This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 298
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39673.86 5286.31 1978.84 1994.03 5384.64 104
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
gg-mvs-nofinetune55.75 30156.75 30052.72 32962.87 33828.04 38068.92 21841.36 38871.09 4150.80 37492.63 1220.74 39166.86 30229.97 37272.41 33063.25 357
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
v7n79.37 5680.41 5276.28 9078.67 16155.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
VDDNet71.60 14973.13 12867.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
SSC-MVS61.79 26566.08 21948.89 34876.91 18410.00 40253.56 35047.37 36868.20 5876.56 16389.21 9054.13 22657.59 33954.75 20974.07 32179.08 234
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
Anonymous2024052972.56 13973.79 11568.86 21176.89 18745.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 286
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior282.74 5165.45 76
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
LFMVS67.06 21167.89 19764.56 25278.02 16738.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28275.22 21446.35 28089.63 13780.21 218
WB-MVS60.04 27964.19 24147.59 35076.09 19610.22 40152.44 35546.74 36965.17 8474.07 20287.48 12553.48 22955.28 34249.36 25272.84 32877.28 255
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
WR-MVS71.20 15272.48 14167.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
testf175.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
Gipumacopyleft69.55 17372.83 13459.70 29763.63 33653.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32159.75 17291.55 9162.67 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
plane_prior365.67 9963.82 9878.23 133
tt080576.12 8378.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
ANet_high67.08 21069.94 16958.51 30657.55 36727.09 38258.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31250.10 24688.86 15683.46 143
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 17072.02 17071.50 23363.53 10278.58 13071.39 33365.98 11878.53 16767.30 10580.18 26989.23 29
pmmvs671.82 14773.66 11766.31 24175.94 20042.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521166.02 22166.89 21363.43 26574.22 22438.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
CANet73.00 12871.84 14976.48 8775.82 20161.28 13774.81 14080.37 13063.17 10862.43 32380.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 308
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 18073.34 15884.67 5162.04 11572.19 22970.81 33465.90 12085.24 5658.64 17884.96 21481.95 183
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
plane_prior65.18 10480.06 7961.88 11789.91 132
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33386.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
TransMVSNet (Re)69.62 17171.63 15363.57 26276.51 19035.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13877.56 10363.57 29760.95 12256.62 35382.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG67.47 20567.48 20467.46 22870.70 26554.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29774.49 278
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 303
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
Baseline_NR-MVSNet70.62 15973.19 12662.92 27276.97 18234.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
v875.07 9675.64 9473.35 12773.42 23547.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
v1075.69 8676.20 8774.16 11474.44 22248.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22471.31 18771.32 23858.22 14375.40 18170.44 33658.16 19475.85 20562.51 14379.81 27388.48 44
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
test_yl65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 34981.49 11548.43 26281.85 24881.04 195
FC-MVSNet-test73.32 11874.78 10168.93 20979.21 14936.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
FPMVS59.43 28460.07 27557.51 31177.62 17671.52 4962.33 29950.92 35557.40 15569.40 26380.00 25039.14 31361.92 32537.47 33766.36 36239.09 392
testdata168.34 23157.24 156
MIMVSNet166.57 21669.23 17658.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 33841.77 30889.58 14079.95 220
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 288
LCM-MVSNet-Re69.10 18071.57 15661.70 28170.37 27134.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
