This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1299.98 199.99 199.96 199.77 2100.00 199.81 10100.00 199.85 22
mmtdpeth99.30 2999.42 2098.92 14999.58 7696.89 22999.48 1099.92 799.92 298.26 25299.80 998.33 7099.91 6299.56 2999.95 3099.97 4
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1799.34 1999.69 599.58 5999.90 399.86 1899.78 1099.58 699.95 2499.00 6499.95 3099.78 35
mvs5depth99.30 2999.59 998.44 22299.65 6395.35 27999.82 399.94 299.83 499.42 8399.94 298.13 9199.96 1299.63 2499.96 23100.00 1
UA-Net99.47 1399.40 2299.70 299.49 11599.29 2399.80 499.72 3599.82 599.04 14799.81 698.05 9699.96 1298.85 7499.99 599.86 21
ANet_high99.57 799.67 599.28 8799.89 698.09 13799.14 5499.93 599.82 599.93 699.81 699.17 1899.94 3799.31 42100.00 199.82 27
mamv499.44 1599.39 2399.58 1999.30 15999.74 299.04 6599.81 2599.77 799.82 2199.57 4597.82 11299.98 499.53 3199.89 7199.01 268
MVSMamba_PlusPlus98.83 8798.98 6798.36 23199.32 15596.58 24498.90 8099.41 13199.75 898.72 20199.50 6296.17 21299.94 3799.27 4599.78 12098.57 333
gg-mvs-nofinetune92.37 37791.20 38195.85 36395.80 41892.38 36099.31 2781.84 42499.75 891.83 41399.74 1568.29 41099.02 39487.15 40297.12 38896.16 407
SSC-MVS98.71 10498.74 8898.62 19199.72 4296.08 25898.74 9298.64 30699.74 1099.67 4299.24 11594.57 26899.95 2499.11 5599.24 27499.82 27
LFMVS97.20 26496.72 27998.64 18698.72 27796.95 22598.93 7894.14 40099.74 1098.78 19299.01 17284.45 36899.73 24797.44 16299.27 26999.25 226
Anonymous2023121199.27 3399.27 3899.26 9299.29 16198.18 12899.49 999.51 8899.70 1299.80 2599.68 2296.84 17899.83 16399.21 5199.91 6199.77 37
SDMVSNet99.23 4099.32 3198.96 14199.68 5697.35 20098.84 8999.48 9999.69 1399.63 4999.68 2299.03 2199.96 1297.97 13199.92 5499.57 96
sd_testset99.28 3299.31 3399.19 10399.68 5698.06 14699.41 1499.30 17799.69 1399.63 4999.68 2299.25 1499.96 1297.25 17299.92 5499.57 96
nrg03099.40 2299.35 2699.54 3099.58 7699.13 5998.98 7299.48 9999.68 1599.46 7599.26 11098.62 4799.73 24799.17 5499.92 5499.76 42
VDDNet98.21 18297.95 19899.01 13599.58 7697.74 17899.01 6797.29 35299.67 1698.97 15899.50 6290.45 32799.80 19497.88 13799.20 28299.48 144
v7n99.53 999.57 1099.41 6299.88 998.54 10299.45 1199.61 5599.66 1799.68 4099.66 2998.44 6199.95 2499.73 1899.96 2399.75 46
WB-MVS98.52 14598.55 11998.43 22399.65 6395.59 26898.52 11898.77 29299.65 1899.52 6399.00 17594.34 27499.93 4498.65 9098.83 32199.76 42
pmmvs699.67 399.70 399.60 1499.90 499.27 2699.53 899.76 3199.64 1999.84 2099.83 499.50 899.87 10899.36 3999.92 5499.64 66
DTE-MVSNet99.43 1999.35 2699.66 799.71 4599.30 2199.31 2799.51 8899.64 1999.56 5399.46 7098.23 7799.97 598.78 7899.93 4399.72 48
VPA-MVSNet99.30 2999.30 3599.28 8799.49 11598.36 11699.00 6999.45 11499.63 2199.52 6399.44 7598.25 7599.88 9199.09 5799.84 8599.62 70
DP-MVS98.93 7598.81 8499.28 8799.21 17898.45 10898.46 13199.33 16299.63 2199.48 7099.15 13897.23 15899.75 23797.17 17599.66 18499.63 69
LTVRE_ROB98.40 199.67 399.71 299.56 2599.85 1699.11 6399.90 199.78 2999.63 2199.78 2799.67 2799.48 999.81 18799.30 4399.97 1999.77 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PEN-MVS99.41 2199.34 2899.62 999.73 3699.14 5699.29 3399.54 8199.62 2499.56 5399.42 7798.16 8899.96 1298.78 7899.93 4399.77 37
K. test v398.00 19797.66 22199.03 13299.79 2297.56 18999.19 4992.47 40699.62 2499.52 6399.66 2989.61 33299.96 1299.25 4899.81 9999.56 102
FC-MVSNet-test99.27 3399.25 4199.34 7599.77 2698.37 11399.30 3299.57 6699.61 2699.40 8899.50 6297.12 16399.85 12899.02 6399.94 3899.80 31
VDD-MVS98.56 13498.39 14699.07 12299.13 20298.07 14398.59 11097.01 35999.59 2799.11 13399.27 10694.82 26099.79 20798.34 10799.63 19099.34 203
MIMVSNet199.38 2499.32 3199.55 2799.86 1499.19 4199.41 1499.59 5799.59 2799.71 3499.57 4597.12 16399.90 6899.21 5199.87 7699.54 113
Gipumacopyleft99.03 6399.16 4898.64 18699.94 298.51 10499.32 2399.75 3499.58 2998.60 21799.62 3698.22 8099.51 34297.70 14999.73 14597.89 372
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MM98.22 18097.99 19498.91 15098.66 29996.97 22297.89 20094.44 39499.54 3098.95 16299.14 14193.50 29099.92 5399.80 1199.96 2399.85 22
PS-CasMVS99.40 2299.33 2999.62 999.71 4599.10 6499.29 3399.53 8499.53 3199.46 7599.41 8198.23 7799.95 2498.89 7299.95 3099.81 30
dcpmvs_298.78 9599.11 5497.78 27199.56 8993.67 33799.06 6299.86 1599.50 3299.66 4399.26 11097.21 16099.99 298.00 12999.91 6199.68 56
FIs99.14 4999.09 5799.29 8699.70 5298.28 11999.13 5599.52 8799.48 3399.24 12199.41 8196.79 18499.82 17398.69 8899.88 7399.76 42
PS-MVSNAJss99.46 1499.49 1399.35 7299.90 498.15 13099.20 4599.65 4999.48 3399.92 899.71 1998.07 9399.96 1299.53 31100.00 199.93 10
VPNet98.87 8298.83 8199.01 13599.70 5297.62 18798.43 13499.35 15199.47 3599.28 11099.05 15896.72 19099.82 17398.09 12199.36 25499.59 85
WR-MVS_H99.33 2799.22 4399.65 899.71 4599.24 2999.32 2399.55 7799.46 3699.50 6999.34 9397.30 15299.93 4498.90 7099.93 4399.77 37
test_fmvsmconf0.01_n99.57 799.63 799.36 6699.87 1298.13 13398.08 17099.95 199.45 3799.98 299.75 1399.80 199.97 599.82 799.99 599.99 2
tfpnnormal98.90 7998.90 7398.91 15099.67 6097.82 17099.00 6999.44 11899.45 3799.51 6899.24 11598.20 8399.86 11695.92 27299.69 16899.04 264
SPE-MVS-test99.13 5299.09 5799.26 9299.13 20298.97 7099.31 2799.88 1399.44 3998.16 25898.51 26798.64 4499.93 4498.91 6999.85 8198.88 294
OurMVSNet-221017-099.37 2599.31 3399.53 3799.91 398.98 6999.63 799.58 5999.44 3999.78 2799.76 1296.39 20399.92 5399.44 3799.92 5499.68 56
FOURS199.73 3699.67 399.43 1299.54 8199.43 4199.26 116
CP-MVSNet99.21 4199.09 5799.56 2599.65 6398.96 7499.13 5599.34 15799.42 4299.33 10099.26 11097.01 17199.94 3798.74 8399.93 4399.79 32
TranMVSNet+NR-MVSNet99.17 4499.07 6099.46 5899.37 14698.87 7798.39 13899.42 12799.42 4299.36 9599.06 15198.38 6499.95 2498.34 10799.90 6799.57 96
TransMVSNet (Re)99.44 1599.47 1799.36 6699.80 2098.58 9799.27 3999.57 6699.39 4499.75 3199.62 3699.17 1899.83 16399.06 5999.62 19399.66 60
TDRefinement99.42 2099.38 2499.55 2799.76 2999.33 2099.68 699.71 3699.38 4599.53 6199.61 3998.64 4499.80 19498.24 11199.84 8599.52 124
Baseline_NR-MVSNet98.98 6998.86 7999.36 6699.82 1998.55 9997.47 25499.57 6699.37 4699.21 12499.61 3996.76 18799.83 16398.06 12499.83 9299.71 49
SixPastTwentyTwo98.75 10098.62 11099.16 10799.83 1897.96 15799.28 3798.20 32699.37 4699.70 3699.65 3392.65 30699.93 4499.04 6199.84 8599.60 79
RPMNet97.02 27696.93 26397.30 31197.71 36894.22 31198.11 16699.30 17799.37 4696.91 33899.34 9386.72 34999.87 10897.53 15997.36 38397.81 377
CS-MVS99.13 5299.10 5699.24 9799.06 21899.15 5199.36 1999.88 1399.36 4998.21 25498.46 27598.68 4299.93 4499.03 6299.85 8198.64 326
Anonymous2024052198.69 11198.87 7698.16 24899.77 2695.11 29099.08 5899.44 11899.34 5099.33 10099.55 5294.10 28299.94 3799.25 4899.96 2399.42 168
test_fmvsmconf0.1_n99.49 1299.54 1199.34 7599.78 2398.11 13497.77 21699.90 1199.33 5199.97 399.66 2999.71 399.96 1299.79 1299.99 599.96 7
PatchT96.65 29296.35 29697.54 29797.40 38895.32 28197.98 18996.64 37099.33 5196.89 34299.42 7784.32 37099.81 18797.69 15197.49 37497.48 390
KD-MVS_self_test99.25 3699.18 4599.44 5999.63 7399.06 6898.69 10199.54 8199.31 5399.62 5299.53 5897.36 15099.86 11699.24 5099.71 15899.39 181
VNet98.42 15398.30 15898.79 16698.79 27097.29 20398.23 15098.66 30399.31 5398.85 18398.80 21994.80 26399.78 21898.13 11899.13 29399.31 214
pm-mvs199.44 1599.48 1599.33 8099.80 2098.63 9199.29 3399.63 5199.30 5599.65 4699.60 4199.16 2099.82 17399.07 5899.83 9299.56 102
test_fmvsmconf_n99.44 1599.48 1599.31 8599.64 6998.10 13697.68 22799.84 2099.29 5699.92 899.57 4599.60 599.96 1299.74 1799.98 1299.89 14
test_040298.76 9998.71 9598.93 14699.56 8998.14 13298.45 13399.34 15799.28 5798.95 16298.91 19498.34 6999.79 20795.63 28799.91 6198.86 296
mvs_tets99.63 599.67 599.49 5199.88 998.61 9499.34 2099.71 3699.27 5899.90 1299.74 1599.68 499.97 599.55 3099.99 599.88 17
Anonymous2024052998.93 7598.87 7699.12 11299.19 18598.22 12799.01 6798.99 25599.25 5999.54 5799.37 8497.04 16799.80 19497.89 13499.52 22999.35 201
test_fmvsmvis_n_192099.26 3599.49 1398.54 20999.66 6296.97 22298.00 18499.85 1799.24 6099.92 899.50 6299.39 1199.95 2499.89 399.98 1298.71 317
test_fmvsm_n_192099.33 2799.45 1998.99 13799.57 8197.73 18097.93 19399.83 2299.22 6199.93 699.30 10199.42 1099.96 1299.85 599.99 599.29 219
