This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24199.79 1299.97 19100.00 199.43 23699.94 1999.64 2899.94 8199.83 3399.99 1699.98 4
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 208100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21699.98 1299.99 399.98 1399.91 2899.68 2699.93 9999.93 1999.99 1699.99 2
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22699.98 1299.99 399.98 1399.90 3399.88 899.92 12599.93 1999.99 1699.98 4
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23599.96 2599.99 399.97 2099.84 6999.58 3899.93 9999.92 2199.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23599.96 2599.99 399.97 2099.84 6999.78 1799.92 12599.92 2199.99 1699.92 22
MM99.18 17999.05 18699.55 17199.35 29098.81 26299.05 22797.79 39599.99 399.48 22499.59 23296.29 30899.95 6699.94 1699.98 4199.88 28
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 24099.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25299.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18899.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18899.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
test_vis1_n_192099.72 3899.88 799.27 25699.93 2497.84 33499.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20899.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21399.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3599.87 3199.99 16100.00 1
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8399.96 6899.65 119
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9199.97 1699.89 5399.89 3899.53 4599.99 899.36 9199.96 6899.65 119
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13899.91 2899.15 8399.97 3599.50 70100.00 199.90 24
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28399.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 26199.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9599.96 6899.78 59
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 6099.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
test_cas_vis1_n_192099.76 3399.86 1399.45 20099.93 2498.40 29699.30 14499.98 1299.94 2399.99 799.89 3899.80 1599.97 3599.96 999.97 5599.97 9
test_f99.75 3499.88 799.37 22899.96 798.21 30899.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 8199.97 499.99 1699.97 9
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13299.93 2599.95 3299.89 3899.71 2299.96 5699.51 6899.97 5599.84 39
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13799.93 2599.78 10399.68 17699.10 9099.78 31799.45 7699.96 6899.83 43
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 283
MVSMamba_PlusPlus99.55 7799.58 6999.47 19499.68 16499.40 17599.52 8999.70 13799.92 2899.77 11199.86 5998.28 20599.96 5699.54 6399.90 11699.05 336
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 22199.38 29699.57 4099.95 6699.69 4599.90 11699.15 307
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
test_fmvs299.72 3899.85 1799.34 23599.91 3098.08 32299.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 18099.41 28699.51 4799.95 6699.66 4899.89 12698.96 349
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9799.90 3199.82 8299.83 7398.45 18599.87 21299.51 6899.97 5599.86 34
EU-MVSNet99.39 12299.62 5798.72 32899.88 4396.44 37299.56 8499.85 6099.90 3199.90 4999.85 6398.09 22399.83 27999.58 5899.95 8199.90 24
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3599.75 41100.00 199.84 39
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6699.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test250694.73 38594.59 38695.15 40199.59 19085.90 42799.75 2274.01 42999.89 3799.71 13899.86 5979.00 41899.90 16599.52 6799.99 1699.65 119
test111197.74 32498.16 29796.49 39599.60 18589.86 42599.71 3491.21 42199.89 3799.88 6299.87 5293.73 33999.90 16599.56 6099.99 1699.70 82
ECVR-MVScopyleft97.73 32598.04 30496.78 38999.59 19090.81 42199.72 3090.43 42399.89 3799.86 7199.86 5993.60 34199.89 18499.46 7499.99 1699.65 119
gg-mvs-nofinetune95.87 37695.17 38197.97 36298.19 41296.95 36299.69 4289.23 42599.89 3796.24 41399.94 1981.19 40799.51 40493.99 40298.20 39297.44 411
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
JIA-IIPM98.06 31497.92 31798.50 33998.59 40097.02 36198.80 27698.51 37199.88 4297.89 38699.87 5291.89 35799.90 16598.16 21697.68 40698.59 380
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8299.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 30199.86 34
LFMVS98.46 28598.19 29599.26 25999.24 32398.52 28999.62 6496.94 40499.87 4399.31 27199.58 23591.04 36699.81 30498.68 17999.42 31599.45 230
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15199.61 18799.87 4399.74 12799.76 12298.69 14899.87 21298.20 20999.80 19999.75 71
test_vis1_n99.68 4799.79 2999.36 23299.94 1898.18 31199.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5699.97 499.96 6899.95 13
balanced_conf0399.50 8599.50 8699.50 18499.42 27599.49 14799.52 8999.75 11099.86 4699.78 10399.71 15098.20 21699.90 16599.39 8699.88 13599.10 318
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 11099.86 4699.74 12799.79 10098.27 20799.85 24999.37 9099.93 10199.83 43
RPMNet98.60 26798.53 26298.83 32099.05 35798.12 31599.30 14499.62 18099.86 4699.16 29599.74 13192.53 35299.92 12598.75 17298.77 36898.44 391
UGNet99.38 12499.34 11899.49 18898.90 37298.90 25799.70 3599.35 29699.86 4698.57 35899.81 8798.50 18099.93 9999.38 8799.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21999.39 29499.57 4099.93 9999.64 5299.86 15599.20 296
Anonymous2024052199.44 10699.42 10299.49 18899.89 3898.96 24999.62 6499.76 10599.85 5299.82 8299.88 4796.39 30399.97 3599.59 5599.98 4199.55 181
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16599.65 5099.97 5599.69 88
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14499.85 5299.80 9399.81 8798.81 12999.91 14799.47 7399.88 13599.70 82
reproduce_monomvs97.40 33897.46 33297.20 38599.05 35791.91 41399.20 17699.18 33299.84 5599.86 7199.75 12780.67 40899.83 27999.69 4599.95 8199.85 37
MVS_030498.61 26498.30 28599.52 17997.88 41898.95 25098.76 28294.11 41799.84 5599.32 26699.57 24295.57 31999.95 6699.68 4799.98 4199.68 94
IterMVS-SCA-FT99.00 22199.16 15298.51 33899.75 12995.90 38498.07 35199.84 6699.84 5599.89 5399.73 13596.01 31399.99 899.33 98100.00 199.63 134
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7399.84 5599.94 3599.91 2899.13 8899.96 5699.83 3399.99 1699.83 43
PatchT98.45 28698.32 28298.83 32098.94 37098.29 30399.24 16698.82 35399.84 5599.08 30699.76 12291.37 36199.94 8198.82 16299.00 35498.26 397
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9199.83 6099.88 6299.85 6398.42 18999.90 16599.60 5499.73 23099.49 217
IterMVS98.97 22599.16 15298.42 34399.74 13595.64 38898.06 35399.83 6899.83 6099.85 7499.74 13196.10 31299.99 899.27 109100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8299.82 6299.71 13899.72 14296.60 29399.98 2199.75 4199.23 34199.82 49
test_fmvs1_n99.68 4799.81 2599.28 25399.95 1597.93 33199.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 12099.82 6299.90 4999.90 3397.97 23399.86 23199.42 8399.96 6899.80 50
VDDNet98.97 22598.82 23599.42 21099.71 14498.81 26299.62 6498.68 36099.81 6599.38 25399.80 9094.25 33299.85 24998.79 16699.32 32899.59 166
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13799.81 6599.69 14599.58 23597.66 25799.86 23199.17 12399.44 31199.67 102
Gipumacopyleft99.57 7199.59 6699.49 18899.98 399.71 8599.72 3099.84 6699.81 6599.94 3599.78 11098.91 12199.71 34498.41 19299.95 8199.05 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
VDD-MVS99.20 17299.11 16599.44 20499.43 27098.98 24599.50 9698.32 38399.80 6899.56 19999.69 16596.99 28499.85 24998.99 14499.73 23099.50 212
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 6099.80 6899.93 3899.93 2198.54 17099.93 9999.59 5599.98 4199.76 68
ttmdpeth99.48 9199.55 7999.29 25099.76 11798.16 31399.33 13399.95 3099.79 7099.36 25599.89 3899.13 8899.77 32599.09 13699.64 26399.93 18
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20499.85 6099.79 7099.76 11499.72 14299.33 6399.82 28999.21 11499.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs199.48 9199.65 5298.97 29799.54 22197.16 35799.11 21399.98 1299.78 7299.96 2499.81 8798.72 14699.97 3599.95 1299.97 5599.79 57