BH-untuned69.39 17669.46 17269.18 20277.96 16956.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 314
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
VPA-MVSNet68.71 18570.37 16763.72 26076.13 19538.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
FIs72.56 13973.80 11468.84 21278.74 16037.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
testing358.28 29158.38 28958.00 30977.45 17726.12 38660.78 30943.00 37956.02 16770.18 25375.76 29413.27 40467.24 29748.02 26780.89 26080.65 210
tfpnnormal66.48 21767.93 19662.16 27873.40 23636.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
baseline73.10 12273.96 11270.51 17771.46 25846.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
wuyk23d61.97 26266.25 21749.12 34658.19 36660.77 15066.32 25852.97 35055.93 17090.62 586.91 13373.07 5735.98 39120.63 39591.63 8750.62 381
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pm-mvs168.40 18969.85 17164.04 25873.10 24339.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
v2v48272.55 14172.58 13972.43 15672.92 24846.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
thres100view90061.17 27061.09 26761.39 28572.14 25435.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34772.09 25135.61 35081.73 25177.08 260
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 293
GBi-Net68.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
test168.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
FMVSNet267.48 20368.21 19365.29 24773.14 24038.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26174.60 22347.98 26886.11 19882.35 175
v14869.38 17769.39 17369.36 19769.14 28544.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
thres600view761.82 26461.38 26563.12 26771.81 25634.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34772.42 24838.61 32783.46 23582.02 181
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37681.15 12063.95 13087.93 16889.51 25
RPMNet65.77 22365.08 23767.84 22566.37 31348.24 23970.93 19386.27 1954.66 18461.35 32786.77 13833.29 33785.67 4755.93 19870.17 34669.62 322
VNet64.01 24565.15 23360.57 29273.28 23835.61 34857.60 32967.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
canonicalmvs72.29 14473.38 12269.04 20474.23 22347.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25580.98 12763.62 13590.77 11678.58 239
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25579.23 15563.62 13589.13 15180.92 200
test250661.23 26960.85 27062.38 27678.80 15827.88 38167.33 24537.42 39354.23 19167.55 28888.68 10717.87 39774.39 22646.33 28189.41 14384.86 97
ECVR-MVScopyleft64.82 23165.22 22963.60 26178.80 15831.14 37166.97 25056.47 33254.23 19169.94 25688.68 10737.23 32474.81 22145.28 29189.41 14384.86 97
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
VPNet65.58 22467.56 20159.65 29879.72 13930.17 37460.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
test111164.62 23465.19 23062.93 27179.01 15629.91 37565.45 27054.41 34154.09 19671.47 24188.48 11137.02 32574.29 22846.83 27889.94 13184.58 110
Patchmtry60.91 27163.01 25454.62 32166.10 31926.27 38567.47 24056.40 33354.05 19772.04 23086.66 14333.19 33860.17 32943.69 29687.45 17477.42 253
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
v114473.29 11973.39 12173.01 13674.12 22748.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
Vis-MVSNet (Re-imp)62.74 25763.21 25261.34 28672.19 25331.56 36867.31 24653.87 34253.60 20469.88 25883.37 20040.52 30370.98 26441.40 31086.78 18981.48 190
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
MDA-MVSNet-bldmvs62.34 26161.73 25964.16 25461.64 34449.90 22448.11 36557.24 32453.31 20780.95 10679.39 25949.00 25761.55 32645.92 28480.05 27081.03 196
TinyColmap67.98 19669.28 17464.08 25667.98 29946.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 291
tfpn200view960.35 27759.97 27661.51 28370.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25177.08 260
thres40060.77 27459.97 27663.15 26670.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25182.02 181
v119273.40 11673.42 12073.32 12974.65 21948.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
MVS_Test69.84 16870.71 16567.24 23067.49 30443.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18569.39 21281.29 10652.44 21364.53 30570.69 33560.33 17482.30 10354.27 21876.31 30080.75 206
