| LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 2 | 99.95 1 | 98.13 2 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 2 | 97.58 2 | 99.94 1 | 99.85 2 |
|
| mamv4 | | | 98.21 2 | 97.86 3 | 99.26 1 | 98.24 74 | 99.36 1 | 96.10 63 | 99.32 2 | 98.75 2 | 99.58 2 | 98.70 20 | 91.78 131 | 99.88 1 | 98.60 1 | 99.67 20 | 98.54 120 |
|
| UniMVSNet_ETH3D | | | 97.13 9 | 97.72 4 | 95.35 86 | 99.51 2 | 87.38 137 | 97.70 8 | 97.54 123 | 98.16 3 | 98.94 3 | 99.33 3 | 97.84 4 | 99.08 100 | 90.73 149 | 99.73 13 | 99.59 14 |
|
| DTE-MVSNet | | | 96.74 21 | 97.43 6 | 94.67 117 | 99.13 6 | 84.68 198 | 96.51 36 | 97.94 92 | 98.14 4 | 98.67 13 | 98.32 37 | 95.04 50 | 99.69 4 | 93.27 82 | 99.82 7 | 99.62 12 |
|
| PEN-MVS | | | 96.69 24 | 97.39 9 | 94.61 120 | 99.16 4 | 84.50 199 | 96.54 34 | 98.05 73 | 98.06 5 | 98.64 14 | 98.25 40 | 95.01 53 | 99.65 5 | 92.95 94 | 99.83 5 | 99.68 6 |
|
| PS-CasMVS | | | 96.69 24 | 97.43 6 | 94.49 130 | 99.13 6 | 84.09 209 | 96.61 32 | 97.97 86 | 97.91 6 | 98.64 14 | 98.13 43 | 95.24 40 | 99.65 5 | 93.39 77 | 99.84 3 | 99.72 4 |
|
| FOURS1 | | | | | | 99.21 3 | 94.68 16 | 98.45 4 | 98.81 11 | 97.73 7 | 98.27 21 | | | | | | |
|
| CP-MVSNet | | | 96.19 49 | 96.80 20 | 94.38 135 | 98.99 16 | 83.82 212 | 96.31 52 | 97.53 125 | 97.60 8 | 98.34 20 | 97.52 86 | 91.98 127 | 99.63 8 | 93.08 90 | 99.81 8 | 99.70 5 |
|
| Anonymous20231211 | | | 96.60 29 | 97.13 16 | 95.00 103 | 97.46 132 | 86.35 168 | 97.11 18 | 98.24 40 | 97.58 9 | 98.72 9 | 98.97 9 | 93.15 99 | 99.15 91 | 93.18 85 | 99.74 12 | 99.50 18 |
|
| WR-MVS_H | | | 96.60 29 | 97.05 17 | 95.24 94 | 99.02 12 | 86.44 164 | 96.78 26 | 98.08 66 | 97.42 10 | 98.48 17 | 97.86 65 | 91.76 134 | 99.63 8 | 94.23 46 | 99.84 3 | 99.66 8 |
|
| TDRefinement | | | 97.68 4 | 97.60 5 | 97.93 3 | 99.02 12 | 95.95 9 | 98.61 3 | 98.81 11 | 97.41 11 | 97.28 58 | 98.46 33 | 94.62 66 | 98.84 134 | 94.64 37 | 99.53 37 | 98.99 56 |
|
| LS3D | | | 96.11 51 | 95.83 69 | 96.95 40 | 94.75 286 | 94.20 23 | 97.34 13 | 97.98 84 | 97.31 12 | 95.32 155 | 96.77 146 | 93.08 102 | 99.20 87 | 91.79 124 | 98.16 210 | 97.44 222 |
|
| VDDNet | | | 94.03 138 | 94.27 134 | 93.31 180 | 98.87 21 | 82.36 236 | 95.51 93 | 91.78 329 | 97.19 13 | 96.32 98 | 98.60 25 | 84.24 246 | 98.75 152 | 87.09 240 | 98.83 140 | 98.81 84 |
|
| MVSMamba_PlusPlus | | | 94.82 105 | 95.89 64 | 91.62 240 | 97.82 104 | 78.88 295 | 96.52 35 | 97.60 119 | 97.14 14 | 94.23 199 | 98.48 32 | 87.01 214 | 99.71 3 | 95.43 25 | 98.80 144 | 96.28 278 |
|
| LTVRE_ROB | | 93.87 1 | 97.93 3 | 98.16 2 | 97.26 30 | 98.81 27 | 93.86 35 | 99.07 2 | 98.98 9 | 97.01 15 | 98.92 5 | 98.78 16 | 95.22 42 | 98.61 176 | 96.85 4 | 99.77 9 | 99.31 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| UA-Net | | | 97.35 5 | 97.24 12 | 97.69 6 | 98.22 75 | 93.87 34 | 98.42 6 | 98.19 47 | 96.95 16 | 95.46 147 | 99.23 6 | 93.45 87 | 99.57 15 | 95.34 29 | 99.89 2 | 99.63 11 |
|
| DP-MVS | | | 95.62 69 | 95.84 68 | 94.97 104 | 97.16 146 | 88.62 113 | 94.54 133 | 97.64 113 | 96.94 17 | 96.58 90 | 97.32 107 | 93.07 103 | 98.72 157 | 90.45 156 | 98.84 135 | 97.57 212 |
|
| test_0402 | | | 95.73 66 | 96.22 44 | 94.26 138 | 98.19 77 | 85.77 182 | 93.24 176 | 97.24 150 | 96.88 18 | 97.69 36 | 97.77 71 | 94.12 78 | 99.13 95 | 91.54 134 | 99.29 75 | 97.88 184 |
|
| Gipuma |  | | 95.31 87 | 95.80 72 | 93.81 158 | 97.99 95 | 90.91 74 | 96.42 44 | 97.95 89 | 96.69 19 | 91.78 284 | 98.85 14 | 91.77 132 | 95.49 353 | 91.72 126 | 99.08 102 | 95.02 329 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| COLMAP_ROB |  | 91.06 5 | 96.75 20 | 96.62 26 | 97.13 32 | 98.38 61 | 94.31 21 | 96.79 25 | 98.32 30 | 96.69 19 | 96.86 76 | 97.56 81 | 95.48 27 | 98.77 151 | 90.11 173 | 99.44 48 | 98.31 140 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| Anonymous20240529 | | | 95.50 74 | 95.83 69 | 94.50 128 | 97.33 138 | 85.93 178 | 95.19 108 | 96.77 186 | 96.64 21 | 97.61 41 | 98.05 47 | 93.23 96 | 98.79 145 | 88.60 213 | 99.04 111 | 98.78 87 |
|
| reproduce_model | | | 97.35 5 | 97.24 12 | 97.70 5 | 98.44 58 | 95.08 12 | 95.88 74 | 98.50 18 | 96.62 22 | 98.27 21 | 97.93 57 | 94.57 68 | 99.50 22 | 95.57 20 | 99.35 59 | 98.52 123 |
|
| v7n | | | 96.82 13 | 97.31 11 | 95.33 88 | 98.54 46 | 86.81 152 | 96.83 22 | 98.07 69 | 96.59 23 | 98.46 18 | 98.43 35 | 92.91 107 | 99.52 20 | 96.25 12 | 99.76 10 | 99.65 10 |
|
| tt0805 | | | 95.42 80 | 95.93 62 | 93.86 155 | 98.75 31 | 88.47 120 | 97.68 9 | 94.29 278 | 96.48 24 | 95.38 150 | 93.63 294 | 94.89 59 | 97.94 242 | 95.38 27 | 96.92 278 | 95.17 320 |
|
| PMVS |  | 87.21 14 | 94.97 98 | 95.33 91 | 93.91 152 | 98.97 17 | 97.16 3 | 95.54 92 | 95.85 230 | 96.47 25 | 93.40 227 | 97.46 93 | 95.31 37 | 95.47 354 | 86.18 257 | 98.78 147 | 89.11 399 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| mvs5depth | | | 95.28 88 | 95.82 71 | 93.66 164 | 96.42 192 | 83.08 226 | 97.35 12 | 99.28 3 | 96.44 26 | 96.20 109 | 99.65 2 | 84.10 248 | 98.01 234 | 94.06 49 | 98.93 125 | 99.87 1 |
|
| gg-mvs-nofinetune | | | 82.10 361 | 81.02 363 | 85.34 368 | 87.46 407 | 71.04 373 | 94.74 121 | 67.56 421 | 96.44 26 | 79.43 411 | 98.99 8 | 45.24 412 | 96.15 337 | 67.18 401 | 92.17 384 | 88.85 400 |
|
| ANet_high | | | 94.83 104 | 96.28 41 | 90.47 281 | 96.65 173 | 73.16 360 | 94.33 137 | 98.74 14 | 96.39 28 | 98.09 29 | 98.93 10 | 93.37 91 | 98.70 164 | 90.38 159 | 99.68 17 | 99.53 16 |
|
| reproduce-ours | | | 97.28 7 | 97.19 14 | 97.57 12 | 98.37 63 | 94.84 13 | 95.57 89 | 98.40 24 | 96.36 29 | 98.18 25 | 97.78 67 | 95.47 28 | 99.50 22 | 95.26 30 | 99.33 65 | 98.36 133 |
|
| our_new_method | | | 97.28 7 | 97.19 14 | 97.57 12 | 98.37 63 | 94.84 13 | 95.57 89 | 98.40 24 | 96.36 29 | 98.18 25 | 97.78 67 | 95.47 28 | 99.50 22 | 95.26 30 | 99.33 65 | 98.36 133 |
|
| IS-MVSNet | | | 94.49 118 | 94.35 130 | 94.92 105 | 98.25 73 | 86.46 163 | 97.13 17 | 94.31 277 | 96.24 31 | 96.28 103 | 96.36 178 | 82.88 258 | 99.35 62 | 88.19 217 | 99.52 39 | 98.96 64 |
|
| 3Dnovator+ | | 92.74 2 | 95.86 61 | 95.77 73 | 96.13 56 | 96.81 166 | 90.79 77 | 96.30 56 | 97.82 100 | 96.13 32 | 94.74 187 | 97.23 112 | 91.33 141 | 99.16 90 | 93.25 83 | 98.30 196 | 98.46 128 |
|
| pmmvs6 | | | 96.80 16 | 97.36 10 | 95.15 100 | 99.12 8 | 87.82 132 | 96.68 29 | 97.86 95 | 96.10 33 | 98.14 28 | 99.28 5 | 97.94 3 | 98.21 216 | 91.38 138 | 99.69 14 | 99.42 20 |
|
| ACMH+ | | 88.43 11 | 96.48 34 | 96.82 19 | 95.47 83 | 98.54 46 | 89.06 104 | 95.65 83 | 98.61 15 | 96.10 33 | 98.16 27 | 97.52 86 | 96.90 7 | 98.62 175 | 90.30 164 | 99.60 25 | 98.72 96 |
|
| K. test v3 | | | 93.37 156 | 93.27 166 | 93.66 164 | 98.05 86 | 82.62 232 | 94.35 136 | 86.62 369 | 96.05 35 | 97.51 46 | 98.85 14 | 76.59 320 | 99.65 5 | 93.21 84 | 98.20 208 | 98.73 95 |
|
| LFMVS | | | 91.33 216 | 91.16 219 | 91.82 231 | 96.27 208 | 79.36 284 | 95.01 114 | 85.61 381 | 96.04 36 | 94.82 183 | 97.06 128 | 72.03 339 | 98.46 195 | 84.96 273 | 98.70 157 | 97.65 208 |
|
| SSC-MVS | | | 90.16 245 | 92.96 170 | 81.78 390 | 97.88 100 | 48.48 422 | 90.75 264 | 87.69 360 | 96.02 37 | 96.70 84 | 97.63 77 | 85.60 236 | 97.80 256 | 85.73 261 | 98.60 167 | 99.06 50 |
|
| TranMVSNet+NR-MVSNet | | | 96.07 53 | 96.26 42 | 95.50 82 | 98.26 71 | 87.69 134 | 93.75 159 | 97.86 95 | 95.96 38 | 97.48 48 | 97.14 121 | 95.33 36 | 99.44 32 | 90.79 147 | 99.76 10 | 99.38 23 |
|
| SR-MVS-dyc-post | | | 96.84 11 | 96.60 28 | 97.56 14 | 98.07 84 | 95.27 10 | 96.37 46 | 98.12 59 | 95.66 39 | 97.00 69 | 97.03 130 | 94.85 60 | 99.42 36 | 93.49 67 | 98.84 135 | 98.00 166 |
|
| RE-MVS-def | | | | 96.66 23 | | 98.07 84 | 95.27 10 | 96.37 46 | 98.12 59 | 95.66 39 | 97.00 69 | 97.03 130 | 95.40 31 | | 93.49 67 | 98.84 135 | 98.00 166 |
|
| APD-MVS_3200maxsize | | | 96.82 13 | 96.65 24 | 97.32 29 | 97.95 96 | 93.82 37 | 96.31 52 | 98.25 37 | 95.51 41 | 96.99 71 | 97.05 129 | 95.63 23 | 99.39 52 | 93.31 79 | 98.88 130 | 98.75 91 |
|
| WB-MVS | | | 89.44 263 | 92.15 193 | 81.32 391 | 97.73 112 | 48.22 423 | 89.73 299 | 87.98 358 | 95.24 42 | 96.05 116 | 96.99 134 | 85.18 239 | 96.95 310 | 82.45 298 | 97.97 229 | 98.78 87 |
|
| SR-MVS | | | 96.70 23 | 96.42 33 | 97.54 15 | 98.05 86 | 94.69 15 | 96.13 62 | 98.07 69 | 95.17 43 | 96.82 79 | 96.73 153 | 95.09 49 | 99.43 35 | 92.99 93 | 98.71 155 | 98.50 124 |
|
| mmtdpeth | | | 95.82 62 | 96.02 58 | 95.23 95 | 96.91 157 | 88.62 113 | 96.49 39 | 99.26 4 | 95.07 44 | 93.41 224 | 99.29 4 | 90.25 170 | 97.27 292 | 94.49 39 | 99.01 113 | 99.80 3 |
|
| testf1 | | | 96.77 18 | 96.49 30 | 97.60 10 | 99.01 14 | 96.70 4 | 96.31 52 | 98.33 28 | 94.96 45 | 97.30 56 | 97.93 57 | 96.05 16 | 97.90 243 | 89.32 190 | 99.23 86 | 98.19 149 |
|
| APD_test2 | | | 96.77 18 | 96.49 30 | 97.60 10 | 99.01 14 | 96.70 4 | 96.31 52 | 98.33 28 | 94.96 45 | 97.30 56 | 97.93 57 | 96.05 16 | 97.90 243 | 89.32 190 | 99.23 86 | 98.19 149 |
|
| UniMVSNet_NR-MVSNet | | | 95.35 82 | 95.21 96 | 95.76 73 | 97.69 117 | 88.59 116 | 92.26 218 | 97.84 98 | 94.91 47 | 96.80 80 | 95.78 213 | 90.42 166 | 99.41 42 | 91.60 130 | 99.58 31 | 99.29 29 |
|
| SixPastTwentyTwo | | | 94.91 100 | 95.21 96 | 93.98 146 | 98.52 48 | 83.19 223 | 95.93 71 | 94.84 264 | 94.86 48 | 98.49 16 | 98.74 18 | 81.45 275 | 99.60 10 | 94.69 36 | 99.39 56 | 99.15 39 |
|
| ACMH | | 88.36 12 | 96.59 31 | 97.43 6 | 94.07 144 | 98.56 41 | 85.33 192 | 96.33 49 | 98.30 33 | 94.66 49 | 98.72 9 | 98.30 38 | 97.51 5 | 98.00 236 | 94.87 34 | 99.59 27 | 98.86 78 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| XVS | | | 96.49 33 | 96.18 46 | 97.44 20 | 98.56 41 | 93.99 30 | 96.50 37 | 97.95 89 | 94.58 50 | 94.38 196 | 96.49 164 | 94.56 69 | 99.39 52 | 93.57 63 | 99.05 106 | 98.93 68 |
|
| X-MVStestdata | | | 90.70 225 | 88.45 273 | 97.44 20 | 98.56 41 | 93.99 30 | 96.50 37 | 97.95 89 | 94.58 50 | 94.38 196 | 26.89 421 | 94.56 69 | 99.39 52 | 93.57 63 | 99.05 106 | 98.93 68 |
|
| VDD-MVS | | | 94.37 123 | 94.37 128 | 94.40 134 | 97.49 129 | 86.07 175 | 93.97 153 | 93.28 298 | 94.49 52 | 96.24 105 | 97.78 67 | 87.99 198 | 98.79 145 | 88.92 205 | 99.14 99 | 98.34 137 |
|
| MM | | | 94.41 122 | 94.14 138 | 95.22 97 | 95.84 240 | 87.21 141 | 94.31 139 | 90.92 337 | 94.48 53 | 92.80 252 | 97.52 86 | 85.27 238 | 99.49 28 | 96.58 8 | 99.57 33 | 98.97 62 |
|
| MTAPA | | | 96.65 26 | 96.38 37 | 97.47 19 | 98.95 18 | 94.05 27 | 95.88 74 | 97.62 115 | 94.46 54 | 96.29 101 | 96.94 136 | 93.56 84 | 99.37 60 | 94.29 45 | 99.42 50 | 98.99 56 |
|
| test_one_0601 | | | | | | 98.26 71 | 87.14 143 | | 98.18 49 | 94.25 55 | 96.99 71 | 97.36 100 | 95.13 45 | | | | |
|
| CS-MVS | | | 95.77 64 | 95.58 80 | 96.37 54 | 96.84 163 | 91.72 65 | 96.73 28 | 99.06 8 | 94.23 56 | 92.48 263 | 94.79 255 | 93.56 84 | 99.49 28 | 93.47 70 | 99.05 106 | 97.89 183 |
|
| EPP-MVSNet | | | 93.91 143 | 93.68 152 | 94.59 124 | 98.08 83 | 85.55 188 | 97.44 11 | 94.03 283 | 94.22 57 | 94.94 178 | 96.19 190 | 82.07 270 | 99.57 15 | 87.28 237 | 98.89 128 | 98.65 106 |
|
| OurMVSNet-221017-0 | | | 96.80 16 | 96.75 21 | 96.96 39 | 99.03 11 | 91.85 61 | 97.98 7 | 98.01 81 | 94.15 58 | 98.93 4 | 99.07 7 | 88.07 195 | 99.57 15 | 95.86 15 | 99.69 14 | 99.46 19 |
