| mamv4 | | | 90.28 1 | 88.75 1 | 94.85 1 | 93.34 1 | 96.17 1 | 82.69 57 | 91.63 1 | 86.34 1 | 97.97 1 | 94.77 3 | 66.57 120 | 95.38 1 | 87.74 1 | 97.72 1 | 93.00 7 |
|
| LCM-MVSNet | | | 86.90 2 | 88.67 2 | 81.57 25 | 91.50 2 | 63.30 123 | 84.80 35 | 87.77 10 | 86.18 2 | 96.26 2 | 96.06 1 | 90.32 1 | 84.49 72 | 68.08 92 | 97.05 2 | 96.93 1 |
|
| FOURS1 | | | | | | 89.19 24 | 77.84 14 | 91.64 1 | 89.11 3 | 84.05 3 | 91.57 3 | | | | | | |
|
| DTE-MVSNet | | | 80.35 52 | 82.89 39 | 72.74 152 | 89.84 8 | 37.34 350 | 77.16 114 | 81.81 105 | 80.45 4 | 90.92 4 | 92.95 8 | 74.57 50 | 86.12 31 | 63.65 138 | 94.68 35 | 94.76 6 |
|
| PEN-MVS | | | 80.46 50 | 82.91 38 | 73.11 137 | 89.83 9 | 39.02 333 | 77.06 117 | 82.61 93 | 80.04 5 | 90.60 7 | 92.85 10 | 74.93 47 | 85.21 60 | 63.15 145 | 95.15 21 | 95.09 2 |
|
| PS-CasMVS | | | 80.41 51 | 82.86 40 | 73.07 138 | 89.93 7 | 39.21 330 | 77.15 115 | 81.28 115 | 79.74 6 | 90.87 5 | 92.73 12 | 75.03 46 | 84.93 65 | 63.83 137 | 95.19 19 | 95.07 3 |
|
| reproduce_model | | | 84.87 6 | 85.80 6 | 82.05 23 | 85.52 66 | 78.14 13 | 87.69 6 | 85.36 38 | 79.26 7 | 89.12 12 | 92.10 19 | 77.52 25 | 85.92 39 | 80.47 8 | 95.20 18 | 82.10 186 |
|
| COLMAP_ROB |  | 72.78 3 | 83.75 15 | 84.11 19 | 82.68 13 | 82.97 106 | 74.39 36 | 87.18 11 | 88.18 7 | 78.98 8 | 86.11 43 | 91.47 34 | 79.70 14 | 85.76 45 | 66.91 111 | 95.46 12 | 87.89 49 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| CP-MVSNet | | | 79.48 58 | 81.65 49 | 72.98 141 | 89.66 13 | 39.06 332 | 76.76 118 | 80.46 135 | 78.91 9 | 90.32 8 | 91.70 29 | 68.49 96 | 84.89 66 | 63.40 142 | 95.12 22 | 95.01 4 |
|
| reproduce-ours | | | 84.97 4 | 85.93 4 | 82.10 21 | 86.11 57 | 77.53 18 | 87.08 13 | 85.81 28 | 78.70 10 | 88.94 13 | 91.88 24 | 79.74 12 | 86.05 32 | 79.90 9 | 95.21 16 | 82.72 171 |
|
| our_new_method | | | 84.97 4 | 85.93 4 | 82.10 21 | 86.11 57 | 77.53 18 | 87.08 13 | 85.81 28 | 78.70 10 | 88.94 13 | 91.88 24 | 79.74 12 | 86.05 32 | 79.90 9 | 95.21 16 | 82.72 171 |
|
| TDRefinement | | | 86.32 3 | 86.33 3 | 86.29 2 | 88.64 32 | 81.19 5 | 88.84 4 | 90.72 2 | 78.27 12 | 87.95 18 | 92.53 14 | 79.37 15 | 84.79 69 | 74.51 51 | 96.15 3 | 92.88 8 |
|
| WR-MVS_H | | | 80.22 54 | 82.17 45 | 74.39 115 | 89.46 15 | 42.69 303 | 78.24 101 | 82.24 97 | 78.21 13 | 89.57 10 | 92.10 19 | 68.05 101 | 85.59 50 | 66.04 116 | 95.62 10 | 94.88 5 |
|
| SR-MVS-dyc-post | | | 84.75 7 | 85.26 9 | 83.21 4 | 86.19 50 | 79.18 7 | 87.23 9 | 86.27 20 | 77.51 14 | 87.65 22 | 90.73 50 | 79.20 16 | 85.58 51 | 78.11 27 | 94.46 39 | 84.89 95 |
|
| RE-MVS-def | | | | 85.50 7 | | 86.19 50 | 79.18 7 | 87.23 9 | 86.27 20 | 77.51 14 | 87.65 22 | 90.73 50 | 81.38 7 | | 78.11 27 | 94.46 39 | 84.89 95 |
|
| LS3D | | | 80.99 45 | 80.85 53 | 81.41 29 | 78.37 164 | 71.37 54 | 87.45 8 | 85.87 27 | 77.48 16 | 81.98 92 | 89.95 80 | 69.14 91 | 85.26 57 | 66.15 113 | 91.24 97 | 87.61 53 |
|
| SR-MVS | | | 84.51 9 | 85.27 8 | 82.25 19 | 88.52 34 | 77.71 15 | 86.81 19 | 85.25 40 | 77.42 17 | 86.15 41 | 90.24 73 | 81.69 5 | 85.94 36 | 77.77 30 | 93.58 64 | 83.09 158 |
|
| 3Dnovator+ | | 73.19 2 | 81.08 43 | 80.48 55 | 82.87 8 | 81.41 127 | 72.03 49 | 84.38 38 | 86.23 23 | 77.28 18 | 80.65 112 | 90.18 76 | 59.80 188 | 87.58 6 | 73.06 62 | 91.34 95 | 89.01 34 |
|
| UA-Net | | | 81.56 37 | 82.28 44 | 79.40 52 | 88.91 29 | 69.16 76 | 84.67 36 | 80.01 144 | 75.34 19 | 79.80 119 | 94.91 2 | 69.79 88 | 80.25 146 | 72.63 66 | 94.46 39 | 88.78 42 |
|
| test_0402 | | | 78.17 72 | 79.48 63 | 74.24 117 | 83.50 94 | 59.15 163 | 72.52 170 | 74.60 215 | 75.34 19 | 88.69 17 | 91.81 27 | 75.06 45 | 82.37 106 | 65.10 121 | 88.68 158 | 81.20 198 |
|
| test_one_0601 | | | | | | 85.84 64 | 61.45 137 | | 85.63 30 | 75.27 21 | 85.62 51 | 90.38 67 | 76.72 30 | | | | |
|
| DP-MVS | | | 78.44 70 | 79.29 64 | 75.90 97 | 81.86 122 | 65.33 106 | 79.05 91 | 84.63 58 | 74.83 22 | 80.41 114 | 86.27 163 | 71.68 69 | 83.45 89 | 62.45 149 | 92.40 79 | 78.92 244 |
|
| APD-MVS_3200maxsize | | | 83.57 17 | 84.33 16 | 81.31 32 | 82.83 109 | 73.53 44 | 85.50 30 | 87.45 13 | 74.11 23 | 86.45 38 | 90.52 58 | 80.02 10 | 84.48 73 | 77.73 31 | 94.34 50 | 85.93 75 |
|
| PMVS |  | 70.70 6 | 81.70 36 | 83.15 35 | 77.36 79 | 90.35 6 | 82.82 3 | 82.15 59 | 79.22 157 | 74.08 24 | 87.16 32 | 91.97 21 | 84.80 2 | 76.97 202 | 64.98 123 | 93.61 63 | 72.28 315 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| DVP-MVS++ | | | 81.24 39 | 82.74 41 | 76.76 84 | 83.14 99 | 60.90 147 | 91.64 1 | 85.49 32 | 74.03 25 | 84.93 59 | 90.38 67 | 66.82 113 | 85.90 40 | 77.43 34 | 90.78 115 | 83.49 142 |
|
| test_0728_THIRD | | | | | | | | | | 74.03 25 | 85.83 46 | 90.41 62 | 75.58 40 | 85.69 47 | 77.43 34 | 94.74 33 | 84.31 122 |
|
| HPM-MVS_fast | | | 84.59 8 | 85.10 10 | 83.06 5 | 88.60 33 | 75.83 27 | 86.27 27 | 86.89 16 | 73.69 27 | 86.17 40 | 91.70 29 | 78.23 21 | 85.20 61 | 79.45 16 | 94.91 28 | 88.15 48 |
|
| DPE-MVS |  | | 82.00 34 | 83.02 37 | 78.95 60 | 85.36 69 | 67.25 89 | 82.91 54 | 84.98 45 | 73.52 28 | 85.43 54 | 90.03 77 | 76.37 32 | 86.97 13 | 74.56 50 | 94.02 58 | 82.62 175 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| LTVRE_ROB | | 75.46 1 | 84.22 10 | 84.98 11 | 81.94 24 | 84.82 76 | 75.40 29 | 91.60 3 | 87.80 8 | 73.52 28 | 88.90 15 | 93.06 7 | 71.39 73 | 81.53 119 | 81.53 4 | 92.15 84 | 88.91 38 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| ACMH+ | | 66.64 10 | 81.20 40 | 82.48 43 | 77.35 80 | 81.16 131 | 62.39 128 | 80.51 72 | 87.80 8 | 73.02 30 | 87.57 24 | 91.08 40 | 80.28 9 | 82.44 104 | 64.82 125 | 96.10 5 | 87.21 58 |
|
| MVSMamba_PlusPlus | | | 76.88 80 | 78.21 74 | 72.88 148 | 80.83 132 | 48.71 239 | 83.28 52 | 82.79 87 | 72.78 31 | 79.17 126 | 91.94 22 | 56.47 224 | 83.95 78 | 70.51 78 | 86.15 201 | 85.99 74 |
|
| XVS | | | 83.51 19 | 83.73 24 | 82.85 9 | 89.43 16 | 77.61 16 | 86.80 20 | 84.66 56 | 72.71 32 | 82.87 83 | 90.39 65 | 73.86 55 | 86.31 21 | 78.84 23 | 94.03 56 | 84.64 105 |
|
| X-MVStestdata | | | 76.81 81 | 74.79 103 | 82.85 9 | 89.43 16 | 77.61 16 | 86.80 20 | 84.66 56 | 72.71 32 | 82.87 83 | 9.95 420 | 73.86 55 | 86.31 21 | 78.84 23 | 94.03 56 | 84.64 105 |
|
| test_241102_ONE | | | | | | 86.12 54 | 61.06 143 | | 84.72 52 | 72.64 34 | 87.38 28 | 89.47 86 | 77.48 26 | 85.74 46 | | | |
|
| SED-MVS | | | 81.78 35 | 83.48 28 | 76.67 85 | 86.12 54 | 61.06 143 | 83.62 46 | 84.72 52 | 72.61 35 | 87.38 28 | 89.70 83 | 77.48 26 | 85.89 42 | 75.29 45 | 94.39 44 | 83.08 159 |
|
| test_241102_TWO | | | | | | | | | 84.80 48 | 72.61 35 | 84.93 59 | 89.70 83 | 77.73 24 | 85.89 42 | 75.29 45 | 94.22 55 | 83.25 153 |
|
| DVP-MVS |  | | 81.15 41 | 83.12 36 | 75.24 107 | 86.16 52 | 60.78 149 | 83.77 44 | 80.58 133 | 72.48 37 | 85.83 46 | 90.41 62 | 78.57 19 | 85.69 47 | 75.86 42 | 94.39 44 | 79.24 239 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 86.16 52 | 60.78 149 | 83.81 43 | 85.10 43 | 72.48 37 | 85.27 56 | 89.96 79 | 78.57 19 | | | | |
|
| mPP-MVS | | | 84.01 14 | 84.39 15 | 82.88 7 | 90.65 4 | 81.38 4 | 87.08 13 | 82.79 87 | 72.41 39 | 85.11 58 | 90.85 47 | 76.65 31 | 84.89 66 | 79.30 20 | 94.63 36 | 82.35 180 |
|
| UniMVSNet_ETH3D | | | 76.74 82 | 79.02 65 | 69.92 195 | 89.27 20 | 43.81 290 | 74.47 154 | 71.70 237 | 72.33 40 | 85.50 53 | 93.65 4 | 77.98 23 | 76.88 205 | 54.60 221 | 91.64 88 | 89.08 32 |
|
| MTAPA | | | 83.19 22 | 83.87 22 | 81.13 34 | 91.16 3 | 78.16 12 | 84.87 33 | 80.63 131 | 72.08 41 | 84.93 59 | 90.79 48 | 74.65 49 | 84.42 75 | 80.98 5 | 94.75 32 | 80.82 210 |
|
| APDe-MVS |  | | 82.88 27 | 84.14 18 | 79.08 55 | 84.80 78 | 66.72 94 | 86.54 23 | 85.11 42 | 72.00 42 | 86.65 35 | 91.75 28 | 78.20 22 | 87.04 11 | 77.93 29 | 94.32 51 | 83.47 145 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| CP-MVS | | | 84.12 12 | 84.55 14 | 82.80 11 | 89.42 18 | 79.74 6 | 88.19 5 | 84.43 61 | 71.96 43 | 84.70 64 | 90.56 55 | 77.12 28 | 86.18 28 | 79.24 21 | 95.36 13 | 82.49 178 |
|
| MP-MVS |  | | 83.19 22 | 83.54 27 | 82.14 20 | 90.54 5 | 79.00 9 | 86.42 25 | 83.59 77 | 71.31 44 | 81.26 103 | 90.96 42 | 74.57 50 | 84.69 70 | 78.41 25 | 94.78 31 | 82.74 170 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| MM | | | 78.15 73 | 77.68 78 | 79.55 50 | 80.10 139 | 65.47 104 | 80.94 68 | 78.74 167 | 71.22 45 | 72.40 235 | 88.70 107 | 60.51 179 | 87.70 4 | 77.40 36 | 89.13 152 | 85.48 85 |
|
| gg-mvs-nofinetune | | | 55.75 314 | 56.75 312 | 52.72 347 | 62.87 357 | 28.04 398 | 68.92 227 | 41.36 410 | 71.09 46 | 50.80 396 | 92.63 13 | 20.74 409 | 66.86 310 | 29.97 389 | 72.41 349 | 63.25 379 |
|
| ACMMP |  | | 84.22 10 | 84.84 12 | 82.35 18 | 89.23 22 | 76.66 26 | 87.65 7 | 85.89 26 | 71.03 47 | 85.85 45 | 90.58 54 | 78.77 18 | 85.78 44 | 79.37 19 | 95.17 20 | 84.62 107 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| SteuartSystems-ACMMP | | | 83.07 25 | 83.64 26 | 81.35 30 | 85.14 72 | 71.00 58 | 85.53 29 | 84.78 49 | 70.91 48 | 85.64 48 | 90.41 62 | 75.55 41 | 87.69 5 | 79.75 11 | 95.08 23 | 85.36 86 |
| Skip Steuart: Steuart Systems R&D Blog. |
| v7n | | | 79.37 60 | 80.41 56 | 76.28 92 | 78.67 163 | 55.81 185 | 79.22 90 | 82.51 95 | 70.72 49 | 87.54 25 | 92.44 15 | 68.00 103 | 81.34 121 | 72.84 64 | 91.72 86 | 91.69 11 |
|
| HPM-MVS |  | | 84.12 12 | 84.63 13 | 82.60 14 | 88.21 36 | 74.40 35 | 85.24 31 | 87.21 14 | 70.69 50 | 85.14 57 | 90.42 61 | 78.99 17 | 86.62 15 | 80.83 6 | 94.93 27 | 86.79 64 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| HFP-MVS | | | 83.39 21 | 84.03 20 | 81.48 27 | 89.25 21 | 75.69 28 | 87.01 17 | 84.27 64 | 70.23 51 | 84.47 67 | 90.43 60 | 76.79 29 | 85.94 36 | 79.58 14 | 94.23 54 | 82.82 167 |
|
| ACMMPR | | | 83.62 16 | 83.93 21 | 82.69 12 | 89.78 11 | 77.51 22 | 87.01 17 | 84.19 68 | 70.23 51 | 84.49 66 | 90.67 53 | 75.15 44 | 86.37 20 | 79.58 14 | 94.26 52 | 84.18 125 |
|
| region2R | | | 83.54 18 | 83.86 23 | 82.58 15 | 89.82 10 | 77.53 18 | 87.06 16 | 84.23 67 | 70.19 53 | 83.86 73 | 90.72 52 | 75.20 43 | 86.27 23 | 79.41 18 | 94.25 53 | 83.95 130 |
|
| IS-MVSNet | | | 75.10 99 | 75.42 100 | 74.15 119 | 79.23 150 | 48.05 249 | 79.43 86 | 78.04 181 | 70.09 54 | 79.17 126 | 88.02 125 | 53.04 240 | 83.60 83 | 58.05 188 | 93.76 62 | 90.79 18 |
|
| LPG-MVS_test | | | 83.47 20 | 84.33 16 | 80.90 36 | 87.00 40 | 70.41 64 | 82.04 61 | 86.35 17 | 69.77 55 | 87.75 19 | 91.13 38 | 81.83 3 | 86.20 26 | 77.13 39 | 95.96 6 | 86.08 71 |
|
| LGP-MVS_train | | | | | 80.90 36 | 87.00 40 | 70.41 64 | | 86.35 17 | 69.77 55 | 87.75 19 | 91.13 38 | 81.83 3 | 86.20 26 | 77.13 39 | 95.96 6 | 86.08 71 |
|
| APD-MVS |  | | 81.13 42 | 81.73 48 | 79.36 53 | 84.47 83 | 70.53 63 | 83.85 42 | 83.70 75 | 69.43 57 | 83.67 75 | 88.96 103 | 75.89 37 | 86.41 18 | 72.62 67 | 92.95 71 | 81.14 200 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| Anonymous20231211 | | | 75.54 92 | 77.19 83 | 70.59 179 | 77.67 176 | 45.70 278 | 74.73 148 | 80.19 140 | 68.80 58 | 82.95 82 | 92.91 9 | 66.26 122 | 76.76 207 | 58.41 186 | 92.77 74 | 89.30 27 |
|
| CPTT-MVS | | | 81.51 38 | 81.76 47 | 80.76 38 | 89.20 23 | 78.75 10 | 86.48 24 | 82.03 101 | 68.80 58 | 80.92 108 | 88.52 113 | 72.00 68 | 82.39 105 | 74.80 47 | 93.04 70 | 81.14 200 |