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28680.56 13472.28 6778.67 28578.14 246
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT53.35 31556.47 30243.99 36664.19 33217.46 39759.15 31743.10 37852.11 21754.74 36286.95 13229.97 36749.98 35143.62 29774.40 31764.53 355
CANet_DTU64.04 24463.83 24464.66 25168.39 29142.97 29273.45 15774.50 20952.05 21854.78 36175.44 30043.99 28170.42 27053.49 22578.41 28880.59 212
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31269.91 27270.73 7391.60 8984.56 111
v124073.06 12573.14 12772.84 14574.74 21547.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v192192072.96 13172.98 13272.89 14474.67 21647.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
v14419272.99 12973.06 13072.77 14674.58 22047.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
FMVSNet365.00 23065.16 23164.52 25369.47 28237.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32174.44 22547.12 27385.37 20381.57 189
c3_l69.82 16969.89 17069.61 19466.24 31643.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
SDMVSNet66.36 21967.85 19961.88 28073.04 24646.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32454.41 21584.67 21677.28 255
sd_testset63.55 24665.38 22758.07 30873.04 24638.83 32357.41 33065.44 28151.42 22768.93 27182.72 21363.76 13858.11 33741.05 31284.67 21677.28 255
V4271.06 15370.83 16471.72 16467.25 30647.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
GA-MVS62.91 25461.66 26066.66 23967.09 30844.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32674.94 21850.60 24274.72 31280.57 213
CL-MVSNet_self_test62.44 26063.40 24959.55 29972.34 25232.38 36456.39 33464.84 28651.21 23267.46 28981.01 23350.75 24463.51 31938.47 32988.12 16382.75 166
PM-MVS64.49 23763.61 24767.14 23376.68 18975.15 2768.49 22942.85 38051.17 23377.85 13980.51 23945.76 26966.31 30852.83 22976.35 29959.96 369
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 289
JIA-IIPM54.03 31251.62 32661.25 28759.14 36155.21 18759.10 31847.72 36550.85 23550.31 37885.81 17120.10 39463.97 31536.16 34755.41 38864.55 354
KD-MVS_self_test66.38 21867.51 20262.97 27061.76 34334.39 35658.11 32775.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38583.73 7865.40 11886.33 19585.22 87
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
thres20057.55 29557.02 29759.17 30067.89 30134.93 35258.91 32157.25 32350.24 24264.01 31171.46 33232.49 34371.39 26131.31 36679.57 27771.19 310
thisisatest053067.05 21265.16 23172.73 14973.10 24350.55 21471.26 18963.91 29550.22 24374.46 19580.75 23626.81 37580.25 14159.43 17486.50 19387.37 54
test20.0355.74 30257.51 29550.42 33759.89 35732.09 36650.63 35949.01 36150.11 24465.07 30383.23 20745.61 27148.11 35930.22 37083.82 22971.07 311
BH-w/o64.81 23264.29 24066.36 24076.08 19854.71 18965.61 26875.23 20350.10 24571.05 24571.86 32954.33 22579.02 15938.20 33176.14 30165.36 347
cl____68.26 19568.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.42 21748.74 25975.38 21160.92 15889.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.43 21648.74 25975.38 21160.94 15789.81 13385.81 76
EPNet_dtu58.93 28758.52 28660.16 29667.91 30047.70 25069.97 20558.02 31749.73 24847.28 38273.02 32238.14 31762.34 32236.57 34385.99 19970.43 315
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM69.18 17969.26 17568.94 20871.61 25752.58 20480.37 7178.79 15949.63 24973.51 20885.14 17753.66 22879.12 15755.11 20675.54 30575.11 275
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24875.31 13481.11 11149.62 25066.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
TR-MVS64.59 23563.54 24867.73 22775.75 20350.83 21363.39 29170.29 25249.33 25171.55 23874.55 30650.94 24378.46 17040.43 31675.69 30373.89 283
cl2267.14 20966.51 21569.03 20563.20 33743.46 28766.88 25376.25 19249.22 25274.48 19477.88 28145.49 27277.40 19360.64 16084.59 22086.24 69
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21771.39 23649.17 25371.70 23278.07 28037.62 32379.21 15661.81 14689.15 14980.82 203
miper_ehance_all_eth68.36 19068.16 19568.98 20665.14 32743.34 28867.07 24878.92 15549.11 25476.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
ab-mvs64.11 24365.13 23461.05 28871.99 25538.03 33267.59 23768.79 26149.08 25565.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21370.56 26853.91 19678.29 9677.35 18248.85 25670.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