|
| Anonymous202405211 | | | 92.58 184 | 92.50 185 | 92.83 196 | 96.55 181 | 83.22 222 | 92.43 207 | 91.64 331 | 94.10 59 | 95.59 139 | 96.64 158 | 81.88 274 | 97.50 278 | 85.12 269 | 98.52 175 | 97.77 198 |
|
| SPE-MVS-test | | | 95.32 84 | 95.10 101 | 95.96 60 | 96.86 161 | 90.75 78 | 96.33 49 | 99.20 5 | 93.99 60 | 91.03 297 | 93.73 292 | 93.52 86 | 99.55 19 | 91.81 123 | 99.45 45 | 97.58 211 |
|
| DU-MVS | | | 95.28 88 | 95.12 100 | 95.75 74 | 97.75 109 | 88.59 116 | 92.58 198 | 97.81 101 | 93.99 60 | 96.80 80 | 95.90 203 | 90.10 175 | 99.41 42 | 91.60 130 | 99.58 31 | 99.26 30 |
|
| TransMVSNet (Re) | | | 95.27 91 | 96.04 56 | 92.97 188 | 98.37 63 | 81.92 241 | 95.07 111 | 96.76 187 | 93.97 62 | 97.77 34 | 98.57 26 | 95.72 20 | 97.90 243 | 88.89 207 | 99.23 86 | 99.08 48 |
|
| FC-MVSNet-test | | | 95.32 84 | 95.88 65 | 93.62 166 | 98.49 56 | 81.77 242 | 95.90 73 | 98.32 30 | 93.93 63 | 97.53 45 | 97.56 81 | 88.48 188 | 99.40 49 | 92.91 95 | 99.83 5 | 99.68 6 |
|
| EC-MVSNet | | | 95.44 76 | 95.62 78 | 94.89 106 | 96.93 156 | 87.69 134 | 96.48 40 | 99.14 7 | 93.93 63 | 92.77 254 | 94.52 266 | 93.95 81 | 99.49 28 | 93.62 62 | 99.22 89 | 97.51 217 |
|
| NR-MVSNet | | | 95.28 88 | 95.28 94 | 95.26 92 | 97.75 109 | 87.21 141 | 95.08 110 | 97.37 134 | 93.92 65 | 97.65 37 | 95.90 203 | 90.10 175 | 99.33 70 | 90.11 173 | 99.66 21 | 99.26 30 |
|
| Baseline_NR-MVSNet | | | 94.47 119 | 95.09 102 | 92.60 208 | 98.50 55 | 80.82 257 | 92.08 222 | 96.68 191 | 93.82 66 | 96.29 101 | 98.56 27 | 90.10 175 | 97.75 264 | 90.10 175 | 99.66 21 | 99.24 32 |
|
| MIMVSNet1 | | | 95.52 73 | 95.45 84 | 95.72 75 | 99.14 5 | 89.02 105 | 96.23 59 | 96.87 178 | 93.73 67 | 97.87 31 | 98.49 31 | 90.73 161 | 99.05 105 | 86.43 253 | 99.60 25 | 99.10 47 |
|
| tfpnnormal | | | 94.27 128 | 94.87 108 | 92.48 212 | 97.71 114 | 80.88 256 | 94.55 132 | 95.41 249 | 93.70 68 | 96.67 86 | 97.72 72 | 91.40 140 | 98.18 220 | 87.45 233 | 99.18 94 | 98.36 133 |
|
| EI-MVSNet-Vis-set | | | 94.36 124 | 94.28 132 | 94.61 120 | 92.55 336 | 85.98 177 | 92.44 206 | 94.69 271 | 93.70 68 | 96.12 114 | 95.81 209 | 91.24 144 | 98.86 131 | 93.76 60 | 98.22 205 | 98.98 60 |
|
| WR-MVS | | | 93.49 152 | 93.72 149 | 92.80 197 | 97.57 125 | 80.03 267 | 90.14 286 | 95.68 234 | 93.70 68 | 96.62 88 | 95.39 233 | 87.21 210 | 99.04 108 | 87.50 232 | 99.64 23 | 99.33 26 |
|
| EI-MVSNet-UG-set | | | 94.35 125 | 94.27 134 | 94.59 124 | 92.46 339 | 85.87 180 | 92.42 208 | 94.69 271 | 93.67 71 | 96.13 113 | 95.84 207 | 91.20 147 | 98.86 131 | 93.78 57 | 98.23 203 | 99.03 52 |
|
| SDMVSNet | | | 94.43 121 | 95.02 103 | 92.69 200 | 97.93 97 | 82.88 230 | 91.92 231 | 95.99 227 | 93.65 72 | 95.51 142 | 98.63 23 | 94.60 67 | 96.48 327 | 87.57 231 | 99.35 59 | 98.70 100 |
|
| sd_testset | | | 93.94 142 | 94.39 126 | 92.61 207 | 97.93 97 | 83.24 220 | 93.17 179 | 95.04 258 | 93.65 72 | 95.51 142 | 98.63 23 | 94.49 72 | 95.89 346 | 81.72 306 | 99.35 59 | 98.70 100 |
|
| UniMVSNet (Re) | | | 95.32 84 | 95.15 98 | 95.80 72 | 97.79 107 | 88.91 107 | 92.91 186 | 98.07 69 | 93.46 74 | 96.31 99 | 95.97 202 | 90.14 172 | 99.34 65 | 92.11 112 | 99.64 23 | 99.16 38 |
|
| VPA-MVSNet | | | 95.14 93 | 95.67 77 | 93.58 168 | 97.76 108 | 83.15 224 | 94.58 128 | 97.58 120 | 93.39 75 | 97.05 67 | 98.04 49 | 93.25 95 | 98.51 189 | 89.75 183 | 99.59 27 | 99.08 48 |
|
| APD_test1 | | | 95.91 57 | 95.42 87 | 97.36 27 | 98.82 25 | 96.62 7 | 95.64 84 | 97.64 113 | 93.38 76 | 95.89 124 | 97.23 112 | 93.35 92 | 97.66 271 | 88.20 216 | 98.66 163 | 97.79 196 |
|
| SteuartSystems-ACMMP | | | 96.40 41 | 96.30 40 | 96.71 44 | 98.63 34 | 91.96 59 | 95.70 80 | 98.01 81 | 93.34 77 | 96.64 87 | 96.57 162 | 94.99 54 | 99.36 61 | 93.48 69 | 99.34 63 | 98.82 82 |
| Skip Steuart: Steuart Systems R&D Blog. |
| DVP-MVS++ | | | 95.93 56 | 96.34 38 | 94.70 115 | 96.54 182 | 86.66 158 | 98.45 4 | 98.22 44 | 93.26 78 | 97.54 43 | 97.36 100 | 93.12 100 | 99.38 58 | 93.88 53 | 98.68 159 | 98.04 161 |
|
| test_0728_THIRD | | | | | | | | | | 93.26 78 | 97.40 54 | 97.35 103 | 94.69 63 | 99.34 65 | 93.88 53 | 99.42 50 | 98.89 75 |
|
| HPM-MVS_fast | | | 97.01 10 | 96.89 18 | 97.39 25 | 99.12 8 | 93.92 32 | 97.16 14 | 98.17 53 | 93.11 80 | 96.48 92 | 97.36 100 | 96.92 6 | 99.34 65 | 94.31 44 | 99.38 57 | 98.92 72 |
|
| casdiffmvs_mvg |  | | 95.10 94 | 95.62 78 | 93.53 172 | 96.25 211 | 83.23 221 | 92.66 195 | 98.19 47 | 93.06 81 | 97.49 47 | 97.15 120 | 94.78 61 | 98.71 163 | 92.27 110 | 98.72 153 | 98.65 106 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| FIs | | | 94.90 101 | 95.35 89 | 93.55 169 | 98.28 69 | 81.76 243 | 95.33 98 | 98.14 57 | 93.05 82 | 97.07 64 | 97.18 118 | 87.65 202 | 99.29 74 | 91.72 126 | 99.69 14 | 99.61 13 |
|
| MP-MVS |  | | 96.14 50 | 95.68 76 | 97.51 17 | 98.81 27 | 94.06 25 | 96.10 63 | 97.78 106 | 92.73 83 | 93.48 222 | 96.72 154 | 94.23 76 | 99.42 36 | 91.99 117 | 99.29 75 | 99.05 51 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| nrg030 | | | 96.32 44 | 96.55 29 | 95.62 78 | 97.83 103 | 88.55 118 | 95.77 78 | 98.29 36 | 92.68 84 | 98.03 30 | 97.91 62 | 95.13 45 | 98.95 120 | 93.85 55 | 99.49 40 | 99.36 25 |
|
| CSCG | | | 94.69 110 | 94.75 112 | 94.52 127 | 97.55 126 | 87.87 130 | 95.01 114 | 97.57 121 | 92.68 84 | 96.20 109 | 93.44 300 | 91.92 128 | 98.78 148 | 89.11 201 | 99.24 85 | 96.92 249 |
|
| CP-MVS | | | 96.44 38 | 96.08 53 | 97.54 15 | 98.29 68 | 94.62 18 | 96.80 24 | 98.08 66 | 92.67 86 | 95.08 173 | 96.39 175 | 94.77 62 | 99.42 36 | 93.17 86 | 99.44 48 | 98.58 118 |
|
| mPP-MVS | | | 96.46 35 | 96.05 55 | 97.69 6 | 98.62 35 | 94.65 17 | 96.45 41 | 97.74 108 | 92.59 87 | 95.47 145 | 96.68 156 | 94.50 71 | 99.42 36 | 93.10 88 | 99.26 82 | 98.99 56 |
|
| APDe-MVS |  | | 96.46 35 | 96.64 25 | 95.93 64 | 97.68 118 | 89.38 98 | 96.90 21 | 98.41 23 | 92.52 88 | 97.43 50 | 97.92 61 | 95.11 47 | 99.50 22 | 94.45 40 | 99.30 72 | 98.92 72 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| RPSCF | | | 95.58 72 | 94.89 107 | 97.62 9 | 97.58 124 | 96.30 8 | 95.97 70 | 97.53 125 | 92.42 89 | 93.41 224 | 97.78 67 | 91.21 146 | 97.77 261 | 91.06 141 | 97.06 270 | 98.80 85 |
|
| FMVSNet1 | | | 94.84 103 | 95.13 99 | 93.97 147 | 97.60 122 | 84.29 202 | 95.99 67 | 96.56 199 | 92.38 90 | 97.03 68 | 98.53 28 | 90.12 173 | 98.98 113 | 88.78 209 | 99.16 97 | 98.65 106 |
|
| DPE-MVS |  | | 95.89 59 | 95.88 65 | 95.92 66 | 97.93 97 | 89.83 88 | 93.46 169 | 98.30 33 | 92.37 91 | 97.75 35 | 96.95 135 | 95.14 44 | 99.51 21 | 91.74 125 | 99.28 80 | 98.41 132 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| Vis-MVSNet |  | | 95.50 74 | 95.48 83 | 95.56 81 | 98.11 81 | 89.40 97 | 95.35 96 | 98.22 44 | 92.36 92 | 94.11 201 | 98.07 46 | 92.02 125 | 99.44 32 | 93.38 78 | 97.67 246 | 97.85 189 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| HFP-MVS | | | 96.39 42 | 96.17 48 | 97.04 35 | 98.51 49 | 93.37 43 | 96.30 56 | 97.98 84 | 92.35 93 | 95.63 137 | 96.47 165 | 95.37 32 | 99.27 80 | 93.78 57 | 99.14 99 | 98.48 127 |
|
| ACMMPR | | | 96.46 35 | 96.14 49 | 97.41 24 | 98.60 38 | 93.82 37 | 96.30 56 | 97.96 87 | 92.35 93 | 95.57 140 | 96.61 160 | 94.93 58 | 99.41 42 | 93.78 57 | 99.15 98 | 99.00 54 |
|
| HPM-MVS |  | | 96.81 15 | 96.62 26 | 97.36 27 | 98.89 20 | 93.53 42 | 97.51 10 | 98.44 20 | 92.35 93 | 95.95 119 | 96.41 170 | 96.71 8 | 99.42 36 | 93.99 52 | 99.36 58 | 99.13 41 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| region2R | | | 96.41 40 | 96.09 51 | 97.38 26 | 98.62 35 | 93.81 39 | 96.32 51 | 97.96 87 | 92.26 96 | 95.28 159 | 96.57 162 | 95.02 52 | 99.41 42 | 93.63 61 | 99.11 101 | 98.94 66 |
|
| ACMMP |  | | 96.61 28 | 96.34 38 | 97.43 22 | 98.61 37 | 93.88 33 | 96.95 20 | 98.18 49 | 92.26 96 | 96.33 97 | 96.84 144 | 95.10 48 | 99.40 49 | 93.47 70 | 99.33 65 | 99.02 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| RRT-MVS | | | 92.28 194 | 93.01 169 | 90.07 293 | 94.06 306 | 73.01 362 | 95.36 95 | 97.88 93 | 92.24 98 | 95.16 167 | 97.52 86 | 78.51 298 | 99.29 74 | 90.55 154 | 95.83 308 | 97.92 179 |
|
| PatchT | | | 87.51 305 | 88.17 286 | 85.55 366 | 90.64 376 | 66.91 392 | 92.02 225 | 86.09 373 | 92.20 99 | 89.05 332 | 97.16 119 | 64.15 376 | 96.37 333 | 89.21 199 | 92.98 376 | 93.37 371 |
|
| VNet | | | 92.67 182 | 92.96 170 | 91.79 232 | 96.27 208 | 80.15 261 | 91.95 227 | 94.98 260 | 92.19 100 | 94.52 193 | 96.07 197 | 87.43 206 | 97.39 287 | 84.83 274 | 98.38 187 | 97.83 191 |
|
| thres100view900 | | | 87.35 309 | 86.89 309 | 88.72 319 | 96.14 220 | 73.09 361 | 93.00 183 | 85.31 384 | 92.13 101 | 93.26 234 | 90.96 350 | 63.42 381 | 98.28 209 | 71.27 388 | 96.54 291 | 94.79 338 |
|
| GST-MVS | | | 96.24 47 | 95.99 59 | 97.00 37 | 98.65 33 | 92.71 51 | 95.69 82 | 98.01 81 | 92.08 102 | 95.74 132 | 96.28 184 | 95.22 42 | 99.42 36 | 93.17 86 | 99.06 103 | 98.88 77 |
|
| LCM-MVSNet-Re | | | 94.20 133 | 94.58 123 | 93.04 185 | 95.91 237 | 83.13 225 | 93.79 158 | 99.19 6 | 92.00 103 | 98.84 6 | 98.04 49 | 93.64 83 | 99.02 110 | 81.28 311 | 98.54 173 | 96.96 248 |
|
| SED-MVS | | | 96.00 55 | 96.41 36 | 94.76 112 | 98.51 49 | 86.97 148 | 95.21 104 | 98.10 63 | 91.95 104 | 97.63 38 | 97.25 110 | 96.48 10 | 99.35 62 | 93.29 80 | 99.29 75 | 97.95 174 |
|
| test_241102_TWO | | | | | | | | | 98.10 63 | 91.95 104 | 97.54 43 | 97.25 110 | 95.37 32 | 99.35 62 | 93.29 80 | 99.25 83 | 98.49 126 |
|
| ITE_SJBPF | | | | | 95.95 61 | 97.34 137 | 93.36 44 | | 96.55 202 | 91.93 106 | 94.82 183 | 95.39 233 | 91.99 126 | 97.08 305 | 85.53 263 | 97.96 230 | 97.41 223 |
|
| RPMNet | | | 90.31 242 | 90.14 244 | 90.81 274 | 91.01 372 | 78.93 291 | 92.52 200 | 98.12 59 | 91.91 107 | 89.10 330 | 96.89 140 | 68.84 349 | 99.41 42 | 90.17 171 | 92.70 378 | 94.08 352 |
|
| thres600view7 | | | 87.66 300 | 87.10 306 | 89.36 308 | 96.05 227 | 73.17 359 | 92.72 191 | 85.31 384 | 91.89 108 | 93.29 231 | 90.97 349 | 63.42 381 | 98.39 198 | 73.23 376 | 96.99 277 | 96.51 264 |
|
| v8 | | | 94.65 112 | 95.29 93 | 92.74 198 | 96.65 173 | 79.77 276 | 94.59 126 | 97.17 154 | 91.86 109 | 97.47 49 | 97.93 57 | 88.16 193 | 99.08 100 | 94.32 43 | 99.47 41 | 99.38 23 |
|
| test_241102_ONE | | | | | | 98.51 49 | 86.97 148 | | 98.10 63 | 91.85 110 | 97.63 38 | 97.03 130 | 96.48 10 | 98.95 120 | | | |
|
| DVP-MVS |  | | 95.82 62 | 96.18 46 | 94.72 114 | 98.51 49 | 86.69 156 | 95.20 106 | 97.00 166 | 91.85 110 | 97.40 54 | 97.35 103 | 95.58 24 | 99.34 65 | 93.44 73 | 99.31 70 | 98.13 155 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 98.51 49 | 86.69 156 | 95.34 97 | 98.18 49 | 91.85 110 | 97.63 38 | 97.37 97 | 95.58 24 | | | | |
|
| SF-MVS | | | 95.88 60 | 95.88 65 | 95.87 70 | 98.12 80 | 89.65 90 | 95.58 88 | 98.56 17 | 91.84 113 | 96.36 96 | 96.68 156 | 94.37 75 | 99.32 71 | 92.41 108 | 99.05 106 | 98.64 111 |
|
| pm-mvs1 | | | 95.43 77 | 95.94 60 | 93.93 151 | 98.38 61 | 85.08 195 | 95.46 94 | 97.12 159 | 91.84 113 | 97.28 58 | 98.46 33 | 95.30 38 | 97.71 268 | 90.17 171 | 99.42 50 | 98.99 56 |
|
