This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9599.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11799.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5999.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9599.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5999.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11799.92 2299.99 1699.92 18
MM99.55 16998.81 25499.05 21697.79 37599.99 299.48 21799.59 21996.29 29999.95 6499.94 1699.98 4199.88 25
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1699.99 1699.93 15
test_fmvsmvis_n_192099.84 1599.86 1299.81 4199.88 4599.55 13999.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3499.82 7399.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_vis1_n_192099.72 3699.88 699.27 24799.93 2697.84 32299.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
MVS_030499.17 17799.03 18799.59 15399.44 26098.90 24899.04 21995.32 39199.99 299.68 14399.57 23198.30 19799.97 3499.94 1699.98 4199.88 25
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3199.88 4599.64 11199.12 19799.91 3299.98 1499.95 3199.67 16799.67 2799.99 899.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4599.66 10299.11 20199.91 3299.98 1499.96 2399.64 17999.60 3499.99 899.95 1299.99 1699.88 25
SDMVSNet99.77 3099.77 3399.76 6599.80 8799.65 10899.63 6199.86 4899.97 1699.89 5499.89 3499.52 4499.99 899.42 7899.96 7199.65 113
sd_testset99.78 2799.78 3199.80 4699.80 8799.76 6299.80 1099.79 8599.97 1699.89 5499.89 3499.53 4399.99 899.36 8699.96 7199.65 113
UA-Net99.78 2799.76 3699.86 2599.72 14199.71 8499.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
mvsmamba99.74 3599.70 3999.85 2799.93 2699.83 2999.76 1999.81 7599.96 1899.91 4499.81 7998.60 15399.94 7899.58 5499.98 4199.77 61
test_fmvs399.83 1999.93 299.53 17599.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
bld_raw_dy_0_6499.70 4099.65 5099.85 2799.95 1599.77 5499.66 5399.71 12599.95 2099.91 4499.77 10898.35 190100.00 199.54 6099.99 1699.79 54
dcpmvs_299.61 6899.64 5499.53 17599.79 9998.82 25399.58 7699.97 1899.95 2099.96 2399.76 11298.44 17899.99 899.34 9099.96 7199.78 57
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5399.95 2099.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
test_cas_vis1_n_192099.76 3199.86 1299.45 19399.93 2698.40 28699.30 13599.98 1199.94 2499.99 799.89 3499.80 1599.97 3499.96 999.97 5699.97 7
test_f99.75 3299.88 699.37 22199.96 798.21 29899.51 90100.00 199.94 24100.00 199.93 1799.58 3699.94 7899.97 499.99 1699.97 7
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12599.93 2699.95 3199.89 3499.71 2299.96 5599.51 6599.97 5699.84 36
nrg03099.70 4099.66 4899.82 3899.76 11899.84 2499.61 6899.70 13199.93 2699.78 10199.68 16399.10 8799.78 30599.45 7199.96 7199.83 40
CS-MVS-test99.68 4699.70 3999.64 12999.57 20299.83 2999.78 1299.97 1899.92 2899.50 21499.38 28499.57 3899.95 6499.69 4399.90 11699.15 297
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4399.92 2899.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
test_fmvs299.72 3699.85 1699.34 22899.91 3298.08 31199.48 96100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
CS-MVS99.67 5299.70 3999.58 15799.53 22299.84 2499.79 1199.96 2399.90 3099.61 17599.41 27499.51 4599.95 6499.66 4599.89 12598.96 333
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4599.86 1899.72 3099.78 9199.90 3099.82 8199.83 6698.45 17799.87 20499.51 6599.97 5699.86 32
EU-MVSNet99.39 11699.62 5698.72 31699.88 4596.44 35899.56 8199.85 5399.90 3099.90 5099.85 5698.09 21599.83 26999.58 5499.95 8499.90 20
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 3099.97 1999.87 4799.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test250694.73 36294.59 36495.15 37999.59 18785.90 40599.75 2274.01 40599.89 3699.71 13399.86 5479.00 40199.90 15999.52 6499.99 1699.65 113
test111197.74 31098.16 28596.49 37399.60 18389.86 40399.71 3491.21 39999.89 3699.88 6299.87 4793.73 32799.90 15999.56 5799.99 1699.70 80
ECVR-MVScopyleft97.73 31198.04 29096.78 36799.59 18790.81 39999.72 3090.43 40199.89 3699.86 7199.86 5493.60 32999.89 17699.46 7099.99 1699.65 113
gg-mvs-nofinetune95.87 35595.17 35997.97 34498.19 39096.95 34999.69 4289.23 40399.89 3696.24 39199.94 1681.19 39499.51 38393.99 38098.20 37497.44 387
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4899.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 20
JIA-IIPM98.06 30097.92 30398.50 32598.59 37997.02 34898.80 26498.51 35799.88 4197.89 37099.87 4791.89 34599.90 15998.16 20597.68 38598.59 357
SSC-MVS99.52 8299.42 9999.83 3499.86 5599.65 10899.52 8699.81 7599.87 4299.81 8899.79 9396.78 28199.99 899.83 3299.51 29199.86 32
RRT_MVS99.67 5299.59 6599.91 299.94 1999.88 1299.78 1299.27 30299.87 4299.91 4499.87 4798.04 21999.96 5599.68 4499.99 1699.90 20
LFMVS98.46 27398.19 28399.26 25099.24 31498.52 27999.62 6396.94 38399.87 4299.31 25999.58 22291.04 35499.81 29398.68 17199.42 30599.45 225
DP-MVS99.48 8899.39 10299.74 8099.57 20299.62 11899.29 14299.61 17599.87 4299.74 12399.76 11298.69 13999.87 20498.20 19899.80 19399.75 70
test_vis1_n99.68 4699.79 2799.36 22599.94 1998.18 30199.52 86100.00 199.86 46100.00 199.88 4298.99 10299.96 5599.97 499.96 7199.95 11
FIs99.65 5999.58 6999.84 3199.84 6299.85 1999.66 5399.75 10499.86 4699.74 12399.79 9398.27 20099.85 23999.37 8499.93 10299.83 40
RPMNet98.60 25598.53 25298.83 30899.05 34598.12 30499.30 13599.62 16899.86 4699.16 28399.74 12092.53 34099.92 11798.75 16498.77 35398.44 367
UGNet99.38 11899.34 11299.49 18298.90 35898.90 24899.70 3599.35 28599.86 4698.57 34399.81 7998.50 17299.93 9599.38 8199.98 4199.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet99.69 4399.69 4399.68 10799.71 14499.91 499.76 1999.96 2399.86 4699.51 21299.39 28299.57 3899.93 9599.64 4899.86 15399.20 286
Anonymous2024052199.44 10099.42 9999.49 18299.89 4098.96 24199.62 6399.76 9999.85 5199.82 8199.88 4296.39 29599.97 3499.59 5199.98 4199.55 175
pmmvs699.86 999.86 1299.83 3499.94 1999.90 799.83 699.91 3299.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5699.69 84
VPA-MVSNet99.66 5499.62 5699.79 5299.68 16499.75 6899.62 6399.69 13799.85 5199.80 9299.81 7998.81 12099.91 14199.47 6999.88 13499.70 80
IterMVS-SCA-FT99.00 21199.16 14698.51 32499.75 12995.90 36898.07 33099.84 5999.84 5499.89 5499.73 12496.01 30499.99 899.33 93100.00 199.63 128
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6699.84 5499.94 3499.91 2499.13 8699.96 5599.83 3299.99 1699.83 40
PatchT98.45 27598.32 27198.83 30898.94 35698.29 29399.24 15798.82 34299.84 5499.08 29499.76 11291.37 34999.94 7898.82 15599.00 34298.26 373
KD-MVS_self_test99.63 6099.59 6599.76 6599.84 6299.90 799.37 11799.79 8599.83 5799.88 6299.85 5698.42 18199.90 15999.60 5099.73 22399.49 212
IterMVS98.97 21599.16 14698.42 32899.74 13595.64 37198.06 33299.83 6199.83 5799.85 7399.74 12096.10 30399.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVS99.44 10099.32 11799.80 4699.81 8199.61 12499.47 9999.81 7599.82 5999.71 13399.72 13196.60 28599.98 2199.75 3999.23 33199.82 46
test_fmvs1_n99.68 4699.81 2399.28 24499.95 1597.93 32099.49 95100.00 199.82 5999.99 799.89 3499.21 7599.98 2199.97 499.98 4199.93 15