MAR-MVS67.72 20066.16 21872.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29968.58 35557.01 21277.79 18846.68 27981.92 24674.42 279
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
diffmvspermissive67.42 20667.50 20367.20 23162.26 34145.21 27364.87 27677.04 18648.21 25971.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IterMVS-SCA-FT67.68 20166.07 22072.49 15573.34 23758.20 17263.80 28765.55 28048.10 26076.91 15282.64 21545.20 27378.84 16261.20 15377.89 29480.44 215
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
testdata64.13 25585.87 5963.34 11961.80 30747.83 26476.42 17086.60 14848.83 25862.31 32354.46 21481.26 25866.74 341
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16670.53 19881.23 10947.79 26564.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
无先验74.82 13970.94 24747.75 26676.85 20054.47 21372.09 300
IB-MVS49.67 1859.69 28256.96 29867.90 22368.19 29650.30 21861.42 30365.18 28347.57 26755.83 35767.15 36223.77 38879.60 15143.56 29879.97 27173.79 284
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs55.84 30055.45 31057.01 31260.33 35133.20 36265.89 26259.29 31547.52 26856.04 35573.60 31631.05 35968.06 28840.64 31564.64 36569.77 320
PatchMatch-RL58.68 28957.72 29361.57 28276.21 19473.59 3961.83 30049.00 36247.30 26961.08 32968.97 34950.16 24859.01 33236.06 34968.84 35352.10 379
Anonymous2024052163.55 24666.07 22055.99 31666.18 31844.04 28168.77 22468.80 26046.99 27072.57 22185.84 17039.87 30750.22 35053.40 22892.23 8173.71 285
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
EMVS44.61 35244.45 35745.10 36248.91 39343.00 29137.92 38541.10 39046.75 27238.00 39548.43 39326.42 37746.27 36337.11 34075.38 30846.03 386
IterMVS63.12 25262.48 25865.02 25066.34 31552.86 20163.81 28662.25 30146.57 27371.51 23980.40 24144.60 27866.82 30451.38 23675.47 30675.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
E-PMN45.17 34845.36 35144.60 36350.07 39042.75 29338.66 38442.29 38446.39 27439.55 39351.15 39026.00 37945.37 36837.68 33476.41 29845.69 387
baseline157.82 29458.36 29056.19 31569.17 28430.76 37362.94 29755.21 33646.04 27563.83 31478.47 27241.20 29763.68 31739.44 31968.99 35274.13 280
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 16174.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
PVSNet_BlendedMVS65.38 22564.30 23968.61 21569.81 27749.36 23065.60 26978.96 15345.50 27959.98 33678.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
IU-MVS86.12 5360.90 14580.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
testgi54.00 31456.86 29945.45 35958.20 36525.81 38749.05 36149.50 36045.43 28267.84 28381.17 23051.81 23943.20 37929.30 37579.41 27867.34 336
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15573.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0567.34 20865.62 22472.50 15469.82 27647.06 25872.19 16776.86 18745.32 28472.86 21782.85 21020.53 39283.73 7861.13 15589.02 15486.70 65
TAMVS65.31 22663.75 24569.97 19082.23 11559.76 15766.78 25463.37 29845.20 28569.79 25979.37 26047.42 26772.17 25034.48 35585.15 21077.99 250
旧先验271.17 19045.11 28678.54 13161.28 32759.19 176
PS-MVSNAJ64.27 24263.73 24665.90 24577.82 17151.42 20963.33 29272.33 22645.09 28761.60 32568.04 35662.39 14973.95 23249.07 25473.87 32372.34 296
xiu_mvs_v2_base64.43 23963.96 24365.85 24677.72 17351.32 21063.63 28972.31 22745.06 28861.70 32469.66 34462.56 14573.93 23349.06 25573.91 32272.31 297
LF4IMVS67.50 20267.31 20668.08 22258.86 36261.93 12871.43 18375.90 19744.67 28972.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 301
CDS-MVSNet64.33 24162.66 25769.35 19880.44 13458.28 17165.26 27265.66 27844.36 29067.30 29175.54 29743.27 28571.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_lstm_enhance61.97 26261.63 26262.98 26960.04 35245.74 27047.53 36770.95 24644.04 29173.06 21578.84 27039.72 30860.33 32855.82 20084.64 21982.88 161
新几何169.99 18988.37 3471.34 5162.08 30443.85 29274.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 332
Syy-MVS54.13 31055.45 31050.18 33868.77 28823.59 39055.02 34344.55 37443.80 29358.05 34764.07 36746.22 26858.83 33346.16 28272.36 33168.12 330
myMVS_eth3d50.36 33350.52 33849.88 33968.77 28822.69 39255.02 34344.55 37443.80 29358.05 34764.07 36714.16 40358.83 33333.90 35972.36 33168.12 330