| VPNet | | | 93.08 166 | 93.76 148 | 91.03 263 | 98.60 38 | 75.83 339 | 91.51 244 | 95.62 235 | 91.84 113 | 95.74 132 | 97.10 126 | 89.31 183 | 98.32 207 | 85.07 272 | 99.06 103 | 98.93 68 |
|
| 3Dnovator | | 92.54 3 | 94.80 106 | 94.90 106 | 94.47 131 | 95.47 264 | 87.06 145 | 96.63 31 | 97.28 148 | 91.82 116 | 94.34 198 | 97.41 94 | 90.60 164 | 98.65 173 | 92.47 107 | 98.11 215 | 97.70 204 |
|
| LPG-MVS_test | | | 96.38 43 | 96.23 43 | 96.84 42 | 98.36 66 | 92.13 56 | 95.33 98 | 98.25 37 | 91.78 117 | 97.07 64 | 97.22 114 | 96.38 12 | 99.28 78 | 92.07 115 | 99.59 27 | 99.11 44 |
|
| LGP-MVS_train | | | | | 96.84 42 | 98.36 66 | 92.13 56 | | 98.25 37 | 91.78 117 | 97.07 64 | 97.22 114 | 96.38 12 | 99.28 78 | 92.07 115 | 99.59 27 | 99.11 44 |
|
| EI-MVSNet | | | 92.99 169 | 93.26 167 | 92.19 219 | 92.12 349 | 79.21 289 | 92.32 213 | 94.67 273 | 91.77 119 | 95.24 163 | 95.85 205 | 87.14 212 | 98.49 190 | 91.99 117 | 98.26 199 | 98.86 78 |
|
| IterMVS-LS | | | 93.78 146 | 94.28 132 | 92.27 216 | 96.27 208 | 79.21 289 | 91.87 235 | 96.78 184 | 91.77 119 | 96.57 91 | 97.07 127 | 87.15 211 | 98.74 155 | 91.99 117 | 99.03 112 | 98.86 78 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| ZNCC-MVS | | | 96.42 39 | 96.20 45 | 97.07 34 | 98.80 29 | 92.79 50 | 96.08 65 | 98.16 56 | 91.74 121 | 95.34 154 | 96.36 178 | 95.68 21 | 99.44 32 | 94.41 42 | 99.28 80 | 98.97 62 |
|
| HQP_MVS | | | 94.26 129 | 93.93 142 | 95.23 95 | 97.71 114 | 88.12 125 | 94.56 130 | 97.81 101 | 91.74 121 | 93.31 229 | 95.59 220 | 86.93 217 | 98.95 120 | 89.26 196 | 98.51 177 | 98.60 116 |
|
| plane_prior2 | | | | | | | | 94.56 130 | | 91.74 121 | | | | | | | |
|
| ETV-MVS | | | 92.99 169 | 92.74 177 | 93.72 163 | 95.86 239 | 86.30 169 | 92.33 212 | 97.84 98 | 91.70 124 | 92.81 251 | 86.17 394 | 92.22 121 | 99.19 88 | 88.03 224 | 97.73 241 | 95.66 309 |
|
| wuyk23d | | | 87.83 296 | 90.79 228 | 78.96 396 | 90.46 382 | 88.63 112 | 92.72 191 | 90.67 340 | 91.65 125 | 98.68 12 | 97.64 76 | 96.06 15 | 77.53 418 | 59.84 412 | 99.41 54 | 70.73 416 |
|
| alignmvs | | | 93.26 160 | 92.85 174 | 94.50 128 | 95.70 250 | 87.45 136 | 93.45 170 | 95.76 231 | 91.58 126 | 95.25 162 | 92.42 327 | 81.96 272 | 98.72 157 | 91.61 129 | 97.87 236 | 97.33 231 |
|
| sasdasda | | | 94.59 113 | 94.69 116 | 94.30 136 | 95.60 258 | 87.03 146 | 95.59 85 | 98.24 40 | 91.56 127 | 95.21 165 | 92.04 334 | 94.95 55 | 98.66 170 | 91.45 135 | 97.57 251 | 97.20 237 |
|
| canonicalmvs | | | 94.59 113 | 94.69 116 | 94.30 136 | 95.60 258 | 87.03 146 | 95.59 85 | 98.24 40 | 91.56 127 | 95.21 165 | 92.04 334 | 94.95 55 | 98.66 170 | 91.45 135 | 97.57 251 | 97.20 237 |
|
| MGCFI-Net | | | 94.44 120 | 94.67 120 | 93.75 160 | 95.56 260 | 85.47 189 | 95.25 103 | 98.24 40 | 91.53 129 | 95.04 174 | 92.21 329 | 94.94 57 | 98.54 186 | 91.56 133 | 97.66 247 | 97.24 235 |
|
| IterMVS-SCA-FT | | | 91.65 207 | 91.55 206 | 91.94 228 | 93.89 310 | 79.22 288 | 87.56 341 | 93.51 294 | 91.53 129 | 95.37 152 | 96.62 159 | 78.65 294 | 98.90 124 | 91.89 121 | 94.95 331 | 97.70 204 |
|
| casdiffmvs |  | | 94.32 127 | 94.80 110 | 92.85 195 | 96.05 227 | 81.44 248 | 92.35 211 | 98.05 73 | 91.53 129 | 95.75 131 | 96.80 145 | 93.35 92 | 98.49 190 | 91.01 144 | 98.32 195 | 98.64 111 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| PGM-MVS | | | 96.32 44 | 95.94 60 | 97.43 22 | 98.59 40 | 93.84 36 | 95.33 98 | 98.30 33 | 91.40 132 | 95.76 129 | 96.87 141 | 95.26 39 | 99.45 31 | 92.77 96 | 99.21 90 | 99.00 54 |
|
| Effi-MVS+ | | | 92.79 177 | 92.74 177 | 92.94 191 | 95.10 274 | 83.30 219 | 94.00 151 | 97.53 125 | 91.36 133 | 89.35 329 | 90.65 357 | 94.01 80 | 98.66 170 | 87.40 235 | 95.30 322 | 96.88 253 |
|
| BP-MVS1 | | | 91.77 204 | 91.10 220 | 93.75 160 | 96.42 192 | 83.40 217 | 94.10 148 | 91.89 327 | 91.27 134 | 93.36 228 | 94.85 250 | 64.43 374 | 99.29 74 | 94.88 33 | 98.74 152 | 98.56 119 |
|
| MSP-MVS | | | 95.34 83 | 94.63 122 | 97.48 18 | 98.67 32 | 94.05 27 | 96.41 45 | 98.18 49 | 91.26 135 | 95.12 169 | 95.15 237 | 86.60 224 | 99.50 22 | 93.43 76 | 96.81 282 | 98.89 75 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| SD-MVS | | | 95.19 92 | 95.73 74 | 93.55 169 | 96.62 177 | 88.88 109 | 94.67 123 | 98.05 73 | 91.26 135 | 97.25 60 | 96.40 171 | 95.42 30 | 94.36 374 | 92.72 100 | 99.19 92 | 97.40 226 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| Vis-MVSNet (Re-imp) | | | 90.42 233 | 90.16 241 | 91.20 259 | 97.66 120 | 77.32 318 | 94.33 137 | 87.66 361 | 91.20 137 | 92.99 245 | 95.13 239 | 75.40 325 | 98.28 209 | 77.86 342 | 99.19 92 | 97.99 169 |
|
| API-MVS | | | 91.52 212 | 91.61 205 | 91.26 255 | 94.16 301 | 86.26 170 | 94.66 124 | 94.82 265 | 91.17 138 | 92.13 279 | 91.08 348 | 90.03 178 | 97.06 307 | 79.09 337 | 97.35 262 | 90.45 397 |
|
| EPNet | | | 89.80 258 | 88.25 281 | 94.45 132 | 83.91 419 | 86.18 172 | 93.87 155 | 87.07 367 | 91.16 139 | 80.64 408 | 94.72 257 | 78.83 292 | 98.89 126 | 85.17 265 | 98.89 128 | 98.28 142 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| HPM-MVS++ |  | | 95.02 96 | 94.39 126 | 96.91 41 | 97.88 100 | 93.58 41 | 94.09 149 | 96.99 168 | 91.05 140 | 92.40 268 | 95.22 236 | 91.03 153 | 99.25 81 | 92.11 112 | 98.69 158 | 97.90 181 |
|
| test_yl | | | 90.11 248 | 89.73 253 | 91.26 255 | 94.09 304 | 79.82 273 | 90.44 274 | 92.65 310 | 90.90 141 | 93.19 239 | 93.30 303 | 73.90 329 | 98.03 230 | 82.23 300 | 96.87 279 | 95.93 295 |
|
| DCV-MVSNet | | | 90.11 248 | 89.73 253 | 91.26 255 | 94.09 304 | 79.82 273 | 90.44 274 | 92.65 310 | 90.90 141 | 93.19 239 | 93.30 303 | 73.90 329 | 98.03 230 | 82.23 300 | 96.87 279 | 95.93 295 |
|
| tfpn200view9 | | | 87.05 318 | 86.52 318 | 88.67 320 | 95.77 246 | 72.94 363 | 91.89 232 | 86.00 374 | 90.84 143 | 92.61 258 | 89.80 361 | 63.93 377 | 98.28 209 | 71.27 388 | 96.54 291 | 94.79 338 |
|
| thres400 | | | 87.20 313 | 86.52 318 | 89.24 312 | 95.77 246 | 72.94 363 | 91.89 232 | 86.00 374 | 90.84 143 | 92.61 258 | 89.80 361 | 63.93 377 | 98.28 209 | 71.27 388 | 96.54 291 | 96.51 264 |
|
| ACMM | | 88.83 9 | 96.30 46 | 96.07 54 | 96.97 38 | 98.39 60 | 92.95 48 | 94.74 121 | 98.03 78 | 90.82 145 | 97.15 61 | 96.85 142 | 96.25 14 | 99.00 112 | 93.10 88 | 99.33 65 | 98.95 65 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| baseline | | | 94.26 129 | 94.80 110 | 92.64 202 | 96.08 225 | 80.99 254 | 93.69 162 | 98.04 77 | 90.80 146 | 94.89 181 | 96.32 180 | 93.19 97 | 98.48 194 | 91.68 128 | 98.51 177 | 98.43 131 |
|
| XVG-OURS | | | 94.72 108 | 94.12 139 | 96.50 51 | 98.00 92 | 94.23 22 | 91.48 246 | 98.17 53 | 90.72 147 | 95.30 156 | 96.47 165 | 87.94 199 | 96.98 309 | 91.41 137 | 97.61 250 | 98.30 141 |
|
| XVG-OURS-SEG-HR | | | 95.38 81 | 95.00 105 | 96.51 50 | 98.10 82 | 94.07 24 | 92.46 204 | 98.13 58 | 90.69 148 | 93.75 215 | 96.25 188 | 98.03 2 | 97.02 308 | 92.08 114 | 95.55 313 | 98.45 129 |
|
| v10 | | | 94.68 111 | 95.27 95 | 92.90 193 | 96.57 179 | 80.15 261 | 94.65 125 | 97.57 121 | 90.68 149 | 97.43 50 | 98.00 52 | 88.18 192 | 99.15 91 | 94.84 35 | 99.55 35 | 99.41 21 |
|
| NCCC | | | 94.08 137 | 93.54 159 | 95.70 77 | 96.49 187 | 89.90 87 | 92.39 210 | 96.91 175 | 90.64 150 | 92.33 274 | 94.60 263 | 90.58 165 | 98.96 118 | 90.21 170 | 97.70 244 | 98.23 145 |
|
| UGNet | | | 93.08 166 | 92.50 185 | 94.79 111 | 93.87 311 | 87.99 128 | 95.07 111 | 94.26 280 | 90.64 150 | 87.33 362 | 97.67 74 | 86.89 219 | 98.49 190 | 88.10 220 | 98.71 155 | 97.91 180 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| MSDG | | | 90.82 221 | 90.67 231 | 91.26 255 | 94.16 301 | 83.08 226 | 86.63 362 | 96.19 218 | 90.60 152 | 91.94 282 | 91.89 336 | 89.16 185 | 95.75 348 | 80.96 316 | 94.51 342 | 94.95 331 |
|
| MVS_0304 | | | 92.88 173 | 92.27 189 | 94.69 116 | 92.35 340 | 86.03 176 | 92.88 188 | 89.68 344 | 90.53 153 | 91.52 287 | 96.43 168 | 82.52 266 | 99.32 71 | 95.01 32 | 99.54 36 | 98.71 99 |
|
| AllTest | | | 94.88 102 | 94.51 124 | 96.00 58 | 98.02 90 | 92.17 54 | 95.26 102 | 98.43 21 | 90.48 154 | 95.04 174 | 96.74 151 | 92.54 116 | 97.86 251 | 85.11 270 | 98.98 115 | 97.98 170 |
|
| TestCases | | | | | 96.00 58 | 98.02 90 | 92.17 54 | | 98.43 21 | 90.48 154 | 95.04 174 | 96.74 151 | 92.54 116 | 97.86 251 | 85.11 270 | 98.98 115 | 97.98 170 |
|
| XVG-ACMP-BASELINE | | | 95.68 68 | 95.34 90 | 96.69 45 | 98.40 59 | 93.04 45 | 94.54 133 | 98.05 73 | 90.45 156 | 96.31 99 | 96.76 148 | 92.91 107 | 98.72 157 | 91.19 139 | 99.42 50 | 98.32 138 |
|
| ACMMP_NAP | | | 96.21 48 | 96.12 50 | 96.49 52 | 98.90 19 | 91.42 67 | 94.57 129 | 98.03 78 | 90.42 157 | 96.37 95 | 97.35 103 | 95.68 21 | 99.25 81 | 94.44 41 | 99.34 63 | 98.80 85 |
|
| MDA-MVSNet-bldmvs | | | 91.04 219 | 90.88 223 | 91.55 243 | 94.68 291 | 80.16 260 | 85.49 378 | 92.14 322 | 90.41 158 | 94.93 179 | 95.79 210 | 85.10 240 | 96.93 313 | 85.15 267 | 94.19 352 | 97.57 212 |
|
| plane_prior3 | | | | | | | 88.43 122 | | | 90.35 159 | 93.31 229 | | | | | | |
|
| Patchmtry | | | 90.11 248 | 89.92 247 | 90.66 277 | 90.35 383 | 77.00 322 | 92.96 184 | 92.81 305 | 90.25 160 | 94.74 187 | 96.93 137 | 67.11 356 | 97.52 277 | 85.17 265 | 98.98 115 | 97.46 219 |
|
| CNLPA | | | 91.72 206 | 91.20 216 | 93.26 182 | 96.17 216 | 91.02 71 | 91.14 254 | 95.55 243 | 90.16 161 | 90.87 298 | 93.56 298 | 86.31 226 | 94.40 373 | 79.92 329 | 97.12 268 | 94.37 348 |
|
| OPM-MVS | | | 95.61 70 | 95.45 84 | 96.08 57 | 98.49 56 | 91.00 72 | 92.65 196 | 97.33 142 | 90.05 162 | 96.77 82 | 96.85 142 | 95.04 50 | 98.56 183 | 92.77 96 | 99.06 103 | 98.70 100 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| Effi-MVS+-dtu | | | 93.90 144 | 92.60 183 | 97.77 4 | 94.74 287 | 96.67 6 | 94.00 151 | 95.41 249 | 89.94 163 | 91.93 283 | 92.13 332 | 90.12 173 | 98.97 117 | 87.68 230 | 97.48 255 | 97.67 207 |
|
| test20.03 | | | 90.80 222 | 90.85 225 | 90.63 278 | 95.63 256 | 79.24 287 | 89.81 297 | 92.87 304 | 89.90 164 | 94.39 195 | 96.40 171 | 85.77 231 | 95.27 361 | 73.86 373 | 99.05 106 | 97.39 227 |
|
| tttt0517 | | | 89.81 257 | 88.90 267 | 92.55 210 | 97.00 151 | 79.73 277 | 95.03 113 | 83.65 394 | 89.88 165 | 95.30 156 | 94.79 255 | 53.64 403 | 99.39 52 | 91.99 117 | 98.79 146 | 98.54 120 |
|
| CANet | | | 92.38 191 | 91.99 197 | 93.52 174 | 93.82 313 | 83.46 216 | 91.14 254 | 97.00 166 | 89.81 166 | 86.47 366 | 94.04 280 | 87.90 200 | 99.21 84 | 89.50 187 | 98.27 198 | 97.90 181 |
|
| dcpmvs_2 | | | 93.96 141 | 95.01 104 | 90.82 273 | 97.60 122 | 74.04 355 | 93.68 163 | 98.85 10 | 89.80 167 | 97.82 32 | 97.01 133 | 91.14 151 | 99.21 84 | 90.56 153 | 98.59 168 | 99.19 36 |
|
| v148 | | | 92.87 175 | 93.29 163 | 91.62 240 | 96.25 211 | 77.72 313 | 91.28 251 | 95.05 257 | 89.69 168 | 95.93 121 | 96.04 198 | 87.34 207 | 98.38 201 | 90.05 176 | 97.99 227 | 98.78 87 |
|
| CNVR-MVS | | | 94.58 115 | 94.29 131 | 95.46 84 | 96.94 154 | 89.35 99 | 91.81 239 | 96.80 183 | 89.66 169 | 93.90 213 | 95.44 228 | 92.80 111 | 98.72 157 | 92.74 98 | 98.52 175 | 98.32 138 |
|
| Fast-Effi-MVS+-dtu | | | 92.77 179 | 92.16 191 | 94.58 126 | 94.66 292 | 88.25 123 | 92.05 223 | 96.65 193 | 89.62 170 | 90.08 314 | 91.23 345 | 92.56 115 | 98.60 178 | 86.30 255 | 96.27 298 | 96.90 250 |