Anonymous2023121199.62 6699.57 7299.76 6599.61 18199.60 12799.81 999.73 11399.82 5999.90 5099.90 2997.97 22699.86 22299.42 7899.96 7199.80 47
VDDNet98.97 21598.82 22599.42 20299.71 14498.81 25499.62 6398.68 34899.81 6299.38 24499.80 8394.25 32099.85 23998.79 15999.32 31899.59 160
VPNet99.46 9699.37 10799.71 10099.82 7399.59 12999.48 9699.70 13199.81 6299.69 14099.58 22297.66 24999.86 22299.17 11899.44 30199.67 96
Gipumacopyleft99.57 7199.59 6599.49 18299.98 399.71 8499.72 3099.84 5999.81 6299.94 3499.78 10198.91 11299.71 33098.41 18299.95 8499.05 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
iter_conf_final98.75 24198.54 25099.40 21199.33 29598.75 26099.26 14999.59 19399.80 6599.76 10899.58 22290.17 36799.92 11799.37 8499.97 5699.54 183
VDD-MVS99.20 16699.11 15999.44 19699.43 26498.98 23799.50 9198.32 36699.80 6599.56 19399.69 15296.99 27699.85 23998.99 13899.73 22399.50 207
OurMVSNet-221017-099.75 3299.71 3899.84 3199.96 799.83 2999.83 699.85 5399.80 6599.93 3799.93 1798.54 16299.93 9599.59 5199.98 4199.76 67
iter_conf0598.46 27398.23 27699.15 26599.04 34797.99 31399.10 20499.61 17599.79 6899.76 10899.58 22287.88 37799.92 11799.31 9899.97 5699.53 189
casdiffmvspermissive99.63 6099.61 6099.67 11099.79 9999.59 12999.13 19399.85 5399.79 6899.76 10899.72 13199.33 6199.82 27899.21 10999.94 9599.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs199.48 8899.65 5098.97 28799.54 21697.16 34499.11 20199.98 1199.78 7099.96 2399.81 7998.72 13799.97 3499.95 1299.97 5699.79 54
mvs_anonymous99.28 14099.39 10298.94 29099.19 32497.81 32499.02 22699.55 21699.78 7099.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 297
K. test v398.87 23198.60 24099.69 10599.93 2699.46 15299.74 2494.97 39299.78 7099.88 6299.88 4293.66 32899.97 3499.61 4999.95 8499.64 123
MIMVSNet199.66 5499.62 5699.80 4699.94 1999.87 1599.69 4299.77 9499.78 7099.93 3799.89 3497.94 22799.92 11799.65 4699.98 4199.62 139
mvsany_test399.85 1199.88 699.75 7599.95 1599.37 17999.53 8599.98 1199.77 7499.99 799.95 1399.85 1099.94 7899.95 1299.98 4199.94 13
EPNet98.13 29697.77 31199.18 26294.57 40197.99 31399.24 15797.96 37199.74 7597.29 38299.62 19793.13 33399.97 3498.59 17499.83 17099.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 76100.00 199.89 3499.79 1699.88 19099.98 1100.00 199.98 3
pm-mvs199.79 2699.79 2799.78 5599.91 3299.83 2999.76 1999.87 4599.73 7699.89 5499.87 4799.63 2999.87 20499.54 6099.92 10699.63 128
MVSFormer99.41 11099.44 9599.31 23899.57 20298.40 28699.77 1599.80 7999.73 7699.63 16099.30 30398.02 22199.98 2199.43 7399.69 23899.55 175
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7999.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
tt080599.63 6099.57 7299.81 4199.87 5299.88 1299.58 7698.70 34799.72 8099.91 4499.60 21499.43 4899.81 29399.81 3699.53 28799.73 72
DTE-MVSNet99.68 4699.61 6099.88 1799.80 8799.87 1599.67 4999.71 12599.72 8099.84 7699.78 10198.67 14399.97 3499.30 9999.95 8499.80 47
patch_mono-299.51 8399.46 9099.64 12999.70 15299.11 22499.04 21999.87 4599.71 8299.47 21999.79 9398.24 20299.98 2199.38 8199.96 7199.83 40
tfpnnormal99.43 10399.38 10499.60 15199.87 5299.75 6899.59 7499.78 9199.71 8299.90 5099.69 15298.85 11899.90 15997.25 28399.78 20399.15 297
casdiffmvs_mvgpermissive99.68 4699.68 4699.69 10599.81 8199.59 12999.29 14299.90 3799.71 8299.79 9799.73 12499.54 4199.84 25499.36 8699.96 7199.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline99.63 6099.62 5699.66 11799.80 8799.62 11899.44 10599.80 7999.71 8299.72 12899.69 15299.15 8199.83 26999.32 9599.94 9599.53 189
PMVScopyleft92.94 2198.82 23598.81 22698.85 30499.84 6297.99 31399.20 16799.47 25299.71 8299.42 23199.82 7398.09 21599.47 38593.88 38199.85 15799.07 322
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5399.70 8799.92 4199.93 1799.45 4799.97 3499.36 86100.00 199.85 35
PEN-MVS99.66 5499.59 6599.89 1199.83 6699.87 1599.66 5399.73 11399.70 8799.84 7699.73 12498.56 15999.96 5599.29 10299.94 9599.83 40
TransMVSNet (Re)99.78 2799.77 3399.81 4199.91 3299.85 1999.75 2299.86 4899.70 8799.91 4499.89 3499.60 3499.87 20499.59 5199.74 21899.71 77
FOURS199.83 6699.89 1099.74 2499.71 12599.69 9099.63 160
TDRefinement99.72 3699.70 3999.77 5899.90 3899.85 1999.86 599.92 2999.69 9099.78 10199.92 2199.37 5699.88 19098.93 15099.95 8499.60 153
h-mvs3398.61 25398.34 26999.44 19699.60 18398.67 26599.27 14799.44 26099.68 9299.32 25599.49 25792.50 341100.00 199.24 10696.51 39299.65 113
hse-mvs298.52 26598.30 27399.16 26399.29 30498.60 27598.77 26999.02 33499.68 9299.32 25599.04 34392.50 34199.85 23999.24 10697.87 38399.03 326
EI-MVSNet-UG-set99.48 8899.50 8499.42 20299.57 20298.65 27199.24 15799.46 25599.68 9299.80 9299.66 17298.99 10299.89 17699.19 11399.90 11699.72 74
Baseline_NR-MVSNet99.49 8699.37 10799.82 3899.91 3299.84 2498.83 25699.86 4899.68 9299.65 15599.88 4297.67 24599.87 20499.03 13599.86 15399.76 67
EI-MVSNet-Vis-set99.47 9599.49 8599.42 20299.57 20298.66 26899.24 15799.46 25599.67 9699.79 9799.65 17798.97 10699.89 17699.15 12199.89 12599.71 77
VNet99.18 17399.06 17699.56 16699.24 31499.36 18399.33 12599.31 29499.67 9699.47 21999.57 23196.48 28999.84 25499.15 12199.30 32099.47 220
FMVSNet199.66 5499.63 5599.73 8999.78 10699.77 5499.68 4599.70 13199.67 9699.82 8199.83 6698.98 10499.90 15999.24 10699.97 5699.53 189
Vis-MVSNetpermissive99.75 3299.74 3799.79 5299.88 4599.66 10299.69 4299.92 2999.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 4199.72 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
CVMVSNet98.61 25398.88 21797.80 34999.58 19293.60 38599.26 14999.64 16399.66 10099.72 12899.67 16793.26 33199.93 9599.30 9999.81 18899.87 30
TAMVS99.49 8699.45 9299.63 13699.48 24599.42 16699.45 10399.57 20599.66 10099.78 10199.83 6697.85 23499.86 22299.44 7299.96 7199.61 149
SixPastTwentyTwo99.42 10699.30 12499.76 6599.92 3199.67 10099.70 3599.14 32699.65 10299.89 5499.90 2996.20 30199.94 7899.42 7899.92 10699.67 96
Patchmtry98.78 23898.54 25099.49 18298.89 36199.19 21799.32 12799.67 14499.65 10299.72 12899.79 9391.87 34699.95 6498.00 21599.97 5699.33 258
alignmvs98.28 28797.96 29699.25 25399.12 33498.93 24599.03 22398.42 36199.64 10498.72 33197.85 39290.86 35999.62 36798.88 15199.13 33399.19 289
v899.68 4699.69 4399.65 12299.80 8799.40 17299.66 5399.76 9999.64 10499.93 3799.85 5698.66 14599.84 25499.88 2999.99 1699.71 77
canonicalmvs99.02 20599.00 19599.09 27599.10 34098.70 26499.61 6899.66 14899.63 10698.64 33797.65 39599.04 9899.54 37898.79 15998.92 34699.04 325
EI-MVSNet99.38 11899.44 9599.21 25799.58 19298.09 30899.26 14999.46 25599.62 10799.75 11599.67 16798.54 16299.85 23999.15 12199.92 10699.68 90
PS-CasMVS99.66 5499.58 6999.89 1199.80 8799.85 1999.66 5399.73 11399.62 10799.84 7699.71 13998.62 14999.96 5599.30 9999.96 7199.86 32
IterMVS-LS99.41 11099.47 8699.25 25399.81 8198.09 30898.85 25399.76 9999.62 10799.83 8099.64 17998.54 16299.97 3499.15 12199.99 1699.68 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
xiu_mvs_v1_base_debu99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base_debi99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
diffmvspermissive99.34 13199.32 11799.39 21599.67 16998.77 25998.57 28799.81 7599.61 11099.48 21799.41 27498.47 17399.86 22298.97 14299.90 11699.53 189