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17578.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
OpenMVS_ROBcopyleft54.93 1763.23 25163.28 25063.07 26869.81 27745.34 27268.52 22867.14 26843.74 29670.61 24879.22 26247.90 26572.66 24248.75 25773.84 32471.21 309
FMVSNet555.08 30655.54 30953.71 32365.80 32033.50 36156.22 33652.50 35243.72 29761.06 33083.38 19925.46 38254.87 34330.11 37181.64 25672.75 292
MVP-Stereo61.56 26759.22 28068.58 21679.28 14660.44 15269.20 21571.57 23143.58 29856.42 35478.37 27439.57 31076.46 20434.86 35460.16 37768.86 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous65.08 22965.49 22663.83 25963.79 33437.60 33566.52 25769.82 25543.44 29973.46 21086.08 16558.79 19071.75 25851.90 23275.63 30482.15 180
test-LLR50.43 33250.69 33749.64 34260.76 34841.87 29953.18 35145.48 37243.41 30049.41 37960.47 38029.22 37044.73 37242.09 30572.14 33462.33 364
test0.0.03 147.72 34148.31 34345.93 35755.53 37729.39 37646.40 37141.21 38943.41 30055.81 35867.65 35729.22 37043.77 37825.73 38769.87 34864.62 353
SCA58.57 29058.04 29160.17 29570.17 27341.07 30565.19 27353.38 34843.34 30261.00 33273.48 31745.20 27369.38 27640.34 31770.31 34570.05 317
ET-MVSNet_ETH3D63.32 24960.69 27271.20 17170.15 27455.66 18465.02 27564.32 29143.28 30368.99 26872.05 32825.46 38278.19 18254.16 22082.80 23979.74 224
miper_enhance_ethall65.86 22265.05 23868.28 22161.62 34542.62 29564.74 27777.97 17542.52 30473.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
cascas64.59 23562.77 25670.05 18875.27 20550.02 22161.79 30171.61 23042.46 30563.68 31668.89 35149.33 25480.35 13847.82 27084.05 22779.78 223
PVSNet_Blended62.90 25561.64 26166.69 23869.81 27749.36 23061.23 30578.96 15342.04 30659.98 33668.86 35251.82 23778.20 18044.30 29277.77 29572.52 294
MVSTER63.29 25061.60 26368.36 21759.77 35846.21 26660.62 31071.32 23841.83 30775.40 18179.12 26530.25 36475.85 20556.30 19579.81 27383.03 158
MIMVSNet54.39 30956.12 30549.20 34472.57 25030.91 37259.98 31448.43 36441.66 30855.94 35683.86 19341.19 29850.42 34926.05 38475.38 30866.27 342
KD-MVS_2432*160052.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
miper_refine_blended52.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
dmvs_testset45.26 34747.51 34538.49 37559.96 35514.71 39958.50 32443.39 37741.30 31151.79 37156.48 38439.44 31149.91 35321.42 39355.35 38950.85 380
patch_mono-262.73 25864.08 24258.68 30470.36 27255.87 18260.84 30864.11 29441.23 31264.04 31078.22 27660.00 17648.80 35454.17 21983.71 23271.37 305
new-patchmatchnet52.89 31755.76 30844.26 36559.94 3566.31 40337.36 38750.76 35741.10 31364.28 30879.82 25244.77 27648.43 35836.24 34687.61 16978.03 248
test22287.30 3769.15 7367.85 23559.59 31441.06 31473.05 21685.72 17248.03 26480.65 26466.92 337
Patchmatch-RL test59.95 28059.12 28162.44 27572.46 25154.61 19159.63 31647.51 36741.05 31574.58 19374.30 31031.06 35865.31 30951.61 23379.85 27267.39 334
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28161.16 14073.34 15856.83 32840.96 31668.36 27980.08 24962.84 14267.57 29366.90 10974.50 31681.78 186
fmvsm_s_conf0.5_n66.34 22065.27 22869.57 19568.20 29559.14 16471.66 18056.48 33140.92 31767.78 28479.46 25761.23 16366.90 30067.39 10074.32 32082.66 169
thisisatest051560.48 27657.86 29268.34 21867.25 30646.42 26360.58 31162.14 30240.82 31863.58 31869.12 34726.28 37878.34 17648.83 25682.13 24480.26 217
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26261.17 13974.00 15557.18 32540.77 31968.83 27680.88 23463.11 14167.61 29266.94 10774.72 31282.33 178
ppachtmachnet_test60.26 27859.61 27962.20 27767.70 30244.33 27958.18 32660.96 30940.75 32065.80 29872.57 32441.23 29663.92 31646.87 27782.42 24278.33 241
fmvsm_s_conf0.1_n66.60 21565.54 22569.77 19268.99 28759.15 16272.12 16856.74 33040.72 32168.25 28280.14 24861.18 16666.92 29967.34 10474.40 31783.23 152
PAPM61.79 26560.37 27466.05 24376.09 19641.87 29969.30 21376.79 19040.64 32253.80 36679.62 25644.38 27982.92 9429.64 37473.11 32773.36 287
our_test_356.46 29856.51 30156.30 31467.70 30239.66 31655.36 34252.34 35340.57 32363.85 31369.91 34340.04 30658.22 33643.49 29975.29 31071.03 312
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
PatchmatchNetpermissive54.60 30854.27 31455.59 31765.17 32639.08 31866.92 25151.80 35439.89 32558.39 34473.12 32131.69 35258.33 33543.01 30158.38 38369.38 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