mvs_anonymous99.28 14699.39 10698.94 30199.19 33397.81 33699.02 23899.55 22699.78 7299.85 7499.80 9098.24 20999.86 23199.57 5999.50 30499.15 307
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41299.78 7299.88 6299.88 4793.66 34099.97 3599.61 5399.95 8199.64 129
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 10099.78 7299.93 3899.89 3897.94 23499.92 12599.65 5099.98 4199.62 145
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 8199.95 1299.98 4199.94 16
EPNet98.13 31097.77 32599.18 27194.57 42697.99 32599.24 16697.96 39099.74 7797.29 39999.62 21093.13 34599.97 3598.59 18499.83 17399.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19899.98 1100.00 199.98 4
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21299.54 6399.92 10599.63 134
MVSFormer99.41 11699.44 9899.31 24699.57 20598.40 29699.77 1699.80 8599.73 7899.63 16599.30 31798.02 22899.98 2199.43 7899.69 24599.55 181
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8599.73 7899.97 2099.92 2599.77 1999.98 2199.43 78100.00 199.90 24
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35999.72 8299.91 4699.60 22799.43 5099.81 30499.81 3899.53 29799.73 73
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13299.72 8299.84 7799.78 11098.67 15299.97 3599.30 10399.95 8199.80 50
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 23099.04 23299.87 5199.71 8499.47 22699.79 10098.24 20999.98 2199.38 8799.96 6899.83 43
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9799.71 8499.90 4999.69 16598.85 12799.90 16597.25 29999.78 20999.15 307
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15199.90 4399.71 8499.79 9999.73 13599.54 4399.84 26499.36 9199.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8599.71 8499.72 13399.69 16599.15 8399.83 27999.32 10099.94 9499.53 195
PMVScopyleft92.94 2198.82 24598.81 23698.85 31699.84 6197.99 32599.20 17699.47 26399.71 8499.42 23999.82 8098.09 22399.47 40693.88 40399.85 16099.07 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 6099.70 8999.92 4399.93 2199.45 4999.97 3599.36 91100.00 199.85 37
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 12099.70 8999.84 7799.73 13598.56 16799.96 5699.29 10699.94 9499.83 43
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21299.59 5599.74 22499.71 79
FOURS199.83 6599.89 1099.74 2499.71 13299.69 9299.63 165
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19898.93 15699.95 8199.60 159
h-mvs3398.61 26498.34 28099.44 20499.60 18598.67 27399.27 15799.44 27199.68 9499.32 26699.49 26892.50 353100.00 199.24 11096.51 41499.65 119
hse-mvs298.52 27798.30 28599.16 27299.29 31298.60 28498.77 28199.02 34599.68 9499.32 26699.04 35792.50 35399.85 24999.24 11097.87 40499.03 340
EI-MVSNet-UG-set99.48 9199.50 8699.42 21099.57 20598.65 27999.24 16699.46 26699.68 9499.80 9399.66 18598.99 10999.89 18499.19 11899.90 11699.72 76
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26899.86 5499.68 9499.65 16099.88 4797.67 25399.87 21299.03 14199.86 15599.76 68
EI-MVSNet-Vis-set99.47 9999.49 8899.42 21099.57 20598.66 27699.24 16699.46 26699.67 9899.79 9999.65 19098.97 11399.89 18499.15 12699.89 12699.71 79
VNet99.18 17999.06 18299.56 16899.24 32399.36 18799.33 13399.31 30599.67 9899.47 22699.57 24296.48 29799.84 26499.15 12699.30 33099.47 225
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13799.67 9899.82 8299.83 7398.98 11199.90 16599.24 11099.97 5599.53 195
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9499.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
RRT-MVS99.08 20099.00 20299.33 23899.27 31798.65 27999.62 6499.93 3299.66 10299.67 15399.82 8095.27 32399.93 9998.64 18299.09 34799.41 246
CVMVSNet98.61 26498.88 22797.80 36999.58 19593.60 40699.26 15999.64 17599.66 10299.72 13399.67 18093.26 34399.93 9999.30 10399.81 19299.87 32
TAMVS99.49 8999.45 9599.63 13999.48 25299.42 16899.45 10999.57 21599.66 10299.78 10399.83 7397.85 24199.86 23199.44 7799.96 6899.61 155
BP-MVS198.72 25698.46 26699.50 18499.53 22799.00 24299.34 12998.53 36999.65 10599.73 13199.38 29690.62 37599.96 5699.50 7099.86 15599.55 181
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33799.65 10599.89 5399.90 3396.20 31099.94 8199.42 8399.92 10599.67 102
Patchmtry98.78 24998.54 26199.49 18898.89 37599.19 22199.32 13699.67 15299.65 10599.72 13399.79 10091.87 35899.95 6698.00 22899.97 5599.33 265
alignmvs98.28 29997.96 31099.25 26299.12 34498.93 25499.03 23598.42 37699.64 10898.72 34497.85 40990.86 37299.62 38598.88 15799.13 34399.19 299
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10599.64 10899.93 3899.85 6398.66 15499.84 26499.88 2999.99 1699.71 79
MGCFI-Net99.02 21399.01 19899.06 29099.11 34998.60 28499.63 6199.67 15299.63 11098.58 35697.65 41299.07 9799.57 39498.85 15898.92 35999.03 340
sasdasda99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
canonicalmvs99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
MonoMVSNet98.23 30498.32 28297.99 36098.97 36896.62 36999.49 10098.42 37699.62 11399.40 25099.79 10095.51 32098.58 41997.68 26895.98 41798.76 373
EI-MVSNet99.38 12499.44 9899.21 26699.58 19598.09 31999.26 15999.46 26699.62 11399.75 11999.67 18098.54 17099.85 24999.15 12699.92 10599.68 94
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 12099.62 11399.84 7799.71 15098.62 15899.96 5699.30 10399.96 6899.86 34
IterMVS-LS99.41 11699.47 8999.25 26299.81 8098.09 31998.85 26599.76 10599.62 11399.83 8199.64 19298.54 17099.97 3599.15 12699.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
xiu_mvs_v1_base99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
diffmvspermissive99.34 13799.32 12399.39 22299.67 17098.77 26798.57 30399.81 8299.61 11799.48 22499.41 28698.47 18199.86 23198.97 14899.90 11699.53 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14499.63 17799.61 11799.71 13899.56 24698.76 13999.96 5699.14 13299.92 10599.68 94
LS3D99.24 15699.11 16599.61 15198.38 40799.79 4899.57 8299.68 14799.61 11799.15 29799.71 15098.70 14799.91 14797.54 27599.68 25099.13 315
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 11099.60 12399.92 4399.87 5298.75 14199.86 23199.90 2599.99 1699.73 73
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23899.89 4599.60 12399.82 8299.62 21098.81 12999.89 18499.43 7899.86 15599.47 225
DSMNet-mixed99.48 9199.65 5298.95 30099.71 14497.27 35499.50 9699.82 7399.59 12599.41 24599.85 6399.62 33100.00 199.53 6699.89 12699.59 166
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 11099.58 12699.85 7499.69 16598.18 21999.94 8199.28 10899.95 8199.83 43
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18799.54 12799.80 9399.64 19297.79 24599.95 6699.21 11499.94 9499.84 39
test_040299.22 16599.14 15699.45 20099.79 9899.43 16599.28 15399.68 14799.54 12799.40 25099.56 24699.07 9799.82 28996.01 36299.96 6899.11 316
GDP-MVS98.81 24798.57 25699.50 18499.53 22799.12 22999.28 15399.86 5499.53 12999.57 19199.32 31290.88 37199.98 2199.46 7499.74 22499.42 245
WBMVS97.50 33597.18 34198.48 34098.85 37995.89 38598.44 32199.52 24699.53 12999.52 21399.42 28580.10 41199.86 23199.24 11099.95 8199.68 94
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13699.77 10099.53 12999.77 11199.76 12299.26 7299.78 31797.77 24999.88 13599.60 159
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9799.53 12999.67 15399.78 11099.19 7999.86 23197.32 28899.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20899.25 32199.69 9699.05 22799.82 7399.50 13398.97 31499.05 35598.98 11199.98 2198.20 20999.24 33998.62 377
new-patchmatchnet99.35 13299.57 7398.71 33099.82 7296.62 36998.55 30599.75 11099.50 13399.88 6299.87 5299.31 6499.88 19899.43 78100.00 199.62 145
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20899.68 14799.49 13599.80 9399.79 10099.01 10699.93 9998.24 20599.82 18299.73 73
ETV-MVS99.18 17999.18 15099.16 27299.34 29999.28 20199.12 20899.79 9199.48 13698.93 31898.55 39499.40 5199.93 9998.51 18899.52 30098.28 396
CANet_DTU98.91 23498.85 23099.09 28398.79 38798.13 31498.18 33799.31 30599.48 13698.86 32999.51 26196.56 29499.95 6699.05 14099.95 8199.19 299