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TranMVSNet+NR-MVSNet99.54 7999.47 8699.76 6599.58 19299.64 11199.30 13599.63 16599.61 11099.71 13399.56 23598.76 13099.96 5599.14 12799.92 10699.68 90
LS3D99.24 15099.11 15999.61 14898.38 38599.79 4699.57 7999.68 14099.61 11099.15 28599.71 13998.70 13899.91 14197.54 26199.68 24399.13 305
v1099.69 4399.69 4399.66 11799.81 8199.39 17499.66 5399.75 10499.60 11699.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 72
test20.0399.55 7799.54 7899.58 15799.79 9999.37 17999.02 22699.89 3999.60 11699.82 8199.62 19798.81 12099.89 17699.43 7399.86 15399.47 220
DSMNet-mixed99.48 8899.65 5098.95 28999.71 14497.27 34199.50 9199.82 6699.59 11899.41 23799.85 5699.62 31100.00 199.53 6399.89 12599.59 160
WR-MVS_H99.61 6899.53 8299.87 2199.80 8799.83 2999.67 4999.75 10499.58 11999.85 7399.69 15298.18 21199.94 7899.28 10499.95 8499.83 40
CP-MVSNet99.54 7999.43 9799.87 2199.76 11899.82 3599.57 7999.61 17599.54 12099.80 9299.64 17997.79 23899.95 6499.21 10999.94 9599.84 36
test_040299.22 15999.14 15099.45 19399.79 9999.43 16399.28 14499.68 14099.54 12099.40 24299.56 23599.07 9499.82 27896.01 34199.96 7199.11 306
ACMH+98.40 899.50 8499.43 9799.71 10099.86 5599.76 6299.32 12799.77 9499.53 12299.77 10699.76 11299.26 7099.78 30597.77 23699.88 13499.60 153
COLMAP_ROBcopyleft98.06 1299.45 9899.37 10799.70 10499.83 6699.70 9199.38 11399.78 9199.53 12299.67 14999.78 10199.19 7799.86 22297.32 27399.87 14599.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Fast-Effi-MVS+-dtu99.20 16699.12 15699.43 20099.25 31299.69 9599.05 21699.82 6699.50 12498.97 30299.05 34198.98 10499.98 2198.20 19899.24 32998.62 355
new-patchmatchnet99.35 12699.57 7298.71 31899.82 7396.62 35698.55 28999.75 10499.50 12499.88 6299.87 4799.31 6299.88 19099.43 73100.00 199.62 139
ETV-MVS99.18 17399.18 14499.16 26399.34 29099.28 19799.12 19799.79 8599.48 12698.93 30698.55 37999.40 4999.93 9598.51 17899.52 29098.28 372
CANet_DTU98.91 22498.85 22099.09 27598.79 37098.13 30398.18 31699.31 29499.48 12698.86 31799.51 25096.56 28699.95 6499.05 13499.95 8499.19 289
UnsupCasMVSNet_eth98.83 23498.57 24699.59 15399.68 16499.45 15798.99 23699.67 14499.48 12699.55 19899.36 29094.92 31299.86 22298.95 14896.57 39199.45 225
EPP-MVSNet99.17 17799.00 19599.66 11799.80 8799.43 16399.70 3599.24 31199.48 12699.56 19399.77 10894.89 31399.93 9598.72 16799.89 12599.63 128
Anonymous2024052999.42 10699.34 11299.65 12299.53 22299.60 12799.63 6199.39 27699.47 13099.76 10899.78 10198.13 21399.86 22298.70 16899.68 24399.49 212
xiu_mvs_v2_base99.02 20599.11 15998.77 31399.37 27798.09 30898.13 32299.51 24099.47 13099.42 23198.54 38099.38 5499.97 3498.83 15399.33 31698.24 374
PS-MVSNAJ99.00 21199.08 17098.76 31499.37 27798.10 30798.00 33799.51 24099.47 13099.41 23798.50 38299.28 6699.97 3498.83 15399.34 31598.20 378
GeoE99.69 4399.66 4899.78 5599.76 11899.76 6299.60 7399.82 6699.46 13399.75 11599.56 23599.63 2999.95 6499.43 7399.88 13499.62 139
NR-MVSNet99.40 11299.31 11999.68 10799.43 26499.55 13999.73 2799.50 24499.46 13399.88 6299.36 29097.54 25299.87 20498.97 14299.87 14599.63 128
CDS-MVSNet99.22 15999.13 15299.50 18199.35 28299.11 22498.96 24299.54 22299.46 13399.61 17599.70 14696.31 29799.83 26999.34 9099.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
E-PMN97.14 33097.43 31896.27 37598.79 37091.62 39495.54 39299.01 33699.44 13698.88 31399.12 33392.78 33799.68 34894.30 37499.03 34097.50 386
GBi-Net99.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
test199.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
FMVSNet299.35 12699.28 13199.55 16999.49 24099.35 18699.45 10399.57 20599.44 13699.70 13799.74 12097.21 26699.87 20499.03 13599.94 9599.44 230
3Dnovator+98.92 399.35 12699.24 13999.67 11099.35 28299.47 14899.62 6399.50 24499.44 13699.12 29099.78 10198.77 12999.94 7897.87 22899.72 22999.62 139
testf199.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
APD_test299.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
UniMVSNet_NR-MVSNet99.37 12199.25 13799.72 9599.47 25199.56 13698.97 24099.61 17599.43 14199.67 14999.28 30797.85 23499.95 6499.17 11899.81 18899.65 113
UniMVSNet (Re)99.37 12199.26 13599.68 10799.51 22999.58 13398.98 23999.60 18799.43 14199.70 13799.36 29097.70 24199.88 19099.20 11299.87 14599.59 160
pmmvs-eth3d99.48 8899.47 8699.51 17999.77 11499.41 17198.81 26199.66 14899.42 14599.75 11599.66 17299.20 7699.76 31598.98 14099.99 1699.36 251
XXY-MVS99.71 3999.67 4799.81 4199.89 4099.72 8299.59 7499.82 6699.39 14699.82 8199.84 6299.38 5499.91 14199.38 8199.93 10299.80 47
DU-MVS99.33 13499.21 14199.71 10099.43 26499.56 13698.83 25699.53 23199.38 14799.67 14999.36 29097.67 24599.95 6499.17 11899.81 18899.63 128
IS-MVSNet99.03 20398.85 22099.55 16999.80 8799.25 20499.73 2799.15 32599.37 14899.61 17599.71 13994.73 31699.81 29397.70 24799.88 13499.58 165
MVEpermissive92.54 2296.66 34096.11 34498.31 33699.68 16497.55 33397.94 34495.60 39099.37 14890.68 39998.70 37396.56 28698.61 39786.94 39799.55 28098.77 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DELS-MVS99.34 13199.30 12499.48 18699.51 22999.36 18398.12 32399.53 23199.36 15099.41 23799.61 20699.22 7499.87 20499.21 10999.68 24399.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Effi-MVS+-dtu99.07 19598.92 21299.52 17798.89 36199.78 4999.15 18599.66 14899.34 15198.92 30999.24 31997.69 24399.98 2198.11 20899.28 32398.81 347
EMVS96.96 33397.28 32295.99 37898.76 37491.03 39795.26 39398.61 35299.34 15198.92 30998.88 36493.79 32599.66 35792.87 38299.05 33897.30 390
baseline197.73 31197.33 32198.96 28899.30 30297.73 32899.40 10998.42 36199.33 15399.46 22399.21 32391.18 35299.82 27898.35 18691.26 39799.32 261
dmvs_re98.69 24998.48 25499.31 23899.55 21499.42 16699.54 8498.38 36499.32 15498.72 33198.71 37296.76 28299.21 39096.01 34199.35 31499.31 265
EG-PatchMatch MVS99.57 7199.56 7799.62 14599.77 11499.33 18999.26 14999.76 9999.32 15499.80 9299.78 10199.29 6499.87 20499.15 12199.91 11599.66 105
XVS99.27 14499.11 15999.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32899.47 26498.47 17399.88 19097.62 25599.73 22399.67 96
X-MVStestdata96.09 35194.87 36099.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32861.30 40698.47 17399.88 19097.62 25599.73 22399.67 96
MDA-MVSNet-bldmvs99.06 19699.05 18099.07 27999.80 8797.83 32398.89 24899.72 12299.29 15699.63 16099.70 14696.47 29099.89 17698.17 20499.82 17999.50 207
Anonymous20240521198.75 24198.46 25699.63 13699.34 29099.66 10299.47 9997.65 37699.28 15999.56 19399.50 25393.15 33299.84 25498.62 17399.58 27499.40 241
mvsany_test199.44 10099.45 9299.40 21199.37 27798.64 27297.90 34999.59 19399.27 16099.92 4199.82 7399.74 2099.93 9599.55 5999.87 14599.63 128
MTAPA99.35 12699.20 14299.80 4699.81 8199.81 4099.33 12599.53 23199.27 16099.42 23199.63 19098.21 20799.95 6497.83 23599.79 19899.65 113
MVSTER98.47 27298.22 27899.24 25599.06 34498.35 29299.08 21299.46 25599.27 16099.75 11599.66 17288.61 37599.85 23999.14 12799.92 10699.52 200
