This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2591.50 163.30 12484.80 3487.77 1086.18 196.26 196.06 190.32 184.49 7068.08 9397.05 196.93 1
FOURS189.19 2577.84 1691.64 189.11 284.05 291.57 2
test117284.85 485.39 583.21 388.34 3880.50 685.12 3085.22 4381.06 387.20 2890.28 7079.20 1485.58 4878.04 2794.08 5683.55 135
DTE-MVSNet80.35 5382.89 3872.74 15289.84 837.34 31877.16 11381.81 10480.45 490.92 392.95 774.57 5186.12 3063.65 13294.68 3394.76 6
PEN-MVS80.46 5182.91 3773.11 14089.83 939.02 30377.06 11682.61 9580.04 590.60 692.85 974.93 4785.21 5763.15 14095.15 1895.09 2
PS-CasMVS80.41 5282.86 3973.07 14189.93 739.21 30077.15 11481.28 11479.74 690.87 492.73 1175.03 4584.93 6363.83 13195.19 1695.07 3
COLMAP_ROBcopyleft72.78 383.75 1384.11 1782.68 1482.97 11074.39 3787.18 1188.18 778.98 786.11 3991.47 3079.70 1285.76 4266.91 10895.46 1187.89 47
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
CP-MVSNet79.48 6081.65 5072.98 14489.66 1339.06 30276.76 11880.46 13378.91 890.32 791.70 2468.49 9784.89 6463.40 13795.12 1995.01 4
TDRefinement86.32 286.33 286.29 188.64 3381.19 588.84 490.72 178.27 987.95 1592.53 1379.37 1384.79 6774.51 5196.15 292.88 7
WR-MVS_H80.22 5682.17 4574.39 11889.46 1542.69 27678.24 10182.24 9878.21 1089.57 992.10 1868.05 10285.59 4766.04 11195.62 994.88 5
SR-MVS-dyc-post84.75 585.26 783.21 386.19 5579.18 987.23 986.27 2377.51 1187.65 1990.73 4679.20 1485.58 4878.11 2594.46 3884.89 92
RE-MVS-def85.50 486.19 5579.18 987.23 986.27 2377.51 1187.65 1990.73 4681.38 778.11 2594.46 3884.89 92
abl_684.92 385.70 382.57 1786.72 4979.27 887.56 786.08 2877.48 1388.12 1491.53 2881.18 884.31 7678.12 2494.47 3784.15 123
LS3D80.99 4680.85 5581.41 3078.37 16971.37 5687.45 885.87 3277.48 1381.98 9189.95 7869.14 9085.26 5466.15 10991.24 10487.61 51
SR-MVS84.51 785.27 682.25 2188.52 3577.71 1786.81 1785.25 4277.42 1586.15 3790.24 7181.69 585.94 3377.77 2993.58 6783.09 151
3Dnovator+73.19 281.08 4480.48 5782.87 981.41 13372.03 5084.38 3786.23 2677.28 1680.65 11090.18 7459.80 17787.58 473.06 6091.34 10289.01 33
UA-Net81.56 3782.28 4479.40 5488.91 3069.16 7984.67 3580.01 14275.34 1779.80 11994.91 269.79 8780.25 14972.63 6394.46 3888.78 41
test_040278.17 7679.48 6674.24 12183.50 9859.15 16072.52 16174.60 20875.34 1788.69 1391.81 2275.06 4482.37 10965.10 11788.68 16081.20 188
test_one_060185.84 6761.45 13585.63 3375.27 1985.62 4790.38 6476.72 29
DP-MVS78.44 7379.29 6775.90 10181.86 12765.33 10679.05 9084.63 6074.83 2080.41 11386.27 15571.68 7183.45 9062.45 14492.40 8578.92 227
APD-MVS_3200maxsize83.57 1584.33 1481.31 3382.83 11373.53 4585.50 2887.45 1474.11 2186.45 3490.52 5480.02 1184.48 7177.73 3094.34 4985.93 73
PMVScopyleft70.70 681.70 3683.15 3477.36 8390.35 682.82 282.15 5879.22 15174.08 2287.16 3091.97 1984.80 276.97 20564.98 11993.61 6572.28 286
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
DVP-MVS++81.24 3982.74 4076.76 8883.14 10360.90 14291.64 185.49 3574.03 2384.93 5690.38 6466.82 11385.90 3777.43 3390.78 12083.49 137
test_0728_THIRD74.03 2385.83 4290.41 5975.58 3985.69 4477.43 3394.74 3184.31 119
HPM-MVS_fast84.59 685.10 883.06 688.60 3475.83 2786.27 2586.89 1873.69 2586.17 3691.70 2478.23 2085.20 5879.45 1394.91 2588.15 45
DPE-MVScopyleft82.00 3483.02 3678.95 6285.36 7167.25 9082.91 5384.98 4873.52 2685.43 5090.03 7576.37 3186.97 1174.56 5094.02 5982.62 167
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
LTVRE_ROB75.46 184.22 884.98 981.94 2384.82 7875.40 3091.60 387.80 873.52 2688.90 1193.06 671.39 7581.53 12181.53 392.15 8988.91 37
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+66.64 1081.20 4082.48 4377.35 8481.16 13662.39 12880.51 6887.80 873.02 2887.57 2191.08 3780.28 1082.44 10764.82 12096.10 487.21 56
XVS83.51 1783.73 2282.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 8290.39 6273.86 5686.31 2078.84 2094.03 5784.64 102
X-MVStestdata76.81 8474.79 10382.85 1089.43 1677.61 1886.80 1884.66 5872.71 2982.87 829.95 37173.86 5686.31 2078.84 2094.03 5784.64 102
test_241102_ONE86.12 5961.06 13884.72 5572.64 3187.38 2589.47 8477.48 2485.74 43
SED-MVS81.78 3583.48 2776.67 8986.12 5961.06 13883.62 4584.72 5572.61 3287.38 2589.70 8177.48 2485.89 3975.29 4594.39 4383.08 152
test_241102_TWO84.80 5172.61 3284.93 5689.70 8177.73 2385.89 3975.29 4594.22 5583.25 147
DVP-MVScopyleft81.15 4283.12 3575.24 11186.16 5760.78 14483.77 4380.58 13172.48 3485.83 4290.41 5978.57 1885.69 4475.86 4294.39 4379.24 223
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072686.16 5760.78 14483.81 4285.10 4672.48 3485.27 5389.96 7778.57 18
mPP-MVS84.01 1284.39 1382.88 890.65 481.38 487.08 1382.79 9272.41 3685.11 5590.85 4276.65 3084.89 6479.30 1794.63 3482.35 174
UniMVSNet_ETH3D76.74 8579.02 6869.92 19089.27 2043.81 26474.47 14871.70 22872.33 3785.50 4993.65 377.98 2276.88 20854.60 20691.64 9489.08 31
testtj81.19 4181.70 4979.67 5183.95 9369.77 7183.58 4884.63 6072.13 3882.85 8488.36 11175.00 4686.79 1271.99 7292.84 7682.44 172
zzz-MVS83.01 2583.63 2581.13 3591.16 278.16 1482.72 5680.63 12872.08 3984.93 5690.79 4374.65 4984.42 7380.98 494.75 2980.82 199
MTAPA83.19 2083.87 2081.13 3591.16 278.16 1484.87 3280.63 12872.08 3984.93 5690.79 4374.65 4984.42 7380.98 494.75 2980.82 199
APDe-MVS82.88 2684.14 1679.08 5784.80 8066.72 9686.54 2185.11 4572.00 4186.65 3391.75 2378.20 2187.04 977.93 2894.32 5083.47 140
CP-MVS84.12 1084.55 1282.80 1289.42 1879.74 788.19 584.43 6571.96 4284.70 6290.56 5177.12 2686.18 2779.24 1895.36 1382.49 171
MP-MVScopyleft83.19 2083.54 2682.14 2290.54 579.00 1186.42 2383.59 8371.31 4381.26 10290.96 3974.57 5184.69 6878.41 2294.78 2882.74 165
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
gg-mvs-nofinetune55.75 29156.75 29152.72 31662.87 32728.04 36168.92 21041.36 36571.09 4450.80 35092.63 1220.74 36966.86 29729.97 35072.41 31963.25 341
ACMMPcopyleft84.22 884.84 1082.35 2089.23 2376.66 2687.65 685.89 3171.03 4585.85 4190.58 5078.77 1785.78 4179.37 1695.17 1784.62 104
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SteuartSystems-ACMMP83.07 2383.64 2481.35 3185.14 7471.00 6085.53 2784.78 5270.91 4685.64 4490.41 5975.55 4087.69 379.75 895.08 2085.36 82
Skip Steuart: Steuart Systems R&D Blog.