|
| KD-MVS_self_test | | | 94.10 136 | 94.73 115 | 92.19 219 | 97.66 120 | 79.49 282 | 94.86 118 | 97.12 159 | 89.59 171 | 96.87 75 | 97.65 75 | 90.40 168 | 98.34 206 | 89.08 202 | 99.35 59 | 98.75 91 |
|
| ACMP | | 88.15 13 | 95.71 67 | 95.43 86 | 96.54 49 | 98.17 78 | 91.73 64 | 94.24 140 | 98.08 66 | 89.46 172 | 96.61 89 | 96.47 165 | 95.85 18 | 99.12 96 | 90.45 156 | 99.56 34 | 98.77 90 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| test1111 | | | 90.39 236 | 90.61 232 | 89.74 301 | 98.04 89 | 71.50 372 | 95.59 85 | 79.72 411 | 89.41 173 | 95.94 120 | 98.14 42 | 70.79 343 | 98.81 141 | 88.52 214 | 99.32 69 | 98.90 74 |
|
| Anonymous20240521 | | | 92.86 176 | 93.57 157 | 90.74 275 | 96.57 179 | 75.50 341 | 94.15 144 | 95.60 236 | 89.38 174 | 95.90 123 | 97.90 64 | 80.39 284 | 97.96 240 | 92.60 104 | 99.68 17 | 98.75 91 |
|
| MSLP-MVS++ | | | 93.25 162 | 93.88 143 | 91.37 248 | 96.34 200 | 82.81 231 | 93.11 180 | 97.74 108 | 89.37 175 | 94.08 203 | 95.29 235 | 90.40 168 | 96.35 334 | 90.35 161 | 98.25 201 | 94.96 330 |
|
| test_prior2 | | | | | | | | 90.21 283 | | 89.33 176 | 90.77 300 | 94.81 252 | 90.41 167 | | 88.21 215 | 98.55 171 | |
|
| h-mvs33 | | | 92.89 172 | 91.99 197 | 95.58 79 | 96.97 152 | 90.55 80 | 93.94 154 | 94.01 286 | 89.23 177 | 93.95 210 | 96.19 190 | 76.88 316 | 99.14 93 | 91.02 142 | 95.71 310 | 97.04 245 |
|
| hse-mvs2 | | | 92.24 197 | 91.20 216 | 95.38 85 | 96.16 217 | 90.65 79 | 92.52 200 | 92.01 326 | 89.23 177 | 93.95 210 | 92.99 311 | 76.88 316 | 98.69 166 | 91.02 142 | 96.03 301 | 96.81 255 |
|
| APD-MVS |  | | 95.00 97 | 94.69 116 | 95.93 64 | 97.38 134 | 90.88 75 | 94.59 126 | 97.81 101 | 89.22 179 | 95.46 147 | 96.17 193 | 93.42 90 | 99.34 65 | 89.30 192 | 98.87 133 | 97.56 214 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| CPTT-MVS | | | 94.74 107 | 94.12 139 | 96.60 47 | 98.15 79 | 93.01 46 | 95.84 76 | 97.66 112 | 89.21 180 | 93.28 232 | 95.46 226 | 88.89 186 | 98.98 113 | 89.80 180 | 98.82 141 | 97.80 195 |
|
| test2506 | | | 85.42 330 | 84.57 333 | 87.96 334 | 97.81 105 | 66.53 395 | 96.14 61 | 56.35 424 | 89.04 181 | 93.55 221 | 98.10 44 | 42.88 421 | 98.68 168 | 88.09 221 | 99.18 94 | 98.67 104 |
|
| ECVR-MVS |  | | 90.12 247 | 90.16 241 | 90.00 297 | 97.81 105 | 72.68 366 | 95.76 79 | 78.54 414 | 89.04 181 | 95.36 153 | 98.10 44 | 70.51 345 | 98.64 174 | 87.10 239 | 99.18 94 | 98.67 104 |
|
| plane_prior | | | | | | | 88.12 125 | 93.01 182 | | 88.98 183 | | | | | | 98.06 220 | |
|
| MVSFormer | | | 92.18 198 | 92.23 190 | 92.04 227 | 94.74 287 | 80.06 265 | 97.15 15 | 97.37 134 | 88.98 183 | 88.83 333 | 92.79 316 | 77.02 313 | 99.60 10 | 96.41 9 | 96.75 285 | 96.46 270 |
|
| test_djsdf | | | 96.62 27 | 96.49 30 | 97.01 36 | 98.55 44 | 91.77 63 | 97.15 15 | 97.37 134 | 88.98 183 | 98.26 24 | 98.86 12 | 93.35 92 | 99.60 10 | 96.41 9 | 99.45 45 | 99.66 8 |
|
| JIA-IIPM | | | 85.08 333 | 83.04 347 | 91.19 260 | 87.56 405 | 86.14 173 | 89.40 310 | 84.44 392 | 88.98 183 | 82.20 399 | 97.95 56 | 56.82 398 | 96.15 337 | 76.55 356 | 83.45 410 | 91.30 392 |
|
| AdaColmap |  | | 91.63 208 | 91.36 213 | 92.47 213 | 95.56 260 | 86.36 167 | 92.24 220 | 96.27 212 | 88.88 187 | 89.90 319 | 92.69 319 | 91.65 135 | 98.32 207 | 77.38 349 | 97.64 248 | 92.72 381 |
|
| MVS_Test | | | 92.57 186 | 93.29 163 | 90.40 284 | 93.53 317 | 75.85 337 | 92.52 200 | 96.96 169 | 88.73 188 | 92.35 271 | 96.70 155 | 90.77 157 | 98.37 205 | 92.53 105 | 95.49 315 | 96.99 247 |
|
| PS-MVSNAJss | | | 96.01 54 | 96.04 56 | 95.89 69 | 98.82 25 | 88.51 119 | 95.57 89 | 97.88 93 | 88.72 189 | 98.81 7 | 98.86 12 | 90.77 157 | 99.60 10 | 95.43 25 | 99.53 37 | 99.57 15 |
|
| GeoE | | | 94.55 116 | 94.68 119 | 94.15 140 | 97.23 141 | 85.11 194 | 94.14 146 | 97.34 141 | 88.71 190 | 95.26 160 | 95.50 225 | 94.65 65 | 99.12 96 | 90.94 145 | 98.40 183 | 98.23 145 |
|
| GBi-Net | | | 93.21 163 | 92.96 170 | 93.97 147 | 95.40 266 | 84.29 202 | 95.99 67 | 96.56 199 | 88.63 191 | 95.10 170 | 98.53 28 | 81.31 277 | 98.98 113 | 86.74 243 | 98.38 187 | 98.65 106 |
|
| test1 | | | 93.21 163 | 92.96 170 | 93.97 147 | 95.40 266 | 84.29 202 | 95.99 67 | 96.56 199 | 88.63 191 | 95.10 170 | 98.53 28 | 81.31 277 | 98.98 113 | 86.74 243 | 98.38 187 | 98.65 106 |
|
| FMVSNet2 | | | 92.78 178 | 92.73 179 | 92.95 190 | 95.40 266 | 81.98 240 | 94.18 143 | 95.53 244 | 88.63 191 | 96.05 116 | 97.37 97 | 81.31 277 | 98.81 141 | 87.38 236 | 98.67 161 | 98.06 158 |
|
| thres200 | | | 85.85 327 | 85.18 328 | 87.88 338 | 94.44 296 | 72.52 367 | 89.08 318 | 86.21 371 | 88.57 194 | 91.44 289 | 88.40 379 | 64.22 375 | 98.00 236 | 68.35 397 | 95.88 307 | 93.12 373 |
|
| balanced_conf03 | | | 93.45 154 | 94.17 137 | 91.28 254 | 95.81 244 | 78.40 302 | 96.20 60 | 97.48 129 | 88.56 195 | 95.29 158 | 97.20 117 | 85.56 237 | 99.21 84 | 92.52 106 | 98.91 127 | 96.24 281 |
|
| v2v482 | | | 93.29 158 | 93.63 153 | 92.29 215 | 96.35 199 | 78.82 297 | 91.77 241 | 96.28 211 | 88.45 196 | 95.70 136 | 96.26 187 | 86.02 230 | 98.90 124 | 93.02 91 | 98.81 143 | 99.14 40 |
|
| testdata1 | | | | | | | | 88.96 320 | | 88.44 197 | | | | | | | |
|
| MonoMVSNet | | | 88.46 286 | 89.28 257 | 85.98 362 | 90.52 379 | 70.07 381 | 95.31 101 | 94.81 267 | 88.38 198 | 93.47 223 | 96.13 194 | 73.21 332 | 95.07 363 | 82.61 294 | 89.12 398 | 92.81 379 |
|
| testgi | | | 90.38 237 | 91.34 214 | 87.50 342 | 97.49 129 | 71.54 371 | 89.43 308 | 95.16 255 | 88.38 198 | 94.54 192 | 94.68 260 | 92.88 109 | 93.09 385 | 71.60 386 | 97.85 237 | 97.88 184 |
|
| MVS_111021_HR | | | 93.63 149 | 93.42 162 | 94.26 138 | 96.65 173 | 86.96 150 | 89.30 313 | 96.23 215 | 88.36 200 | 93.57 220 | 94.60 263 | 93.45 87 | 97.77 261 | 90.23 169 | 98.38 187 | 98.03 164 |
|
| BH-RMVSNet | | | 90.47 232 | 90.44 236 | 90.56 280 | 95.21 273 | 78.65 301 | 89.15 317 | 93.94 288 | 88.21 201 | 92.74 255 | 94.22 274 | 86.38 225 | 97.88 247 | 78.67 339 | 95.39 319 | 95.14 323 |
|
| PAPM_NR | | | 91.03 220 | 90.81 227 | 91.68 238 | 96.73 168 | 81.10 253 | 93.72 161 | 96.35 210 | 88.19 202 | 88.77 339 | 92.12 333 | 85.09 241 | 97.25 293 | 82.40 299 | 93.90 357 | 96.68 260 |
|
| testing3 | | | 83.66 346 | 82.52 351 | 87.08 345 | 95.84 240 | 65.84 400 | 89.80 298 | 77.17 418 | 88.17 203 | 90.84 299 | 88.63 376 | 30.95 426 | 98.11 225 | 84.05 282 | 97.19 266 | 97.28 234 |
|
| EG-PatchMatch MVS | | | 94.54 117 | 94.67 120 | 94.14 141 | 97.87 102 | 86.50 160 | 92.00 226 | 96.74 188 | 88.16 204 | 96.93 73 | 97.61 78 | 93.04 104 | 97.90 243 | 91.60 130 | 98.12 214 | 98.03 164 |
|
| TSAR-MVS + GP. | | | 93.07 168 | 92.41 187 | 95.06 102 | 95.82 242 | 90.87 76 | 90.97 259 | 92.61 313 | 88.04 205 | 94.61 190 | 93.79 291 | 88.08 194 | 97.81 255 | 89.41 189 | 98.39 186 | 96.50 267 |
|
| BH-untuned | | | 90.68 226 | 90.90 222 | 90.05 296 | 95.98 233 | 79.57 280 | 90.04 289 | 94.94 262 | 87.91 206 | 94.07 204 | 93.00 310 | 87.76 201 | 97.78 260 | 79.19 336 | 95.17 326 | 92.80 380 |
|
| MVS_111021_LR | | | 93.66 148 | 93.28 165 | 94.80 110 | 96.25 211 | 90.95 73 | 90.21 283 | 95.43 248 | 87.91 206 | 93.74 217 | 94.40 268 | 92.88 109 | 96.38 332 | 90.39 158 | 98.28 197 | 97.07 241 |
|
| MP-MVS-pluss | | | 96.08 52 | 95.92 63 | 96.57 48 | 99.06 10 | 91.21 69 | 93.25 175 | 98.32 30 | 87.89 208 | 96.86 76 | 97.38 96 | 95.55 26 | 99.39 52 | 95.47 23 | 99.47 41 | 99.11 44 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| PHI-MVS | | | 94.34 126 | 93.80 146 | 95.95 61 | 95.65 254 | 91.67 66 | 94.82 119 | 97.86 95 | 87.86 209 | 93.04 244 | 94.16 277 | 91.58 136 | 98.78 148 | 90.27 166 | 98.96 122 | 97.41 223 |
|
| FA-MVS(test-final) | | | 91.81 203 | 91.85 201 | 91.68 238 | 94.95 277 | 79.99 269 | 96.00 66 | 93.44 296 | 87.80 210 | 94.02 208 | 97.29 108 | 77.60 304 | 98.45 196 | 88.04 223 | 97.49 254 | 96.61 261 |
|
| EMVS | | | 80.35 374 | 80.28 372 | 80.54 393 | 84.73 418 | 69.07 384 | 72.54 414 | 80.73 407 | 87.80 210 | 81.66 404 | 81.73 410 | 62.89 383 | 89.84 401 | 75.79 362 | 94.65 340 | 82.71 412 |
|
| E-PMN | | | 80.72 371 | 80.86 365 | 80.29 394 | 85.11 416 | 68.77 385 | 72.96 412 | 81.97 400 | 87.76 212 | 83.25 393 | 83.01 409 | 62.22 387 | 89.17 406 | 77.15 351 | 94.31 347 | 82.93 411 |
|
| EIA-MVS | | | 92.35 192 | 92.03 195 | 93.30 181 | 95.81 244 | 83.97 210 | 92.80 190 | 98.17 53 | 87.71 213 | 89.79 322 | 87.56 384 | 91.17 150 | 99.18 89 | 87.97 225 | 97.27 263 | 96.77 257 |
|
| TinyColmap | | | 92.00 201 | 92.76 176 | 89.71 302 | 95.62 257 | 77.02 321 | 90.72 266 | 96.17 220 | 87.70 214 | 95.26 160 | 96.29 182 | 92.54 116 | 96.45 329 | 81.77 304 | 98.77 148 | 95.66 309 |
|
| anonymousdsp | | | 96.74 21 | 96.42 33 | 97.68 8 | 98.00 92 | 94.03 29 | 96.97 19 | 97.61 117 | 87.68 215 | 98.45 19 | 98.77 17 | 94.20 77 | 99.50 22 | 96.70 6 | 99.40 55 | 99.53 16 |
|
| save fliter | | | | | | 97.46 132 | 88.05 127 | 92.04 224 | 97.08 161 | 87.63 216 | | | | | | | |
|
| mvs_tets | | | 96.83 12 | 96.71 22 | 97.17 31 | 98.83 24 | 92.51 52 | 96.58 33 | 97.61 117 | 87.57 217 | 98.80 8 | 98.90 11 | 96.50 9 | 99.59 14 | 96.15 13 | 99.47 41 | 99.40 22 |
|
| 9.14 | | | | 94.81 109 | | 97.49 129 | | 94.11 147 | 98.37 26 | 87.56 218 | 95.38 150 | 96.03 199 | 94.66 64 | 99.08 100 | 90.70 150 | 98.97 120 | |
|
| DeepC-MVS | | 91.39 4 | 95.43 77 | 95.33 91 | 95.71 76 | 97.67 119 | 90.17 84 | 93.86 156 | 98.02 80 | 87.35 219 | 96.22 107 | 97.99 54 | 94.48 73 | 99.05 105 | 92.73 99 | 99.68 17 | 97.93 177 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DELS-MVS | | | 92.05 200 | 92.16 191 | 91.72 235 | 94.44 296 | 80.13 263 | 87.62 338 | 97.25 149 | 87.34 220 | 92.22 276 | 93.18 308 | 89.54 182 | 98.73 156 | 89.67 184 | 98.20 208 | 96.30 276 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| GDP-MVS | | | 91.56 210 | 90.83 226 | 93.77 159 | 96.34 200 | 83.65 214 | 93.66 164 | 98.12 59 | 87.32 221 | 92.98 247 | 94.71 258 | 63.58 380 | 99.30 73 | 92.61 103 | 98.14 212 | 98.35 136 |
|
| V42 | | | 93.43 155 | 93.58 156 | 92.97 188 | 95.34 270 | 81.22 251 | 92.67 194 | 96.49 204 | 87.25 222 | 96.20 109 | 96.37 177 | 87.32 208 | 98.85 133 | 92.39 109 | 98.21 206 | 98.85 81 |
|
| HQP-NCC | | | | | | 96.36 196 | | 91.37 247 | | 87.16 223 | 88.81 335 | | | | | | |
|
| ACMP_Plane | | | | | | 96.36 196 | | 91.37 247 | | 87.16 223 | 88.81 335 | | | | | | |
|
| HQP-MVS | | | 92.09 199 | 91.49 210 | 93.88 153 | 96.36 196 | 84.89 196 | 91.37 247 | 97.31 143 | 87.16 223 | 88.81 335 | 93.40 301 | 84.76 243 | 98.60 178 | 86.55 250 | 97.73 241 | 98.14 154 |
|
| OMC-MVS | | | 94.22 132 | 93.69 151 | 95.81 71 | 97.25 140 | 91.27 68 | 92.27 217 | 97.40 133 | 87.10 226 | 94.56 191 | 95.42 229 | 93.74 82 | 98.11 225 | 86.62 247 | 98.85 134 | 98.06 158 |
|
| jajsoiax | | | 96.59 31 | 96.42 33 | 97.12 33 | 98.76 30 | 92.49 53 | 96.44 43 | 97.42 132 | 86.96 227 | 98.71 11 | 98.72 19 | 95.36 34 | 99.56 18 | 95.92 14 | 99.45 45 | 99.32 27 |
|
| v1144 | | | 93.50 151 | 93.81 144 | 92.57 209 | 96.28 207 | 79.61 279 | 91.86 237 | 96.96 169 | 86.95 228 | 95.91 122 | 96.32 180 | 87.65 202 | 98.96 118 | 93.51 66 | 98.88 130 | 99.13 41 |
