This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 9199.96 1198.85 6999.99 599.86 18
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
gg-mvs-nofinetune92.37 36491.20 36895.85 35295.80 40592.38 35299.31 2781.84 41199.75 591.83 40099.74 1368.29 39899.02 38487.15 38997.12 37696.16 394
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25298.74 8798.64 29699.74 699.67 4199.24 10594.57 26299.95 2299.11 5299.24 26799.82 25
LFMVS97.20 25496.72 26998.64 18198.72 27196.95 22398.93 7694.14 38799.74 698.78 18899.01 16184.45 36099.73 23897.44 15299.27 26299.25 219
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17299.83 15499.21 4899.91 6399.77 35
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19898.84 8599.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12599.92 5599.57 91
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16999.69 999.63 4899.68 2099.25 1499.96 1197.25 16299.92 5599.57 91
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4799.73 23899.17 5199.92 5599.76 39
VDDNet98.21 17697.95 19099.01 13399.58 7797.74 17699.01 6697.29 34199.67 1298.97 15499.50 5990.45 31999.80 18497.88 13199.20 27399.48 137
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 6199.95 2299.73 1999.96 2599.75 43
WB-MVS98.52 13998.55 11398.43 21699.65 6595.59 26298.52 11298.77 28399.65 1499.52 6299.00 16494.34 26899.93 4098.65 8398.83 31199.76 39
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7399.97 498.78 7299.93 4499.72 45
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 11099.63 1799.52 6299.44 7198.25 7199.88 8399.09 5499.84 8599.62 67
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12599.33 15499.63 1799.48 6899.15 12697.23 15299.75 22897.17 16599.66 17899.63 66
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8499.96 1198.78 7299.93 4499.77 35
K. test v398.00 19297.66 21499.03 13099.79 2497.56 18799.19 4992.47 39399.62 2099.52 6299.66 2789.61 32499.96 1199.25 4599.81 9999.56 97
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15799.85 12099.02 6099.94 4099.80 29
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10497.01 34699.59 2399.11 12999.27 9894.82 25399.79 19798.34 10199.63 18499.34 196
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15799.90 6499.21 4899.87 7799.54 108
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7699.51 33297.70 14299.73 14297.89 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MVS_030498.10 18397.88 19898.76 17098.82 25796.50 23697.90 18791.35 39999.56 2698.32 23999.13 13096.06 21099.93 4099.84 799.97 1999.85 19
MM98.22 17497.99 18798.91 14798.66 29196.97 22097.89 18994.44 38199.54 2798.95 15799.14 12993.50 28499.92 5099.80 1299.96 2599.85 19
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22599.91 5999.32 4099.95 3299.70 51
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7399.95 2298.89 6899.95 3299.81 28
dcpmvs_298.78 9099.11 5297.78 26599.56 8993.67 32999.06 6299.86 1399.50 3099.66 4299.26 10097.21 15499.99 298.00 12399.91 6399.68 54
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31899.49 3199.59 5299.65 3094.79 25899.95 2299.45 3599.96 2599.88 14
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17899.82 16498.69 8199.88 7499.76 39
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8899.96 1199.53 30100.00 199.93 8
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18598.43 12899.35 14399.47 3499.28 10699.05 14796.72 18499.82 16498.09 11599.36 24799.59 80
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14699.93 4098.90 6699.93 4499.77 35
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 16199.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11499.45 3699.51 6699.24 10598.20 7999.86 10895.92 26199.69 16299.04 255
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4499.93 4098.91 6599.85 8198.88 283
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19799.92 5099.44 3699.92 5599.68 54
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14999.42 4199.33 9799.26 10097.01 16599.94 3598.74 7699.93 4499.79 30
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13299.42 12399.42 4199.36 9299.06 14098.38 6499.95 2298.34 10199.90 6999.57 91
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4499.80 18498.24 10599.84 8599.52 118
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24399.57 6299.37 4599.21 12099.61 3796.76 18199.83 15498.06 11899.83 9299.71 46
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31599.37 4599.70 3599.65 3092.65 29999.93 4099.04 5899.84 8599.60 74
RPMNet97.02 26696.93 25397.30 30397.71 36094.22 30598.11 15799.30 16999.37 4596.91 32599.34 8786.72 34199.87 10097.53 14997.36 37197.81 365
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
Anonymous2024052198.69 10698.87 7198.16 23999.77 2895.11 28399.08 5899.44 11499.34 4999.33 9799.55 4894.10 27699.94 3599.25 4599.96 2599.42 161
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20599.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
PatchT96.65 28396.35 28597.54 28997.40 37895.32 27497.98 17896.64 35799.33 5096.89 32999.42 7384.32 36299.81 17797.69 14497.49 36297.48 378
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9599.54 7899.31 5299.62 5199.53 5497.36 14499.86 10899.24 4799.71 15499.39 175
VNet98.42 14798.30 15298.79 16398.79 26497.29 20198.23 14398.66 29399.31 5298.85 17998.80 20994.80 25699.78 20898.13 11299.13 28499.31 207
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21699.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12799.34 14999.28 5698.95 15798.91 18498.34 6999.79 19795.63 27699.91 6398.86 285
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24899.25 5899.54 5699.37 7997.04 16199.80 18497.89 12899.52 22299.35 194
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6496.97 22098.00 17599.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17897.93 18299.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17898.00 17599.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11499.21 6299.43 7699.55 4897.82 10799.86 10898.42 9899.89 7399.41 164
LS3D98.63 12098.38 14299.36 6497.25 38299.38 899.12 5799.32 15699.21 6298.44 23098.88 19497.31 14599.80 18496.58 21799.34 25198.92 276
alignmvs97.35 24196.88 25898.78 16698.54 30798.09 13597.71 21397.69 33199.20 6497.59 28895.90 36788.12 33899.55 31798.18 10998.96 30498.70 309
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23997.23 25998.87 26399.20 6499.19 12298.99 16597.30 14699.85 12098.77 7599.79 11499.65 62
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23897.23 25998.86 26899.20 6499.18 12698.97 17197.29 14899.85 12098.72 7899.78 11999.64 63
JIA-IIPM95.52 31895.03 32397.00 31696.85 39194.03 31496.93 27795.82 37099.20 6494.63 38299.71 1783.09 36999.60 29994.42 30694.64 39797.36 381
sasdasda98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
canonicalmvs98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
MGCFI-Net98.34 15798.28 15498.51 20798.47 31397.59 18698.96 7299.48 9699.18 7097.40 30595.50 37598.66 4399.50 33398.18 10998.71 31998.44 329