v7n79.37 6280.41 5876.28 9678.67 16855.81 17879.22 8882.51 9770.72 4787.54 2292.44 1468.00 10481.34 12272.84 6191.72 9191.69 10
HPM-MVScopyleft84.12 1084.63 1182.60 1588.21 3974.40 3685.24 2987.21 1670.69 4885.14 5490.42 5878.99 1686.62 1480.83 694.93 2486.79 62
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
HFP-MVS83.39 1984.03 1881.48 2789.25 2175.69 2887.01 1584.27 6970.23 4984.47 6590.43 5676.79 2785.94 3379.58 1194.23 5382.82 161
ACMMPR83.62 1483.93 1982.69 1389.78 1177.51 2287.01 1584.19 7470.23 4984.49 6490.67 4975.15 4386.37 1979.58 1194.26 5184.18 122
region2R83.54 1683.86 2182.58 1689.82 1077.53 2087.06 1484.23 7370.19 5183.86 7390.72 4875.20 4286.27 2279.41 1594.25 5283.95 126
IS-MVSNet75.10 10075.42 10174.15 12379.23 15548.05 22879.43 8378.04 17270.09 5279.17 12688.02 12053.04 22483.60 8558.05 17793.76 6490.79 17
LPG-MVS_test83.47 1884.33 1480.90 3887.00 4370.41 6682.04 6086.35 2069.77 5387.75 1691.13 3581.83 386.20 2577.13 3795.96 586.08 69
LGP-MVS_train80.90 3887.00 4370.41 6686.35 2069.77 5387.75 1691.13 3581.83 386.20 2577.13 3795.96 586.08 69
APD-MVScopyleft81.13 4381.73 4879.36 5584.47 8570.53 6583.85 4183.70 8169.43 5583.67 7588.96 10075.89 3686.41 1772.62 6492.95 7481.14 190
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Anonymous2023121175.54 9477.19 8570.59 17577.67 18245.70 25474.73 14480.19 13868.80 5682.95 8192.91 866.26 12076.76 21158.41 17592.77 7989.30 26
CPTT-MVS81.51 3881.76 4780.76 4089.20 2478.75 1286.48 2282.03 10168.80 5680.92 10788.52 10672.00 6882.39 10874.80 4793.04 7381.14 190
VDDNet71.60 15373.13 13367.02 23086.29 5341.11 28669.97 19666.50 26868.72 5874.74 19191.70 2459.90 17475.81 21848.58 25091.72 9184.15 123
TranMVSNet+NR-MVSNet76.13 8877.66 8171.56 16684.61 8342.57 27870.98 18678.29 16968.67 5983.04 7989.26 8872.99 6380.75 14055.58 19995.47 1091.35 11
GST-MVS82.79 2783.27 3281.34 3288.99 2873.29 4685.94 2685.13 4468.58 6084.14 7090.21 7373.37 6186.41 1779.09 1993.98 6084.30 121
Regformer-275.32 9674.47 10777.88 7674.22 23066.65 9772.77 15977.54 17868.47 6180.44 11272.08 31270.60 8080.97 13470.08 8084.02 22686.01 72
PGM-MVS83.07 2383.25 3382.54 1889.57 1477.21 2482.04 6085.40 3967.96 6284.91 6090.88 4075.59 3886.57 1578.16 2394.71 3283.82 127
Regformer-474.64 10873.67 12177.55 7874.74 21964.49 11572.91 15775.42 19967.45 6380.24 11672.07 31468.98 9280.19 15370.29 7880.91 25887.98 46
ZNCC-MVS83.12 2283.68 2381.45 2989.14 2673.28 4786.32 2485.97 3067.39 6484.02 7190.39 6274.73 4886.46 1680.73 794.43 4284.60 107
Anonymous2024052972.56 14473.79 11868.86 20676.89 19245.21 25668.80 21577.25 18467.16 6576.89 15990.44 5565.95 12374.19 24050.75 23290.00 13587.18 58
XVG-OURS79.51 5979.82 6278.58 6786.11 6274.96 3376.33 12484.95 5066.89 6682.75 8588.99 9966.82 11378.37 18374.80 4790.76 12382.40 173
ITE_SJBPF80.35 4476.94 18973.60 4380.48 13266.87 6783.64 7686.18 15870.25 8379.90 15661.12 15388.95 15887.56 52
Regformer-174.28 11073.63 12376.21 9874.22 23064.12 11872.77 15975.46 19866.86 6879.27 12472.08 31269.29 8978.74 17168.73 8784.02 22685.77 80
ACMP69.50 882.64 2883.38 2980.40 4386.50 5169.44 7482.30 5786.08 2866.80 6986.70 3289.99 7681.64 685.95 3274.35 5296.11 385.81 75
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
XVG-OURS-SEG-HR79.62 5879.99 6178.49 6886.46 5274.79 3477.15 11485.39 4066.73 7080.39 11488.85 10274.43 5478.33 18574.73 4985.79 19882.35 174
test_part176.97 8378.21 7773.25 13777.87 17745.76 25278.27 10087.26 1566.69 7185.31 5291.43 3255.95 21484.24 7865.71 11395.43 1289.75 22
UniMVSNet_NR-MVSNet74.90 10575.65 9772.64 15583.04 10845.79 25069.26 20678.81 15766.66 7281.74 9686.88 13163.26 14281.07 13056.21 19194.98 2191.05 13
XVG-ACMP-BASELINE80.54 4981.06 5378.98 6187.01 4272.91 4880.23 7785.56 3466.56 7385.64 4489.57 8369.12 9180.55 14372.51 6593.37 6983.48 139
ACMM69.25 982.11 3383.31 3078.49 6888.17 4073.96 3983.11 5284.52 6466.40 7487.45 2389.16 9481.02 980.52 14474.27 5395.73 780.98 195
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PAPM_NR73.91 11374.16 11273.16 13981.90 12653.50 19381.28 6481.40 11166.17 7573.30 21283.31 20059.96 17383.10 9858.45 17481.66 25282.87 159
K. test v373.67 11773.61 12473.87 12679.78 14655.62 18174.69 14662.04 29666.16 7684.76 6193.23 549.47 24380.97 13465.66 11486.67 19185.02 91
NCCC78.25 7578.04 7978.89 6385.61 6869.45 7379.80 8280.99 12365.77 7775.55 18186.25 15767.42 10785.42 5070.10 7990.88 11881.81 183
OPM-MVS80.99 4681.63 5179.07 5886.86 4869.39 7579.41 8584.00 7965.64 7885.54 4889.28 8776.32 3383.47 8974.03 5493.57 6884.35 118
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
AdaColmapbinary74.22 11174.56 10573.20 13881.95 12560.97 14079.43 8380.90 12465.57 7972.54 22181.76 21670.98 7885.26 5447.88 25690.00 13573.37 274
HQP_MVS78.77 6778.78 7178.72 6485.18 7265.18 10882.74 5485.49 3565.45 8078.23 13689.11 9560.83 16886.15 2871.09 7490.94 11284.82 96
plane_prior282.74 5465.45 80
CNLPA73.44 12173.03 13674.66 11378.27 17075.29 3175.99 12878.49 16565.39 8275.67 17983.22 20461.23 16466.77 30053.70 21685.33 20581.92 182
AllTest77.66 7777.43 8278.35 7179.19 15770.81 6178.60 9488.64 365.37 8380.09 11788.17 11570.33 8178.43 18055.60 19690.90 11685.81 75
TestCases78.35 7179.19 15770.81 6188.64 365.37 8380.09 11788.17 11570.33 8178.43 18055.60 19690.90 11685.81 75