|
| ab-mvs | | | 92.40 190 | 92.62 182 | 91.74 234 | 97.02 150 | 81.65 244 | 95.84 76 | 95.50 245 | 86.95 228 | 92.95 249 | 97.56 81 | 90.70 162 | 97.50 278 | 79.63 330 | 97.43 258 | 96.06 289 |
|
| SMA-MVS |  | | 95.77 64 | 95.54 81 | 96.47 53 | 98.27 70 | 91.19 70 | 95.09 109 | 97.79 105 | 86.48 230 | 97.42 52 | 97.51 90 | 94.47 74 | 99.29 74 | 93.55 65 | 99.29 75 | 98.93 68 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| thisisatest0530 | | | 88.69 283 | 87.52 295 | 92.20 218 | 96.33 202 | 79.36 284 | 92.81 189 | 84.01 393 | 86.44 231 | 93.67 218 | 92.68 320 | 53.62 404 | 99.25 81 | 89.65 185 | 98.45 181 | 98.00 166 |
|
| IterMVS | | | 90.18 244 | 90.16 241 | 90.21 290 | 93.15 322 | 75.98 336 | 87.56 341 | 92.97 303 | 86.43 232 | 94.09 202 | 96.40 171 | 78.32 299 | 97.43 283 | 87.87 227 | 94.69 339 | 97.23 236 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| diffmvs |  | | 91.74 205 | 91.93 199 | 91.15 261 | 93.06 324 | 78.17 306 | 88.77 326 | 97.51 128 | 86.28 233 | 92.42 267 | 93.96 285 | 88.04 196 | 97.46 281 | 90.69 151 | 96.67 288 | 97.82 193 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test_fmvsmconf0.01_n | | | 95.90 58 | 96.09 51 | 95.31 91 | 97.30 139 | 89.21 100 | 94.24 140 | 98.76 13 | 86.25 234 | 97.56 42 | 98.66 21 | 95.73 19 | 98.44 197 | 97.35 3 | 98.99 114 | 98.27 143 |
|
| testing91 | | | 83.56 348 | 82.45 352 | 86.91 350 | 92.92 329 | 67.29 389 | 86.33 368 | 88.07 357 | 86.22 235 | 84.26 383 | 85.76 396 | 48.15 409 | 97.17 299 | 76.27 358 | 94.08 356 | 96.27 279 |
|
| baseline1 | | | 87.62 302 | 87.31 297 | 88.54 323 | 94.71 290 | 74.27 352 | 93.10 181 | 88.20 354 | 86.20 236 | 92.18 277 | 93.04 309 | 73.21 332 | 95.52 351 | 79.32 334 | 85.82 406 | 95.83 300 |
|
| new-patchmatchnet | | | 88.97 275 | 90.79 228 | 83.50 385 | 94.28 300 | 55.83 420 | 85.34 380 | 93.56 293 | 86.18 237 | 95.47 145 | 95.73 216 | 83.10 255 | 96.51 326 | 85.40 264 | 98.06 220 | 98.16 152 |
|
| FMVSNet3 | | | 90.78 223 | 90.32 240 | 92.16 223 | 93.03 326 | 79.92 271 | 92.54 199 | 94.95 261 | 86.17 238 | 95.10 170 | 96.01 200 | 69.97 347 | 98.75 152 | 86.74 243 | 98.38 187 | 97.82 193 |
|
| v1192 | | | 93.49 152 | 93.78 147 | 92.62 206 | 96.16 217 | 79.62 278 | 91.83 238 | 97.22 152 | 86.07 239 | 96.10 115 | 96.38 176 | 87.22 209 | 99.02 110 | 94.14 48 | 98.88 130 | 99.22 33 |
|
| CANet_DTU | | | 89.85 256 | 89.17 259 | 91.87 229 | 92.20 346 | 80.02 268 | 90.79 263 | 95.87 229 | 86.02 240 | 82.53 398 | 91.77 338 | 80.01 285 | 98.57 182 | 85.66 262 | 97.70 244 | 97.01 246 |
|
| XXY-MVS | | | 92.58 184 | 93.16 168 | 90.84 272 | 97.75 109 | 79.84 272 | 91.87 235 | 96.22 217 | 85.94 241 | 95.53 141 | 97.68 73 | 92.69 113 | 94.48 370 | 83.21 288 | 97.51 253 | 98.21 147 |
|
| PM-MVS | | | 93.33 157 | 92.67 181 | 95.33 88 | 96.58 178 | 94.06 25 | 92.26 218 | 92.18 319 | 85.92 242 | 96.22 107 | 96.61 160 | 85.64 235 | 95.99 344 | 90.35 161 | 98.23 203 | 95.93 295 |
|
| reproduce_monomvs | | | 87.13 316 | 86.90 308 | 87.84 339 | 90.92 374 | 68.15 387 | 91.19 253 | 93.75 289 | 85.84 243 | 94.21 200 | 95.83 208 | 42.99 418 | 97.10 303 | 89.46 188 | 97.88 235 | 98.26 144 |
|
| MG-MVS | | | 89.54 260 | 89.80 250 | 88.76 318 | 94.88 278 | 72.47 368 | 89.60 302 | 92.44 316 | 85.82 244 | 89.48 326 | 95.98 201 | 82.85 260 | 97.74 266 | 81.87 303 | 95.27 323 | 96.08 288 |
|
| UnsupCasMVSNet_eth | | | 90.33 240 | 90.34 239 | 90.28 286 | 94.64 293 | 80.24 259 | 89.69 301 | 95.88 228 | 85.77 245 | 93.94 212 | 95.69 217 | 81.99 271 | 92.98 386 | 84.21 281 | 91.30 389 | 97.62 209 |
|
| c3_l | | | 91.32 217 | 91.42 211 | 91.00 266 | 92.29 342 | 76.79 327 | 87.52 344 | 96.42 207 | 85.76 246 | 94.72 189 | 93.89 288 | 82.73 262 | 98.16 222 | 90.93 146 | 98.55 171 | 98.04 161 |
|
| Patchmatch-test | | | 86.10 326 | 86.01 323 | 86.38 359 | 90.63 377 | 74.22 354 | 89.57 303 | 86.69 368 | 85.73 247 | 89.81 321 | 92.83 314 | 65.24 371 | 91.04 394 | 77.82 345 | 95.78 309 | 93.88 360 |
|
| test_fmvsmconf0.1_n | | | 95.61 70 | 95.72 75 | 95.26 92 | 96.85 162 | 89.20 101 | 93.51 167 | 98.60 16 | 85.68 248 | 97.42 52 | 98.30 38 | 95.34 35 | 98.39 198 | 96.85 4 | 98.98 115 | 98.19 149 |
|
| CL-MVSNet_self_test | | | 90.04 253 | 89.90 248 | 90.47 281 | 95.24 272 | 77.81 311 | 86.60 364 | 92.62 312 | 85.64 249 | 93.25 236 | 93.92 286 | 83.84 249 | 96.06 341 | 79.93 327 | 98.03 223 | 97.53 216 |
|
| test_fmvsm_n_1920 | | | 94.72 108 | 94.74 114 | 94.67 117 | 96.30 206 | 88.62 113 | 93.19 178 | 98.07 69 | 85.63 250 | 97.08 63 | 97.35 103 | 90.86 154 | 97.66 271 | 95.70 16 | 98.48 180 | 97.74 202 |
|
| test_fmvsmconf_n | | | 95.43 77 | 95.50 82 | 95.22 97 | 96.48 189 | 89.19 102 | 93.23 177 | 98.36 27 | 85.61 251 | 96.92 74 | 98.02 51 | 95.23 41 | 98.38 201 | 96.69 7 | 98.95 124 | 98.09 157 |
|
| test_fmvsmvis_n_1920 | | | 95.08 95 | 95.40 88 | 94.13 142 | 96.66 172 | 87.75 133 | 93.44 171 | 98.49 19 | 85.57 252 | 98.27 21 | 97.11 124 | 94.11 79 | 97.75 264 | 96.26 11 | 98.72 153 | 96.89 251 |
|
| cl____ | | | 90.65 227 | 90.56 234 | 90.91 270 | 91.85 357 | 76.98 324 | 86.75 358 | 95.36 251 | 85.53 253 | 94.06 205 | 94.89 248 | 77.36 310 | 97.98 239 | 90.27 166 | 98.98 115 | 97.76 199 |
|
| DeepC-MVS_fast | | 89.96 7 | 93.73 147 | 93.44 161 | 94.60 123 | 96.14 220 | 87.90 129 | 93.36 174 | 97.14 156 | 85.53 253 | 93.90 213 | 95.45 227 | 91.30 143 | 98.59 180 | 89.51 186 | 98.62 164 | 97.31 232 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DIV-MVS_self_test | | | 90.65 227 | 90.56 234 | 90.91 270 | 91.85 357 | 76.99 323 | 86.75 358 | 95.36 251 | 85.52 255 | 94.06 205 | 94.89 248 | 77.37 309 | 97.99 238 | 90.28 165 | 98.97 120 | 97.76 199 |
|
| testing99 | | | 82.94 353 | 81.72 356 | 86.59 353 | 92.55 336 | 66.53 395 | 86.08 372 | 85.70 377 | 85.47 256 | 83.95 385 | 85.70 397 | 45.87 411 | 97.07 306 | 76.58 355 | 93.56 363 | 96.17 286 |
|
| TSAR-MVS + MP. | | | 94.96 99 | 94.75 112 | 95.57 80 | 98.86 22 | 88.69 110 | 96.37 46 | 96.81 182 | 85.23 257 | 94.75 186 | 97.12 123 | 91.85 129 | 99.40 49 | 93.45 72 | 98.33 193 | 98.62 115 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| eth_miper_zixun_eth | | | 90.72 224 | 90.61 232 | 91.05 262 | 92.04 352 | 76.84 326 | 86.91 353 | 96.67 192 | 85.21 258 | 94.41 194 | 93.92 286 | 79.53 288 | 98.26 213 | 89.76 182 | 97.02 272 | 98.06 158 |
|
| v1921920 | | | 93.26 160 | 93.61 155 | 92.19 219 | 96.04 231 | 78.31 304 | 91.88 234 | 97.24 150 | 85.17 259 | 96.19 112 | 96.19 190 | 86.76 221 | 99.05 105 | 94.18 47 | 98.84 135 | 99.22 33 |
|
| DeepPCF-MVS | | 90.46 6 | 94.20 133 | 93.56 158 | 96.14 55 | 95.96 234 | 92.96 47 | 89.48 306 | 97.46 130 | 85.14 260 | 96.23 106 | 95.42 229 | 93.19 97 | 98.08 227 | 90.37 160 | 98.76 149 | 97.38 229 |
|
| v1240 | | | 93.29 158 | 93.71 150 | 92.06 226 | 96.01 232 | 77.89 310 | 91.81 239 | 97.37 134 | 85.12 261 | 96.69 85 | 96.40 171 | 86.67 222 | 99.07 104 | 94.51 38 | 98.76 149 | 99.22 33 |
|
| GA-MVS | | | 87.70 298 | 86.82 310 | 90.31 285 | 93.27 320 | 77.22 320 | 84.72 386 | 92.79 307 | 85.11 262 | 89.82 320 | 90.07 358 | 66.80 359 | 97.76 263 | 84.56 278 | 94.27 348 | 95.96 293 |
|
| LF4IMVS | | | 92.72 180 | 92.02 196 | 94.84 109 | 95.65 254 | 91.99 58 | 92.92 185 | 96.60 195 | 85.08 263 | 92.44 266 | 93.62 295 | 86.80 220 | 96.35 334 | 86.81 242 | 98.25 201 | 96.18 284 |
|
| Fast-Effi-MVS+ | | | 91.28 218 | 90.86 224 | 92.53 211 | 95.45 265 | 82.53 233 | 89.25 316 | 96.52 203 | 85.00 264 | 89.91 318 | 88.55 378 | 92.94 105 | 98.84 134 | 84.72 277 | 95.44 317 | 96.22 282 |
|
| v144192 | | | 93.20 165 | 93.54 159 | 92.16 223 | 96.05 227 | 78.26 305 | 91.95 227 | 97.14 156 | 84.98 265 | 95.96 118 | 96.11 195 | 87.08 213 | 99.04 108 | 93.79 56 | 98.84 135 | 99.17 37 |
|
| DP-MVS Recon | | | 92.31 193 | 91.88 200 | 93.60 167 | 97.18 145 | 86.87 151 | 91.10 256 | 97.37 134 | 84.92 266 | 92.08 280 | 94.08 279 | 88.59 187 | 98.20 217 | 83.50 285 | 98.14 212 | 95.73 304 |
|
| FE-MVS | | | 89.06 270 | 88.29 278 | 91.36 249 | 94.78 284 | 79.57 280 | 96.77 27 | 90.99 335 | 84.87 267 | 92.96 248 | 96.29 182 | 60.69 392 | 98.80 144 | 80.18 322 | 97.11 269 | 95.71 305 |
|
| miper_lstm_enhance | | | 89.90 255 | 89.80 250 | 90.19 292 | 91.37 368 | 77.50 315 | 83.82 395 | 95.00 259 | 84.84 268 | 93.05 243 | 94.96 246 | 76.53 321 | 95.20 362 | 89.96 178 | 98.67 161 | 97.86 187 |
|
| EPNet_dtu | | | 85.63 328 | 84.37 334 | 89.40 307 | 86.30 412 | 74.33 351 | 91.64 242 | 88.26 352 | 84.84 268 | 72.96 417 | 89.85 359 | 71.27 342 | 97.69 269 | 76.60 354 | 97.62 249 | 96.18 284 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| CLD-MVS | | | 91.82 202 | 91.41 212 | 93.04 185 | 96.37 194 | 83.65 214 | 86.82 357 | 97.29 146 | 84.65 270 | 92.27 275 | 89.67 366 | 92.20 123 | 97.85 253 | 83.95 283 | 99.47 41 | 97.62 209 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| fmvsm_s_conf0.5_n | | | 94.00 140 | 94.20 136 | 93.42 178 | 96.69 170 | 84.37 200 | 93.38 173 | 95.13 256 | 84.50 271 | 95.40 149 | 97.55 85 | 91.77 132 | 97.20 296 | 95.59 18 | 97.79 239 | 98.69 103 |
|
| fmvsm_s_conf0.1_n | | | 94.19 135 | 94.41 125 | 93.52 174 | 97.22 143 | 84.37 200 | 93.73 160 | 95.26 253 | 84.45 272 | 95.76 129 | 98.00 52 | 91.85 129 | 97.21 295 | 95.62 17 | 97.82 238 | 98.98 60 |
|
| ZD-MVS | | | | | | 97.23 141 | 90.32 82 | | 97.54 123 | 84.40 273 | 94.78 185 | 95.79 210 | 92.76 112 | 99.39 52 | 88.72 211 | 98.40 183 | |
|
| dmvs_re | | | 84.69 338 | 83.94 340 | 86.95 349 | 92.24 343 | 82.93 229 | 89.51 305 | 87.37 363 | 84.38 274 | 85.37 371 | 85.08 401 | 72.44 335 | 86.59 411 | 68.05 398 | 91.03 393 | 91.33 391 |
|
| PMMVS2 | | | 81.31 365 | 83.44 344 | 74.92 399 | 90.52 379 | 46.49 425 | 69.19 415 | 85.23 387 | 84.30 275 | 87.95 353 | 94.71 258 | 76.95 315 | 84.36 416 | 64.07 407 | 98.09 218 | 93.89 359 |
|
| F-COLMAP | | | 92.28 194 | 91.06 221 | 95.95 61 | 97.52 127 | 91.90 60 | 93.53 166 | 97.18 153 | 83.98 276 | 88.70 341 | 94.04 280 | 88.41 190 | 98.55 185 | 80.17 323 | 95.99 303 | 97.39 227 |
|
| QAPM | | | 92.88 173 | 92.77 175 | 93.22 183 | 95.82 242 | 83.31 218 | 96.45 41 | 97.35 140 | 83.91 277 | 93.75 215 | 96.77 146 | 89.25 184 | 98.88 127 | 84.56 278 | 97.02 272 | 97.49 218 |
|
| patch_mono-2 | | | 92.46 188 | 92.72 180 | 91.71 236 | 96.65 173 | 78.91 294 | 88.85 323 | 97.17 154 | 83.89 278 | 92.45 265 | 96.76 148 | 89.86 179 | 97.09 304 | 90.24 168 | 98.59 168 | 99.12 43 |
|
| mvs_anonymous | | | 90.37 238 | 91.30 215 | 87.58 341 | 92.17 348 | 68.00 388 | 89.84 296 | 94.73 270 | 83.82 279 | 93.22 238 | 97.40 95 | 87.54 204 | 97.40 286 | 87.94 226 | 95.05 329 | 97.34 230 |
|
| testing222 | | | 80.54 373 | 78.53 381 | 86.58 354 | 92.54 338 | 68.60 386 | 86.24 369 | 82.72 398 | 83.78 280 | 82.68 397 | 84.24 404 | 39.25 424 | 95.94 345 | 60.25 411 | 95.09 328 | 95.20 319 |
|
| miper_ehance_all_eth | | | 90.48 231 | 90.42 237 | 90.69 276 | 91.62 364 | 76.57 330 | 86.83 356 | 96.18 219 | 83.38 281 | 94.06 205 | 92.66 321 | 82.20 268 | 98.04 229 | 89.79 181 | 97.02 272 | 97.45 220 |