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19997.82 19899.57 6299.17 7199.35 9499.17 12098.35 6899.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21699.40 12699.14 7299.06 13698.59 24696.71 18599.93 4098.57 8899.77 12499.53 115
test111196.49 29196.82 26395.52 36099.42 13587.08 39399.22 4287.14 40699.11 7399.46 7199.58 4188.69 33099.86 10898.80 7199.95 3299.62 67
h-mvs3397.77 21297.33 23799.10 11499.21 17397.84 16498.35 13698.57 29999.11 7398.58 21599.02 15288.65 33399.96 1198.11 11396.34 38599.49 127
hse-mvs297.46 23397.07 24898.64 18198.73 26997.33 19997.45 24497.64 33499.11 7398.58 21597.98 30188.65 33399.79 19798.11 11397.39 36898.81 292
MVSFormer98.26 17098.43 13397.77 26698.88 24693.89 32399.39 1799.56 6999.11 7398.16 24898.13 28893.81 28099.97 499.26 4399.57 20799.43 158
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7399.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7399.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10399.58 5599.11 7399.53 6099.18 11698.81 3299.67 26796.71 21199.77 12499.50 123
IterMVS-SCA-FT97.85 20898.18 16796.87 32499.27 16191.16 37295.53 34699.25 18999.10 8099.41 8099.35 8393.10 28999.96 1198.65 8399.94 4099.49 127
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 20099.10 8099.72 3198.76 21696.38 19999.86 10898.00 12399.82 9599.50 123
UGNet98.53 13698.45 13098.79 16397.94 34996.96 22299.08 5898.54 30099.10 8096.82 33399.47 6596.55 19199.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8399.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8799.56 6999.09 8399.33 9799.19 11398.40 6399.72 24595.98 25999.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test250692.39 36291.89 36493.89 37899.38 14082.28 40899.32 2366.03 41499.08 8598.77 19199.57 4266.26 40499.84 13798.71 7999.95 3299.54 108
ECVR-MVScopyleft96.42 29396.61 27795.85 35299.38 14088.18 38999.22 4286.00 40899.08 8599.36 9299.57 4288.47 33599.82 16498.52 9299.95 3299.54 108
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8598.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20997.78 20399.24 19499.04 8899.41 8098.90 18797.65 11799.76 22197.70 14299.79 11499.39 175
v899.01 6099.16 4598.57 19699.47 12496.31 24298.90 7899.47 10499.03 8999.52 6299.57 4296.93 16899.81 17799.60 2599.98 1299.60 74
EPP-MVSNet98.30 16498.04 18399.07 12099.56 8997.83 16599.29 3398.07 32299.03 8998.59 21399.13 13092.16 30599.90 6496.87 19599.68 16799.49 127
IS-MVSNet98.19 17897.90 19699.08 11899.57 8197.97 15299.31 2798.32 31099.01 9198.98 15099.03 15191.59 31099.79 19795.49 28199.80 10999.48 137
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20498.99 9298.07 25799.28 9697.11 15999.84 13796.84 19899.32 25399.47 144
PMVScopyleft91.26 2097.86 20397.94 19297.65 27899.71 4797.94 15798.52 11298.68 29298.99 9297.52 29599.35 8397.41 14198.18 39991.59 36499.67 17396.82 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EI-MVSNet98.40 15098.51 11898.04 24999.10 20194.73 29297.20 26398.87 26398.97 9499.06 13699.02 15296.00 21499.80 18498.58 8699.82 9599.60 74
EPNet96.14 30095.44 31198.25 23190.76 41195.50 26897.92 18494.65 37998.97 9492.98 39598.85 20089.12 32899.87 10095.99 25899.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS98.55 13298.70 9298.09 24199.48 12294.73 29297.22 26299.39 12898.97 9499.38 8799.31 9396.00 21499.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.35 24196.97 25298.50 21097.31 38196.47 23798.18 14998.92 25598.95 9798.78 18899.37 7985.44 35499.85 12095.96 26099.83 9299.17 240
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9899.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21299.38 13098.93 9899.12 12898.73 21996.77 17999.86 10898.63 8599.80 10999.46 146
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
Anonymous20240521197.90 19797.50 22599.08 11898.90 24098.25 11998.53 11196.16 36498.87 10299.11 12998.86 19790.40 32099.78 20897.36 15699.31 25599.19 234
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34898.86 10398.87 17897.62 32398.63 4698.96 38799.41 3798.29 33898.45 327
baseline98.96 6899.02 6098.76 17099.38 14097.26 20498.49 12099.50 8798.86 10399.19 12299.06 14098.23 7399.69 25598.71 7999.76 13599.33 201
IterMVS97.73 21498.11 17696.57 33399.24 16690.28 38095.52 34899.21 19898.86 10399.33 9799.33 8993.11 28899.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23599.25 18998.84 10699.06 13698.76 21696.76 18199.93 4098.57 8899.77 12499.50 123
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12899.20 20098.83 10798.89 17098.90 18796.98 16799.92 5097.16 16699.70 15999.56 97
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20297.82 19899.76 2998.73 10899.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
v1098.97 6699.11 5298.55 20199.44 12996.21 24698.90 7899.55 7398.73 10899.48 6899.60 3996.63 18899.83 15499.70 2299.99 599.61 73
UnsupCasMVSNet_eth97.89 19997.60 21998.75 17399.31 15497.17 21297.62 22599.35 14398.72 11098.76 19398.68 22892.57 30099.74 23397.76 14195.60 39399.34 196
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21697.80 20199.76 2998.70 11199.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.49 13899.86 10896.56 22399.39 24399.45 150
RE-MVS-def98.58 11199.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.75 11196.56 22399.39 24399.45 150
Fast-Effi-MVS+-dtu98.27 16898.09 17798.81 15898.43 31998.11 13297.61 22799.50 8798.64 11297.39 30797.52 32898.12 8799.95 2296.90 19298.71 31998.38 336
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 12099.33 15498.64 11299.03 14698.98 16997.89 10199.85 12096.54 22799.42 24099.46 146
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29398.63 24097.50 13599.83 15496.79 20099.53 21999.56 97
X-MVStestdata94.32 33492.59 35299.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29345.85 40697.50 13599.83 15496.79 20099.53 21999.56 97
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21598.61 10299.13 22298.59 11899.19 12299.28 9694.14 27299.82 16497.97 12599.80 10999.29 212
WR-MVS98.40 15098.19 16699.03 13099.00 22197.65 18296.85 28198.94 25098.57 12198.89 17098.50 25895.60 23199.85 12097.54 14899.85 8199.59 80
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17199.25 4099.30 16998.57 12198.55 22099.33 8997.95 9999.90 6497.16 16699.67 17399.44 154
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24797.87 19399.85 1598.56 12399.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 25097.74 21099.81 2498.55 12499.85 1999.55 4898.60 4999.84 13799.69 2499.98 1299.89 11
test_one_060199.39 13999.20 3499.31 16198.49 12598.66 20299.02 15297.64 120
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17698.85 8399.62 4898.48 12699.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 9099.56 6998.42 12798.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 12099.83 2098.37 12899.69 3799.46 6698.21 7899.92 5094.13 31699.30 25898.91 279
MDA-MVSNet-bldmvs97.94 19697.91 19598.06 24699.44 12994.96 28696.63 29399.15 22098.35 12998.83 18299.11 13394.31 26999.85 12096.60 21698.72 31799.37 184
thres600view794.45 33293.83 33896.29 34099.06 21291.53 36197.99 17794.24 38598.34 13097.44 30395.01 38479.84 37999.67 26784.33 39698.23 33997.66 373