SF-MVS80.72 4881.80 4677.48 8082.03 12464.40 11683.41 5088.46 665.28 8584.29 6789.18 9173.73 5983.22 9476.01 3993.77 6284.81 98
DU-MVS74.91 10475.57 9972.93 14683.50 9845.79 25069.47 20380.14 14065.22 8681.74 9687.08 12561.82 15681.07 13056.21 19194.98 2191.93 8
LFMVS67.06 20967.89 20064.56 24778.02 17438.25 30970.81 19059.60 30265.18 8771.06 24386.56 14843.85 27375.22 22546.35 26789.63 14380.21 213
EPP-MVSNet73.86 11473.38 12775.31 10878.19 17153.35 19580.45 6977.32 18265.11 8876.47 17286.80 13349.47 24383.77 8253.89 21492.72 8288.81 40
WR-MVS71.20 15572.48 14267.36 22584.98 7635.70 32864.43 27668.66 25865.05 8981.49 9986.43 15257.57 20176.48 21350.36 23693.32 7189.90 21
MSP-MVS80.49 5079.67 6582.96 789.70 1277.46 2387.16 1285.10 4664.94 9081.05 10488.38 11057.10 20587.10 879.75 883.87 22884.31 119
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ACMMP_NAP82.33 3183.28 3179.46 5389.28 1969.09 8183.62 4584.98 4864.77 9183.97 7291.02 3875.53 4185.93 3682.00 294.36 4783.35 145
Regformer-372.86 13972.28 14574.62 11474.74 21960.18 15072.91 15771.76 22764.74 9278.42 13472.07 31467.00 11076.28 21567.97 9780.91 25887.39 53
HPM-MVS++copyleft79.89 5779.80 6380.18 4589.02 2778.44 1383.49 4980.18 13964.71 9378.11 13988.39 10965.46 12883.14 9677.64 3291.20 10578.94 226
#test#82.40 3082.71 4181.48 2789.25 2175.69 2884.47 3684.27 6964.45 9484.47 6590.43 5676.79 2785.94 3376.01 3994.23 5382.82 161
SD-MVS80.28 5581.55 5276.47 9483.57 9767.83 8783.39 5185.35 4164.42 9586.14 3887.07 12774.02 5580.97 13477.70 3192.32 8780.62 206
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
NR-MVSNet73.62 11974.05 11372.33 16183.50 9843.71 26565.65 26177.32 18264.32 9675.59 18087.08 12562.45 14981.34 12254.90 20295.63 891.93 8
Gipumacopyleft69.55 17472.83 13959.70 29263.63 32553.97 18980.08 7975.93 19364.24 9773.49 20888.93 10157.89 19962.46 31759.75 16791.55 9862.67 344
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
SixPastTwentyTwo75.77 9076.34 9174.06 12481.69 13054.84 18376.47 11975.49 19764.10 9887.73 1892.24 1750.45 23981.30 12467.41 10291.46 9986.04 71
EI-MVSNet-Vis-set72.78 14071.87 14975.54 10674.77 21859.02 16172.24 16371.56 23163.92 9978.59 13071.59 32066.22 12178.60 17367.58 10080.32 26689.00 34
CNVR-MVS78.49 7178.59 7478.16 7385.86 6667.40 8978.12 10481.50 10863.92 9977.51 14886.56 14868.43 9984.82 6673.83 5591.61 9682.26 177
plane_prior365.67 10463.82 10178.23 136
UniMVSNet (Re)75.00 10275.48 10073.56 13183.14 10347.92 23070.41 19481.04 12263.67 10279.54 12186.37 15362.83 14481.82 11657.10 18295.25 1590.94 15
ANet_high67.08 20869.94 17158.51 30057.55 35427.09 36358.43 31776.80 18763.56 10382.40 8991.93 2059.82 17664.98 30850.10 23888.86 15983.46 141
SMA-MVScopyleft82.12 3282.68 4280.43 4288.90 3169.52 7285.12 3084.76 5363.53 10484.23 6991.47 3072.02 6787.16 779.74 1094.36 4784.61 105
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EI-MVSNet-UG-set72.63 14371.68 15375.47 10774.67 22258.64 16672.02 16671.50 23263.53 10478.58 13271.39 32365.98 12278.53 17567.30 10680.18 26889.23 28
pmmvs671.82 15173.66 12266.31 23775.94 20342.01 28166.99 24372.53 22263.45 10676.43 17392.78 1072.95 6469.69 27851.41 22790.46 12687.22 55
DROMVSNet77.08 8277.39 8376.14 9976.86 19356.87 17380.32 7487.52 1363.45 10674.66 19584.52 18269.87 8684.94 6269.76 8489.59 14586.60 65
ACMH63.62 1477.50 7980.11 6069.68 19179.61 14856.28 17578.81 9183.62 8263.41 10887.14 3190.23 7276.11 3473.32 24467.58 10094.44 4179.44 221
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous20240521166.02 21566.89 21363.43 26074.22 23038.14 31059.00 31466.13 26963.33 10969.76 25685.95 16851.88 22970.50 27344.23 27887.52 17381.64 185
CANet73.00 13471.84 15076.48 9375.82 20461.28 13674.81 14080.37 13663.17 11062.43 30480.50 22961.10 16685.16 6064.00 12784.34 22283.01 156
MP-MVS-pluss82.54 2983.46 2879.76 4788.88 3268.44 8381.57 6386.33 2263.17 11085.38 5191.26 3476.33 3284.67 6983.30 194.96 2386.17 68
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Vis-MVSNetpermissive74.85 10774.56 10575.72 10381.63 13164.64 11276.35 12279.06 15362.85 11273.33 21188.41 10862.54 14879.59 16063.94 13082.92 23682.94 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Effi-MVS+72.10 14972.28 14571.58 16574.21 23350.33 20874.72 14582.73 9362.62 11370.77 24576.83 27369.96 8580.97 13460.20 15978.43 28583.45 142
OMC-MVS79.41 6178.79 7081.28 3480.62 14070.71 6480.91 6684.76 5362.54 11481.77 9486.65 14471.46 7383.53 8867.95 9892.44 8489.60 23
API-MVS70.97 15871.51 15869.37 19375.20 21055.94 17780.99 6576.84 18662.48 11571.24 24077.51 26961.51 16080.96 13852.04 22285.76 19971.22 295
CSCG74.12 11274.39 10873.33 13479.35 15261.66 13477.45 10981.98 10262.47 11679.06 12780.19 23461.83 15578.79 17059.83 16687.35 17879.54 220
ETV-MVS72.72 14172.16 14874.38 11976.90 19155.95 17673.34 15584.67 5762.04 11772.19 22770.81 32465.90 12485.24 5658.64 17284.96 21381.95 181
OurMVSNet-221017-078.57 6978.53 7578.67 6580.48 14164.16 11780.24 7682.06 10061.89 11888.77 1293.32 457.15 20382.60 10670.08 8092.80 7889.25 27
plane_prior65.18 10880.06 8061.88 11989.91 139
UGNet70.20 16569.05 18173.65 12876.24 19863.64 12075.87 12972.53 22261.48 12060.93 31486.14 16152.37 22877.12 20450.67 23385.21 20780.17 214