|
| VDDNet | | | 71.60 155 | 73.13 134 | 67.02 241 | 86.29 48 | 41.11 313 | 69.97 213 | 66.50 283 | 68.72 60 | 74.74 196 | 91.70 29 | 59.90 185 | 75.81 213 | 48.58 271 | 91.72 86 | 84.15 127 |
|
| TranMVSNet+NR-MVSNet | | | 76.13 85 | 77.66 79 | 71.56 170 | 84.61 81 | 42.57 305 | 70.98 200 | 78.29 177 | 68.67 61 | 83.04 79 | 89.26 90 | 72.99 61 | 80.75 138 | 55.58 212 | 95.47 11 | 91.35 12 |
|
| GST-MVS | | | 82.79 28 | 83.27 33 | 81.34 31 | 88.99 27 | 73.29 45 | 85.94 28 | 85.13 41 | 68.58 62 | 84.14 70 | 90.21 75 | 73.37 59 | 86.41 18 | 79.09 22 | 93.98 59 | 84.30 124 |
|
| SSC-MVS | | | 61.79 276 | 66.08 230 | 48.89 369 | 76.91 187 | 10.00 426 | 53.56 369 | 47.37 387 | 68.20 63 | 76.56 169 | 89.21 92 | 54.13 235 | 57.59 355 | 54.75 218 | 74.07 338 | 79.08 242 |
|
| PGM-MVS | | | 83.07 25 | 83.25 34 | 82.54 16 | 89.57 14 | 77.21 24 | 82.04 61 | 85.40 36 | 67.96 64 | 84.91 62 | 90.88 45 | 75.59 39 | 86.57 16 | 78.16 26 | 94.71 34 | 83.82 132 |
|
| ZNCC-MVS | | | 83.12 24 | 83.68 25 | 81.45 28 | 89.14 25 | 73.28 46 | 86.32 26 | 85.97 25 | 67.39 65 | 84.02 71 | 90.39 65 | 74.73 48 | 86.46 17 | 80.73 7 | 94.43 43 | 84.60 110 |
|
| Anonymous20240529 | | | 72.56 143 | 73.79 120 | 68.86 217 | 76.89 190 | 45.21 281 | 68.80 232 | 77.25 192 | 67.16 66 | 76.89 157 | 90.44 59 | 65.95 125 | 74.19 237 | 50.75 250 | 90.00 129 | 87.18 60 |
|
| XVG-OURS | | | 79.51 57 | 79.82 60 | 78.58 65 | 86.11 57 | 74.96 32 | 76.33 127 | 84.95 47 | 66.89 67 | 82.75 86 | 88.99 102 | 66.82 113 | 78.37 181 | 74.80 47 | 90.76 118 | 82.40 179 |
|
| ITE_SJBPF | | | | | 80.35 42 | 76.94 186 | 73.60 42 | | 80.48 134 | 66.87 68 | 83.64 76 | 86.18 166 | 70.25 83 | 79.90 152 | 61.12 159 | 88.95 156 | 87.56 54 |
|
| ACMP | | 69.50 8 | 82.64 29 | 83.38 30 | 80.40 41 | 86.50 46 | 69.44 71 | 82.30 58 | 86.08 24 | 66.80 69 | 86.70 34 | 89.99 78 | 81.64 6 | 85.95 35 | 74.35 53 | 96.11 4 | 85.81 77 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| XVG-OURS-SEG-HR | | | 79.62 56 | 79.99 59 | 78.49 66 | 86.46 47 | 74.79 33 | 77.15 115 | 85.39 37 | 66.73 70 | 80.39 115 | 88.85 105 | 74.43 53 | 78.33 183 | 74.73 49 | 85.79 206 | 82.35 180 |
|
| UniMVSNet_NR-MVSNet | | | 74.90 105 | 75.65 96 | 72.64 155 | 83.04 104 | 45.79 275 | 69.26 223 | 78.81 163 | 66.66 71 | 81.74 97 | 86.88 141 | 63.26 146 | 81.07 129 | 56.21 203 | 94.98 24 | 91.05 14 |
|
| XVG-ACMP-BASELINE | | | 80.54 48 | 81.06 52 | 78.98 59 | 87.01 39 | 72.91 47 | 80.23 80 | 85.56 31 | 66.56 72 | 85.64 48 | 89.57 85 | 69.12 92 | 80.55 141 | 72.51 68 | 93.37 66 | 83.48 144 |
|
| ACMM | | 69.25 9 | 82.11 33 | 83.31 31 | 78.49 66 | 88.17 37 | 73.96 38 | 83.11 53 | 84.52 60 | 66.40 73 | 87.45 26 | 89.16 96 | 81.02 8 | 80.52 142 | 74.27 54 | 95.73 8 | 80.98 206 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| PAPM_NR | | | 73.91 112 | 74.16 113 | 73.16 135 | 81.90 121 | 53.50 203 | 81.28 66 | 81.40 112 | 66.17 74 | 73.30 224 | 83.31 214 | 59.96 184 | 83.10 95 | 58.45 185 | 81.66 262 | 82.87 165 |
|
| K. test v3 | | | 73.67 115 | 73.61 124 | 73.87 123 | 79.78 141 | 55.62 189 | 74.69 150 | 62.04 317 | 66.16 75 | 84.76 63 | 93.23 6 | 49.47 260 | 80.97 133 | 65.66 119 | 86.67 197 | 85.02 94 |
|
| NCCC | | | 78.25 71 | 78.04 76 | 78.89 61 | 85.61 65 | 69.45 70 | 79.80 85 | 80.99 124 | 65.77 76 | 75.55 185 | 86.25 165 | 67.42 106 | 85.42 52 | 70.10 79 | 90.88 113 | 81.81 191 |
|
| OPM-MVS | | | 80.99 45 | 81.63 50 | 79.07 56 | 86.86 44 | 69.39 72 | 79.41 88 | 84.00 73 | 65.64 77 | 85.54 52 | 89.28 89 | 76.32 34 | 83.47 88 | 74.03 56 | 93.57 65 | 84.35 121 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| AdaColmap |  | | 74.22 110 | 74.56 106 | 73.20 134 | 81.95 120 | 60.97 145 | 79.43 86 | 80.90 125 | 65.57 78 | 72.54 233 | 81.76 235 | 70.98 78 | 85.26 57 | 47.88 280 | 90.00 129 | 73.37 301 |
|
| APD_test1 | | | 75.04 101 | 75.38 101 | 74.02 121 | 69.89 293 | 70.15 66 | 76.46 121 | 79.71 147 | 65.50 79 | 82.99 81 | 88.60 112 | 66.94 110 | 72.35 257 | 59.77 175 | 88.54 159 | 79.56 233 |
|
| HQP_MVS | | | 78.77 64 | 78.78 68 | 78.72 62 | 85.18 70 | 65.18 108 | 82.74 55 | 85.49 32 | 65.45 80 | 78.23 137 | 89.11 97 | 60.83 177 | 86.15 29 | 71.09 74 | 90.94 107 | 84.82 100 |
|
| plane_prior2 | | | | | | | | 82.74 55 | | 65.45 80 | | | | | | | |
|
| CNLPA | | | 73.44 119 | 73.03 138 | 74.66 109 | 78.27 165 | 75.29 30 | 75.99 132 | 78.49 172 | 65.39 82 | 75.67 183 | 83.22 220 | 61.23 170 | 66.77 313 | 53.70 232 | 85.33 213 | 81.92 190 |
|
| AllTest | | | 77.66 74 | 77.43 80 | 78.35 68 | 79.19 152 | 70.81 59 | 78.60 95 | 88.64 4 | 65.37 83 | 80.09 117 | 88.17 121 | 70.33 81 | 78.43 178 | 55.60 209 | 90.90 111 | 85.81 77 |
|
| TestCases | | | | | 78.35 68 | 79.19 152 | 70.81 59 | | 88.64 4 | 65.37 83 | 80.09 117 | 88.17 121 | 70.33 81 | 78.43 178 | 55.60 209 | 90.90 111 | 85.81 77 |
|
| SF-MVS | | | 80.72 47 | 81.80 46 | 77.48 77 | 82.03 119 | 64.40 115 | 83.41 50 | 88.46 6 | 65.28 85 | 84.29 68 | 89.18 94 | 73.73 58 | 83.22 92 | 76.01 41 | 93.77 61 | 84.81 102 |
|
| DU-MVS | | | 74.91 104 | 75.57 98 | 72.93 145 | 83.50 94 | 45.79 275 | 69.47 219 | 80.14 142 | 65.22 86 | 81.74 97 | 87.08 134 | 61.82 162 | 81.07 129 | 56.21 203 | 94.98 24 | 91.93 9 |
|
| LFMVS | | | 67.06 220 | 67.89 208 | 64.56 259 | 78.02 169 | 38.25 341 | 70.81 204 | 59.60 324 | 65.18 87 | 71.06 255 | 86.56 156 | 43.85 292 | 75.22 221 | 46.35 292 | 89.63 137 | 80.21 226 |
|
| WB-MVS | | | 60.04 290 | 64.19 251 | 47.59 372 | 76.09 201 | 10.22 425 | 52.44 374 | 46.74 389 | 65.17 88 | 74.07 211 | 87.48 129 | 53.48 238 | 55.28 361 | 49.36 263 | 72.84 346 | 77.28 263 |
|
| EPP-MVSNet | | | 73.86 114 | 73.38 127 | 75.31 105 | 78.19 166 | 53.35 205 | 80.45 73 | 77.32 190 | 65.11 89 | 76.47 175 | 86.80 142 | 49.47 260 | 83.77 81 | 53.89 230 | 92.72 76 | 88.81 41 |
|
| WR-MVS | | | 71.20 159 | 72.48 147 | 67.36 236 | 84.98 74 | 35.70 360 | 64.43 292 | 68.66 273 | 65.05 90 | 81.49 100 | 86.43 160 | 57.57 212 | 76.48 209 | 50.36 254 | 93.32 68 | 89.90 22 |
|
| testf1 | | | 75.66 90 | 76.57 86 | 72.95 142 | 67.07 327 | 67.62 85 | 76.10 129 | 80.68 129 | 64.95 91 | 86.58 36 | 90.94 43 | 71.20 75 | 71.68 267 | 60.46 164 | 91.13 102 | 79.56 233 |
|
| APD_test2 | | | 75.66 90 | 76.57 86 | 72.95 142 | 67.07 327 | 67.62 85 | 76.10 129 | 80.68 129 | 64.95 91 | 86.58 36 | 90.94 43 | 71.20 75 | 71.68 267 | 60.46 164 | 91.13 102 | 79.56 233 |
|
| MSP-MVS | | | 80.49 49 | 79.67 62 | 82.96 6 | 89.70 12 | 77.46 23 | 87.16 12 | 85.10 43 | 64.94 93 | 81.05 106 | 88.38 117 | 57.10 217 | 87.10 9 | 79.75 11 | 83.87 235 | 84.31 122 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| ACMMP_NAP | | | 82.33 31 | 83.28 32 | 79.46 51 | 89.28 19 | 69.09 78 | 83.62 46 | 84.98 45 | 64.77 94 | 83.97 72 | 91.02 41 | 75.53 42 | 85.93 38 | 82.00 3 | 94.36 48 | 83.35 151 |
|
| HPM-MVS++ |  | | 79.89 55 | 79.80 61 | 80.18 43 | 89.02 26 | 78.44 11 | 83.49 49 | 80.18 141 | 64.71 95 | 78.11 140 | 88.39 116 | 65.46 131 | 83.14 93 | 77.64 33 | 91.20 98 | 78.94 243 |
|
| SD-MVS | | | 80.28 53 | 81.55 51 | 76.47 90 | 83.57 93 | 67.83 84 | 83.39 51 | 85.35 39 | 64.42 96 | 86.14 42 | 87.07 136 | 74.02 54 | 80.97 133 | 77.70 32 | 92.32 82 | 80.62 218 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| NR-MVSNet | | | 73.62 116 | 74.05 115 | 72.33 162 | 83.50 94 | 43.71 291 | 65.65 277 | 77.32 190 | 64.32 97 | 75.59 184 | 87.08 134 | 62.45 155 | 81.34 121 | 54.90 216 | 95.63 9 | 91.93 9 |
|
| Gipuma |  | | 69.55 182 | 72.83 141 | 59.70 308 | 63.63 355 | 53.97 199 | 80.08 82 | 75.93 203 | 64.24 98 | 73.49 220 | 88.93 104 | 57.89 210 | 62.46 334 | 59.75 176 | 91.55 92 | 62.67 382 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| SixPastTwentyTwo | | | 75.77 87 | 76.34 89 | 74.06 120 | 81.69 124 | 54.84 192 | 76.47 120 | 75.49 207 | 64.10 99 | 87.73 21 | 92.24 18 | 50.45 255 | 81.30 123 | 67.41 101 | 91.46 93 | 86.04 73 |
|
| EI-MVSNet-Vis-set | | | 72.78 139 | 71.87 154 | 75.54 103 | 74.77 220 | 59.02 166 | 72.24 173 | 71.56 240 | 63.92 100 | 78.59 132 | 71.59 344 | 66.22 123 | 78.60 172 | 67.58 98 | 80.32 275 | 89.00 35 |
|
| CNVR-MVS | | | 78.49 68 | 78.59 70 | 78.16 70 | 85.86 63 | 67.40 88 | 78.12 104 | 81.50 109 | 63.92 100 | 77.51 148 | 86.56 156 | 68.43 98 | 84.82 68 | 73.83 57 | 91.61 90 | 82.26 184 |
|
| plane_prior3 | | | | | | | 65.67 103 | | | 63.82 102 | 78.23 137 | | | | | | |
|
| tt0805 | | | 76.12 86 | 78.43 72 | 69.20 205 | 81.32 128 | 41.37 311 | 76.72 119 | 77.64 186 | 63.78 103 | 82.06 91 | 87.88 126 | 79.78 11 | 79.05 163 | 64.33 129 | 92.40 79 | 87.17 61 |
|
| UniMVSNet (Re) | | | 75.00 102 | 75.48 99 | 73.56 129 | 83.14 99 | 47.92 251 | 70.41 209 | 81.04 123 | 63.67 104 | 79.54 121 | 86.37 161 | 62.83 150 | 81.82 115 | 57.10 195 | 95.25 15 | 90.94 16 |
|
| ANet_high | | | 67.08 219 | 69.94 178 | 58.51 318 | 57.55 389 | 27.09 401 | 58.43 338 | 76.80 196 | 63.56 105 | 82.40 89 | 91.93 23 | 59.82 187 | 64.98 325 | 50.10 256 | 88.86 157 | 83.46 146 |
|
| SMA-MVS |  | | 82.12 32 | 82.68 42 | 80.43 40 | 88.90 30 | 69.52 69 | 85.12 32 | 84.76 50 | 63.53 106 | 84.23 69 | 91.47 34 | 72.02 67 | 87.16 8 | 79.74 13 | 94.36 48 | 84.61 108 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| EI-MVSNet-UG-set | | | 72.63 142 | 71.68 158 | 75.47 104 | 74.67 222 | 58.64 171 | 72.02 178 | 71.50 241 | 63.53 106 | 78.58 134 | 71.39 348 | 65.98 124 | 78.53 173 | 67.30 108 | 80.18 278 | 89.23 29 |
|
| pmmvs6 | | | 71.82 152 | 73.66 122 | 66.31 248 | 75.94 205 | 42.01 307 | 66.99 259 | 72.53 232 | 63.45 108 | 76.43 176 | 92.78 11 | 72.95 62 | 69.69 282 | 51.41 245 | 90.46 121 | 87.22 57 |
|
| EC-MVSNet | | | 77.08 79 | 77.39 81 | 76.14 95 | 76.86 191 | 56.87 178 | 80.32 78 | 87.52 12 | 63.45 108 | 74.66 200 | 84.52 193 | 69.87 87 | 84.94 64 | 69.76 82 | 89.59 139 | 86.60 67 |
|
| ACMH | | 63.62 14 | 77.50 76 | 80.11 58 | 69.68 197 | 79.61 143 | 56.28 180 | 78.81 93 | 83.62 76 | 63.41 110 | 87.14 33 | 90.23 74 | 76.11 35 | 73.32 244 | 67.58 98 | 94.44 42 | 79.44 237 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| Anonymous202405211 | | | 66.02 231 | 66.89 224 | 63.43 272 | 74.22 231 | 38.14 342 | 59.00 331 | 66.13 285 | 63.33 111 | 69.76 272 | 85.95 176 | 51.88 245 | 70.50 276 | 44.23 306 | 87.52 174 | 81.64 195 |
|
| CANet | | | 73.00 133 | 71.84 155 | 76.48 89 | 75.82 206 | 61.28 139 | 74.81 144 | 80.37 138 | 63.17 112 | 62.43 338 | 80.50 251 | 61.10 174 | 85.16 63 | 64.00 132 | 84.34 231 | 83.01 162 |
|
| MP-MVS-pluss | | | 82.54 30 | 83.46 29 | 79.76 45 | 88.88 31 | 68.44 80 | 81.57 64 | 86.33 19 | 63.17 112 | 85.38 55 | 91.26 37 | 76.33 33 | 84.67 71 | 83.30 2 | 94.96 26 | 86.17 70 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| MVS_0304 | | | 75.45 93 | 74.66 105 | 77.83 74 | 75.58 209 | 61.53 136 | 78.29 99 | 77.18 193 | 63.15 114 | 69.97 268 | 87.20 131 | 57.54 213 | 87.05 10 | 74.05 55 | 88.96 155 | 84.89 95 |
|