test_vis1_n_192098.40 15098.92 6896.81 32899.74 3790.76 37798.15 15399.91 798.33 13199.89 1599.55 4895.07 24699.88 8399.76 1699.93 4499.79 30
thres100view90094.19 33793.67 34195.75 35599.06 21291.35 36598.03 16994.24 38598.33 13197.40 30594.98 38679.84 37999.62 29283.05 39898.08 35096.29 391
Vis-MVSNet (Re-imp)97.46 23397.16 24498.34 22499.55 9396.10 24798.94 7598.44 30598.32 13398.16 24898.62 24288.76 32999.73 23893.88 32399.79 11499.18 236
new-patchmatchnet98.35 15698.74 8397.18 30899.24 16692.23 35696.42 30399.48 9698.30 13499.69 3799.53 5497.44 14099.82 16498.84 7099.77 12499.49 127
v14898.45 14598.60 10998.00 25199.44 12994.98 28597.44 24599.06 23198.30 13499.32 10398.97 17196.65 18799.62 29298.37 9999.85 8199.39 175
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13499.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13599.29 17798.29 13798.88 17498.85 20097.53 13199.87 10096.14 25399.31 25599.48 137
Effi-MVS+-dtu98.26 17097.90 19699.35 7098.02 34499.49 598.02 17199.16 21598.29 13797.64 28497.99 30096.44 19699.95 2296.66 21498.93 30798.60 318
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 13099.45 11098.28 13998.98 15099.19 11397.76 11099.58 30996.57 21999.55 21398.97 267
save fliter99.11 19997.97 15296.53 29799.02 24298.24 140
EU-MVSNet97.66 22098.50 12095.13 36699.63 7485.84 39698.35 13698.21 31498.23 14199.54 5699.46 6695.02 24799.68 26498.24 10599.87 7799.87 16
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23497.97 18199.86 1398.22 14299.88 1799.71 1798.59 5099.84 13799.73 1999.98 1299.98 2
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23497.79 20299.82 2298.21 14399.81 2399.53 5498.46 6099.84 13799.70 2299.97 1999.90 10
test_yl96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
DCV-MVSNet96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
baseline195.96 30695.44 31197.52 29198.51 31193.99 31798.39 13296.09 36698.21 14398.40 23797.76 31486.88 34099.63 28995.42 28289.27 40598.95 270
SD-MVS98.40 15098.68 9597.54 28998.96 22897.99 14897.88 19099.36 13898.20 14799.63 4899.04 14998.76 3595.33 40796.56 22399.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS97.99 19597.67 21198.93 14499.19 18097.65 18297.77 20599.27 18398.20 14797.79 27697.98 30194.90 24999.70 25094.42 30699.51 22499.45 150
plane_prior297.77 20598.20 147
DVP-MVS++98.90 7598.70 9299.51 4398.43 31999.15 4799.43 1199.32 15698.17 15099.26 11299.02 15298.18 8099.88 8397.07 17599.45 23699.49 127
test_0728_THIRD98.17 15099.08 13499.02 15297.89 10199.88 8397.07 17599.71 15499.70 51
E-PMN94.17 33894.37 33393.58 38196.86 39085.71 39890.11 40197.07 34598.17 15097.82 27597.19 34184.62 35998.94 38889.77 38197.68 35996.09 397
patch_mono-298.51 14098.63 10298.17 23799.38 14094.78 28997.36 24999.69 3798.16 15398.49 22699.29 9597.06 16099.97 498.29 10499.91 6399.76 39
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 19198.04 16899.59 5398.15 15499.40 8399.36 8298.58 5399.76 22198.78 7299.68 16799.59 80
ETV-MVS98.03 18997.86 20098.56 20098.69 28398.07 14197.51 23999.50 8798.10 15597.50 29795.51 37498.41 6299.88 8396.27 24399.24 26797.71 372
tttt051795.64 31594.98 32497.64 28099.36 14793.81 32598.72 9190.47 40198.08 15698.67 20098.34 27473.88 39599.92 5097.77 13799.51 22499.20 229
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15999.31 16198.03 15799.66 4299.02 15298.36 6599.88 8396.91 18799.62 18799.41 164
test_241102_TWO99.30 16998.03 15799.26 11299.02 15297.51 13499.88 8396.91 18799.60 19499.66 58
test_241102_ONE99.49 11599.17 3999.31 16197.98 15999.66 4298.90 18798.36 6599.48 339
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 17198.84 27297.97 16099.08 13499.02 15297.61 12399.88 8396.99 18199.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10899.21 2898.17 15299.35 14397.97 16099.26 11299.06 14097.61 123
dmvs_re95.98 30595.39 31497.74 27298.86 24897.45 19398.37 13495.69 37497.95 16296.56 34395.95 36590.70 31797.68 40188.32 38696.13 38998.11 348
tfpn200view994.03 34193.44 34395.78 35498.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35096.29 391
thres40094.14 33993.44 34396.24 34398.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35097.66 373
EMVS93.83 34494.02 33693.23 38596.83 39284.96 39989.77 40296.32 36297.92 16597.43 30496.36 36186.17 34698.93 38987.68 38897.73 35895.81 398
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14399.31 16197.92 16598.90 16898.90 18798.00 9499.88 8396.15 25299.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
v2v48298.56 12898.62 10498.37 22299.42 13595.81 25997.58 23199.16 21597.90 16799.28 10699.01 16195.98 21999.79 19799.33 3999.90 6999.51 120
FMVSNet397.50 22997.24 24098.29 22998.08 34295.83 25897.86 19598.91 25797.89 16898.95 15798.95 17887.06 33999.81 17797.77 13799.69 16299.23 224
V4298.78 9098.78 8198.76 17099.44 12997.04 21798.27 14099.19 20497.87 16999.25 11699.16 12296.84 17299.78 20899.21 4899.84 8599.46 146
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10799.57 6297.87 16998.85 17998.04 29897.66 11699.84 13796.72 20999.81 9999.13 244
xiu_mvs_v1_base_debu97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base_debi97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7799.94 297.80 17499.91 1199.67 2597.15 15698.91 39099.76 1699.56 21099.92 9
diffmvspermissive98.22 17498.24 16198.17 23799.00 22195.44 27096.38 30599.58 5597.79 17598.53 22398.50 25896.76 18199.74 23397.95 12799.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs399.12 5199.41 1998.25 23199.76 3195.07 28499.05 6499.94 297.78 17699.82 2199.84 298.56 5499.71 24699.96 199.96 2599.97 3
CANet97.87 20297.76 20498.19 23697.75 35795.51 26796.76 28699.05 23497.74 17796.93 32298.21 28495.59 23299.89 7497.86 13399.93 4499.19 234
iter_conf0596.54 28796.07 29397.92 25597.90 35294.50 29997.87 19399.14 22197.73 17898.89 17098.95 17875.75 39399.87 10098.50 9399.92 5599.40 173
DELS-MVS98.27 16898.20 16498.48 21198.86 24896.70 23295.60 34499.20 20097.73 17898.45 22998.71 22297.50 13599.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10899.57 6297.72 18098.90 16899.26 10096.12 20899.52 32895.72 27299.71 15499.32 203
MVS_Test98.18 17998.36 14497.67 27698.48 31294.73 29298.18 14999.02 24297.69 18198.04 26199.11 13397.22 15399.56 31498.57 8898.90 30998.71 306
DPE-MVScopyleft98.59 12698.26 15899.57 1699.27 16199.15 4797.01 27199.39 12897.67 18299.44 7598.99 16597.53 13199.89 7495.40 28399.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20599.32 2398.81 27797.66 18398.62 20799.40 7896.82 17599.80 18495.88 26299.51 22498.75 303
MSDG97.71 21697.52 22398.28 23098.91 23996.82 22794.42 38099.37 13497.65 18498.37 23898.29 27997.40 14299.33 36494.09 31799.22 27098.68 313
NCCC97.86 20397.47 22999.05 12798.61 29598.07 14196.98 27398.90 25897.63 18597.04 31897.93 30695.99 21899.66 27895.31 28498.82 31399.43 158
test_cas_vis1_n_192098.33 16098.68 9597.27 30599.69 5692.29 35498.03 16999.85 1597.62 18699.96 499.62 3493.98 27799.74 23399.52 3199.86 8099.79 30