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CS-MVS-test73.63 11873.74 12073.30 13675.80 20651.70 20077.02 11786.83 1961.29 12168.47 26779.23 24765.42 12985.14 6164.04 12585.55 20083.07 154
VDD-MVS70.81 15971.44 15968.91 20579.07 16246.51 24567.82 22970.83 24761.23 12274.07 20388.69 10359.86 17575.62 22151.11 22990.28 12884.61 105
FMVSNet171.06 15672.48 14266.81 23177.65 18340.68 29171.96 16873.03 21461.14 12379.45 12390.36 6760.44 17075.20 22650.20 23788.05 16584.54 109
TransMVSNet (Re)69.62 17271.63 15463.57 25776.51 19535.93 32665.75 26071.29 23861.05 12475.02 18689.90 7965.88 12570.41 27649.79 23989.48 14784.38 117
EPNet69.10 18367.32 20774.46 11568.33 28761.27 13777.56 10763.57 28560.95 12556.62 33082.75 20551.53 23381.24 12554.36 21190.20 12980.88 198
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MSDG67.47 20567.48 20667.46 22470.70 26754.69 18566.90 24678.17 17060.88 12670.41 24874.76 28761.22 16573.18 24547.38 25976.87 29374.49 266
ETH3D-3000-0.179.14 6379.80 6377.16 8780.67 13964.57 11380.26 7587.60 1260.74 12782.47 8888.03 11971.73 7081.81 11773.12 5993.61 6585.09 87
TSAR-MVS + GP.73.08 12971.60 15677.54 7978.99 16470.73 6374.96 13769.38 25460.73 12874.39 19978.44 25857.72 20082.78 10260.16 16189.60 14479.11 225
MSLP-MVS++74.48 10975.78 9670.59 17584.66 8162.40 12778.65 9384.24 7260.55 12977.71 14681.98 21263.12 14377.64 19962.95 14188.14 16371.73 291
Baseline_NR-MVSNet70.62 16173.19 13162.92 26876.97 18834.44 33668.84 21170.88 24660.25 13079.50 12290.53 5261.82 15669.11 28254.67 20595.27 1485.22 83
v875.07 10175.64 9873.35 13373.42 24047.46 23775.20 13581.45 11060.05 13185.64 4489.26 8858.08 19581.80 11869.71 8587.97 16890.79 17
9.1480.22 5980.68 13880.35 7387.69 1159.90 13283.00 8088.20 11474.57 5181.75 11973.75 5693.78 61
DeepC-MVS72.44 481.00 4580.83 5681.50 2686.70 5070.03 7082.06 5987.00 1759.89 13380.91 10890.53 5272.19 6588.56 173.67 5794.52 3685.92 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
F-COLMAP75.29 9773.99 11479.18 5681.73 12971.90 5181.86 6282.98 8959.86 13472.27 22484.00 18964.56 13883.07 9951.48 22687.19 18482.56 170
MVS_030462.51 25362.27 25063.25 26169.39 28048.47 22264.05 28062.48 28959.69 13554.10 34281.04 22345.71 26066.31 30341.38 29382.58 24074.96 263
RPSCF75.76 9174.37 10979.93 4674.81 21777.53 2077.53 10879.30 15059.44 13678.88 12889.80 8071.26 7673.09 24657.45 17980.89 26089.17 30
HQP-NCC82.37 11777.32 11059.08 13771.58 232
ACMP_Plane82.37 11777.32 11059.08 13771.58 232
HQP-MVS75.24 9875.01 10275.94 10082.37 11758.80 16377.32 11084.12 7559.08 13771.58 23285.96 16758.09 19385.30 5367.38 10489.16 15283.73 133
v1075.69 9376.20 9374.16 12274.44 22848.69 21975.84 13082.93 9159.02 14085.92 4089.17 9358.56 18882.74 10370.73 7689.14 15591.05 13
test_prior376.71 8677.19 8575.27 10982.15 12259.85 15375.57 13184.33 6758.92 14176.53 17086.78 13567.83 10583.39 9169.81 8292.76 8082.58 168
test_prior275.57 13158.92 14176.53 17086.78 13567.83 10569.81 8292.76 80
ZD-MVS83.91 9469.36 7681.09 12058.91 14382.73 8689.11 9575.77 3786.63 1372.73 6292.93 75
MG-MVS70.47 16371.34 16067.85 21979.26 15440.42 29574.67 14775.15 20458.41 14468.74 26688.14 11856.08 21383.69 8359.90 16581.71 25179.43 222
EI-MVSNet69.61 17369.01 18371.41 16973.94 23549.90 21271.31 18171.32 23658.22 14575.40 18470.44 32658.16 19175.85 21662.51 14279.81 27288.48 43
IterMVS-LS73.01 13373.12 13472.66 15473.79 23749.90 21271.63 17578.44 16658.22 14580.51 11186.63 14558.15 19279.62 15862.51 14288.20 16288.48 43
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
BH-RMVSNet68.69 18968.20 19770.14 18476.40 19653.90 19164.62 27373.48 21358.01 14773.91 20581.78 21459.09 18378.22 18748.59 24977.96 29078.31 233
test_yl65.11 22265.09 22865.18 24370.59 26840.86 28863.22 29172.79 21757.91 14868.88 26379.07 25342.85 28074.89 23045.50 27284.97 21079.81 216
DCV-MVSNet65.11 22265.09 22865.18 24370.59 26840.86 28863.22 29172.79 21757.91 14868.88 26379.07 25342.85 28074.89 23045.50 27284.97 21079.81 216
DP-MVS Recon73.57 12072.69 14076.23 9782.85 11263.39 12274.32 14982.96 9057.75 15070.35 24981.98 21264.34 13984.41 7549.69 24089.95 13780.89 197
Effi-MVS+-dtu75.43 9572.28 14584.91 277.05 18583.58 178.47 9677.70 17657.68 15174.89 18878.13 26364.80 13584.26 7756.46 18885.32 20686.88 61
mvs-test173.81 11570.69 16783.18 577.05 18581.39 375.39 13377.70 17657.68 15171.19 24274.72 28964.80 13583.66 8456.46 18881.19 25684.50 114
MVS_111021_HR72.98 13672.97 13872.99 14380.82 13765.47 10568.81 21372.77 21957.67 15375.76 17882.38 20971.01 7777.17 20361.38 14986.15 19476.32 252
3Dnovator65.95 1171.50 15471.22 16172.34 16073.16 24463.09 12578.37 9778.32 16757.67 15372.22 22684.61 18054.77 21678.47 17760.82 15681.07 25775.45 258
FC-MVSNet-test73.32 12574.78 10468.93 20479.21 15636.57 32071.82 17479.54 14957.63 15582.57 8790.38 6459.38 18178.99 16657.91 17894.56 3591.23 12
ETH3D cwj APD-0.1678.38 7478.72 7277.38 8280.09 14466.16 10179.08 8986.13 2757.55 15680.93 10687.76 12271.98 6982.73 10472.11 7192.83 7783.25 147
FPMVS59.43 27660.07 26757.51 30377.62 18471.52 5462.33 29550.92 33957.40 15769.40 25780.00 23639.14 30261.92 32037.47 31866.36 34439.09 367
testdata168.34 22457.24 158
