This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11598.16 298.94 299.33 297.84 499.08 9390.73 14199.73 1399.59 13
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19596.51 3597.94 8698.14 398.67 1298.32 3495.04 4899.69 293.27 7699.82 799.62 10
PEN-MVS96.69 2097.39 894.61 11799.16 484.50 19696.54 3498.05 6798.06 498.64 1398.25 3795.01 5199.65 392.95 8899.83 599.68 4
PS-CasMVS96.69 2097.43 594.49 12799.13 684.09 20696.61 3297.97 8097.91 598.64 1398.13 4195.24 3899.65 393.39 7199.84 399.72 2
FOURS199.21 394.68 1298.45 498.81 997.73 698.27 20
CP-MVSNet96.19 4596.80 1694.38 13298.99 1683.82 20996.31 5097.53 11797.60 798.34 1997.52 8091.98 12499.63 693.08 8499.81 899.70 3
Anonymous2023121196.60 2597.13 1295.00 10097.46 12986.35 16597.11 1998.24 3597.58 898.72 898.97 793.15 9699.15 8493.18 7999.74 1299.50 17
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16196.78 2798.08 6097.42 998.48 1697.86 6191.76 13099.63 694.23 4199.84 399.66 6
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 997.41 1097.28 5698.46 3094.62 6498.84 12894.64 3399.53 3998.99 56
LS3D96.11 4795.83 6396.95 3694.75 27894.20 1997.34 1397.98 7897.31 1195.32 15296.77 13893.08 9999.20 8091.79 11598.16 20697.44 212
VDDNet94.03 13394.27 12993.31 17498.87 2182.36 23095.51 8691.78 32097.19 1296.32 9698.60 2284.24 24098.75 14687.09 23098.83 13798.81 84
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
UA-Net97.35 497.24 1197.69 498.22 7393.87 3098.42 698.19 4296.95 1495.46 14499.23 493.45 8499.57 1495.34 2999.89 299.63 9
DP-MVS95.62 6495.84 6294.97 10197.16 14388.62 11194.54 12497.64 10696.94 1596.58 8897.32 10093.07 10098.72 15190.45 14798.84 13297.57 202
test_040295.73 6196.22 4094.26 13598.19 7585.77 17993.24 16797.24 14296.88 1697.69 3397.77 6494.12 7599.13 8891.54 12599.29 7497.88 175
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9390.91 7096.42 4297.95 8396.69 1791.78 27398.85 1291.77 12895.49 34391.72 11799.08 10295.02 315
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6294.31 1796.79 2698.32 2596.69 1796.86 7597.56 7595.48 2798.77 14590.11 16499.44 5098.31 134
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
Anonymous2024052995.50 7095.83 6394.50 12597.33 13585.93 17495.19 9996.77 17896.64 1997.61 3898.05 4593.23 9398.79 13988.60 20399.04 11198.78 87
v7n96.82 997.31 1095.33 8698.54 4786.81 14996.83 2398.07 6396.59 2098.46 1798.43 3292.91 10499.52 1996.25 1299.76 1099.65 8
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27196.48 2195.38 14793.63 28194.89 5797.94 23695.38 2796.92 27195.17 307
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22396.47 2293.40 21997.46 8695.31 3595.47 34486.18 24798.78 14389.11 386
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
gg-mvs-nofinetune82.10 34981.02 35185.34 35687.46 39571.04 36494.74 11267.56 40896.44 2379.43 39898.99 645.24 40196.15 32867.18 38992.17 37288.85 387
ANet_high94.83 10096.28 3790.47 27496.65 16973.16 35294.33 12998.74 1296.39 2498.09 2598.93 893.37 8898.70 15890.38 15099.68 1899.53 15
IS-MVSNet94.49 11394.35 12594.92 10298.25 7286.46 16097.13 1894.31 27096.24 2596.28 10196.36 16982.88 25299.35 6088.19 20799.52 4198.96 64
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16290.79 7396.30 5497.82 9396.13 2694.74 18297.23 10591.33 13799.16 8393.25 7798.30 19298.46 125
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8896.10 2798.14 2499.28 397.94 398.21 21191.38 12999.69 1499.42 19
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4789.06 10195.65 7898.61 1396.10 2798.16 2397.52 8096.90 798.62 16990.30 15599.60 2798.72 96
K. test v393.37 15193.27 16193.66 15998.05 8482.62 22694.35 12786.62 35896.05 2997.51 4398.85 1276.59 31599.65 393.21 7898.20 20498.73 95
LFMVS91.33 20791.16 21291.82 22496.27 20179.36 27795.01 10585.61 36996.04 3094.82 17897.06 12072.03 33398.46 19084.96 26598.70 15297.65 198
SSC-MVS90.16 23692.96 16481.78 37797.88 9848.48 40990.75 25287.69 35096.02 3196.70 8297.63 7185.60 23197.80 25085.73 25198.60 16399.06 50
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7087.69 13193.75 15197.86 8895.96 3297.48 4697.14 11395.33 3499.44 2990.79 13999.76 1099.38 22
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12294.85 5899.42 3393.49 6198.84 13298.00 159
RE-MVS-def96.66 1998.07 8295.27 996.37 4498.12 5495.66 3397.00 6897.03 12295.40 2993.49 6198.84 13298.00 159
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9493.82 3396.31 5098.25 3295.51 3596.99 7097.05 12195.63 2399.39 4993.31 7398.88 12798.75 91
WB-MVS89.44 25492.15 18681.32 37897.73 10948.22 41089.73 28787.98 34895.24 3696.05 11396.99 12685.18 23396.95 30182.45 28897.97 22398.78 87
SR-MVS96.70 1996.42 2997.54 1198.05 8494.69 1196.13 5998.07 6395.17 3796.82 7796.73 14595.09 4799.43 3292.99 8798.71 15098.50 121
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2394.96 3897.30 5497.93 5496.05 1697.90 23789.32 18099.23 8698.19 142
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11488.59 11392.26 20997.84 9194.91 4096.80 7895.78 20190.42 16299.41 3991.60 12199.58 3499.29 29
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 4983.19 21895.93 6794.84 25794.86 4198.49 1598.74 1681.45 26999.60 994.69 3299.39 5899.15 39
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18996.33 4798.30 2894.66 4298.72 898.30 3597.51 598.00 23094.87 3099.59 2998.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19196.49 15694.56 6699.39 4993.57 5799.05 10698.93 68
X-MVStestdata90.70 21788.45 26397.44 1698.56 4293.99 2696.50 3697.95 8394.58 4394.38 19126.89 40694.56 6699.39 4993.57 5799.05 10698.93 68
VDD-MVS94.37 11894.37 12394.40 13197.49 12686.07 17293.97 14593.28 29094.49 4596.24 10397.78 6287.99 19398.79 13988.92 19599.14 9998.34 131
MM94.41 11794.14 13295.22 9495.84 23487.21 13894.31 13190.92 32894.48 4692.80 24297.52 8085.27 23299.49 2496.58 899.57 3698.97 62
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10894.46 4796.29 9996.94 12893.56 8199.37 5794.29 4099.42 5298.99 56
test_one_060198.26 7087.14 14098.18 4494.25 4896.99 7097.36 9395.13 43
CS-MVS95.77 5995.58 7396.37 5096.84 15991.72 6196.73 2999.06 594.23 4992.48 25394.79 24393.56 8199.49 2493.47 6499.05 10697.89 174
EPP-MVSNet93.91 13993.68 14694.59 12198.08 8185.55 18597.44 1294.03 27694.22 5094.94 17396.19 18082.07 26399.57 1487.28 22798.89 12598.65 106
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7594.15 5198.93 399.07 588.07 19099.57 1495.86 1599.69 1499.46 18
Anonymous20240521192.58 17892.50 17992.83 19096.55 17783.22 21792.43 19891.64 32294.10 5295.59 13696.64 15081.88 26797.50 27285.12 26198.52 17197.77 188
CS-MVS-test95.32 8195.10 9695.96 5896.86 15790.75 7496.33 4799.20 293.99 5391.03 28693.73 27993.52 8399.55 1891.81 11499.45 4797.58 201
DU-MVS95.28 8595.12 9595.75 7297.75 10688.59 11392.58 18997.81 9493.99 5396.80 7895.90 19290.10 17099.41 3991.60 12199.58 3499.26 30
TransMVSNet (Re)95.27 8796.04 5292.97 18298.37 6481.92 23495.07 10296.76 17993.97 5597.77 3198.57 2395.72 2097.90 23788.89 19799.23 8699.08 48
FC-MVSNet-test95.32 8195.88 5993.62 16098.49 5781.77 23595.90 6998.32 2593.93 5697.53 4297.56 7588.48 18399.40 4692.91 8999.83 599.68 4
EC-MVSNet95.44 7295.62 7194.89 10396.93 15387.69 13196.48 3899.14 493.93 5692.77 24494.52 25393.95 7899.49 2493.62 5699.22 8997.51 207