dmvs_re49.91 33650.77 33647.34 35159.98 35338.86 32253.18 35153.58 34539.75 32655.06 36061.58 37636.42 32844.40 37429.15 37968.23 35558.75 372
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 30562.04 12770.69 19769.85 25439.46 32769.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
D2MVS62.58 25961.05 26867.20 23163.85 33347.92 24556.29 33569.58 25639.32 32870.07 25578.19 27734.93 33272.68 24153.44 22683.74 23081.00 198
Patchmatch-test47.93 34049.96 34141.84 36957.42 36824.26 38948.75 36241.49 38739.30 32956.79 35273.48 31730.48 36333.87 39229.29 37672.61 32967.39 334
HY-MVS49.31 1957.96 29357.59 29459.10 30266.85 31236.17 34265.13 27465.39 28239.24 33054.69 36378.14 27844.28 28067.18 29833.75 36070.79 34173.95 282
baseline255.57 30452.74 32164.05 25765.26 32344.11 28062.38 29854.43 34039.03 33151.21 37267.35 36033.66 33672.45 24737.14 33964.22 36775.60 268
XXY-MVS55.19 30557.40 29648.56 34964.45 33134.84 35451.54 35753.59 34438.99 33263.79 31579.43 25856.59 21445.57 36536.92 34171.29 33865.25 348
pmmvs-eth3d64.41 24063.27 25167.82 22675.81 20260.18 15469.49 21062.05 30538.81 33374.13 20082.23 21943.76 28368.65 28242.53 30280.63 26674.63 277
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 30861.38 13570.03 20469.15 25938.59 33468.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
MDA-MVSNet_test_wron52.57 32053.49 31949.81 34154.24 38136.47 34040.48 38146.58 37038.13 33575.47 18073.32 31941.05 30143.85 37740.98 31371.20 33969.10 328
YYNet152.58 31953.50 31749.85 34054.15 38236.45 34140.53 38046.55 37138.09 33675.52 17973.31 32041.08 30043.88 37641.10 31171.14 34069.21 326
1112_ss59.48 28358.99 28360.96 29077.84 17042.39 29761.42 30368.45 26437.96 33759.93 33967.46 35845.11 27565.07 31140.89 31471.81 33675.41 271
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20278.35 16737.69 33874.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
UnsupCasMVSNet_eth52.26 32253.29 32049.16 34555.08 37833.67 36050.03 36058.79 31637.67 33963.43 32174.75 30441.82 29445.83 36438.59 32859.42 37967.98 333
tpm50.60 33152.42 32445.14 36165.18 32526.29 38460.30 31243.50 37637.41 34057.01 35079.09 26630.20 36642.32 38032.77 36366.36 36266.81 340
gm-plane-assit62.51 33933.91 35937.25 34162.71 37272.74 24038.70 325
CostFormer57.35 29656.14 30460.97 28963.76 33538.43 32567.50 23960.22 31137.14 34259.12 34376.34 29232.78 34171.99 25439.12 32369.27 35172.47 295
pmmvs460.78 27359.04 28266.00 24473.06 24557.67 17464.53 28160.22 31136.91 34365.96 29677.27 28639.66 30968.54 28338.87 32474.89 31171.80 302
PVSNet43.83 2151.56 32751.17 33052.73 32868.34 29338.27 32748.22 36453.56 34636.41 34454.29 36464.94 36634.60 33354.20 34630.34 36969.87 34865.71 345
tpmrst50.15 33451.38 32946.45 35656.05 37324.77 38864.40 28349.98 35836.14 34553.32 36769.59 34535.16 33148.69 35539.24 32158.51 38265.89 343
MS-PatchMatch55.59 30354.89 31257.68 31069.18 28349.05 23361.00 30762.93 30035.98 34658.36 34568.93 35036.71 32766.59 30637.62 33663.30 36957.39 375
MDTV_nov1_ep1354.05 31665.54 32229.30 37759.00 31955.22 33535.96 34752.44 36875.98 29330.77 36159.62 33038.21 33073.33 326
USDC62.80 25663.10 25361.89 27965.19 32443.30 28967.42 24174.20 21035.80 34872.25 22784.48 18445.67 27071.95 25537.95 33384.97 21170.42 316
jason64.47 23862.84 25569.34 19976.91 18459.20 15867.15 24765.67 27735.29 34965.16 30276.74 29044.67 27770.68 26554.74 21079.28 27978.14 246
jason: jason.
Anonymous2023120654.13 31055.82 30749.04 34770.89 26135.96 34451.73 35650.87 35634.86 35062.49 32279.22 26242.52 29244.29 37527.95 38181.88 24766.88 338
dp44.09 35344.88 35541.72 37158.53 36423.18 39154.70 34642.38 38334.80 35144.25 39065.61 36424.48 38744.80 37129.77 37349.42 39157.18 376
Test_1112_low_res58.78 28858.69 28559.04 30379.41 14338.13 33057.62 32866.98 27034.74 35259.62 34277.56 28442.92 28863.65 31838.66 32670.73 34275.35 273
EPMVS45.74 34546.53 34843.39 36754.14 38322.33 39455.02 34335.00 39634.69 35351.09 37370.20 34025.92 38042.04 38237.19 33855.50 38765.78 344
lupinMVS63.36 24861.49 26468.97 20774.93 20959.19 15965.80 26564.52 29034.68 35463.53 31974.25 31143.19 28670.62 26653.88 22278.67 28577.10 259
UnsupCasMVSNet_bld50.01 33551.03 33346.95 35258.61 36332.64 36348.31 36353.27 34934.27 35560.47 33471.53 33141.40 29547.07 36230.68 36860.78 37661.13 367