MIMVSNet166.57 21269.23 17958.59 29981.26 13537.73 31564.06 27957.62 30857.02 15978.40 13590.75 4562.65 14558.10 33041.77 29189.58 14679.95 215
RRT_MVS73.80 11671.19 16281.60 2471.04 26370.33 6878.78 9274.91 20556.96 16077.83 14385.56 17232.82 32687.39 571.16 7391.68 9387.07 60
MVS_111021_LR72.10 14971.82 15172.95 14579.53 15073.90 4170.45 19366.64 26756.87 16176.81 16381.76 21668.78 9371.76 26461.81 14583.74 23073.18 276
LCM-MVSNet-Re69.10 18371.57 15761.70 27670.37 27334.30 33861.45 29979.62 14456.81 16289.59 888.16 11768.44 9872.94 24742.30 28687.33 17977.85 244
BH-untuned69.39 17769.46 17569.18 19777.96 17656.88 17268.47 22377.53 17956.77 16377.79 14479.63 24160.30 17280.20 15246.04 26980.65 26370.47 300
DeepC-MVS_fast69.89 777.17 8176.33 9279.70 5083.90 9567.94 8580.06 8083.75 8056.73 16474.88 18985.32 17465.54 12687.79 265.61 11591.14 10883.35 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
DeepPCF-MVS71.07 578.48 7277.14 8782.52 1984.39 8977.04 2576.35 12284.05 7756.66 16580.27 11585.31 17568.56 9687.03 1067.39 10391.26 10383.50 136
xxxxxxxxxxxxxcwj80.31 5480.94 5478.42 7087.00 4367.23 9179.24 8688.61 556.65 16684.29 6789.18 9173.73 5983.22 9476.01 3993.77 6284.81 98
save fliter87.00 4367.23 9179.24 8677.94 17456.65 166
VPA-MVSNet68.71 18870.37 16963.72 25576.13 20038.06 31264.10 27871.48 23356.60 16874.10 20288.31 11264.78 13769.72 27747.69 25890.15 13283.37 144
GeoE73.14 12773.77 11971.26 17078.09 17352.64 19874.32 14979.56 14856.32 16976.35 17583.36 19970.76 7977.96 19363.32 13881.84 24783.18 150
FIs72.56 14473.80 11768.84 20778.74 16737.74 31471.02 18579.83 14356.12 17080.88 10989.45 8558.18 19078.28 18656.63 18493.36 7090.51 19
tfpnnormal66.48 21367.93 19962.16 27473.40 24136.65 31963.45 28664.99 27655.97 17172.82 21787.80 12157.06 20669.10 28348.31 25387.54 17280.72 205
baseline73.10 12873.96 11570.51 17771.46 26146.39 24872.08 16584.40 6655.95 17276.62 16686.46 15167.20 10878.03 19264.22 12487.27 18287.11 59
wuyk23d61.97 25666.25 21549.12 32758.19 35360.77 14666.32 25252.97 33455.93 17390.62 586.91 13073.07 6235.98 36720.63 36991.63 9550.62 358
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12773.47 23964.53 11471.36 17978.14 17155.81 17468.84 26574.71 29065.36 13075.75 21952.00 22379.00 27981.03 192
casdiffmvs73.06 13173.84 11670.72 17371.32 26246.71 24470.93 18784.26 7155.62 17577.46 14987.10 12467.09 10977.81 19563.95 12886.83 18887.64 50
pm-mvs168.40 19169.85 17364.04 25373.10 24839.94 29764.61 27470.50 24855.52 17673.97 20489.33 8663.91 14168.38 28649.68 24188.02 16683.81 129
v2v48272.55 14672.58 14172.43 15872.92 25246.72 24371.41 17879.13 15255.27 17781.17 10385.25 17655.41 21581.13 12767.25 10785.46 20189.43 25
thres100view90061.17 26361.09 25961.39 28072.14 25735.01 33265.42 26556.99 31555.23 17870.71 24679.90 23732.07 33372.09 25835.61 33081.73 24877.08 249
TAPA-MVS65.27 1275.16 9974.29 11177.77 7774.86 21668.08 8477.89 10584.04 7855.15 17976.19 17783.39 19566.91 11180.11 15460.04 16490.14 13385.13 86
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
EG-PatchMatch MVS70.70 16070.88 16470.16 18382.64 11658.80 16371.48 17673.64 21254.98 18076.55 16881.77 21561.10 16678.94 16754.87 20380.84 26172.74 281
GBi-Net68.30 19368.79 18566.81 23173.14 24540.68 29171.96 16873.03 21454.81 18174.72 19290.36 6748.63 25275.20 22647.12 26085.37 20284.54 109
test168.30 19368.79 18566.81 23173.14 24540.68 29171.96 16873.03 21454.81 18174.72 19290.36 6748.63 25275.20 22647.12 26085.37 20284.54 109
FMVSNet267.48 20468.21 19665.29 24273.14 24538.94 30468.81 21371.21 24254.81 18176.73 16586.48 15048.63 25274.60 23447.98 25586.11 19682.35 174
v14869.38 17869.39 17669.36 19469.14 28344.56 25968.83 21272.70 22054.79 18478.59 13084.12 18754.69 21776.74 21259.40 16982.20 24286.79 62
thres600view761.82 25861.38 25763.12 26371.81 25934.93 33364.64 27256.99 31554.78 18570.33 25079.74 23932.07 33372.42 25638.61 30883.46 23282.02 179
tttt051769.46 17567.79 20274.46 11575.34 20852.72 19775.05 13663.27 28754.69 18678.87 12984.37 18426.63 35581.15 12663.95 12887.93 16989.51 24
RPMNet65.77 21865.08 23067.84 22066.37 30248.24 22570.93 18786.27 2354.66 18761.35 30886.77 13733.29 32385.67 4655.93 19370.17 33169.62 309
VNet64.01 24065.15 22560.57 28773.28 24335.61 32957.60 32167.08 26554.61 18866.76 28083.37 19756.28 21166.87 29642.19 28785.20 20879.23 224
PLCcopyleft62.01 1671.79 15270.28 17076.33 9580.31 14368.63 8278.18 10381.24 11554.57 18967.09 27980.63 22759.44 17881.74 12046.91 26384.17 22378.63 228
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
nrg03074.87 10675.99 9571.52 16774.90 21549.88 21574.10 15282.58 9654.55 19083.50 7789.21 9071.51 7275.74 22061.24 15092.34 8688.94 36
agg_prior175.89 8976.41 9074.31 12084.44 8766.02 10276.12 12678.62 16354.40 19176.95 15686.85 13266.44 11980.34 14672.45 6791.42 10076.57 251
canonicalmvs72.29 14873.38 12769.04 19974.23 22947.37 23873.93 15383.18 8654.36 19276.61 16781.64 21872.03 6675.34 22457.12 18187.28 18184.40 116
h-mvs3373.08 12971.61 15577.48 8083.89 9672.89 4970.47 19271.12 24354.28 19377.89 14083.41 19449.04 24680.98 13363.62 13390.77 12278.58 230
hse-mvs272.32 14770.66 16877.31 8583.10 10771.77 5269.19 20871.45 23454.28 19377.89 14078.26 26049.04 24679.23 16263.62 13389.13 15680.92 196