DeepC-MVS98.90 499.62 6699.61 6099.67 11099.72 14199.44 15999.24 15799.71 12599.27 16099.93 3799.90 2999.70 2499.93 9598.99 13899.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet99.11 19099.05 18099.28 24498.83 36598.56 27698.71 27599.41 26699.25 16499.23 27299.22 32197.66 24999.94 7899.19 11399.97 5699.33 258
v2v48299.50 8499.47 8699.58 15799.78 10699.25 20499.14 18799.58 20399.25 16499.81 8899.62 19798.24 20299.84 25499.83 3299.97 5699.64 123
V4299.56 7499.54 7899.63 13699.79 9999.46 15299.39 11199.59 19399.24 16699.86 7199.70 14698.55 16099.82 27899.79 3799.95 8499.60 153
EPNet_dtu97.62 31697.79 31097.11 36696.67 39892.31 39098.51 29598.04 36999.24 16695.77 39399.47 26493.78 32699.66 35798.98 14099.62 25999.37 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_one_060199.63 17699.76 6299.55 21699.23 16899.31 25999.61 20698.59 154
Anonymous2023120699.35 12699.31 11999.47 18899.74 13599.06 23499.28 14499.74 10999.23 16899.72 12899.53 24697.63 25199.88 19099.11 12999.84 16299.48 216
FMVSNet398.80 23798.63 23999.32 23599.13 33298.72 26399.10 20499.48 24999.23 16899.62 16999.64 17992.57 33899.86 22298.96 14499.90 11699.39 243
3Dnovator99.15 299.43 10399.36 11099.65 12299.39 27299.42 16699.70 3599.56 21099.23 16899.35 24799.80 8399.17 7999.95 6498.21 19799.84 16299.59 160
SD-MVS99.01 20999.30 12498.15 34099.50 23599.40 17298.94 24599.61 17599.22 17299.75 11599.82 7399.54 4195.51 40097.48 26599.87 14599.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
v114499.54 7999.53 8299.59 15399.79 9999.28 19799.10 20499.61 17599.20 17399.84 7699.73 12498.67 14399.84 25499.86 3199.98 4199.64 123
APD-MVS_3200maxsize99.31 13799.16 14699.74 8099.53 22299.75 6899.27 14799.61 17599.19 17499.57 18699.64 17998.76 13099.90 15997.29 27599.62 25999.56 172
APD_test199.36 12499.28 13199.61 14899.89 4099.89 1099.32 12799.74 10999.18 17599.69 14099.75 11798.41 18299.84 25497.85 23199.70 23499.10 308
DVP-MVS++99.38 11899.25 13799.77 5899.03 34899.77 5499.74 2499.61 17599.18 17599.76 10899.61 20699.00 10099.92 11797.72 24299.60 26999.62 139
test_0728_THIRD99.18 17599.62 16999.61 20698.58 15699.91 14197.72 24299.80 19399.77 61
v14419299.55 7799.54 7899.58 15799.78 10699.20 21699.11 20199.62 16899.18 17599.89 5499.72 13198.66 14599.87 20499.88 2999.97 5699.66 105
v119299.57 7199.57 7299.57 16399.77 11499.22 21199.04 21999.60 18799.18 17599.87 7099.72 13199.08 9299.85 23999.89 2899.98 4199.66 105
v14899.40 11299.41 10199.39 21599.76 11898.94 24299.09 20999.59 19399.17 18099.81 8899.61 20698.41 18299.69 33899.32 9599.94 9599.53 189
MVS_Test99.28 14099.31 11999.19 26099.35 28298.79 25799.36 12099.49 24899.17 18099.21 27799.67 16798.78 12799.66 35799.09 13199.66 25299.10 308
SR-MVS-dyc-post99.27 14499.11 15999.73 8999.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.41 18299.91 14197.27 27899.61 26699.54 183
RE-MVS-def99.13 15299.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.57 15797.27 27899.61 26699.54 183
DVP-MVScopyleft99.32 13699.17 14599.77 5899.69 15699.80 4499.14 18799.31 29499.16 18299.62 16999.61 20698.35 19099.91 14197.88 22599.72 22999.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.69 15699.80 4499.24 15799.57 20599.16 18299.73 12799.65 17798.35 190
v192192099.56 7499.57 7299.55 16999.75 12999.11 22499.05 21699.61 17599.15 18699.88 6299.71 13999.08 9299.87 20499.90 2599.97 5699.66 105
v124099.56 7499.58 6999.51 17999.80 8799.00 23599.00 23199.65 15799.15 18699.90 5099.75 11799.09 8999.88 19099.90 2599.96 7199.67 96
SED-MVS99.40 11299.28 13199.77 5899.69 15699.82 3599.20 16799.54 22299.13 18899.82 8199.63 19098.91 11299.92 11797.85 23199.70 23499.58 165
test_241102_TWO99.54 22299.13 18899.76 10899.63 19098.32 19699.92 11797.85 23199.69 23899.75 70
MVS-HIRNet97.86 30598.22 27896.76 36899.28 30791.53 39598.38 30592.60 39899.13 18899.31 25999.96 1297.18 27099.68 34898.34 18799.83 17099.07 322
test_241102_ONE99.69 15699.82 3599.54 22299.12 19199.82 8199.49 25798.91 11299.52 382
Vis-MVSNet (Re-imp)98.77 23998.58 24599.34 22899.78 10698.88 25099.61 6899.56 21099.11 19299.24 27199.56 23593.00 33699.78 30597.43 26899.89 12599.35 254
ppachtmachnet_test98.89 22999.12 15698.20 33999.66 17095.24 37597.63 35999.68 14099.08 19399.78 10199.62 19798.65 14799.88 19098.02 21199.96 7199.48 216
DeepC-MVS_fast98.47 599.23 15199.12 15699.56 16699.28 30799.22 21198.99 23699.40 27399.08 19399.58 18399.64 17998.90 11599.83 26997.44 26799.75 21199.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
save fliter99.53 22299.25 20498.29 31099.38 28099.07 195
our_test_398.85 23399.09 16898.13 34199.66 17094.90 37897.72 35599.58 20399.07 19599.64 15699.62 19798.19 20999.93 9598.41 18299.95 8499.55 175
tttt051797.62 31697.20 32598.90 30299.76 11897.40 33899.48 9694.36 39499.06 19799.70 13799.49 25784.55 39199.94 7898.73 16699.65 25499.36 251
WR-MVS99.11 19098.93 20899.66 11799.30 30299.42 16698.42 30399.37 28199.04 19899.57 18699.20 32596.89 27899.86 22298.66 17299.87 14599.70 80
test_vis1_rt99.45 9899.46 9099.41 20999.71 14498.63 27398.99 23699.96 2399.03 19999.95 3199.12 33398.75 13299.84 25499.82 3599.82 17999.77 61
miper_lstm_enhance98.65 25298.60 24098.82 31199.20 32297.33 34097.78 35399.66 14899.01 20099.59 18199.50 25394.62 31799.85 23998.12 20799.90 11699.26 272
APDe-MVScopyleft99.48 8899.36 11099.85 2799.55 21499.81 4099.50 9199.69 13798.99 20199.75 11599.71 13998.79 12599.93 9598.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ACMM98.09 1199.46 9699.38 10499.72 9599.80 8799.69 9599.13 19399.65 15798.99 20199.64 15699.72 13199.39 5099.86 22298.23 19599.81 18899.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_yl98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
DCV-MVSNet98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
MIMVSNet98.43 27698.20 28099.11 27299.53 22298.38 29099.58 7698.61 35298.96 20599.33 25299.76 11290.92 35699.81 29397.38 27199.76 20999.15 297
PMMVS299.48 8899.45 9299.57 16399.76 11898.99 23698.09 32799.90 3798.95 20699.78 10199.58 22299.57 3899.93 9599.48 6899.95 8499.79 54
eth_miper_zixun_eth98.68 25098.71 23398.60 32099.10 34096.84 35397.52 36799.54 22298.94 20799.58 18399.48 26096.25 30099.76 31598.01 21499.93 10299.21 282
HQP_MVS98.90 22698.68 23699.55 16999.58 19299.24 20898.80 26499.54 22298.94 20799.14 28799.25 31497.24 26499.82 27895.84 35099.78 20399.60 153
plane_prior298.80 26498.94 207
LCM-MVSNet-Re99.28 14099.15 14999.67 11099.33 29599.76 6299.34 12299.97 1898.93 21099.91 4499.79 9398.68 14099.93 9596.80 30599.56 27699.30 267
MDA-MVSNet_test_wron98.95 22198.99 20098.85 30499.64 17497.16 34498.23 31499.33 28898.93 21099.56 19399.66 17297.39 25999.83 26998.29 19099.88 13499.55 175
YYNet198.95 22198.99 20098.84 30699.64 17497.14 34698.22 31599.32 29098.92 21299.59 18199.66 17297.40 25799.83 26998.27 19299.90 11699.55 175
Patchmatch-RL test98.60 25598.36 26699.33 23199.77 11499.07 23298.27 31199.87 4598.91 21399.74 12399.72 13190.57 36399.79 30298.55 17699.85 15799.11 306
cl____98.54 26398.41 26198.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.85 32499.78 30597.97 21899.89 12599.17 293
DIV-MVS_self_test98.54 26398.42 26098.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.87 32399.78 30597.97 21899.89 12599.18 291
c3_l98.72 24698.71 23398.72 31699.12 33497.22 34397.68 35899.56 21098.90 21499.54 20099.48 26096.37 29699.73 32497.88 22599.88 13499.21 282