| Vis-MVSNet |  | | 74.85 108 | 74.56 106 | 75.72 99 | 81.63 125 | 64.64 113 | 76.35 125 | 79.06 159 | 62.85 115 | 73.33 223 | 88.41 115 | 62.54 154 | 79.59 157 | 63.94 136 | 82.92 245 | 82.94 163 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| Effi-MVS+ | | | 72.10 150 | 72.28 151 | 71.58 169 | 74.21 232 | 50.33 222 | 74.72 149 | 82.73 90 | 62.62 116 | 70.77 257 | 76.83 302 | 69.96 86 | 80.97 133 | 60.20 166 | 78.43 299 | 83.45 147 |
|
| OMC-MVS | | | 79.41 59 | 78.79 67 | 81.28 33 | 80.62 135 | 70.71 62 | 80.91 69 | 84.76 50 | 62.54 117 | 81.77 95 | 86.65 152 | 71.46 71 | 83.53 86 | 67.95 96 | 92.44 78 | 89.60 24 |
|
| API-MVS | | | 70.97 163 | 71.51 163 | 69.37 200 | 75.20 212 | 55.94 183 | 80.99 67 | 76.84 195 | 62.48 118 | 71.24 253 | 77.51 297 | 61.51 166 | 80.96 136 | 52.04 239 | 85.76 208 | 71.22 326 |
|
| CSCG | | | 74.12 111 | 74.39 108 | 73.33 132 | 79.35 147 | 61.66 135 | 77.45 110 | 81.98 102 | 62.47 119 | 79.06 128 | 80.19 257 | 61.83 161 | 78.79 169 | 59.83 174 | 87.35 179 | 79.54 236 |
|
| ETV-MVS | | | 72.72 140 | 72.16 153 | 74.38 116 | 76.90 189 | 55.95 182 | 73.34 165 | 84.67 55 | 62.04 120 | 72.19 239 | 70.81 349 | 65.90 126 | 85.24 59 | 58.64 183 | 84.96 221 | 81.95 189 |
|
| OurMVSNet-221017-0 | | | 78.57 66 | 78.53 71 | 78.67 63 | 80.48 136 | 64.16 116 | 80.24 79 | 82.06 100 | 61.89 121 | 88.77 16 | 93.32 5 | 57.15 215 | 82.60 103 | 70.08 80 | 92.80 73 | 89.25 28 |
|
| plane_prior | | | | | | | 65.18 108 | 80.06 83 | | 61.88 122 | | | | | | 89.91 133 | |
|
| UGNet | | | 70.20 172 | 69.05 188 | 73.65 125 | 76.24 198 | 63.64 119 | 75.87 134 | 72.53 232 | 61.48 123 | 60.93 348 | 86.14 169 | 52.37 243 | 77.12 201 | 50.67 251 | 85.21 215 | 80.17 227 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| VDD-MVS | | | 70.81 165 | 71.44 164 | 68.91 216 | 79.07 157 | 46.51 269 | 67.82 246 | 70.83 258 | 61.23 124 | 74.07 211 | 88.69 108 | 59.86 186 | 75.62 216 | 51.11 247 | 90.28 123 | 84.61 108 |
|
| FMVSNet1 | | | 71.06 160 | 72.48 147 | 66.81 242 | 77.65 177 | 40.68 320 | 71.96 181 | 73.03 224 | 61.14 125 | 79.45 123 | 90.36 70 | 60.44 180 | 75.20 223 | 50.20 255 | 88.05 166 | 84.54 112 |
|
| TransMVSNet (Re) | | | 69.62 180 | 71.63 159 | 63.57 269 | 76.51 194 | 35.93 358 | 65.75 276 | 71.29 248 | 61.05 126 | 75.02 192 | 89.90 81 | 65.88 127 | 70.41 279 | 49.79 257 | 89.48 142 | 84.38 120 |
|
| EPNet | | | 69.10 189 | 67.32 216 | 74.46 111 | 68.33 311 | 61.27 140 | 77.56 107 | 63.57 307 | 60.95 127 | 56.62 372 | 82.75 221 | 51.53 249 | 81.24 124 | 54.36 226 | 90.20 124 | 80.88 209 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| MSDG | | | 67.47 215 | 67.48 215 | 67.46 235 | 70.70 276 | 54.69 194 | 66.90 262 | 78.17 178 | 60.88 128 | 70.41 260 | 74.76 317 | 61.22 172 | 73.18 245 | 47.38 283 | 76.87 312 | 74.49 292 |
|
| RRT-MVS | | | 70.33 170 | 70.73 171 | 69.14 208 | 71.93 265 | 45.24 280 | 75.10 139 | 75.08 212 | 60.85 129 | 78.62 131 | 87.36 130 | 49.54 259 | 78.64 171 | 60.16 168 | 77.90 306 | 83.55 140 |
|
| TSAR-MVS + GP. | | | 73.08 128 | 71.60 161 | 77.54 76 | 78.99 159 | 70.73 61 | 74.96 141 | 69.38 267 | 60.73 130 | 74.39 205 | 78.44 285 | 57.72 211 | 82.78 100 | 60.16 168 | 89.60 138 | 79.11 241 |
|
| MSLP-MVS++ | | | 74.48 109 | 75.78 95 | 70.59 179 | 84.66 79 | 62.40 127 | 78.65 94 | 84.24 66 | 60.55 131 | 77.71 146 | 81.98 231 | 63.12 147 | 77.64 197 | 62.95 146 | 88.14 164 | 71.73 320 |
|
| CS-MVS | | | 76.51 83 | 76.00 93 | 78.06 73 | 77.02 183 | 64.77 112 | 80.78 70 | 82.66 92 | 60.39 132 | 74.15 208 | 83.30 215 | 69.65 89 | 82.07 112 | 69.27 85 | 86.75 196 | 87.36 56 |
|
| Baseline_NR-MVSNet | | | 70.62 167 | 73.19 132 | 62.92 280 | 76.97 185 | 34.44 368 | 68.84 228 | 70.88 257 | 60.25 133 | 79.50 122 | 90.53 56 | 61.82 162 | 69.11 286 | 54.67 220 | 95.27 14 | 85.22 87 |
|
| v8 | | | 75.07 100 | 75.64 97 | 73.35 131 | 73.42 243 | 47.46 260 | 75.20 138 | 81.45 111 | 60.05 134 | 85.64 48 | 89.26 90 | 58.08 206 | 81.80 116 | 69.71 84 | 87.97 169 | 90.79 18 |
|
| 9.14 | | | | 80.22 57 | | 80.68 134 | | 80.35 77 | 87.69 11 | 59.90 135 | 83.00 80 | 88.20 120 | 74.57 50 | 81.75 117 | 73.75 58 | 93.78 60 | |
|
| DeepC-MVS | | 72.44 4 | 81.00 44 | 80.83 54 | 81.50 26 | 86.70 45 | 70.03 68 | 82.06 60 | 87.00 15 | 59.89 136 | 80.91 109 | 90.53 56 | 72.19 64 | 88.56 2 | 73.67 59 | 94.52 38 | 85.92 76 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| F-COLMAP | | | 75.29 95 | 73.99 116 | 79.18 54 | 81.73 123 | 71.90 50 | 81.86 63 | 82.98 84 | 59.86 137 | 72.27 236 | 84.00 200 | 64.56 140 | 83.07 96 | 51.48 243 | 87.19 188 | 82.56 177 |
|
| casdiffmvs_mvg |  | | 75.26 96 | 76.18 92 | 72.52 157 | 72.87 258 | 49.47 234 | 72.94 168 | 84.71 54 | 59.49 138 | 80.90 110 | 88.81 106 | 70.07 84 | 79.71 154 | 67.40 102 | 88.39 161 | 88.40 46 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| RPSCF | | | 75.76 88 | 74.37 109 | 79.93 44 | 74.81 219 | 77.53 18 | 77.53 109 | 79.30 156 | 59.44 139 | 78.88 129 | 89.80 82 | 71.26 74 | 73.09 246 | 57.45 191 | 80.89 267 | 89.17 31 |
|
| HQP-NCC | | | | | | 82.37 113 | | 77.32 111 | | 59.08 140 | 71.58 245 | | | | | | |
|
| ACMP_Plane | | | | | | 82.37 113 | | 77.32 111 | | 59.08 140 | 71.58 245 | | | | | | |
|
| HQP-MVS | | | 75.24 97 | 75.01 102 | 75.94 96 | 82.37 113 | 58.80 168 | 77.32 111 | 84.12 69 | 59.08 140 | 71.58 245 | 85.96 175 | 58.09 204 | 85.30 55 | 67.38 105 | 89.16 148 | 83.73 137 |
|
| FA-MVS(test-final) | | | 71.27 158 | 71.06 167 | 71.92 167 | 73.96 236 | 52.32 210 | 76.45 122 | 76.12 200 | 59.07 143 | 74.04 213 | 86.18 166 | 52.18 244 | 79.43 159 | 59.75 176 | 81.76 257 | 84.03 128 |
|
| v10 | | | 75.69 89 | 76.20 91 | 74.16 118 | 74.44 228 | 48.69 240 | 75.84 135 | 82.93 86 | 59.02 144 | 85.92 44 | 89.17 95 | 58.56 198 | 82.74 101 | 70.73 76 | 89.14 151 | 91.05 14 |
|
| test_prior2 | | | | | | | | 75.57 136 | | 58.92 145 | 76.53 172 | 86.78 144 | 67.83 105 | | 69.81 81 | 92.76 75 | |
|
| ZD-MVS | | | | | | 83.91 90 | 69.36 73 | | 81.09 121 | 58.91 146 | 82.73 87 | 89.11 97 | 75.77 38 | 86.63 14 | 72.73 65 | 92.93 72 | |
|
| SPE-MVS-test | | | 74.89 106 | 74.23 112 | 76.86 83 | 77.01 184 | 62.94 126 | 78.98 92 | 84.61 59 | 58.62 147 | 70.17 265 | 80.80 246 | 66.74 117 | 81.96 113 | 61.74 152 | 89.40 146 | 85.69 82 |
|
| MG-MVS | | | 70.47 169 | 71.34 165 | 67.85 230 | 79.26 149 | 40.42 324 | 74.67 151 | 75.15 211 | 58.41 148 | 68.74 289 | 88.14 124 | 56.08 227 | 83.69 82 | 59.90 173 | 81.71 261 | 79.43 238 |
|
| EI-MVSNet | | | 69.61 181 | 69.01 190 | 71.41 173 | 73.94 237 | 49.90 229 | 71.31 195 | 71.32 246 | 58.22 149 | 75.40 189 | 70.44 351 | 58.16 201 | 75.85 211 | 62.51 147 | 79.81 284 | 88.48 44 |
|
| IterMVS-LS | | | 73.01 132 | 73.12 135 | 72.66 154 | 73.79 239 | 49.90 229 | 71.63 189 | 78.44 173 | 58.22 149 | 80.51 113 | 86.63 153 | 58.15 202 | 79.62 155 | 62.51 147 | 88.20 163 | 88.48 44 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| BH-RMVSNet | | | 68.69 197 | 68.20 204 | 70.14 190 | 76.40 196 | 53.90 201 | 64.62 289 | 73.48 221 | 58.01 151 | 73.91 215 | 81.78 233 | 59.09 193 | 78.22 185 | 48.59 270 | 77.96 305 | 78.31 250 |
|
| test_yl | | | 65.11 237 | 65.09 245 | 65.18 255 | 70.59 278 | 40.86 316 | 63.22 305 | 72.79 227 | 57.91 152 | 68.88 285 | 79.07 279 | 42.85 299 | 74.89 227 | 45.50 300 | 84.97 218 | 79.81 229 |
|
| DCV-MVSNet | | | 65.11 237 | 65.09 245 | 65.18 255 | 70.59 278 | 40.86 316 | 63.22 305 | 72.79 227 | 57.91 152 | 68.88 285 | 79.07 279 | 42.85 299 | 74.89 227 | 45.50 300 | 84.97 218 | 79.81 229 |
|
| DP-MVS Recon | | | 73.57 118 | 72.69 143 | 76.23 93 | 82.85 108 | 63.39 121 | 74.32 155 | 82.96 85 | 57.75 154 | 70.35 261 | 81.98 231 | 64.34 142 | 84.41 76 | 49.69 258 | 89.95 131 | 80.89 208 |
|
| Effi-MVS+-dtu | | | 75.43 94 | 72.28 151 | 84.91 3 | 77.05 181 | 83.58 2 | 78.47 97 | 77.70 185 | 57.68 155 | 74.89 194 | 78.13 291 | 64.80 138 | 84.26 77 | 56.46 201 | 85.32 214 | 86.88 63 |
|
| MVS_111021_HR | | | 72.98 135 | 72.97 140 | 72.99 140 | 80.82 133 | 65.47 104 | 68.81 230 | 72.77 229 | 57.67 156 | 75.76 182 | 82.38 227 | 71.01 77 | 77.17 200 | 61.38 155 | 86.15 201 | 76.32 275 |
|
| 3Dnovator | | 65.95 11 | 71.50 157 | 71.22 166 | 72.34 161 | 73.16 248 | 63.09 124 | 78.37 98 | 78.32 175 | 57.67 156 | 72.22 238 | 84.61 190 | 54.77 229 | 78.47 175 | 60.82 162 | 81.07 266 | 75.45 281 |
|
| FE-MVS | | | 68.29 203 | 66.96 223 | 72.26 163 | 74.16 233 | 54.24 197 | 77.55 108 | 73.42 223 | 57.65 158 | 72.66 230 | 84.91 186 | 32.02 361 | 81.49 120 | 48.43 273 | 81.85 255 | 81.04 202 |
|
| FC-MVSNet-test | | | 73.32 123 | 74.78 104 | 68.93 215 | 79.21 151 | 36.57 352 | 71.82 187 | 79.54 153 | 57.63 159 | 82.57 88 | 90.38 67 | 59.38 191 | 78.99 165 | 57.91 189 | 94.56 37 | 91.23 13 |
|
| FPMVS | | | 59.43 295 | 60.07 286 | 57.51 323 | 77.62 178 | 71.52 53 | 62.33 309 | 50.92 371 | 57.40 160 | 69.40 275 | 80.00 261 | 39.14 323 | 61.92 338 | 37.47 350 | 66.36 384 | 39.09 414 |
|
| BP-MVS1 | | | 71.60 155 | 70.06 177 | 76.20 94 | 74.07 235 | 55.22 190 | 74.29 157 | 73.44 222 | 57.29 161 | 73.87 216 | 84.65 188 | 32.57 354 | 83.49 87 | 72.43 70 | 87.94 170 | 89.89 23 |
|
| testdata1 | | | | | | | | 68.34 241 | | 57.24 162 | | | | | | | |
|
| MIMVSNet1 | | | 66.57 225 | 69.23 186 | 58.59 317 | 81.26 130 | 37.73 347 | 64.06 295 | 57.62 329 | 57.02 163 | 78.40 136 | 90.75 49 | 62.65 151 | 58.10 354 | 41.77 321 | 89.58 140 | 79.95 228 |
|
| MVS_111021_LR | | | 72.10 150 | 71.82 156 | 72.95 142 | 79.53 145 | 73.90 40 | 70.45 208 | 66.64 282 | 56.87 164 | 76.81 161 | 81.76 235 | 68.78 93 | 71.76 265 | 61.81 150 | 83.74 237 | 73.18 303 |
|
| LCM-MVSNet-Re | | | 69.10 189 | 71.57 162 | 61.70 289 | 70.37 285 | 34.30 370 | 61.45 312 | 79.62 148 | 56.81 165 | 89.59 9 | 88.16 123 | 68.44 97 | 72.94 247 | 42.30 315 | 87.33 181 | 77.85 260 |
|
| BH-untuned | | | 69.39 185 | 69.46 181 | 69.18 206 | 77.96 171 | 56.88 177 | 68.47 240 | 77.53 187 | 56.77 166 | 77.79 144 | 79.63 266 | 60.30 182 | 80.20 149 | 46.04 295 | 80.65 272 | 70.47 333 |
|
| mvs5depth | | | 66.35 229 | 67.98 206 | 61.47 293 | 62.43 359 | 51.05 215 | 69.38 221 | 69.24 269 | 56.74 167 | 73.62 217 | 89.06 100 | 46.96 277 | 58.63 350 | 55.87 207 | 88.49 160 | 74.73 288 |
|
| DeepC-MVS_fast | | 69.89 7 | 77.17 78 | 76.33 90 | 79.70 48 | 83.90 91 | 67.94 82 | 80.06 83 | 83.75 74 | 56.73 168 | 74.88 195 | 85.32 181 | 65.54 129 | 87.79 3 | 65.61 120 | 91.14 101 | 83.35 151 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| DeepPCF-MVS | | 71.07 5 | 78.48 69 | 77.14 84 | 82.52 17 | 84.39 86 | 77.04 25 | 76.35 125 | 84.05 71 | 56.66 169 | 80.27 116 | 85.31 182 | 68.56 95 | 87.03 12 | 67.39 103 | 91.26 96 | 83.50 141 |
|
| save fliter | | | | | | 87.00 40 | 67.23 90 | 79.24 89 | 77.94 183 | 56.65 170 | | | | | | | |
|
| VPA-MVSNet | | | 68.71 196 | 70.37 175 | 63.72 267 | 76.13 200 | 38.06 344 | 64.10 294 | 71.48 242 | 56.60 171 | 74.10 210 | 88.31 118 | 64.78 139 | 69.72 281 | 47.69 282 | 90.15 126 | 83.37 150 |
|
| GeoE | | | 73.14 126 | 73.77 121 | 71.26 174 | 78.09 168 | 52.64 208 | 74.32 155 | 79.56 152 | 56.32 172 | 76.35 178 | 83.36 213 | 70.76 79 | 77.96 191 | 63.32 143 | 81.84 256 | 83.18 156 |
|