casdiffmvs_mvgpermissive99.12 5499.16 4898.99 13799.43 13497.73 18098.00 18499.62 5299.22 6199.55 5699.22 12098.93 2699.75 23798.66 8999.81 9999.50 130
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet199.17 4499.17 4699.17 10499.55 9398.24 12299.20 4599.44 11899.21 6399.43 8099.55 5297.82 11299.86 11698.42 10499.89 7199.41 171
LS3D98.63 12598.38 14899.36 6697.25 39299.38 1299.12 5799.32 16499.21 6398.44 23798.88 20497.31 15199.80 19496.58 22999.34 25898.92 286
alignmvs97.35 25196.88 26898.78 16998.54 31698.09 13797.71 22497.69 34199.20 6597.59 30095.90 37988.12 34699.55 32698.18 11598.96 31498.70 320
EI-MVSNet-UG-set98.69 11198.71 9598.62 19199.10 20696.37 24797.23 27098.87 27299.20 6599.19 12698.99 17697.30 15299.85 12898.77 8199.79 11599.65 65
EI-MVSNet-Vis-set98.68 11698.70 9898.63 19099.09 20996.40 24697.23 27098.86 27799.20 6599.18 13098.97 18297.29 15499.85 12898.72 8599.78 12099.64 66
JIA-IIPM95.52 32895.03 33497.00 32496.85 40194.03 32196.93 28995.82 38399.20 6594.63 39499.71 1983.09 37999.60 30794.42 31894.64 40997.36 394
sasdasda98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
canonicalmvs98.34 16398.26 16498.58 19898.46 32497.82 17098.96 7499.46 11099.19 6997.46 31295.46 39098.59 5099.46 35498.08 12298.71 32998.46 337
MGCFI-Net98.34 16398.28 16098.51 21298.47 32297.59 18898.96 7499.48 9999.18 7197.40 31795.50 38798.66 4399.50 34398.18 11598.71 32998.44 343
casdiffmvspermissive98.95 7399.00 6498.81 16199.38 14097.33 20197.82 20999.57 6699.17 7299.35 9799.17 13298.35 6899.69 26398.46 10199.73 14599.41 171
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RRT-MVS97.88 20797.98 19597.61 28898.15 34793.77 33498.97 7399.64 5099.16 7398.69 20399.42 7791.60 31699.89 7997.63 15298.52 34399.16 251
UniMVSNet_NR-MVSNet98.86 8598.68 10199.40 6499.17 19398.74 8497.68 22799.40 13499.14 7499.06 14098.59 25896.71 19199.93 4498.57 9599.77 12699.53 121
reproduce_model99.15 4898.97 6899.67 499.33 15499.44 1098.15 16099.47 10799.12 7599.52 6399.32 9998.31 7199.90 6897.78 14399.73 14599.66 60
test111196.49 29996.82 27395.52 37199.42 13587.08 40599.22 4287.14 41999.11 7699.46 7599.58 4388.69 33899.86 11698.80 7699.95 3099.62 70
h-mvs3397.77 21997.33 24399.10 11699.21 17897.84 16698.35 14298.57 30999.11 7698.58 22199.02 16388.65 34199.96 1298.11 11996.34 39799.49 134
hse-mvs297.46 24197.07 25698.64 18698.73 27597.33 20197.45 25597.64 34599.11 7698.58 22197.98 31588.65 34199.79 20798.11 11997.39 38098.81 303
MVSFormer98.26 17698.43 13997.77 27298.88 25393.89 33099.39 1799.56 7399.11 7698.16 25898.13 30293.81 28699.97 599.26 4699.57 21399.43 165
test_djsdf99.52 1099.51 1299.53 3799.86 1498.74 8499.39 1799.56 7399.11 7699.70 3699.73 1799.00 2299.97 599.26 4699.98 1299.89 14
Vis-MVSNetpermissive99.34 2699.36 2599.27 9099.73 3698.26 12099.17 5099.78 2999.11 7699.27 11299.48 6898.82 3199.95 2498.94 6899.93 4399.59 85
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+96.62 999.08 6199.00 6499.33 8099.71 4598.83 7998.60 10999.58 5999.11 7699.53 6199.18 12898.81 3299.67 27596.71 22199.77 12699.50 130
IterMVS-SCA-FT97.85 21598.18 17396.87 33299.27 16491.16 38195.53 36099.25 19799.10 8399.41 8599.35 8993.10 29599.96 1298.65 9099.94 3899.49 134
NR-MVSNet98.95 7398.82 8299.36 6699.16 19598.72 8999.22 4299.20 20899.10 8399.72 3298.76 22796.38 20599.86 11698.00 12999.82 9599.50 130
UGNet98.53 14298.45 13698.79 16697.94 35796.96 22499.08 5898.54 31099.10 8396.82 34699.47 6996.55 19799.84 14698.56 9899.94 3899.55 109
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax99.58 699.61 899.48 5399.87 1298.61 9499.28 3799.66 4899.09 8699.89 1599.68 2299.53 799.97 599.50 3499.99 599.87 18
COLMAP_ROBcopyleft96.50 1098.99 6698.85 8099.41 6299.58 7699.10 6498.74 9299.56 7399.09 8699.33 10099.19 12498.40 6399.72 25495.98 27099.76 13899.42 168
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test250692.39 37591.89 37793.89 39199.38 14082.28 42199.32 2366.03 42799.08 8898.77 19599.57 4566.26 41799.84 14698.71 8699.95 3099.54 113
ECVR-MVScopyleft96.42 30196.61 28795.85 36399.38 14088.18 40199.22 4286.00 42199.08 8899.36 9599.57 4588.47 34399.82 17398.52 9999.95 3099.54 113
EC-MVSNet99.09 5799.05 6199.20 10199.28 16298.93 7599.24 4199.84 2099.08 8898.12 26398.37 28498.72 3899.90 6899.05 6099.77 12698.77 311
reproduce-ours99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
our_new_method99.09 5798.90 7399.67 499.27 16499.49 698.00 18499.42 12799.05 9199.48 7099.27 10698.29 7399.89 7997.61 15399.71 15899.62 70
test20.0398.78 9598.77 8798.78 16999.46 12597.20 21197.78 21499.24 20299.04 9399.41 8598.90 19797.65 12399.76 23097.70 14999.79 11599.39 181
v899.01 6499.16 4898.57 20199.47 12496.31 25098.90 8099.47 10799.03 9499.52 6399.57 4596.93 17499.81 18799.60 2599.98 1299.60 79
EPP-MVSNet98.30 17098.04 18999.07 12299.56 8997.83 16799.29 3398.07 33299.03 9498.59 21999.13 14292.16 31199.90 6896.87 20599.68 17399.49 134
IS-MVSNet98.19 18497.90 20499.08 12099.57 8197.97 15499.31 2798.32 32199.01 9698.98 15499.03 16291.59 31799.79 20795.49 29299.80 11099.48 144
balanced_conf0398.63 12598.72 9298.38 22898.66 29996.68 24198.90 8099.42 12798.99 9798.97 15899.19 12495.81 23399.85 12898.77 8199.77 12698.60 329
3Dnovator+97.89 398.69 11198.51 12499.24 9798.81 26698.40 10999.02 6699.19 21298.99 9798.07 26799.28 10497.11 16599.84 14696.84 20899.32 26099.47 151
PMVScopyleft91.26 2097.86 21097.94 20097.65 28499.71 4597.94 15998.52 11898.68 30298.99 9797.52 30799.35 8997.41 14798.18 41191.59 37699.67 17996.82 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EI-MVSNet98.40 15698.51 12498.04 25899.10 20694.73 29997.20 27498.87 27298.97 10099.06 14099.02 16396.00 22099.80 19498.58 9399.82 9599.60 79
EPNet96.14 30995.44 32198.25 24090.76 42595.50 27497.92 19694.65 39298.97 10092.98 40898.85 21089.12 33699.87 10895.99 26999.68 17399.39 181
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IterMVS-LS98.55 13898.70 9898.09 25099.48 12294.73 29997.22 27399.39 13698.97 10099.38 9199.31 10096.00 22099.93 4498.58 9399.97 1999.60 79
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Patchmtry97.35 25196.97 26198.50 21697.31 39196.47 24598.18 15598.92 26398.95 10398.78 19299.37 8485.44 36299.85 12895.96 27199.83 9299.17 248
anonymousdsp99.51 1199.47 1799.62 999.88 999.08 6799.34 2099.69 4098.93 10499.65 4699.72 1898.93 2699.95 2499.11 55100.00 199.82 27
UniMVSNet (Re)98.87 8298.71 9599.35 7299.24 17198.73 8797.73 22399.38 13898.93 10499.12 13298.73 23096.77 18599.86 11698.63 9299.80 11099.46 153
testf199.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
APD_test299.25 3699.16 4899.51 4699.89 699.63 498.71 9999.69 4098.90 10699.43 8099.35 8998.86 2899.67 27597.81 14099.81 9999.24 229
Anonymous20240521197.90 20397.50 23199.08 12098.90 24798.25 12198.53 11796.16 37698.87 10899.11 13398.86 20790.40 32899.78 21897.36 16699.31 26299.19 241
tt080598.69 11198.62 11098.90 15399.75 3399.30 2199.15 5396.97 36198.86 10998.87 18297.62 33798.63 4698.96 39799.41 3898.29 34998.45 340
baseline98.96 7299.02 6298.76 17399.38 14097.26 20698.49 12699.50 9098.86 10999.19 12699.06 15198.23 7799.69 26398.71 8699.76 13899.33 208
IterMVS97.73 22198.11 18296.57 34299.24 17190.28 39095.52 36299.21 20698.86 10999.33 10099.33 9593.11 29499.94 3798.49 10099.94 3899.48 144
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DU-MVS98.82 8998.63 10899.39 6599.16 19598.74 8497.54 24699.25 19798.84 11299.06 14098.76 22796.76 18799.93 4498.57 9599.77 12699.50 130
MTAPA98.88 8198.64 10799.61 1299.67 6099.36 1598.43 13499.20 20898.83 11398.89 17598.90 19796.98 17399.92 5397.16 17699.70 16599.56 102
fmvsm_l_conf0.5_n99.21 4199.28 3799.02 13499.64 6997.28 20497.82 20999.76 3198.73 11499.82 2199.09 15098.81 3299.95 2499.86 499.96 2399.83 24
v1098.97 7099.11 5498.55 20699.44 12996.21 25298.90 8099.55 7798.73 11499.48 7099.60 4196.63 19499.83 16399.70 2199.99 599.61 78
UnsupCasMVSNet_eth97.89 20597.60 22698.75 17599.31 15697.17 21497.62 23699.35 15198.72 11698.76 19798.68 23992.57 30799.74 24297.76 14895.60 40599.34 203
fmvsm_l_conf0.5_n_a99.19 4399.27 3898.94 14499.65 6397.05 21897.80 21299.76 3198.70 11799.78 2799.11 14498.79 3499.95 2499.85 599.96 2399.83 24
SR-MVS-dyc-post98.81 9198.55 11999.57 2099.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.49 14499.86 11696.56 23599.39 25099.45 157