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17899.68 4297.62 18699.34 9699.18 11697.54 12999.77 21597.79 13699.74 13999.04 255
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16399.37 13497.62 18699.04 14398.96 17498.84 3099.79 19797.43 15399.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft98.46 14498.09 17799.54 2799.57 8199.22 2798.50 11999.19 20497.61 18997.58 28998.66 23397.40 14299.88 8394.72 29799.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_HR98.25 17298.08 18098.75 17399.09 20497.46 19295.97 32799.27 18397.60 19097.99 26398.25 28098.15 8699.38 35796.87 19599.57 20799.42 161
MVS_111021_LR98.30 16498.12 17598.83 15599.16 19098.03 14696.09 32399.30 16997.58 19198.10 25598.24 28198.25 7199.34 36296.69 21299.65 17999.12 245
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 8099.48 9697.57 19299.35 9499.24 10597.83 10499.89 7497.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
API-MVS97.04 26596.91 25797.42 29997.88 35398.23 12498.18 14998.50 30397.57 19297.39 30796.75 35196.77 17999.15 38190.16 38099.02 29794.88 401
testing393.51 34892.09 35797.75 27098.60 29794.40 30297.32 25295.26 37697.56 19496.79 33595.50 37553.57 41399.77 21595.26 28598.97 30399.08 247
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17499.46 10697.56 19499.54 5699.50 5998.97 2399.84 13798.06 11899.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.40 15098.00 18699.61 999.57 8199.25 2498.57 10699.35 14397.55 19699.31 10597.71 31694.61 26199.88 8396.14 25399.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 9199.36 13897.54 19798.30 24098.40 26697.86 10399.89 7496.53 22899.72 14999.56 97
v114498.60 12498.66 9898.41 21899.36 14795.90 25597.58 23199.34 14997.51 19899.27 10899.15 12696.34 20299.80 18499.47 3499.93 4499.51 120
PMMVS298.07 18898.08 18098.04 24999.41 13794.59 29894.59 37799.40 12697.50 19998.82 18598.83 20396.83 17499.84 13797.50 15199.81 9999.71 46
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14397.50 19998.28 24298.60 24597.64 12099.35 36193.86 32499.27 26298.79 298
MVSTER96.86 27496.55 28197.79 26497.91 35194.21 30797.56 23398.87 26397.49 20199.06 13699.05 14780.72 37699.80 18498.44 9699.82 9599.37 184
Patchmatch-RL test97.26 24897.02 25197.99 25299.52 10395.53 26696.13 32199.71 3497.47 20299.27 10899.16 12284.30 36399.62 29297.89 12899.77 12498.81 292
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11299.31 16197.47 20298.58 21598.50 25897.97 9899.85 12096.57 21999.59 19899.53 115
MSLP-MVS++98.02 19098.14 17497.64 28098.58 30295.19 27997.48 24199.23 19697.47 20297.90 26798.62 24297.04 16198.81 39397.55 14699.41 24198.94 274
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11299.31 16197.47 20298.56 21898.54 25097.75 11199.88 8396.57 21999.59 19899.58 86
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9999.24 19497.47 20298.09 25698.68 22897.62 12299.89 7496.22 24799.62 18799.57 91
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11299.31 16197.46 20798.44 23098.51 25497.83 10499.88 8396.46 23299.58 20399.58 86
HPM-MVS++copyleft98.10 18397.64 21699.48 5199.09 20499.13 5597.52 23798.75 28797.46 20796.90 32897.83 31196.01 21399.84 13795.82 26999.35 24999.46 146
TinyColmap97.89 19997.98 18897.60 28298.86 24894.35 30496.21 31599.44 11497.45 20999.06 13698.88 19497.99 9799.28 37294.38 31099.58 20399.18 236
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 14199.25 18997.44 21098.67 20098.39 26797.68 11499.85 12096.00 25799.51 22499.52 118
v119298.60 12498.66 9898.41 21899.27 16195.88 25697.52 23799.36 13897.41 21199.33 9799.20 11296.37 20099.82 16499.57 2799.92 5599.55 104
plane_prior397.78 17397.41 21197.79 276
EIA-MVS98.00 19297.74 20698.80 16098.72 27198.09 13598.05 16699.60 5297.39 21396.63 34095.55 37397.68 11499.80 18496.73 20899.27 26298.52 322
thres20093.72 34693.14 34895.46 36398.66 29191.29 36796.61 29494.63 38097.39 21396.83 33293.71 39579.88 37899.56 31482.40 40198.13 34795.54 400
testgi98.32 16198.39 14098.13 24099.57 8195.54 26597.78 20399.49 9497.37 21599.19 12297.65 32098.96 2499.49 33696.50 23098.99 30099.34 196
mvs_anonymous97.83 21198.16 17196.87 32498.18 33691.89 35897.31 25398.90 25897.37 21598.83 18299.46 6696.28 20399.79 19798.90 6698.16 34598.95 270
EPNet_dtu94.93 32894.78 32995.38 36493.58 40887.68 39196.78 28495.69 37497.35 21789.14 40498.09 29488.15 33799.49 33694.95 29199.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test96.55 28696.34 28697.17 31098.35 32593.06 33798.40 13197.79 32797.33 21898.41 23398.67 23083.68 36799.69 25595.16 28799.31 25598.77 300
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21898.94 16498.86 19798.75 3699.82 16497.53 14999.71 15499.56 97
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29599.48 9697.32 22099.11 12998.61 24499.33 1399.30 36896.23 24698.38 33499.28 214
DeepC-MVS_fast96.85 698.30 16498.15 17298.75 17398.61 29597.23 20597.76 20899.09 22897.31 22198.75 19498.66 23397.56 12799.64 28696.10 25699.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Effi-MVS+98.02 19097.82 20298.62 18698.53 30997.19 21097.33 25199.68 4297.30 22296.68 33897.46 33298.56 5499.80 18496.63 21598.20 34198.86 285
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32799.50 8797.30 22299.05 14198.98 16999.35 1299.32 36595.72 27299.68 16799.18 236
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12599.29 17797.28 22498.11 25498.39 26798.00 9499.87 10096.86 19799.64 18199.55 104
eth_miper_zixun_eth97.23 25297.25 23997.17 31098.00 34592.77 34494.71 37099.18 20897.27 22598.56 21898.74 21891.89 30899.69 25597.06 17799.81 9999.05 251
MDA-MVSNet_test_wron97.60 22497.66 21497.41 30099.04 21693.09 33695.27 35598.42 30697.26 22698.88 17498.95 17895.43 23899.73 23897.02 17898.72 31799.41 164
miper_lstm_enhance97.18 25697.16 24497.25 30798.16 33792.85 34295.15 36099.31 16197.25 22798.74 19698.78 21290.07 32199.78 20897.19 16499.80 10999.11 246
xiu_mvs_v2_base97.16 25897.49 22696.17 34798.54 30792.46 34995.45 35098.84 27297.25 22797.48 29996.49 35598.31 7099.90 6496.34 23998.68 32496.15 395
PS-MVSNAJ97.08 26297.39 23196.16 34998.56 30592.46 34995.24 35798.85 27197.25 22797.49 29895.99 36498.07 8899.90 6496.37 23698.67 32596.12 396
YYNet197.60 22497.67 21197.39 30199.04 21693.04 34095.27 35598.38 30997.25 22798.92 16698.95 17895.48 23799.73 23896.99 18198.74 31599.41 164
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21399.46 10697.25 22798.98 15098.99 16597.54 12999.84 13795.88 26299.74 13999.23 224
CNVR-MVS98.17 18197.87 19999.07 12098.67 28698.24 12097.01 27198.93 25297.25 22797.62 28598.34 27497.27 14999.57 31196.42 23499.33 25299.39 175
CANet_DTU97.26 24897.06 24997.84 26097.57 36694.65 29696.19 31798.79 28097.23 23395.14 37598.24 28193.22 28699.84 13797.34 15799.84 8599.04 255
v192192098.54 13498.60 10998.38 22199.20 17795.76 26197.56 23399.36 13897.23 23399.38 8799.17 12096.02 21299.84 13799.57 2799.90 6999.54 108
MIMVSNet96.62 28596.25 29297.71 27599.04 21694.66 29599.16 5196.92 35297.23 23397.87 26999.10 13686.11 34899.65 28391.65 36299.21 27298.82 288