| FIs | | | 72.56 143 | 73.80 119 | 68.84 218 | 78.74 162 | 37.74 346 | 71.02 199 | 79.83 146 | 56.12 173 | 80.88 111 | 89.45 87 | 58.18 200 | 78.28 184 | 56.63 197 | 93.36 67 | 90.51 20 |
|
| testing3 | | | 58.28 303 | 58.38 300 | 58.00 321 | 77.45 180 | 26.12 408 | 60.78 319 | 43.00 401 | 56.02 174 | 70.18 264 | 75.76 307 | 13.27 426 | 67.24 305 | 48.02 278 | 80.89 267 | 80.65 217 |
|
| tfpnnormal | | | 66.48 226 | 67.93 207 | 62.16 286 | 73.40 244 | 36.65 351 | 63.45 300 | 64.99 295 | 55.97 175 | 72.82 229 | 87.80 127 | 57.06 218 | 69.10 287 | 48.31 275 | 87.54 173 | 80.72 215 |
|
| baseline | | | 73.10 127 | 73.96 117 | 70.51 181 | 71.46 269 | 46.39 272 | 72.08 176 | 84.40 62 | 55.95 176 | 76.62 166 | 86.46 159 | 67.20 107 | 78.03 190 | 64.22 130 | 87.27 185 | 87.11 62 |
|
| wuyk23d | | | 61.97 273 | 66.25 228 | 49.12 367 | 58.19 388 | 60.77 151 | 66.32 268 | 52.97 363 | 55.93 177 | 90.62 6 | 86.91 140 | 73.07 60 | 35.98 414 | 20.63 417 | 91.63 89 | 50.62 403 |
|
| Fast-Effi-MVS+-dtu | | | 70.00 174 | 68.74 195 | 73.77 124 | 73.47 242 | 64.53 114 | 71.36 193 | 78.14 180 | 55.81 178 | 68.84 287 | 74.71 319 | 65.36 132 | 75.75 214 | 52.00 240 | 79.00 292 | 81.03 203 |
|
| casdiffmvs |  | | 73.06 130 | 73.84 118 | 70.72 177 | 71.32 270 | 46.71 268 | 70.93 201 | 84.26 65 | 55.62 179 | 77.46 149 | 87.10 133 | 67.09 109 | 77.81 193 | 63.95 134 | 86.83 194 | 87.64 52 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| pm-mvs1 | | | 68.40 199 | 69.85 180 | 64.04 265 | 73.10 252 | 39.94 327 | 64.61 290 | 70.50 260 | 55.52 180 | 73.97 214 | 89.33 88 | 63.91 144 | 68.38 292 | 49.68 259 | 88.02 167 | 83.81 133 |
|
| mmtdpeth | | | 68.76 194 | 70.55 174 | 63.40 273 | 67.06 329 | 56.26 181 | 68.73 235 | 71.22 252 | 55.47 181 | 70.09 266 | 88.64 111 | 65.29 134 | 56.89 357 | 58.94 182 | 89.50 141 | 77.04 272 |
|
| v2v482 | | | 72.55 145 | 72.58 145 | 72.43 159 | 72.92 257 | 46.72 267 | 71.41 192 | 79.13 158 | 55.27 182 | 81.17 105 | 85.25 183 | 55.41 228 | 81.13 126 | 67.25 109 | 85.46 209 | 89.43 26 |
|
| thres100view900 | | | 61.17 281 | 61.09 278 | 61.39 294 | 72.14 263 | 35.01 364 | 65.42 281 | 56.99 337 | 55.23 183 | 70.71 258 | 79.90 262 | 32.07 359 | 72.09 259 | 35.61 365 | 81.73 258 | 77.08 269 |
|
| TAPA-MVS | | 65.27 12 | 75.16 98 | 74.29 111 | 77.77 75 | 74.86 218 | 68.08 81 | 77.89 105 | 84.04 72 | 55.15 184 | 76.19 180 | 83.39 209 | 66.91 111 | 80.11 150 | 60.04 172 | 90.14 127 | 85.13 90 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| EG-PatchMatch MVS | | | 70.70 166 | 70.88 169 | 70.16 189 | 82.64 112 | 58.80 168 | 71.48 190 | 73.64 220 | 54.98 185 | 76.55 170 | 81.77 234 | 61.10 174 | 78.94 166 | 54.87 217 | 80.84 269 | 72.74 310 |
|
| GBi-Net | | | 68.30 201 | 68.79 192 | 66.81 242 | 73.14 249 | 40.68 320 | 71.96 181 | 73.03 224 | 54.81 186 | 74.72 197 | 90.36 70 | 48.63 270 | 75.20 223 | 47.12 284 | 85.37 210 | 84.54 112 |
|
| test1 | | | 68.30 201 | 68.79 192 | 66.81 242 | 73.14 249 | 40.68 320 | 71.96 181 | 73.03 224 | 54.81 186 | 74.72 197 | 90.36 70 | 48.63 270 | 75.20 223 | 47.12 284 | 85.37 210 | 84.54 112 |
|
| FMVSNet2 | | | 67.48 213 | 68.21 203 | 65.29 254 | 73.14 249 | 38.94 334 | 68.81 230 | 71.21 253 | 54.81 186 | 76.73 163 | 86.48 158 | 48.63 270 | 74.60 231 | 47.98 279 | 86.11 204 | 82.35 180 |
|
| v148 | | | 69.38 186 | 69.39 182 | 69.36 201 | 69.14 302 | 44.56 285 | 68.83 229 | 72.70 230 | 54.79 189 | 78.59 132 | 84.12 198 | 54.69 230 | 76.74 208 | 59.40 179 | 82.20 250 | 86.79 64 |
|
| thres600view7 | | | 61.82 275 | 61.38 276 | 63.12 275 | 71.81 266 | 34.93 365 | 64.64 288 | 56.99 337 | 54.78 190 | 70.33 262 | 79.74 264 | 32.07 359 | 72.42 256 | 38.61 340 | 83.46 242 | 82.02 187 |
|
| tttt0517 | | | 69.46 183 | 67.79 211 | 74.46 111 | 75.34 210 | 52.72 207 | 75.05 140 | 63.27 310 | 54.69 191 | 78.87 130 | 84.37 195 | 26.63 389 | 81.15 125 | 63.95 134 | 87.93 171 | 89.51 25 |
|
| RPMNet | | | 65.77 233 | 65.08 247 | 67.84 231 | 66.37 331 | 48.24 245 | 70.93 201 | 86.27 20 | 54.66 192 | 61.35 342 | 86.77 145 | 33.29 348 | 85.67 49 | 55.93 205 | 70.17 367 | 69.62 342 |
|
| VNet | | | 64.01 255 | 65.15 243 | 60.57 303 | 73.28 246 | 35.61 361 | 57.60 343 | 67.08 280 | 54.61 193 | 66.76 306 | 83.37 211 | 56.28 225 | 66.87 309 | 42.19 317 | 85.20 216 | 79.23 240 |
|
| MGCFI-Net | | | 71.70 154 | 73.10 136 | 67.49 234 | 73.23 247 | 43.08 299 | 72.06 177 | 82.43 96 | 54.58 194 | 75.97 181 | 82.00 229 | 72.42 63 | 75.22 221 | 57.84 190 | 87.34 180 | 84.18 125 |
|
| PLC |  | 62.01 16 | 71.79 153 | 70.28 176 | 76.33 91 | 80.31 138 | 68.63 79 | 78.18 103 | 81.24 116 | 54.57 195 | 67.09 305 | 80.63 249 | 59.44 189 | 81.74 118 | 46.91 287 | 84.17 232 | 78.63 245 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| nrg030 | | | 74.87 107 | 75.99 94 | 71.52 171 | 74.90 217 | 49.88 233 | 74.10 160 | 82.58 94 | 54.55 196 | 83.50 77 | 89.21 92 | 71.51 70 | 75.74 215 | 61.24 156 | 92.34 81 | 88.94 37 |
|
| balanced_conf03 | | | 73.59 117 | 74.06 114 | 72.17 165 | 77.48 179 | 47.72 256 | 81.43 65 | 82.20 98 | 54.38 197 | 79.19 125 | 87.68 128 | 54.41 233 | 83.57 84 | 63.98 133 | 85.78 207 | 85.22 87 |
|
| sasdasda | | | 72.29 148 | 73.38 127 | 69.04 209 | 74.23 229 | 47.37 261 | 73.93 162 | 83.18 80 | 54.36 198 | 76.61 167 | 81.64 237 | 72.03 65 | 75.34 219 | 57.12 193 | 87.28 183 | 84.40 118 |
|
| canonicalmvs | | | 72.29 148 | 73.38 127 | 69.04 209 | 74.23 229 | 47.37 261 | 73.93 162 | 83.18 80 | 54.36 198 | 76.61 167 | 81.64 237 | 72.03 65 | 75.34 219 | 57.12 193 | 87.28 183 | 84.40 118 |
|
| h-mvs33 | | | 73.08 128 | 71.61 160 | 77.48 77 | 83.89 92 | 72.89 48 | 70.47 207 | 71.12 254 | 54.28 200 | 77.89 141 | 83.41 208 | 49.04 264 | 80.98 132 | 63.62 139 | 90.77 117 | 78.58 247 |
|
| hse-mvs2 | | | 72.32 147 | 70.66 173 | 77.31 81 | 83.10 103 | 71.77 51 | 69.19 225 | 71.45 243 | 54.28 200 | 77.89 141 | 78.26 287 | 49.04 264 | 79.23 160 | 63.62 139 | 89.13 152 | 80.92 207 |
|
| test2506 | | | 61.23 280 | 60.85 281 | 62.38 284 | 78.80 160 | 27.88 399 | 67.33 255 | 37.42 415 | 54.23 202 | 67.55 300 | 88.68 109 | 17.87 418 | 74.39 234 | 46.33 293 | 89.41 144 | 84.86 98 |
|
| ECVR-MVS |  | | 64.82 241 | 65.22 239 | 63.60 268 | 78.80 160 | 31.14 385 | 66.97 260 | 56.47 343 | 54.23 202 | 69.94 269 | 88.68 109 | 37.23 334 | 74.81 229 | 45.28 303 | 89.41 144 | 84.86 98 |
|
| CDPH-MVS | | | 77.33 77 | 77.06 85 | 78.14 71 | 84.21 87 | 63.98 118 | 76.07 131 | 83.45 78 | 54.20 204 | 77.68 147 | 87.18 132 | 69.98 85 | 85.37 53 | 68.01 94 | 92.72 76 | 85.08 92 |
|
| VPNet | | | 65.58 234 | 67.56 212 | 59.65 309 | 79.72 142 | 30.17 390 | 60.27 323 | 62.14 313 | 54.19 205 | 71.24 253 | 86.63 153 | 58.80 196 | 67.62 299 | 44.17 307 | 90.87 114 | 81.18 199 |
|
| PHI-MVS | | | 74.92 103 | 74.36 110 | 76.61 86 | 76.40 196 | 62.32 129 | 80.38 75 | 83.15 82 | 54.16 206 | 73.23 225 | 80.75 247 | 62.19 159 | 83.86 80 | 68.02 93 | 90.92 110 | 83.65 138 |
|
| test1111 | | | 64.62 244 | 65.19 240 | 62.93 279 | 79.01 158 | 29.91 391 | 65.45 280 | 54.41 353 | 54.09 207 | 71.47 252 | 88.48 114 | 37.02 335 | 74.29 236 | 46.83 289 | 89.94 132 | 84.58 111 |
|
| Patchmtry | | | 60.91 282 | 63.01 265 | 54.62 338 | 66.10 337 | 26.27 407 | 67.47 250 | 56.40 344 | 54.05 208 | 72.04 241 | 86.66 150 | 33.19 349 | 60.17 343 | 43.69 308 | 87.45 177 | 77.42 261 |
|
| train_agg | | | 76.38 84 | 76.55 88 | 75.86 98 | 85.47 67 | 69.32 74 | 76.42 123 | 78.69 168 | 54.00 209 | 76.97 153 | 86.74 146 | 66.60 118 | 81.10 127 | 72.50 69 | 91.56 91 | 77.15 267 |
|
| test_8 | | | | | | 85.09 73 | 67.89 83 | 76.26 128 | 78.66 170 | 54.00 209 | 76.89 157 | 86.72 148 | 66.60 118 | 80.89 137 | | | |
|
| DELS-MVS | | | 68.83 192 | 68.31 199 | 70.38 182 | 70.55 282 | 48.31 243 | 63.78 298 | 82.13 99 | 54.00 209 | 68.96 280 | 75.17 315 | 58.95 195 | 80.06 151 | 58.55 184 | 82.74 247 | 82.76 168 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| alignmvs | | | 70.54 168 | 71.00 168 | 69.15 207 | 73.50 241 | 48.04 250 | 69.85 216 | 79.62 148 | 53.94 212 | 76.54 171 | 82.00 229 | 59.00 194 | 74.68 230 | 57.32 192 | 87.21 187 | 84.72 103 |
|
| v1144 | | | 73.29 124 | 73.39 126 | 73.01 139 | 74.12 234 | 48.11 247 | 72.01 179 | 81.08 122 | 53.83 213 | 81.77 95 | 84.68 187 | 58.07 207 | 81.91 114 | 68.10 91 | 86.86 192 | 88.99 36 |
|
| TEST9 | | | | | | 85.47 67 | 69.32 74 | 76.42 123 | 78.69 168 | 53.73 214 | 76.97 153 | 86.74 146 | 66.84 112 | 81.10 127 | | | |
|
| Vis-MVSNet (Re-imp) | | | 62.74 268 | 63.21 263 | 61.34 296 | 72.19 262 | 31.56 382 | 67.31 256 | 53.87 355 | 53.60 215 | 69.88 270 | 83.37 211 | 40.52 313 | 70.98 272 | 41.40 323 | 86.78 195 | 81.48 197 |
|
| PS-MVSNAJss | | | 77.54 75 | 77.35 82 | 78.13 72 | 84.88 75 | 66.37 96 | 78.55 96 | 79.59 151 | 53.48 216 | 86.29 39 | 92.43 16 | 62.39 156 | 80.25 146 | 67.90 97 | 90.61 119 | 87.77 50 |
|
| MDA-MVSNet-bldmvs | | | 62.34 272 | 61.73 270 | 64.16 261 | 61.64 364 | 49.90 229 | 48.11 387 | 57.24 335 | 53.31 217 | 80.95 107 | 79.39 271 | 49.00 266 | 61.55 339 | 45.92 296 | 80.05 279 | 81.03 203 |
|
| TinyColmap | | | 67.98 206 | 69.28 183 | 64.08 263 | 67.98 316 | 46.82 266 | 70.04 211 | 75.26 209 | 53.05 218 | 77.36 150 | 86.79 143 | 59.39 190 | 72.59 254 | 45.64 298 | 88.01 168 | 72.83 308 |
|
| tfpn200view9 | | | 60.35 288 | 59.97 287 | 61.51 291 | 70.78 274 | 35.35 362 | 63.27 303 | 57.47 330 | 53.00 219 | 68.31 292 | 77.09 300 | 32.45 356 | 72.09 259 | 35.61 365 | 81.73 258 | 77.08 269 |
|
| thres400 | | | 60.77 285 | 59.97 287 | 63.15 274 | 70.78 274 | 35.35 362 | 63.27 303 | 57.47 330 | 53.00 219 | 68.31 292 | 77.09 300 | 32.45 356 | 72.09 259 | 35.61 365 | 81.73 258 | 82.02 187 |
|
| v1192 | | | 73.40 121 | 73.42 125 | 73.32 133 | 74.65 225 | 48.67 241 | 72.21 174 | 81.73 106 | 52.76 221 | 81.85 93 | 84.56 191 | 57.12 216 | 82.24 110 | 68.58 87 | 87.33 181 | 89.06 33 |
|
| MVS_Test | | | 69.84 177 | 70.71 172 | 67.24 237 | 67.49 321 | 43.25 298 | 69.87 215 | 81.22 118 | 52.69 222 | 71.57 248 | 86.68 149 | 62.09 160 | 74.51 232 | 66.05 115 | 78.74 294 | 83.96 129 |
|
| MonoMVSNet | | | 62.75 267 | 63.42 259 | 60.73 302 | 65.60 340 | 40.77 318 | 72.49 171 | 70.56 259 | 52.49 223 | 75.07 191 | 79.42 270 | 39.52 321 | 69.97 280 | 46.59 291 | 69.06 373 | 71.44 322 |
|
| EIA-MVS | | | 68.59 198 | 67.16 219 | 72.90 146 | 75.18 213 | 55.64 188 | 69.39 220 | 81.29 114 | 52.44 224 | 64.53 318 | 70.69 350 | 60.33 181 | 82.30 108 | 54.27 227 | 76.31 316 | 80.75 213 |
|
| MVSFormer | | | 69.93 176 | 69.03 189 | 72.63 156 | 74.93 215 | 59.19 160 | 83.98 40 | 75.72 205 | 52.27 225 | 63.53 332 | 76.74 303 | 43.19 296 | 80.56 139 | 72.28 71 | 78.67 296 | 78.14 254 |
|
| test_djsdf | | | 78.88 63 | 78.27 73 | 80.70 39 | 81.42 126 | 71.24 56 | 83.98 40 | 75.72 205 | 52.27 225 | 87.37 30 | 92.25 17 | 68.04 102 | 80.56 139 | 72.28 71 | 91.15 100 | 90.32 21 |
|
| CLD-MVS | | | 72.88 138 | 72.36 150 | 74.43 114 | 77.03 182 | 54.30 196 | 68.77 233 | 83.43 79 | 52.12 227 | 76.79 162 | 74.44 322 | 69.54 90 | 83.91 79 | 55.88 206 | 93.25 69 | 85.09 91 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| PatchT | | | 53.35 334 | 56.47 314 | 43.99 388 | 64.19 351 | 17.46 419 | 59.15 328 | 43.10 400 | 52.11 228 | 54.74 382 | 86.95 139 | 29.97 380 | 49.98 373 | 43.62 309 | 74.40 334 | 64.53 377 |