|
| fmvsm_s_conf0.5_n_a | | | 94.02 139 | 94.08 141 | 93.84 156 | 96.72 169 | 85.73 183 | 93.65 165 | 95.23 254 | 83.30 282 | 95.13 168 | 97.56 81 | 92.22 121 | 97.17 299 | 95.51 22 | 97.41 259 | 98.64 111 |
|
| FMVSNet5 | | | 87.82 297 | 86.56 316 | 91.62 240 | 92.31 341 | 79.81 275 | 93.49 168 | 94.81 267 | 83.26 283 | 91.36 290 | 96.93 137 | 52.77 405 | 97.49 280 | 76.07 359 | 98.03 223 | 97.55 215 |
|
| fmvsm_s_conf0.1_n_a | | | 94.26 129 | 94.37 128 | 93.95 150 | 97.36 136 | 85.72 184 | 94.15 144 | 95.44 246 | 83.25 284 | 95.51 142 | 98.05 47 | 92.54 116 | 97.19 298 | 95.55 21 | 97.46 257 | 98.94 66 |
|
| xiu_mvs_v1_base_debu | | | 91.47 213 | 91.52 207 | 91.33 250 | 95.69 251 | 81.56 245 | 89.92 293 | 96.05 224 | 83.22 285 | 91.26 292 | 90.74 352 | 91.55 137 | 98.82 136 | 89.29 193 | 95.91 304 | 93.62 367 |
|
| xiu_mvs_v1_base | | | 91.47 213 | 91.52 207 | 91.33 250 | 95.69 251 | 81.56 245 | 89.92 293 | 96.05 224 | 83.22 285 | 91.26 292 | 90.74 352 | 91.55 137 | 98.82 136 | 89.29 193 | 95.91 304 | 93.62 367 |
|
| xiu_mvs_v1_base_debi | | | 91.47 213 | 91.52 207 | 91.33 250 | 95.69 251 | 81.56 245 | 89.92 293 | 96.05 224 | 83.22 285 | 91.26 292 | 90.74 352 | 91.55 137 | 98.82 136 | 89.29 193 | 95.91 304 | 93.62 367 |
|
| FPMVS | | | 84.50 339 | 83.28 345 | 88.16 332 | 96.32 203 | 94.49 20 | 85.76 376 | 85.47 382 | 83.09 288 | 85.20 373 | 94.26 272 | 63.79 379 | 86.58 412 | 63.72 408 | 91.88 388 | 83.40 410 |
|
| test-LLR | | | 83.58 347 | 83.17 346 | 84.79 374 | 89.68 390 | 66.86 393 | 83.08 397 | 84.52 390 | 83.07 289 | 82.85 394 | 84.78 402 | 62.86 384 | 93.49 381 | 82.85 290 | 94.86 333 | 94.03 355 |
|
| test0.0.03 1 | | | 82.48 356 | 81.47 360 | 85.48 367 | 89.70 389 | 73.57 358 | 84.73 384 | 81.64 401 | 83.07 289 | 88.13 350 | 86.61 390 | 62.86 384 | 89.10 407 | 66.24 403 | 90.29 395 | 93.77 362 |
|
| cl22 | | | 89.02 271 | 88.50 272 | 90.59 279 | 89.76 388 | 76.45 331 | 86.62 363 | 94.03 283 | 82.98 291 | 92.65 257 | 92.49 322 | 72.05 338 | 97.53 276 | 88.93 204 | 97.02 272 | 97.78 197 |
|
| tpmvs | | | 84.22 341 | 83.97 339 | 84.94 372 | 87.09 409 | 65.18 402 | 91.21 252 | 88.35 351 | 82.87 292 | 85.21 372 | 90.96 350 | 65.24 371 | 96.75 320 | 79.60 333 | 85.25 407 | 92.90 378 |
|
| dmvs_testset | | | 78.23 383 | 78.99 377 | 75.94 398 | 91.99 354 | 55.34 421 | 88.86 322 | 78.70 413 | 82.69 293 | 81.64 405 | 79.46 413 | 75.93 322 | 85.74 413 | 48.78 419 | 82.85 412 | 86.76 406 |
|
| KD-MVS_2432*1600 | | | 82.17 359 | 80.75 366 | 86.42 357 | 82.04 421 | 70.09 379 | 81.75 402 | 90.80 338 | 82.56 294 | 90.37 309 | 89.30 370 | 42.90 419 | 96.11 339 | 74.47 368 | 92.55 380 | 93.06 374 |
|
| miper_refine_blended | | | 82.17 359 | 80.75 366 | 86.42 357 | 82.04 421 | 70.09 379 | 81.75 402 | 90.80 338 | 82.56 294 | 90.37 309 | 89.30 370 | 42.90 419 | 96.11 339 | 74.47 368 | 92.55 380 | 93.06 374 |
|
| MDA-MVSNet_test_wron | | | 88.16 292 | 88.23 283 | 87.93 335 | 92.22 344 | 73.71 356 | 80.71 406 | 88.84 347 | 82.52 296 | 94.88 182 | 95.14 238 | 82.70 263 | 93.61 380 | 83.28 287 | 93.80 359 | 96.46 270 |
|
| YYNet1 | | | 88.17 291 | 88.24 282 | 87.93 335 | 92.21 345 | 73.62 357 | 80.75 405 | 88.77 348 | 82.51 297 | 94.99 177 | 95.11 240 | 82.70 263 | 93.70 379 | 83.33 286 | 93.83 358 | 96.48 268 |
|
| OpenMVS |  | 89.45 8 | 92.27 196 | 92.13 194 | 92.68 201 | 94.53 295 | 84.10 208 | 95.70 80 | 97.03 164 | 82.44 298 | 91.14 296 | 96.42 169 | 88.47 189 | 98.38 201 | 85.95 258 | 97.47 256 | 95.55 314 |
|
| MVSTER | | | 89.32 265 | 88.75 269 | 91.03 263 | 90.10 386 | 76.62 329 | 90.85 261 | 94.67 273 | 82.27 299 | 95.24 163 | 95.79 210 | 61.09 390 | 98.49 190 | 90.49 155 | 98.26 199 | 97.97 173 |
|
| SCA | | | 87.43 307 | 87.21 301 | 88.10 333 | 92.01 353 | 71.98 370 | 89.43 308 | 88.11 356 | 82.26 300 | 88.71 340 | 92.83 314 | 78.65 294 | 97.59 274 | 79.61 331 | 93.30 368 | 94.75 340 |
|
| testing11 | | | 81.98 362 | 80.52 369 | 86.38 359 | 92.69 333 | 67.13 390 | 85.79 375 | 84.80 389 | 82.16 301 | 81.19 407 | 85.41 399 | 45.24 412 | 96.88 316 | 74.14 371 | 93.24 369 | 95.14 323 |
|
| AUN-MVS | | | 90.05 252 | 88.30 277 | 95.32 90 | 96.09 224 | 90.52 81 | 92.42 208 | 92.05 325 | 82.08 302 | 88.45 345 | 92.86 313 | 65.76 366 | 98.69 166 | 88.91 206 | 96.07 300 | 96.75 259 |
|
| TR-MVS | | | 87.70 298 | 87.17 302 | 89.27 310 | 94.11 303 | 79.26 286 | 88.69 328 | 91.86 328 | 81.94 303 | 90.69 303 | 89.79 363 | 82.82 261 | 97.42 284 | 72.65 380 | 91.98 386 | 91.14 393 |
|
| mvsmamba | | | 90.24 243 | 89.43 256 | 92.64 202 | 95.52 262 | 82.36 236 | 96.64 30 | 92.29 317 | 81.77 304 | 92.14 278 | 96.28 184 | 70.59 344 | 99.10 99 | 84.44 280 | 95.22 325 | 96.47 269 |
|
| BH-w/o | | | 87.21 312 | 87.02 307 | 87.79 340 | 94.77 285 | 77.27 319 | 87.90 336 | 93.21 301 | 81.74 305 | 89.99 317 | 88.39 380 | 83.47 251 | 96.93 313 | 71.29 387 | 92.43 382 | 89.15 398 |
|
| fmvsm_l_conf0.5_n | | | 93.79 145 | 93.81 144 | 93.73 162 | 96.16 217 | 86.26 170 | 92.46 204 | 96.72 189 | 81.69 306 | 95.77 128 | 97.11 124 | 90.83 156 | 97.82 254 | 95.58 19 | 97.99 227 | 97.11 240 |
|
| ETVMVS | | | 79.85 378 | 77.94 385 | 85.59 364 | 92.97 327 | 66.20 398 | 86.13 371 | 80.99 406 | 81.41 307 | 83.52 390 | 83.89 405 | 41.81 422 | 94.98 367 | 56.47 415 | 94.25 349 | 95.61 313 |
|
| MIMVSNet | | | 87.13 316 | 86.54 317 | 88.89 316 | 96.05 227 | 76.11 334 | 94.39 135 | 88.51 350 | 81.37 308 | 88.27 348 | 96.75 150 | 72.38 336 | 95.52 351 | 65.71 404 | 95.47 316 | 95.03 328 |
|
| fmvsm_l_conf0.5_n_a | | | 93.59 150 | 93.63 153 | 93.49 176 | 96.10 223 | 85.66 186 | 92.32 213 | 96.57 198 | 81.32 309 | 95.63 137 | 97.14 121 | 90.19 171 | 97.73 267 | 95.37 28 | 98.03 223 | 97.07 241 |
|
| Syy-MVS | | | 84.81 335 | 84.93 329 | 84.42 377 | 91.71 361 | 63.36 410 | 85.89 373 | 81.49 402 | 81.03 310 | 85.13 374 | 81.64 411 | 77.44 306 | 95.00 364 | 85.94 259 | 94.12 353 | 94.91 334 |
|
| myMVS_eth3d | | | 79.62 379 | 78.26 382 | 83.72 383 | 91.71 361 | 61.25 414 | 85.89 373 | 81.49 402 | 81.03 310 | 85.13 374 | 81.64 411 | 32.12 425 | 95.00 364 | 71.17 391 | 94.12 353 | 94.91 334 |
|
| MAR-MVS | | | 90.32 241 | 88.87 268 | 94.66 119 | 94.82 281 | 91.85 61 | 94.22 142 | 94.75 269 | 80.91 312 | 87.52 360 | 88.07 382 | 86.63 223 | 97.87 250 | 76.67 353 | 96.21 299 | 94.25 351 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| xiu_mvs_v2_base | | | 89.00 274 | 89.19 258 | 88.46 327 | 94.86 280 | 74.63 346 | 86.97 351 | 95.60 236 | 80.88 313 | 87.83 354 | 88.62 377 | 91.04 152 | 98.81 141 | 82.51 297 | 94.38 344 | 91.93 387 |
|
| PS-MVSNAJ | | | 88.86 278 | 88.99 264 | 88.48 326 | 94.88 278 | 74.71 344 | 86.69 360 | 95.60 236 | 80.88 313 | 87.83 354 | 87.37 387 | 90.77 157 | 98.82 136 | 82.52 296 | 94.37 345 | 91.93 387 |
|
| TAMVS | | | 90.16 245 | 89.05 261 | 93.49 176 | 96.49 187 | 86.37 166 | 90.34 280 | 92.55 314 | 80.84 315 | 92.99 245 | 94.57 265 | 81.94 273 | 98.20 217 | 73.51 374 | 98.21 206 | 95.90 298 |
|
| PatchMatch-RL | | | 89.18 266 | 88.02 289 | 92.64 202 | 95.90 238 | 92.87 49 | 88.67 330 | 91.06 334 | 80.34 316 | 90.03 316 | 91.67 340 | 83.34 252 | 94.42 372 | 76.35 357 | 94.84 335 | 90.64 396 |
|
| MCST-MVS | | | 92.91 171 | 92.51 184 | 94.10 143 | 97.52 127 | 85.72 184 | 91.36 250 | 97.13 158 | 80.33 317 | 92.91 250 | 94.24 273 | 91.23 145 | 98.72 157 | 89.99 177 | 97.93 232 | 97.86 187 |
|
| PLC |  | 85.34 15 | 90.40 234 | 88.92 265 | 94.85 108 | 96.53 185 | 90.02 85 | 91.58 243 | 96.48 205 | 80.16 318 | 86.14 368 | 92.18 330 | 85.73 232 | 98.25 214 | 76.87 352 | 94.61 341 | 96.30 276 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| ttmdpeth | | | 86.91 321 | 86.57 315 | 87.91 337 | 89.68 390 | 74.24 353 | 91.49 245 | 87.09 365 | 79.84 319 | 89.46 327 | 97.86 65 | 65.42 368 | 91.04 394 | 81.57 308 | 96.74 287 | 98.44 130 |
|
| MVP-Stereo | | | 90.07 251 | 88.92 265 | 93.54 171 | 96.31 204 | 86.49 161 | 90.93 260 | 95.59 240 | 79.80 320 | 91.48 288 | 95.59 220 | 80.79 281 | 97.39 287 | 78.57 340 | 91.19 390 | 96.76 258 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| our_test_3 | | | 87.55 304 | 87.59 294 | 87.44 343 | 91.76 359 | 70.48 376 | 83.83 394 | 90.55 341 | 79.79 321 | 92.06 281 | 92.17 331 | 78.63 296 | 95.63 349 | 84.77 275 | 94.73 337 | 96.22 282 |
|
| CDS-MVSNet | | | 89.55 259 | 88.22 284 | 93.53 172 | 95.37 269 | 86.49 161 | 89.26 314 | 93.59 291 | 79.76 322 | 91.15 295 | 92.31 328 | 77.12 311 | 98.38 201 | 77.51 347 | 97.92 233 | 95.71 305 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| IB-MVS | | 77.21 19 | 83.11 350 | 81.05 362 | 89.29 309 | 91.15 370 | 75.85 337 | 85.66 377 | 86.00 374 | 79.70 323 | 82.02 402 | 86.61 390 | 48.26 407 | 98.39 198 | 77.84 343 | 92.22 383 | 93.63 366 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test_vis1_n_1920 | | | 89.45 262 | 89.85 249 | 88.28 329 | 93.59 316 | 76.71 328 | 90.67 268 | 97.78 106 | 79.67 324 | 90.30 311 | 96.11 195 | 76.62 319 | 92.17 389 | 90.31 163 | 93.57 362 | 95.96 293 |
|
| ET-MVSNet_ETH3D | | | 86.15 325 | 84.27 336 | 91.79 232 | 93.04 325 | 81.28 249 | 87.17 349 | 86.14 372 | 79.57 325 | 83.65 387 | 88.66 375 | 57.10 396 | 98.18 220 | 87.74 229 | 95.40 318 | 95.90 298 |
|
| WBMVS | | | 84.00 344 | 83.48 343 | 85.56 365 | 92.71 332 | 61.52 412 | 83.82 395 | 89.38 346 | 79.56 326 | 90.74 301 | 93.20 307 | 48.21 408 | 97.28 291 | 75.63 363 | 98.10 217 | 97.88 184 |
|
| PVSNet_BlendedMVS | | | 90.35 239 | 89.96 246 | 91.54 244 | 94.81 282 | 78.80 299 | 90.14 286 | 96.93 171 | 79.43 327 | 88.68 342 | 95.06 243 | 86.27 227 | 98.15 223 | 80.27 319 | 98.04 222 | 97.68 206 |
|
| train_agg | | | 92.71 181 | 91.83 202 | 95.35 86 | 96.45 190 | 89.46 93 | 90.60 270 | 96.92 173 | 79.37 328 | 90.49 305 | 94.39 269 | 91.20 147 | 98.88 127 | 88.66 212 | 98.43 182 | 97.72 203 |
|
| test_8 | | | | | | 96.37 194 | 89.14 103 | 90.51 273 | 96.89 176 | 79.37 328 | 90.42 307 | 94.36 271 | 91.20 147 | 98.82 136 | | | |
|
| N_pmnet | | | 88.90 277 | 87.25 300 | 93.83 157 | 94.40 298 | 93.81 39 | 84.73 384 | 87.09 365 | 79.36 330 | 93.26 234 | 92.43 326 | 79.29 290 | 91.68 391 | 77.50 348 | 97.22 265 | 96.00 291 |
|
| UnsupCasMVSNet_bld | | | 88.50 285 | 88.03 288 | 89.90 298 | 95.52 262 | 78.88 295 | 87.39 345 | 94.02 285 | 79.32 331 | 93.06 242 | 94.02 282 | 80.72 282 | 94.27 375 | 75.16 365 | 93.08 374 | 96.54 262 |
|
| ppachtmachnet_test | | | 88.61 284 | 88.64 270 | 88.50 325 | 91.76 359 | 70.99 375 | 84.59 387 | 92.98 302 | 79.30 332 | 92.38 269 | 93.53 299 | 79.57 287 | 97.45 282 | 86.50 252 | 97.17 267 | 97.07 241 |
|
| TEST9 | | | | | | 96.45 190 | 89.46 93 | 90.60 270 | 96.92 173 | 79.09 333 | 90.49 305 | 94.39 269 | 91.31 142 | 98.88 127 | | | |
|
| baseline2 | | | 83.38 349 | 81.54 359 | 88.90 315 | 91.38 367 | 72.84 365 | 88.78 325 | 81.22 404 | 78.97 334 | 79.82 410 | 87.56 384 | 61.73 388 | 97.80 256 | 74.30 370 | 90.05 396 | 96.05 290 |
|
| D2MVS | | | 89.93 254 | 89.60 255 | 90.92 268 | 94.03 307 | 78.40 302 | 88.69 328 | 94.85 263 | 78.96 335 | 93.08 241 | 95.09 241 | 74.57 327 | 96.94 311 | 88.19 217 | 98.96 122 | 97.41 223 |