FMVSNet596.01 30395.20 32098.41 21897.53 37196.10 24798.74 8799.50 8797.22 23698.03 26299.04 14969.80 39799.88 8397.27 16099.71 15499.25 219
testing9193.32 35192.27 35496.47 33697.54 36991.25 36996.17 32096.76 35597.18 23793.65 39393.50 39765.11 40799.63 28993.04 34197.45 36498.53 321
thisisatest053095.27 32294.45 33197.74 27299.19 18094.37 30397.86 19590.20 40297.17 23898.22 24497.65 32073.53 39699.90 6496.90 19299.35 24998.95 270
v124098.55 13298.62 10498.32 22599.22 17195.58 26497.51 23999.45 11097.16 23999.45 7499.24 10596.12 20899.85 12099.60 2599.88 7499.55 104
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 8099.37 13497.16 23998.82 18599.01 16197.71 11399.87 10096.29 24299.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v14419298.54 13498.57 11298.45 21499.21 17395.98 25397.63 22499.36 13897.15 24199.32 10399.18 11695.84 22699.84 13799.50 3299.91 6399.54 108
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26899.18 20897.10 24298.75 19498.92 18398.18 8099.65 28396.68 21399.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
c3_l97.36 24097.37 23397.31 30298.09 34193.25 33595.01 36399.16 21597.05 24398.77 19198.72 22192.88 29499.64 28696.93 18699.76 13599.05 251
cl____97.02 26696.83 26297.58 28497.82 35594.04 31394.66 37399.16 21597.04 24498.63 20598.71 22288.68 33299.69 25597.00 17999.81 9999.00 262
DIV-MVS_self_test97.02 26696.84 26197.58 28497.82 35594.03 31494.66 37399.16 21597.04 24498.63 20598.71 22288.69 33099.69 25597.00 17999.81 9999.01 259
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14399.49 9497.01 24698.69 19898.88 19498.00 9499.89 7495.87 26599.59 19899.58 86
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11798.94 25096.96 24799.24 11798.89 19397.83 10499.81 17796.88 19499.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dmvs_testset92.94 35792.21 35695.13 36698.59 30090.99 37397.65 22292.09 39696.95 24894.00 38993.55 39692.34 30396.97 40472.20 40792.52 40297.43 380
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19899.25 18996.94 24998.78 18899.12 13298.02 9299.84 13797.13 17199.67 17399.59 80
CVMVSNet96.25 29897.21 24293.38 38499.10 20180.56 41197.20 26398.19 31796.94 24999.00 14899.02 15289.50 32699.80 18496.36 23899.59 19899.78 33
CNLPA97.17 25796.71 27098.55 20198.56 30598.05 14596.33 30898.93 25296.91 25197.06 31797.39 33594.38 26799.45 34691.66 36199.18 27898.14 347
DeepPCF-MVS96.93 598.32 16198.01 18599.23 9798.39 32498.97 6695.03 36299.18 20896.88 25299.33 9798.78 21298.16 8499.28 37296.74 20699.62 18799.44 154
testing9993.04 35691.98 36296.23 34497.53 37190.70 37896.35 30795.94 36996.87 25393.41 39493.43 39863.84 40999.59 30393.24 33997.19 37498.40 334
wuyk23d96.06 30197.62 21891.38 38798.65 29498.57 9698.85 8396.95 35096.86 25499.90 1299.16 12299.18 1798.40 39789.23 38499.77 12477.18 405
testing22291.96 36890.37 37296.72 33297.47 37792.59 34696.11 32294.76 37896.83 25592.90 39692.87 40057.92 41199.55 31786.93 39197.52 36198.00 356
AllTest98.44 14698.20 16499.16 10599.50 10898.55 9798.25 14299.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
test_fmvs298.70 10398.97 6597.89 25899.54 9894.05 31198.55 10899.92 696.78 25899.72 3199.78 896.60 18999.67 26799.91 299.90 6999.94 7
SF-MVS98.53 13698.27 15799.32 8099.31 15498.75 8198.19 14899.41 12496.77 25998.83 18298.90 18797.80 10899.82 16495.68 27599.52 22299.38 182
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 12096.74 26098.61 20998.38 26998.62 4799.87 10096.47 23199.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
plane_prior97.65 18297.07 26996.72 26199.36 247
BH-untuned96.83 27596.75 26897.08 31398.74 26893.33 33496.71 28998.26 31296.72 26198.44 23097.37 33795.20 24299.47 34291.89 35897.43 36698.44 329
BH-RMVSNet96.83 27596.58 28097.58 28498.47 31394.05 31196.67 29197.36 33796.70 26397.87 26997.98 30195.14 24499.44 34890.47 37998.58 33199.25 219
TAMVS98.24 17398.05 18298.80 16099.07 20897.18 21197.88 19098.81 27796.66 26499.17 12799.21 11094.81 25599.77 21596.96 18599.88 7499.44 154
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14399.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
CL-MVSNet_self_test97.44 23697.22 24198.08 24498.57 30495.78 26094.30 38398.79 28096.58 26798.60 21198.19 28694.74 26099.64 28696.41 23598.84 31098.82 288
ETVMVS92.60 36091.08 36997.18 30897.70 36293.65 33196.54 29595.70 37296.51 26894.68 38092.39 40261.80 41099.50 33386.97 39097.41 36798.40 334
our_test_397.39 23997.73 20896.34 33898.70 27889.78 38294.61 37698.97 24996.50 26999.04 14398.85 20095.98 21999.84 13797.26 16199.67 17399.41 164
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22498.58 10599.10 22696.49 27099.96 499.81 598.18 8099.45 34698.97 6399.79 11499.83 22
test_prior295.74 34096.48 27196.11 35597.63 32295.92 22394.16 31299.20 273
testing1193.08 35592.02 35996.26 34297.56 36790.83 37696.32 30995.70 37296.47 27292.66 39793.73 39464.36 40899.59 30393.77 32797.57 36098.37 338
bld_raw_dy_0_6497.62 22397.51 22497.96 25497.97 34696.28 24398.20 14799.82 2296.46 27399.37 8997.12 34792.42 30199.70 25096.27 24399.97 1997.90 358
iter_conf05_1196.72 27996.30 28897.97 25397.97 34696.24 24594.99 36496.19 36396.45 27496.77 33696.84 34891.46 31299.78 20896.27 24399.78 11997.90 358
MG-MVS96.77 27896.61 27797.26 30698.31 32893.06 33795.93 33298.12 32196.45 27497.92 26598.73 21993.77 28299.39 35591.19 37299.04 29399.33 201
MVP-Stereo98.08 18797.92 19498.57 19698.96 22896.79 22897.90 18799.18 20896.41 27698.46 22898.95 17895.93 22299.60 29996.51 22998.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test97.50 22997.74 20696.78 33098.70 27891.23 37194.55 37899.05 23496.36 27799.21 12098.79 21196.39 19799.78 20896.74 20699.82 9599.34 196
TSAR-MVS + GP.98.18 17997.98 18898.77 16998.71 27497.88 16096.32 30998.66 29396.33 27899.23 11998.51 25497.48 13999.40 35397.16 16699.46 23499.02 258
testdata195.44 35196.32 279
test_vis1_n98.31 16398.50 12097.73 27499.76 3194.17 30998.68 9699.91 796.31 28099.79 2599.57 4292.85 29699.42 35199.79 1399.84 8599.60 74
LF4IMVS97.90 19797.69 21098.52 20699.17 18897.66 18197.19 26599.47 10496.31 28097.85 27298.20 28596.71 18599.52 32894.62 29899.72 14998.38 336
test_f98.67 11498.87 7198.05 24899.72 4495.59 26298.51 11799.81 2496.30 28299.78 2699.82 496.14 20698.63 39599.82 899.93 4499.95 6
test-LLR93.90 34393.85 33794.04 37596.53 39684.62 40294.05 38792.39 39496.17 28394.12 38695.07 38282.30 37399.67 26795.87 26598.18 34297.82 363
test0.0.03 194.51 33193.69 34096.99 31796.05 40293.61 33294.97 36593.49 38996.17 28397.57 29194.88 38882.30 37399.01 38693.60 33094.17 40098.37 338
Anonymous2023120698.21 17698.21 16398.20 23599.51 10595.43 27198.13 15499.32 15696.16 28598.93 16598.82 20696.00 21499.83 15497.32 15899.73 14299.36 190
SCA96.41 29496.66 27595.67 35698.24 33288.35 38795.85 33796.88 35396.11 28697.67 28398.67 23093.10 28999.85 12094.16 31299.22 27098.81 292
MS-PatchMatch97.68 21897.75 20597.45 29798.23 33493.78 32697.29 25598.84 27296.10 28798.64 20498.65 23596.04 21199.36 35896.84 19899.14 28299.20 229
HQP-NCC98.67 28696.29 31196.05 28895.55 366
ACMP_Plane98.67 28696.29 31196.05 28895.55 366