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24899.67 15299.48 13699.55 20499.36 30394.92 32499.86 23198.95 15496.57 41399.45 230
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32199.48 13699.56 19999.77 11994.89 32599.93 9998.72 17599.89 12699.63 134
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28799.47 14099.76 11499.78 11098.13 22199.86 23198.70 17699.68 25099.49 217
xiu_mvs_v2_base99.02 21399.11 16598.77 32599.37 28498.09 31998.13 34399.51 25199.47 14099.42 23998.54 39599.38 5699.97 3598.83 16099.33 32698.24 398
PS-MVSNAJ99.00 22199.08 17698.76 32699.37 28498.10 31898.00 35999.51 25199.47 14099.41 24598.50 39799.28 6899.97 3598.83 16099.34 32598.20 402
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7399.46 14399.75 11999.56 24699.63 3099.95 6699.43 7899.88 13599.62 145
NR-MVSNet99.40 11899.31 12599.68 10999.43 27099.55 14099.73 2799.50 25599.46 14399.88 6299.36 30397.54 26099.87 21298.97 14899.87 14799.63 134
CDS-MVSNet99.22 16599.13 15899.50 18499.35 29099.11 23098.96 25499.54 23299.46 14399.61 18099.70 15896.31 30699.83 27999.34 9599.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
MVStest198.22 30698.09 30198.62 33299.04 36096.23 37899.20 17699.92 3499.44 14899.98 1399.87 5285.87 40199.67 37099.91 2499.57 28599.95 13
E-PMN97.14 34697.43 33396.27 39798.79 38791.62 41695.54 41599.01 34799.44 14898.88 32599.12 34792.78 34999.68 36594.30 39699.03 35297.50 410
GBi-Net99.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
test199.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
FMVSNet299.35 13299.28 13799.55 17199.49 24799.35 19099.45 10999.57 21599.44 14899.70 14299.74 13197.21 27499.87 21299.03 14199.94 9499.44 235
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 29099.47 15099.62 6499.50 25599.44 14899.12 30299.78 11098.77 13899.94 8197.87 24199.72 23699.62 145
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25899.56 13798.97 25299.61 18799.43 15499.67 15399.28 32197.85 24199.95 6699.17 12399.81 19299.65 119
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23699.58 13498.98 25199.60 19899.43 15499.70 14299.36 30397.70 24999.88 19899.20 11799.87 14799.59 166
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27399.66 15799.42 15899.75 11999.66 18599.20 7899.76 32898.98 14699.99 1699.36 258
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7399.39 15999.82 8299.84 6999.38 5699.91 14799.38 8799.93 10199.80 50
DU-MVS99.33 14099.21 14799.71 10199.43 27099.56 13798.83 26899.53 24199.38 16099.67 15399.36 30397.67 25399.95 6699.17 12399.81 19299.63 134
mvsmamba99.08 20098.95 21699.45 20099.36 28799.18 22399.39 11798.81 35499.37 16199.35 25799.70 15896.36 30599.94 8198.66 18099.59 28199.22 289
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33699.37 16199.61 18099.71 15094.73 32899.81 30497.70 26099.88 13599.58 171
MVEpermissive92.54 2296.66 35696.11 36098.31 35199.68 16497.55 34597.94 36695.60 41199.37 16190.68 42298.70 38896.56 29498.61 41886.94 41999.55 29098.77 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DELS-MVS99.34 13799.30 13099.48 19299.51 23699.36 18798.12 34499.53 24199.36 16499.41 24599.61 21999.22 7699.87 21299.21 11499.68 25099.20 296
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37599.78 5199.15 19699.66 15799.34 16598.92 32199.24 33397.69 25199.98 2198.11 21999.28 33398.81 367
EMVS96.96 34997.28 33795.99 40098.76 39291.03 41995.26 41798.61 36599.34 16598.92 32198.88 37893.79 33799.66 37592.87 40499.05 35097.30 414
baseline197.73 32597.33 33698.96 29899.30 31097.73 34099.40 11598.42 37699.33 16799.46 23099.21 33791.18 36499.82 28998.35 19691.26 42199.32 268
dmvs_re98.69 26098.48 26499.31 24699.55 21999.42 16899.54 8798.38 38099.32 16898.72 34498.71 38796.76 29099.21 41196.01 36299.35 32499.31 272
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15999.76 10599.32 16899.80 9399.78 11099.29 6699.87 21299.15 12699.91 11599.66 111
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34199.47 27598.47 18199.88 19897.62 26999.73 23099.67 102
X-MVStestdata96.09 37094.87 38299.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34161.30 43298.47 18199.88 19897.62 26999.73 23099.67 102
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28899.80 8697.83 33598.89 26099.72 12999.29 17099.63 16599.70 15896.47 29899.89 18498.17 21599.82 18299.50 212
Anonymous20240521198.75 25298.46 26699.63 13999.34 29999.66 10399.47 10597.65 39699.28 17399.56 19999.50 26493.15 34499.84 26498.62 18399.58 28399.40 248
mvsany_test199.44 10699.45 9599.40 21999.37 28498.64 28197.90 37199.59 20499.27 17499.92 4399.82 8099.74 2099.93 9999.55 6299.87 14799.63 134
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13399.53 24199.27 17499.42 23999.63 20398.21 21499.95 6697.83 24899.79 20499.65 119
MVSTER98.47 28498.22 29099.24 26499.06 35698.35 30299.08 22399.46 26699.27 17499.75 11999.66 18588.61 38899.85 24999.14 13299.92 10599.52 205
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16699.71 13299.27 17499.93 3899.90 3399.70 2499.93 9998.99 14499.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.11 19699.05 18699.28 25398.83 38198.56 28698.71 28899.41 27799.25 17899.23 28499.22 33597.66 25799.94 8199.19 11899.97 5599.33 265
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19899.58 21399.25 17899.81 8999.62 21098.24 20999.84 26499.83 3399.97 5599.64 129
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20499.24 18099.86 7199.70 15898.55 16899.82 28999.79 3999.95 8199.60 159
EPNet_dtu97.62 33097.79 32497.11 38896.67 42392.31 41198.51 31298.04 38899.24 18095.77 41599.47 27593.78 33899.66 37598.98 14699.62 26799.37 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_one_060199.63 17899.76 6399.55 22699.23 18299.31 27199.61 21998.59 162
Anonymous2023120699.35 13299.31 12599.47 19499.74 13599.06 24099.28 15399.74 11699.23 18299.72 13399.53 25797.63 25999.88 19899.11 13499.84 16599.48 221
FMVSNet398.80 24898.63 24999.32 24399.13 34298.72 27099.10 21699.48 26099.23 18299.62 17499.64 19292.57 35099.86 23198.96 15099.90 11699.39 250
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27999.42 16899.70 3599.56 22099.23 18299.35 25799.80 9099.17 8199.95 6698.21 20899.84 16599.59 166
SD-MVS99.01 21999.30 13098.15 35699.50 24299.40 17598.94 25799.61 18799.22 18699.75 11999.82 8099.54 4395.51 42397.48 27999.87 14799.54 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21699.61 18799.20 18799.84 7799.73 13598.67 15299.84 26499.86 3299.98 4199.64 129
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15799.61 18799.19 18899.57 19199.64 19298.76 13999.90 16597.29 29099.62 26799.56 178
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13699.74 11699.18 18999.69 14599.75 12798.41 19099.84 26497.85 24499.70 24199.10 318
DVP-MVS++99.38 12499.25 14399.77 5999.03 36199.77 5699.74 2499.61 18799.18 18999.76 11499.61 21999.00 10799.92 12597.72 25599.60 27799.62 145
test_0728_THIRD99.18 18999.62 17499.61 21998.58 16499.91 14797.72 25599.80 19999.77 63
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21399.62 18099.18 18999.89 5399.72 14298.66 15499.87 21299.88 2999.97 5599.66 111
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23299.60 19899.18 18999.87 7099.72 14299.08 9599.85 24999.89 2899.98 4199.66 111
v14899.40 11899.41 10499.39 22299.76 11798.94 25199.09 22099.59 20499.17 19499.81 8999.61 21998.41 19099.69 35399.32 10099.94 9499.53 195
MVS_Test99.28 14699.31 12599.19 26999.35 29098.79 26599.36 12799.49 25999.17 19499.21 28999.67 18098.78 13699.66 37599.09 13699.66 25999.10 318
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.41 19099.91 14797.27 29399.61 27499.54 190
RE-MVS-def99.13 15899.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.57 16597.27 29399.61 27499.54 190
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19899.31 30599.16 19699.62 17499.61 21998.35 19899.91 14797.88 23899.72 23699.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15699.80 4699.24 16699.57 21599.16 19699.73 13199.65 19098.35 198
v192192099.56 7499.57 7399.55 17199.75 12999.11 23099.05 22799.61 18799.15 20099.88 6299.71 15099.08 9599.87 21299.90 2599.97 5599.66 111