NR-MVSNet95.28 8595.28 8895.26 9097.75 10687.21 13895.08 10197.37 12693.92 5897.65 3495.90 19290.10 17099.33 6890.11 16499.66 2199.26 30
Baseline_NR-MVSNet94.47 11495.09 9792.60 20198.50 5680.82 25092.08 21396.68 18393.82 5996.29 9998.56 2490.10 17097.75 25890.10 16699.66 2199.24 32
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 17093.73 6097.87 2898.49 2990.73 15799.05 9886.43 24399.60 2799.10 47
tfpnnormal94.27 12394.87 10392.48 20597.71 11180.88 24994.55 12395.41 24293.70 6196.67 8497.72 6591.40 13698.18 21587.45 22399.18 9498.36 130
EI-MVSNet-Vis-set94.36 11994.28 12794.61 11792.55 32885.98 17392.44 19794.69 26393.70 6196.12 11195.81 19791.24 14098.86 12593.76 5498.22 20198.98 60
WR-MVS93.49 14893.72 14392.80 19197.57 12280.03 26090.14 27495.68 22793.70 6196.62 8695.39 22187.21 20599.04 10187.50 22299.64 2499.33 26
EI-MVSNet-UG-set94.35 12094.27 12994.59 12192.46 33185.87 17692.42 19994.69 26393.67 6496.13 11095.84 19691.20 14398.86 12593.78 5198.23 19999.03 52
SDMVSNet94.43 11695.02 9892.69 19497.93 9582.88 22491.92 22295.99 21993.65 6595.51 13998.63 2094.60 6596.48 31887.57 22199.35 6198.70 100
sd_testset93.94 13794.39 12192.61 20097.93 9583.24 21593.17 17095.04 25193.65 6595.51 13998.63 2094.49 6995.89 33681.72 29699.35 6198.70 100
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10488.91 10592.91 17798.07 6393.46 6796.31 9795.97 19190.14 16799.34 6392.11 10399.64 2499.16 38
VPA-MVSNet95.14 8995.67 7093.58 16297.76 10583.15 21994.58 11997.58 11293.39 6897.05 6598.04 4793.25 9298.51 18489.75 17499.59 2999.08 48
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 7997.64 10693.38 6995.89 12197.23 10593.35 8997.66 26588.20 20698.66 15997.79 186
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7598.01 7593.34 7096.64 8596.57 15494.99 5299.36 5893.48 6399.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVS++95.93 5296.34 3494.70 11296.54 17886.66 15598.45 498.22 3993.26 7197.54 4097.36 9393.12 9799.38 5593.88 4798.68 15598.04 154
test_0728_THIRD93.26 7197.40 5297.35 9694.69 6199.34 6393.88 4799.42 5298.89 75
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26793.12 7397.94 2798.54 2581.19 27599.63 695.48 2399.69 1499.60 12
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4893.11 7496.48 9097.36 9396.92 699.34 6394.31 3999.38 5998.92 72
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16696.25 20483.23 21692.66 18698.19 4293.06 7597.49 4497.15 11294.78 5998.71 15792.27 10298.72 14898.65 106
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs94.90 9795.35 8393.55 16398.28 6881.76 23695.33 9098.14 5293.05 7697.07 6297.18 11087.65 19799.29 7091.72 11799.69 1499.61 11
MVS_030493.92 13893.68 14694.64 11695.94 23085.83 17894.34 12888.14 34592.98 7791.09 28597.68 6686.73 21699.36 5896.64 799.59 2998.72 96
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9992.73 7893.48 21696.72 14694.23 7399.42 3391.99 10899.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
nrg03096.32 4096.55 2595.62 7697.83 10188.55 11595.77 7398.29 3192.68 7998.03 2697.91 5895.13 4398.95 11493.85 4999.49 4299.36 24
CSCG94.69 10594.75 10794.52 12497.55 12387.87 12795.01 10597.57 11392.68 7996.20 10793.44 28791.92 12598.78 14289.11 19199.24 8596.92 239
CP-MVS96.44 3496.08 4997.54 1198.29 6794.62 1496.80 2598.08 6092.67 8195.08 16896.39 16694.77 6099.42 3393.17 8099.44 5098.58 118
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 10192.59 8295.47 14296.68 14894.50 6899.42 3393.10 8299.26 8298.99 56
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11589.38 9596.90 2298.41 2092.52 8397.43 4897.92 5795.11 4599.50 2194.45 3599.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
RPSCF95.58 6894.89 10297.62 797.58 12196.30 795.97 6697.53 11792.42 8493.41 21797.78 6291.21 14297.77 25591.06 13297.06 26398.80 85
FMVSNet194.84 9995.13 9493.97 14497.60 11984.29 19995.99 6396.56 19192.38 8597.03 6698.53 2690.12 16898.98 10688.78 19999.16 9798.65 106
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9589.83 8593.46 16098.30 2892.37 8697.75 3296.95 12795.14 4299.51 2091.74 11699.28 7998.41 128
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 7989.40 9495.35 8898.22 3992.36 8794.11 19498.07 4492.02 12299.44 2993.38 7297.67 23997.85 179
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
HFP-MVS96.39 3896.17 4497.04 3198.51 5093.37 3996.30 5497.98 7892.35 8895.63 13496.47 15795.37 3099.27 7493.78 5199.14 9998.48 124
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 8192.35 8895.57 13796.61 15294.93 5699.41 3993.78 5199.15 9899.00 54
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1792.35 8895.95 11696.41 16196.71 899.42 3393.99 4699.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 8192.26 9195.28 15596.57 15495.02 5099.41 3993.63 5599.11 10198.94 66
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4492.26 9196.33 9596.84 13695.10 4699.40 4693.47 6499.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
PatchT87.51 29788.17 27785.55 35490.64 36666.91 38192.02 21686.09 36292.20 9389.05 31997.16 11164.15 36796.37 32489.21 18992.98 36493.37 359
VNet92.67 17692.96 16491.79 22596.27 20180.15 25491.95 21894.98 25392.19 9494.52 18896.07 18687.43 20197.39 28184.83 26698.38 18397.83 181
thres100view90087.35 30186.89 30088.72 31296.14 21373.09 35393.00 17485.31 37292.13 9593.26 22590.96 33663.42 37198.28 20471.27 37696.54 28394.79 326
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7798.01 7592.08 9695.74 12996.28 17595.22 4099.42 3393.17 8099.06 10398.88 77
LCM-MVSNet-Re94.20 12894.58 11893.04 17995.91 23183.13 22093.79 15099.19 392.00 9798.84 598.04 4793.64 8099.02 10381.28 30098.54 16996.96 238
SED-MVS96.00 5196.41 3294.76 10998.51 5086.97 14595.21 9598.10 5791.95 9897.63 3597.25 10396.48 1099.35 6093.29 7499.29 7497.95 167
test_241102_TWO98.10 5791.95 9897.54 4097.25 10395.37 3099.35 6093.29 7499.25 8398.49 123
ITE_SJBPF95.95 5997.34 13493.36 4096.55 19491.93 10094.82 17895.39 22191.99 12397.08 29685.53 25397.96 22497.41 213
RPMNet90.31 23490.14 23690.81 26691.01 36378.93 28492.52 19198.12 5491.91 10189.10 31796.89 13268.84 34299.41 3990.17 16292.70 36694.08 340
thres600view787.66 29287.10 29889.36 30196.05 22073.17 35192.72 18285.31 37291.89 10293.29 22290.97 33563.42 37198.39 19373.23 36496.99 27096.51 254
v894.65 10795.29 8792.74 19296.65 16979.77 26994.59 11797.17 14691.86 10397.47 4797.93 5488.16 18899.08 9394.32 3899.47 4399.38 22
test_241102_ONE98.51 5086.97 14598.10 5791.85 10497.63 3597.03 12296.48 1098.95 114
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5086.69 15395.20 9797.00 15891.85 10497.40 5297.35 9695.58 2499.34 6393.44 6799.31 6998.13 148
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072698.51 5086.69 15395.34 8998.18 4491.85 10497.63 3597.37 9095.58 24
SF-MVS95.88 5695.88 5995.87 6898.12 7889.65 8795.58 8398.56 1591.84 10796.36 9496.68 14894.37 7299.32 6992.41 10099.05 10698.64 111
pm-mvs195.43 7395.94 5593.93 14898.38 6285.08 19295.46 8797.12 15191.84 10797.28 5698.46 3095.30 3697.71 26290.17 16299.42 5298.99 56
VPNet93.08 16193.76 14291.03 25598.60 3975.83 33391.51 23595.62 22891.84 10795.74 12997.10 11889.31 17898.32 20285.07 26499.06 10398.93 68
3Dnovator92.54 394.80 10194.90 10194.47 12895.47 25687.06 14296.63 3197.28 14091.82 11094.34 19397.41 8790.60 16098.65 16792.47 9998.11 21097.70 194