test250661.23 26260.85 26262.38 27278.80 16527.88 36267.33 23837.42 37054.23 19567.55 27588.68 10417.87 37474.39 23746.33 26889.41 14984.86 94
ECVR-MVScopyleft64.82 22665.22 22163.60 25678.80 16531.14 35266.97 24456.47 31854.23 19569.94 25388.68 10437.23 31274.81 23245.28 27489.41 14984.86 94
CDPH-MVS77.33 8077.06 8878.14 7484.21 9063.98 11976.07 12783.45 8454.20 19777.68 14787.18 12369.98 8485.37 5168.01 9592.72 8285.08 89
VPNet65.58 21967.56 20359.65 29379.72 14730.17 35560.27 30862.14 29154.19 19871.24 24086.63 14558.80 18667.62 29144.17 27990.87 11981.18 189
PHI-MVS74.92 10374.36 11076.61 9076.40 19662.32 12980.38 7183.15 8754.16 19973.23 21380.75 22562.19 15383.86 8168.02 9490.92 11583.65 134
test111164.62 22965.19 22262.93 26779.01 16329.91 35665.45 26454.41 32654.09 20071.47 23988.48 10737.02 31374.29 23946.83 26589.94 13884.58 108
Patchmtry60.91 26463.01 24554.62 31066.10 30826.27 36667.47 23356.40 31954.05 20172.04 22886.66 14233.19 32460.17 32443.69 28087.45 17677.42 245
train_agg76.38 8776.55 8975.86 10285.47 6969.32 7776.42 12078.69 16054.00 20276.97 15486.74 13866.60 11681.10 12872.50 6691.56 9777.15 247
test_885.09 7567.89 8676.26 12578.66 16254.00 20276.89 15986.72 14066.60 11680.89 139
DELS-MVS68.83 18568.31 19170.38 17870.55 27248.31 22363.78 28382.13 9954.00 20268.96 26275.17 28558.95 18580.06 15558.55 17382.74 23882.76 163
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs70.54 16271.00 16369.15 19873.50 23848.04 22969.85 19979.62 14453.94 20576.54 16982.00 21159.00 18474.68 23357.32 18087.21 18384.72 100
v114473.29 12673.39 12673.01 14274.12 23448.11 22772.01 16781.08 12153.83 20681.77 9484.68 17958.07 19681.91 11568.10 9286.86 18788.99 35
TEST985.47 6969.32 7776.42 12078.69 16053.73 20776.97 15486.74 13866.84 11281.10 128
Vis-MVSNet (Re-imp)62.74 25163.21 24361.34 28172.19 25631.56 34967.31 23953.87 32753.60 20869.88 25483.37 19740.52 29570.98 26941.40 29286.78 19081.48 187
PS-MVSNAJss77.54 7877.35 8478.13 7584.88 7766.37 9978.55 9579.59 14753.48 20986.29 3592.43 1562.39 15080.25 14967.90 9990.61 12487.77 48
MDA-MVSNet-bldmvs62.34 25561.73 25164.16 24961.64 33349.90 21248.11 34557.24 31453.31 21080.95 10579.39 24449.00 24861.55 32145.92 27080.05 26981.03 192
CS-MVS69.29 17969.70 17468.07 21770.59 26842.36 28069.70 20184.56 6353.13 21167.96 27076.74 27459.41 17983.56 8660.33 15884.84 21578.28 235
TinyColmap67.98 19769.28 17764.08 25167.98 29146.82 24270.04 19575.26 20253.05 21277.36 15086.79 13459.39 18072.59 25445.64 27188.01 16772.83 279
tfpn200view960.35 27059.97 26861.51 27870.78 26535.35 33063.27 28957.47 30953.00 21368.31 26877.09 27132.45 33072.09 25835.61 33081.73 24877.08 249
thres40060.77 26759.97 26863.15 26270.78 26535.35 33063.27 28957.47 30953.00 21368.31 26877.09 27132.45 33072.09 25835.61 33081.73 24882.02 179
ETH3 D test640075.73 9276.00 9474.92 11281.75 12856.93 17178.31 9884.60 6252.83 21577.15 15185.14 17768.59 9584.03 7965.44 11690.20 12983.82 127
v119273.40 12373.42 12573.32 13574.65 22548.67 22072.21 16481.73 10552.76 21681.85 9284.56 18157.12 20482.24 11368.58 8887.33 17989.06 32
MVS_Test69.84 17070.71 16667.24 22667.49 29643.25 27269.87 19881.22 11752.69 21771.57 23586.68 14162.09 15474.51 23566.05 11078.74 28183.96 125
EIA-MVS68.59 19067.16 20972.90 14775.18 21155.64 18069.39 20481.29 11352.44 21864.53 28970.69 32560.33 17182.30 11154.27 21276.31 29680.75 203
MVSFormer69.93 16969.03 18272.63 15674.93 21359.19 15783.98 3975.72 19552.27 21963.53 30076.74 27443.19 27780.56 14172.28 6878.67 28378.14 239
test_djsdf78.88 6678.27 7680.70 4181.42 13271.24 5883.98 3975.72 19552.27 21987.37 2792.25 1668.04 10380.56 14172.28 6891.15 10790.32 20
CLD-MVS72.88 13872.36 14474.43 11777.03 18754.30 18768.77 21683.43 8552.12 22176.79 16474.44 29369.54 8883.91 8055.88 19493.25 7285.09 87
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PatchT53.35 30356.47 29343.99 34364.19 32117.46 37459.15 31243.10 35652.11 22254.74 33886.95 12929.97 35049.98 34043.62 28174.40 31164.53 340
CANet_DTU64.04 23963.83 23564.66 24668.39 28442.97 27473.45 15474.50 20952.05 22354.78 33775.44 28443.99 27270.42 27553.49 21878.41 28680.59 207
mvs_tets78.93 6578.67 7379.72 4984.81 7973.93 4080.65 6776.50 18951.98 22487.40 2491.86 2176.09 3578.53 17568.58 8890.20 12986.69 64
v124073.06 13173.14 13272.84 14974.74 21947.27 24071.88 17381.11 11851.80 22582.28 9084.21 18656.22 21282.34 11068.82 8687.17 18588.91 37
TSAR-MVS + MP.79.05 6478.81 6979.74 4888.94 2967.52 8886.61 2081.38 11251.71 22677.15 15191.42 3365.49 12787.20 679.44 1487.17 18584.51 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v192192072.96 13772.98 13772.89 14874.67 22247.58 23571.92 17180.69 12751.70 22781.69 9883.89 19056.58 21082.25 11268.34 9087.36 17788.82 39
v14419272.99 13573.06 13572.77 15074.58 22647.48 23671.90 17280.44 13451.57 22881.46 10084.11 18858.04 19782.12 11467.98 9687.47 17588.70 42
FMVSNet365.00 22565.16 22364.52 24869.47 27937.56 31766.63 24970.38 24951.55 22974.72 19283.27 20137.89 31074.44 23647.12 26085.37 20281.57 186
c3_l69.82 17169.89 17269.61 19266.24 30543.48 26868.12 22679.61 14651.43 23077.72 14580.18 23554.61 21978.15 19163.62 13387.50 17487.20 57
V4271.06 15670.83 16571.72 16467.25 29747.14 24165.94 25580.35 13751.35 23183.40 7883.23 20259.25 18278.80 16965.91 11280.81 26289.23 28