MG-MVS98.52 26598.39 26398.94 29099.15 32997.39 33998.18 31699.21 31898.89 21799.23 27299.63 19097.37 26099.74 32194.22 37599.61 26699.69 84
FMVSNet597.80 30897.25 32499.42 20298.83 36598.97 23999.38 11399.80 7998.87 21899.25 26899.69 15280.60 39699.91 14198.96 14499.90 11699.38 245
ab-mvs99.33 13499.28 13199.47 18899.57 20299.39 17499.78 1299.43 26398.87 21899.57 18699.82 7398.06 21899.87 20498.69 17099.73 22399.15 297
SR-MVS99.19 16999.00 19599.74 8099.51 22999.72 8299.18 17299.60 18798.85 22099.47 21999.58 22298.38 18799.92 11796.92 29799.54 28599.57 170
MSLP-MVS++99.05 19999.09 16898.91 29699.21 31998.36 29198.82 26099.47 25298.85 22098.90 31299.56 23598.78 12799.09 39298.57 17599.68 24399.26 272
PM-MVS99.36 12499.29 12999.58 15799.83 6699.66 10298.95 24399.86 4898.85 22099.81 8899.73 12498.40 18699.92 11798.36 18599.83 17099.17 293
MSDG99.08 19498.98 20399.37 22199.60 18399.13 22297.54 36399.74 10998.84 22399.53 20599.55 24299.10 8799.79 30297.07 29299.86 15399.18 291
pmmvs599.19 16999.11 15999.42 20299.76 11898.88 25098.55 28999.73 11398.82 22499.72 12899.62 19796.56 28699.82 27899.32 9599.95 8499.56 172
Effi-MVS+99.06 19698.97 20499.34 22899.31 29898.98 23798.31 30999.91 3298.81 22598.79 32598.94 35999.14 8499.84 25498.79 15998.74 35799.20 286
Patchmatch-test98.10 29897.98 29598.48 32699.27 30996.48 35799.40 10999.07 33098.81 22599.23 27299.57 23190.11 36899.87 20496.69 31099.64 25699.09 312
CHOSEN 280x42098.41 27898.41 26198.40 32999.34 29095.89 36996.94 38599.44 26098.80 22799.25 26899.52 24893.51 33099.98 2198.94 14999.98 4199.32 261
CSCG99.37 12199.29 12999.60 15199.71 14499.46 15299.43 10799.85 5398.79 22899.41 23799.60 21498.92 11099.92 11798.02 21199.92 10699.43 236
TinyColmap98.97 21598.93 20899.07 27999.46 25598.19 29997.75 35499.75 10498.79 22899.54 20099.70 14698.97 10699.62 36796.63 31699.83 17099.41 240
dmvs_testset97.27 32696.83 33698.59 32199.46 25597.55 33399.25 15696.84 38498.78 23097.24 38397.67 39497.11 27298.97 39486.59 39898.54 36799.27 271
pmmvs499.13 18599.06 17699.36 22599.57 20299.10 22998.01 33599.25 30898.78 23099.58 18399.44 27198.24 20299.76 31598.74 16599.93 10299.22 280
TSAR-MVS + MP.99.34 13199.24 13999.63 13699.82 7399.37 17999.26 14999.35 28598.77 23299.57 18699.70 14699.27 6999.88 19097.71 24499.75 21199.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
thres600view796.60 34196.16 34397.93 34599.63 17696.09 36699.18 17297.57 37798.77 23298.72 33197.32 39887.04 38199.72 32688.57 39098.62 36497.98 382
ACMH98.42 699.59 7099.54 7899.72 9599.86 5599.62 11899.56 8199.79 8598.77 23299.80 9299.85 5699.64 2899.85 23998.70 16899.89 12599.70 80
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVS_111021_HR99.12 18799.02 18999.40 21199.50 23599.11 22497.92 34699.71 12598.76 23599.08 29499.47 26499.17 7999.54 37897.85 23199.76 20999.54 183
thres100view90096.39 34596.03 34697.47 35699.63 17695.93 36799.18 17297.57 37798.75 23698.70 33497.31 39987.04 38199.67 35387.62 39398.51 36896.81 391
testing396.48 34395.63 35399.01 28499.23 31697.81 32498.90 24799.10 32998.72 23797.84 37497.92 39172.44 40399.85 23997.21 28699.33 31699.35 254
DeepPCF-MVS98.42 699.18 17399.02 18999.67 11099.22 31799.75 6897.25 37799.47 25298.72 23799.66 15399.70 14699.29 6499.63 36698.07 21099.81 18899.62 139
jason99.16 17999.11 15999.32 23599.75 12998.44 28398.26 31299.39 27698.70 23999.74 12399.30 30398.54 16299.97 3498.48 17999.82 17999.55 175
jason: jason.
MVS_111021_LR99.13 18599.03 18799.42 20299.58 19299.32 19197.91 34899.73 11398.68 24099.31 25999.48 26099.09 8999.66 35797.70 24799.77 20799.29 270
CHOSEN 1792x268899.39 11699.30 12499.65 12299.88 4599.25 20498.78 26899.88 4398.66 24199.96 2399.79 9397.45 25599.93 9599.34 9099.99 1699.78 57
NCCC98.82 23598.57 24699.58 15799.21 31999.31 19298.61 27799.25 30898.65 24298.43 34999.26 31297.86 23299.81 29396.55 31899.27 32699.61 149
HyFIR lowres test98.91 22498.64 23799.73 8999.85 5999.47 14898.07 33099.83 6198.64 24399.89 5499.60 21492.57 338100.00 199.33 9399.97 5699.72 74
MVP-Stereo99.16 17999.08 17099.43 20099.48 24599.07 23299.08 21299.55 21698.63 24499.31 25999.68 16398.19 20999.78 30598.18 20299.58 27499.45 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
AllTest99.21 16499.07 17499.63 13699.78 10699.64 11199.12 19799.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
TestCases99.63 13699.78 10699.64 11199.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
thisisatest053097.45 32196.95 33198.94 29099.68 16497.73 32899.09 20994.19 39698.61 24799.56 19399.30 30384.30 39299.93 9598.27 19299.54 28599.16 295
API-MVS98.38 28198.39 26398.35 33198.83 36599.26 20199.14 18799.18 32298.59 24898.66 33698.78 36998.61 15199.57 37594.14 37699.56 27696.21 393
CNVR-MVS98.99 21498.80 22899.56 16699.25 31299.43 16398.54 29299.27 30298.58 24998.80 32499.43 27298.53 16699.70 33297.22 28599.59 27399.54 183
ITE_SJBPF99.38 21899.63 17699.44 15999.73 11398.56 25099.33 25299.53 24698.88 11699.68 34896.01 34199.65 25499.02 330
D2MVS99.22 15999.19 14399.29 24299.69 15698.74 26298.81 26199.41 26698.55 25199.68 14399.69 15298.13 21399.87 20498.82 15599.98 4199.24 275
DPE-MVScopyleft99.14 18398.92 21299.82 3899.57 20299.77 5498.74 27199.60 18798.55 25199.76 10899.69 15298.23 20699.92 11796.39 32799.75 21199.76 67
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
SteuartSystems-ACMMP99.30 13899.14 15099.76 6599.87 5299.66 10299.18 17299.60 18798.55 25199.57 18699.67 16799.03 9999.94 7897.01 29399.80 19399.69 84
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS99.04 20298.79 22999.81 4199.78 10699.73 7799.35 12199.57 20598.54 25499.54 20098.99 35096.81 28099.93 9596.97 29599.53 28799.77 61
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
tpmrst97.73 31198.07 28996.73 37098.71 37692.00 39199.10 20498.86 33998.52 25598.92 30999.54 24491.90 34499.82 27898.02 21199.03 34098.37 369
MDTV_nov1_ep1397.73 31298.70 37790.83 39899.15 18598.02 37098.51 25698.82 32199.61 20690.98 35599.66 35796.89 30098.92 346
miper_ehance_all_eth98.59 25898.59 24298.59 32198.98 35497.07 34797.49 36899.52 23698.50 25799.52 20799.37 28696.41 29499.71 33097.86 22999.62 25999.00 332
OPM-MVS99.26 14699.13 15299.63 13699.70 15299.61 12498.58 28399.48 24998.50 25799.52 20799.63 19099.14 8499.76 31597.89 22499.77 20799.51 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33998.19 29998.76 27099.33 28898.49 25999.44 22599.58 22298.21 20799.69 33898.20 19899.62 25999.39 243
CNLPA98.57 26098.34 26999.28 24499.18 32699.10 22998.34 30699.41 26698.48 26098.52 34598.98 35397.05 27499.78 30595.59 35599.50 29498.96 333
HPM-MVS++copyleft98.96 21898.70 23599.74 8099.52 22799.71 8498.86 25199.19 32198.47 26198.59 34199.06 34098.08 21799.91 14196.94 29699.60 26999.60 153
tfpn200view996.30 34895.89 34797.53 35499.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36896.81 391
TESTMET0.1,196.24 34995.84 35097.41 35898.24 38993.84 38497.38 37195.84 38998.43 26297.81 37598.56 37879.77 39799.89 17697.77 23698.77 35398.52 361
thres40096.40 34495.89 34797.92 34699.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36897.98 382