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6592.13 5295.33 9098.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
LGP-MVS_train96.84 3898.36 6592.13 5298.25 3291.78 11197.07 6297.22 10796.38 1299.28 7292.07 10699.59 2999.11 44
EI-MVSNet92.99 16493.26 16292.19 21292.12 34079.21 28292.32 20494.67 26591.77 11395.24 15995.85 19487.14 20798.49 18591.99 10898.26 19598.86 78
IterMVS-LS93.78 14294.28 12792.27 20996.27 20179.21 28291.87 22696.78 17691.77 11396.57 8997.07 11987.15 20698.74 14991.99 10899.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 5191.74 11595.34 15196.36 16995.68 2199.44 2994.41 3799.28 7998.97 62
HQP_MVS94.26 12493.93 13695.23 9397.71 11188.12 12294.56 12197.81 9491.74 11593.31 22095.59 20886.93 21198.95 11489.26 18698.51 17398.60 116
plane_prior294.56 12191.74 115
ETV-MVS92.99 16492.74 17193.72 15895.86 23386.30 16692.33 20397.84 9191.70 11892.81 24186.17 38292.22 11899.19 8188.03 21497.73 23495.66 296
wuyk23d87.83 28890.79 22078.96 38390.46 37188.63 11092.72 18290.67 33191.65 11998.68 1197.64 7096.06 1577.53 40559.84 39999.41 5670.73 403
alignmvs93.26 15592.85 16894.50 12595.70 24387.45 13393.45 16195.76 22491.58 12095.25 15892.42 31381.96 26598.72 15191.61 12097.87 22997.33 221
sasdasda94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
canonicalmvs94.59 10894.69 11194.30 13395.60 25187.03 14395.59 8098.24 3591.56 12195.21 16192.04 32094.95 5398.66 16491.45 12697.57 24497.20 227
MGCFI-Net94.44 11594.67 11593.75 15695.56 25385.47 18695.25 9498.24 3591.53 12395.04 16992.21 31594.94 5598.54 18191.56 12497.66 24097.24 225
IterMVS-SCA-FT91.65 19991.55 19991.94 22193.89 30379.22 28187.56 32993.51 28691.53 12395.37 14996.62 15178.65 29098.90 11891.89 11294.95 32097.70 194
casdiffmvspermissive94.32 12294.80 10592.85 18996.05 22081.44 24192.35 20298.05 6791.53 12395.75 12896.80 13793.35 8998.49 18591.01 13598.32 19198.64 111
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2891.40 12695.76 12696.87 13395.26 3799.45 2792.77 9099.21 9099.00 54
Effi-MVS+92.79 17192.74 17192.94 18595.10 26683.30 21494.00 14297.53 11791.36 12789.35 31690.65 34394.01 7798.66 16487.40 22595.30 31296.88 243
MSP-MVS95.34 8094.63 11797.48 1498.67 3394.05 2396.41 4398.18 4491.26 12895.12 16495.15 22686.60 21999.50 2193.43 7096.81 27598.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
SD-MVS95.19 8895.73 6793.55 16396.62 17388.88 10794.67 11498.05 6791.26 12897.25 5896.40 16295.42 2894.36 36392.72 9499.19 9297.40 216
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
mvsmamba95.61 6595.40 8196.22 5198.44 5989.86 8497.14 1797.45 12391.25 13097.49 4498.14 3983.49 24499.45 2795.52 2199.66 2199.36 24
Vis-MVSNet (Re-imp)90.42 22590.16 23391.20 25197.66 11777.32 31194.33 12987.66 35191.20 13192.99 23695.13 22875.40 32098.28 20477.86 33199.19 9297.99 162
API-MVS91.52 20391.61 19891.26 24794.16 29386.26 16794.66 11594.82 25891.17 13292.13 26891.08 33490.03 17397.06 29879.09 32697.35 25590.45 384
EPNet89.80 24988.25 27294.45 12983.91 40786.18 16993.87 14787.07 35691.16 13380.64 39594.72 24578.83 28898.89 12085.17 25798.89 12598.28 136
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
HPM-MVS++copyleft95.02 9294.39 12196.91 3797.88 9893.58 3794.09 14096.99 16091.05 13492.40 25895.22 22591.03 14999.25 7592.11 10398.69 15397.90 172
test_yl90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
DCV-MVSNet90.11 23989.73 24591.26 24794.09 29679.82 26690.44 26292.65 30390.90 13593.19 23093.30 29073.90 32498.03 22582.23 29096.87 27295.93 282
tfpn200view987.05 30986.52 30888.67 31395.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28394.79 326
thres40087.20 30586.52 30889.24 30595.77 23972.94 35491.89 22386.00 36390.84 13792.61 24889.80 34863.93 36898.28 20471.27 37696.54 28396.51 254
ACMM88.83 996.30 4296.07 5096.97 3498.39 6192.95 4494.74 11298.03 7290.82 13997.15 5996.85 13496.25 1499.00 10593.10 8299.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
baseline94.26 12494.80 10592.64 19696.08 21880.99 24793.69 15498.04 7190.80 14094.89 17696.32 17193.19 9498.48 18991.68 11998.51 17398.43 127
XVG-OURS94.72 10394.12 13396.50 4798.00 9094.23 1891.48 23698.17 4890.72 14195.30 15396.47 15787.94 19496.98 30091.41 12897.61 24398.30 135
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8094.07 2092.46 19598.13 5390.69 14293.75 20896.25 17898.03 297.02 29992.08 10595.55 30398.45 126
v1094.68 10695.27 8992.90 18796.57 17580.15 25494.65 11697.57 11390.68 14397.43 4898.00 5088.18 18799.15 8494.84 3199.55 3899.41 20
NCCC94.08 13293.54 15495.70 7596.49 18389.90 8392.39 20196.91 16790.64 14492.33 26494.60 25090.58 16198.96 11190.21 16197.70 23798.23 138
UGNet93.08 16192.50 17994.79 10893.87 30487.99 12595.07 10294.26 27390.64 14487.33 35097.67 6886.89 21398.49 18588.10 21098.71 15097.91 171
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
MSDG90.82 21390.67 22391.26 24794.16 29383.08 22186.63 35196.19 21090.60 14691.94 27191.89 32289.16 18095.75 33880.96 30594.51 33194.95 317
AllTest94.88 9894.51 11996.00 5698.02 8892.17 5095.26 9398.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
TestCases96.00 5698.02 8892.17 5098.43 1890.48 14795.04 16996.74 14392.54 11397.86 24585.11 26298.98 11497.98 163
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6093.04 4194.54 12498.05 6790.45 14996.31 9796.76 14092.91 10498.72 15191.19 13099.42 5298.32 132
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 12098.03 7290.42 15096.37 9397.35 9695.68 2199.25 7594.44 3699.34 6498.80 85
MDA-MVSNet-bldmvs91.04 21090.88 21691.55 23594.68 28380.16 25385.49 36792.14 31490.41 15194.93 17495.79 19885.10 23496.93 30485.15 25994.19 34197.57 202
plane_prior388.43 11990.35 15293.31 220
Patchmtry90.11 23989.92 23990.66 26990.35 37277.00 31592.96 17592.81 29890.25 15394.74 18296.93 12967.11 34997.52 27185.17 25798.98 11497.46 209
CNLPA91.72 19891.20 20993.26 17696.17 20991.02 6791.14 24395.55 23690.16 15490.87 28793.56 28586.31 22194.40 36279.92 31897.12 26194.37 336
OPM-MVS95.61 6595.45 7796.08 5498.49 5791.00 6892.65 18797.33 13490.05 15596.77 8096.85 13495.04 4898.56 17892.77 9099.06 10398.70 100
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu93.90 14092.60 17797.77 394.74 27996.67 594.00 14295.41 24289.94 15691.93 27292.13 31890.12 16898.97 11087.68 22097.48 24897.67 197
test20.0390.80 21490.85 21890.63 27195.63 24979.24 28089.81 28592.87 29789.90 15794.39 19096.40 16285.77 22695.27 35173.86 36199.05 10697.39 217
tttt051789.81 24888.90 25792.55 20397.00 14879.73 27095.03 10483.65 38289.88 15895.30 15394.79 24353.64 39399.39 4991.99 10898.79 14298.54 119
CANet92.38 18591.99 19093.52 16893.82 30683.46 21291.14 24397.00 15889.81 15986.47 35494.04 26787.90 19599.21 7889.50 17898.27 19497.90 172
dcpmvs_293.96 13695.01 9990.82 26597.60 11974.04 34793.68 15598.85 889.80 16097.82 2997.01 12591.14 14799.21 7890.56 14598.59 16499.19 36
v14892.87 16993.29 15891.62 23396.25 20477.72 30691.28 24195.05 25089.69 16195.93 11896.04 18787.34 20298.38 19690.05 16797.99 22198.78 87
CNVR-MVS94.58 11094.29 12695.46 8296.94 15189.35 9691.81 23096.80 17589.66 16293.90 20695.44 21692.80 10898.72 15192.74 9298.52 17198.32 132
Fast-Effi-MVS+-dtu92.77 17392.16 18494.58 12394.66 28488.25 12092.05 21496.65 18589.62 16390.08 30291.23 33192.56 11298.60 17286.30 24596.27 28996.90 240