v124099.56 7499.58 6999.51 18299.80 8699.00 24299.00 24399.65 16799.15 20099.90 4999.75 12799.09 9299.88 19899.90 2599.96 6899.67 102
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17699.54 23299.13 20299.82 8299.63 20398.91 12199.92 12597.85 24499.70 24199.58 171
test_241102_TWO99.54 23299.13 20299.76 11499.63 20398.32 20399.92 12597.85 24499.69 24599.75 71
MVS-HIRNet97.86 31998.22 29096.76 39099.28 31591.53 41798.38 32492.60 42099.13 20299.31 27199.96 1597.18 27899.68 36598.34 19799.83 17399.07 334
test_241102_ONE99.69 15699.82 3799.54 23299.12 20599.82 8299.49 26898.91 12199.52 403
Vis-MVSNet (Re-imp)98.77 25098.58 25599.34 23599.78 10598.88 25899.61 7099.56 22099.11 20699.24 28399.56 24693.00 34899.78 31797.43 28299.89 12699.35 261
ppachtmachnet_test98.89 23999.12 16298.20 35599.66 17195.24 39497.63 38199.68 14799.08 20799.78 10399.62 21098.65 15699.88 19898.02 22499.96 6899.48 221
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31599.22 21598.99 24899.40 28499.08 20799.58 18899.64 19298.90 12499.83 27997.44 28199.75 21799.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.53 22799.25 20898.29 33099.38 29199.07 209
our_test_398.85 24399.09 17498.13 35799.66 17194.90 39897.72 37799.58 21399.07 20999.64 16199.62 21098.19 21799.93 9998.41 19299.95 8199.55 181
tttt051797.62 33097.20 34098.90 31399.76 11797.40 35199.48 10294.36 41499.06 21199.70 14299.49 26884.55 40499.94 8198.73 17499.65 26199.36 258
WR-MVS99.11 19698.93 21899.66 11999.30 31099.42 16898.42 32299.37 29299.04 21299.57 19199.20 33996.89 28699.86 23198.66 18099.87 14799.70 82
test_vis1_rt99.45 10499.46 9399.41 21799.71 14498.63 28298.99 24899.96 2599.03 21399.95 3299.12 34798.75 14199.84 26499.82 3799.82 18299.77 63
miper_lstm_enhance98.65 26398.60 25098.82 32399.20 33197.33 35397.78 37599.66 15799.01 21499.59 18699.50 26494.62 32999.85 24998.12 21899.90 11699.26 280
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14498.99 21599.75 11999.71 15098.79 13499.93 9998.46 19099.85 16099.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20499.65 16798.99 21599.64 16199.72 14299.39 5299.86 23198.23 20699.81 19299.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_yl98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
DCV-MVSNet98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
UWE-MVS96.21 36895.78 36897.49 37598.53 40293.83 40598.04 35493.94 41898.96 21998.46 36498.17 40379.86 41299.87 21296.99 31099.06 34898.78 370
MIMVSNet98.43 28798.20 29299.11 28099.53 22798.38 30099.58 7998.61 36598.96 21999.33 26399.76 12290.92 36899.81 30497.38 28599.76 21599.15 307
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24498.09 34899.90 4398.95 22199.78 10399.58 23599.57 4099.93 9999.48 7299.95 8199.79 57
eth_miper_zixun_eth98.68 26198.71 24398.60 33499.10 35196.84 36697.52 38999.54 23298.94 22299.58 18899.48 27196.25 30999.76 32898.01 22799.93 10199.21 292
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27699.54 23298.94 22299.14 29999.25 32897.24 27299.82 28995.84 37299.78 20999.60 159
plane_prior298.80 27698.94 222
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30499.76 6399.34 12999.97 1998.93 22599.91 4699.79 10098.68 14999.93 9996.80 32399.56 28699.30 274
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31699.64 17697.16 35798.23 33599.33 29998.93 22599.56 19999.66 18597.39 26799.83 27998.29 20099.88 13599.55 181
YYNet198.95 23198.99 20998.84 31899.64 17697.14 35998.22 33699.32 30198.92 22799.59 18699.66 18597.40 26599.83 27998.27 20299.90 11699.55 181
Patchmatch-RL test98.60 26798.36 27799.33 23899.77 11399.07 23898.27 33199.87 5198.91 22899.74 12799.72 14290.57 37799.79 31498.55 18699.85 16099.11 316
cl____98.54 27598.41 27298.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.85 33699.78 31797.97 23199.89 12699.17 303
DIV-MVS_self_test98.54 27598.42 27198.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.87 33599.78 31797.97 23199.89 12699.18 301
c3_l98.72 25698.71 24398.72 32899.12 34497.22 35697.68 38099.56 22098.90 22999.54 20699.48 27196.37 30499.73 33897.88 23899.88 13599.21 292
MG-MVS98.52 27798.39 27498.94 30199.15 33997.39 35298.18 33799.21 32898.89 23299.23 28499.63 20397.37 26899.74 33594.22 39799.61 27499.69 88
FMVSNet597.80 32297.25 33999.42 21098.83 38198.97 24799.38 12099.80 8598.87 23399.25 28099.69 16580.60 41099.91 14798.96 15099.90 11699.38 252
ab-mvs99.33 14099.28 13799.47 19499.57 20599.39 17899.78 1499.43 27498.87 23399.57 19199.82 8098.06 22699.87 21298.69 17899.73 23099.15 307
testing1196.05 37295.41 37497.97 36298.78 38995.27 39398.59 29798.23 38598.86 23596.56 40996.91 42275.20 42099.69 35397.26 29598.29 38998.93 354
SR-MVS99.19 17599.00 20299.74 8199.51 23699.72 8399.18 18399.60 19898.85 23699.47 22699.58 23598.38 19599.92 12596.92 31499.54 29599.57 176
MSLP-MVS++99.05 20799.09 17498.91 30799.21 32898.36 30198.82 27299.47 26398.85 23698.90 32499.56 24698.78 13699.09 41398.57 18599.68 25099.26 280
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25599.86 5498.85 23699.81 8999.73 13598.40 19499.92 12598.36 19599.83 17399.17 303
MSDG99.08 20098.98 21299.37 22899.60 18599.13 22797.54 38599.74 11698.84 23999.53 21199.55 25399.10 9099.79 31497.07 30899.86 15599.18 301
UBG96.53 35895.95 36398.29 35398.87 37896.31 37698.48 31598.07 38798.83 24097.32 39796.54 42779.81 41399.62 38596.84 32198.74 37298.95 351
testing9196.00 37395.32 37798.02 35998.76 39295.39 39098.38 32498.65 36498.82 24196.84 40596.71 42575.06 42199.71 34496.46 34598.23 39198.98 348
pmmvs599.19 17599.11 16599.42 21099.76 11798.88 25898.55 30599.73 12098.82 24199.72 13399.62 21096.56 29499.82 28999.32 10099.95 8199.56 178
Effi-MVS+99.06 20498.97 21399.34 23599.31 30698.98 24598.31 32999.91 3898.81 24398.79 33898.94 37399.14 8699.84 26498.79 16698.74 37299.20 296
Patchmatch-test98.10 31297.98 30998.48 34099.27 31796.48 37199.40 11599.07 34198.81 24399.23 28499.57 24290.11 38199.87 21296.69 32899.64 26399.09 323
CHOSEN 280x42098.41 28998.41 27298.40 34499.34 29995.89 38596.94 40799.44 27198.80 24599.25 28099.52 25993.51 34299.98 2198.94 15599.98 4199.32 268
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 6098.79 24699.41 24599.60 22798.92 11999.92 12598.02 22499.92 10599.43 241
TinyColmap98.97 22598.93 21899.07 28899.46 26298.19 30997.75 37699.75 11098.79 24699.54 20699.70 15898.97 11399.62 38596.63 33599.83 17399.41 246
dmvs_testset97.27 34296.83 35298.59 33599.46 26297.55 34599.25 16596.84 40598.78 24897.24 40097.67 41197.11 28098.97 41586.59 42098.54 38399.27 278
pmmvs499.13 19199.06 18299.36 23299.57 20599.10 23598.01 35799.25 31898.78 24899.58 18899.44 28298.24 20999.76 32898.74 17399.93 10199.22 289
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15999.35 29698.77 25099.57 19199.70 15899.27 7199.88 19897.71 25799.75 21799.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thres600view796.60 35796.16 35997.93 36499.63 17896.09 38299.18 18397.57 39798.77 25098.72 34497.32 41787.04 39399.72 34088.57 41298.62 38097.98 406
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9198.77 25099.80 9399.85 6399.64 2899.85 24998.70 17699.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_HR99.12 19399.02 19599.40 21999.50 24299.11 23097.92 36899.71 13298.76 25399.08 30699.47 27599.17 8199.54 39897.85 24499.76 21599.54 190
thres100view90096.39 36296.03 36297.47 37799.63 17895.93 38399.18 18397.57 39798.75 25498.70 34797.31 41887.04 39399.67 37087.62 41598.51 38496.81 415
testing396.48 36095.63 37199.01 29499.23 32597.81 33698.90 25999.10 34098.72 25597.84 39097.92 40872.44 42499.85 24997.21 30299.33 32699.35 261
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32699.75 6997.25 39999.47 26398.72 25599.66 15899.70 15899.29 6699.63 38498.07 22399.81 19299.62 145
ETVMVS96.14 36995.22 37998.89 31498.80 38598.01 32498.66 29098.35 38298.71 25797.18 40296.31 43174.23 42399.75 33296.64 33498.13 39998.90 358
jason99.16 18599.11 16599.32 24399.75 12998.44 29398.26 33399.39 28798.70 25899.74 12799.30 31798.54 17099.97 3598.48 18999.82 18299.55 181
jason: jason.