|
| CANet_DTU | | | 64.04 254 | 63.83 254 | 64.66 258 | 68.39 308 | 42.97 301 | 73.45 164 | 74.50 216 | 52.05 229 | 54.78 381 | 75.44 313 | 43.99 291 | 70.42 278 | 53.49 234 | 78.41 300 | 80.59 219 |
|
| mvs_tets | | | 78.93 62 | 78.67 69 | 79.72 47 | 84.81 77 | 73.93 39 | 80.65 71 | 76.50 198 | 51.98 230 | 87.40 27 | 91.86 26 | 76.09 36 | 78.53 173 | 68.58 87 | 90.20 124 | 86.69 66 |
|
| v1240 | | | 73.06 130 | 73.14 133 | 72.84 149 | 74.74 221 | 47.27 264 | 71.88 186 | 81.11 119 | 51.80 231 | 82.28 90 | 84.21 197 | 56.22 226 | 82.34 107 | 68.82 86 | 87.17 189 | 88.91 38 |
|
| TSAR-MVS + MP. | | | 79.05 61 | 78.81 66 | 79.74 46 | 88.94 28 | 67.52 87 | 86.61 22 | 81.38 113 | 51.71 232 | 77.15 151 | 91.42 36 | 65.49 130 | 87.20 7 | 79.44 17 | 87.17 189 | 84.51 116 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| v1921920 | | | 72.96 136 | 72.98 139 | 72.89 147 | 74.67 222 | 47.58 258 | 71.92 184 | 80.69 128 | 51.70 233 | 81.69 99 | 83.89 202 | 56.58 222 | 82.25 109 | 68.34 89 | 87.36 178 | 88.82 40 |
|
| v144192 | | | 72.99 134 | 73.06 137 | 72.77 150 | 74.58 226 | 47.48 259 | 71.90 185 | 80.44 136 | 51.57 234 | 81.46 101 | 84.11 199 | 58.04 208 | 82.12 111 | 67.98 95 | 87.47 176 | 88.70 43 |
|
| FMVSNet3 | | | 65.00 240 | 65.16 241 | 64.52 260 | 69.47 299 | 37.56 349 | 66.63 265 | 70.38 261 | 51.55 235 | 74.72 197 | 83.27 216 | 37.89 331 | 74.44 233 | 47.12 284 | 85.37 210 | 81.57 196 |
|
| c3_l | | | 69.82 178 | 69.89 179 | 69.61 198 | 66.24 334 | 43.48 294 | 68.12 243 | 79.61 150 | 51.43 236 | 77.72 145 | 80.18 258 | 54.61 232 | 78.15 189 | 63.62 139 | 87.50 175 | 87.20 59 |
|
| SDMVSNet | | | 66.36 228 | 67.85 210 | 61.88 288 | 73.04 255 | 46.14 274 | 58.54 336 | 71.36 245 | 51.42 237 | 68.93 283 | 82.72 222 | 65.62 128 | 62.22 337 | 54.41 224 | 84.67 223 | 77.28 263 |
|
| sd_testset | | | 63.55 256 | 65.38 237 | 58.07 320 | 73.04 255 | 38.83 336 | 57.41 344 | 65.44 292 | 51.42 237 | 68.93 283 | 82.72 222 | 63.76 145 | 58.11 353 | 41.05 325 | 84.67 223 | 77.28 263 |
|
| V42 | | | 71.06 160 | 70.83 170 | 71.72 168 | 67.25 323 | 47.14 265 | 65.94 271 | 80.35 139 | 51.35 239 | 83.40 78 | 83.23 218 | 59.25 192 | 78.80 168 | 65.91 117 | 80.81 270 | 89.23 29 |
|
| jajsoiax | | | 78.51 67 | 78.16 75 | 79.59 49 | 84.65 80 | 73.83 41 | 80.42 74 | 76.12 200 | 51.33 240 | 87.19 31 | 91.51 33 | 73.79 57 | 78.44 177 | 68.27 90 | 90.13 128 | 86.49 68 |
|
| GA-MVS | | | 62.91 264 | 61.66 271 | 66.66 246 | 67.09 325 | 44.49 286 | 61.18 316 | 69.36 268 | 51.33 240 | 69.33 276 | 74.47 321 | 36.83 336 | 74.94 226 | 50.60 252 | 74.72 329 | 80.57 220 |
|
| CL-MVSNet_self_test | | | 62.44 271 | 63.40 260 | 59.55 310 | 72.34 261 | 32.38 377 | 56.39 349 | 64.84 297 | 51.21 242 | 67.46 301 | 81.01 244 | 50.75 253 | 63.51 332 | 38.47 342 | 88.12 165 | 82.75 169 |
|
| PM-MVS | | | 64.49 247 | 63.61 257 | 67.14 240 | 76.68 192 | 75.15 31 | 68.49 239 | 42.85 402 | 51.17 243 | 77.85 143 | 80.51 250 | 45.76 279 | 66.31 316 | 52.83 238 | 76.35 315 | 59.96 391 |
|
| 原ACMM1 | | | | | 73.90 122 | 85.90 60 | 65.15 110 | | 81.67 107 | 50.97 244 | 74.25 207 | 86.16 168 | 61.60 164 | 83.54 85 | 56.75 196 | 91.08 105 | 73.00 305 |
|
| JIA-IIPM | | | 54.03 328 | 51.62 347 | 61.25 297 | 59.14 382 | 55.21 191 | 59.10 330 | 47.72 384 | 50.85 245 | 50.31 400 | 85.81 178 | 20.10 411 | 63.97 328 | 36.16 362 | 55.41 410 | 64.55 376 |
|
| KD-MVS_self_test | | | 66.38 227 | 67.51 213 | 62.97 278 | 61.76 363 | 34.39 369 | 58.11 341 | 75.30 208 | 50.84 246 | 77.12 152 | 85.42 180 | 56.84 220 | 69.44 283 | 51.07 248 | 91.16 99 | 85.08 92 |
|
| eth_miper_zixun_eth | | | 69.42 184 | 68.73 196 | 71.50 172 | 67.99 315 | 46.42 270 | 67.58 248 | 78.81 163 | 50.72 247 | 78.13 139 | 80.34 254 | 50.15 257 | 80.34 144 | 60.18 167 | 84.65 225 | 87.74 51 |
|
| Fast-Effi-MVS+ | | | 68.81 193 | 68.30 200 | 70.35 184 | 74.66 224 | 48.61 242 | 66.06 270 | 78.32 175 | 50.62 248 | 71.48 251 | 75.54 310 | 68.75 94 | 79.59 157 | 50.55 253 | 78.73 295 | 82.86 166 |
|
| anonymousdsp | | | 78.60 65 | 77.80 77 | 81.00 35 | 78.01 170 | 74.34 37 | 80.09 81 | 76.12 200 | 50.51 249 | 89.19 11 | 90.88 45 | 71.45 72 | 77.78 195 | 73.38 60 | 90.60 120 | 90.90 17 |
|
| testing91 | | | 55.74 315 | 55.29 325 | 57.08 324 | 70.63 277 | 30.85 387 | 54.94 362 | 56.31 346 | 50.34 250 | 57.08 366 | 70.10 358 | 24.50 399 | 65.86 317 | 36.98 355 | 76.75 313 | 74.53 291 |
|
| dcpmvs_2 | | | 71.02 162 | 72.65 144 | 66.16 249 | 76.06 204 | 50.49 220 | 71.97 180 | 79.36 154 | 50.34 250 | 82.81 85 | 83.63 206 | 64.38 141 | 67.27 304 | 61.54 154 | 83.71 239 | 80.71 216 |
|
| thres200 | | | 57.55 307 | 57.02 309 | 59.17 312 | 67.89 318 | 34.93 365 | 58.91 334 | 57.25 334 | 50.24 252 | 64.01 324 | 71.46 346 | 32.49 355 | 71.39 269 | 31.31 383 | 79.57 288 | 71.19 328 |
|
| thisisatest0530 | | | 67.05 221 | 65.16 241 | 72.73 153 | 73.10 252 | 50.55 219 | 71.26 197 | 63.91 305 | 50.22 253 | 74.46 204 | 80.75 247 | 26.81 388 | 80.25 146 | 59.43 178 | 86.50 199 | 87.37 55 |
|
| test20.03 | | | 55.74 315 | 57.51 307 | 50.42 358 | 59.89 377 | 32.09 379 | 50.63 379 | 49.01 380 | 50.11 254 | 65.07 316 | 83.23 218 | 45.61 281 | 48.11 381 | 30.22 387 | 83.82 236 | 71.07 330 |
|
| BH-w/o | | | 64.81 242 | 64.29 250 | 66.36 247 | 76.08 203 | 54.71 193 | 65.61 278 | 75.23 210 | 50.10 255 | 71.05 256 | 71.86 343 | 54.33 234 | 79.02 164 | 38.20 344 | 76.14 317 | 65.36 368 |
|
| cl____ | | | 68.26 205 | 68.26 201 | 68.29 225 | 64.98 347 | 43.67 292 | 65.89 272 | 74.67 213 | 50.04 256 | 76.86 159 | 82.42 226 | 48.74 268 | 75.38 217 | 60.92 161 | 89.81 134 | 85.80 81 |
|
| DIV-MVS_self_test | | | 68.27 204 | 68.26 201 | 68.29 225 | 64.98 347 | 43.67 292 | 65.89 272 | 74.67 213 | 50.04 256 | 76.86 159 | 82.43 225 | 48.74 268 | 75.38 217 | 60.94 160 | 89.81 134 | 85.81 77 |
|
| EPNet_dtu | | | 58.93 299 | 58.52 297 | 60.16 307 | 67.91 317 | 47.70 257 | 69.97 213 | 58.02 328 | 49.73 258 | 47.28 405 | 73.02 336 | 38.14 327 | 62.34 335 | 36.57 358 | 85.99 205 | 70.43 334 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| GDP-MVS | | | 70.84 164 | 69.24 185 | 75.62 101 | 76.44 195 | 55.65 187 | 74.62 153 | 82.78 89 | 49.63 259 | 72.10 240 | 83.79 204 | 31.86 362 | 82.84 99 | 64.93 124 | 87.01 191 | 88.39 47 |
|
| QAPM | | | 69.18 188 | 69.26 184 | 68.94 214 | 71.61 267 | 52.58 209 | 80.37 76 | 78.79 166 | 49.63 259 | 73.51 219 | 85.14 184 | 53.66 237 | 79.12 162 | 55.11 214 | 75.54 322 | 75.11 286 |
|
| PAPR | | | 69.20 187 | 68.66 197 | 70.82 176 | 75.15 214 | 47.77 254 | 75.31 137 | 81.11 119 | 49.62 261 | 66.33 307 | 79.27 273 | 61.53 165 | 82.96 97 | 48.12 277 | 81.50 264 | 81.74 194 |
|
| testing99 | | | 55.16 321 | 54.56 330 | 56.98 326 | 70.13 292 | 30.58 389 | 54.55 365 | 54.11 354 | 49.53 262 | 56.76 370 | 70.14 357 | 22.76 406 | 65.79 319 | 36.99 354 | 76.04 318 | 74.57 290 |
|
| TR-MVS | | | 64.59 245 | 63.54 258 | 67.73 233 | 75.75 208 | 50.83 218 | 63.39 301 | 70.29 262 | 49.33 263 | 71.55 249 | 74.55 320 | 50.94 252 | 78.46 176 | 40.43 329 | 75.69 320 | 73.89 298 |
|
| cl22 | | | 67.14 218 | 66.51 226 | 69.03 211 | 63.20 356 | 43.46 295 | 66.88 263 | 76.25 199 | 49.22 264 | 74.48 203 | 77.88 293 | 45.49 282 | 77.40 199 | 60.64 163 | 84.59 227 | 86.24 69 |
|
| AUN-MVS | | | 70.22 171 | 67.88 209 | 77.22 82 | 82.96 107 | 71.61 52 | 69.08 226 | 71.39 244 | 49.17 265 | 71.70 243 | 78.07 292 | 37.62 333 | 79.21 161 | 61.81 150 | 89.15 150 | 80.82 210 |
|
| miper_ehance_all_eth | | | 68.36 200 | 68.16 205 | 68.98 212 | 65.14 346 | 43.34 296 | 67.07 258 | 78.92 162 | 49.11 266 | 76.21 179 | 77.72 294 | 53.48 238 | 77.92 192 | 61.16 158 | 84.59 227 | 85.68 83 |
|
| ab-mvs | | | 64.11 253 | 65.13 244 | 61.05 298 | 71.99 264 | 38.03 345 | 67.59 247 | 68.79 272 | 49.08 267 | 65.32 314 | 86.26 164 | 58.02 209 | 66.85 311 | 39.33 333 | 79.79 286 | 78.27 251 |
|
| OpenMVS |  | 62.51 15 | 68.76 194 | 68.75 194 | 68.78 219 | 70.56 280 | 53.91 200 | 78.29 99 | 77.35 189 | 48.85 268 | 70.22 263 | 83.52 207 | 52.65 242 | 76.93 203 | 55.31 213 | 81.99 252 | 75.49 280 |
|
| MAR-MVS | | | 67.72 210 | 66.16 229 | 72.40 160 | 74.45 227 | 64.99 111 | 74.87 142 | 77.50 188 | 48.67 269 | 65.78 311 | 68.58 374 | 57.01 219 | 77.79 194 | 46.68 290 | 81.92 253 | 74.42 294 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| PVSNet_Blended_VisFu | | | 70.04 173 | 68.88 191 | 73.53 130 | 82.71 110 | 63.62 120 | 74.81 144 | 81.95 103 | 48.53 270 | 67.16 304 | 79.18 276 | 51.42 250 | 78.38 180 | 54.39 225 | 79.72 287 | 78.60 246 |
|
| diffmvs |  | | 67.42 216 | 67.50 214 | 67.20 238 | 62.26 361 | 45.21 281 | 64.87 286 | 77.04 194 | 48.21 271 | 71.74 242 | 79.70 265 | 58.40 199 | 71.17 271 | 64.99 122 | 80.27 276 | 85.22 87 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| IterMVS-SCA-FT | | | 67.68 211 | 66.07 231 | 72.49 158 | 73.34 245 | 58.20 173 | 63.80 297 | 65.55 291 | 48.10 272 | 76.91 156 | 82.64 224 | 45.20 283 | 78.84 167 | 61.20 157 | 77.89 307 | 80.44 222 |
|
| xiu_mvs_v1_base_debu | | | 67.87 207 | 67.07 220 | 70.26 185 | 79.13 154 | 61.90 132 | 67.34 252 | 71.25 249 | 47.98 273 | 67.70 297 | 74.19 327 | 61.31 167 | 72.62 251 | 56.51 198 | 78.26 301 | 76.27 276 |
|
| xiu_mvs_v1_base | | | 67.87 207 | 67.07 220 | 70.26 185 | 79.13 154 | 61.90 132 | 67.34 252 | 71.25 249 | 47.98 273 | 67.70 297 | 74.19 327 | 61.31 167 | 72.62 251 | 56.51 198 | 78.26 301 | 76.27 276 |
|
| xiu_mvs_v1_base_debi | | | 67.87 207 | 67.07 220 | 70.26 185 | 79.13 154 | 61.90 132 | 67.34 252 | 71.25 249 | 47.98 273 | 67.70 297 | 74.19 327 | 61.31 167 | 72.62 251 | 56.51 198 | 78.26 301 | 76.27 276 |
|
| testdata | | | | | 64.13 262 | 85.87 62 | 63.34 122 | | 61.80 318 | 47.83 276 | 76.42 177 | 86.60 155 | 48.83 267 | 62.31 336 | 54.46 223 | 81.26 265 | 66.74 362 |
|
| DPM-MVS | | | 69.98 175 | 69.22 187 | 72.26 163 | 82.69 111 | 58.82 167 | 70.53 206 | 81.23 117 | 47.79 277 | 64.16 322 | 80.21 255 | 51.32 251 | 83.12 94 | 60.14 170 | 84.95 222 | 74.83 287 |
|
| 无先验 | | | | | | | | 74.82 143 | 70.94 256 | 47.75 278 | | | | 76.85 206 | 54.47 222 | | 72.09 317 |
|
| IB-MVS | | 49.67 18 | 59.69 293 | 56.96 310 | 67.90 229 | 68.19 313 | 50.30 223 | 61.42 313 | 65.18 294 | 47.57 279 | 55.83 376 | 67.15 383 | 23.77 401 | 79.60 156 | 43.56 310 | 79.97 280 | 73.79 299 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| tpmvs | | | 55.84 313 | 55.45 322 | 57.01 325 | 60.33 371 | 33.20 375 | 65.89 272 | 59.29 326 | 47.52 280 | 56.04 374 | 73.60 330 | 31.05 372 | 68.06 296 | 40.64 328 | 64.64 387 | 69.77 340 |
|
| PatchMatch-RL | | | 58.68 301 | 57.72 305 | 61.57 290 | 76.21 199 | 73.59 43 | 61.83 310 | 49.00 381 | 47.30 281 | 61.08 344 | 68.97 367 | 50.16 256 | 59.01 347 | 36.06 364 | 68.84 375 | 52.10 401 |
|
| Anonymous20240521 | | | 63.55 256 | 66.07 231 | 55.99 331 | 66.18 336 | 44.04 289 | 68.77 233 | 68.80 271 | 46.99 282 | 72.57 231 | 85.84 177 | 39.87 317 | 50.22 372 | 53.40 237 | 92.23 83 | 73.71 300 |
