499.89 18497.77 24998.77 36898.52 385
ETV-MVS99.18 17999.18 15099.16 27299.34 29999.28 20199.12 20899.79 9199.48 13698.93 31898.55 39499.40 5199.93 9998.51 18899.52 30098.28 396
xiu_mvs_v2_base99.02 21399.11 16598.77 32599.37 28498.09 31998.13 34399.51 25199.47 14099.42 23998.54 39599.38 5699.97 3598.83 16099.33 32698.24 398
TR-MVS97.44 33797.15 34298.32 34998.53 40297.46 34898.47 31697.91 39296.85 37498.21 37398.51 39696.42 30099.51 40492.16 40697.29 40997.98 406
PS-MVSNAJ99.00 22199.08 17698.76 32699.37 28498.10 31898.00 35999.51 25199.47 14099.41 24598.50 39799.28 6899.97 3598.83 16099.34 32598.20 402
ET-MVSNet_ETH3D96.78 35296.07 36198.91 30799.26 32097.92 33297.70 37996.05 40997.96 32792.37 42198.43 39887.06 39299.90 16598.27 20297.56 40798.91 357
baseline296.83 35196.28 35798.46 34299.09 35496.91 36498.83 26893.87 41997.23 36396.23 41498.36 39988.12 38999.90 16596.68 32998.14 39798.57 383
gm-plane-assit97.59 42089.02 42693.47 40698.30 40099.84 26496.38 349
DeepMVS_CXcopyleft97.98 36199.69 15696.95 36299.26 31575.51 42095.74 41698.28 40196.47 29899.62 38591.23 40997.89 40397.38 412
PAPR97.56 33397.07 34399.04 29298.80 38598.11 31797.63 38199.25 31894.56 40598.02 38298.25 40297.43 26499.68 36590.90 41098.74 37299.33 265
UWE-MVS96.21 36895.78 36897.49 37598.53 40293.83 40598.04 35493.94 41898.96 21998.46 36498.17 40379.86 41299.87 21296.99 31099.06 34898.78 370
PMMVS98.49 28298.29 28799.11 28098.96 36998.42 29597.54 38599.32 30197.53 34898.47 36398.15 40497.88 23899.82 28997.46 28099.24 33999.09 323
test0.0.03 197.37 34096.91 35098.74 32797.72 41997.57 34497.60 38397.36 40298.00 32099.21 28998.02 40590.04 38299.79 31498.37 19495.89 41898.86 363
BH-w/o97.20 34397.01 34597.76 37099.08 35595.69 38798.03 35698.52 37095.76 39097.96 38398.02 40595.62 31799.47 40692.82 40597.25 41098.12 404
WB-MVSnew98.34 29898.14 29898.96 29898.14 41697.90 33398.27 33197.26 40398.63 26498.80 33698.00 40797.77 24699.90 16597.37 28698.98 35599.09 323
testing396.48 36095.63 37199.01 29499.23 32597.81 33698.90 25999.10 34098.72 25597.84 39097.92 40872.44 42499.85 24997.21 30299.33 32699.35 261
alignmvs98.28 29997.96 31099.25 26299.12 34498.93 25499.03 23598.42 37699.64 10898.72 34497.85 40990.86 37299.62 38598.88 15799.13 34399.19 299
PVSNet_095.53 1995.85 37895.31 37897.47 37798.78 38993.48 40795.72 41499.40 28496.18 38597.37 39697.73 41095.73 31599.58 39395.49 37981.40 42299.36 258
dmvs_testset97.27 34296.83 35298.59 33599.46 26297.55 34599.25 16596.84 40598.78 24897.24 40097.67 41197.11 28098.97 41586.59 42098.54 38399.27 278
MGCFI-Net99.02 21399.01 19899.06 29099.11 34998.60 28499.63 6199.67 15299.63 11098.58 35697.65 41299.07 9799.57 39498.85 15898.92 35999.03 340
sasdasda99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
canonicalmvs99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
cascas96.99 34796.82 35397.48 37697.57 42295.64 38896.43 41299.56 22091.75 41097.13 40497.61 41595.58 31898.63 41796.68 32999.11 34598.18 403
IB-MVS95.41 2095.30 38494.46 38897.84 36898.76 39295.33 39297.33 39696.07 40896.02 38695.37 41897.41 41676.17 41999.96 5697.54 27595.44 42098.22 399
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
thres600view796.60 35796.16 35997.93 36499.63 17896.09 38299.18 18397.57 39798.77 25098.72 34497.32 41787.04 39399.72 34088.57 41298.62 38097.98 406
thres100view90096.39 36296.03 36297.47 37799.63 17895.93 38399.18 18397.57 39798.75 25498.70 34797.31 41887.04 39399.67 37087.62 41598.51 38496.81 415
GG-mvs-BLEND97.36 38097.59 42096.87 36599.70 3588.49 42694.64 41997.26 41980.66 40999.12 41291.50 40896.50 41596.08 419
tfpn200view996.30 36595.89 36497.53 37499.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38496.81 415
thres40096.40 36195.89 36497.92 36599.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38497.98 406