CMPMVSbinary48.73 2061.54 26860.89 26963.52 26361.08 34751.55 20868.07 23468.00 26633.88 35665.87 29781.25 22937.91 32067.71 28949.32 25382.60 24171.31 307
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WTY-MVS49.39 33750.31 34046.62 35561.22 34632.00 36746.61 37049.77 35933.87 35754.12 36569.55 34641.96 29345.40 36731.28 36764.42 36662.47 362
N_pmnet52.06 32351.11 33154.92 31859.64 35971.03 5337.42 38661.62 30833.68 35857.12 34972.10 32537.94 31931.03 39329.13 38071.35 33762.70 359
HyFIR lowres test63.01 25360.47 27370.61 17483.04 10254.10 19459.93 31572.24 22833.67 35969.00 26775.63 29638.69 31576.93 19736.60 34275.45 30780.81 205
tpm256.12 29954.64 31360.55 29366.24 31636.01 34368.14 23256.77 32933.60 36058.25 34675.52 29930.25 36474.33 22733.27 36169.76 35071.32 306
131459.83 28158.86 28462.74 27365.71 32144.78 27668.59 22672.63 22333.54 36161.05 33167.29 36143.62 28471.26 26249.49 25167.84 35972.19 299
CR-MVSNet58.96 28658.49 28760.36 29466.37 31348.24 23970.93 19356.40 33332.87 36261.35 32786.66 14333.19 33863.22 32048.50 26170.17 34669.62 322
MVS60.62 27559.97 27662.58 27468.13 29747.28 25568.59 22673.96 21132.19 36359.94 33868.86 35250.48 24677.64 19141.85 30775.74 30262.83 358
tpm cat154.02 31352.63 32258.19 30764.85 33039.86 31566.26 25957.28 32232.16 36456.90 35170.39 33832.75 34265.30 31034.29 35658.79 38069.41 324
pmmvs552.49 32152.58 32352.21 33154.99 37932.38 36455.45 34153.84 34332.15 36555.49 35974.81 30238.08 31857.37 34034.02 35774.40 31766.88 338
PMMVS237.74 36040.87 36028.36 37842.41 3995.35 40424.61 39127.75 39832.15 36547.85 38170.27 33935.85 33029.51 39519.08 39667.85 35850.22 382
sss47.59 34248.32 34245.40 36056.73 37233.96 35845.17 37348.51 36332.11 36752.37 36965.79 36340.39 30441.91 38331.85 36461.97 37360.35 368
test-mter48.56 33948.20 34449.64 34260.76 34841.87 29953.18 35145.48 37231.91 36849.41 37960.47 38018.34 39544.73 37242.09 30572.14 33462.33 364
MDTV_nov1_ep13_2view18.41 39653.74 34931.57 36944.89 38729.90 36832.93 36271.48 304
ADS-MVSNet248.76 33847.25 34753.29 32755.90 37540.54 31147.34 36854.99 33831.41 37050.48 37572.06 32631.23 35554.26 34525.93 38555.93 38565.07 349
ADS-MVSNet44.62 35145.58 35041.73 37055.90 37520.83 39547.34 36839.94 39131.41 37050.48 37572.06 32631.23 35539.31 38725.93 38555.93 38565.07 349
PVSNet_036.71 2241.12 35840.78 36142.14 36859.97 35440.13 31340.97 37942.24 38530.81 37244.86 38849.41 39240.70 30245.12 36923.15 39134.96 39541.16 391
test_vis1_n_192052.96 31653.50 31751.32 33459.15 36044.90 27556.13 33764.29 29230.56 37359.87 34060.68 37840.16 30547.47 36048.25 26562.46 37161.58 366
MVS-HIRNet45.53 34647.29 34640.24 37262.29 34026.82 38356.02 33837.41 39429.74 37443.69 39281.27 22833.96 33455.48 34124.46 39056.79 38438.43 393
CHOSEN 1792x268858.09 29256.30 30363.45 26479.95 13750.93 21254.07 34865.59 27928.56 37561.53 32674.33 30941.09 29966.52 30733.91 35867.69 36072.92 290
TESTMET0.1,145.17 34844.93 35445.89 35856.02 37438.31 32653.18 35141.94 38627.85 37644.86 38856.47 38517.93 39641.50 38438.08 33268.06 35657.85 373
test_fmvs356.78 29755.99 30659.12 30153.96 38548.09 24258.76 32266.22 27327.54 37776.66 16068.69 35425.32 38451.31 34753.42 22773.38 32577.97 251
CHOSEN 280x42041.62 35739.89 36246.80 35461.81 34251.59 20733.56 39035.74 39527.48 37837.64 39653.53 38623.24 38942.09 38127.39 38258.64 38146.72 385
EU-MVSNet60.82 27260.80 27160.86 29168.37 29241.16 30372.27 16468.27 26526.96 37969.08 26675.71 29532.09 34667.44 29455.59 20378.90 28273.97 281
test_cas_vis1_n_192050.90 33050.92 33450.83 33654.12 38447.80 24751.44 35854.61 33926.95 38063.95 31260.85 37737.86 32244.97 37045.53 28762.97 37059.72 370
CVMVSNet59.21 28558.44 28861.51 28373.94 22947.76 24971.31 18764.56 28926.91 38160.34 33570.44 33636.24 32967.65 29053.57 22468.66 35469.12 327
test_fmvs254.80 30754.11 31556.88 31351.76 38949.95 22356.70 33365.80 27626.22 38269.42 26265.25 36531.82 35049.98 35149.63 25070.36 34470.71 313
test_vis1_n51.27 32950.41 33953.83 32256.99 36950.01 22256.75 33260.53 31025.68 38359.74 34157.86 38329.40 36947.41 36143.10 30063.66 36864.08 356
new_pmnet37.55 36139.80 36330.79 37756.83 37016.46 39839.35 38330.65 39725.59 38445.26 38661.60 37524.54 38628.02 39621.60 39252.80 39047.90 384