RE-MVS-def98.58 11799.20 18299.38 1298.48 12999.30 17798.64 11898.95 16298.96 18597.75 11796.56 23599.39 25099.45 157
Fast-Effi-MVS+-dtu98.27 17498.09 18398.81 16198.43 32898.11 13497.61 23899.50 9098.64 11897.39 31997.52 34298.12 9299.95 2496.90 20298.71 32998.38 350
APD-MVS_3200maxsize98.84 8698.61 11499.53 3799.19 18599.27 2698.49 12699.33 16298.64 11899.03 15098.98 18097.89 10699.85 12896.54 23999.42 24799.46 153
XVS98.72 10398.45 13699.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30598.63 25197.50 14199.83 16396.79 21099.53 22699.56 102
X-MVStestdata94.32 34692.59 36499.53 3799.46 12599.21 3298.65 10399.34 15798.62 12297.54 30545.85 42197.50 14199.83 16396.79 21099.53 22699.56 102
GBi-Net98.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
test198.65 12198.47 13399.17 10498.90 24798.24 12299.20 4599.44 11898.59 12498.95 16299.55 5294.14 27899.86 11697.77 14499.69 16899.41 171
FMVSNet298.49 14798.40 14398.75 17598.90 24797.14 21798.61 10899.13 22998.59 12499.19 12699.28 10494.14 27899.82 17397.97 13199.80 11099.29 219
BP-MVS197.40 24896.97 26198.71 18199.07 21396.81 23298.34 14497.18 35498.58 12798.17 25598.61 25584.01 37399.94 3798.97 6699.78 12099.37 190
MonoMVSNet96.25 30696.53 29395.39 37596.57 40691.01 38298.82 9097.68 34298.57 12898.03 27299.37 8490.92 32397.78 41394.99 30093.88 41397.38 393
WR-MVS98.40 15698.19 17299.03 13299.00 22897.65 18496.85 29398.94 25798.57 12898.89 17598.50 27195.60 23899.85 12897.54 15899.85 8199.59 85
3Dnovator98.27 298.81 9198.73 9099.05 12998.76 27197.81 17399.25 4099.30 17798.57 12898.55 22699.33 9597.95 10499.90 6897.16 17699.67 17999.44 161
fmvsm_s_conf0.1_n99.16 4799.33 2998.64 18699.71 4596.10 25397.87 20499.85 1798.56 13199.90 1299.68 2298.69 4199.85 12899.72 2099.98 1299.97 4
fmvsm_s_conf0.5_n99.09 5799.26 4098.61 19499.55 9396.09 25697.74 22199.81 2598.55 13299.85 1999.55 5298.60 4999.84 14699.69 2399.98 1299.89 14
reproduce_monomvs95.00 33995.25 32894.22 38697.51 38583.34 41897.86 20598.44 31598.51 13399.29 10999.30 10167.68 41399.56 32298.89 7299.81 9999.77 37
test_one_060199.39 13999.20 3899.31 16998.49 13498.66 20899.02 16397.64 126
XXY-MVS99.14 4999.15 5399.10 11699.76 2997.74 17898.85 8799.62 5298.48 13599.37 9399.49 6798.75 3699.86 11698.20 11499.80 11099.71 49
MVS_030497.44 24497.01 26098.72 18096.42 41096.74 23797.20 27491.97 41098.46 13698.30 24698.79 22192.74 30499.91 6299.30 4399.94 3899.52 124
GeoE99.05 6298.99 6699.25 9599.44 12998.35 11798.73 9699.56 7398.42 13798.91 17298.81 21898.94 2599.91 6298.35 10699.73 14599.49 134
LCM-MVSNet-Re98.64 12398.48 13199.11 11498.85 25898.51 10498.49 12699.83 2298.37 13899.69 3899.46 7098.21 8299.92 5394.13 32899.30 26598.91 289
MDA-MVSNet-bldmvs97.94 20197.91 20398.06 25599.44 12994.96 29396.63 30599.15 22898.35 13998.83 18699.11 14494.31 27599.85 12896.60 22898.72 32799.37 190
thres600view794.45 34493.83 35096.29 35099.06 21891.53 37097.99 18894.24 39898.34 14097.44 31595.01 39679.84 38999.67 27584.33 40998.23 35097.66 385
test_vis1_n_192098.40 15698.92 7196.81 33699.74 3590.76 38798.15 16099.91 998.33 14199.89 1599.55 5295.07 25399.88 9199.76 1599.93 4399.79 32
thres100view90094.19 34993.67 35395.75 36699.06 21891.35 37498.03 17894.24 39898.33 14197.40 31794.98 39879.84 38999.62 30083.05 41198.08 36196.29 404
GDP-MVS97.50 23697.11 25598.67 18499.02 22696.85 23098.16 15999.71 3698.32 14398.52 23198.54 26283.39 37799.95 2498.79 7799.56 21699.19 241
Vis-MVSNet (Re-imp)97.46 24197.16 25198.34 23399.55 9396.10 25398.94 7798.44 31598.32 14398.16 25898.62 25388.76 33799.73 24793.88 33599.79 11599.18 244
new-patchmatchnet98.35 16298.74 8897.18 31699.24 17192.23 36496.42 31599.48 9998.30 14599.69 3899.53 5897.44 14699.82 17398.84 7599.77 12699.49 134
v14898.45 15198.60 11598.00 26099.44 12994.98 29297.44 25699.06 23898.30 14599.32 10698.97 18296.65 19399.62 30098.37 10599.85 8199.39 181
ACMH96.65 799.25 3699.24 4299.26 9299.72 4298.38 11199.07 6199.55 7798.30 14599.65 4699.45 7499.22 1599.76 23098.44 10299.77 12699.64 66
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SR-MVS98.71 10498.43 13999.57 2099.18 19299.35 1698.36 14199.29 18598.29 14898.88 17898.85 21097.53 13799.87 10896.14 26499.31 26299.48 144
Effi-MVS+-dtu98.26 17697.90 20499.35 7298.02 35499.49 698.02 18099.16 22398.29 14897.64 29697.99 31496.44 20299.95 2496.66 22498.93 31798.60 329
APD_test198.83 8798.66 10499.34 7599.78 2399.47 998.42 13699.45 11498.28 15098.98 15499.19 12497.76 11699.58 31796.57 23199.55 22098.97 277
save fliter99.11 20497.97 15496.53 30999.02 24998.24 151
EU-MVSNet97.66 22798.50 12695.13 37899.63 7385.84 40898.35 14298.21 32598.23 15299.54 5799.46 7095.02 25499.68 27298.24 11199.87 7699.87 18
fmvsm_s_conf0.1_n_a99.17 4499.30 3598.80 16399.75 3396.59 24297.97 19299.86 1598.22 15399.88 1799.71 1998.59 5099.84 14699.73 1899.98 1299.98 3
fmvsm_s_conf0.5_n_a99.10 5699.20 4498.78 16999.55 9396.59 24297.79 21399.82 2498.21 15499.81 2499.53 5898.46 6099.84 14699.70 2199.97 1999.90 13
test_yl96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
DCV-MVSNet96.69 28996.29 29997.90 26298.28 33895.24 28397.29 26697.36 34898.21 15498.17 25597.86 32286.27 35299.55 32694.87 30498.32 34698.89 291
baseline195.96 31595.44 32197.52 29998.51 32093.99 32498.39 13896.09 37898.21 15498.40 24497.76 32886.88 34899.63 29795.42 29389.27 41898.95 280
SD-MVS98.40 15698.68 10197.54 29798.96 23597.99 15097.88 20199.36 14698.20 15899.63 4999.04 16098.76 3595.33 42096.56 23599.74 14299.31 214
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
HQP_MVS97.99 20097.67 21898.93 14699.19 18597.65 18497.77 21699.27 19198.20 15897.79 28897.98 31594.90 25699.70 25994.42 31899.51 23199.45 157
plane_prior297.77 21698.20 158
DVP-MVS++98.90 7998.70 9899.51 4698.43 32899.15 5199.43 1299.32 16498.17 16199.26 11699.02 16398.18 8499.88 9197.07 18599.45 24399.49 134
test_0728_THIRD98.17 16199.08 13899.02 16397.89 10699.88 9197.07 18599.71 15899.70 54
E-PMN94.17 35094.37 34593.58 39496.86 40085.71 41090.11 41697.07 35898.17 16197.82 28797.19 35584.62 36798.94 39889.77 39497.68 37196.09 410
patch_mono-298.51 14698.63 10898.17 24699.38 14094.78 29697.36 26099.69 4098.16 16498.49 23399.29 10397.06 16699.97 598.29 11099.91 6199.76 42
EG-PatchMatch MVS98.99 6699.01 6398.94 14499.50 10897.47 19398.04 17799.59 5798.15 16599.40 8899.36 8898.58 5399.76 23098.78 7899.68 17399.59 85
ETV-MVS98.03 19497.86 20798.56 20598.69 28998.07 14397.51 25099.50 9098.10 16697.50 30995.51 38698.41 6299.88 9196.27 25699.24 27497.71 384
tttt051795.64 32594.98 33597.64 28699.36 14793.81 33298.72 9790.47 41498.08 16798.67 20698.34 28873.88 40499.92 5397.77 14499.51 23199.20 236
MVStest195.86 31795.60 31396.63 34195.87 41791.70 36897.93 19398.94 25798.03 16899.56 5399.66 2971.83 40698.26 41099.35 4099.24 27499.91 12
SED-MVS98.91 7798.72 9299.49 5199.49 11599.17 4398.10 16899.31 16998.03 16899.66 4399.02 16398.36 6599.88 9196.91 19799.62 19399.41 171
test_241102_TWO99.30 17798.03 16899.26 11699.02 16397.51 14099.88 9196.91 19799.60 20099.66 60
test_241102_ONE99.49 11599.17 4399.31 16997.98 17199.66 4398.90 19798.36 6599.48 349
DVP-MVScopyleft98.77 9898.52 12399.52 4299.50 10899.21 3298.02 18098.84 28197.97 17299.08 13899.02 16397.61 12999.88 9196.99 19199.63 19099.48 144
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.50 10899.21 3298.17 15899.35 15197.97 17299.26 11699.06 15197.61 129
ttmdpeth97.91 20298.02 19197.58 29198.69 28994.10 31798.13 16298.90 26697.95 17497.32 32299.58 4395.95 22898.75 40496.41 24799.22 27899.87 18
dmvs_re95.98 31495.39 32497.74 27898.86 25597.45 19598.37 14095.69 38797.95 17496.56 35595.95 37790.70 32597.68 41488.32 39996.13 40198.11 362
tfpn200view994.03 35393.44 35595.78 36598.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36196.29 404
thres40094.14 35193.44 35596.24 35398.93 23991.44 37297.60 23994.29 39697.94 17697.10 32794.31 40579.67 39199.62 30083.05 41198.08 36197.66 385
EMVS93.83 35694.02 34893.23 39896.83 40284.96 41189.77 41796.32 37597.92 17897.43 31696.36 37386.17 35498.93 39987.68 40197.73 37095.81 411
SteuartSystems-ACMMP98.79 9398.54 12199.54 3099.73 3699.16 4798.23 15099.31 16997.92 17898.90 17398.90 19798.00 9999.88 9196.15 26399.72 15399.58 91
Skip Steuart: Steuart Systems R&D Blog.