KD-MVS_self_test94.10 13194.73 11092.19 21297.66 11779.49 27594.86 10997.12 15189.59 16496.87 7497.65 6990.40 16498.34 20189.08 19299.35 6198.75 91
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7691.73 6094.24 13298.08 6089.46 16596.61 8796.47 15795.85 1899.12 9090.45 14799.56 3798.77 90
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test111190.39 22890.61 22489.74 29498.04 8771.50 36395.59 8079.72 39889.41 16695.94 11798.14 3970.79 33798.81 13588.52 20499.32 6898.90 74
Anonymous2024052192.86 17093.57 15290.74 26796.57 17575.50 33594.15 13695.60 22989.38 16795.90 12097.90 6080.39 27997.96 23492.60 9799.68 1898.75 91
MSLP-MVS++93.25 15793.88 13791.37 24196.34 19482.81 22593.11 17197.74 10189.37 16894.08 19695.29 22490.40 16496.35 32590.35 15298.25 19794.96 316
test_prior290.21 27189.33 16990.77 28994.81 24090.41 16388.21 20598.55 167
h-mvs3392.89 16791.99 19095.58 7796.97 14990.55 7693.94 14694.01 27989.23 17093.95 20396.19 18076.88 31199.14 8691.02 13395.71 30097.04 235
hse-mvs292.24 19091.20 20995.38 8396.16 21090.65 7592.52 19192.01 31889.23 17093.95 20392.99 29776.88 31198.69 16091.02 13396.03 29296.81 245
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13190.88 7194.59 11797.81 9489.22 17295.46 14496.17 18393.42 8799.34 6389.30 18298.87 13097.56 204
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CPTT-MVS94.74 10294.12 13396.60 4398.15 7793.01 4295.84 7197.66 10589.21 17393.28 22395.46 21488.89 18198.98 10689.80 17198.82 13897.80 185
test250685.42 32084.57 32387.96 32797.81 10266.53 38496.14 5856.35 41189.04 17493.55 21598.10 4242.88 40998.68 16288.09 21199.18 9498.67 104
ECVR-MVScopyleft90.12 23890.16 23390.00 29097.81 10272.68 35795.76 7478.54 40189.04 17495.36 15098.10 4270.51 33898.64 16887.10 22999.18 9498.67 104
plane_prior88.12 12293.01 17388.98 17698.06 214
MVSFormer92.18 19192.23 18392.04 22094.74 27980.06 25897.15 1597.37 12688.98 17688.83 32092.79 30277.02 30899.60 996.41 996.75 27896.46 259
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12688.98 17698.26 2298.86 1093.35 8999.60 996.41 999.45 4799.66 6
JIA-IIPM85.08 32383.04 33591.19 25287.56 39386.14 17089.40 29884.44 38088.98 17682.20 38697.95 5356.82 38896.15 32876.55 34583.45 39791.30 379
AdaColmapbinary91.63 20091.36 20692.47 20695.56 25386.36 16492.24 21196.27 20488.88 18089.90 30792.69 30591.65 13198.32 20277.38 33897.64 24192.72 368
MVS_Test92.57 18093.29 15890.40 27893.53 31075.85 33192.52 19196.96 16188.73 18192.35 26196.70 14790.77 15398.37 20092.53 9895.49 30596.99 237
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8788.72 18298.81 698.86 1090.77 15399.60 995.43 2699.53 3999.57 14
GeoE94.55 11194.68 11494.15 13797.23 13885.11 19194.14 13897.34 13388.71 18395.26 15695.50 21394.65 6399.12 9090.94 13698.40 17998.23 138
GBi-Net93.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
test193.21 15892.96 16493.97 14495.40 25884.29 19995.99 6396.56 19188.63 18495.10 16598.53 2681.31 27198.98 10686.74 23398.38 18398.65 106
FMVSNet292.78 17292.73 17392.95 18495.40 25881.98 23394.18 13595.53 23788.63 18496.05 11397.37 9081.31 27198.81 13587.38 22698.67 15798.06 151
thres20085.85 31785.18 31887.88 33094.44 28872.52 35889.08 30686.21 36088.57 18791.44 27788.40 36764.22 36698.00 23068.35 38595.88 29893.12 361
v2v48293.29 15393.63 14892.29 20896.35 19378.82 28991.77 23296.28 20388.45 18895.70 13396.26 17786.02 22598.90 11893.02 8598.81 14099.14 40
testdata188.96 30888.44 189
testgi90.38 22991.34 20787.50 33397.49 12671.54 36289.43 29695.16 24888.38 19094.54 18794.68 24792.88 10693.09 37471.60 37497.85 23097.88 175
MVS_111021_HR93.63 14593.42 15794.26 13596.65 16986.96 14789.30 30196.23 20788.36 19193.57 21494.60 25093.45 8497.77 25590.23 16098.38 18398.03 157
BH-RMVSNet90.47 22490.44 22890.56 27395.21 26578.65 29389.15 30593.94 28188.21 19292.74 24594.22 26186.38 22097.88 24178.67 32895.39 30995.14 310
PAPM_NR91.03 21190.81 21991.68 23196.73 16481.10 24693.72 15396.35 20288.19 19388.77 32692.12 31985.09 23597.25 28582.40 28993.90 34696.68 250
testing383.66 33482.52 33987.08 33695.84 23465.84 38989.80 28677.17 40588.17 19490.84 28888.63 36430.95 41398.11 22084.05 27397.19 25997.28 224
EG-PatchMatch MVS94.54 11294.67 11594.14 13897.87 10086.50 15792.00 21796.74 18088.16 19596.93 7297.61 7293.04 10197.90 23791.60 12198.12 20998.03 157
TSAR-MVS + GP.93.07 16392.41 18195.06 9995.82 23690.87 7290.97 24792.61 30688.04 19694.61 18593.79 27888.08 18997.81 24989.41 17998.39 18296.50 257
BH-untuned90.68 21890.90 21590.05 28995.98 22679.57 27390.04 27794.94 25587.91 19794.07 19793.00 29687.76 19697.78 25479.19 32595.17 31592.80 367
MVS_111021_LR93.66 14493.28 16094.80 10796.25 20490.95 6990.21 27195.43 24187.91 19793.74 21094.40 25592.88 10696.38 32390.39 14998.28 19397.07 231
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16698.32 2587.89 19996.86 7597.38 8995.55 2699.39 4995.47 2499.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
PHI-MVS94.34 12193.80 14095.95 5995.65 24791.67 6294.82 11097.86 8887.86 20093.04 23594.16 26491.58 13298.78 14290.27 15798.96 12197.41 213
FA-MVS(test-final)91.81 19691.85 19491.68 23194.95 26979.99 26296.00 6293.44 28887.80 20194.02 20197.29 10177.60 29998.45 19188.04 21397.49 24796.61 251
EMVS80.35 36280.28 36080.54 38084.73 40669.07 37472.54 39980.73 39487.80 20181.66 39181.73 39762.89 37389.84 38975.79 35194.65 32982.71 399
E-PMN80.72 35980.86 35380.29 38185.11 40468.77 37572.96 39781.97 38787.76 20383.25 38183.01 39662.22 37789.17 39477.15 34094.31 33682.93 398
EIA-MVS92.35 18692.03 18893.30 17595.81 23883.97 20792.80 18098.17 4887.71 20489.79 31087.56 37291.17 14699.18 8287.97 21597.27 25696.77 247
TinyColmap92.00 19492.76 17089.71 29595.62 25077.02 31490.72 25496.17 21287.70 20595.26 15696.29 17392.54 11396.45 32081.77 29498.77 14495.66 296
anonymousdsp96.74 1796.42 2997.68 698.00 9094.03 2596.97 2097.61 11087.68 20698.45 1898.77 1594.20 7499.50 2196.70 599.40 5799.53 15
save fliter97.46 12988.05 12492.04 21597.08 15387.63 207
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 11087.57 20898.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
9.1494.81 10497.49 12694.11 13998.37 2187.56 20995.38 14796.03 18894.66 6299.08 9390.70 14298.97 119
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11690.17 8093.86 14898.02 7487.35 21096.22 10597.99 5294.48 7099.05 9892.73 9399.68 1897.93 169
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DELS-MVS92.05 19392.16 18491.72 22894.44 28880.13 25687.62 32697.25 14187.34 21192.22 26693.18 29489.54 17798.73 15089.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
V4293.43 15093.58 15192.97 18295.34 26281.22 24492.67 18596.49 19687.25 21296.20 10796.37 16887.32 20398.85 12792.39 10198.21 20298.85 81
HQP-NCC96.36 19091.37 23787.16 21388.81 322
ACMP_Plane96.36 19091.37 23787.16 21388.81 322
HQP-MVS92.09 19291.49 20393.88 15096.36 19084.89 19391.37 23797.31 13587.16 21388.81 32293.40 28884.76 23798.60 17286.55 24097.73 23498.14 147
OMC-MVS94.22 12793.69 14595.81 6997.25 13791.27 6492.27 20897.40 12587.10 21694.56 18695.42 21793.74 7998.11 22086.62 23798.85 13198.06 151
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12486.96 21798.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
v114493.50 14793.81 13892.57 20296.28 20079.61 27291.86 22896.96 16186.95 21895.91 11996.32 17187.65 19798.96 11193.51 6098.88 12799.13 41