EIA-MVS99.12 18799.01 19299.45 19399.36 28099.62 11899.34 12299.79 8598.41 26598.84 31998.89 36398.75 13299.84 25498.15 20699.51 29198.89 340
region2R99.23 15199.05 18099.77 5899.76 11899.70 9199.31 13299.59 19398.41 26599.32 25599.36 29098.73 13699.93 9597.29 27599.74 21899.67 96
MCST-MVS99.02 20598.81 22699.65 12299.58 19299.49 14698.58 28399.07 33098.40 26799.04 29999.25 31498.51 17199.80 29997.31 27499.51 29199.65 113
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11799.84 6299.64 11198.25 31399.73 11398.39 26899.63 16099.43 27299.70 2499.90 15997.34 27298.64 36399.44 230
testgi99.29 13999.26 13599.37 22199.75 12998.81 25498.84 25499.89 3998.38 26999.75 11599.04 34399.36 5999.86 22299.08 13299.25 32799.45 225
CP-MVS99.23 15199.05 18099.75 7599.66 17099.66 10299.38 11399.62 16898.38 26999.06 29899.27 30998.79 12599.94 7897.51 26499.82 17999.66 105
HFP-MVS99.25 14799.08 17099.76 6599.73 13899.70 9199.31 13299.59 19398.36 27199.36 24699.37 28698.80 12499.91 14197.43 26899.75 21199.68 90
ACMMPR99.23 15199.06 17699.76 6599.74 13599.69 9599.31 13299.59 19398.36 27199.35 24799.38 28498.61 15199.93 9597.43 26899.75 21199.67 96
plane_prior399.31 19298.36 27199.14 287
XVG-OURS99.21 16499.06 17699.65 12299.82 7399.62 11897.87 35099.74 10998.36 27199.66 15399.68 16399.71 2299.90 15996.84 30499.88 13499.43 236
XVG-ACMP-BASELINE99.23 15199.10 16799.63 13699.82 7399.58 13398.83 25699.72 12298.36 27199.60 17899.71 13998.92 11099.91 14197.08 29199.84 16299.40 241
MP-MVScopyleft99.06 19698.83 22499.76 6599.76 11899.71 8499.32 12799.50 24498.35 27698.97 30299.48 26098.37 18899.92 11795.95 34799.75 21199.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
HPM-MVS_fast99.43 10399.30 12499.80 4699.83 6699.81 4099.52 8699.70 13198.35 27699.51 21299.50 25399.31 6299.88 19098.18 20299.84 16299.69 84
N_pmnet98.73 24598.53 25299.35 22799.72 14198.67 26598.34 30694.65 39398.35 27699.79 9799.68 16398.03 22099.93 9598.28 19199.92 10699.44 230
BH-RMVSNet98.41 27898.14 28699.21 25799.21 31998.47 28098.60 27998.26 36798.35 27698.93 30699.31 30197.20 26999.66 35794.32 37399.10 33699.51 202
mPP-MVS99.19 16999.00 19599.76 6599.76 11899.68 9899.38 11399.54 22298.34 28099.01 30099.50 25398.53 16699.93 9597.18 28899.78 20399.66 105
RPSCF99.18 17399.02 18999.64 12999.83 6699.85 1999.44 10599.82 6698.33 28199.50 21499.78 10197.90 22999.65 36396.78 30699.83 17099.44 230
GA-MVS97.99 30497.68 31498.93 29399.52 22798.04 31297.19 37999.05 33398.32 28298.81 32298.97 35589.89 37199.41 38898.33 18899.05 33899.34 257
LF4IMVS99.01 20998.92 21299.27 24799.71 14499.28 19798.59 28299.77 9498.32 28299.39 24399.41 27498.62 14999.84 25496.62 31799.84 16298.69 353
lupinMVS98.96 21898.87 21899.24 25599.57 20298.40 28698.12 32399.18 32298.28 28499.63 16099.13 32998.02 22199.97 3498.22 19699.69 23899.35 254
ACMMP_NAP99.28 14099.11 15999.79 5299.75 12999.81 4098.95 24399.53 23198.27 28599.53 20599.73 12498.75 13299.87 20497.70 24799.83 17099.68 90
SCA98.11 29798.36 26697.36 35999.20 32292.99 38798.17 31898.49 35998.24 28699.10 29399.57 23196.01 30499.94 7896.86 30199.62 25999.14 302
GST-MVS99.16 17998.96 20699.75 7599.73 13899.73 7799.20 16799.55 21698.22 28799.32 25599.35 29598.65 14799.91 14196.86 30199.74 21899.62 139
EPMVS96.53 34296.32 34097.17 36598.18 39192.97 38899.39 11189.95 40298.21 28898.61 33999.59 21986.69 38799.72 32696.99 29499.23 33198.81 347
USDC98.96 21898.93 20899.05 28199.54 21697.99 31397.07 38399.80 7998.21 28899.75 11599.77 10898.43 17999.64 36597.90 22399.88 13499.51 202
ZNCC-MVS99.22 15999.04 18599.77 5899.76 11899.73 7799.28 14499.56 21098.19 29099.14 28799.29 30698.84 11999.92 11797.53 26399.80 19399.64 123
TSAR-MVS + GP.99.12 18799.04 18599.38 21899.34 29099.16 21998.15 31999.29 29898.18 29199.63 16099.62 19799.18 7899.68 34898.20 19899.74 21899.30 267
PatchmatchNetpermissive97.65 31597.80 30897.18 36498.82 36892.49 38999.17 17798.39 36398.12 29298.79 32599.58 22290.71 36199.89 17697.23 28499.41 30699.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
AUN-MVS97.82 30797.38 32099.14 26999.27 30998.53 27798.72 27399.02 33498.10 29397.18 38599.03 34789.26 37399.85 23997.94 22097.91 38199.03 326
WTY-MVS98.59 25898.37 26599.26 25099.43 26498.40 28698.74 27199.13 32898.10 29399.21 27799.24 31994.82 31499.90 15997.86 22998.77 35399.49 212
CL-MVSNet_self_test98.71 24798.56 24999.15 26599.22 31798.66 26897.14 38099.51 24098.09 29599.54 20099.27 30996.87 27999.74 32198.43 18198.96 34399.03 326
ACMMPcopyleft99.25 14799.08 17099.74 8099.79 9999.68 9899.50 9199.65 15798.07 29699.52 20799.69 15298.57 15799.92 11797.18 28899.79 19899.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
thres20096.09 35195.68 35297.33 36199.48 24596.22 36398.53 29397.57 37798.06 29798.37 35196.73 40386.84 38599.61 37186.99 39698.57 36596.16 394
test-LLR97.15 32896.95 33197.74 35298.18 39195.02 37697.38 37196.10 38598.00 29897.81 37598.58 37590.04 36999.91 14197.69 25398.78 35198.31 370
test0.0.03 197.37 32496.91 33498.74 31597.72 39497.57 33297.60 36197.36 38298.00 29899.21 27798.02 38990.04 36999.79 30298.37 18495.89 39598.86 343
PGM-MVS99.20 16699.01 19299.77 5899.75 12999.71 8499.16 18399.72 12297.99 30099.42 23199.60 21498.81 12099.93 9596.91 29899.74 21899.66 105
new_pmnet98.88 23098.89 21698.84 30699.70 15297.62 33198.15 31999.50 24497.98 30199.62 16999.54 24498.15 21299.94 7897.55 26099.84 16298.95 335
SF-MVS99.10 19398.93 20899.62 14599.58 19299.51 14499.13 19399.65 15797.97 30299.42 23199.61 20698.86 11799.87 20496.45 32599.68 24399.49 212
PVSNet_Blended_VisFu99.40 11299.38 10499.44 19699.90 3898.66 26898.94 24599.91 3297.97 30299.79 9799.73 12499.05 9799.97 3499.15 12199.99 1699.68 90
wuyk23d97.58 31899.13 15292.93 38099.69 15699.49 14699.52 8699.77 9497.97 30299.96 2399.79 9399.84 1299.94 7895.85 34999.82 17979.36 396
ET-MVSNet_ETH3D96.78 33696.07 34598.91 29699.26 31197.92 32197.70 35796.05 38897.96 30592.37 39898.43 38387.06 38099.90 15998.27 19297.56 38698.91 339
sss98.90 22698.77 23099.27 24799.48 24598.44 28398.72 27399.32 29097.94 30699.37 24599.35 29596.31 29799.91 14198.85 15299.63 25899.47 220
test-mter96.23 35095.73 35197.74 35298.18 39195.02 37697.38 37196.10 38597.90 30797.81 37598.58 37579.12 40099.91 14197.69 25398.78 35198.31 370
Syy-MVS98.17 29597.85 30799.15 26598.50 38298.79 25798.60 27999.21 31897.89 30896.76 38796.37 40495.47 31099.57 37599.10 13098.73 35999.09 312
myMVS_eth3d95.63 35994.73 36198.34 33398.50 38296.36 36098.60 27999.21 31897.89 30896.76 38796.37 40472.10 40499.57 37594.38 37298.73 35999.09 312
PHI-MVS99.11 19098.95 20799.59 15399.13 33299.59 12999.17 17799.65 15797.88 31099.25 26899.46 26798.97 10699.80 29997.26 28099.82 17999.37 248
test_prior297.95 34397.87 31198.05 36499.05 34197.90 22995.99 34499.49 296
plane_prior99.24 20898.42 30397.87 31199.71 232
testdata197.72 35597.86 313
AdaColmapbinary98.60 25598.35 26899.38 21899.12 33499.22 21198.67 27699.42 26597.84 31498.81 32299.27 30997.32 26299.81 29395.14 36499.53 28799.10 308
BH-untuned98.22 29398.09 28898.58 32399.38 27597.24 34298.55 28998.98 33797.81 31599.20 28298.76 37097.01 27599.65 36394.83 36798.33 37198.86 343
tpmvs97.39 32397.69 31396.52 37298.41 38491.76 39299.30 13598.94 33897.74 31697.85 37399.55 24292.40 34399.73 32496.25 33398.73 35998.06 381