v2v48298.56 13498.62 11098.37 23099.42 13595.81 26597.58 24299.16 22397.90 18099.28 11099.01 17295.98 22599.79 20799.33 4199.90 6799.51 127
FMVSNet397.50 23697.24 24798.29 23898.08 35295.83 26497.86 20598.91 26597.89 18198.95 16298.95 18987.06 34799.81 18797.77 14499.69 16899.23 231
V4298.78 9598.78 8698.76 17399.44 12997.04 21998.27 14799.19 21297.87 18299.25 12099.16 13496.84 17899.78 21899.21 5199.84 8599.46 153
CSCG98.68 11698.50 12699.20 10199.45 12898.63 9198.56 11399.57 6697.87 18298.85 18398.04 31297.66 12299.84 14696.72 21999.81 9999.13 253
xiu_mvs_v1_base_debu97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
xiu_mvs_v1_base97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
xiu_mvs_v1_base_debi97.86 21098.17 17496.92 32998.98 23293.91 32796.45 31299.17 22097.85 18498.41 24097.14 35898.47 5799.92 5398.02 12699.05 29996.92 397
test_vis3_rt99.14 4999.17 4699.07 12299.78 2398.38 11198.92 7999.94 297.80 18799.91 1199.67 2797.15 16298.91 40099.76 1599.56 21699.92 11
diffmvspermissive98.22 18098.24 16798.17 24699.00 22895.44 27696.38 31799.58 5997.79 18898.53 22998.50 27196.76 18799.74 24297.95 13399.64 18799.34 203
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvs399.12 5499.41 2198.25 24099.76 2995.07 29199.05 6499.94 297.78 18999.82 2199.84 398.56 5499.71 25599.96 199.96 2399.97 4
CANet97.87 20997.76 21198.19 24597.75 36495.51 27396.76 29899.05 24197.74 19096.93 33598.21 29895.59 23999.89 7997.86 13999.93 4399.19 241
DELS-MVS98.27 17498.20 17098.48 21798.86 25596.70 23995.60 35899.20 20897.73 19198.45 23698.71 23397.50 14199.82 17398.21 11399.59 20498.93 285
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
RPSCF98.62 12898.36 15099.42 6099.65 6399.42 1198.55 11499.57 6697.72 19298.90 17399.26 11096.12 21599.52 33795.72 28399.71 15899.32 210
MVS_Test98.18 18598.36 15097.67 28298.48 32194.73 29998.18 15599.02 24997.69 19398.04 27199.11 14497.22 15999.56 32298.57 9598.90 31998.71 317
DPE-MVScopyleft98.59 13298.26 16499.57 2099.27 16499.15 5197.01 28399.39 13697.67 19499.44 7998.99 17697.53 13799.89 7995.40 29499.68 17399.66 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
ab-mvs98.41 15498.36 15098.59 19799.19 18597.23 20799.32 2398.81 28697.66 19598.62 21399.40 8396.82 18199.80 19495.88 27399.51 23198.75 314
MSDG97.71 22397.52 23098.28 23998.91 24696.82 23194.42 39399.37 14297.65 19698.37 24598.29 29397.40 14899.33 37494.09 32999.22 27898.68 324
NCCC97.86 21097.47 23599.05 12998.61 30498.07 14396.98 28598.90 26697.63 19797.04 33197.93 32095.99 22499.66 28695.31 29598.82 32399.43 165
test_cas_vis1_n_192098.33 16698.68 10197.27 31399.69 5492.29 36298.03 17899.85 1797.62 19899.96 499.62 3693.98 28399.74 24299.52 3399.86 8099.79 32
PM-MVS98.82 8998.72 9299.12 11299.64 6998.54 10297.98 18999.68 4597.62 19899.34 9999.18 12897.54 13599.77 22497.79 14299.74 14299.04 264
ACMM96.08 1298.91 7798.73 9099.48 5399.55 9399.14 5698.07 17299.37 14297.62 19899.04 14798.96 18598.84 3099.79 20797.43 16399.65 18599.49 134
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MP-MVScopyleft98.46 15098.09 18399.54 3099.57 8199.22 3198.50 12599.19 21297.61 20197.58 30198.66 24497.40 14899.88 9194.72 30999.60 20099.54 113
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MVS_111021_HR98.25 17898.08 18698.75 17599.09 20997.46 19495.97 33999.27 19197.60 20297.99 27498.25 29498.15 9099.38 36796.87 20599.57 21399.42 168
MVS_111021_LR98.30 17098.12 18198.83 15899.16 19598.03 14896.09 33599.30 17797.58 20398.10 26598.24 29598.25 7599.34 37296.69 22299.65 18599.12 254
APDe-MVScopyleft98.99 6698.79 8599.60 1499.21 17899.15 5198.87 8499.48 9997.57 20499.35 9799.24 11597.83 10999.89 7997.88 13799.70 16599.75 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
API-MVS97.04 27596.91 26797.42 30797.88 36098.23 12698.18 15598.50 31397.57 20497.39 31996.75 36396.77 18599.15 39190.16 39399.02 30694.88 414
testing393.51 36092.09 37097.75 27698.60 30694.40 30897.32 26395.26 38997.56 20696.79 34895.50 38753.57 42699.77 22495.26 29698.97 31399.08 256
DeepC-MVS97.60 498.97 7098.93 7099.10 11699.35 15197.98 15398.01 18399.46 11097.56 20699.54 5799.50 6298.97 2399.84 14698.06 12499.92 5499.49 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MSP-MVS98.40 15698.00 19399.61 1299.57 8199.25 2898.57 11299.35 15197.55 20899.31 10897.71 33094.61 26799.88 9196.14 26499.19 28599.70 54
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
WBMVS95.18 33494.78 34096.37 34797.68 37389.74 39495.80 35298.73 29997.54 20998.30 24698.44 27770.06 40799.82 17396.62 22699.87 7699.54 113
CP-MVS98.70 10898.42 14199.52 4299.36 14799.12 6198.72 9799.36 14697.54 20998.30 24698.40 28097.86 10899.89 7996.53 24099.72 15399.56 102
v114498.60 13098.66 10498.41 22599.36 14795.90 26197.58 24299.34 15797.51 21199.27 11299.15 13896.34 20899.80 19499.47 3699.93 4399.51 127
PMMVS298.07 19398.08 18698.04 25899.41 13794.59 30594.59 39099.40 13497.50 21298.82 18998.83 21396.83 18099.84 14697.50 16199.81 9999.71 49
ITE_SJBPF98.87 15499.22 17698.48 10699.35 15197.50 21298.28 25098.60 25797.64 12699.35 37193.86 33699.27 26998.79 309
MVSTER96.86 28496.55 29197.79 27097.91 35994.21 31397.56 24498.87 27297.49 21499.06 14099.05 15880.72 38699.80 19498.44 10299.82 9599.37 190
Patchmatch-RL test97.26 25897.02 25997.99 26199.52 10395.53 27296.13 33399.71 3697.47 21599.27 11299.16 13484.30 37199.62 30097.89 13499.77 12698.81 303
HFP-MVS98.71 10498.44 13899.51 4699.49 11599.16 4798.52 11899.31 16997.47 21598.58 22198.50 27197.97 10399.85 12896.57 23199.59 20499.53 121
MSLP-MVS++98.02 19598.14 18097.64 28698.58 31195.19 28697.48 25299.23 20497.47 21597.90 27898.62 25397.04 16798.81 40397.55 15699.41 24898.94 284
ACMMPR98.70 10898.42 14199.54 3099.52 10399.14 5698.52 11899.31 16997.47 21598.56 22498.54 26297.75 11799.88 9196.57 23199.59 20499.58 91
mPP-MVS98.64 12398.34 15399.54 3099.54 9899.17 4398.63 10599.24 20297.47 21598.09 26698.68 23997.62 12899.89 7996.22 25899.62 19399.57 96
region2R98.69 11198.40 14399.54 3099.53 10199.17 4398.52 11899.31 16997.46 22098.44 23798.51 26797.83 10999.88 9196.46 24499.58 20999.58 91
HPM-MVS++copyleft98.10 18997.64 22399.48 5399.09 20999.13 5997.52 24898.75 29697.46 22096.90 34197.83 32596.01 21999.84 14695.82 28099.35 25699.46 153
TinyColmap97.89 20597.98 19597.60 28998.86 25594.35 31096.21 32799.44 11897.45 22299.06 14098.88 20497.99 10299.28 38294.38 32299.58 20999.18 244
GST-MVS98.61 12998.30 15899.52 4299.51 10599.20 3898.26 14899.25 19797.44 22398.67 20698.39 28197.68 12099.85 12896.00 26899.51 23199.52 124
v119298.60 13098.66 10498.41 22599.27 16495.88 26297.52 24899.36 14697.41 22499.33 10099.20 12396.37 20699.82 17399.57 2799.92 5499.55 109
plane_prior397.78 17597.41 22497.79 288
EIA-MVS98.00 19797.74 21398.80 16398.72 27798.09 13798.05 17599.60 5697.39 22696.63 35295.55 38597.68 12099.80 19496.73 21899.27 26998.52 335
thres20093.72 35893.14 36095.46 37498.66 29991.29 37696.61 30694.63 39397.39 22696.83 34593.71 40879.88 38899.56 32282.40 41498.13 35895.54 413
testgi98.32 16798.39 14698.13 24999.57 8195.54 27197.78 21499.49 9797.37 22899.19 12697.65 33498.96 2499.49 34696.50 24298.99 31099.34 203
mvs_anonymous97.83 21898.16 17796.87 33298.18 34591.89 36697.31 26498.90 26697.37 22898.83 18699.46 7096.28 20999.79 20798.90 7098.16 35698.95 280
EPNet_dtu94.93 34094.78 34095.38 37693.58 42187.68 40396.78 29695.69 38797.35 23089.14 41898.09 30888.15 34599.49 34694.95 30399.30 26598.98 274
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
Patchmatch-test96.55 29596.34 29797.17 31898.35 33493.06 34598.40 13797.79 33797.33 23198.41 24098.67 24183.68 37699.69 26395.16 29899.31 26298.77 311