|
| PC_three_1452 | | | | | | | | | | 46.98 283 | 81.83 94 | 86.28 162 | 66.55 121 | 84.47 74 | 63.31 144 | 90.78 115 | 83.49 142 |
|
| EMVS | | | 44.61 375 | 44.45 380 | 45.10 384 | 48.91 416 | 43.00 300 | 37.92 409 | 41.10 412 | 46.75 284 | 38.00 418 | 48.43 415 | 26.42 390 | 46.27 385 | 37.11 353 | 75.38 325 | 46.03 408 |
|
| IterMVS | | | 63.12 262 | 62.48 269 | 65.02 257 | 66.34 333 | 52.86 206 | 63.81 296 | 62.25 312 | 46.57 285 | 71.51 250 | 80.40 252 | 44.60 288 | 66.82 312 | 51.38 246 | 75.47 323 | 75.38 283 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| E-PMN | | | 45.17 371 | 45.36 374 | 44.60 385 | 50.07 413 | 42.75 302 | 38.66 408 | 42.29 406 | 46.39 286 | 39.55 416 | 51.15 412 | 26.00 392 | 45.37 390 | 37.68 347 | 76.41 314 | 45.69 409 |
|
| testing222 | | | 53.37 333 | 52.50 343 | 55.98 332 | 70.51 283 | 29.68 392 | 56.20 352 | 51.85 368 | 46.19 287 | 56.76 370 | 68.94 368 | 19.18 414 | 65.39 321 | 25.87 405 | 76.98 311 | 72.87 307 |
|
| baseline1 | | | 57.82 306 | 58.36 301 | 56.19 330 | 69.17 301 | 30.76 388 | 62.94 307 | 55.21 348 | 46.04 288 | 63.83 327 | 78.47 284 | 41.20 307 | 63.68 330 | 39.44 332 | 68.99 374 | 74.13 295 |
|
| test_fmvsmconf0.01_n | | | 73.91 112 | 73.64 123 | 74.71 108 | 69.79 297 | 66.25 97 | 75.90 133 | 79.90 145 | 46.03 289 | 76.48 174 | 85.02 185 | 67.96 104 | 73.97 239 | 74.47 52 | 87.22 186 | 83.90 131 |
|
| reproduce_monomvs | | | 58.94 298 | 58.14 302 | 61.35 295 | 59.70 379 | 40.98 315 | 60.24 324 | 63.51 308 | 45.85 290 | 68.95 281 | 75.31 314 | 18.27 416 | 65.82 318 | 51.47 244 | 79.97 280 | 77.26 266 |
|
| test_fmvsmconf_n | | | 72.91 137 | 72.40 149 | 74.46 111 | 68.62 307 | 66.12 100 | 74.21 159 | 78.80 165 | 45.64 291 | 74.62 201 | 83.25 217 | 66.80 116 | 73.86 243 | 72.97 63 | 86.66 198 | 83.39 148 |
|
| test_fmvsmconf0.1_n | | | 73.26 125 | 72.82 142 | 74.56 110 | 69.10 303 | 66.18 99 | 74.65 152 | 79.34 155 | 45.58 292 | 75.54 186 | 83.91 201 | 67.19 108 | 73.88 242 | 73.26 61 | 86.86 192 | 83.63 139 |
|
| MCST-MVS | | | 73.42 120 | 73.34 130 | 73.63 127 | 81.28 129 | 59.17 162 | 74.80 146 | 83.13 83 | 45.50 293 | 72.84 228 | 83.78 205 | 65.15 135 | 80.99 131 | 64.54 126 | 89.09 154 | 80.73 214 |
|
| PVSNet_BlendedMVS | | | 65.38 235 | 64.30 249 | 68.61 221 | 69.81 294 | 49.36 235 | 65.60 279 | 78.96 160 | 45.50 293 | 59.98 351 | 78.61 283 | 51.82 246 | 78.20 186 | 44.30 304 | 84.11 233 | 78.27 251 |
|
| IU-MVS | | | | | | 86.12 54 | 60.90 147 | | 80.38 137 | 45.49 295 | 81.31 102 | | | | 75.64 44 | 94.39 44 | 84.65 104 |
|
| testgi | | | 54.00 330 | 56.86 311 | 45.45 381 | 58.20 387 | 25.81 409 | 49.05 383 | 49.50 379 | 45.43 296 | 67.84 295 | 81.17 241 | 51.81 248 | 43.20 401 | 29.30 392 | 79.41 289 | 67.34 357 |
|
| mvsmamba | | | 68.87 191 | 67.30 218 | 73.57 128 | 76.58 193 | 53.70 202 | 84.43 37 | 74.25 217 | 45.38 297 | 76.63 165 | 84.55 192 | 35.85 340 | 85.27 56 | 49.54 261 | 78.49 298 | 81.75 193 |
|
| PCF-MVS | | 63.80 13 | 72.70 141 | 71.69 157 | 75.72 99 | 78.10 167 | 60.01 156 | 73.04 167 | 81.50 109 | 45.34 298 | 79.66 120 | 84.35 196 | 65.15 135 | 82.65 102 | 48.70 269 | 89.38 147 | 84.50 117 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| TAMVS | | | 65.31 236 | 63.75 255 | 69.97 194 | 82.23 117 | 59.76 158 | 66.78 264 | 63.37 309 | 45.20 299 | 69.79 271 | 79.37 272 | 47.42 276 | 72.17 258 | 34.48 370 | 85.15 217 | 77.99 258 |
|
| 旧先验2 | | | | | | | | 71.17 198 | | 45.11 300 | 78.54 135 | | | 61.28 340 | 59.19 180 | | |
|
| PS-MVSNAJ | | | 64.27 252 | 63.73 256 | 65.90 252 | 77.82 173 | 51.42 213 | 63.33 302 | 72.33 234 | 45.09 301 | 61.60 340 | 68.04 376 | 62.39 156 | 73.95 240 | 49.07 265 | 73.87 340 | 72.34 313 |
|
| xiu_mvs_v2_base | | | 64.43 249 | 63.96 253 | 65.85 253 | 77.72 175 | 51.32 214 | 63.63 299 | 72.31 235 | 45.06 302 | 61.70 339 | 69.66 362 | 62.56 152 | 73.93 241 | 49.06 266 | 73.91 339 | 72.31 314 |
|
| testing11 | | | 53.13 335 | 52.26 345 | 55.75 333 | 70.44 284 | 31.73 381 | 54.75 363 | 52.40 366 | 44.81 303 | 52.36 391 | 68.40 375 | 21.83 407 | 65.74 320 | 32.64 379 | 72.73 347 | 69.78 339 |
|
| LF4IMVS | | | 67.50 212 | 67.31 217 | 68.08 228 | 58.86 383 | 61.93 131 | 71.43 191 | 75.90 204 | 44.67 304 | 72.42 234 | 80.20 256 | 57.16 214 | 70.44 277 | 58.99 181 | 86.12 203 | 71.88 318 |
|
| CDS-MVSNet | | | 64.33 251 | 62.66 268 | 69.35 202 | 80.44 137 | 58.28 172 | 65.26 282 | 65.66 289 | 44.36 305 | 67.30 303 | 75.54 310 | 43.27 295 | 71.77 264 | 37.68 347 | 84.44 230 | 78.01 257 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| miper_lstm_enhance | | | 61.97 273 | 61.63 273 | 62.98 277 | 60.04 372 | 45.74 277 | 47.53 389 | 70.95 255 | 44.04 306 | 73.06 226 | 78.84 282 | 39.72 318 | 60.33 342 | 55.82 208 | 84.64 226 | 82.88 164 |
|
| 新几何1 | | | | | 69.99 193 | 88.37 35 | 71.34 55 | | 62.08 315 | 43.85 307 | 74.99 193 | 86.11 171 | 52.85 241 | 70.57 275 | 50.99 249 | 83.23 244 | 68.05 353 |
|
| Syy-MVS | | | 54.13 326 | 55.45 322 | 50.18 359 | 68.77 305 | 23.59 412 | 55.02 359 | 44.55 395 | 43.80 308 | 58.05 363 | 64.07 389 | 46.22 278 | 58.83 348 | 46.16 294 | 72.36 350 | 68.12 351 |
|
| myMVS_eth3d | | | 50.36 354 | 50.52 359 | 49.88 360 | 68.77 305 | 22.69 414 | 55.02 359 | 44.55 395 | 43.80 308 | 58.05 363 | 64.07 389 | 14.16 424 | 58.83 348 | 33.90 374 | 72.36 350 | 68.12 351 |
|
| 114514_t | | | 73.40 121 | 73.33 131 | 73.64 126 | 84.15 89 | 57.11 176 | 78.20 102 | 80.02 143 | 43.76 310 | 72.55 232 | 86.07 173 | 64.00 143 | 83.35 91 | 60.14 170 | 91.03 106 | 80.45 221 |
|
| OpenMVS_ROB |  | 54.93 17 | 63.23 261 | 63.28 261 | 63.07 276 | 69.81 294 | 45.34 279 | 68.52 238 | 67.14 279 | 43.74 311 | 70.61 259 | 79.22 274 | 47.90 274 | 72.66 250 | 48.75 268 | 73.84 341 | 71.21 327 |
|
| FMVSNet5 | | | 55.08 322 | 55.54 321 | 53.71 340 | 65.80 338 | 33.50 374 | 56.22 351 | 52.50 365 | 43.72 312 | 61.06 345 | 83.38 210 | 25.46 395 | 54.87 362 | 30.11 388 | 81.64 263 | 72.75 309 |
|
| MVP-Stereo | | | 61.56 278 | 59.22 291 | 68.58 222 | 79.28 148 | 60.44 153 | 69.20 224 | 71.57 239 | 43.58 313 | 56.42 373 | 78.37 286 | 39.57 320 | 76.46 210 | 34.86 369 | 60.16 399 | 68.86 349 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| ETVMVS | | | 50.32 355 | 49.87 363 | 51.68 351 | 70.30 288 | 26.66 403 | 52.33 375 | 43.93 397 | 43.54 314 | 54.91 380 | 67.95 377 | 20.01 412 | 60.17 343 | 22.47 413 | 73.40 342 | 68.22 350 |
|
| mvs_anonymous | | | 65.08 239 | 65.49 236 | 63.83 266 | 63.79 353 | 37.60 348 | 66.52 267 | 69.82 265 | 43.44 315 | 73.46 221 | 86.08 172 | 58.79 197 | 71.75 266 | 51.90 241 | 75.63 321 | 82.15 185 |
|
| test-LLR | | | 50.43 353 | 50.69 358 | 49.64 363 | 60.76 368 | 41.87 308 | 53.18 370 | 45.48 393 | 43.41 316 | 49.41 401 | 60.47 402 | 29.22 383 | 44.73 394 | 42.09 318 | 72.14 353 | 62.33 386 |
|
| test0.0.03 1 | | | 47.72 364 | 48.31 366 | 45.93 379 | 55.53 400 | 29.39 393 | 46.40 393 | 41.21 411 | 43.41 316 | 55.81 377 | 67.65 378 | 29.22 383 | 43.77 400 | 25.73 406 | 69.87 369 | 64.62 375 |
|
| SCA | | | 58.57 302 | 58.04 303 | 60.17 306 | 70.17 289 | 41.07 314 | 65.19 283 | 53.38 361 | 43.34 318 | 61.00 347 | 73.48 331 | 45.20 283 | 69.38 284 | 40.34 330 | 70.31 366 | 70.05 336 |
|
| ET-MVSNet_ETH3D | | | 63.32 259 | 60.69 283 | 71.20 175 | 70.15 291 | 55.66 186 | 65.02 285 | 64.32 302 | 43.28 319 | 68.99 279 | 72.05 342 | 25.46 395 | 78.19 188 | 54.16 229 | 82.80 246 | 79.74 232 |
|
| miper_enhance_ethall | | | 65.86 232 | 65.05 248 | 68.28 227 | 61.62 365 | 42.62 304 | 64.74 287 | 77.97 182 | 42.52 320 | 73.42 222 | 72.79 337 | 49.66 258 | 77.68 196 | 58.12 187 | 84.59 227 | 84.54 112 |
|
| cascas | | | 64.59 245 | 62.77 267 | 70.05 192 | 75.27 211 | 50.02 226 | 61.79 311 | 71.61 238 | 42.46 321 | 63.68 329 | 68.89 370 | 49.33 262 | 80.35 143 | 47.82 281 | 84.05 234 | 79.78 231 |
|
| PVSNet_Blended | | | 62.90 265 | 61.64 272 | 66.69 245 | 69.81 294 | 49.36 235 | 61.23 315 | 78.96 160 | 42.04 322 | 59.98 351 | 68.86 371 | 51.82 246 | 78.20 186 | 44.30 304 | 77.77 308 | 72.52 311 |
|
| dongtai | | | 31.66 386 | 32.98 389 | 27.71 401 | 58.58 385 | 12.61 423 | 45.02 396 | 14.24 427 | 41.90 323 | 47.93 403 | 43.91 416 | 10.65 427 | 41.81 406 | 14.06 419 | 20.53 420 | 28.72 417 |
|
| MVSTER | | | 63.29 260 | 61.60 274 | 68.36 223 | 59.77 378 | 46.21 273 | 60.62 320 | 71.32 246 | 41.83 324 | 75.40 189 | 79.12 277 | 30.25 377 | 75.85 211 | 56.30 202 | 79.81 284 | 83.03 161 |
|
| MIMVSNet | | | 54.39 325 | 56.12 317 | 49.20 365 | 72.57 259 | 30.91 386 | 59.98 325 | 48.43 383 | 41.66 325 | 55.94 375 | 83.86 203 | 41.19 308 | 50.42 371 | 26.05 402 | 75.38 325 | 66.27 363 |
|
| KD-MVS_2432*1600 | | | 52.05 345 | 51.58 348 | 53.44 343 | 52.11 410 | 31.20 383 | 44.88 397 | 64.83 298 | 41.53 326 | 64.37 319 | 70.03 359 | 15.61 422 | 64.20 326 | 36.25 359 | 74.61 331 | 64.93 373 |
|
| miper_refine_blended | | | 52.05 345 | 51.58 348 | 53.44 343 | 52.11 410 | 31.20 383 | 44.88 397 | 64.83 298 | 41.53 326 | 64.37 319 | 70.03 359 | 15.61 422 | 64.20 326 | 36.25 359 | 74.61 331 | 64.93 373 |
|
| dmvs_testset | | | 45.26 370 | 47.51 368 | 38.49 397 | 59.96 375 | 14.71 421 | 58.50 337 | 43.39 399 | 41.30 328 | 51.79 393 | 56.48 406 | 39.44 322 | 49.91 375 | 21.42 415 | 55.35 411 | 50.85 402 |
|
| patch_mono-2 | | | 62.73 269 | 64.08 252 | 58.68 316 | 70.36 286 | 55.87 184 | 60.84 318 | 64.11 304 | 41.23 329 | 64.04 323 | 78.22 288 | 60.00 183 | 48.80 376 | 54.17 228 | 83.71 239 | 71.37 323 |
|
| new-patchmatchnet | | | 52.89 338 | 55.76 320 | 44.26 387 | 59.94 376 | 6.31 427 | 37.36 411 | 50.76 373 | 41.10 330 | 64.28 321 | 79.82 263 | 44.77 286 | 48.43 380 | 36.24 361 | 87.61 172 | 78.03 256 |
|
| test222 | | | | | | 87.30 38 | 69.15 77 | 67.85 245 | 59.59 325 | 41.06 331 | 73.05 227 | 85.72 179 | 48.03 273 | | | 80.65 272 | 66.92 358 |
|
| Patchmatch-RL test | | | 59.95 291 | 59.12 292 | 62.44 283 | 72.46 260 | 54.61 195 | 59.63 327 | 47.51 386 | 41.05 332 | 74.58 202 | 74.30 324 | 31.06 371 | 65.31 322 | 51.61 242 | 79.85 283 | 67.39 355 |
|
| fmvsm_s_conf0.5_n_a | | | 67.00 222 | 65.95 234 | 70.17 188 | 69.72 298 | 61.16 142 | 73.34 165 | 56.83 339 | 40.96 333 | 68.36 291 | 80.08 260 | 62.84 149 | 67.57 301 | 66.90 112 | 74.50 333 | 81.78 192 |
|
| fmvsm_s_conf0.5_n | | | 66.34 230 | 65.27 238 | 69.57 199 | 68.20 312 | 59.14 165 | 71.66 188 | 56.48 342 | 40.92 334 | 67.78 296 | 79.46 268 | 61.23 170 | 66.90 308 | 67.39 103 | 74.32 337 | 82.66 174 |
|
| thisisatest0515 | | | 60.48 287 | 57.86 304 | 68.34 224 | 67.25 323 | 46.42 270 | 60.58 321 | 62.14 313 | 40.82 335 | 63.58 331 | 69.12 365 | 26.28 391 | 78.34 182 | 48.83 267 | 82.13 251 | 80.26 225 |
|
| fmvsm_s_conf0.1_n_a | | | 67.37 217 | 66.36 227 | 70.37 183 | 70.86 273 | 61.17 141 | 74.00 161 | 57.18 336 | 40.77 336 | 68.83 288 | 80.88 245 | 63.11 148 | 67.61 300 | 66.94 110 | 74.72 329 | 82.33 183 |
|
| ppachtmachnet_test | | | 60.26 289 | 59.61 290 | 62.20 285 | 67.70 319 | 44.33 287 | 58.18 340 | 60.96 320 | 40.75 337 | 65.80 310 | 72.57 338 | 41.23 306 | 63.92 329 | 46.87 288 | 82.42 249 | 78.33 249 |