HQP-MVS97.00 26996.49 28398.55 20198.67 28696.79 22896.29 31199.04 23796.05 28895.55 36696.84 34893.84 27899.54 32292.82 34699.26 26599.32 203
PHI-MVS98.29 16797.95 19099.34 7398.44 31899.16 4398.12 15699.38 13096.01 29198.06 25898.43 26497.80 10899.67 26795.69 27499.58 20399.20 229
miper_ehance_all_eth97.06 26397.03 25097.16 31297.83 35493.06 33794.66 37399.09 22895.99 29298.69 19898.45 26392.73 29899.61 29896.79 20099.03 29498.82 288
UWE-MVS92.38 36391.76 36694.21 37497.16 38484.65 40195.42 35288.45 40595.96 29396.17 35395.84 37066.36 40399.71 24691.87 35998.64 32698.28 341
AUN-MVS96.24 29995.45 31098.60 19198.70 27897.22 20797.38 24797.65 33295.95 29495.53 37097.96 30582.11 37599.79 19796.31 24097.44 36598.80 297
MVEpermissive83.40 2292.50 36191.92 36394.25 37398.83 25491.64 36092.71 39683.52 41095.92 29586.46 40795.46 37895.20 24295.40 40680.51 40398.64 32695.73 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CDS-MVSNet97.69 21797.35 23598.69 17898.73 26997.02 21996.92 27998.75 28795.89 29698.59 21398.67 23092.08 30799.74 23396.72 20999.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
D2MVS97.84 20997.84 20197.83 26199.14 19594.74 29196.94 27598.88 26195.84 29798.89 17098.96 17494.40 26699.69 25597.55 14699.95 3299.05 251
PAPM_NR96.82 27796.32 28798.30 22899.07 20896.69 23397.48 24198.76 28495.81 29896.61 34296.47 35794.12 27599.17 37990.82 37897.78 35799.06 250
ACMP95.32 1598.41 14898.09 17799.36 6499.51 10598.79 8097.68 21699.38 13095.76 29998.81 18798.82 20698.36 6599.82 16494.75 29499.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19297.63 21799.10 11499.24 16698.17 12796.89 28098.73 29095.66 30097.92 26597.70 31897.17 15599.66 27896.18 25199.23 26999.47 144
Syy-MVS96.04 30295.56 30797.49 29497.10 38694.48 30096.18 31896.58 35895.65 30194.77 37892.29 40391.27 31499.36 35898.17 11198.05 35398.63 316
myMVS_eth3d91.92 36990.45 37196.30 33997.10 38690.90 37496.18 31896.58 35895.65 30194.77 37892.29 40353.88 41299.36 35889.59 38398.05 35398.63 316
WB-MVSnew95.73 31295.57 30696.23 34496.70 39490.70 37896.07 32493.86 38895.60 30397.04 31895.45 38196.00 21499.55 31791.04 37398.31 33798.43 331
AdaColmapbinary97.14 25996.71 27098.46 21398.34 32697.80 17296.95 27498.93 25295.58 30496.92 32397.66 31995.87 22499.53 32490.97 37499.14 28298.04 352
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17497.16 26699.28 18095.54 30599.42 7999.19 11397.27 14999.63 28997.89 12899.97 1999.20 229
9.1497.78 20399.07 20897.53 23699.32 15695.53 30698.54 22298.70 22597.58 12599.76 22194.32 31199.46 234
GA-MVS95.86 30895.32 31797.49 29498.60 29794.15 31093.83 39097.93 32595.49 30796.68 33897.42 33483.21 36899.30 36896.22 24798.55 33299.01 259
tpmvs95.02 32795.25 31894.33 37296.39 40085.87 39598.08 16196.83 35495.46 30895.51 37198.69 22685.91 34999.53 32494.16 31296.23 38797.58 376
KD-MVS_2432*160092.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
miper_refine_blended92.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
UnsupCasMVSNet_bld97.30 24596.92 25598.45 21499.28 15996.78 23196.20 31699.27 18395.42 30998.28 24298.30 27893.16 28799.71 24694.99 28997.37 36998.87 284
test_fmvs1_n98.09 18698.28 15497.52 29199.68 5893.47 33398.63 9999.93 495.41 31299.68 3999.64 3291.88 30999.48 33999.82 899.87 7799.62 67
PatchmatchNetpermissive95.58 31695.67 30295.30 36597.34 38087.32 39297.65 22296.65 35695.30 31397.07 31698.69 22684.77 35799.75 22894.97 29098.64 32698.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet97.63 22297.17 24398.99 13599.27 16197.86 16295.98 32693.41 39095.25 31499.47 7098.90 18795.63 23099.85 12096.91 18799.73 14299.27 215
MVS-HIRNet94.32 33495.62 30390.42 38898.46 31575.36 41296.29 31189.13 40495.25 31495.38 37299.75 1192.88 29499.19 37894.07 31899.39 24396.72 389
test_fmvs197.72 21597.94 19297.07 31598.66 29192.39 35197.68 21699.81 2495.20 31699.54 5699.44 7191.56 31199.41 35299.78 1599.77 12499.40 173
FA-MVS(test-final)96.99 27096.82 26397.50 29398.70 27894.78 28999.34 2096.99 34795.07 31798.48 22799.33 8988.41 33699.65 28396.13 25598.92 30898.07 351
OMC-MVS97.88 20197.49 22699.04 12998.89 24598.63 8996.94 27599.25 18995.02 31898.53 22398.51 25497.27 14999.47 34293.50 33499.51 22499.01 259
tpmrst95.07 32595.46 30993.91 37797.11 38584.36 40497.62 22596.96 34994.98 31996.35 35198.80 20985.46 35399.59 30395.60 27796.23 38797.79 368
APD-MVScopyleft98.10 18397.67 21199.42 5899.11 19998.93 7197.76 20899.28 18094.97 32098.72 19798.77 21497.04 16199.85 12093.79 32699.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS96.67 28296.27 29197.87 25998.81 26094.61 29796.77 28597.92 32694.94 32197.12 31397.74 31591.11 31599.82 16493.89 32298.15 34699.18 236
CPTT-MVS97.84 20997.36 23499.27 8899.31 15498.46 10598.29 13899.27 18394.90 32297.83 27398.37 27094.90 24999.84 13793.85 32599.54 21599.51 120
MP-MVS-pluss98.57 12798.23 16299.60 1199.69 5699.35 1297.16 26699.38 13094.87 32398.97 15498.99 16598.01 9399.88 8397.29 15999.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Fast-Effi-MVS+97.67 21997.38 23298.57 19698.71 27497.43 19597.23 25999.45 11094.82 32496.13 35496.51 35498.52 5699.91 5996.19 24998.83 31198.37 338
ET-MVSNet_ETH3D94.30 33693.21 34697.58 28498.14 33894.47 30194.78 36993.24 39294.72 32589.56 40395.87 36878.57 38899.81 17796.91 18797.11 37798.46 324
EPMVS93.72 34693.27 34595.09 36896.04 40387.76 39098.13 15485.01 40994.69 32696.92 32398.64 23878.47 39099.31 36695.04 28896.46 38498.20 344
test_vis1_rt97.75 21397.72 20997.83 26198.81 26096.35 24097.30 25499.69 3794.61 32797.87 26998.05 29796.26 20498.32 39898.74 7698.18 34298.82 288
cl2295.79 31095.39 31496.98 31896.77 39392.79 34394.40 38198.53 30194.59 32897.89 26898.17 28782.82 37299.24 37496.37 23699.03 29498.92 276
PVSNet_BlendedMVS97.55 22897.53 22297.60 28298.92 23693.77 32796.64 29299.43 12094.49 32997.62 28599.18 11696.82 17599.67 26794.73 29599.93 4499.36 190
sss97.21 25396.93 25398.06 24698.83 25495.22 27896.75 28798.48 30494.49 32997.27 31097.90 30792.77 29799.80 18496.57 21999.32 25399.16 243
tpm94.67 33094.34 33495.66 35797.68 36588.42 38697.88 19094.90 37794.46 33196.03 35998.56 24978.66 38699.79 19795.88 26295.01 39698.78 299
CLD-MVS97.49 23197.16 24498.48 21199.07 20897.03 21894.71 37099.21 19894.46 33198.06 25897.16 34297.57 12699.48 33994.46 30399.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TESTMET0.1,192.19 36791.77 36593.46 38296.48 39882.80 40794.05 38791.52 39894.45 33394.00 38994.88 38866.65 40299.56 31495.78 27098.11 34898.02 353
PVSNet_Blended_VisFu98.17 18198.15 17298.22 23499.73 3895.15 28097.36 24999.68 4294.45 33398.99 14999.27 9896.87 17199.94 3597.13 17199.91 6399.57 91
MDTV_nov1_ep1395.22 31997.06 38883.20 40697.74 21096.16 36494.37 33596.99 32198.83 20383.95 36599.53 32493.90 32197.95 356
TR-MVS95.55 31795.12 32296.86 32797.54 36993.94 31896.49 29996.53 36094.36 33697.03 32096.61 35394.26 27199.16 38086.91 39296.31 38697.47 379
jason97.45 23597.35 23597.76 26999.24 16693.93 31995.86 33598.42 30694.24 33798.50 22598.13 28894.82 25399.91 5997.22 16399.73 14299.43 158
jason: jason.