HPM-MVS_fast99.01 6498.82 8299.57 2099.71 4599.35 1699.00 6999.50 9097.33 23198.94 16998.86 20798.75 3699.82 17397.53 15999.71 15899.56 102
XVG-OURS-SEG-HR98.49 14798.28 16099.14 11099.49 11598.83 7996.54 30799.48 9997.32 23399.11 13398.61 25599.33 1399.30 37896.23 25798.38 34599.28 221
DeepC-MVS_fast96.85 698.30 17098.15 17898.75 17598.61 30497.23 20797.76 21999.09 23597.31 23498.75 19898.66 24497.56 13399.64 29496.10 26799.55 22099.39 181
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
Effi-MVS+98.02 19597.82 20998.62 19198.53 31897.19 21297.33 26299.68 4597.30 23596.68 35097.46 34698.56 5499.80 19496.63 22598.20 35298.86 296
XVG-OURS98.53 14298.34 15399.11 11499.50 10898.82 8195.97 33999.50 9097.30 23599.05 14598.98 18099.35 1299.32 37595.72 28399.68 17399.18 244
ZNCC-MVS98.68 11698.40 14399.54 3099.57 8199.21 3298.46 13199.29 18597.28 23798.11 26498.39 28198.00 9999.87 10896.86 20799.64 18799.55 109
eth_miper_zixun_eth97.23 26297.25 24697.17 31898.00 35592.77 35294.71 38399.18 21697.27 23898.56 22498.74 22991.89 31499.69 26397.06 18799.81 9999.05 260
MDA-MVSNet_test_wron97.60 23097.66 22197.41 30899.04 22293.09 34495.27 36998.42 31797.26 23998.88 17898.95 18995.43 24599.73 24797.02 18898.72 32799.41 171
miper_lstm_enhance97.18 26697.16 25197.25 31598.16 34692.85 35095.15 37499.31 16997.25 24098.74 20098.78 22390.07 32999.78 21897.19 17499.80 11099.11 255
xiu_mvs_v2_base97.16 26897.49 23296.17 35798.54 31692.46 35795.45 36498.84 28197.25 24097.48 31196.49 36798.31 7199.90 6896.34 25298.68 33496.15 408
PS-MVSNAJ97.08 27297.39 23796.16 35998.56 31492.46 35795.24 37198.85 28097.25 24097.49 31095.99 37698.07 9399.90 6896.37 24998.67 33596.12 409
YYNet197.60 23097.67 21897.39 30999.04 22293.04 34895.27 36998.38 32097.25 24098.92 17198.95 18995.48 24499.73 24796.99 19198.74 32599.41 171
XVG-ACMP-BASELINE98.56 13498.34 15399.22 10099.54 9898.59 9697.71 22499.46 11097.25 24098.98 15498.99 17697.54 13599.84 14695.88 27399.74 14299.23 231
CNVR-MVS98.17 18797.87 20699.07 12298.67 29498.24 12297.01 28398.93 26097.25 24097.62 29798.34 28897.27 15599.57 31996.42 24699.33 25999.39 181
CANet_DTU97.26 25897.06 25797.84 26697.57 37594.65 30396.19 32998.79 28997.23 24695.14 38798.24 29593.22 29299.84 14697.34 16799.84 8599.04 264
v192192098.54 14098.60 11598.38 22899.20 18295.76 26797.56 24499.36 14697.23 24699.38 9199.17 13296.02 21899.84 14699.57 2799.90 6799.54 113
MIMVSNet96.62 29496.25 30297.71 28199.04 22294.66 30299.16 5196.92 36597.23 24697.87 28199.10 14786.11 35699.65 29191.65 37499.21 28198.82 299
FMVSNet596.01 31295.20 33198.41 22597.53 38096.10 25398.74 9299.50 9097.22 24998.03 27299.04 16069.80 40899.88 9197.27 17099.71 15899.25 226
testing9193.32 36392.27 36796.47 34597.54 37891.25 37896.17 33296.76 36897.18 25093.65 40693.50 41065.11 42099.63 29793.04 35397.45 37698.53 334
thisisatest053095.27 33294.45 34397.74 27899.19 18594.37 30997.86 20590.20 41597.17 25198.22 25397.65 33473.53 40599.90 6896.90 20299.35 25698.95 280
v124098.55 13898.62 11098.32 23499.22 17695.58 27097.51 25099.45 11497.16 25299.45 7899.24 11596.12 21599.85 12899.60 2599.88 7399.55 109
ACMMPcopyleft98.75 10098.50 12699.52 4299.56 8999.16 4798.87 8499.37 14297.16 25298.82 18999.01 17297.71 11999.87 10896.29 25599.69 16899.54 113
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
v14419298.54 14098.57 11898.45 22099.21 17895.98 25997.63 23599.36 14697.15 25499.32 10699.18 12895.84 23299.84 14699.50 3499.91 6199.54 113
OPM-MVS98.56 13498.32 15799.25 9599.41 13798.73 8797.13 28099.18 21697.10 25598.75 19898.92 19398.18 8499.65 29196.68 22399.56 21699.37 190
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
c3_l97.36 25097.37 23997.31 31098.09 35193.25 34395.01 37799.16 22397.05 25698.77 19598.72 23292.88 30099.64 29496.93 19699.76 13899.05 260
cl____97.02 27696.83 27297.58 29197.82 36294.04 32094.66 38699.16 22397.04 25798.63 21198.71 23388.68 34099.69 26397.00 18999.81 9999.00 272
DIV-MVS_self_test97.02 27696.84 27197.58 29197.82 36294.03 32194.66 38699.16 22397.04 25798.63 21198.71 23388.69 33899.69 26397.00 18999.81 9999.01 268
mvsmamba97.57 23497.26 24598.51 21298.69 28996.73 23898.74 9297.25 35397.03 25997.88 28099.23 11990.95 32299.87 10896.61 22799.00 30898.91 289
PGM-MVS98.66 12098.37 14999.55 2799.53 10199.18 4298.23 15099.49 9797.01 26098.69 20398.88 20498.00 9999.89 7995.87 27699.59 20499.58 91
TSAR-MVS + MP.98.63 12598.49 13099.06 12899.64 6997.90 16198.51 12398.94 25796.96 26199.24 12198.89 20397.83 10999.81 18796.88 20499.49 23999.48 144
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dmvs_testset92.94 37092.21 36995.13 37898.59 30990.99 38397.65 23392.09 40996.95 26294.00 40193.55 40992.34 30996.97 41772.20 42092.52 41597.43 392
ACMMP_NAP98.75 10098.48 13199.57 2099.58 7699.29 2397.82 20999.25 19796.94 26398.78 19299.12 14398.02 9799.84 14697.13 18199.67 17999.59 85
CVMVSNet96.25 30697.21 24993.38 39799.10 20680.56 42497.20 27498.19 32896.94 26399.00 15299.02 16389.50 33499.80 19496.36 25199.59 20499.78 35
CNLPA97.17 26796.71 28098.55 20698.56 31498.05 14796.33 32098.93 26096.91 26597.06 33097.39 34994.38 27399.45 35691.66 37399.18 28798.14 361
DeepPCF-MVS96.93 598.32 16798.01 19299.23 9998.39 33398.97 7095.03 37699.18 21696.88 26699.33 10098.78 22398.16 8899.28 38296.74 21699.62 19399.44 161
testing9993.04 36991.98 37596.23 35497.53 38090.70 38896.35 31995.94 38196.87 26793.41 40793.43 41163.84 42299.59 31193.24 35197.19 38698.40 348
wuyk23d96.06 31097.62 22591.38 40098.65 30398.57 9898.85 8796.95 36396.86 26899.90 1299.16 13499.18 1798.40 40889.23 39799.77 12677.18 420
testing22291.96 38190.37 38596.72 34097.47 38792.59 35496.11 33494.76 39196.83 26992.90 40992.87 41457.92 42499.55 32686.93 40497.52 37398.00 370
AllTest98.44 15298.20 17099.16 10799.50 10898.55 9998.25 14999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
TestCases99.16 10799.50 10898.55 9999.58 5996.80 27098.88 17899.06 15197.65 12399.57 31994.45 31699.61 19899.37 190
test_fmvs298.70 10898.97 6897.89 26499.54 9894.05 31898.55 11499.92 796.78 27299.72 3299.78 1096.60 19599.67 27599.91 299.90 6799.94 9
SF-MVS98.53 14298.27 16399.32 8299.31 15698.75 8398.19 15499.41 13196.77 27398.83 18698.90 19797.80 11499.82 17395.68 28699.52 22999.38 188
HPM-MVScopyleft98.79 9398.53 12299.59 1899.65 6399.29 2399.16 5199.43 12496.74 27498.61 21598.38 28398.62 4799.87 10896.47 24399.67 17999.59 85
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
plane_prior97.65 18497.07 28196.72 27599.36 254
BH-untuned96.83 28596.75 27897.08 32198.74 27493.33 34296.71 30198.26 32396.72 27598.44 23797.37 35195.20 24999.47 35291.89 37097.43 37898.44 343
BH-RMVSNet96.83 28596.58 29097.58 29198.47 32294.05 31896.67 30397.36 34896.70 27797.87 28197.98 31595.14 25199.44 35890.47 39298.58 34199.25 226
TAMVS98.24 17998.05 18898.80 16399.07 21397.18 21397.88 20198.81 28696.66 27899.17 13199.21 12194.81 26299.77 22496.96 19599.88 7399.44 161
LPG-MVS_test98.71 10498.46 13599.47 5699.57 8198.97 7098.23 15099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
LGP-MVS_train99.47 5699.57 8198.97 7099.48 9996.60 27999.10 13699.06 15198.71 3999.83 16395.58 29099.78 12099.62 70
CL-MVSNet_self_test97.44 24497.22 24898.08 25398.57 31395.78 26694.30 39698.79 28996.58 28198.60 21798.19 30094.74 26699.64 29496.41 24798.84 32098.82 299
ETVMVS92.60 37391.08 38297.18 31697.70 37093.65 33996.54 30795.70 38596.51 28294.68 39292.39 41661.80 42399.50 34386.97 40397.41 37998.40 348