test_fmvs1_n52.70 31852.01 32554.76 31953.83 38650.36 21655.80 33965.90 27524.96 38565.39 30060.64 37927.69 37348.46 35645.88 28567.99 35765.46 346
MVEpermissive27.91 2336.69 36235.64 36539.84 37343.37 39835.85 34619.49 39224.61 40024.68 38639.05 39462.63 37338.67 31627.10 39721.04 39447.25 39356.56 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_fmvs151.51 32850.86 33553.48 32449.72 39249.35 23254.11 34764.96 28524.64 38763.66 31759.61 38228.33 37248.45 35745.38 29067.30 36162.66 361
pmmvs346.71 34345.09 35351.55 33356.76 37148.25 23855.78 34039.53 39224.13 38850.35 37763.40 36915.90 40051.08 34829.29 37670.69 34355.33 378
test_vis3_rt51.94 32651.04 33254.65 32046.32 39650.13 22044.34 37678.17 17123.62 38968.95 27062.81 37121.41 39038.52 38941.49 30972.22 33375.30 274
mvsany_test343.76 35541.01 35952.01 33248.09 39457.74 17342.47 37823.85 40223.30 39064.80 30462.17 37427.12 37440.59 38529.17 37848.11 39257.69 374
PMMVS44.69 35043.95 35846.92 35350.05 39153.47 19948.08 36642.40 38222.36 39144.01 39153.05 38842.60 29145.49 36631.69 36561.36 37541.79 390
test_f43.79 35445.63 34938.24 37642.29 40038.58 32434.76 38947.68 36622.22 39267.34 29063.15 37031.82 35030.60 39439.19 32262.28 37245.53 388
test_vis1_rt46.70 34445.24 35251.06 33544.58 39751.04 21139.91 38267.56 26721.84 39351.94 37050.79 39133.83 33539.77 38635.25 35361.50 37462.38 363
mvsany_test137.88 35935.74 36444.28 36447.28 39549.90 22436.54 38824.37 40119.56 39445.76 38453.46 38732.99 34037.97 39026.17 38335.52 39444.99 389
DSMNet-mixed43.18 35644.66 35638.75 37454.75 38028.88 37957.06 33127.42 39913.47 39547.27 38377.67 28338.83 31439.29 38825.32 38960.12 37848.08 383
DeepMVS_CXcopyleft11.83 38015.51 40113.86 40011.25 4055.76 39620.85 39826.46 39517.06 3999.22 3999.69 39913.82 39812.42 395
test_method19.26 36319.12 36719.71 3799.09 4021.91 4067.79 39453.44 3471.42 39710.27 39935.80 39417.42 39825.11 39812.44 39724.38 39732.10 394
EGC-MVSNET64.77 23361.17 26675.60 9886.90 4274.47 3084.04 3568.62 2630.60 3981.13 40091.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
tmp_tt11.98 36514.73 3683.72 3812.28 4034.62 40519.44 39314.50 4040.47 39921.55 3979.58 39725.78 3814.57 40011.61 39827.37 3961.96 396
test1234.43 3685.78 3710.39 3830.97 4040.28 40746.33 3720.45 4060.31 4000.62 4011.50 4000.61 4060.11 4020.56 4000.63 3990.77 398
testmvs4.06 3695.28 3720.41 3820.64 4050.16 40842.54 3770.31 4070.26 4010.50 4021.40 4010.77 4050.17 4010.56 4000.55 4000.90 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k17.71 36423.62 3660.00 3840.00 4060.00 4090.00 39570.17 2530.00 4020.00 40374.25 31168.16 950.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.20 3676.93 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40262.39 1490.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re5.62 3667.50 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40367.46 3580.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS22.69 39236.10 348
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
eth-test20.00 406
eth-test0.00 406
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
GSMVS70.05 317
test_part285.90 5766.44 9184.61 62
sam_mvs131.41 35370.05 317
sam_mvs31.21 357
ambc70.10 18777.74 17250.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
MTGPAbinary80.63 123
test_post166.63 2552.08 39830.66 36259.33 33140.34 317
test_post1.99 39930.91 36054.76 344
patchmatchnet-post68.99 34831.32 35469.38 276
GG-mvs-BLEND52.24 33060.64 35029.21 37869.73 20942.41 38145.47 38552.33 38920.43 39368.16 28625.52 38865.42 36459.36 371
MTMP84.83 3119.26 403
test9_res72.12 6991.37 9377.40 254
agg_prior270.70 7590.93 10878.55 240
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
test_prior470.14 6377.57 102
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
新几何271.33 186
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 321
原ACMM274.78 143
testdata267.30 29548.34 263
segment_acmp68.30 94
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior184.46 81
n20.00 408
nn0.00 408
door-mid55.02 337
lessismore_v072.75 14779.60 14156.83 17857.37 32183.80 7289.01 9847.45 26678.74 16564.39 12586.49 19482.69 168
test1182.71 84
door52.91 351
HQP5-MVS58.80 167
BP-MVS67.38 102
HQP4-MVS71.59 23385.31 5283.74 134
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9563.07 12285.97 167
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145