jajsoiax78.51 7078.16 7879.59 5284.65 8273.83 4280.42 7076.12 19151.33 23287.19 2991.51 2973.79 5878.44 17968.27 9190.13 13486.49 66
GA-MVS62.91 24861.66 25266.66 23567.09 29944.49 26061.18 30369.36 25551.33 23269.33 25874.47 29236.83 31474.94 22950.60 23474.72 30880.57 208
CL-MVSNet_self_test62.44 25463.40 24059.55 29472.34 25532.38 34556.39 32364.84 27751.21 23467.46 27681.01 22450.75 23763.51 31538.47 31088.12 16482.75 164
PM-MVS64.49 23263.61 23867.14 22976.68 19475.15 3268.49 22242.85 35751.17 23577.85 14280.51 22845.76 25966.31 30352.83 22176.35 29559.96 350
原ACMM173.90 12585.90 6365.15 11081.67 10650.97 23674.25 20086.16 16061.60 15883.54 8756.75 18391.08 11073.00 277
JIA-IIPM54.03 30051.62 31261.25 28259.14 34855.21 18259.10 31347.72 34950.85 23750.31 35485.81 17020.10 37163.97 31136.16 32855.41 36664.55 339
KD-MVS_self_test66.38 21467.51 20462.97 26661.76 33234.39 33758.11 31975.30 20150.84 23877.12 15385.42 17356.84 20869.44 27951.07 23091.16 10685.08 89
eth_miper_zixun_eth69.42 17668.73 18971.50 16867.99 29046.42 24667.58 23178.81 15750.72 23978.13 13880.34 23150.15 24180.34 14660.18 16084.65 21687.74 49
Fast-Effi-MVS+68.81 18668.30 19270.35 17974.66 22448.61 22166.06 25478.32 16750.62 24071.48 23875.54 28168.75 9479.59 16050.55 23578.73 28282.86 160
anonymousdsp78.60 6877.80 8081.00 3778.01 17574.34 3880.09 7876.12 19150.51 24189.19 1090.88 4071.45 7477.78 19773.38 5890.60 12590.90 16
thres20057.55 28657.02 28859.17 29567.89 29334.93 33358.91 31657.25 31350.24 24264.01 29471.46 32232.49 32971.39 26631.31 34479.57 27671.19 297
thisisatest053067.05 21065.16 22372.73 15373.10 24850.55 20771.26 18363.91 28350.22 24374.46 19880.75 22526.81 35480.25 14959.43 16886.50 19287.37 54
test20.0355.74 29257.51 28650.42 32059.89 34532.09 34750.63 33949.01 34550.11 24465.07 28883.23 20245.61 26248.11 34330.22 34883.82 22971.07 298
BH-w/o64.81 22764.29 23366.36 23676.08 20254.71 18465.61 26275.23 20350.10 24571.05 24471.86 31954.33 22079.02 16538.20 31276.14 29765.36 332
cl____68.26 19668.26 19368.29 21364.98 31743.67 26665.89 25674.67 20650.04 24676.86 16182.42 20848.74 25075.38 22260.92 15589.81 14085.80 79
DIV-MVS_self_test68.27 19568.26 19368.29 21364.98 31743.67 26665.89 25674.67 20650.04 24676.86 16182.43 20748.74 25075.38 22260.94 15489.81 14085.81 75
RRT_test8_iter0565.80 21765.13 22667.80 22267.02 30040.85 29067.13 24175.33 20049.73 24872.69 21881.32 21924.45 36577.37 20261.69 14886.82 18985.18 85
EPNet_dtu58.93 27958.52 27860.16 29167.91 29247.70 23469.97 19658.02 30649.73 24847.28 35873.02 30838.14 30662.34 31836.57 32485.99 19770.43 301
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
QAPM69.18 18269.26 17868.94 20371.61 26052.58 19980.37 7278.79 15949.63 25073.51 20785.14 17753.66 22279.12 16455.11 20175.54 30175.11 262
PAPR69.20 18168.66 19070.82 17275.15 21247.77 23275.31 13481.11 11849.62 25166.33 28179.27 24661.53 15982.96 10048.12 25481.50 25481.74 184
TR-MVS64.59 23063.54 23967.73 22375.75 20750.83 20663.39 28770.29 25049.33 25271.55 23674.55 29150.94 23678.46 17840.43 29875.69 29973.89 271
cl2267.14 20766.51 21469.03 20063.20 32643.46 26966.88 24776.25 19049.22 25374.48 19777.88 26545.49 26377.40 20160.64 15784.59 21886.24 67
AUN-MVS70.22 16467.88 20177.22 8682.96 11171.61 5369.08 20971.39 23549.17 25471.70 23078.07 26437.62 31179.21 16361.81 14589.15 15480.82 199
miper_ehance_all_eth68.36 19268.16 19868.98 20165.14 31643.34 27067.07 24278.92 15649.11 25576.21 17677.72 26653.48 22377.92 19461.16 15284.59 21885.68 81
ab-mvs64.11 23865.13 22661.05 28371.99 25838.03 31367.59 23068.79 25749.08 25665.32 28686.26 15658.02 19866.85 29839.33 30279.79 27478.27 236
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 20870.56 27153.91 19078.29 9977.35 18148.85 25770.22 25183.52 19352.65 22776.93 20655.31 20081.99 24475.49 257
MAR-MVS67.72 20166.16 21672.40 15974.45 22764.99 11174.87 13877.50 18048.67 25865.78 28568.58 34457.01 20777.79 19646.68 26681.92 24574.42 267
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
bset_n11_16_dypcd66.91 21165.84 21970.12 18572.95 25153.54 19263.64 28468.65 25948.54 25972.54 22174.28 29640.58 29478.54 17463.52 13687.82 17078.29 234
PVSNet_Blended_VisFu70.04 16668.88 18473.53 13282.71 11463.62 12174.81 14081.95 10348.53 26067.16 27879.18 25051.42 23478.38 18254.39 21079.72 27578.60 229
diffmvs67.42 20667.50 20567.20 22762.26 33045.21 25664.87 27077.04 18548.21 26171.74 22979.70 24058.40 18971.17 26864.99 11880.27 26785.22 83
IterMVS-SCA-FT67.68 20266.07 21772.49 15773.34 24258.20 16863.80 28265.55 27348.10 26276.91 15882.64 20645.20 26478.84 16861.20 15177.89 29180.44 210
xiu_mvs_v1_base_debu67.87 19867.07 21070.26 18079.13 15961.90 13167.34 23571.25 23947.98 26367.70 27274.19 29961.31 16172.62 25156.51 18578.26 28776.27 253
xiu_mvs_v1_base67.87 19867.07 21070.26 18079.13 15961.90 13167.34 23571.25 23947.98 26367.70 27274.19 29961.31 16172.62 25156.51 18578.26 28776.27 253
xiu_mvs_v1_base_debi67.87 19867.07 21070.26 18079.13 15961.90 13167.34 23571.25 23947.98 26367.70 27274.19 29961.31 16172.62 25156.51 18578.26 28776.27 253
testdata64.13 25085.87 6563.34 12361.80 29747.83 26676.42 17486.60 14748.83 24962.31 31954.46 20981.26 25566.74 327