our_test_397.39 24997.73 21596.34 34898.70 28489.78 39394.61 38998.97 25696.50 28399.04 14798.85 21095.98 22599.84 14697.26 17199.67 17999.41 171
mvsany_test398.87 8298.92 7198.74 17999.38 14096.94 22698.58 11199.10 23396.49 28499.96 499.81 698.18 8499.45 35698.97 6699.79 11599.83 24
test_prior295.74 35496.48 28596.11 36797.63 33695.92 23094.16 32499.20 282
testing1193.08 36892.02 37296.26 35297.56 37690.83 38696.32 32195.70 38596.47 28692.66 41093.73 40764.36 42199.59 31193.77 33997.57 37298.37 352
MG-MVS96.77 28896.61 28797.26 31498.31 33793.06 34595.93 34498.12 33196.45 28797.92 27698.73 23093.77 28899.39 36591.19 38499.04 30299.33 208
MVP-Stereo98.08 19297.92 20298.57 20198.96 23596.79 23397.90 19999.18 21696.41 28898.46 23598.95 18995.93 22999.60 30796.51 24198.98 31299.31 214
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ppachtmachnet_test97.50 23697.74 21396.78 33898.70 28491.23 38094.55 39199.05 24196.36 28999.21 12498.79 22196.39 20399.78 21896.74 21699.82 9599.34 203
TSAR-MVS + GP.98.18 18597.98 19598.77 17298.71 28097.88 16296.32 32198.66 30396.33 29099.23 12398.51 26797.48 14599.40 36397.16 17699.46 24199.02 267
testdata195.44 36596.32 291
test_vis1_n98.31 16998.50 12697.73 28099.76 2994.17 31598.68 10299.91 996.31 29299.79 2699.57 4592.85 30299.42 36199.79 1299.84 8599.60 79
LF4IMVS97.90 20397.69 21798.52 21199.17 19397.66 18397.19 27799.47 10796.31 29297.85 28498.20 29996.71 19199.52 33794.62 31099.72 15398.38 350
test_f98.67 11998.87 7698.05 25799.72 4295.59 26898.51 12399.81 2596.30 29499.78 2799.82 596.14 21398.63 40699.82 799.93 4399.95 8
test-LLR93.90 35593.85 34994.04 38896.53 40784.62 41494.05 40092.39 40796.17 29594.12 39895.07 39482.30 38399.67 27595.87 27698.18 35397.82 375
test0.0.03 194.51 34393.69 35296.99 32596.05 41493.61 34094.97 37893.49 40296.17 29597.57 30394.88 40082.30 38399.01 39693.60 34294.17 41298.37 352
Anonymous2023120698.21 18298.21 16998.20 24499.51 10595.43 27798.13 16299.32 16496.16 29798.93 17098.82 21696.00 22099.83 16397.32 16899.73 14599.36 197
SCA96.41 30296.66 28595.67 36798.24 34188.35 39995.85 35096.88 36696.11 29897.67 29598.67 24193.10 29599.85 12894.16 32499.22 27898.81 303
MS-PatchMatch97.68 22597.75 21297.45 30598.23 34393.78 33397.29 26698.84 28196.10 29998.64 21098.65 24696.04 21799.36 36896.84 20899.14 29199.20 236
HQP-NCC98.67 29496.29 32396.05 30095.55 378
ACMP_Plane98.67 29496.29 32396.05 30095.55 378
HQP-MVS97.00 27996.49 29498.55 20698.67 29496.79 23396.29 32399.04 24496.05 30095.55 37896.84 36193.84 28499.54 33192.82 35899.26 27299.32 210
UBG93.25 36592.32 36696.04 36197.72 36590.16 39195.92 34695.91 38296.03 30393.95 40393.04 41369.60 40999.52 33790.72 39197.98 36798.45 340
PHI-MVS98.29 17397.95 19899.34 7598.44 32799.16 4798.12 16599.38 13896.01 30498.06 26898.43 27897.80 11499.67 27595.69 28599.58 20999.20 236
miper_ehance_all_eth97.06 27397.03 25897.16 32097.83 36193.06 34594.66 38699.09 23595.99 30598.69 20398.45 27692.73 30599.61 30696.79 21099.03 30398.82 299
UWE-MVS92.38 37691.76 37994.21 38797.16 39484.65 41395.42 36688.45 41895.96 30696.17 36595.84 38266.36 41699.71 25591.87 37198.64 33698.28 355
AUN-MVS96.24 30895.45 32098.60 19698.70 28497.22 20997.38 25897.65 34395.95 30795.53 38297.96 31982.11 38599.79 20796.31 25397.44 37798.80 308
MVEpermissive83.40 2292.50 37491.92 37694.25 38598.83 26191.64 36992.71 40983.52 42395.92 30886.46 42195.46 39095.20 24995.40 41980.51 41698.64 33695.73 412
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
CDS-MVSNet97.69 22497.35 24198.69 18298.73 27597.02 22196.92 29198.75 29695.89 30998.59 21998.67 24192.08 31399.74 24296.72 21999.81 9999.32 210
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
D2MVS97.84 21697.84 20897.83 26799.14 20094.74 29896.94 28798.88 27095.84 31098.89 17598.96 18594.40 27299.69 26397.55 15699.95 3099.05 260
PAPM_NR96.82 28796.32 29898.30 23799.07 21396.69 24097.48 25298.76 29395.81 31196.61 35496.47 36994.12 28199.17 38990.82 39097.78 36999.06 259
ACMP95.32 1598.41 15498.09 18399.36 6699.51 10598.79 8297.68 22799.38 13895.76 31298.81 19198.82 21698.36 6599.82 17394.75 30699.77 12699.48 144
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MCST-MVS98.00 19797.63 22499.10 11699.24 17198.17 12996.89 29298.73 29995.66 31397.92 27697.70 33297.17 16199.66 28696.18 26299.23 27799.47 151
Syy-MVS96.04 31195.56 31797.49 30297.10 39694.48 30696.18 33096.58 37195.65 31494.77 39092.29 41791.27 32099.36 36898.17 11798.05 36498.63 327
myMVS_eth3d91.92 38290.45 38496.30 34997.10 39690.90 38496.18 33096.58 37195.65 31494.77 39092.29 41753.88 42599.36 36889.59 39698.05 36498.63 327
WB-MVSnew95.73 32295.57 31696.23 35496.70 40490.70 38896.07 33693.86 40195.60 31697.04 33195.45 39396.00 22099.55 32691.04 38598.31 34898.43 345
AdaColmapbinary97.14 26996.71 28098.46 21998.34 33597.80 17496.95 28698.93 26095.58 31796.92 33697.66 33395.87 23199.53 33390.97 38699.14 29198.04 366
pmmvs-eth3d98.47 14998.34 15398.86 15599.30 15997.76 17697.16 27899.28 18895.54 31899.42 8399.19 12497.27 15599.63 29797.89 13499.97 1999.20 236
9.1497.78 21099.07 21397.53 24799.32 16495.53 31998.54 22898.70 23697.58 13199.76 23094.32 32399.46 241
GA-MVS95.86 31795.32 32797.49 30298.60 30694.15 31693.83 40397.93 33595.49 32096.68 35097.42 34883.21 37899.30 37896.22 25898.55 34299.01 268
tpmvs95.02 33895.25 32894.33 38496.39 41285.87 40798.08 17096.83 36795.46 32195.51 38398.69 23785.91 35799.53 33394.16 32496.23 39997.58 388
KD-MVS_2432*160092.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
miper_refine_blended92.87 37191.99 37395.51 37291.37 42389.27 39594.07 39898.14 32995.42 32297.25 32496.44 37067.86 41199.24 38491.28 38196.08 40298.02 367
UnsupCasMVSNet_bld97.30 25596.92 26598.45 22099.28 16296.78 23696.20 32899.27 19195.42 32298.28 25098.30 29293.16 29399.71 25594.99 30097.37 38198.87 295
test_fmvs1_n98.09 19198.28 16097.52 29999.68 5693.47 34198.63 10599.93 595.41 32599.68 4099.64 3491.88 31599.48 34999.82 799.87 7699.62 70
PatchmatchNetpermissive95.58 32695.67 31195.30 37797.34 39087.32 40497.65 23396.65 36995.30 32697.07 32998.69 23784.77 36599.75 23794.97 30298.64 33698.83 298
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
N_pmnet97.63 22997.17 25098.99 13799.27 16497.86 16495.98 33893.41 40395.25 32799.47 7498.90 19795.63 23799.85 12896.91 19799.73 14599.27 222
MVS-HIRNet94.32 34695.62 31290.42 40198.46 32475.36 42596.29 32389.13 41795.25 32795.38 38499.75 1392.88 30099.19 38894.07 33099.39 25096.72 402
test_fmvs197.72 22297.94 20097.07 32398.66 29992.39 35997.68 22799.81 2595.20 32999.54 5799.44 7591.56 31899.41 36299.78 1499.77 12699.40 180
FA-MVS(test-final)96.99 28096.82 27397.50 30198.70 28494.78 29699.34 2096.99 36095.07 33098.48 23499.33 9588.41 34499.65 29196.13 26698.92 31898.07 365
OMC-MVS97.88 20797.49 23299.04 13198.89 25298.63 9196.94 28799.25 19795.02 33198.53 22998.51 26797.27 15599.47 35293.50 34699.51 23199.01 268
tpmrst95.07 33695.46 31993.91 39097.11 39584.36 41697.62 23696.96 36294.98 33296.35 36398.80 21985.46 36199.59 31195.60 28896.23 39997.79 380
APD-MVScopyleft98.10 18997.67 21899.42 6099.11 20498.93 7597.76 21999.28 18894.97 33398.72 20198.77 22597.04 16799.85 12893.79 33899.54 22299.49 134
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
WTY-MVS96.67 29196.27 30197.87 26598.81 26694.61 30496.77 29797.92 33694.94 33497.12 32697.74 32991.11 32199.82 17393.89 33498.15 35799.18 244
CPTT-MVS97.84 21697.36 24099.27 9099.31 15698.46 10798.29 14599.27 19194.90 33597.83 28598.37 28494.90 25699.84 14693.85 33799.54 22299.51 127