ab-mvs92.40 18492.62 17691.74 22797.02 14781.65 23795.84 7195.50 23886.95 21892.95 23997.56 7590.70 15897.50 27279.63 31997.43 25196.06 276
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 6991.19 6695.09 10097.79 9886.48 22097.42 5097.51 8394.47 7199.29 7093.55 5999.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
thisisatest053088.69 27687.52 28792.20 21196.33 19579.36 27792.81 17984.01 38186.44 22193.67 21192.68 30653.62 39499.25 7589.65 17698.45 17798.00 159
IterMVS90.18 23590.16 23390.21 28493.15 31575.98 33087.56 32992.97 29686.43 22294.09 19596.40 16278.32 29497.43 27787.87 21794.69 32897.23 226
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
diffmvspermissive91.74 19791.93 19291.15 25393.06 31778.17 29788.77 31497.51 12086.28 22392.42 25793.96 27288.04 19197.46 27590.69 14396.67 28097.82 183
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13689.21 9794.24 13298.76 1186.25 22497.56 3998.66 1895.73 1998.44 19297.35 298.99 11398.27 137
testing9183.56 33682.45 34086.91 34092.92 32267.29 37886.33 35788.07 34786.22 22584.26 37185.76 38448.15 39997.17 29176.27 34794.08 34596.27 267
baseline187.62 29487.31 28988.54 31694.71 28274.27 34593.10 17288.20 34386.20 22692.18 26793.04 29573.21 32795.52 34179.32 32385.82 39395.83 287
new-patchmatchnet88.97 26690.79 22083.50 37294.28 29255.83 40785.34 36993.56 28586.18 22795.47 14295.73 20483.10 24996.51 31785.40 25498.06 21498.16 145
FMVSNet390.78 21590.32 23292.16 21693.03 31979.92 26492.54 19094.95 25486.17 22895.10 16596.01 18969.97 34098.75 14686.74 23398.38 18397.82 183
v119293.49 14893.78 14192.62 19996.16 21079.62 27191.83 22997.22 14486.07 22996.10 11296.38 16787.22 20499.02 10394.14 4398.88 12799.22 33
CANet_DTU89.85 24789.17 24991.87 22292.20 33780.02 26190.79 25195.87 22286.02 23082.53 38591.77 32480.01 28198.57 17785.66 25297.70 23797.01 236
XXY-MVS92.58 17893.16 16390.84 26497.75 10679.84 26591.87 22696.22 20985.94 23195.53 13897.68 6692.69 11094.48 35983.21 27997.51 24698.21 140
PM-MVS93.33 15292.67 17595.33 8696.58 17494.06 2192.26 20992.18 31185.92 23296.22 10596.61 15285.64 23095.99 33490.35 15298.23 19995.93 282
MG-MVS89.54 25189.80 24288.76 31194.88 27072.47 35989.60 29092.44 30985.82 23389.48 31495.98 19082.85 25497.74 26081.87 29395.27 31396.08 275
UnsupCasMVSNet_eth90.33 23290.34 23190.28 28094.64 28580.24 25289.69 28995.88 22185.77 23493.94 20595.69 20581.99 26492.98 37584.21 27291.30 37797.62 199
c3_l91.32 20891.42 20491.00 25892.29 33376.79 32187.52 33296.42 19985.76 23594.72 18493.89 27582.73 25698.16 21790.93 13798.55 16798.04 154
Patchmatch-test86.10 31686.01 31386.38 34990.63 36774.22 34689.57 29186.69 35785.73 23689.81 30992.83 30065.24 36391.04 38377.82 33495.78 29993.88 348
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15889.20 9893.51 15898.60 1485.68 23797.42 5098.30 3595.34 3398.39 19396.85 398.98 11498.19 142
CL-MVSNet_self_test90.04 24489.90 24090.47 27495.24 26477.81 30486.60 35392.62 30585.64 23893.25 22793.92 27383.84 24296.06 33279.93 31698.03 21797.53 206
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 19988.62 11193.19 16998.07 6385.63 23997.08 6197.35 9690.86 15097.66 26595.70 1698.48 17697.74 192
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18589.19 9993.23 16898.36 2285.61 24096.92 7398.02 4995.23 3998.38 19696.69 698.95 12398.09 150
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16887.75 13093.44 16298.49 1685.57 24198.27 2097.11 11694.11 7697.75 25896.26 1198.72 14896.89 241
cl____90.65 21990.56 22690.91 26291.85 34876.98 31786.75 34795.36 24485.53 24294.06 19894.89 23777.36 30597.98 23390.27 15798.98 11497.76 189
DeepC-MVS_fast89.96 793.73 14393.44 15694.60 12096.14 21387.90 12693.36 16597.14 14885.53 24293.90 20695.45 21591.30 13998.59 17489.51 17798.62 16097.31 222
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DIV-MVS_self_test90.65 21990.56 22690.91 26291.85 34876.99 31686.75 34795.36 24485.52 24494.06 19894.89 23777.37 30497.99 23290.28 15698.97 11997.76 189
testing9982.94 34181.72 34486.59 34392.55 32866.53 38486.08 36185.70 36685.47 24583.95 37385.70 38545.87 40097.07 29776.58 34493.56 35296.17 273
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17485.23 24694.75 18197.12 11591.85 12699.40 4693.45 6698.33 18998.62 115
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
eth_miper_zixun_eth90.72 21690.61 22491.05 25492.04 34376.84 32086.91 34296.67 18485.21 24794.41 18993.92 27379.53 28498.26 20889.76 17397.02 26598.06 151
v192192093.26 15593.61 15092.19 21296.04 22478.31 29591.88 22597.24 14285.17 24896.19 10996.19 18086.76 21599.05 9894.18 4298.84 13299.22 33
DeepPCF-MVS90.46 694.20 12893.56 15396.14 5295.96 22792.96 4389.48 29497.46 12185.14 24996.23 10495.42 21793.19 9498.08 22290.37 15198.76 14597.38 219
v124093.29 15393.71 14492.06 21996.01 22577.89 30291.81 23097.37 12685.12 25096.69 8396.40 16286.67 21799.07 9794.51 3498.76 14599.22 33
GA-MVS87.70 29086.82 30190.31 27993.27 31377.22 31384.72 37592.79 30085.11 25189.82 30890.07 34566.80 35297.76 25784.56 27094.27 33795.96 280
LF4IMVS92.72 17492.02 18994.84 10695.65 24791.99 5492.92 17696.60 18785.08 25292.44 25693.62 28286.80 21496.35 32586.81 23298.25 19796.18 271
Fast-Effi-MVS+91.28 20990.86 21792.53 20495.45 25782.53 22789.25 30496.52 19585.00 25389.91 30688.55 36692.94 10298.84 12884.72 26995.44 30796.22 269
v14419293.20 16093.54 15492.16 21696.05 22078.26 29691.95 21897.14 14884.98 25495.96 11596.11 18487.08 20899.04 10193.79 5098.84 13299.17 37
DP-MVS Recon92.31 18791.88 19393.60 16197.18 14286.87 14891.10 24597.37 12684.92 25592.08 26994.08 26688.59 18298.20 21283.50 27698.14 20895.73 291
FE-MVS89.06 26188.29 26991.36 24294.78 27679.57 27396.77 2890.99 32684.87 25692.96 23896.29 17360.69 38298.80 13880.18 31197.11 26295.71 292
miper_lstm_enhance89.90 24689.80 24290.19 28691.37 35977.50 30883.82 38395.00 25284.84 25793.05 23494.96 23576.53 31695.20 35289.96 16998.67 15797.86 177
EPNet_dtu85.63 31884.37 32489.40 30086.30 40074.33 34491.64 23388.26 34184.84 25772.96 40489.85 34671.27 33697.69 26376.60 34397.62 24296.18 271
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CLD-MVS91.82 19591.41 20593.04 17996.37 18883.65 21186.82 34697.29 13884.65 25992.27 26589.67 35492.20 12097.85 24783.95 27499.47 4397.62 199
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_s_conf0.5_n94.00 13594.20 13193.42 17296.69 16684.37 19793.38 16495.13 24984.50 26095.40 14697.55 7991.77 12897.20 28895.59 1897.79 23298.69 103
fmvsm_s_conf0.1_n94.19 13094.41 12093.52 16897.22 14084.37 19793.73 15295.26 24684.45 26195.76 12698.00 5091.85 12697.21 28795.62 1797.82 23198.98 60
ZD-MVS97.23 13890.32 7897.54 11584.40 26294.78 18095.79 19892.76 10999.39 4988.72 20198.40 179
dmvs_re84.69 32783.94 32986.95 33992.24 33482.93 22389.51 29387.37 35384.38 26385.37 35985.08 38972.44 32986.59 39868.05 38691.03 38191.33 378
PMMVS281.31 35383.44 33274.92 38690.52 36946.49 41269.19 40085.23 37584.30 26487.95 34094.71 24676.95 31084.36 40364.07 39498.09 21293.89 347
F-COLMAP92.28 18891.06 21395.95 5997.52 12491.90 5693.53 15797.18 14583.98 26588.70 32894.04 26788.41 18598.55 18080.17 31295.99 29497.39 217
QAPM92.88 16892.77 16993.22 17795.82 23683.31 21396.45 3997.35 13283.91 26693.75 20896.77 13889.25 17998.88 12184.56 27097.02 26597.49 208