testing9995.86 37795.19 38097.87 36698.76 39295.03 39598.62 29198.44 37598.68 25996.67 40896.66 42674.31 42299.69 35396.51 34098.03 40198.90 358
MVS_111021_LR99.13 19199.03 19499.42 21099.58 19599.32 19597.91 37099.73 12098.68 25999.31 27199.48 27199.09 9299.66 37597.70 26099.77 21399.29 277
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 28099.88 4998.66 26199.96 2499.79 10097.45 26399.93 9999.34 9599.99 1699.78 59
NCCC98.82 24598.57 25699.58 15999.21 32899.31 19698.61 29299.25 31898.65 26298.43 36599.26 32697.86 23999.81 30496.55 33799.27 33699.61 155
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 35199.83 6898.64 26399.89 5399.60 22792.57 350100.00 199.33 9899.97 5599.72 76
WB-MVSnew98.34 29898.14 29898.96 29898.14 41697.90 33398.27 33197.26 40398.63 26498.80 33698.00 40797.77 24699.90 16597.37 28698.98 35599.09 323
MVP-Stereo99.16 18599.08 17699.43 20899.48 25299.07 23899.08 22399.55 22698.63 26499.31 27199.68 17698.19 21799.78 31798.18 21399.58 28399.45 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20899.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
TestCases99.63 13999.78 10599.64 11299.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
thisisatest053097.45 33696.95 34798.94 30199.68 16497.73 34099.09 22094.19 41698.61 26899.56 19999.30 31784.30 40599.93 9998.27 20299.54 29599.16 305
API-MVS98.38 29298.39 27498.35 34698.83 38199.26 20599.14 19899.18 33298.59 26998.66 34998.78 38498.61 16099.57 39494.14 39899.56 28696.21 417
CNVR-MVS98.99 22498.80 23899.56 16899.25 32199.43 16598.54 30899.27 31398.58 27098.80 33699.43 28398.53 17499.70 34797.22 30199.59 28199.54 190
ITE_SJBPF99.38 22599.63 17899.44 16199.73 12098.56 27199.33 26399.53 25798.88 12599.68 36596.01 36299.65 26199.02 345
D2MVS99.22 16599.19 14999.29 25099.69 15698.74 26998.81 27399.41 27798.55 27299.68 14899.69 16598.13 22199.87 21298.82 16299.98 4199.24 283
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28499.60 19898.55 27299.76 11499.69 16598.23 21399.92 12596.39 34899.75 21799.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18399.60 19898.55 27299.57 19199.67 18099.03 10599.94 8197.01 30999.80 19999.69 88
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21598.54 27599.54 20698.99 36496.81 28899.93 9996.97 31299.53 29799.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
testing22295.60 38394.59 38698.61 33398.66 39997.45 34998.54 30897.90 39398.53 27696.54 41096.47 42870.62 42799.81 30495.91 37098.15 39698.56 384
tpmrst97.73 32598.07 30396.73 39298.71 39692.00 41299.10 21698.86 35098.52 27798.92 32199.54 25591.90 35699.82 28998.02 22499.03 35298.37 393
MDTV_nov1_ep1397.73 32698.70 39790.83 42099.15 19698.02 38998.51 27898.82 33399.61 21990.98 36799.66 37596.89 31798.92 359
miper_ehance_all_eth98.59 27098.59 25298.59 33598.98 36797.07 36097.49 39099.52 24698.50 27999.52 21399.37 29996.41 30299.71 34497.86 24299.62 26799.00 347
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29999.48 26098.50 27999.52 21399.63 20399.14 8699.76 32897.89 23799.77 21399.51 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MS-PatchMatch99.00 22198.97 21399.09 28399.11 34998.19 30998.76 28299.33 29998.49 28199.44 23299.58 23598.21 21499.69 35398.20 20999.62 26799.39 250
CNLPA98.57 27298.34 28099.28 25399.18 33699.10 23598.34 32699.41 27798.48 28298.52 36098.98 36797.05 28299.78 31795.59 37799.50 30498.96 349
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23499.71 8598.86 26399.19 33198.47 28398.59 35599.06 35498.08 22599.91 14796.94 31399.60 27799.60 159
tfpn200view996.30 36595.89 36497.53 37499.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38496.81 415
TESTMET0.1,196.24 36695.84 36797.41 37998.24 41193.84 40497.38 39395.84 41098.43 28497.81 39198.56 39379.77 41499.89 18497.77 24998.77 36898.52 385
thres40096.40 36195.89 36497.92 36599.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38497.98 406
EIA-MVS99.12 19399.01 19899.45 20099.36 28799.62 11999.34 12999.79 9198.41 28798.84 33198.89 37798.75 14199.84 26498.15 21799.51 30198.89 360
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14199.59 20498.41 28799.32 26699.36 30398.73 14599.93 9997.29 29099.74 22499.67 102
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29999.07 34198.40 28999.04 31199.25 32898.51 17999.80 31197.31 28999.51 30199.65 119
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33499.73 12098.39 29099.63 16599.43 28399.70 2499.90 16597.34 28798.64 37999.44 235
testgi99.29 14599.26 14199.37 22899.75 12998.81 26298.84 26699.89 4598.38 29199.75 11999.04 35799.36 6199.86 23199.08 13899.25 33799.45 230
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 18098.38 29199.06 31099.27 32398.79 13499.94 8197.51 27899.82 18299.66 111
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14199.59 20498.36 29399.36 25599.37 29998.80 13399.91 14797.43 28299.75 21799.68 94
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14199.59 20498.36 29399.35 25799.38 29698.61 16099.93 9997.43 28299.75 21799.67 102
plane_prior399.31 19698.36 29399.14 299
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37299.74 11698.36 29399.66 15899.68 17699.71 2299.90 16596.84 32199.88 13599.43 241
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26899.72 12998.36 29399.60 18399.71 15098.92 11999.91 14797.08 30799.84 16599.40 248
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13699.50 25598.35 29898.97 31499.48 27198.37 19699.92 12595.95 36899.75 21799.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13798.35 29899.51 21999.50 26499.31 6499.88 19898.18 21399.84 16599.69 88
N_pmnet98.73 25598.53 26299.35 23499.72 14198.67 27398.34 32694.65 41398.35 29899.79 9999.68 17698.03 22799.93 9998.28 20199.92 10599.44 235
BH-RMVSNet98.41 28998.14 29899.21 26699.21 32898.47 29098.60 29498.26 38498.35 29898.93 31899.31 31597.20 27799.66 37594.32 39599.10 34699.51 207
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23298.34 30299.01 31299.50 26498.53 17499.93 9997.18 30499.78 20999.66 111
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7398.33 30399.50 22199.78 11097.90 23699.65 38196.78 32499.83 17399.44 235
GA-MVS97.99 31897.68 32898.93 30499.52 23498.04 32397.19 40199.05 34498.32 30498.81 33498.97 36989.89 38499.41 40998.33 19899.05 35099.34 264
LF4IMVS99.01 21998.92 22299.27 25699.71 14499.28 20198.59 29799.77 10098.32 30499.39 25299.41 28698.62 15899.84 26496.62 33699.84 16598.69 375