MP-MVS-pluss98.57 13398.23 16899.60 1499.69 5499.35 1697.16 27899.38 13894.87 33698.97 15898.99 17698.01 9899.88 9197.29 16999.70 16599.58 91
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Fast-Effi-MVS+97.67 22697.38 23898.57 20198.71 28097.43 19797.23 27099.45 11494.82 33796.13 36696.51 36698.52 5699.91 6296.19 26098.83 32198.37 352
ET-MVSNet_ETH3D94.30 34893.21 35897.58 29198.14 34894.47 30794.78 38293.24 40594.72 33889.56 41695.87 38078.57 39899.81 18796.91 19797.11 38998.46 337
EPMVS93.72 35893.27 35795.09 38096.04 41587.76 40298.13 16285.01 42294.69 33996.92 33698.64 24978.47 40099.31 37695.04 29996.46 39698.20 358
test_vis1_rt97.75 22097.72 21697.83 26798.81 26696.35 24897.30 26599.69 4094.61 34097.87 28198.05 31196.26 21098.32 40998.74 8398.18 35398.82 299
cl2295.79 32095.39 32496.98 32696.77 40392.79 35194.40 39498.53 31194.59 34197.89 27998.17 30182.82 38299.24 38496.37 24999.03 30398.92 286
PVSNet_BlendedMVS97.55 23597.53 22997.60 28998.92 24393.77 33496.64 30499.43 12494.49 34297.62 29799.18 12896.82 18199.67 27594.73 30799.93 4399.36 197
sss97.21 26396.93 26398.06 25598.83 26195.22 28596.75 29998.48 31494.49 34297.27 32397.90 32192.77 30399.80 19496.57 23199.32 26099.16 251
tpm94.67 34294.34 34695.66 36897.68 37388.42 39897.88 20194.90 39094.46 34496.03 37198.56 26178.66 39699.79 20795.88 27395.01 40898.78 310
CLD-MVS97.49 23997.16 25198.48 21799.07 21397.03 22094.71 38399.21 20694.46 34498.06 26897.16 35697.57 13299.48 34994.46 31599.78 12098.95 280
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
TESTMET0.1,192.19 38091.77 37893.46 39596.48 40982.80 42094.05 40091.52 41294.45 34694.00 40194.88 40066.65 41599.56 32295.78 28198.11 35998.02 367
PVSNet_Blended_VisFu98.17 18798.15 17898.22 24399.73 3695.15 28797.36 26099.68 4594.45 34698.99 15399.27 10696.87 17799.94 3797.13 18199.91 6199.57 96
MDTV_nov1_ep1395.22 33097.06 39883.20 41997.74 22196.16 37694.37 34896.99 33498.83 21383.95 37499.53 33393.90 33397.95 368
TR-MVS95.55 32795.12 33396.86 33597.54 37893.94 32596.49 31196.53 37394.36 34997.03 33396.61 36594.26 27799.16 39086.91 40596.31 39897.47 391
jason97.45 24397.35 24197.76 27599.24 17193.93 32695.86 34898.42 31794.24 35098.50 23298.13 30294.82 26099.91 6297.22 17399.73 14599.43 165
jason: jason.
HyFIR lowres test97.19 26596.60 28998.96 14199.62 7597.28 20495.17 37299.50 9094.21 35199.01 15198.32 29186.61 35099.99 297.10 18399.84 8599.60 79
SMA-MVScopyleft98.40 15698.03 19099.51 4699.16 19599.21 3298.05 17599.22 20594.16 35298.98 15499.10 14797.52 13999.79 20796.45 24599.64 18799.53 121
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
mvsany_test197.60 23097.54 22897.77 27297.72 36595.35 27995.36 36897.13 35794.13 35399.71 3499.33 9597.93 10599.30 37897.60 15598.94 31698.67 325
ZD-MVS99.01 22798.84 7899.07 23794.10 35498.05 27098.12 30496.36 20799.86 11692.70 36399.19 285
thisisatest051594.12 35293.16 35996.97 32798.60 30692.90 34993.77 40490.61 41394.10 35496.91 33895.87 38074.99 40399.80 19494.52 31399.12 29698.20 358
USDC97.41 24797.40 23697.44 30698.94 23793.67 33795.17 37299.53 8494.03 35698.97 15899.10 14795.29 24799.34 37295.84 27999.73 14599.30 217
test-mter92.33 37891.76 37994.04 38896.53 40784.62 41494.05 40092.39 40794.00 35794.12 39895.07 39465.63 41999.67 27595.87 27698.18 35397.82 375
baseline293.73 35792.83 36396.42 34697.70 37091.28 37796.84 29489.77 41693.96 35892.44 41195.93 37879.14 39499.77 22492.94 35496.76 39498.21 357
pmmvs597.64 22897.49 23298.08 25399.14 20095.12 28996.70 30299.05 24193.77 35998.62 21398.83 21393.23 29199.75 23798.33 10999.76 13899.36 197
BH-w/o95.13 33594.89 33995.86 36298.20 34491.31 37595.65 35697.37 34793.64 36096.52 35795.70 38393.04 29899.02 39488.10 40095.82 40497.24 395
pmmvs497.58 23397.28 24498.51 21298.84 25996.93 22795.40 36798.52 31293.60 36198.61 21598.65 24695.10 25299.60 30796.97 19499.79 11598.99 273
CHOSEN 280x42095.51 32995.47 31895.65 36998.25 34088.27 40093.25 40798.88 27093.53 36294.65 39397.15 35786.17 35499.93 4497.41 16499.93 4398.73 316
lupinMVS97.06 27396.86 26997.65 28498.88 25393.89 33095.48 36397.97 33493.53 36298.16 25897.58 33893.81 28699.91 6296.77 21399.57 21399.17 248
PatchMatch-RL97.24 26196.78 27698.61 19499.03 22597.83 16796.36 31899.06 23893.49 36497.36 32197.78 32695.75 23499.49 34693.44 34798.77 32498.52 335
PC_three_145293.27 36599.40 8898.54 26298.22 8097.00 41695.17 29799.45 24399.49 134
DP-MVS Recon97.33 25396.92 26598.57 20199.09 20997.99 15096.79 29599.35 15193.18 36697.71 29298.07 31095.00 25599.31 37693.97 33199.13 29398.42 347
1112_ss97.29 25796.86 26998.58 19899.34 15396.32 24996.75 29999.58 5993.14 36796.89 34297.48 34492.11 31299.86 11696.91 19799.54 22299.57 96
FE-MVS95.66 32494.95 33797.77 27298.53 31895.28 28299.40 1696.09 37893.11 36897.96 27599.26 11079.10 39599.77 22492.40 36798.71 32998.27 356
IU-MVS99.49 11599.15 5198.87 27292.97 36999.41 8596.76 21499.62 19399.66 60
F-COLMAP97.30 25596.68 28299.14 11099.19 18598.39 11097.27 26999.30 17792.93 37096.62 35398.00 31395.73 23599.68 27292.62 36498.46 34499.35 201
FPMVS93.44 36292.23 36897.08 32199.25 17097.86 16495.61 35797.16 35692.90 37193.76 40598.65 24675.94 40295.66 41879.30 41897.49 37497.73 382
DSMNet-mixed97.42 24697.60 22696.87 33299.15 19991.46 37198.54 11699.12 23092.87 37297.58 30199.63 3596.21 21199.90 6895.74 28299.54 22299.27 222
dp93.47 36193.59 35493.13 39996.64 40581.62 42397.66 23196.42 37492.80 37396.11 36798.64 24978.55 39999.59 31193.31 34992.18 41798.16 360
PVSNet93.40 1795.67 32395.70 30995.57 37098.83 26188.57 39792.50 41097.72 33992.69 37496.49 36196.44 37093.72 28999.43 35993.61 34199.28 26898.71 317
new_pmnet96.99 28096.76 27797.67 28298.72 27794.89 29495.95 34398.20 32692.62 37598.55 22698.54 26294.88 25999.52 33793.96 33299.44 24698.59 332
原ACMM198.35 23298.90 24796.25 25198.83 28592.48 37696.07 36998.10 30695.39 24699.71 25592.61 36598.99 31099.08 256
IB-MVS91.63 1992.24 37990.90 38396.27 35197.22 39391.24 37994.36 39593.33 40492.37 37792.24 41294.58 40466.20 41899.89 7993.16 35294.63 41097.66 385
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
CR-MVSNet96.28 30595.95 30497.28 31297.71 36894.22 31198.11 16698.92 26392.31 37896.91 33899.37 8485.44 36299.81 18797.39 16597.36 38397.81 377
HY-MVS95.94 1395.90 31695.35 32697.55 29697.95 35694.79 29598.81 9196.94 36492.28 37995.17 38698.57 26089.90 33199.75 23791.20 38397.33 38598.10 363
MAR-MVS96.47 30095.70 30998.79 16697.92 35899.12 6198.28 14698.60 30892.16 38095.54 38196.17 37494.77 26599.52 33789.62 39598.23 35097.72 383
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
DPM-MVS96.32 30395.59 31598.51 21298.76 27197.21 21094.54 39298.26 32391.94 38196.37 36297.25 35493.06 29799.43 35991.42 37998.74 32598.89 291
train_agg97.10 27096.45 29599.07 12298.71 28098.08 14195.96 34199.03 24691.64 38295.85 37297.53 34096.47 20099.76 23093.67 34099.16 28899.36 197
test_898.67 29498.01 14995.91 34799.02 24991.64 38295.79 37497.50 34396.47 20099.76 230
CHOSEN 1792x268897.49 23997.14 25498.54 20999.68 5696.09 25696.50 31099.62 5291.58 38498.84 18598.97 18292.36 30899.88 9196.76 21499.95 3099.67 59
PMMVS96.51 29695.98 30398.09 25097.53 38095.84 26394.92 37998.84 28191.58 38496.05 37095.58 38495.68 23699.66 28695.59 28998.09 36098.76 313
Test_1112_low_res96.99 28096.55 29198.31 23699.35 15195.47 27595.84 35199.53 8491.51 38696.80 34798.48 27491.36 31999.83 16396.58 22999.53 22699.62 70
TEST998.71 28098.08 14195.96 34199.03 24691.40 38795.85 37297.53 34096.52 19899.76 230
PAPR95.29 33194.47 34297.75 27697.50 38695.14 28894.89 38098.71 30191.39 38895.35 38595.48 38994.57 26899.14 39284.95 40897.37 38198.97 277