patch_mono-292.46 18292.72 17491.71 22996.65 16978.91 28788.85 31197.17 14683.89 26792.45 25596.76 14089.86 17497.09 29590.24 15998.59 16499.12 43
mvs_anonymous90.37 23091.30 20887.58 33292.17 33968.00 37789.84 28494.73 26283.82 26893.22 22997.40 8887.54 19997.40 28087.94 21695.05 31897.34 220
testing22280.54 36178.53 36886.58 34492.54 33068.60 37686.24 35882.72 38583.78 26982.68 38484.24 39239.25 41195.94 33560.25 39895.09 31795.20 306
miper_ehance_all_eth90.48 22390.42 22990.69 26891.62 35576.57 32486.83 34596.18 21183.38 27094.06 19892.66 30782.20 26198.04 22489.79 17297.02 26597.45 210
fmvsm_s_conf0.5_n_a94.02 13494.08 13593.84 15396.72 16585.73 18093.65 15695.23 24783.30 27195.13 16397.56 7592.22 11897.17 29195.51 2297.41 25298.64 111
FMVSNet587.82 28986.56 30691.62 23392.31 33279.81 26893.49 15994.81 26083.26 27291.36 27896.93 12952.77 39597.49 27476.07 34898.03 21797.55 205
fmvsm_s_conf0.1_n_a94.26 12494.37 12393.95 14797.36 13385.72 18194.15 13695.44 23983.25 27395.51 13998.05 4592.54 11397.19 29095.55 2097.46 25098.94 66
xiu_mvs_v1_base_debu91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
xiu_mvs_v1_base_debi91.47 20491.52 20091.33 24395.69 24481.56 23889.92 28196.05 21683.22 27491.26 28090.74 33891.55 13398.82 13089.29 18395.91 29593.62 355
FPMVS84.50 32883.28 33388.16 32596.32 19694.49 1685.76 36585.47 37083.09 27785.20 36194.26 25963.79 37086.58 39963.72 39591.88 37683.40 397
test-LLR83.58 33583.17 33484.79 36289.68 37966.86 38283.08 38484.52 37883.07 27882.85 38284.78 39062.86 37493.49 37082.85 28194.86 32294.03 343
test0.0.03 182.48 34481.47 34885.48 35589.70 37873.57 35084.73 37381.64 38883.07 27888.13 33786.61 37862.86 37489.10 39566.24 39190.29 38393.77 350
cl2289.02 26288.50 26290.59 27289.76 37776.45 32586.62 35294.03 27682.98 28092.65 24792.49 30872.05 33297.53 27088.93 19497.02 26597.78 187
tpmvs84.22 33083.97 32884.94 36087.09 39765.18 39191.21 24288.35 34082.87 28185.21 36090.96 33665.24 36396.75 31179.60 32285.25 39492.90 366
iter_conf0588.94 26888.09 27991.50 23892.74 32476.97 31892.80 18095.92 22082.82 28293.65 21295.37 22349.41 39799.13 8890.82 13899.28 7998.40 129
dmvs_testset78.23 37078.99 36575.94 38591.99 34555.34 40888.86 31078.70 40082.69 28381.64 39279.46 40075.93 31785.74 40048.78 40682.85 39986.76 393
KD-MVS_2432*160082.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
miper_refine_blended82.17 34780.75 35486.42 34782.04 40970.09 37081.75 38990.80 32982.56 28490.37 29789.30 35842.90 40796.11 33074.47 35692.55 36893.06 362
MDA-MVSNet_test_wron88.16 28488.23 27487.93 32892.22 33573.71 34880.71 39388.84 33682.52 28694.88 17795.14 22782.70 25793.61 36983.28 27893.80 34896.46 259
YYNet188.17 28388.24 27387.93 32892.21 33673.62 34980.75 39288.77 33782.51 28794.99 17295.11 22982.70 25793.70 36883.33 27793.83 34796.48 258
OpenMVScopyleft89.45 892.27 18992.13 18792.68 19594.53 28784.10 20595.70 7597.03 15682.44 28891.14 28496.42 16088.47 18498.38 19685.95 24897.47 24995.55 301
MVSTER89.32 25688.75 25991.03 25590.10 37576.62 32390.85 24994.67 26582.27 28995.24 15995.79 19861.09 38098.49 18590.49 14698.26 19597.97 166
SCA87.43 29987.21 29388.10 32692.01 34471.98 36189.43 29688.11 34682.26 29088.71 32792.83 30078.65 29097.59 26879.61 32093.30 35694.75 328
testing1181.98 35080.52 35786.38 34992.69 32567.13 37985.79 36484.80 37782.16 29181.19 39485.41 38745.24 40196.88 30774.14 35993.24 35795.14 310
AUN-MVS90.05 24388.30 26895.32 8896.09 21790.52 7792.42 19992.05 31782.08 29288.45 33292.86 29965.76 35998.69 16088.91 19696.07 29196.75 249
TR-MVS87.70 29087.17 29489.27 30394.11 29579.26 27988.69 31691.86 31981.94 29390.69 29189.79 35182.82 25597.42 27872.65 36891.98 37491.14 380
BH-w/o87.21 30487.02 29987.79 33194.77 27777.27 31287.90 32493.21 29381.74 29489.99 30588.39 36883.47 24596.93 30471.29 37592.43 37089.15 385
fmvsm_l_conf0.5_n93.79 14193.81 13893.73 15796.16 21086.26 16792.46 19596.72 18181.69 29595.77 12597.11 11690.83 15297.82 24895.58 1997.99 22197.11 230
ETVMVS79.85 36577.94 37285.59 35392.97 32066.20 38786.13 36080.99 39381.41 29683.52 37883.89 39341.81 41094.98 35656.47 40294.25 33895.61 300
MIMVSNet87.13 30886.54 30788.89 30996.05 22076.11 32894.39 12688.51 33981.37 29788.27 33596.75 14272.38 33095.52 34165.71 39295.47 30695.03 314
fmvsm_l_conf0.5_n_a93.59 14693.63 14893.49 17096.10 21685.66 18392.32 20496.57 19081.32 29895.63 13497.14 11390.19 16697.73 26195.37 2898.03 21797.07 231
Syy-MVS84.81 32584.93 31984.42 36591.71 35263.36 39985.89 36281.49 38981.03 29985.13 36281.64 39877.44 30195.00 35385.94 24994.12 34294.91 322
myMVS_eth3d79.62 36678.26 36983.72 37091.71 35261.25 40185.89 36281.49 38981.03 29985.13 36281.64 39832.12 41295.00 35371.17 37994.12 34294.91 322
MAR-MVS90.32 23388.87 25894.66 11594.82 27391.85 5794.22 13494.75 26180.91 30187.52 34888.07 37086.63 21897.87 24476.67 34296.21 29094.25 339
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
xiu_mvs_v2_base89.00 26589.19 24888.46 32094.86 27274.63 33986.97 34095.60 22980.88 30287.83 34188.62 36591.04 14898.81 13582.51 28794.38 33391.93 374
PS-MVSNAJ88.86 27188.99 25488.48 31994.88 27074.71 33786.69 34995.60 22980.88 30287.83 34187.37 37590.77 15398.82 13082.52 28694.37 33491.93 374
TAMVS90.16 23689.05 25193.49 17096.49 18386.37 16390.34 26892.55 30780.84 30492.99 23694.57 25281.94 26698.20 21273.51 36298.21 20295.90 285
PatchMatch-RL89.18 25788.02 28192.64 19695.90 23292.87 4588.67 31891.06 32580.34 30590.03 30491.67 32683.34 24694.42 36176.35 34694.84 32490.64 383
MCST-MVS92.91 16692.51 17894.10 14097.52 12485.72 18191.36 24097.13 15080.33 30692.91 24094.24 26091.23 14198.72 15189.99 16897.93 22697.86 177
PLCcopyleft85.34 1590.40 22688.92 25594.85 10596.53 18190.02 8191.58 23496.48 19780.16 30786.14 35692.18 31685.73 22798.25 20976.87 34194.61 33096.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVP-Stereo90.07 24288.92 25593.54 16596.31 19786.49 15890.93 24895.59 23379.80 30891.48 27695.59 20880.79 27697.39 28178.57 32991.19 37896.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
our_test_387.55 29687.59 28687.44 33491.76 35070.48 36783.83 38290.55 33279.79 30992.06 27092.17 31778.63 29295.63 33984.77 26794.73 32696.22 269
CDS-MVSNet89.55 25088.22 27593.53 16695.37 26186.49 15889.26 30293.59 28379.76 31091.15 28392.31 31477.12 30698.38 19677.51 33697.92 22795.71 292
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IB-MVS77.21 1983.11 33881.05 35089.29 30291.15 36175.85 33185.66 36686.00 36379.70 31182.02 38986.61 37848.26 39898.39 19377.84 33292.22 37193.63 354
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_vis1_n_192089.45 25389.85 24188.28 32293.59 30976.71 32290.67 25697.78 9979.67 31290.30 29996.11 18476.62 31492.17 37890.31 15493.57 35195.96 280
ET-MVSNet_ETH3D86.15 31584.27 32691.79 22593.04 31881.28 24287.17 33786.14 36179.57 31383.65 37588.66 36357.10 38698.18 21587.74 21995.40 30895.90 285
PVSNet_BlendedMVS90.35 23189.96 23891.54 23694.81 27478.80 29190.14 27496.93 16379.43 31488.68 32995.06 23286.27 22298.15 21880.27 30898.04 21697.68 196
train_agg92.71 17591.83 19595.35 8496.45 18689.46 9090.60 25896.92 16579.37 31590.49 29394.39 25691.20 14398.88 12188.66 20298.43 17897.72 193
test_896.37 18889.14 10090.51 26196.89 16879.37 31590.42 29594.36 25891.20 14398.82 130