lupinMVS98.96 22898.87 22899.24 26499.57 20598.40 29698.12 34499.18 33298.28 30699.63 16599.13 34398.02 22899.97 3598.22 20799.69 24599.35 261
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25599.53 24198.27 30799.53 21199.73 13598.75 14199.87 21297.70 26099.83 17399.68 94
SCA98.11 31198.36 27797.36 38099.20 33192.99 40898.17 33998.49 37398.24 30899.10 30599.57 24296.01 31399.94 8196.86 31899.62 26799.14 312
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17699.55 22698.22 30999.32 26699.35 30898.65 15699.91 14796.86 31899.74 22499.62 145
EPMVS96.53 35896.32 35697.17 38798.18 41392.97 40999.39 11789.95 42498.21 31098.61 35399.59 23286.69 39999.72 34096.99 31099.23 34198.81 367
USDC98.96 22898.93 21899.05 29199.54 22197.99 32597.07 40599.80 8598.21 31099.75 11999.77 11998.43 18799.64 38397.90 23699.88 13599.51 207
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15399.56 22098.19 31299.14 29999.29 32098.84 12899.92 12597.53 27799.80 19999.64 129
TSAR-MVS + GP.99.12 19399.04 19299.38 22599.34 29999.16 22498.15 34099.29 30998.18 31399.63 16599.62 21099.18 8099.68 36598.20 20999.74 22499.30 274
PatchmatchNetpermissive97.65 32997.80 32297.18 38698.82 38492.49 41099.17 18898.39 37998.12 31498.79 33899.58 23590.71 37499.89 18497.23 30099.41 31699.16 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AUN-MVS97.82 32197.38 33599.14 27799.27 31798.53 28798.72 28699.02 34598.10 31597.18 40299.03 36189.26 38699.85 24997.94 23397.91 40299.03 340
WTY-MVS98.59 27098.37 27699.26 25999.43 27098.40 29698.74 28499.13 33998.10 31599.21 28999.24 33394.82 32699.90 16597.86 24298.77 36899.49 217
CL-MVSNet_self_test98.71 25898.56 26099.15 27499.22 32698.66 27697.14 40299.51 25198.09 31799.54 20699.27 32396.87 28799.74 33598.43 19198.96 35699.03 340
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16798.07 31899.52 21399.69 16598.57 16599.92 12597.18 30499.79 20499.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres20096.09 37095.68 37097.33 38299.48 25296.22 37998.53 31097.57 39798.06 31998.37 36796.73 42486.84 39799.61 39086.99 41898.57 38196.16 418
test-LLR97.15 34496.95 34797.74 37298.18 41395.02 39697.38 39396.10 40698.00 32097.81 39198.58 39090.04 38299.91 14797.69 26698.78 36698.31 394
test0.0.03 197.37 34096.91 35098.74 32797.72 41997.57 34497.60 38397.36 40298.00 32099.21 28998.02 40590.04 38299.79 31498.37 19495.89 41898.86 363
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19499.72 12997.99 32299.42 23999.60 22798.81 12999.93 9996.91 31599.74 22499.66 111
new_pmnet98.88 24098.89 22698.84 31899.70 15297.62 34398.15 34099.50 25597.98 32399.62 17499.54 25598.15 22099.94 8197.55 27499.84 16598.95 351
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20499.65 16797.97 32499.42 23999.61 21998.86 12699.87 21296.45 34699.68 25099.49 217
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20499.90 3698.66 27698.94 25799.91 3897.97 32499.79 9999.73 13599.05 10299.97 3599.15 12699.99 1699.68 94
wuyk23d97.58 33299.13 15892.93 40299.69 15699.49 14799.52 8999.77 10097.97 32499.96 2499.79 10099.84 1299.94 8195.85 37199.82 18279.36 420
ET-MVSNet_ETH3D96.78 35296.07 36198.91 30799.26 32097.92 33297.70 37996.05 40997.96 32792.37 42198.43 39887.06 39299.90 16598.27 20297.56 40798.91 357
sss98.90 23698.77 24099.27 25699.48 25298.44 29398.72 28699.32 30197.94 32899.37 25499.35 30896.31 30699.91 14798.85 15899.63 26699.47 225
test-mter96.23 36795.73 36997.74 37298.18 41395.02 39697.38 39396.10 40697.90 32997.81 39198.58 39079.12 41799.91 14797.69 26698.78 36698.31 394
Syy-MVS98.17 30997.85 32199.15 27498.50 40498.79 26598.60 29499.21 32897.89 33096.76 40696.37 42995.47 32199.57 39499.10 13598.73 37599.09 323
myMVS_eth3d95.63 38194.73 38398.34 34898.50 40496.36 37498.60 29499.21 32897.89 33096.76 40696.37 42972.10 42599.57 39494.38 39498.73 37599.09 323
PHI-MVS99.11 19698.95 21699.59 15699.13 34299.59 13099.17 18899.65 16797.88 33299.25 28099.46 27898.97 11399.80 31197.26 29599.82 18299.37 255
test_prior297.95 36597.87 33398.05 38099.05 35597.90 23695.99 36599.49 306
plane_prior99.24 21298.42 32297.87 33399.71 239
testdata197.72 37797.86 335
AdaColmapbinary98.60 26798.35 27999.38 22599.12 34499.22 21598.67 28999.42 27697.84 33698.81 33499.27 32397.32 27099.81 30495.14 38699.53 29799.10 318
BH-untuned98.22 30698.09 30198.58 33799.38 28297.24 35598.55 30598.98 34897.81 33799.20 29498.76 38597.01 28399.65 38194.83 38998.33 38798.86 363
tpmvs97.39 33997.69 32796.52 39498.41 40691.76 41499.30 14498.94 34997.74 33897.85 38999.55 25392.40 35599.73 33896.25 35498.73 37598.06 405
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15297.72 33999.35 25799.25 32899.23 7599.92 12597.21 30299.82 18299.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 34496.95 34797.75 37198.91 37194.24 40199.32 13697.96 39097.71 34098.29 36899.32 31286.72 39899.92 12598.10 22296.24 41699.09 323
PVSNet97.47 1598.42 28898.44 26998.35 34699.46 26296.26 37796.70 41099.34 29897.68 34199.00 31399.13 34397.40 26599.72 34097.59 27399.68 25099.08 329
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 31199.82 7397.65 34299.43 23699.16 34196.42 30099.91 14799.07 13999.84 16599.80 50
PVSNet_BlendedMVS99.03 21199.01 19899.09 28399.54 22197.99 32598.58 29999.82 7397.62 34399.34 26199.71 15098.52 17799.77 32597.98 22999.97 5599.52 205
PC_three_145297.56 34499.68 14899.41 28699.09 9297.09 42096.66 33199.60 27799.62 145
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19499.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
LGP-MVS_train99.74 8199.82 7299.63 11799.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
PAPM_NR98.36 29398.04 30499.33 23899.48 25298.93 25498.79 27999.28 31297.54 34798.56 35998.57 39297.12 27999.69 35394.09 39998.90 36399.38 252
PMMVS98.49 28298.29 28799.11 28098.96 36998.42 29597.54 38599.32 30197.53 34898.47 36398.15 40497.88 23899.82 28997.46 28099.24 33999.09 323
9.1498.64 24799.45 26698.81 27399.60 19897.52 34999.28 27799.56 24698.53 17499.83 27995.36 38399.64 263
IU-MVS99.69 15699.77 5699.22 32597.50 35099.69 14597.75 25399.70 24199.77 63
UnsupCasMVSNet_bld98.55 27498.27 28899.40 21999.56 21699.37 18397.97 36499.68 14797.49 35199.08 30699.35 30895.41 32299.82 28997.70 26098.19 39499.01 346
HQP-NCC99.31 30697.98 36197.45 35298.15 374
ACMP_Plane99.31 30697.98 36197.45 35298.15 374