HyFIR lowres test97.19 25596.60 27998.96 13999.62 7697.28 20295.17 35899.50 8794.21 33899.01 14798.32 27786.61 34299.99 297.10 17399.84 8599.60 74
SMA-MVScopyleft98.40 15098.03 18499.51 4399.16 19099.21 2898.05 16699.22 19794.16 33998.98 15099.10 13697.52 13399.79 19796.45 23399.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mvsany_test197.60 22497.54 22197.77 26697.72 35895.35 27395.36 35497.13 34494.13 34099.71 3399.33 8997.93 10099.30 36897.60 14598.94 30698.67 314
ZD-MVS99.01 22098.84 7599.07 23094.10 34198.05 26098.12 29096.36 20199.86 10892.70 35199.19 276
thisisatest051594.12 34093.16 34796.97 31998.60 29792.90 34193.77 39190.61 40094.10 34196.91 32595.87 36874.99 39499.80 18494.52 30199.12 28798.20 344
USDC97.41 23897.40 23097.44 29898.94 23093.67 32995.17 35899.53 8194.03 34398.97 15499.10 13695.29 24099.34 36295.84 26899.73 14299.30 210
test-mter92.33 36591.76 36694.04 37596.53 39684.62 40294.05 38792.39 39494.00 34494.12 38695.07 38265.63 40699.67 26795.87 26598.18 34297.82 363
baseline293.73 34592.83 35196.42 33797.70 36291.28 36896.84 28289.77 40393.96 34592.44 39895.93 36679.14 38499.77 21592.94 34296.76 38298.21 343
pmmvs597.64 22197.49 22698.08 24499.14 19595.12 28296.70 29099.05 23493.77 34698.62 20798.83 20393.23 28599.75 22898.33 10399.76 13599.36 190
BH-w/o95.13 32494.89 32895.86 35198.20 33591.31 36695.65 34297.37 33693.64 34796.52 34595.70 37193.04 29299.02 38488.10 38795.82 39297.24 382
pmmvs497.58 22797.28 23898.51 20798.84 25296.93 22595.40 35398.52 30293.60 34898.61 20998.65 23595.10 24599.60 29996.97 18499.79 11498.99 263
CHOSEN 280x42095.51 31995.47 30895.65 35898.25 33188.27 38893.25 39498.88 26193.53 34994.65 38197.15 34386.17 34699.93 4097.41 15499.93 4498.73 305
lupinMVS97.06 26396.86 25997.65 27898.88 24693.89 32395.48 34997.97 32493.53 34998.16 24897.58 32493.81 28099.91 5996.77 20399.57 20799.17 240
PatchMatch-RL97.24 25196.78 26698.61 18999.03 21997.83 16596.36 30699.06 23193.49 35197.36 30997.78 31295.75 22799.49 33693.44 33598.77 31498.52 322
PC_three_145293.27 35299.40 8398.54 25098.22 7697.00 40395.17 28699.45 23699.49 127
DP-MVS Recon97.33 24396.92 25598.57 19699.09 20497.99 14896.79 28399.35 14393.18 35397.71 28098.07 29695.00 24899.31 36693.97 31999.13 28498.42 333
1112_ss97.29 24796.86 25998.58 19399.34 15396.32 24196.75 28799.58 5593.14 35496.89 32997.48 33092.11 30699.86 10896.91 18799.54 21599.57 91
FE-MVS95.66 31494.95 32697.77 26698.53 30995.28 27599.40 1696.09 36693.11 35597.96 26499.26 10079.10 38599.77 21592.40 35598.71 31998.27 342
IU-MVS99.49 11599.15 4798.87 26392.97 35699.41 8096.76 20499.62 18799.66 58
F-COLMAP97.30 24596.68 27299.14 10899.19 18098.39 10897.27 25899.30 16992.93 35796.62 34198.00 29995.73 22899.68 26492.62 35298.46 33399.35 194
FPMVS93.44 35092.23 35597.08 31399.25 16597.86 16295.61 34397.16 34392.90 35893.76 39298.65 23575.94 39295.66 40579.30 40597.49 36297.73 370
DSMNet-mixed97.42 23797.60 21996.87 32499.15 19491.46 36298.54 11099.12 22392.87 35997.58 28999.63 3396.21 20599.90 6495.74 27199.54 21599.27 215
dp93.47 34993.59 34293.13 38696.64 39581.62 41097.66 22096.42 36192.80 36096.11 35598.64 23878.55 38999.59 30393.31 33792.18 40498.16 346
PVSNet93.40 1795.67 31395.70 30095.57 35998.83 25488.57 38592.50 39797.72 32992.69 36196.49 34996.44 35893.72 28399.43 34993.61 32999.28 26198.71 306
new_pmnet96.99 27096.76 26797.67 27698.72 27194.89 28795.95 33198.20 31592.62 36298.55 22098.54 25094.88 25299.52 32893.96 32099.44 23998.59 320
原ACMM198.35 22398.90 24096.25 24498.83 27692.48 36396.07 35798.10 29295.39 23999.71 24692.61 35398.99 30099.08 247
IB-MVS91.63 1992.24 36690.90 37096.27 34197.22 38391.24 37094.36 38293.33 39192.37 36492.24 39994.58 39166.20 40599.89 7493.16 34094.63 39897.66 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CR-MVSNet96.28 29795.95 29597.28 30497.71 36094.22 30598.11 15798.92 25592.31 36596.91 32599.37 7985.44 35499.81 17797.39 15597.36 37197.81 365
HY-MVS95.94 1395.90 30795.35 31697.55 28897.95 34894.79 28898.81 8696.94 35192.28 36695.17 37498.57 24889.90 32399.75 22891.20 37197.33 37398.10 349
MAR-MVS96.47 29295.70 30098.79 16397.92 35099.12 5798.28 13998.60 29892.16 36795.54 36996.17 36294.77 25999.52 32889.62 38298.23 33997.72 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.32 29595.59 30598.51 20798.76 26597.21 20894.54 37998.26 31291.94 36896.37 35097.25 34093.06 29199.43 34991.42 36798.74 31598.89 280
train_agg97.10 26096.45 28499.07 12098.71 27498.08 13995.96 32999.03 23991.64 36995.85 36097.53 32696.47 19499.76 22193.67 32899.16 27999.36 190
test_898.67 28698.01 14795.91 33499.02 24291.64 36995.79 36297.50 32996.47 19499.76 221
CHOSEN 1792x268897.49 23197.14 24798.54 20499.68 5896.09 25096.50 29899.62 4891.58 37198.84 18198.97 17192.36 30299.88 8396.76 20499.95 3299.67 57
PMMVS96.51 28895.98 29498.09 24197.53 37195.84 25794.92 36698.84 27291.58 37196.05 35895.58 37295.68 22999.66 27895.59 27898.09 34998.76 302
Test_1112_low_res96.99 27096.55 28198.31 22799.35 15195.47 26995.84 33899.53 8191.51 37396.80 33498.48 26191.36 31399.83 15496.58 21799.53 21999.62 67
TEST998.71 27498.08 13995.96 32999.03 23991.40 37495.85 36097.53 32696.52 19299.76 221
PAPR95.29 32194.47 33097.75 27097.50 37695.14 28194.89 36798.71 29191.39 37595.35 37395.48 37794.57 26299.14 38284.95 39597.37 36998.97 267
131495.74 31195.60 30496.17 34797.53 37192.75 34598.07 16398.31 31191.22 37694.25 38496.68 35295.53 23399.03 38391.64 36397.18 37596.74 388
CDPH-MVS97.26 24896.66 27599.07 12099.00 22198.15 12896.03 32599.01 24591.21 37797.79 27697.85 31096.89 17099.69 25592.75 34999.38 24699.39 175
miper_enhance_ethall96.01 30395.74 29896.81 32896.41 39992.27 35593.69 39298.89 26091.14 37898.30 24097.35 33990.58 31899.58 30996.31 24099.03 29498.60 318
PVSNet_Blended96.88 27396.68 27297.47 29698.92 23693.77 32794.71 37099.43 12090.98 37997.62 28597.36 33896.82 17599.67 26794.73 29599.56 21098.98 264
PLCcopyleft94.65 1696.51 28895.73 29998.85 15398.75 26797.91 15896.42 30399.06 23190.94 38095.59 36397.38 33694.41 26599.59 30390.93 37598.04 35599.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet295.43 32094.98 32496.76 33198.14 33891.74 35997.92 18497.76 32890.23 38196.51 34698.91 18485.61 35199.85 12092.88 34496.90 37898.69 310