N_pmnet88.90 27087.25 29293.83 15494.40 29093.81 3584.73 37387.09 35579.36 31793.26 22592.43 31279.29 28691.68 38077.50 33797.22 25896.00 278
iter_conf05_1188.91 26988.32 26690.66 26993.95 30178.09 29886.98 33993.06 29479.35 31887.64 34489.80 34880.25 28098.96 11185.18 25598.69 15394.95 317
UnsupCasMVSNet_bld88.50 27888.03 28089.90 29195.52 25578.88 28887.39 33394.02 27879.32 31993.06 23394.02 26980.72 27794.27 36475.16 35393.08 36296.54 252
ppachtmachnet_test88.61 27788.64 26088.50 31891.76 35070.99 36684.59 37692.98 29579.30 32092.38 25993.53 28679.57 28397.45 27686.50 24297.17 26097.07 231
TEST996.45 18689.46 9090.60 25896.92 16579.09 32190.49 29394.39 25691.31 13898.88 121
baseline283.38 33781.54 34788.90 30891.38 35872.84 35688.78 31381.22 39178.97 32279.82 39787.56 37261.73 37897.80 25074.30 35890.05 38496.05 277
D2MVS89.93 24589.60 24790.92 26094.03 29878.40 29488.69 31694.85 25678.96 32393.08 23295.09 23074.57 32296.94 30288.19 20798.96 12197.41 213
PatchmatchNetpermissive85.22 32184.64 32186.98 33889.51 38269.83 37390.52 26087.34 35478.87 32487.22 35192.74 30466.91 35196.53 31581.77 29486.88 39194.58 332
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
PVSNet_Blended_VisFu91.63 20091.20 20992.94 18597.73 10983.95 20892.14 21297.46 12178.85 32592.35 26194.98 23484.16 24199.08 9386.36 24496.77 27795.79 289
Patchmatch-RL test88.81 27288.52 26189.69 29695.33 26379.94 26386.22 35992.71 30278.46 32695.80 12494.18 26366.25 35795.33 34989.22 18898.53 17093.78 349
WTY-MVS86.93 31186.50 31088.24 32394.96 26874.64 33887.19 33692.07 31678.29 32788.32 33491.59 32878.06 29694.27 36474.88 35493.15 36095.80 288
pmmvs-eth3d91.54 20290.73 22293.99 14295.76 24187.86 12890.83 25093.98 28078.23 32894.02 20196.22 17982.62 25996.83 30986.57 23898.33 18997.29 223
TAPA-MVS88.58 1092.49 18191.75 19794.73 11096.50 18289.69 8692.91 17797.68 10478.02 32992.79 24394.10 26590.85 15197.96 23484.76 26898.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
bld_raw_dy_0_6490.86 21290.99 21490.47 27493.95 30177.88 30393.99 14498.93 777.75 33097.03 6690.61 34481.82 26898.58 17685.18 25599.61 2694.95 317
sss87.23 30386.82 30188.46 32093.96 29977.94 29986.84 34492.78 30177.59 33187.61 34791.83 32378.75 28991.92 37977.84 33294.20 33995.52 302
CDPH-MVS92.67 17691.83 19595.18 9696.94 15188.46 11890.70 25597.07 15477.38 33292.34 26395.08 23192.67 11198.88 12185.74 25098.57 16698.20 141
thisisatest051584.72 32682.99 33689.90 29192.96 32175.33 33684.36 37883.42 38377.37 33388.27 33586.65 37753.94 39298.72 15182.56 28597.40 25395.67 295
EPMVS81.17 35680.37 35883.58 37185.58 40365.08 39390.31 26971.34 40777.31 33485.80 35891.30 33059.38 38392.70 37679.99 31382.34 40092.96 365
tpm84.38 32984.08 32785.30 35790.47 37063.43 39889.34 29985.63 36877.24 33587.62 34695.03 23361.00 38197.30 28479.26 32491.09 38095.16 308
OpenMVS_ROBcopyleft85.12 1689.52 25289.05 25190.92 26094.58 28681.21 24591.10 24593.41 28977.03 33693.41 21793.99 27183.23 24897.80 25079.93 31694.80 32593.74 351
test_fmvs392.42 18392.40 18292.46 20793.80 30787.28 13693.86 14897.05 15576.86 33796.25 10298.66 1882.87 25391.26 38295.44 2596.83 27498.82 82
原ACMM192.87 18896.91 15484.22 20297.01 15776.84 33889.64 31394.46 25488.00 19298.70 15881.53 29898.01 22095.70 294
PAPR87.65 29386.77 30390.27 28192.85 32377.38 31088.56 31996.23 20776.82 33984.98 36589.75 35386.08 22497.16 29372.33 36993.35 35596.26 268
mvsany_test389.11 26088.21 27691.83 22391.30 36090.25 7988.09 32378.76 39976.37 34096.43 9198.39 3383.79 24390.43 38786.57 23894.20 33994.80 325
WB-MVSnew84.20 33183.89 33085.16 35991.62 35566.15 38888.44 32181.00 39276.23 34187.98 33987.77 37184.98 23693.35 37262.85 39794.10 34495.98 279
miper_enhance_ethall88.42 27987.87 28290.07 28788.67 38975.52 33485.10 37095.59 23375.68 34292.49 25289.45 35778.96 28797.88 24187.86 21897.02 26596.81 245
HY-MVS82.50 1886.81 31285.93 31489.47 29793.63 30877.93 30094.02 14191.58 32375.68 34283.64 37693.64 28077.40 30297.42 27871.70 37392.07 37393.05 364
tpmrst82.85 34382.93 33782.64 37487.65 39258.99 40590.14 27487.90 34975.54 34483.93 37491.63 32766.79 35495.36 34781.21 30281.54 40193.57 358
MS-PatchMatch88.05 28587.75 28388.95 30793.28 31277.93 30087.88 32592.49 30875.42 34592.57 25193.59 28480.44 27894.24 36681.28 30092.75 36594.69 331
UWE-MVS80.29 36379.10 36483.87 36991.97 34659.56 40386.50 35677.43 40475.40 34687.79 34388.10 36944.08 40596.90 30664.23 39396.36 28795.14 310
DPM-MVS89.35 25588.40 26492.18 21596.13 21584.20 20386.96 34196.15 21375.40 34687.36 34991.55 32983.30 24798.01 22982.17 29296.62 28194.32 338
PC_three_145275.31 34895.87 12295.75 20392.93 10396.34 32787.18 22898.68 15598.04 154
test_cas_vis1_n_192088.25 28288.27 27188.20 32492.19 33878.92 28689.45 29595.44 23975.29 34993.23 22895.65 20771.58 33490.23 38888.05 21293.55 35395.44 303
PVSNet_Blended88.74 27488.16 27890.46 27794.81 27478.80 29186.64 35096.93 16374.67 35088.68 32989.18 36186.27 22298.15 21880.27 30896.00 29394.44 335
pmmvs488.95 26787.70 28592.70 19394.30 29185.60 18487.22 33592.16 31374.62 35189.75 31294.19 26277.97 29796.41 32182.71 28396.36 28796.09 274
test_fmvs290.62 22190.40 23091.29 24691.93 34785.46 18792.70 18496.48 19774.44 35294.91 17597.59 7375.52 31990.57 38493.44 6796.56 28297.84 180
131486.46 31486.33 31186.87 34191.65 35474.54 34091.94 22094.10 27574.28 35384.78 36787.33 37683.03 25195.00 35378.72 32791.16 37991.06 381
Anonymous2023120688.77 27388.29 26990.20 28596.31 19778.81 29089.56 29293.49 28774.26 35492.38 25995.58 21182.21 26095.43 34672.07 37098.75 14796.34 263
MDTV_nov1_ep1383.88 33189.42 38361.52 40088.74 31587.41 35273.99 35584.96 36694.01 27065.25 36295.53 34078.02 33093.16 359
test-mter81.21 35580.01 36284.79 36289.68 37966.86 38283.08 38484.52 37873.85 35682.85 38284.78 39043.66 40693.49 37082.85 28194.86 32294.03 343
pmmvs587.87 28787.14 29590.07 28793.26 31476.97 31888.89 30992.18 31173.71 35788.36 33393.89 27576.86 31396.73 31280.32 30796.81 27596.51 254
1112_ss88.42 27987.41 28891.45 23996.69 16680.99 24789.72 28896.72 18173.37 35887.00 35290.69 34177.38 30398.20 21281.38 29993.72 34995.15 309
test_vis3_rt90.40 22690.03 23791.52 23792.58 32688.95 10390.38 26697.72 10373.30 35997.79 3097.51 8377.05 30787.10 39789.03 19394.89 32198.50 121
USDC89.02 26289.08 25088.84 31095.07 26774.50 34288.97 30796.39 20073.21 36093.27 22496.28 17582.16 26296.39 32277.55 33598.80 14195.62 299
CR-MVSNet87.89 28687.12 29790.22 28391.01 36378.93 28492.52 19192.81 29873.08 36189.10 31796.93 12967.11 34997.64 26788.80 19892.70 36694.08 340
test_vis1_n89.01 26489.01 25389.03 30692.57 32782.46 22992.62 18896.06 21473.02 36290.40 29695.77 20274.86 32189.68 39090.78 14094.98 31994.95 317
dp79.28 36778.62 36781.24 37985.97 40256.45 40686.91 34285.26 37472.97 36381.45 39389.17 36256.01 39095.45 34573.19 36576.68 40391.82 377
IU-MVS98.51 5086.66 15596.83 17372.74 36495.83 12393.00 8699.29 7498.64 111
ADS-MVSNet284.01 33282.20 34389.41 29989.04 38576.37 32787.57 32790.98 32772.71 36584.46 36892.45 30968.08 34596.48 31870.58 38183.97 39595.38 304
ADS-MVSNet82.25 34581.55 34684.34 36689.04 38565.30 39087.57 32785.13 37672.71 36584.46 36892.45 30968.08 34592.33 37770.58 38183.97 39595.38 304
jason89.17 25888.32 26691.70 23095.73 24280.07 25788.10 32293.22 29171.98 36790.09 30192.79 30278.53 29398.56 17887.43 22497.06 26396.46 259
jason: jason.