testing1196.05 37295.41 37497.97 36298.78 38995.27 39398.59 29798.23 38598.86 23596.56 40996.91 42275.20 42099.69 35397.26 29598.29 38998.93 354
kuosan85.65 38984.57 39288.90 40597.91 41777.11 42996.37 41387.62 42885.24 41885.45 42396.83 42369.94 42890.98 42445.90 42395.83 41998.62 377
thres20096.09 37095.68 37097.33 38299.48 25296.22 37998.53 31097.57 39798.06 31998.37 36796.73 42486.84 39799.61 39086.99 41898.57 38196.16 418
testing9196.00 37395.32 37798.02 35998.76 39295.39 39098.38 32498.65 36498.82 24196.84 40596.71 42575.06 42199.71 34496.46 34598.23 39198.98 348
testing9995.86 37795.19 38097.87 36698.76 39295.03 39598.62 29198.44 37598.68 25996.67 40896.66 42674.31 42299.69 35396.51 34098.03 40198.90 358
UBG96.53 35895.95 36398.29 35398.87 37896.31 37698.48 31598.07 38798.83 24097.32 39796.54 42779.81 41399.62 38596.84 32198.74 37298.95 351
testing22295.60 38394.59 38698.61 33398.66 39997.45 34998.54 30897.90 39398.53 27696.54 41096.47 42870.62 42799.81 30495.91 37098.15 39698.56 384
Syy-MVS98.17 30997.85 32199.15 27498.50 40498.79 26598.60 29499.21 32897.89 33096.76 40696.37 42995.47 32199.57 39499.10 13598.73 37599.09 323
myMVS_eth3d95.63 38194.73 38398.34 34898.50 40496.36 37498.60 29499.21 32897.89 33096.76 40696.37 42972.10 42599.57 39494.38 39498.73 37599.09 323
ETVMVS96.14 36995.22 37998.89 31498.80 38598.01 32498.66 29098.35 38298.71 25797.18 40296.31 43174.23 42399.75 33296.64 33498.13 39998.90 358
X-MVStestdata96.09 37094.87 38299.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34161.30 43298.47 18199.88 19897.62 26999.73 23099.67 102
test_post52.41 43390.25 38099.86 231
test_post199.14 19851.63 43489.54 38599.82 28996.86 318
testmvs28.94 39133.33 39315.79 40726.03 4299.81 43296.77 40915.67 43011.55 42523.87 42650.74 43519.03 4308.53 42623.21 42533.07 42329.03 422
test12329.31 39033.05 39518.08 40625.93 43012.24 43197.53 38710.93 43111.78 42424.21 42550.08 43621.04 4298.60 42523.51 42432.43 42433.39 421
WAC-MVS96.36 37495.20 385
FOURS199.83 6599.89 1099.74 2499.71 13299.69 9299.63 165
MSC_two_6792asdad99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
No_MVS99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
eth-test20.00 431
eth-test0.00 431
IU-MVS99.69 15699.77 5699.22 32597.50 35099.69 14597.75 25399.70 24199.77 63
save fliter99.53 22799.25 20898.29 33099.38 29199.07 209
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19899.61 18799.92 12597.88 23899.72 23699.77 63
GSMVS99.14 312
test_part299.62 18299.67 10199.55 204
sam_mvs190.81 37399.14 312
sam_mvs90.52 378
MTGPAbinary99.53 241
MTMP99.09 22098.59 368
test9_res95.10 38799.44 31199.50 212
agg_prior294.58 39399.46 31099.50 212
agg_prior99.35 29099.36 18799.39 28797.76 39499.85 249
test_prior499.19 22198.00 359
test_prior99.46 19799.35 29099.22 21599.39 28799.69 35399.48 221
旧先验297.94 36695.33 39598.94 31799.88 19896.75 325
新几何298.04 354
无先验98.01 35799.23 32295.83 38999.85 24995.79 37499.44 235
原ACMM297.92 368
testdata299.89 18495.99 365
segment_acmp98.37 196
testdata197.72 37797.86 335
test1299.54 17699.29 31299.33 19399.16 33598.43 36597.54 26099.82 28999.47 30899.48 221
plane_prior799.58 19599.38 180
plane_prior699.47 25899.26 20597.24 272
plane_prior599.54 23299.82 28995.84 37299.78 20999.60 159
plane_prior399.31 19698.36 29399.14 299
plane_prior298.80 27698.94 222
plane_prior199.51 236
plane_prior99.24 21298.42 32297.87 33399.71 239
n20.00 432
nn0.00 432
door-mid99.83 68
test1199.29 309
door99.77 100
HQP5-MVS98.94 251
HQP-NCC99.31 30697.98 36197.45 35298.15 374
ACMP_Plane99.31 30697.98 36197.45 35298.15 374
BP-MVS94.73 390
HQP4-MVS98.15 37499.70 34799.53 195
HQP3-MVS99.37 29299.67 256
HQP2-MVS96.67 291
MDTV_nov1_ep13_2view91.44 41899.14 19897.37 35799.21 28991.78 36096.75 32599.03 340
ACMMP++_ref99.94 94
ACMMP++99.79 204
Test By Simon98.41 190