131495.74 32195.60 31396.17 35797.53 38092.75 35398.07 17298.31 32291.22 38994.25 39696.68 36495.53 24099.03 39391.64 37597.18 38796.74 401
CDPH-MVS97.26 25896.66 28599.07 12299.00 22898.15 13096.03 33799.01 25291.21 39097.79 28897.85 32496.89 17699.69 26392.75 36199.38 25399.39 181
miper_enhance_ethall96.01 31295.74 30796.81 33696.41 41192.27 36393.69 40598.89 26991.14 39198.30 24697.35 35390.58 32699.58 31796.31 25399.03 30398.60 329
PVSNet_Blended96.88 28396.68 28297.47 30498.92 24393.77 33494.71 38399.43 12490.98 39297.62 29797.36 35296.82 18199.67 27594.73 30799.56 21698.98 274
PLCcopyleft94.65 1696.51 29695.73 30898.85 15698.75 27397.91 16096.42 31599.06 23890.94 39395.59 37597.38 35094.41 27199.59 31190.93 38798.04 36699.05 260
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
ADS-MVSNet295.43 33094.98 33596.76 33998.14 34891.74 36797.92 19697.76 33890.23 39496.51 35898.91 19485.61 35999.85 12892.88 35696.90 39098.69 321
ADS-MVSNet95.24 33394.93 33896.18 35698.14 34890.10 39297.92 19697.32 35190.23 39496.51 35898.91 19485.61 35999.74 24292.88 35696.90 39098.69 321
QAPM97.31 25496.81 27598.82 15998.80 26997.49 19299.06 6299.19 21290.22 39697.69 29499.16 13496.91 17599.90 6890.89 38999.41 24899.07 258
PVSNet_089.98 2191.15 38490.30 38793.70 39397.72 36584.34 41790.24 41497.42 34690.20 39793.79 40493.09 41290.90 32498.89 40286.57 40672.76 42197.87 374
testdata98.09 25098.93 23995.40 27898.80 28890.08 39897.45 31498.37 28495.26 24899.70 25993.58 34398.95 31599.17 248
MDTV_nov1_ep13_2view74.92 42697.69 22690.06 39997.75 29185.78 35893.52 34498.69 321
OpenMVScopyleft96.65 797.09 27196.68 28298.32 23498.32 33697.16 21598.86 8699.37 14289.48 40096.29 36499.15 13896.56 19699.90 6892.90 35599.20 28297.89 372
无先验95.74 35498.74 29889.38 40199.73 24792.38 36899.22 235
CostFormer93.97 35493.78 35194.51 38397.53 38085.83 40997.98 18995.96 38089.29 40294.99 38998.63 25178.63 39799.62 30094.54 31296.50 39598.09 364
CMPMVSbinary75.91 2396.29 30495.44 32198.84 15796.25 41398.69 9097.02 28299.12 23088.90 40397.83 28598.86 20789.51 33398.90 40191.92 36999.51 23198.92 286
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
pmmvs395.03 33794.40 34496.93 32897.70 37092.53 35695.08 37597.71 34088.57 40497.71 29298.08 30979.39 39399.82 17396.19 26099.11 29798.43 345
旧先验295.76 35388.56 40597.52 30799.66 28694.48 314
gm-plane-assit94.83 41981.97 42288.07 40694.99 39799.60 30791.76 372
新几何198.91 15098.94 23797.76 17698.76 29387.58 40796.75 34998.10 30694.80 26399.78 21892.73 36299.00 30899.20 236
PAPM91.88 38390.34 38696.51 34398.06 35392.56 35592.44 41197.17 35586.35 40890.38 41596.01 37586.61 35099.21 38770.65 42195.43 40697.75 381
tpm293.09 36792.58 36594.62 38297.56 37686.53 40697.66 23195.79 38486.15 40994.07 40098.23 29775.95 40199.53 33390.91 38896.86 39397.81 377
test22298.92 24396.93 22795.54 35998.78 29185.72 41096.86 34498.11 30594.43 27099.10 29899.23 231
cascas94.79 34194.33 34796.15 36096.02 41692.36 36192.34 41299.26 19685.34 41195.08 38894.96 39992.96 29998.53 40794.41 32198.59 34097.56 389
OpenMVS_ROBcopyleft95.38 1495.84 31995.18 33297.81 26998.41 33297.15 21697.37 25998.62 30783.86 41298.65 20998.37 28494.29 27699.68 27288.41 39898.62 33996.60 403
TAPA-MVS96.21 1196.63 29395.95 30498.65 18598.93 23998.09 13796.93 28999.28 18883.58 41398.13 26297.78 32696.13 21499.40 36393.52 34499.29 26798.45 340
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 36493.13 36193.75 39297.39 38984.74 41297.39 25797.65 34383.39 41494.16 39798.41 27982.86 38199.39 36591.56 37795.35 40797.14 396
dongtai76.24 38875.95 39177.12 40492.39 42267.91 42890.16 41559.44 42982.04 41589.42 41794.67 40349.68 42781.74 42248.06 42277.66 42081.72 418
114514_t96.50 29895.77 30698.69 18299.48 12297.43 19797.84 20899.55 7781.42 41696.51 35898.58 25995.53 24099.67 27593.41 34899.58 20998.98 274
PCF-MVS92.86 1894.36 34593.00 36298.42 22498.70 28497.56 18993.16 40899.11 23279.59 41797.55 30497.43 34792.19 31099.73 24779.85 41799.45 24397.97 371
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
kuosan69.30 38968.95 39270.34 40587.68 42665.00 42991.11 41359.90 42869.02 41874.46 42388.89 42048.58 42868.03 42428.61 42372.33 42277.99 419
MVS93.19 36692.09 37096.50 34496.91 39994.03 32198.07 17298.06 33368.01 41994.56 39596.48 36895.96 22799.30 37883.84 41096.89 39296.17 406
DeepMVS_CXcopyleft93.44 39698.24 34194.21 31394.34 39564.28 42091.34 41494.87 40289.45 33592.77 42177.54 41993.14 41493.35 416
tmp_tt78.77 38778.73 39078.90 40358.45 42874.76 42794.20 39778.26 42639.16 42186.71 42092.82 41580.50 38775.19 42386.16 40792.29 41686.74 417
test_method79.78 38679.50 38980.62 40280.21 42745.76 43070.82 41898.41 31931.08 42280.89 42297.71 33084.85 36497.37 41591.51 37880.03 41998.75 314
EGC-MVSNET85.24 38580.54 38899.34 7599.77 2699.20 3899.08 5899.29 18512.08 42320.84 42499.42 7797.55 13499.85 12897.08 18499.72 15398.96 279
test12317.04 39220.11 3957.82 40610.25 4304.91 43194.80 3814.47 4314.93 42410.00 42624.28 4239.69 4293.64 42510.14 42412.43 42414.92 421
testmvs17.12 39120.53 3946.87 40712.05 4294.20 43293.62 4066.73 4304.62 42510.41 42524.33 4228.28 4303.56 4269.69 42515.07 42312.86 422
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.66 39032.88 3930.00 4080.00 4310.00 4330.00 41999.10 2330.00 4260.00 42797.58 33899.21 160.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.17 39310.90 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42698.07 930.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.12 39410.83 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42797.48 3440.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS90.90 38491.37 380
MSC_two_6792asdad99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
No_MVS99.32 8298.43 32898.37 11398.86 27799.89 7997.14 17999.60 20099.71 49
eth-test20.00 431
eth-test0.00 431
OPU-MVS98.82 15998.59 30998.30 11898.10 16898.52 26698.18 8498.75 40494.62 31099.48 24099.41 171
test_0728_SECOND99.60 1499.50 10899.23 3098.02 18099.32 16499.88 9196.99 19199.63 19099.68 56
GSMVS98.81 303
test_part299.36 14799.10 6499.05 145
sam_mvs184.74 36698.81 303
sam_mvs84.29 372
ambc98.24 24298.82 26495.97 26098.62 10799.00 25499.27 11299.21 12196.99 17299.50 34396.55 23899.50 23899.26 225
MTGPAbinary99.20 208
test_post197.59 24120.48 42583.07 38099.66 28694.16 324
test_post21.25 42483.86 37599.70 259
patchmatchnet-post98.77 22584.37 36999.85 128
GG-mvs-BLEND94.76 38194.54 42092.13 36599.31 2780.47 42588.73 41991.01 41967.59 41498.16 41282.30 41594.53 41193.98 415
MTMP97.93 19391.91 411
test9_res93.28 35099.15 29099.38 188
agg_prior292.50 36699.16 28899.37 190
agg_prior98.68 29397.99 15099.01 25295.59 37599.77 224
test_prior497.97 15495.86 348
test_prior98.95 14398.69 28997.95 15899.03 24699.59 31199.30 217
新几何295.93 344
旧先验198.82 26497.45 19598.76 29398.34 28895.50 24399.01 30799.23 231
原ACMM295.53 360
testdata299.79 20792.80 360
segment_acmp97.02 170
test1298.93 14698.58 31197.83 16798.66 30396.53 35695.51 24299.69 26399.13 29399.27 222
plane_prior799.19 18597.87 163
plane_prior698.99 23197.70 18294.90 256
plane_prior599.27 19199.70 25994.42 31899.51 23199.45 157
plane_prior497.98 315
plane_prior199.05 221
n20.00 432
nn0.00 432
door-mid99.57 66
lessismore_v098.97 14099.73 3697.53 19186.71 42099.37 9399.52 6189.93 33099.92 5398.99 6599.72 15399.44 161
test1198.87 272
door99.41 131
HQP5-MVS96.79 233
BP-MVS92.82 358
HQP4-MVS95.56 37799.54 33199.32 210
HQP3-MVS99.04 24499.26 272
HQP2-MVS93.84 284
NP-MVS98.84 25997.39 19996.84 361
ACMMP++_ref99.77 126
ACMMP++99.68 173
Test By Simon96.52 198