testdata91.03 25596.87 15682.01 23294.28 27271.55 36892.46 25495.42 21785.65 22997.38 28382.64 28497.27 25693.70 352
PVSNet76.22 2082.89 34282.37 34184.48 36493.96 29964.38 39678.60 39588.61 33871.50 36984.43 37086.36 38174.27 32394.60 35869.87 38393.69 35094.46 334
gm-plane-assit87.08 39859.33 40471.22 37083.58 39497.20 28873.95 360
test_fmvs1_n88.73 27588.38 26589.76 29392.06 34282.53 22792.30 20796.59 18971.14 37192.58 25095.41 22068.55 34389.57 39291.12 13195.66 30197.18 229
lupinMVS88.34 28187.31 28991.45 23994.74 27980.06 25887.23 33492.27 31071.10 37288.83 32091.15 33277.02 30898.53 18286.67 23696.75 27895.76 290
cascas87.02 31086.28 31289.25 30491.56 35776.45 32584.33 37996.78 17671.01 37386.89 35385.91 38381.35 27096.94 30283.09 28095.60 30294.35 337
new_pmnet81.22 35481.01 35281.86 37690.92 36570.15 36984.03 38080.25 39770.83 37485.97 35789.78 35267.93 34884.65 40267.44 38891.90 37590.78 382
无先验89.94 28095.75 22570.81 37598.59 17481.17 30394.81 324
mvsany_test183.91 33382.93 33786.84 34286.18 40185.93 17481.11 39175.03 40670.80 37688.57 33194.63 24883.08 25087.38 39680.39 30686.57 39287.21 392
test_fmvs187.59 29587.27 29188.54 31688.32 39081.26 24390.43 26595.72 22670.55 37791.70 27494.63 24868.13 34489.42 39390.59 14495.34 31194.94 321
CostFormer83.09 33982.21 34285.73 35289.27 38467.01 38090.35 26786.47 35970.42 37883.52 37893.23 29361.18 37996.85 30877.21 33988.26 38993.34 360
TESTMET0.1,179.09 36878.04 37082.25 37587.52 39464.03 39783.08 38480.62 39570.28 37980.16 39683.22 39544.13 40490.56 38579.95 31493.36 35492.15 372
CMPMVSbinary68.83 2287.28 30285.67 31692.09 21888.77 38885.42 18890.31 26994.38 26970.02 38088.00 33893.30 29073.78 32694.03 36775.96 35096.54 28396.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f86.65 31387.13 29685.19 35890.28 37386.11 17186.52 35591.66 32169.76 38195.73 13197.21 10969.51 34181.28 40489.15 19094.40 33288.17 390
Test_1112_low_res87.50 29886.58 30590.25 28296.80 16377.75 30587.53 33196.25 20569.73 38286.47 35493.61 28375.67 31897.88 24179.95 31493.20 35895.11 313
PAPM81.91 35180.11 36187.31 33593.87 30472.32 36084.02 38193.22 29169.47 38376.13 40289.84 34772.15 33197.23 28653.27 40489.02 38692.37 371
MVS-HIRNet78.83 36980.60 35673.51 38793.07 31647.37 41187.10 33878.00 40268.94 38477.53 40097.26 10271.45 33594.62 35763.28 39688.74 38778.55 402
旧先验290.00 27968.65 38592.71 24696.52 31685.15 259
PCF-MVS84.52 1789.12 25987.71 28493.34 17396.06 21985.84 17786.58 35497.31 13568.46 38693.61 21393.89 27587.51 20098.52 18367.85 38798.11 21095.66 296
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
新几何193.17 17897.16 14387.29 13594.43 26867.95 38791.29 27994.94 23686.97 21098.23 21081.06 30497.75 23393.98 345
MVEpermissive59.87 2373.86 37272.65 37577.47 38487.00 39974.35 34361.37 40260.93 41067.27 38869.69 40586.49 38081.24 27472.33 40656.45 40383.45 39785.74 395
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
MDTV_nov1_ep13_2view42.48 41388.45 32067.22 38983.56 37766.80 35272.86 36794.06 342
test_vis1_rt85.58 31984.58 32288.60 31587.97 39186.76 15085.45 36893.59 28366.43 39087.64 34489.20 36079.33 28585.38 40181.59 29789.98 38593.66 353
CHOSEN 280x42080.04 36477.97 37186.23 35190.13 37474.53 34172.87 39889.59 33566.38 39176.29 40185.32 38856.96 38795.36 34769.49 38494.72 32788.79 388
HyFIR lowres test87.19 30685.51 31792.24 21097.12 14680.51 25185.03 37196.06 21466.11 39291.66 27592.98 29870.12 33999.14 8675.29 35295.23 31497.07 231
114514_t90.51 22289.80 24292.63 19898.00 9082.24 23193.40 16397.29 13865.84 39389.40 31594.80 24286.99 20998.75 14683.88 27598.61 16196.89 241
tpm281.46 35280.35 35984.80 36189.90 37665.14 39290.44 26285.36 37165.82 39482.05 38892.44 31157.94 38596.69 31370.71 38088.49 38892.56 369
test22296.95 15085.27 19088.83 31293.61 28265.09 39590.74 29094.85 23984.62 23997.36 25493.91 346
CHOSEN 1792x268887.19 30685.92 31591.00 25897.13 14579.41 27684.51 37795.60 22964.14 39690.07 30394.81 24078.26 29597.14 29473.34 36395.38 31096.46 259
pmmvs380.83 35878.96 36686.45 34687.23 39677.48 30984.87 37282.31 38663.83 39785.03 36489.50 35649.66 39693.10 37373.12 36695.10 31688.78 389
PVSNet_070.34 2174.58 37172.96 37479.47 38290.63 36766.24 38673.26 39683.40 38463.67 39878.02 39978.35 40272.53 32889.59 39156.68 40160.05 40682.57 400
tpm cat180.61 36079.46 36384.07 36888.78 38765.06 39489.26 30288.23 34262.27 39981.90 39089.66 35562.70 37695.29 35071.72 37280.60 40291.86 376
PMMVS83.00 34081.11 34988.66 31483.81 40886.44 16182.24 38885.65 36761.75 40082.07 38785.64 38679.75 28291.59 38175.99 34993.09 36187.94 391
MVS84.98 32484.30 32587.01 33791.03 36277.69 30791.94 22094.16 27459.36 40184.23 37287.50 37485.66 22896.80 31071.79 37193.05 36386.54 394
EU-MVSNet87.39 30086.71 30489.44 29893.40 31176.11 32894.93 10890.00 33457.17 40295.71 13297.37 9064.77 36597.68 26492.67 9594.37 33494.52 333
CVMVSNet85.16 32284.72 32086.48 34592.12 34070.19 36892.32 20488.17 34456.15 40390.64 29295.85 19467.97 34796.69 31388.78 19990.52 38292.56 369
DSMNet-mixed82.21 34681.56 34584.16 36789.57 38170.00 37290.65 25777.66 40354.99 40483.30 38097.57 7477.89 29890.50 38666.86 39095.54 30491.97 373
DeepMVS_CXcopyleft53.83 38970.38 41164.56 39548.52 41333.01 40565.50 40674.21 40456.19 38946.64 40838.45 40870.07 40450.30 404
test_method50.44 37348.94 37654.93 38839.68 41212.38 41528.59 40390.09 3336.82 40641.10 40878.41 40154.41 39170.69 40750.12 40551.26 40781.72 401
tmp_tt37.97 37444.33 37718.88 39011.80 41321.54 41463.51 40145.66 4144.23 40751.34 40750.48 40559.08 38422.11 40944.50 40768.35 40513.00 405
EGC-MVSNET80.97 35775.73 37396.67 4298.85 2494.55 1596.83 2396.60 1872.44 4085.32 40998.25 3792.24 11798.02 22891.85 11399.21 9097.45 210
test1239.49 37612.01 3791.91 3912.87 4141.30 41682.38 3871.34 4161.36 4092.84 4106.56 4082.45 4140.97 4102.73 4095.56 4083.47 406
testmvs9.02 37711.42 3801.81 3922.77 4151.13 41779.44 3941.90 4151.18 4102.65 4116.80 4071.95 4150.87 4112.62 4103.45 4093.44 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.35 37531.13 3780.00 3930.00 4160.00 4180.00 40495.58 2350.00 4110.00 41291.15 33293.43 860.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.56 37810.09 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41190.77 1530.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re7.56 37810.08 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41290.69 3410.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS61.25 40174.55 355
MSC_two_6792asdad95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
No_MVS95.90 6596.54 17889.57 8896.87 17099.41 3994.06 4499.30 7198.72 96
eth-test20.00 416
eth-test0.00 416
OPU-MVS95.15 9796.84 15989.43 9295.21 9595.66 20693.12 9798.06 22386.28 24698.61 16197.95 167
test_0728_SECOND94.88 10498.55 4586.72 15295.20 9798.22 3999.38 5593.44 6799.31 6998.53 120
GSMVS94.75 328
test_part298.21 7489.41 9396.72 81
sam_mvs166.64 35594.75 328
sam_mvs66.41 356
ambc92.98 18196.88 15583.01 22295.92 6896.38 20196.41 9297.48 8588.26 18697.80 25089.96 16998.93 12498.12 149
MTGPAbinary97.62 108
test_post190.21 2715.85 41065.36 36196.00 33379.61 320
test_post6.07 40965.74 36095.84 337
patchmatchnet-post91.71 32566.22 35897.59 268
GG-mvs-BLEND83.24 37385.06 40571.03 36594.99 10765.55 40974.09 40375.51 40344.57 40394.46 36059.57 40087.54 39084.24 396
MTMP94.82 11054.62 412
test9_res88.16 20998.40 17997.83 181
agg_prior287.06 23198.36 18897.98 163
agg_prior96.20 20788.89 10696.88 16990.21 30098.78 142
test_prior489.91 8290.74 253
test_prior94.61 11795.95 22887.23 13797.36 13198.68 16297.93 169
新几何290.02 278
旧先验196.20 20784.17 20494.82 25895.57 21289.57 17697.89 22896.32 264
原ACMM289.34 299
testdata298.03 22580.24 310
segment_acmp92.14 121
test1294.43 13095.95 22886.75 15196.24 20689.76 31189.79 17598.79 13997.95 22597.75 191
plane_prior797.71 11188.68 109
plane_prior697.21 14188.23 12186.93 211
plane_prior597.81 9498.95 11489.26 18698.51 17398.60 116
plane_prior495.59 208
plane_prior197.38 131
n20.00 417
nn0.00 417
door-mid92.13 315
lessismore_v093.87 15198.05 8483.77 21080.32 39697.13 6097.91 5877.49 30099.11 9292.62 9698.08 21398.74 94
test1196.65 185
door91.26 324
HQP5-MVS84.89 193
BP-MVS86.55 240
HQP4-MVS88.81 32298.61 17098.15 146
HQP3-MVS97.31 13597.73 234
HQP2-MVS84.76 237
NP-MVS96.82 16187.10 14193.40 288
ACMMP++_ref98.82 138
ACMMP++99.25 83
Test By Simon90.61 159