|
| fmvsm_s_conf0.1_n | | | 66.60 224 | 65.54 235 | 69.77 196 | 68.99 304 | 59.15 163 | 72.12 175 | 56.74 341 | 40.72 338 | 68.25 294 | 80.14 259 | 61.18 173 | 66.92 307 | 67.34 107 | 74.40 334 | 83.23 155 |
|
| PAPM | | | 61.79 276 | 60.37 285 | 66.05 250 | 76.09 201 | 41.87 308 | 69.30 222 | 76.79 197 | 40.64 339 | 53.80 386 | 79.62 267 | 44.38 289 | 82.92 98 | 29.64 391 | 73.11 345 | 73.36 302 |
|
| our_test_3 | | | 56.46 310 | 56.51 313 | 56.30 329 | 67.70 319 | 39.66 329 | 55.36 358 | 52.34 367 | 40.57 340 | 63.85 326 | 69.91 361 | 40.04 316 | 58.22 352 | 43.49 311 | 75.29 327 | 71.03 331 |
|
| test_fmvsmvis_n_1920 | | | 72.36 146 | 72.49 146 | 71.96 166 | 71.29 271 | 64.06 117 | 72.79 169 | 81.82 104 | 40.23 341 | 81.25 104 | 81.04 243 | 70.62 80 | 68.69 289 | 69.74 83 | 83.60 241 | 83.14 157 |
|
| PatchmatchNet |  | | 54.60 324 | 54.27 331 | 55.59 334 | 65.17 345 | 39.08 331 | 66.92 261 | 51.80 369 | 39.89 342 | 58.39 360 | 73.12 335 | 31.69 365 | 58.33 351 | 43.01 313 | 58.38 405 | 69.38 345 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| dmvs_re | | | 49.91 358 | 50.77 357 | 47.34 373 | 59.98 373 | 38.86 335 | 53.18 370 | 53.58 358 | 39.75 343 | 55.06 379 | 61.58 398 | 36.42 338 | 44.40 396 | 29.15 396 | 68.23 377 | 58.75 394 |
|
| fmvsm_l_conf0.5_n | | | 67.48 213 | 66.88 225 | 69.28 204 | 67.41 322 | 62.04 130 | 70.69 205 | 69.85 264 | 39.46 344 | 69.59 273 | 81.09 242 | 58.15 202 | 68.73 288 | 67.51 100 | 78.16 304 | 77.07 271 |
|
| WBMVS | | | 53.38 332 | 54.14 332 | 51.11 355 | 70.16 290 | 26.66 403 | 50.52 381 | 51.64 370 | 39.32 345 | 63.08 335 | 77.16 299 | 23.53 402 | 55.56 359 | 31.99 380 | 79.88 282 | 71.11 329 |
|
| D2MVS | | | 62.58 270 | 61.05 279 | 67.20 238 | 63.85 352 | 47.92 251 | 56.29 350 | 69.58 266 | 39.32 345 | 70.07 267 | 78.19 289 | 34.93 343 | 72.68 249 | 53.44 235 | 83.74 237 | 81.00 205 |
|
| Patchmatch-test | | | 47.93 363 | 49.96 362 | 41.84 391 | 57.42 390 | 24.26 411 | 48.75 384 | 41.49 409 | 39.30 347 | 56.79 369 | 73.48 331 | 30.48 376 | 33.87 415 | 29.29 393 | 72.61 348 | 67.39 355 |
|
| HY-MVS | | 49.31 19 | 57.96 305 | 57.59 306 | 59.10 314 | 66.85 330 | 36.17 355 | 65.13 284 | 65.39 293 | 39.24 348 | 54.69 383 | 78.14 290 | 44.28 290 | 67.18 306 | 33.75 375 | 70.79 362 | 73.95 297 |
|
| baseline2 | | | 55.57 318 | 52.74 339 | 64.05 264 | 65.26 342 | 44.11 288 | 62.38 308 | 54.43 352 | 39.03 349 | 51.21 394 | 67.35 381 | 33.66 347 | 72.45 255 | 37.14 352 | 64.22 389 | 75.60 279 |
|
| XXY-MVS | | | 55.19 320 | 57.40 308 | 48.56 371 | 64.45 350 | 34.84 367 | 51.54 377 | 53.59 357 | 38.99 350 | 63.79 328 | 79.43 269 | 56.59 221 | 45.57 387 | 36.92 356 | 71.29 359 | 65.25 369 |
|
| pmmvs-eth3d | | | 64.41 250 | 63.27 262 | 67.82 232 | 75.81 207 | 60.18 155 | 69.49 218 | 62.05 316 | 38.81 351 | 74.13 209 | 82.23 228 | 43.76 293 | 68.65 290 | 42.53 314 | 80.63 274 | 74.63 289 |
|
| fmvsm_l_conf0.5_n_a | | | 66.66 223 | 65.97 233 | 68.72 220 | 67.09 325 | 61.38 138 | 70.03 212 | 69.15 270 | 38.59 352 | 68.41 290 | 80.36 253 | 56.56 223 | 68.32 293 | 66.10 114 | 77.45 309 | 76.46 273 |
|
| UWE-MVS | | | 52.94 337 | 52.70 340 | 53.65 341 | 73.56 240 | 27.49 400 | 57.30 345 | 49.57 378 | 38.56 353 | 62.79 336 | 71.42 347 | 19.49 413 | 60.41 341 | 24.33 411 | 77.33 310 | 73.06 304 |
|
| MDA-MVSNet_test_wron | | | 52.57 341 | 53.49 337 | 49.81 362 | 54.24 404 | 36.47 353 | 40.48 405 | 46.58 390 | 38.13 354 | 75.47 188 | 73.32 333 | 41.05 311 | 43.85 399 | 40.98 326 | 71.20 360 | 69.10 348 |
|
| YYNet1 | | | 52.58 340 | 53.50 335 | 49.85 361 | 54.15 405 | 36.45 354 | 40.53 404 | 46.55 391 | 38.09 355 | 75.52 187 | 73.31 334 | 41.08 310 | 43.88 398 | 41.10 324 | 71.14 361 | 69.21 346 |
|
| 1112_ss | | | 59.48 294 | 58.99 294 | 60.96 300 | 77.84 172 | 42.39 306 | 61.42 313 | 68.45 275 | 37.96 356 | 59.93 354 | 67.46 379 | 45.11 285 | 65.07 324 | 40.89 327 | 71.81 355 | 75.41 282 |
|
| WB-MVSnew | | | 53.94 331 | 54.76 328 | 51.49 353 | 71.53 268 | 28.05 397 | 58.22 339 | 50.36 374 | 37.94 357 | 59.16 358 | 70.17 356 | 49.21 263 | 51.94 368 | 24.49 409 | 71.80 356 | 74.47 293 |
|
| test_fmvsm_n_1920 | | | 69.63 179 | 68.45 198 | 73.16 135 | 70.56 280 | 65.86 102 | 70.26 210 | 78.35 174 | 37.69 358 | 74.29 206 | 78.89 281 | 61.10 174 | 68.10 295 | 65.87 118 | 79.07 291 | 85.53 84 |
|
| UnsupCasMVSNet_eth | | | 52.26 343 | 53.29 338 | 49.16 366 | 55.08 401 | 33.67 373 | 50.03 382 | 58.79 327 | 37.67 359 | 63.43 334 | 74.75 318 | 41.82 304 | 45.83 386 | 38.59 341 | 59.42 401 | 67.98 354 |
|
| UBG | | | 49.18 360 | 49.35 364 | 48.66 370 | 70.36 286 | 26.56 405 | 50.53 380 | 45.61 392 | 37.43 360 | 53.37 387 | 65.97 384 | 23.03 405 | 54.20 365 | 26.29 400 | 71.54 357 | 65.20 370 |
|
| tpm | | | 50.60 352 | 52.42 344 | 45.14 383 | 65.18 344 | 26.29 406 | 60.30 322 | 43.50 398 | 37.41 361 | 57.01 367 | 79.09 278 | 30.20 379 | 42.32 402 | 32.77 378 | 66.36 384 | 66.81 361 |
|
| gm-plane-assit | | | | | | 62.51 358 | 33.91 372 | | | 37.25 362 | | 62.71 394 | | 72.74 248 | 38.70 338 | | |
|
| CostFormer | | | 57.35 308 | 56.14 316 | 60.97 299 | 63.76 354 | 38.43 338 | 67.50 249 | 60.22 322 | 37.14 363 | 59.12 359 | 76.34 305 | 32.78 352 | 71.99 262 | 39.12 336 | 69.27 372 | 72.47 312 |
|
| pmmvs4 | | | 60.78 284 | 59.04 293 | 66.00 251 | 73.06 254 | 57.67 175 | 64.53 291 | 60.22 322 | 36.91 364 | 65.96 308 | 77.27 298 | 39.66 319 | 68.54 291 | 38.87 337 | 74.89 328 | 71.80 319 |
|
| PVSNet | | 43.83 21 | 51.56 348 | 51.17 351 | 52.73 346 | 68.34 310 | 38.27 340 | 48.22 386 | 53.56 359 | 36.41 365 | 54.29 384 | 64.94 388 | 34.60 344 | 54.20 365 | 30.34 386 | 69.87 369 | 65.71 366 |
|
| ttmdpeth | | | 56.40 311 | 55.45 322 | 59.25 311 | 55.63 399 | 40.69 319 | 58.94 333 | 49.72 377 | 36.22 366 | 65.39 312 | 86.97 138 | 23.16 404 | 56.69 358 | 42.30 315 | 80.74 271 | 80.36 223 |
|
| tpmrst | | | 50.15 356 | 51.38 350 | 46.45 378 | 56.05 395 | 24.77 410 | 64.40 293 | 49.98 375 | 36.14 367 | 53.32 388 | 69.59 363 | 35.16 342 | 48.69 377 | 39.24 334 | 58.51 404 | 65.89 364 |
|
| MS-PatchMatch | | | 55.59 317 | 54.89 327 | 57.68 322 | 69.18 300 | 49.05 238 | 61.00 317 | 62.93 311 | 35.98 368 | 58.36 361 | 68.93 369 | 36.71 337 | 66.59 314 | 37.62 349 | 63.30 391 | 57.39 397 |
|
| MDTV_nov1_ep13 | | | | 54.05 334 | | 65.54 341 | 29.30 394 | 59.00 331 | 55.22 347 | 35.96 369 | 52.44 389 | 75.98 306 | 30.77 374 | 59.62 345 | 38.21 343 | 73.33 344 | |
|
| USDC | | | 62.80 266 | 63.10 264 | 61.89 287 | 65.19 343 | 43.30 297 | 67.42 251 | 74.20 218 | 35.80 370 | 72.25 237 | 84.48 194 | 45.67 280 | 71.95 263 | 37.95 346 | 84.97 218 | 70.42 335 |
|
| jason | | | 64.47 248 | 62.84 266 | 69.34 203 | 76.91 187 | 59.20 159 | 67.15 257 | 65.67 288 | 35.29 371 | 65.16 315 | 76.74 303 | 44.67 287 | 70.68 273 | 54.74 219 | 79.28 290 | 78.14 254 |
| jason: jason. |
| Anonymous20231206 | | | 54.13 326 | 55.82 319 | 49.04 368 | 70.89 272 | 35.96 357 | 51.73 376 | 50.87 372 | 34.86 372 | 62.49 337 | 79.22 274 | 42.52 302 | 44.29 397 | 27.95 398 | 81.88 254 | 66.88 359 |
|
| MVStest1 | | | 55.38 319 | 54.97 326 | 56.58 328 | 43.72 421 | 40.07 326 | 59.13 329 | 47.09 388 | 34.83 373 | 76.53 172 | 84.65 188 | 13.55 425 | 53.30 367 | 55.04 215 | 80.23 277 | 76.38 274 |
|
| dp | | | 44.09 376 | 44.88 378 | 41.72 393 | 58.53 386 | 23.18 413 | 54.70 364 | 42.38 405 | 34.80 374 | 44.25 413 | 65.61 386 | 24.48 400 | 44.80 393 | 29.77 390 | 49.42 413 | 57.18 398 |
|
| Test_1112_low_res | | | 58.78 300 | 58.69 296 | 59.04 315 | 79.41 146 | 38.13 343 | 57.62 342 | 66.98 281 | 34.74 375 | 59.62 357 | 77.56 296 | 42.92 298 | 63.65 331 | 38.66 339 | 70.73 363 | 75.35 284 |
|
| EPMVS | | | 45.74 368 | 46.53 371 | 43.39 389 | 54.14 406 | 22.33 416 | 55.02 359 | 35.00 418 | 34.69 376 | 51.09 395 | 70.20 355 | 25.92 393 | 42.04 404 | 37.19 351 | 55.50 409 | 65.78 365 |
|
| lupinMVS | | | 63.36 258 | 61.49 275 | 68.97 213 | 74.93 215 | 59.19 160 | 65.80 275 | 64.52 301 | 34.68 377 | 63.53 332 | 74.25 325 | 43.19 296 | 70.62 274 | 53.88 231 | 78.67 296 | 77.10 268 |
|
| UnsupCasMVSNet_bld | | | 50.01 357 | 51.03 354 | 46.95 374 | 58.61 384 | 32.64 376 | 48.31 385 | 53.27 362 | 34.27 378 | 60.47 349 | 71.53 345 | 41.40 305 | 47.07 384 | 30.68 385 | 60.78 398 | 61.13 389 |
|
| CMPMVS |  | 48.73 20 | 61.54 279 | 60.89 280 | 63.52 270 | 61.08 367 | 51.55 212 | 68.07 244 | 68.00 277 | 33.88 379 | 65.87 309 | 81.25 240 | 37.91 330 | 67.71 297 | 49.32 264 | 82.60 248 | 71.31 325 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| WTY-MVS | | | 49.39 359 | 50.31 361 | 46.62 377 | 61.22 366 | 32.00 380 | 46.61 392 | 49.77 376 | 33.87 380 | 54.12 385 | 69.55 364 | 41.96 303 | 45.40 389 | 31.28 384 | 64.42 388 | 62.47 384 |
|
| N_pmnet | | | 52.06 344 | 51.11 352 | 54.92 335 | 59.64 380 | 71.03 57 | 37.42 410 | 61.62 319 | 33.68 381 | 57.12 365 | 72.10 339 | 37.94 329 | 31.03 416 | 29.13 397 | 71.35 358 | 62.70 381 |
|
| HyFIR lowres test | | | 63.01 263 | 60.47 284 | 70.61 178 | 83.04 104 | 54.10 198 | 59.93 326 | 72.24 236 | 33.67 382 | 69.00 278 | 75.63 309 | 38.69 325 | 76.93 203 | 36.60 357 | 75.45 324 | 80.81 212 |
|
| tpm2 | | | 56.12 312 | 54.64 329 | 60.55 304 | 66.24 334 | 36.01 356 | 68.14 242 | 56.77 340 | 33.60 383 | 58.25 362 | 75.52 312 | 30.25 377 | 74.33 235 | 33.27 376 | 69.76 371 | 71.32 324 |
|
| 1314 | | | 59.83 292 | 58.86 295 | 62.74 281 | 65.71 339 | 44.78 284 | 68.59 236 | 72.63 231 | 33.54 384 | 61.05 346 | 67.29 382 | 43.62 294 | 71.26 270 | 49.49 262 | 67.84 381 | 72.19 316 |
|
| CR-MVSNet | | | 58.96 297 | 58.49 298 | 60.36 305 | 66.37 331 | 48.24 245 | 70.93 201 | 56.40 344 | 32.87 385 | 61.35 342 | 86.66 150 | 33.19 349 | 63.22 333 | 48.50 272 | 70.17 367 | 69.62 342 |
|
| MVS | | | 60.62 286 | 59.97 287 | 62.58 282 | 68.13 314 | 47.28 263 | 68.59 236 | 73.96 219 | 32.19 386 | 59.94 353 | 68.86 371 | 50.48 254 | 77.64 197 | 41.85 320 | 75.74 319 | 62.83 380 |
|
| tpm cat1 | | | 54.02 329 | 52.63 341 | 58.19 319 | 64.85 349 | 39.86 328 | 66.26 269 | 57.28 333 | 32.16 387 | 56.90 368 | 70.39 353 | 32.75 353 | 65.30 323 | 34.29 371 | 58.79 402 | 69.41 344 |
|
| pmmvs5 | | | 52.49 342 | 52.58 342 | 52.21 349 | 54.99 402 | 32.38 377 | 55.45 357 | 53.84 356 | 32.15 388 | 55.49 378 | 74.81 316 | 38.08 328 | 57.37 356 | 34.02 372 | 74.40 334 | 66.88 359 |
|
| PMMVS2 | | | 37.74 383 | 40.87 383 | 28.36 400 | 42.41 423 | 5.35 428 | 24.61 415 | 27.75 420 | 32.15 388 | 47.85 404 | 70.27 354 | 35.85 340 | 29.51 418 | 19.08 418 | 67.85 380 | 50.22 404 |
|
| sss | | | 47.59 365 | 48.32 365 | 45.40 382 | 56.73 394 | 33.96 371 | 45.17 395 | 48.51 382 | 32.11 390 | 52.37 390 | 65.79 385 | 40.39 314 | 41.91 405 | 31.85 381 | 61.97 395 | 60.35 390 |
|
| test-mter | | | 48.56 362 | 48.20 367 | 49.64 363 | 60.76 368 | 41.87 308 | 53.18 370 | 45.48 393 | 31.91 391 | 49.41 401 | 60.47 402 | 18.34 415 | 44.73 394 | 42.09 318 | 72.14 353 | 62.33 386 |
|
| MDTV_nov1_ep13_2view | | | | | | | 18.41 418 | 53.74 368 | | 31.57 392 | 44.89 410 | | 29.90 381 | | 32.93 377 | | 71.48 321 |
|