HQP-MVS98.36 29398.02 30699.39 22299.31 30698.94 25197.98 36199.37 29297.45 35298.15 37498.83 38096.67 29199.70 34794.73 39099.67 25699.53 195
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26299.73 7899.13 20499.52 24697.40 35599.57 19199.64 19298.93 11699.83 27997.61 27199.79 20499.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet98.35 29698.20 29298.83 32099.05 35798.12 31599.30 14499.67 15297.39 35699.16 29599.79 10091.87 35899.91 14798.78 17098.77 36898.44 391
MDTV_nov1_ep13_2view91.44 41899.14 19897.37 35799.21 28991.78 36096.75 32599.03 340
FA-MVS(test-final)98.52 27798.32 28299.10 28299.48 25298.67 27399.77 1698.60 36797.35 35899.63 16599.80 9093.07 34699.84 26497.92 23499.30 33098.78 370
dp96.86 35097.07 34396.24 39898.68 39890.30 42499.19 18298.38 38097.35 35898.23 37299.59 23287.23 39199.82 28996.27 35398.73 37598.59 380
cl2297.56 33397.28 33798.40 34498.37 40896.75 36797.24 40099.37 29297.31 36099.41 24599.22 33587.30 39099.37 41097.70 26099.62 26799.08 329
OMC-MVS98.90 23698.72 24299.44 20499.39 27999.42 16898.58 29999.64 17597.31 36099.44 23299.62 21098.59 16299.69 35396.17 35899.79 20499.22 289
thisisatest051596.98 34896.42 35598.66 33199.42 27597.47 34797.27 39894.30 41597.24 36299.15 29798.86 37985.01 40299.87 21297.10 30699.39 31898.63 376
KD-MVS_2432*160095.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
miper_refine_blended95.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
baseline296.83 35196.28 35798.46 34299.09 35496.91 36498.83 26893.87 41997.23 36396.23 41498.36 39988.12 38999.90 16596.68 32998.14 39798.57 383
Fast-Effi-MVS+99.02 21398.87 22899.46 19799.38 28299.50 14699.04 23299.79 9197.17 36698.62 35298.74 38699.34 6299.95 6698.32 19999.41 31698.92 356
FPMVS96.32 36495.50 37298.79 32499.60 18598.17 31298.46 32098.80 35597.16 36796.28 41199.63 20382.19 40699.09 41388.45 41398.89 36499.10 318
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34899.80 8597.14 36899.46 23099.40 29096.11 31199.89 18499.01 14399.84 16599.84 39
PatchMatch-RL98.68 26198.47 26599.30 24999.44 26799.28 20198.14 34299.54 23297.12 36999.11 30399.25 32897.80 24499.70 34796.51 34099.30 33098.93 354
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 26199.66 15797.11 37099.47 22699.60 22799.07 9799.89 18496.18 35799.85 16099.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet297.78 32397.66 33098.12 35899.14 34095.36 39199.22 17398.75 35796.97 37198.25 37099.64 19290.90 36999.94 8196.51 34099.56 28699.08 329
ADS-MVSNet97.72 32897.67 32997.86 36799.14 34094.65 39999.22 17398.86 35096.97 37198.25 37099.64 19290.90 36999.84 26496.51 34099.56 28699.08 329
DPM-MVS98.28 29997.94 31599.32 24399.36 28799.11 23097.31 39798.78 35696.88 37398.84 33199.11 35097.77 24699.61 39094.03 40199.36 32299.23 287
TR-MVS97.44 33797.15 34298.32 34998.53 40297.46 34898.47 31697.91 39296.85 37498.21 37398.51 39696.42 30099.51 40492.16 40697.29 40997.98 406
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29299.63 17796.84 37599.44 23299.58 23598.81 12999.91 14797.70 26099.82 18299.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HY-MVS98.23 998.21 30897.95 31198.99 29599.03 36198.24 30499.61 7098.72 35896.81 37698.73 34399.51 26194.06 33399.86 23196.91 31598.20 39298.86 363
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24299.62 11999.01 24099.57 21596.80 37799.54 20699.63 20398.29 20499.91 14795.24 38499.71 23999.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
原ACMM199.37 22899.47 25898.87 26099.27 31396.74 37898.26 36999.32 31297.93 23599.82 28995.96 36799.38 31999.43 241
CPTT-MVS98.74 25398.44 26999.64 13299.61 18399.38 18099.18 18399.55 22696.49 37999.27 27899.37 29997.11 28099.92 12595.74 37599.67 25699.62 145
CLD-MVS98.76 25198.57 25699.33 23899.57 20598.97 24797.53 38799.55 22696.41 38099.27 27899.13 34399.07 9799.78 31796.73 32799.89 12699.23 287
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.43 27099.61 12599.43 27496.38 38199.11 30399.07 35397.86 23999.92 12594.04 40099.49 306
miper_enhance_ethall98.03 31597.94 31598.32 34998.27 41096.43 37396.95 40699.41 27796.37 38299.43 23698.96 37194.74 32799.69 35397.71 25799.62 26798.83 366
F-COLMAP98.74 25398.45 26899.62 14899.57 20599.47 15098.84 26699.65 16796.31 38398.93 31899.19 34097.68 25299.87 21296.52 33999.37 32199.53 195
testdata99.42 21099.51 23698.93 25499.30 30896.20 38498.87 32899.40 29098.33 20299.89 18496.29 35299.28 33399.44 235
PVSNet_095.53 1995.85 37895.31 37897.47 37798.78 38993.48 40795.72 41499.40 28496.18 38597.37 39697.73 41095.73 31599.58 39395.49 37981.40 42299.36 258
IB-MVS95.41 2095.30 38494.46 38897.84 36898.76 39295.33 39297.33 39696.07 40896.02 38695.37 41897.41 41676.17 41999.96 5697.54 27595.44 42098.22 399
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs398.08 31397.80 32298.91 30799.41 27797.69 34297.87 37299.66 15795.87 38799.50 22199.51 26190.35 37999.97 3598.55 18699.47 30899.08 329
FE-MVS97.85 32097.42 33499.15 27499.44 26798.75 26899.77 1698.20 38695.85 38899.33 26399.80 9088.86 38799.88 19896.40 34799.12 34498.81 367
无先验98.01 35799.23 32295.83 38999.85 24995.79 37499.44 235
BH-w/o97.20 34397.01 34597.76 37099.08 35595.69 38798.03 35698.52 37095.76 39097.96 38398.02 40595.62 31799.47 40692.82 40597.25 41098.12 404
PVSNet_Blended98.70 25998.59 25299.02 29399.54 22197.99 32597.58 38499.82 7395.70 39199.34 26198.98 36798.52 17799.77 32597.98 22999.83 17399.30 274
新几何199.52 17999.50 24299.22 21599.26 31595.66 39298.60 35499.28 32197.67 25399.89 18495.95 36899.32 32899.45 230
CMPMVSbinary77.52 2398.50 28098.19 29599.41 21798.33 40999.56 13799.01 24099.59 20495.44 39399.57 19199.80 9095.64 31699.46 40896.47 34499.92 10599.21 292
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MAR-MVS98.24 30397.92 31799.19 26998.78 38999.65 10999.17 18899.14 33795.36 39498.04 38198.81 38397.47 26299.72 34095.47 38099.06 34898.21 400
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验297.94 36695.33 39598.94 31799.88 19896.75 325
CDPH-MVS98.56 27398.20 29299.61 15199.50 24299.46 15498.32 32899.41 27795.22 39699.21 28999.10 35198.34 20099.82 28995.09 38899.66 25999.56 178
test22299.51 23699.08 23797.83 37499.29 30995.21 39798.68 34899.31 31597.28 27199.38 31999.43 241
PLCcopyleft97.35 1698.36 29397.99 30799.48 19299.32 30599.24 21298.50 31399.51 25195.19 39898.58 35698.96 37196.95 28599.83 27995.63 37699.25 33799.37 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131498.00 31797.90 31998.27 35498.90 37297.45 34999.30 14499.06 34394.98 39997.21 40199.12 34798.43 18799.67 37095.58 37898.56 38297.71 409