|
| PatchmatchNet |  | | 85.22 331 | 84.64 331 | 86.98 347 | 89.51 394 | 69.83 383 | 90.52 272 | 87.34 364 | 78.87 336 | 87.22 363 | 92.74 318 | 66.91 358 | 96.53 324 | 81.77 304 | 86.88 404 | 94.58 344 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| PVSNet_Blended_VisFu | | | 91.63 208 | 91.20 216 | 92.94 191 | 97.73 112 | 83.95 211 | 92.14 221 | 97.46 130 | 78.85 337 | 92.35 271 | 94.98 245 | 84.16 247 | 99.08 100 | 86.36 254 | 96.77 284 | 95.79 302 |
|
| Patchmatch-RL test | | | 88.81 279 | 88.52 271 | 89.69 303 | 95.33 271 | 79.94 270 | 86.22 370 | 92.71 309 | 78.46 338 | 95.80 127 | 94.18 276 | 66.25 364 | 95.33 359 | 89.22 198 | 98.53 174 | 93.78 361 |
|
| WTY-MVS | | | 86.93 320 | 86.50 320 | 88.24 330 | 94.96 276 | 74.64 345 | 87.19 348 | 92.07 324 | 78.29 339 | 88.32 347 | 91.59 342 | 78.06 301 | 94.27 375 | 74.88 366 | 93.15 372 | 95.80 301 |
|
| pmmvs-eth3d | | | 91.54 211 | 90.73 230 | 93.99 145 | 95.76 248 | 87.86 131 | 90.83 262 | 93.98 287 | 78.23 340 | 94.02 208 | 96.22 189 | 82.62 265 | 96.83 318 | 86.57 248 | 98.33 193 | 97.29 233 |
|
| TAPA-MVS | | 88.58 10 | 92.49 187 | 91.75 204 | 94.73 113 | 96.50 186 | 89.69 89 | 92.91 186 | 97.68 111 | 78.02 341 | 92.79 253 | 94.10 278 | 90.85 155 | 97.96 240 | 84.76 276 | 98.16 210 | 96.54 262 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| MVStest1 | | | 84.79 336 | 84.06 338 | 86.98 347 | 77.73 424 | 74.76 343 | 91.08 258 | 85.63 379 | 77.70 342 | 96.86 76 | 97.97 55 | 41.05 423 | 88.24 408 | 92.22 111 | 96.28 297 | 97.94 176 |
|
| sss | | | 87.23 311 | 86.82 310 | 88.46 327 | 93.96 308 | 77.94 307 | 86.84 355 | 92.78 308 | 77.59 343 | 87.61 359 | 91.83 337 | 78.75 293 | 91.92 390 | 77.84 343 | 94.20 350 | 95.52 315 |
|
| CDPH-MVS | | | 92.67 182 | 91.83 202 | 95.18 99 | 96.94 154 | 88.46 121 | 90.70 267 | 97.07 162 | 77.38 344 | 92.34 273 | 95.08 242 | 92.67 114 | 98.88 127 | 85.74 260 | 98.57 170 | 98.20 148 |
|
| thisisatest0515 | | | 84.72 337 | 82.99 348 | 89.90 298 | 92.96 328 | 75.33 342 | 84.36 389 | 83.42 395 | 77.37 345 | 88.27 348 | 86.65 389 | 53.94 402 | 98.72 157 | 82.56 295 | 97.40 260 | 95.67 308 |
|
| UBG | | | 80.28 376 | 78.94 379 | 84.31 379 | 92.86 330 | 61.77 411 | 83.87 393 | 83.31 397 | 77.33 346 | 82.78 396 | 83.72 406 | 47.60 410 | 96.06 341 | 65.47 405 | 93.48 365 | 95.11 326 |
|
| EPMVS | | | 81.17 368 | 80.37 370 | 83.58 384 | 85.58 415 | 65.08 404 | 90.31 281 | 71.34 420 | 77.31 347 | 85.80 370 | 91.30 344 | 59.38 393 | 92.70 387 | 79.99 324 | 82.34 413 | 92.96 377 |
|
| tpm | | | 84.38 340 | 84.08 337 | 85.30 369 | 90.47 381 | 63.43 409 | 89.34 311 | 85.63 379 | 77.24 348 | 87.62 358 | 95.03 244 | 61.00 391 | 97.30 290 | 79.26 335 | 91.09 392 | 95.16 321 |
|
| OpenMVS_ROB |  | 85.12 16 | 89.52 261 | 89.05 261 | 90.92 268 | 94.58 294 | 81.21 252 | 91.10 256 | 93.41 297 | 77.03 349 | 93.41 224 | 93.99 284 | 83.23 254 | 97.80 256 | 79.93 327 | 94.80 336 | 93.74 363 |
|
| test_fmvs3 | | | 92.42 189 | 92.40 188 | 92.46 214 | 93.80 314 | 87.28 139 | 93.86 156 | 97.05 163 | 76.86 350 | 96.25 104 | 98.66 21 | 82.87 259 | 91.26 393 | 95.44 24 | 96.83 281 | 98.82 82 |
|
| 原ACMM1 | | | | | 92.87 194 | 96.91 157 | 84.22 205 | | 97.01 165 | 76.84 351 | 89.64 325 | 94.46 267 | 88.00 197 | 98.70 164 | 81.53 309 | 98.01 226 | 95.70 307 |
|
| PAPR | | | 87.65 301 | 86.77 312 | 90.27 287 | 92.85 331 | 77.38 317 | 88.56 331 | 96.23 215 | 76.82 352 | 84.98 377 | 89.75 365 | 86.08 229 | 97.16 301 | 72.33 381 | 93.35 367 | 96.26 280 |
|
| mvsany_test3 | | | 89.11 269 | 88.21 285 | 91.83 230 | 91.30 369 | 90.25 83 | 88.09 335 | 78.76 412 | 76.37 353 | 96.43 93 | 98.39 36 | 83.79 250 | 90.43 399 | 86.57 248 | 94.20 350 | 94.80 337 |
|
| WB-MVSnew | | | 84.20 342 | 83.89 341 | 85.16 371 | 91.62 364 | 66.15 399 | 88.44 333 | 81.00 405 | 76.23 354 | 87.98 352 | 87.77 383 | 84.98 242 | 93.35 383 | 62.85 410 | 94.10 355 | 95.98 292 |
|
| miper_enhance_ethall | | | 88.42 287 | 87.87 290 | 90.07 293 | 88.67 401 | 75.52 340 | 85.10 381 | 95.59 240 | 75.68 355 | 92.49 262 | 89.45 369 | 78.96 291 | 97.88 247 | 87.86 228 | 97.02 272 | 96.81 255 |
|
| HY-MVS | | 82.50 18 | 86.81 322 | 85.93 324 | 89.47 304 | 93.63 315 | 77.93 308 | 94.02 150 | 91.58 332 | 75.68 355 | 83.64 388 | 93.64 293 | 77.40 307 | 97.42 284 | 71.70 385 | 92.07 385 | 93.05 376 |
|
| tpmrst | | | 82.85 355 | 82.93 349 | 82.64 387 | 87.65 404 | 58.99 418 | 90.14 286 | 87.90 359 | 75.54 357 | 83.93 386 | 91.63 341 | 66.79 361 | 95.36 357 | 81.21 313 | 81.54 414 | 93.57 370 |
|
| MS-PatchMatch | | | 88.05 293 | 87.75 291 | 88.95 314 | 93.28 319 | 77.93 308 | 87.88 337 | 92.49 315 | 75.42 358 | 92.57 261 | 93.59 297 | 80.44 283 | 94.24 377 | 81.28 311 | 92.75 377 | 94.69 343 |
|
| UWE-MVS | | | 80.29 375 | 79.10 376 | 83.87 382 | 91.97 355 | 59.56 416 | 86.50 367 | 77.43 417 | 75.40 359 | 87.79 356 | 88.10 381 | 44.08 416 | 96.90 315 | 64.23 406 | 96.36 295 | 95.14 323 |
|
| DPM-MVS | | | 89.35 264 | 88.40 274 | 92.18 222 | 96.13 222 | 84.20 206 | 86.96 352 | 96.15 221 | 75.40 359 | 87.36 361 | 91.55 343 | 83.30 253 | 98.01 234 | 82.17 302 | 96.62 289 | 94.32 350 |
|
| PC_three_1452 | | | | | | | | | | 75.31 361 | 95.87 125 | 95.75 215 | 92.93 106 | 96.34 336 | 87.18 238 | 98.68 159 | 98.04 161 |
|
| test_cas_vis1_n_1920 | | | 88.25 290 | 88.27 280 | 88.20 331 | 92.19 347 | 78.92 293 | 89.45 307 | 95.44 246 | 75.29 362 | 93.23 237 | 95.65 219 | 71.58 340 | 90.23 400 | 88.05 222 | 93.55 364 | 95.44 316 |
|
| PVSNet_Blended | | | 88.74 281 | 88.16 287 | 90.46 283 | 94.81 282 | 78.80 299 | 86.64 361 | 96.93 171 | 74.67 363 | 88.68 342 | 89.18 373 | 86.27 227 | 98.15 223 | 80.27 319 | 96.00 302 | 94.44 347 |
|
| pmmvs4 | | | 88.95 276 | 87.70 293 | 92.70 199 | 94.30 299 | 85.60 187 | 87.22 347 | 92.16 321 | 74.62 364 | 89.75 324 | 94.19 275 | 77.97 302 | 96.41 330 | 82.71 292 | 96.36 295 | 96.09 287 |
|
| test_fmvs2 | | | 90.62 229 | 90.40 238 | 91.29 253 | 91.93 356 | 85.46 190 | 92.70 193 | 96.48 205 | 74.44 365 | 94.91 180 | 97.59 79 | 75.52 324 | 90.57 396 | 93.44 73 | 96.56 290 | 97.84 190 |
|
| 1314 | | | 86.46 324 | 86.33 321 | 86.87 351 | 91.65 363 | 74.54 347 | 91.94 229 | 94.10 282 | 74.28 366 | 84.78 379 | 87.33 388 | 83.03 257 | 95.00 364 | 78.72 338 | 91.16 391 | 91.06 394 |
|
| Anonymous20231206 | | | 88.77 280 | 88.29 278 | 90.20 291 | 96.31 204 | 78.81 298 | 89.56 304 | 93.49 295 | 74.26 367 | 92.38 269 | 95.58 223 | 82.21 267 | 95.43 356 | 72.07 382 | 98.75 151 | 96.34 274 |
|
| MDTV_nov1_ep13 | | | | 83.88 342 | | 89.42 395 | 61.52 412 | 88.74 327 | 87.41 362 | 73.99 368 | 84.96 378 | 94.01 283 | 65.25 370 | 95.53 350 | 78.02 341 | 93.16 371 | |
|
| test-mter | | | 81.21 367 | 80.01 374 | 84.79 374 | 89.68 390 | 66.86 393 | 83.08 397 | 84.52 390 | 73.85 369 | 82.85 394 | 84.78 402 | 43.66 417 | 93.49 381 | 82.85 290 | 94.86 333 | 94.03 355 |
|
| pmmvs5 | | | 87.87 295 | 87.14 303 | 90.07 293 | 93.26 321 | 76.97 325 | 88.89 321 | 92.18 319 | 73.71 370 | 88.36 346 | 93.89 288 | 76.86 318 | 96.73 321 | 80.32 318 | 96.81 282 | 96.51 264 |
|
| 1112_ss | | | 88.42 287 | 87.41 296 | 91.45 246 | 96.69 170 | 80.99 254 | 89.72 300 | 96.72 189 | 73.37 371 | 87.00 364 | 90.69 355 | 77.38 308 | 98.20 217 | 81.38 310 | 93.72 360 | 95.15 322 |
|
| test_vis3_rt | | | 90.40 234 | 90.03 245 | 91.52 245 | 92.58 334 | 88.95 106 | 90.38 278 | 97.72 110 | 73.30 372 | 97.79 33 | 97.51 90 | 77.05 312 | 87.10 410 | 89.03 203 | 94.89 332 | 98.50 124 |
|
| USDC | | | 89.02 271 | 89.08 260 | 88.84 317 | 95.07 275 | 74.50 349 | 88.97 319 | 96.39 208 | 73.21 373 | 93.27 233 | 96.28 184 | 82.16 269 | 96.39 331 | 77.55 346 | 98.80 144 | 95.62 312 |
|
| CR-MVSNet | | | 87.89 294 | 87.12 305 | 90.22 289 | 91.01 372 | 78.93 291 | 92.52 200 | 92.81 305 | 73.08 374 | 89.10 330 | 96.93 137 | 67.11 356 | 97.64 273 | 88.80 208 | 92.70 378 | 94.08 352 |
|
| test_vis1_n | | | 89.01 273 | 89.01 263 | 89.03 313 | 92.57 335 | 82.46 235 | 92.62 197 | 96.06 222 | 73.02 375 | 90.40 308 | 95.77 214 | 74.86 326 | 89.68 402 | 90.78 148 | 94.98 330 | 94.95 331 |
|
| dp | | | 79.28 380 | 78.62 380 | 81.24 392 | 85.97 414 | 56.45 419 | 86.91 353 | 85.26 386 | 72.97 376 | 81.45 406 | 89.17 374 | 56.01 400 | 95.45 355 | 73.19 377 | 76.68 416 | 91.82 390 |
|
| IU-MVS | | | | | | 98.51 49 | 86.66 158 | | 96.83 181 | 72.74 377 | 95.83 126 | | | | 93.00 92 | 99.29 75 | 98.64 111 |
|
| ADS-MVSNet2 | | | 84.01 343 | 82.20 355 | 89.41 306 | 89.04 397 | 76.37 333 | 87.57 339 | 90.98 336 | 72.71 378 | 84.46 380 | 92.45 323 | 68.08 352 | 96.48 327 | 70.58 393 | 83.97 408 | 95.38 317 |
|
| ADS-MVSNet | | | 82.25 357 | 81.55 358 | 84.34 378 | 89.04 397 | 65.30 401 | 87.57 339 | 85.13 388 | 72.71 378 | 84.46 380 | 92.45 323 | 68.08 352 | 92.33 388 | 70.58 393 | 83.97 408 | 95.38 317 |
|
| jason | | | 89.17 267 | 88.32 276 | 91.70 237 | 95.73 249 | 80.07 264 | 88.10 334 | 93.22 299 | 71.98 380 | 90.09 313 | 92.79 316 | 78.53 297 | 98.56 183 | 87.43 234 | 97.06 270 | 96.46 270 |
| jason: jason. |
| dongtai | | | 53.72 386 | 53.79 389 | 53.51 403 | 79.69 423 | 36.70 427 | 77.18 409 | 32.53 429 | 71.69 381 | 68.63 419 | 60.79 418 | 26.65 427 | 73.11 419 | 30.67 422 | 36.29 421 | 50.73 417 |
|
| testdata | | | | | 91.03 263 | 96.87 160 | 82.01 239 | | 94.28 279 | 71.55 382 | 92.46 264 | 95.42 229 | 85.65 234 | 97.38 289 | 82.64 293 | 97.27 263 | 93.70 364 |
|
| PVSNet | | 76.22 20 | 82.89 354 | 82.37 353 | 84.48 376 | 93.96 308 | 64.38 407 | 78.60 408 | 88.61 349 | 71.50 383 | 84.43 382 | 86.36 393 | 74.27 328 | 94.60 369 | 69.87 395 | 93.69 361 | 94.46 346 |
|
| gm-plane-assit | | | | | | 87.08 410 | 59.33 417 | | | 71.22 384 | | 83.58 407 | | 97.20 296 | 73.95 372 | | |
|
| test_fmvs1_n | | | 88.73 282 | 88.38 275 | 89.76 300 | 92.06 351 | 82.53 233 | 92.30 216 | 96.59 197 | 71.14 385 | 92.58 260 | 95.41 232 | 68.55 350 | 89.57 404 | 91.12 140 | 95.66 311 | 97.18 239 |
|
| lupinMVS | | | 88.34 289 | 87.31 297 | 91.45 246 | 94.74 287 | 80.06 265 | 87.23 346 | 92.27 318 | 71.10 386 | 88.83 333 | 91.15 346 | 77.02 313 | 98.53 187 | 86.67 246 | 96.75 285 | 95.76 303 |
|
| cascas | | | 87.02 319 | 86.28 322 | 89.25 311 | 91.56 366 | 76.45 331 | 84.33 390 | 96.78 184 | 71.01 387 | 86.89 365 | 85.91 395 | 81.35 276 | 96.94 311 | 83.09 289 | 95.60 312 | 94.35 349 |
|
| new_pmnet | | | 81.22 366 | 81.01 364 | 81.86 389 | 90.92 374 | 70.15 378 | 84.03 391 | 80.25 410 | 70.83 388 | 85.97 369 | 89.78 364 | 67.93 355 | 84.65 415 | 67.44 400 | 91.90 387 | 90.78 395 |
|
| 无先验 | | | | | | | | 89.94 292 | 95.75 232 | 70.81 389 | | | | 98.59 180 | 81.17 314 | | 94.81 336 |
|
| mvsany_test1 | | | 83.91 345 | 82.93 349 | 86.84 352 | 86.18 413 | 85.93 178 | 81.11 404 | 75.03 419 | 70.80 390 | 88.57 344 | 94.63 261 | 83.08 256 | 87.38 409 | 80.39 317 | 86.57 405 | 87.21 405 |
|
| test_fmvs1 | | | 87.59 303 | 87.27 299 | 88.54 323 | 88.32 402 | 81.26 250 | 90.43 277 | 95.72 233 | 70.55 391 | 91.70 285 | 94.63 261 | 68.13 351 | 89.42 405 | 90.59 152 | 95.34 321 | 94.94 333 |
|