ADS-MVSNet95.24 32394.93 32796.18 34698.14 33890.10 38197.92 18497.32 34090.23 38196.51 34698.91 18485.61 35199.74 23392.88 34496.90 37898.69 310
QAPM97.31 24496.81 26598.82 15698.80 26397.49 19099.06 6299.19 20490.22 38397.69 28299.16 12296.91 16999.90 6490.89 37799.41 24199.07 249
PVSNet_089.98 2191.15 37190.30 37493.70 38097.72 35884.34 40590.24 40097.42 33590.20 38493.79 39193.09 39990.90 31698.89 39286.57 39372.76 40797.87 362
testdata98.09 24198.93 23295.40 27298.80 27990.08 38597.45 30298.37 27095.26 24199.70 25093.58 33198.95 30599.17 240
MDTV_nov1_ep13_2view74.92 41397.69 21590.06 38697.75 27985.78 35093.52 33298.69 310
OpenMVScopyleft96.65 797.09 26196.68 27298.32 22598.32 32797.16 21398.86 8299.37 13489.48 38796.29 35299.15 12696.56 19099.90 6492.90 34399.20 27397.89 360
无先验95.74 34098.74 28989.38 38899.73 23892.38 35699.22 228
CostFormer93.97 34293.78 33994.51 37197.53 37185.83 39797.98 17895.96 36889.29 38994.99 37798.63 24078.63 38799.62 29294.54 30096.50 38398.09 350
CMPMVSbinary75.91 2396.29 29695.44 31198.84 15496.25 40198.69 8897.02 27099.12 22388.90 39097.83 27398.86 19789.51 32598.90 39191.92 35799.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs395.03 32694.40 33296.93 32097.70 36292.53 34895.08 36197.71 33088.57 39197.71 28098.08 29579.39 38399.82 16496.19 24999.11 28898.43 331
旧先验295.76 33988.56 39297.52 29599.66 27894.48 302
gm-plane-assit94.83 40681.97 40988.07 39394.99 38599.60 29991.76 360
新几何198.91 14798.94 23097.76 17498.76 28487.58 39496.75 33798.10 29294.80 25699.78 20892.73 35099.00 29999.20 229
PAPM91.88 37090.34 37396.51 33498.06 34392.56 34792.44 39897.17 34286.35 39590.38 40296.01 36386.61 34299.21 37770.65 40895.43 39497.75 369
tpm293.09 35492.58 35394.62 37097.56 36786.53 39497.66 22095.79 37186.15 39694.07 38898.23 28375.95 39199.53 32490.91 37696.86 38197.81 365
test22298.92 23696.93 22595.54 34598.78 28285.72 39796.86 33198.11 29194.43 26499.10 28999.23 224
cascas94.79 32994.33 33596.15 35096.02 40492.36 35392.34 39999.26 18885.34 39895.08 37694.96 38792.96 29398.53 39694.41 30998.59 33097.56 377
OpenMVS_ROBcopyleft95.38 1495.84 30995.18 32197.81 26398.41 32397.15 21497.37 24898.62 29783.86 39998.65 20398.37 27094.29 27099.68 26488.41 38598.62 32996.60 390
TAPA-MVS96.21 1196.63 28495.95 29598.65 18098.93 23298.09 13596.93 27799.28 18083.58 40098.13 25297.78 31296.13 20799.40 35393.52 33299.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 35293.13 34993.75 37997.39 37984.74 40097.39 24697.65 33283.39 40194.16 38598.41 26582.86 37199.39 35591.56 36595.35 39597.14 383
114514_t96.50 29095.77 29798.69 17899.48 12297.43 19597.84 19799.55 7381.42 40296.51 34698.58 24795.53 23399.67 26793.41 33699.58 20398.98 264
PCF-MVS92.86 1894.36 33393.00 35098.42 21798.70 27897.56 18793.16 39599.11 22579.59 40397.55 29297.43 33392.19 30499.73 23879.85 40499.45 23697.97 357
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
MVS93.19 35392.09 35796.50 33596.91 38994.03 31498.07 16398.06 32368.01 40494.56 38396.48 35695.96 22199.30 36883.84 39796.89 38096.17 393
DeepMVS_CXcopyleft93.44 38398.24 33294.21 30794.34 38264.28 40591.34 40194.87 39089.45 32792.77 40877.54 40693.14 40193.35 403
tmp_tt78.77 37478.73 37778.90 39058.45 41374.76 41494.20 38478.26 41339.16 40686.71 40692.82 40180.50 37775.19 40986.16 39492.29 40386.74 404
test_method79.78 37379.50 37680.62 38980.21 41245.76 41570.82 40398.41 30831.08 40780.89 40897.71 31684.85 35697.37 40291.51 36680.03 40698.75 303
EGC-MVSNET85.24 37280.54 37599.34 7399.77 2899.20 3499.08 5899.29 17712.08 40820.84 40999.42 7397.55 12899.85 12097.08 17499.72 14998.96 269
test12317.04 37720.11 3807.82 39110.25 4154.91 41694.80 3684.47 4164.93 40910.00 41124.28 4089.69 4143.64 41010.14 40912.43 40914.92 406
testmvs17.12 37620.53 3796.87 39212.05 4144.20 41793.62 3936.73 4154.62 41010.41 41024.33 4078.28 4153.56 4119.69 41015.07 40812.86 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.66 37532.88 3780.00 3930.00 4160.00 4180.00 40499.10 2260.00 4110.00 41297.58 32499.21 160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.17 37810.90 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41198.07 880.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.12 37910.83 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.48 3300.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.90 37491.37 368
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
No_MVS99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
eth-test20.00 416
eth-test0.00 416
OPU-MVS98.82 15698.59 30098.30 11698.10 15998.52 25398.18 8098.75 39494.62 29899.48 23399.41 164
test_0728_SECOND99.60 1199.50 10899.23 2698.02 17199.32 15699.88 8396.99 18199.63 18499.68 54
GSMVS98.81 292
test_part299.36 14799.10 6099.05 141
sam_mvs184.74 35898.81 292
sam_mvs84.29 364
ambc98.24 23398.82 25795.97 25498.62 10199.00 24799.27 10899.21 11096.99 16699.50 33396.55 22699.50 23199.26 218
MTGPAbinary99.20 200
test_post197.59 23020.48 41083.07 37099.66 27894.16 312
test_post21.25 40983.86 36699.70 250
patchmatchnet-post98.77 21484.37 36199.85 120
GG-mvs-BLEND94.76 36994.54 40792.13 35799.31 2780.47 41288.73 40591.01 40567.59 40198.16 40082.30 40294.53 39993.98 402
MTMP97.93 18291.91 397
test9_res93.28 33899.15 28199.38 182
agg_prior292.50 35499.16 27999.37 184
agg_prior98.68 28597.99 14899.01 24595.59 36399.77 215
test_prior497.97 15295.86 335
test_prior98.95 14198.69 28397.95 15699.03 23999.59 30399.30 210
新几何295.93 332
旧先验198.82 25797.45 19398.76 28498.34 27495.50 23699.01 29899.23 224
原ACMM295.53 346
testdata299.79 19792.80 348
segment_acmp97.02 164
test1298.93 14498.58 30297.83 16598.66 29396.53 34495.51 23599.69 25599.13 28499.27 215
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 18094.90 249
plane_prior599.27 18399.70 25094.42 30699.51 22499.45 150
plane_prior497.98 301
plane_prior199.05 215
n20.00 417
nn0.00 417
door-mid99.57 62
lessismore_v098.97 13899.73 3897.53 18986.71 40799.37 8999.52 5789.93 32299.92 5098.99 6299.72 14999.44 154
test1198.87 263
door99.41 124
HQP5-MVS96.79 228
BP-MVS92.82 346
HQP4-MVS95.56 36599.54 32299.32 203
HQP3-MVS99.04 23799.26 265
HQP2-MVS93.84 278
NP-MVS98.84 25297.39 19796.84 348
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 192