train_agg98.35 29697.95 31199.57 16599.35 29099.35 19098.11 34699.41 27794.90 40097.92 38498.99 36498.02 22899.85 24995.38 38299.44 31199.50 212
test_899.34 29999.31 19698.08 35099.40 28494.90 40097.87 38898.97 36998.02 22899.84 264
DP-MVS Recon98.50 28098.23 28999.31 24699.49 24799.46 15498.56 30499.63 17794.86 40298.85 33099.37 29997.81 24399.59 39296.08 35999.44 31198.88 361
TEST999.35 29099.35 19098.11 34699.41 27794.83 40397.92 38498.99 36498.02 22899.85 249
CostFormer96.71 35596.79 35496.46 39698.90 37290.71 42299.41 11498.68 36094.69 40498.14 37899.34 31186.32 40099.80 31197.60 27298.07 40098.88 361
PAPR97.56 33397.07 34399.04 29298.80 38598.11 31797.63 38199.25 31894.56 40598.02 38298.25 40297.43 26499.68 36590.90 41098.74 37299.33 265
gm-plane-assit97.59 42089.02 42693.47 40698.30 40099.84 26496.38 349
tpm296.35 36396.22 35896.73 39298.88 37791.75 41599.21 17598.51 37193.27 40797.89 38699.21 33784.83 40399.70 34796.04 36198.18 39598.75 374
tpm cat196.78 35296.98 34696.16 39998.85 37990.59 42399.08 22399.32 30192.37 40897.73 39599.46 27891.15 36599.69 35396.07 36098.80 36598.21 400
dongtai89.37 38788.91 39090.76 40399.19 33377.46 42895.47 41687.82 42792.28 40994.17 42098.82 38271.22 42695.54 42263.85 42297.34 40899.27 278
cascas96.99 34796.82 35397.48 37697.57 42295.64 38896.43 41299.56 22091.75 41097.13 40497.61 41595.58 31898.63 41796.68 32999.11 34598.18 403
QAPM98.40 29197.99 30799.65 12599.39 27999.47 15099.67 5099.52 24691.70 41198.78 34099.80 9098.55 16899.95 6694.71 39299.75 21799.53 195
OpenMVScopyleft98.12 1098.23 30497.89 32099.26 25999.19 33399.26 20599.65 5999.69 14491.33 41298.14 37899.77 11998.28 20599.96 5695.41 38199.55 29098.58 382
PAPM95.61 38294.71 38498.31 35199.12 34496.63 36896.66 41198.46 37490.77 41396.25 41298.68 38993.01 34799.69 35381.60 42197.86 40598.62 377
114514_t98.49 28298.11 30099.64 13299.73 13899.58 13499.24 16699.76 10589.94 41499.42 23999.56 24697.76 24899.86 23197.74 25499.82 18299.47 225
TAPA-MVS97.92 1398.03 31597.55 33199.46 19799.47 25899.44 16198.50 31399.62 18086.79 41599.07 30999.26 32698.26 20899.62 38597.28 29299.73 23099.31 272
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS96.03 1896.73 35495.86 36699.33 23899.44 26799.16 22496.87 40899.44 27186.58 41698.95 31699.40 29094.38 33199.88 19887.93 41499.80 19998.95 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 34196.84 35198.89 31499.29 31299.45 15998.87 26299.48 26086.54 41799.44 23299.74 13197.34 26999.86 23191.61 40799.28 33397.37 413
kuosan85.65 38984.57 39288.90 40597.91 41777.11 42996.37 41387.62 42885.24 41885.45 42396.83 42369.94 42890.98 42445.90 42395.83 41998.62 377
tmp_tt95.75 37995.42 37396.76 39089.90 42894.42 40098.86 26397.87 39478.01 41999.30 27699.69 16597.70 24995.89 42199.29 10698.14 39799.95 13
DeepMVS_CXcopyleft97.98 36199.69 15696.95 36299.26 31575.51 42095.74 41698.28 40196.47 29899.62 38591.23 40997.89 40397.38 412
MVS95.72 38094.63 38598.99 29598.56 40197.98 33099.30 14498.86 35072.71 42197.30 39899.08 35298.34 20099.74 33589.21 41198.33 38799.26 280
test_method91.72 38692.32 38989.91 40493.49 42770.18 43090.28 41899.56 22061.71 42295.39 41799.52 25993.90 33499.94 8198.76 17198.27 39099.62 145
EGC-MVSNET89.05 38885.52 39199.64 13299.89 3899.78 5199.56 8499.52 24624.19 42349.96 42499.83 7399.15 8399.92 12597.71 25799.85 16099.21 292
test12329.31 39033.05 39518.08 40625.93 43012.24 43197.53 38710.93 43111.78 42424.21 42550.08 43621.04 4298.60 42523.51 42432.43 42433.39 421
testmvs28.94 39133.33 39315.79 40726.03 4299.81 43296.77 40915.67 43011.55 42523.87 42650.74 43519.03 4308.53 42623.21 42533.07 42329.03 422
mmdepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
test_blank8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.88 39233.17 3940.00 4080.00 4310.00 4330.00 41999.62 1800.00 4260.00 42799.13 34399.82 130.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas16.61 39322.14 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 199.28 680.00 4270.00 4260.00 4250.00 423
sosnet-low-res8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
sosnet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
Regformer8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.26 40411.02 4070.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.16 3410.00 4310.00 4270.00 4260.00 4250.00 423
uanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS96.36 37495.20 385
MSC_two_6792asdad99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
No_MVS99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
eth-test20.00 431
eth-test0.00 431
OPU-MVS99.29 25099.12 34499.44 16199.20 17699.40 29099.00 10798.84 41696.54 33899.60 27799.58 171
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19899.61 18799.92 12597.88 23899.72 23699.77 63
GSMVS99.14 312
test_part299.62 18299.67 10199.55 204
sam_mvs190.81 37399.14 312
sam_mvs90.52 378
ambc99.20 26899.35 29098.53 28799.17 18899.46 26699.67 15399.80 9098.46 18499.70 34797.92 23499.70 24199.38 252
MTGPAbinary99.53 241
test_post199.14 19851.63 43489.54 38599.82 28996.86 318
test_post52.41 43390.25 38099.86 231
patchmatchnet-post99.62 21090.58 37699.94 81
GG-mvs-BLEND97.36 38097.59 42096.87 36599.70 3588.49 42694.64 41997.26 41980.66 40999.12 41291.50 40896.50 41596.08 419
MTMP99.09 22098.59 368
test9_res95.10 38799.44 31199.50 212
agg_prior294.58 39399.46 31099.50 212
agg_prior99.35 29099.36 18799.39 28797.76 39499.85 249
test_prior499.19 22198.00 359
test_prior99.46 19799.35 29099.22 21599.39 28799.69 35399.48 221
新几何298.04 354
旧先验199.49 24799.29 19999.26 31599.39 29497.67 25399.36 32299.46 229
原ACMM297.92 368
testdata299.89 18495.99 365
segment_acmp98.37 196
test1299.54 17699.29 31299.33 19399.16 33598.43 36597.54 26099.82 28999.47 30899.48 221
plane_prior799.58 19599.38 180
plane_prior699.47 25899.26 20597.24 272
plane_prior599.54 23299.82 28995.84 37299.78 20999.60 159
plane_prior499.25 328
plane_prior199.51 236
n20.00 432
nn0.00 432
door-mid99.83 68
lessismore_v099.64 13299.86 5399.38 18090.66 42299.89 5399.83 7394.56 33099.97 3599.56 6099.92 10599.57 176
test1199.29 309
door99.77 100
HQP5-MVS98.94 251
BP-MVS94.73 390
HQP4-MVS98.15 37499.70 34799.53 195
HQP3-MVS99.37 29299.67 256
HQP2-MVS96.67 291
NP-MVS99.40 27899.13 22798.83 380
ACMMP++_ref99.94 94
ACMMP++99.79 204
Test By Simon98.41 190