| CostFormer | | | 83.09 351 | 82.21 354 | 85.73 363 | 89.27 396 | 67.01 391 | 90.35 279 | 86.47 370 | 70.42 392 | 83.52 390 | 93.23 306 | 61.18 389 | 96.85 317 | 77.21 350 | 88.26 402 | 93.34 372 |
|
| TESTMET0.1,1 | | | 79.09 381 | 78.04 383 | 82.25 388 | 87.52 406 | 64.03 408 | 83.08 397 | 80.62 408 | 70.28 393 | 80.16 409 | 83.22 408 | 44.13 415 | 90.56 397 | 79.95 325 | 93.36 366 | 92.15 385 |
|
| CMPMVS |  | 68.83 22 | 87.28 310 | 85.67 326 | 92.09 225 | 88.77 400 | 85.42 191 | 90.31 281 | 94.38 276 | 70.02 394 | 88.00 351 | 93.30 303 | 73.78 331 | 94.03 378 | 75.96 361 | 96.54 291 | 96.83 254 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| test_f | | | 86.65 323 | 87.13 304 | 85.19 370 | 90.28 384 | 86.11 174 | 86.52 366 | 91.66 330 | 69.76 395 | 95.73 134 | 97.21 116 | 69.51 348 | 81.28 417 | 89.15 200 | 94.40 343 | 88.17 403 |
|
| Test_1112_low_res | | | 87.50 306 | 86.58 314 | 90.25 288 | 96.80 167 | 77.75 312 | 87.53 343 | 96.25 213 | 69.73 396 | 86.47 366 | 93.61 296 | 75.67 323 | 97.88 247 | 79.95 325 | 93.20 370 | 95.11 326 |
|
| PAPM | | | 81.91 363 | 80.11 373 | 87.31 344 | 93.87 311 | 72.32 369 | 84.02 392 | 93.22 299 | 69.47 397 | 76.13 415 | 89.84 360 | 72.15 337 | 97.23 294 | 53.27 417 | 89.02 399 | 92.37 384 |
|
| MVS-HIRNet | | | 78.83 382 | 80.60 368 | 73.51 400 | 93.07 323 | 47.37 424 | 87.10 350 | 78.00 415 | 68.94 398 | 77.53 413 | 97.26 109 | 71.45 341 | 94.62 368 | 63.28 409 | 88.74 400 | 78.55 415 |
|
| 旧先验2 | | | | | | | | 90.00 291 | | 68.65 399 | 92.71 256 | | | 96.52 325 | 85.15 267 | | |
|
| PCF-MVS | | 84.52 17 | 89.12 268 | 87.71 292 | 93.34 179 | 96.06 226 | 85.84 181 | 86.58 365 | 97.31 143 | 68.46 400 | 93.61 219 | 93.89 288 | 87.51 205 | 98.52 188 | 67.85 399 | 98.11 215 | 95.66 309 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| 新几何1 | | | | | 93.17 184 | 97.16 146 | 87.29 138 | | 94.43 275 | 67.95 401 | 91.29 291 | 94.94 247 | 86.97 216 | 98.23 215 | 81.06 315 | 97.75 240 | 93.98 357 |
|
| MVE |  | 59.87 23 | 73.86 385 | 72.65 388 | 77.47 397 | 87.00 411 | 74.35 350 | 61.37 417 | 60.93 423 | 67.27 402 | 69.69 418 | 86.49 392 | 81.24 280 | 72.33 420 | 56.45 416 | 83.45 410 | 85.74 408 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| MDTV_nov1_ep13_2view | | | | | | | 42.48 426 | 88.45 332 | | 67.22 403 | 83.56 389 | | 66.80 359 | | 72.86 379 | | 94.06 354 |
|
| test_vis1_rt | | | 85.58 329 | 84.58 332 | 88.60 322 | 87.97 403 | 86.76 153 | 85.45 379 | 93.59 291 | 66.43 404 | 87.64 357 | 89.20 372 | 79.33 289 | 85.38 414 | 81.59 307 | 89.98 397 | 93.66 365 |
|
| CHOSEN 280x420 | | | 80.04 377 | 77.97 384 | 86.23 361 | 90.13 385 | 74.53 348 | 72.87 413 | 89.59 345 | 66.38 405 | 76.29 414 | 85.32 400 | 56.96 397 | 95.36 357 | 69.49 396 | 94.72 338 | 88.79 401 |
|
| HyFIR lowres test | | | 87.19 314 | 85.51 327 | 92.24 217 | 97.12 149 | 80.51 258 | 85.03 382 | 96.06 222 | 66.11 406 | 91.66 286 | 92.98 312 | 70.12 346 | 99.14 93 | 75.29 364 | 95.23 324 | 97.07 241 |
|
| 114514_t | | | 90.51 230 | 89.80 250 | 92.63 205 | 98.00 92 | 82.24 238 | 93.40 172 | 97.29 146 | 65.84 407 | 89.40 328 | 94.80 254 | 86.99 215 | 98.75 152 | 83.88 284 | 98.61 165 | 96.89 251 |
|
| tpm2 | | | 81.46 364 | 80.35 371 | 84.80 373 | 89.90 387 | 65.14 403 | 90.44 274 | 85.36 383 | 65.82 408 | 82.05 401 | 92.44 325 | 57.94 395 | 96.69 322 | 70.71 392 | 88.49 401 | 92.56 382 |
|
| test222 | | | | | | 96.95 153 | 85.27 193 | 88.83 324 | 93.61 290 | 65.09 409 | 90.74 301 | 94.85 250 | 84.62 245 | | | 97.36 261 | 93.91 358 |
|
| CHOSEN 1792x2688 | | | 87.19 314 | 85.92 325 | 91.00 266 | 97.13 148 | 79.41 283 | 84.51 388 | 95.60 236 | 64.14 410 | 90.07 315 | 94.81 252 | 78.26 300 | 97.14 302 | 73.34 375 | 95.38 320 | 96.46 270 |
|
| pmmvs3 | | | 80.83 370 | 78.96 378 | 86.45 356 | 87.23 408 | 77.48 316 | 84.87 383 | 82.31 399 | 63.83 411 | 85.03 376 | 89.50 368 | 49.66 406 | 93.10 384 | 73.12 378 | 95.10 327 | 88.78 402 |
|
| PVSNet_0 | | 70.34 21 | 74.58 384 | 72.96 387 | 79.47 395 | 90.63 377 | 66.24 397 | 73.26 411 | 83.40 396 | 63.67 412 | 78.02 412 | 78.35 415 | 72.53 334 | 89.59 403 | 56.68 414 | 60.05 419 | 82.57 413 |
|
| tpm cat1 | | | 80.61 372 | 79.46 375 | 84.07 381 | 88.78 399 | 65.06 405 | 89.26 314 | 88.23 353 | 62.27 413 | 81.90 403 | 89.66 367 | 62.70 386 | 95.29 360 | 71.72 384 | 80.60 415 | 91.86 389 |
|
| PMMVS | | | 83.00 352 | 81.11 361 | 88.66 321 | 83.81 420 | 86.44 164 | 82.24 401 | 85.65 378 | 61.75 414 | 82.07 400 | 85.64 398 | 79.75 286 | 91.59 392 | 75.99 360 | 93.09 373 | 87.94 404 |
|
| MVS | | | 84.98 334 | 84.30 335 | 87.01 346 | 91.03 371 | 77.69 314 | 91.94 229 | 94.16 281 | 59.36 415 | 84.23 384 | 87.50 386 | 85.66 233 | 96.80 319 | 71.79 383 | 93.05 375 | 86.54 407 |
|
| EU-MVSNet | | | 87.39 308 | 86.71 313 | 89.44 305 | 93.40 318 | 76.11 334 | 94.93 117 | 90.00 343 | 57.17 416 | 95.71 135 | 97.37 97 | 64.77 373 | 97.68 270 | 92.67 101 | 94.37 345 | 94.52 345 |
|
| CVMVSNet | | | 85.16 332 | 84.72 330 | 86.48 355 | 92.12 349 | 70.19 377 | 92.32 213 | 88.17 355 | 56.15 417 | 90.64 304 | 95.85 205 | 67.97 354 | 96.69 322 | 88.78 209 | 90.52 394 | 92.56 382 |
|
| DSMNet-mixed | | | 82.21 358 | 81.56 357 | 84.16 380 | 89.57 393 | 70.00 382 | 90.65 269 | 77.66 416 | 54.99 418 | 83.30 392 | 97.57 80 | 77.89 303 | 90.50 398 | 66.86 402 | 95.54 314 | 91.97 386 |
|
| kuosan | | | 43.63 388 | 44.25 392 | 41.78 404 | 66.04 426 | 34.37 428 | 75.56 410 | 32.62 428 | 53.25 419 | 50.46 422 | 51.18 419 | 25.28 428 | 49.13 422 | 13.44 423 | 30.41 422 | 41.84 419 |
|
| DeepMVS_CX |  | | | | 53.83 402 | 70.38 425 | 64.56 406 | | 48.52 426 | 33.01 420 | 65.50 420 | 74.21 417 | 56.19 399 | 46.64 423 | 38.45 421 | 70.07 417 | 50.30 418 |
|
| test_method | | | 50.44 387 | 48.94 390 | 54.93 401 | 39.68 427 | 12.38 430 | 28.59 418 | 90.09 342 | 6.82 421 | 41.10 423 | 78.41 414 | 54.41 401 | 70.69 421 | 50.12 418 | 51.26 420 | 81.72 414 |
|
| tmp_tt | | | 37.97 389 | 44.33 391 | 18.88 405 | 11.80 428 | 21.54 429 | 63.51 416 | 45.66 427 | 4.23 422 | 51.34 421 | 50.48 420 | 59.08 394 | 22.11 424 | 44.50 420 | 68.35 418 | 13.00 420 |
|
| EGC-MVSNET | | | 80.97 369 | 75.73 386 | 96.67 46 | 98.85 23 | 94.55 19 | 96.83 22 | 96.60 195 | 2.44 423 | 5.32 424 | 98.25 40 | 92.24 120 | 98.02 233 | 91.85 122 | 99.21 90 | 97.45 220 |
|
| test123 | | | 9.49 391 | 12.01 394 | 1.91 406 | 2.87 429 | 1.30 431 | 82.38 400 | 1.34 431 | 1.36 424 | 2.84 425 | 6.56 423 | 2.45 429 | 0.97 425 | 2.73 424 | 5.56 423 | 3.47 421 |
|
| testmvs | | | 9.02 392 | 11.42 395 | 1.81 407 | 2.77 430 | 1.13 432 | 79.44 407 | 1.90 430 | 1.18 425 | 2.65 426 | 6.80 422 | 1.95 430 | 0.87 426 | 2.62 425 | 3.45 424 | 3.44 422 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| cdsmvs_eth3d_5k | | | 23.35 390 | 31.13 393 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 95.58 242 | 0.00 426 | 0.00 427 | 91.15 346 | 93.43 89 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 7.56 393 | 10.09 396 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 90.77 157 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| ab-mvs-re | | | 7.56 393 | 10.08 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 90.69 355 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| WAC-MVS | | | | | | | 61.25 414 | | | | | | | | 74.55 367 | | |
|
| MSC_two_6792asdad | | | | | 95.90 67 | 96.54 182 | 89.57 91 | | 96.87 178 | | | | | 99.41 42 | 94.06 49 | 99.30 72 | 98.72 96 |
|
| No_MVS | | | | | 95.90 67 | 96.54 182 | 89.57 91 | | 96.87 178 | | | | | 99.41 42 | 94.06 49 | 99.30 72 | 98.72 96 |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 95.15 100 | 96.84 163 | 89.43 95 | 95.21 104 | | | | 95.66 218 | 93.12 100 | 98.06 228 | 86.28 256 | 98.61 165 | 97.95 174 |
|
| test_0728_SECOND | | | | | 94.88 107 | 98.55 44 | 86.72 155 | 95.20 106 | 98.22 44 | | | | | 99.38 58 | 93.44 73 | 99.31 70 | 98.53 122 |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.75 340 |
|
| test_part2 | | | | | | 98.21 76 | 89.41 96 | | | | 96.72 83 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 66.64 362 | | | | 94.75 340 |
|
| sam_mvs | | | | | | | | | | | | | 66.41 363 | | | | |
|
| ambc | | | | | 92.98 187 | 96.88 159 | 83.01 228 | 95.92 72 | 96.38 209 | | 96.41 94 | 97.48 92 | 88.26 191 | 97.80 256 | 89.96 178 | 98.93 125 | 98.12 156 |
|
| MTGPA |  | | | | | | | | 97.62 115 | | | | | | | | |
|
| test_post1 | | | | | | | | 90.21 283 | | | | 5.85 425 | 65.36 369 | 96.00 343 | 79.61 331 | | |
|
| test_post | | | | | | | | | | | | 6.07 424 | 65.74 367 | 95.84 347 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 91.71 339 | 66.22 365 | 97.59 274 | | | |
|
| GG-mvs-BLEND | | | | | 83.24 386 | 85.06 417 | 71.03 374 | 94.99 116 | 65.55 422 | | 74.09 416 | 75.51 416 | 44.57 414 | 94.46 371 | 59.57 413 | 87.54 403 | 84.24 409 |
|
| MTMP | | | | | | | | 94.82 119 | 54.62 425 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 88.16 219 | 98.40 183 | 97.83 191 |
|
| agg_prior2 | | | | | | | | | | | | | | | 87.06 241 | 98.36 192 | 97.98 170 |
|
| agg_prior | | | | | | 96.20 214 | 88.89 108 | | 96.88 177 | | 90.21 312 | | | 98.78 148 | | | |
|
| test_prior4 | | | | | | | 89.91 86 | 90.74 265 | | | | | | | | | |
|
| test_prior | | | | | 94.61 120 | 95.95 235 | 87.23 140 | | 97.36 139 | | | | | 98.68 168 | | | 97.93 177 |
|
| 新几何2 | | | | | | | | 90.02 290 | | | | | | | | | |
|
| 旧先验1 | | | | | | 96.20 214 | 84.17 207 | | 94.82 265 | | | 95.57 224 | 89.57 181 | | | 97.89 234 | 96.32 275 |
|
| 原ACMM2 | | | | | | | | 89.34 311 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 98.03 230 | 80.24 321 | | |
|
| segment_acmp | | | | | | | | | | | | | 92.14 124 | | | | |
|
| test12 | | | | | 94.43 133 | 95.95 235 | 86.75 154 | | 96.24 214 | | 89.76 323 | | 89.79 180 | 98.79 145 | | 97.95 231 | 97.75 201 |
|
| plane_prior7 | | | | | | 97.71 114 | 88.68 111 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.21 144 | 88.23 124 | | | | | | 86.93 217 | | | | |
|
| plane_prior5 | | | | | | | | | 97.81 101 | | | | | 98.95 120 | 89.26 196 | 98.51 177 | 98.60 116 |
|
| plane_prior4 | | | | | | | | | | | | 95.59 220 | | | | | |
|
| plane_prior1 | | | | | | 97.38 134 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 92.13 323 | | | | | | | | |
|
| lessismore_v0 | | | | | 93.87 154 | 98.05 86 | 83.77 213 | | 80.32 409 | | 97.13 62 | 97.91 62 | 77.49 305 | 99.11 98 | 92.62 102 | 98.08 219 | 98.74 94 |
|
| test11 | | | | | | | | | 96.65 193 | | | | | | | | |
|
| door | | | | | | | | | 91.26 333 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 84.89 196 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 86.55 250 | | |
|
| HQP4-MVS | | | | | | | | | | | 88.81 335 | | | 98.61 176 | | | 98.15 153 |
|
| HQP3-MVS | | | | | | | | | 97.31 143 | | | | | | | 97.73 241 | |
|
| HQP2-MVS | | | | | | | | | | | | | 84.76 243 | | | | |
|
| NP-MVS | | | | | | 96.82 165 | 87.10 144 | | | | | 93.40 301 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 141 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.25 83 | |
|
| Test By Simon | | | | | | | | | | | | | 90.61 163 | | | | |
|