| ADS-MVSNet2 | | | 48.76 361 | 47.25 370 | 53.29 345 | 55.90 397 | 40.54 323 | 47.34 390 | 54.99 350 | 31.41 393 | 50.48 397 | 72.06 340 | 31.23 368 | 54.26 364 | 25.93 403 | 55.93 407 | 65.07 371 |
|
| ADS-MVSNet | | | 44.62 374 | 45.58 373 | 41.73 392 | 55.90 397 | 20.83 417 | 47.34 390 | 39.94 413 | 31.41 393 | 50.48 397 | 72.06 340 | 31.23 368 | 39.31 410 | 25.93 403 | 55.93 407 | 65.07 371 |
|
| PVSNet_0 | | 36.71 22 | 41.12 381 | 40.78 384 | 42.14 390 | 59.97 374 | 40.13 325 | 40.97 403 | 42.24 407 | 30.81 395 | 44.86 411 | 49.41 414 | 40.70 312 | 45.12 391 | 23.15 412 | 34.96 417 | 41.16 413 |
|
| test_vis1_n_1920 | | | 52.96 336 | 53.50 335 | 51.32 354 | 59.15 381 | 44.90 283 | 56.13 353 | 64.29 303 | 30.56 396 | 59.87 355 | 60.68 400 | 40.16 315 | 47.47 382 | 48.25 276 | 62.46 393 | 61.58 388 |
|
| MVS-HIRNet | | | 45.53 369 | 47.29 369 | 40.24 394 | 62.29 360 | 26.82 402 | 56.02 354 | 37.41 416 | 29.74 397 | 43.69 415 | 81.27 239 | 33.96 345 | 55.48 360 | 24.46 410 | 56.79 406 | 38.43 415 |
|
| CHOSEN 1792x2688 | | | 58.09 304 | 56.30 315 | 63.45 271 | 79.95 140 | 50.93 217 | 54.07 367 | 65.59 290 | 28.56 398 | 61.53 341 | 74.33 323 | 41.09 309 | 66.52 315 | 33.91 373 | 67.69 382 | 72.92 306 |
|
| TESTMET0.1,1 | | | 45.17 371 | 44.93 377 | 45.89 380 | 56.02 396 | 38.31 339 | 53.18 370 | 41.94 408 | 27.85 399 | 44.86 411 | 56.47 407 | 17.93 417 | 41.50 407 | 38.08 345 | 68.06 378 | 57.85 395 |
|
| test_fmvs3 | | | 56.78 309 | 55.99 318 | 59.12 313 | 53.96 408 | 48.09 248 | 58.76 335 | 66.22 284 | 27.54 400 | 76.66 164 | 68.69 373 | 25.32 397 | 51.31 369 | 53.42 236 | 73.38 343 | 77.97 259 |
|
| CHOSEN 280x420 | | | 41.62 380 | 39.89 385 | 46.80 376 | 61.81 362 | 51.59 211 | 33.56 414 | 35.74 417 | 27.48 401 | 37.64 419 | 53.53 408 | 23.24 403 | 42.09 403 | 27.39 399 | 58.64 403 | 46.72 407 |
|
| EU-MVSNet | | | 60.82 283 | 60.80 282 | 60.86 301 | 68.37 309 | 41.16 312 | 72.27 172 | 68.27 276 | 26.96 402 | 69.08 277 | 75.71 308 | 32.09 358 | 67.44 302 | 55.59 211 | 78.90 293 | 73.97 296 |
|
| test_cas_vis1_n_1920 | | | 50.90 351 | 50.92 355 | 50.83 357 | 54.12 407 | 47.80 253 | 51.44 378 | 54.61 351 | 26.95 403 | 63.95 325 | 60.85 399 | 37.86 332 | 44.97 392 | 45.53 299 | 62.97 392 | 59.72 392 |
|
| CVMVSNet | | | 59.21 296 | 58.44 299 | 61.51 291 | 73.94 237 | 47.76 255 | 71.31 195 | 64.56 300 | 26.91 404 | 60.34 350 | 70.44 351 | 36.24 339 | 67.65 298 | 53.57 233 | 68.66 376 | 69.12 347 |
|
| test_fmvs2 | | | 54.80 323 | 54.11 333 | 56.88 327 | 51.76 412 | 49.95 228 | 56.70 348 | 65.80 287 | 26.22 405 | 69.42 274 | 65.25 387 | 31.82 363 | 49.98 373 | 49.63 260 | 70.36 365 | 70.71 332 |
|
| kuosan | | | 22.02 387 | 23.52 391 | 17.54 403 | 41.56 425 | 11.24 424 | 41.99 402 | 13.39 428 | 26.13 406 | 28.87 420 | 30.75 418 | 9.72 428 | 21.94 422 | 4.77 423 | 14.49 421 | 19.43 418 |
|
| test_vis1_n | | | 51.27 350 | 50.41 360 | 53.83 339 | 56.99 391 | 50.01 227 | 56.75 347 | 60.53 321 | 25.68 407 | 59.74 356 | 57.86 405 | 29.40 382 | 47.41 383 | 43.10 312 | 63.66 390 | 64.08 378 |
|
| new_pmnet | | | 37.55 384 | 39.80 386 | 30.79 399 | 56.83 392 | 16.46 420 | 39.35 407 | 30.65 419 | 25.59 408 | 45.26 409 | 61.60 397 | 24.54 398 | 28.02 419 | 21.60 414 | 52.80 412 | 47.90 406 |
|
| test_fmvs1_n | | | 52.70 339 | 52.01 346 | 54.76 336 | 53.83 409 | 50.36 221 | 55.80 355 | 65.90 286 | 24.96 409 | 65.39 312 | 60.64 401 | 27.69 386 | 48.46 378 | 45.88 297 | 67.99 379 | 65.46 367 |
|
| MVE |  | 27.91 23 | 36.69 385 | 35.64 388 | 39.84 395 | 43.37 422 | 35.85 359 | 19.49 416 | 24.61 422 | 24.68 410 | 39.05 417 | 62.63 395 | 38.67 326 | 27.10 420 | 21.04 416 | 47.25 415 | 56.56 399 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_fmvs1 | | | 51.51 349 | 50.86 356 | 53.48 342 | 49.72 415 | 49.35 237 | 54.11 366 | 64.96 296 | 24.64 411 | 63.66 330 | 59.61 404 | 28.33 385 | 48.45 379 | 45.38 302 | 67.30 383 | 62.66 383 |
|
| pmmvs3 | | | 46.71 366 | 45.09 376 | 51.55 352 | 56.76 393 | 48.25 244 | 55.78 356 | 39.53 414 | 24.13 412 | 50.35 399 | 63.40 391 | 15.90 421 | 51.08 370 | 29.29 393 | 70.69 364 | 55.33 400 |
|
| test_vis3_rt | | | 51.94 347 | 51.04 353 | 54.65 337 | 46.32 419 | 50.13 225 | 44.34 399 | 78.17 178 | 23.62 413 | 68.95 281 | 62.81 393 | 21.41 408 | 38.52 412 | 41.49 322 | 72.22 352 | 75.30 285 |
|
| mvsany_test3 | | | 43.76 378 | 41.01 382 | 52.01 350 | 48.09 417 | 57.74 174 | 42.47 401 | 23.85 424 | 23.30 414 | 64.80 317 | 62.17 396 | 27.12 387 | 40.59 408 | 29.17 395 | 48.11 414 | 57.69 396 |
|
| PMMVS | | | 44.69 373 | 43.95 381 | 46.92 375 | 50.05 414 | 53.47 204 | 48.08 388 | 42.40 404 | 22.36 415 | 44.01 414 | 53.05 410 | 42.60 301 | 45.49 388 | 31.69 382 | 61.36 397 | 41.79 412 |
|
| test_f | | | 43.79 377 | 45.63 372 | 38.24 398 | 42.29 424 | 38.58 337 | 34.76 413 | 47.68 385 | 22.22 416 | 67.34 302 | 63.15 392 | 31.82 363 | 30.60 417 | 39.19 335 | 62.28 394 | 45.53 410 |
|
| test_vis1_rt | | | 46.70 367 | 45.24 375 | 51.06 356 | 44.58 420 | 51.04 216 | 39.91 406 | 67.56 278 | 21.84 417 | 51.94 392 | 50.79 413 | 33.83 346 | 39.77 409 | 35.25 368 | 61.50 396 | 62.38 385 |
|
| mvsany_test1 | | | 37.88 382 | 35.74 387 | 44.28 386 | 47.28 418 | 49.90 229 | 36.54 412 | 24.37 423 | 19.56 418 | 45.76 407 | 53.46 409 | 32.99 351 | 37.97 413 | 26.17 401 | 35.52 416 | 44.99 411 |
|
| DSMNet-mixed | | | 43.18 379 | 44.66 379 | 38.75 396 | 54.75 403 | 28.88 396 | 57.06 346 | 27.42 421 | 13.47 419 | 47.27 406 | 77.67 295 | 38.83 324 | 39.29 411 | 25.32 408 | 60.12 400 | 48.08 405 |
|
| DeepMVS_CX |  | | | | 11.83 404 | 15.51 426 | 13.86 422 | | 11.25 429 | 5.76 420 | 20.85 422 | 26.46 419 | 17.06 420 | 9.22 423 | 9.69 422 | 13.82 422 | 12.42 419 |
|
| test_method | | | 19.26 388 | 19.12 392 | 19.71 402 | 9.09 427 | 1.91 430 | 7.79 418 | 53.44 360 | 1.42 421 | 10.27 423 | 35.80 417 | 17.42 419 | 25.11 421 | 12.44 420 | 24.38 419 | 32.10 416 |
|
| EGC-MVSNET | | | 64.77 243 | 61.17 277 | 75.60 102 | 86.90 43 | 74.47 34 | 84.04 39 | 68.62 274 | 0.60 422 | 1.13 424 | 91.61 32 | 65.32 133 | 74.15 238 | 64.01 131 | 88.28 162 | 78.17 253 |
|
| tmp_tt | | | 11.98 390 | 14.73 393 | 3.72 405 | 2.28 428 | 4.62 429 | 19.44 417 | 14.50 426 | 0.47 423 | 21.55 421 | 9.58 421 | 25.78 394 | 4.57 424 | 11.61 421 | 27.37 418 | 1.96 420 |
|
| test123 | | | 4.43 393 | 5.78 396 | 0.39 407 | 0.97 429 | 0.28 431 | 46.33 394 | 0.45 430 | 0.31 424 | 0.62 425 | 1.50 424 | 0.61 430 | 0.11 426 | 0.56 424 | 0.63 423 | 0.77 422 |
|
| testmvs | | | 4.06 394 | 5.28 397 | 0.41 406 | 0.64 430 | 0.16 432 | 42.54 400 | 0.31 431 | 0.26 425 | 0.50 426 | 1.40 425 | 0.77 429 | 0.17 425 | 0.56 424 | 0.55 424 | 0.90 421 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| cdsmvs_eth3d_5k | | | 17.71 389 | 23.62 390 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 70.17 263 | 0.00 426 | 0.00 427 | 74.25 325 | 68.16 100 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 5.20 392 | 6.93 395 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 62.39 156 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| ab-mvs-re | | | 5.62 391 | 7.50 394 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 67.46 379 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| WAC-MVS | | | | | | | 22.69 414 | | | | | | | | 36.10 363 | | |
|
| MSC_two_6792asdad | | | | | 79.02 57 | 83.14 99 | 67.03 91 | | 80.75 126 | | | | | 86.24 24 | 77.27 37 | 94.85 29 | 83.78 134 |
|
| No_MVS | | | | | 79.02 57 | 83.14 99 | 67.03 91 | | 80.75 126 | | | | | 86.24 24 | 77.27 37 | 94.85 29 | 83.78 134 |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| OPU-MVS | | | | | 78.65 64 | 83.44 97 | 66.85 93 | 83.62 46 | | | | 86.12 170 | 66.82 113 | 86.01 34 | 61.72 153 | 89.79 136 | 83.08 159 |
|
| test_0728_SECOND | | | | | 76.57 87 | 86.20 49 | 60.57 152 | 83.77 44 | 85.49 32 | | | | | 85.90 40 | 75.86 42 | 94.39 44 | 83.25 153 |
|
| GSMVS | | | | | | | | | | | | | | | | | 70.05 336 |
|
| test_part2 | | | | | | 85.90 60 | 66.44 95 | | | | 84.61 65 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 31.41 366 | | | | 70.05 336 |
|
| sam_mvs | | | | | | | | | | | | | 31.21 370 | | | | |
|
| ambc | | | | | 70.10 191 | 77.74 174 | 50.21 224 | 74.28 158 | 77.93 184 | | 79.26 124 | 88.29 119 | 54.11 236 | 79.77 153 | 64.43 127 | 91.10 104 | 80.30 224 |
|
| MTGPA |  | | | | | | | | 80.63 131 | | | | | | | | |
|
| test_post1 | | | | | | | | 66.63 265 | | | | 2.08 422 | 30.66 375 | 59.33 346 | 40.34 330 | | |
|
| test_post | | | | | | | | | | | | 1.99 423 | 30.91 373 | 54.76 363 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 68.99 366 | 31.32 367 | 69.38 284 | | | |
|
| GG-mvs-BLEND | | | | | 52.24 348 | 60.64 370 | 29.21 395 | 69.73 217 | 42.41 403 | | 45.47 408 | 52.33 411 | 20.43 410 | 68.16 294 | 25.52 407 | 65.42 386 | 59.36 393 |
|
| MTMP | | | | | | | | 84.83 34 | 19.26 425 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 72.12 73 | 91.37 94 | 77.40 262 |
|
| agg_prior2 | | | | | | | | | | | | | | | 70.70 77 | 90.93 109 | 78.55 248 |
|
| agg_prior | | | | | | 84.44 85 | 66.02 101 | | 78.62 171 | | 76.95 155 | | | 80.34 144 | | | |
|
| test_prior4 | | | | | | | 70.14 67 | 77.57 106 | | | | | | | | | |
|
| test_prior | | | | | 75.27 106 | 82.15 118 | 59.85 157 | | 84.33 63 | | | | | 83.39 90 | | | 82.58 176 |
|
| 新几何2 | | | | | | | | 71.33 194 | | | | | | | | | |
|
| 旧先验1 | | | | | | 84.55 82 | 60.36 154 | | 63.69 306 | | | 87.05 137 | 54.65 231 | | | 83.34 243 | 69.66 341 |
|
| 原ACMM2 | | | | | | | | 74.78 147 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 67.30 303 | 48.34 274 | | |
|
| segment_acmp | | | | | | | | | | | | | 68.30 99 | | | | |
|
| test12 | | | | | 76.51 88 | 82.28 116 | 60.94 146 | | 81.64 108 | | 73.60 218 | | 64.88 137 | 85.19 62 | | 90.42 122 | 83.38 149 |
|
| plane_prior7 | | | | | | 85.18 70 | 66.21 98 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 84.18 88 | 65.31 107 | | | | | | 60.83 177 | | | | |
|
| plane_prior5 | | | | | | | | | 85.49 32 | | | | | 86.15 29 | 71.09 74 | 90.94 107 | 84.82 100 |
|
| plane_prior4 | | | | | | | | | | | | 89.11 97 | | | | | |
|
| plane_prior1 | | | | | | 84.46 84 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 55.02 349 | | | | | | | | |
|
| lessismore_v0 | | | | | 72.75 151 | 79.60 144 | 56.83 179 | | 57.37 332 | | 83.80 74 | 89.01 101 | 47.45 275 | 78.74 170 | 64.39 128 | 86.49 200 | 82.69 173 |
|
| test11 | | | | | | | | | 82.71 91 | | | | | | | | |
|
| door | | | | | | | | | 52.91 364 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 58.80 168 | | | | | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 67.38 105 | | |
|
| HQP4-MVS | | | | | | | | | | | 71.59 244 | | | 85.31 54 | | | 83.74 136 |
|
| HQP3-MVS | | | | | | | | | 84.12 69 | | | | | | | 89.16 148 | |
|
| HQP2-MVS | | | | | | | | | | | | | 58.09 204 | | | | |
|
| NP-MVS | | | | | | 83.34 98 | 63.07 125 | | | | | 85.97 174 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 89.47 143 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 91.96 85 | |
|
| Test By Simon | | | | | | | | | | | | | 62.56 152 | | | | |
|