HPM-MVScopyleft99.25 14799.07 17499.78 5599.81 8199.75 6899.61 6899.67 14497.72 31799.35 24799.25 31499.23 7399.92 11797.21 28699.82 17999.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 32896.95 33197.75 35198.91 35794.24 38199.32 12797.96 37197.71 31898.29 35299.32 29986.72 38699.92 11798.10 20996.24 39499.09 312
PVSNet97.47 1598.42 27798.44 25898.35 33199.46 25596.26 36296.70 38899.34 28797.68 31999.00 30199.13 32997.40 25799.72 32697.59 25999.68 24399.08 317
1112_ss99.05 19998.84 22299.67 11099.66 17099.29 19598.52 29499.82 6697.65 32099.43 22999.16 32796.42 29299.91 14199.07 13399.84 16299.80 47
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21697.99 31398.58 28399.82 6697.62 32199.34 25099.71 13998.52 16999.77 31397.98 21699.97 5699.52 200
PC_three_145297.56 32299.68 14399.41 27499.09 8997.09 39896.66 31399.60 26999.62 139
LPG-MVS_test99.22 15999.05 18099.74 8099.82 7399.63 11699.16 18399.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
LGP-MVS_train99.74 8099.82 7399.63 11699.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
PAPM_NR98.36 28298.04 29099.33 23199.48 24598.93 24598.79 26799.28 30197.54 32598.56 34498.57 37797.12 27199.69 33894.09 37798.90 34899.38 245
PMMVS98.49 27098.29 27499.11 27298.96 35598.42 28597.54 36399.32 29097.53 32698.47 34898.15 38897.88 23199.82 27897.46 26699.24 32999.09 312
9.1498.64 23799.45 25998.81 26199.60 18797.52 32799.28 26599.56 23598.53 16699.83 26995.36 36199.64 256
IU-MVS99.69 15699.77 5499.22 31597.50 32899.69 14097.75 24099.70 23499.77 61
UnsupCasMVSNet_bld98.55 26298.27 27599.40 21199.56 21399.37 17997.97 34299.68 14097.49 32999.08 29499.35 29595.41 31199.82 27897.70 24798.19 37699.01 331
HQP-NCC99.31 29897.98 33997.45 33098.15 358
ACMP_Plane99.31 29897.98 33997.45 33098.15 358
HQP-MVS98.36 28298.02 29299.39 21599.31 29898.94 24297.98 33999.37 28197.45 33098.15 35898.83 36696.67 28399.70 33294.73 36899.67 24999.53 189
SMA-MVScopyleft99.19 16999.00 19599.73 8999.46 25599.73 7799.13 19399.52 23697.40 33399.57 18699.64 17998.93 10999.83 26997.61 25799.79 19899.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CR-MVSNet98.35 28598.20 28098.83 30899.05 34598.12 30499.30 13599.67 14497.39 33499.16 28399.79 9391.87 34699.91 14198.78 16298.77 35398.44 367
MDTV_nov1_ep13_2view91.44 39699.14 18797.37 33599.21 27791.78 34896.75 30799.03 326
FA-MVS(test-final)98.52 26598.32 27199.10 27499.48 24598.67 26599.77 1598.60 35497.35 33699.63 16099.80 8393.07 33499.84 25497.92 22199.30 32098.78 350
dp96.86 33497.07 32796.24 37698.68 37890.30 40299.19 17198.38 36497.35 33698.23 35699.59 21987.23 37999.82 27896.27 33298.73 35998.59 357
cl2297.56 31997.28 32298.40 32998.37 38696.75 35497.24 37899.37 28197.31 33899.41 23799.22 32187.30 37899.37 38997.70 24799.62 25999.08 317
OMC-MVS98.90 22698.72 23299.44 19699.39 27299.42 16698.58 28399.64 16397.31 33899.44 22599.62 19798.59 15499.69 33896.17 33799.79 19899.22 280
thisisatest051596.98 33296.42 33998.66 31999.42 26997.47 33597.27 37694.30 39597.24 34099.15 28598.86 36585.01 38999.87 20497.10 29099.39 30898.63 354
KD-MVS_2432*160095.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
miper_refine_blended95.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
baseline296.83 33596.28 34198.46 32799.09 34296.91 35198.83 25693.87 39797.23 34196.23 39298.36 38488.12 37699.90 15996.68 31198.14 37898.57 360
Fast-Effi-MVS+99.02 20598.87 21899.46 19099.38 27599.50 14599.04 21999.79 8597.17 34498.62 33898.74 37199.34 6099.95 6498.32 18999.41 30698.92 338
FPMVS96.32 34795.50 35498.79 31299.60 18398.17 30298.46 30298.80 34397.16 34596.28 38999.63 19082.19 39399.09 39288.45 39198.89 34999.10 308
Test_1112_low_res98.95 22198.73 23199.63 13699.68 16499.15 22198.09 32799.80 7997.14 34699.46 22399.40 27896.11 30299.89 17699.01 13799.84 16299.84 36
PatchMatch-RL98.68 25098.47 25599.30 24199.44 26099.28 19798.14 32199.54 22297.12 34799.11 29199.25 31497.80 23799.70 33296.51 32199.30 32098.93 337
ACMP97.51 1499.05 19998.84 22299.67 11099.78 10699.55 13998.88 24999.66 14897.11 34899.47 21999.60 21499.07 9499.89 17696.18 33699.85 15799.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ADS-MVSNet297.78 30997.66 31698.12 34299.14 33095.36 37399.22 16498.75 34596.97 34998.25 35499.64 17990.90 35799.94 7896.51 32199.56 27699.08 317
ADS-MVSNet97.72 31497.67 31597.86 34799.14 33094.65 37999.22 16498.86 33996.97 34998.25 35499.64 17990.90 35799.84 25496.51 32199.56 27699.08 317
DPM-MVS98.28 28797.94 30199.32 23599.36 28099.11 22497.31 37598.78 34496.88 35198.84 31999.11 33697.77 23999.61 37194.03 37999.36 31299.23 278
TR-MVS97.44 32297.15 32698.32 33498.53 38197.46 33698.47 29897.91 37396.85 35298.21 35798.51 38196.42 29299.51 38392.16 38497.29 38797.98 382
MP-MVS-pluss99.14 18398.92 21299.80 4699.83 6699.83 2998.61 27799.63 16596.84 35399.44 22599.58 22298.81 12099.91 14197.70 24799.82 17999.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HY-MVS98.23 998.21 29497.95 29798.99 28599.03 34898.24 29499.61 6898.72 34696.81 35498.73 33099.51 25094.06 32199.86 22296.91 29898.20 37498.86 343
APD-MVScopyleft98.87 23198.59 24299.71 10099.50 23599.62 11899.01 22899.57 20596.80 35599.54 20099.63 19098.29 19899.91 14195.24 36299.71 23299.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
原ACMM199.37 22199.47 25198.87 25299.27 30296.74 35698.26 35399.32 29997.93 22899.82 27895.96 34699.38 30999.43 236
CPTT-MVS98.74 24398.44 25899.64 12999.61 18199.38 17699.18 17299.55 21696.49 35799.27 26699.37 28697.11 27299.92 11795.74 35399.67 24999.62 139
CLD-MVS98.76 24098.57 24699.33 23199.57 20298.97 23997.53 36599.55 21696.41 35899.27 26699.13 32999.07 9499.78 30596.73 30999.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
ZD-MVS99.43 26499.61 12499.43 26396.38 35999.11 29199.07 33997.86 23299.92 11794.04 37899.49 296
miper_enhance_ethall98.03 30197.94 30198.32 33498.27 38896.43 35996.95 38499.41 26696.37 36099.43 22998.96 35794.74 31599.69 33897.71 24499.62 25998.83 346
F-COLMAP98.74 24398.45 25799.62 14599.57 20299.47 14898.84 25499.65 15796.31 36198.93 30699.19 32697.68 24499.87 20496.52 32099.37 31199.53 189
testdata99.42 20299.51 22998.93 24599.30 29796.20 36298.87 31699.40 27898.33 19599.89 17696.29 33199.28 32399.44 230
PVSNet_095.53 1995.85 35695.31 35897.47 35698.78 37293.48 38695.72 39199.40 27396.18 36397.37 38097.73 39395.73 30699.58 37495.49 35781.40 39899.36 251
IB-MVS95.41 2095.30 36194.46 36597.84 34898.76 37495.33 37497.33 37496.07 38796.02 36495.37 39697.41 39776.17 40299.96 5597.54 26195.44 39698.22 375
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
pmmvs398.08 29997.80 30898.91 29699.41 27097.69 33097.87 35099.66 14895.87 36599.50 21499.51 25090.35 36599.97 3498.55 17699.47 29899.08 317
FE-MVS97.85 30697.42 31999.15 26599.44 26098.75 26099.77 1598.20 36895.85 36699.33 25299.80 8388.86 37499.88 19096.40 32699.12 33498.81 347
无先验98.01 33599.23 31295.83 36799.85 23995.79 35299.44 230
BH-w/o97.20 32797.01 32997.76 35099.08 34395.69 37098.03 33498.52 35695.76 36897.96 36798.02 38995.62 30899.47 38592.82 38397.25 38898.12 380
PVSNet_Blended98.70 24898.59 24299.02 28399.54 21697.99 31397.58 36299.82 6695.70 36999.34 25098.98 35398.52 16999.77 31397.98 21699.83 17099.30 267
新几何199.52 17799.50 23599.22 21199.26 30595.66 37098.60 34099.28 30797.67 24599.89 17695.95 34799.32 31899.45 225
CMPMVSbinary77.52 2398.50 26898.19 28399.41 20998.33 38799.56 13699.01 22899.59 19395.44 37199.57 18699.80 8395.64 30799.46 38796.47 32499.92 10699.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
MAR-MVS98.24 29197.92 30399.19 26098.78 37299.65 10899.17 17799.14 32695.36 37298.04 36598.81 36897.47 25499.72 32695.47 35899.06 33798.21 376
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
旧先验297.94 34495.33 37398.94 30599.88 19096.75 307
CDPH-MVS98.56 26198.20 28099.61 14899.50 23599.46 15298.32 30899.41 26695.22 37499.21 27799.10 33798.34 19399.82 27895.09 36699.66 25299.56 172
test22299.51 22999.08 23197.83 35299.29 29895.21 37598.68 33599.31 30197.28 26399.38 30999.43 236
PLCcopyleft97.35 1698.36 28297.99 29399.48 18699.32 29799.24 20898.50 29699.51 24095.19 37698.58 34298.96 35796.95 27799.83 26995.63 35499.25 32799.37 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
131498.00 30397.90 30598.27 33898.90 35897.45 33799.30 13599.06 33294.98 37797.21 38499.12 33398.43 17999.67 35395.58 35698.56 36697.71 385
train_agg98.35 28597.95 29799.57 16399.35 28299.35 18698.11 32599.41 26694.90 37897.92 36898.99 35098.02 22199.85 23995.38 36099.44 30199.50 207
test_899.34 29099.31 19298.08 32999.40 27394.90 37897.87 37298.97 35598.02 22199.84 254
DP-MVS Recon98.50 26898.23 27699.31 23899.49 24099.46 15298.56 28899.63 16594.86 38098.85 31899.37 28697.81 23699.59 37396.08 33899.44 30198.88 341
TEST999.35 28299.35 18698.11 32599.41 26694.83 38197.92 36898.99 35098.02 22199.85 239
CostFormer96.71 33996.79 33896.46 37498.90 35890.71 40099.41 10898.68 34894.69 38298.14 36299.34 29886.32 38899.80 29997.60 25898.07 38098.88 341
PAPR97.56 31997.07 32799.04 28298.80 36998.11 30697.63 35999.25 30894.56 38398.02 36698.25 38797.43 25699.68 34890.90 38898.74 35799.33 258
gm-plane-assit97.59 39589.02 40493.47 38498.30 38599.84 25496.38 328
tpm296.35 34696.22 34296.73 37098.88 36391.75 39399.21 16698.51 35793.27 38597.89 37099.21 32384.83 39099.70 33296.04 34098.18 37798.75 352
tpm cat196.78 33696.98 33096.16 37798.85 36490.59 40199.08 21299.32 29092.37 38697.73 37999.46 26791.15 35399.69 33896.07 33998.80 35098.21 376
cascas96.99 33196.82 33797.48 35597.57 39795.64 37196.43 39099.56 21091.75 38797.13 38697.61 39695.58 30998.63 39696.68 31199.11 33598.18 379
QAPM98.40 28097.99 29399.65 12299.39 27299.47 14899.67 4999.52 23691.70 38898.78 32799.80 8398.55 16099.95 6494.71 37099.75 21199.53 189
OpenMVScopyleft98.12 1098.23 29297.89 30699.26 25099.19 32499.26 20199.65 5999.69 13791.33 38998.14 36299.77 10898.28 19999.96 5595.41 35999.55 28098.58 359
PAPM95.61 36094.71 36298.31 33699.12 33496.63 35596.66 38998.46 36090.77 39096.25 39098.68 37493.01 33599.69 33881.60 39997.86 38498.62 355
114514_t98.49 27098.11 28799.64 12999.73 13899.58 13399.24 15799.76 9989.94 39199.42 23199.56 23597.76 24099.86 22297.74 24199.82 17999.47 220
TAPA-MVS97.92 1398.03 30197.55 31799.46 19099.47 25199.44 15998.50 29699.62 16886.79 39299.07 29799.26 31298.26 20199.62 36797.28 27799.73 22399.31 265
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PCF-MVS96.03 1896.73 33895.86 34999.33 23199.44 26099.16 21996.87 38699.44 26086.58 39398.95 30499.40 27894.38 31999.88 19087.93 39299.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 32596.84 33598.89 30399.29 30499.45 15798.87 25099.48 24986.54 39499.44 22599.74 12097.34 26199.86 22291.61 38599.28 32397.37 389
tmp_tt95.75 35795.42 35596.76 36889.90 40394.42 38098.86 25197.87 37478.01 39599.30 26499.69 15297.70 24195.89 39999.29 10298.14 37899.95 11
DeepMVS_CXcopyleft97.98 34399.69 15696.95 34999.26 30575.51 39695.74 39498.28 38696.47 29099.62 36791.23 38797.89 38297.38 388
MVS95.72 35894.63 36398.99 28598.56 38097.98 31999.30 13598.86 33972.71 39797.30 38199.08 33898.34 19399.74 32189.21 38998.33 37199.26 272
test_method91.72 36392.32 36689.91 38193.49 40270.18 40690.28 39499.56 21061.71 39895.39 39599.52 24893.90 32299.94 7898.76 16398.27 37399.62 139
EGC-MVSNET89.05 36485.52 36799.64 12999.89 4099.78 4999.56 8199.52 23624.19 39949.96 40099.83 6699.15 8199.92 11797.71 24499.85 15799.21 282
test12329.31 36533.05 37018.08 38225.93 40512.24 40797.53 36510.93 40711.78 40024.21 40150.08 41021.04 4058.60 40123.51 40032.43 40033.39 397
testmvs28.94 36633.33 36815.79 38326.03 4049.81 40896.77 38715.67 40611.55 40123.87 40250.74 40919.03 4068.53 40223.21 40133.07 39929.03 398
test_blank8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.88 36733.17 3690.00 3840.00 4060.00 4090.00 39599.62 1680.00 4020.00 40399.13 32999.82 130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas16.61 36822.14 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 199.28 660.00 4030.00 4020.00 4010.00 399
sosnet-low-res8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
sosnet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
Regformer8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.26 37711.02 3800.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.16 3270.00 4070.00 4030.00 4020.00 4010.00 399
uanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS96.36 36095.20 363
MSC_two_6792asdad99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
No_MVS99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
eth-test20.00 406
eth-test0.00 406
OPU-MVS99.29 24299.12 33499.44 15999.20 16799.40 27899.00 10098.84 39596.54 31999.60 26999.58 165
test_0728_SECOND99.83 3499.70 15299.79 4699.14 18799.61 17599.92 11797.88 22599.72 22999.77 61
GSMVS99.14 302
test_part299.62 18099.67 10099.55 198
sam_mvs190.81 36099.14 302
sam_mvs90.52 364
ambc99.20 25999.35 28298.53 27799.17 17799.46 25599.67 14999.80 8398.46 17699.70 33297.92 22199.70 23499.38 245
MTGPAbinary99.53 231
test_post199.14 18751.63 40889.54 37299.82 27896.86 301
test_post52.41 40790.25 36699.86 222
patchmatchnet-post99.62 19790.58 36299.94 78
GG-mvs-BLEND97.36 35997.59 39596.87 35299.70 3588.49 40494.64 39797.26 40080.66 39599.12 39191.50 38696.50 39396.08 395
MTMP99.09 20998.59 355
test9_res95.10 36599.44 30199.50 207
agg_prior294.58 37199.46 30099.50 207
agg_prior99.35 28299.36 18399.39 27697.76 37899.85 239
test_prior499.19 21798.00 337
test_prior99.46 19099.35 28299.22 21199.39 27699.69 33899.48 216
新几何298.04 333
旧先验199.49 24099.29 19599.26 30599.39 28297.67 24599.36 31299.46 224
原ACMM297.92 346
testdata299.89 17695.99 344
segment_acmp98.37 188
test1299.54 17499.29 30499.33 18999.16 32498.43 34997.54 25299.82 27899.47 29899.48 216
plane_prior799.58 19299.38 176
plane_prior699.47 25199.26 20197.24 264
plane_prior599.54 22299.82 27895.84 35099.78 20399.60 153
plane_prior499.25 314
plane_prior199.51 229
n20.00 408
nn0.00 408
door-mid99.83 61
lessismore_v099.64 12999.86 5599.38 17690.66 40099.89 5499.83 6694.56 31899.97 3499.56 5799.92 10699.57 170
test1199.29 298
door99.77 94
HQP5-MVS98.94 242
BP-MVS94.73 368
HQP4-MVS98.15 35899.70 33299.53 189
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27199.13 22298.83 366
ACMMP++_ref99.94 95
ACMMP++99.79 198
Test By Simon98.41 182