DPM-MVS69.98 16869.22 18072.26 16282.69 11558.82 16270.53 19181.23 11647.79 26764.16 29380.21 23251.32 23583.12 9760.14 16284.95 21474.83 264
无先验74.82 13970.94 24547.75 26876.85 20954.47 20772.09 288
IB-MVS49.67 1859.69 27456.96 28967.90 21868.19 28850.30 20961.42 30065.18 27547.57 26955.83 33467.15 35123.77 36679.60 15943.56 28279.97 27073.79 272
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
tpmvs55.84 29055.45 30057.01 30460.33 34133.20 34365.89 25659.29 30447.52 27056.04 33273.60 30231.05 34268.06 28840.64 29764.64 34769.77 307
PatchMatch-RL58.68 28157.72 28461.57 27776.21 19973.59 4461.83 29749.00 34647.30 27161.08 31068.97 33950.16 24059.01 32736.06 32968.84 33852.10 357
Anonymous2024052163.55 24166.07 21755.99 30766.18 30744.04 26368.77 21668.80 25646.99 27272.57 21985.84 16939.87 29850.22 33953.40 22092.23 8873.71 273
PC_three_145246.98 27381.83 9386.28 15466.55 11884.47 7263.31 13990.78 12083.49 137
EMVS44.61 33144.45 33545.10 34048.91 37443.00 27337.92 36241.10 36746.75 27438.00 37048.43 36826.42 35646.27 34537.11 32175.38 30446.03 363
IterMVS63.12 24662.48 24965.02 24566.34 30452.86 19663.81 28162.25 29046.57 27571.51 23780.40 23044.60 26966.82 29951.38 22875.47 30275.38 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
E-PMN45.17 32745.36 33044.60 34150.07 37242.75 27538.66 36142.29 36146.39 27639.55 36851.15 36626.00 35845.37 35037.68 31576.41 29445.69 364
baseline157.82 28558.36 28156.19 30669.17 28230.76 35462.94 29355.21 32246.04 27763.83 29678.47 25741.20 28863.68 31339.44 30168.99 33774.13 268
MCST-MVS73.42 12273.34 12973.63 13081.28 13459.17 15974.80 14283.13 8845.50 27872.84 21683.78 19265.15 13280.99 13264.54 12189.09 15780.73 204
PVSNet_BlendedMVS65.38 22064.30 23268.61 20969.81 27649.36 21665.60 26378.96 15445.50 27859.98 31778.61 25651.82 23078.20 18844.30 27684.11 22478.27 236
IU-MVS86.12 5960.90 14280.38 13545.49 28081.31 10175.64 4494.39 4384.65 101
testgi54.00 30256.86 29045.45 33758.20 35225.81 36749.05 34149.50 34445.43 28167.84 27181.17 22251.81 23243.20 35929.30 35379.41 27767.34 322
PCF-MVS63.80 1372.70 14271.69 15275.72 10378.10 17260.01 15273.04 15681.50 10845.34 28279.66 12084.35 18565.15 13282.65 10548.70 24889.38 15184.50 114
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
TAMVS65.31 22163.75 23669.97 18982.23 12159.76 15566.78 24863.37 28645.20 28369.79 25579.37 24547.42 25872.17 25734.48 33485.15 20977.99 243
旧先验271.17 18445.11 28478.54 13361.28 32259.19 170
PS-MVSNAJ64.27 23763.73 23765.90 24077.82 17951.42 20363.33 28872.33 22445.09 28561.60 30668.04 34562.39 15073.95 24249.07 24473.87 31472.34 284
xiu_mvs_v2_base64.43 23463.96 23465.85 24177.72 18151.32 20463.63 28572.31 22545.06 28661.70 30569.66 33462.56 14673.93 24349.06 24573.91 31372.31 285
LF4IMVS67.50 20367.31 20868.08 21658.86 34961.93 13071.43 17775.90 19444.67 28772.42 22380.20 23357.16 20270.44 27458.99 17186.12 19571.88 289
CDS-MVSNet64.33 23662.66 24869.35 19580.44 14258.28 16765.26 26665.66 27144.36 28867.30 27775.54 28143.27 27671.77 26337.68 31584.44 22178.01 242
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
miper_lstm_enhance61.97 25661.63 25462.98 26560.04 34245.74 25347.53 34770.95 24444.04 28973.06 21478.84 25539.72 29960.33 32355.82 19584.64 21782.88 158
新几何169.99 18888.37 3671.34 5762.08 29343.85 29074.99 18786.11 16352.85 22670.57 27250.99 23183.23 23568.05 318
112169.23 18068.26 19372.12 16388.36 3771.40 5568.59 21862.06 29443.80 29174.75 19086.18 15852.92 22576.85 20954.47 20783.27 23468.12 317
114514_t73.40 12373.33 13073.64 12984.15 9257.11 17078.20 10280.02 14143.76 29272.55 22086.07 16564.00 14083.35 9360.14 16291.03 11180.45 209
OpenMVS_ROBcopyleft54.93 1763.23 24563.28 24163.07 26469.81 27645.34 25568.52 22167.14 26443.74 29370.61 24779.22 24847.90 25672.66 25048.75 24773.84 31571.21 296
FMVSNet555.08 29655.54 29953.71 31165.80 30933.50 34256.22 32552.50 33643.72 29461.06 31183.38 19625.46 36154.87 33330.11 34981.64 25372.75 280
MVP-Stereo61.56 26059.22 27268.58 21079.28 15360.44 14869.20 20771.57 23043.58 29556.42 33178.37 25939.57 30176.46 21434.86 33360.16 35568.86 316
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mvs_anonymous65.08 22465.49 22063.83 25463.79 32337.60 31666.52 25169.82 25243.44 29673.46 20986.08 16458.79 18771.75 26551.90 22475.63 30082.15 178
test-LLR50.43 31550.69 32049.64 32360.76 33841.87 28253.18 33445.48 35343.41 29749.41 35560.47 35929.22 35244.73 35342.09 28872.14 32062.33 346
test0.0.03 147.72 32248.31 32445.93 33555.53 36329.39 35746.40 35141.21 36643.41 29755.81 33567.65 34629.22 35243.77 35825.73 36269.87 33364.62 338
SCA58.57 28258.04 28260.17 29070.17 27441.07 28765.19 26753.38 33243.34 29961.00 31373.48 30345.20 26469.38 28040.34 29970.31 33070.05 304
ET-MVSNet_ETH3D63.32 24360.69 26471.20 17170.15 27555.66 17965.02 26964.32 28243.28 30068.99 26172.05 31825.46 36178.19 19054.16 21382.80 23779.74 219
miper_enhance_ethall65.86 21665.05 23168.28 21561.62 33442.62 27764.74 27177.97 17342.52 30173.42 21072.79 30949.66 24277.68 19858.12 17684.59 21884.54 109
cascas64.59 23062.77 24770.05 18775.27 20950.02 21161.79 29871.61 22942.46 30263.68 29868.89 34149.33 24580.35 14547.82 25784.05 22579.78 218
PVSNet_Blended62.90 24961.64 25366.69 23469.81 27649.36 21661.23 30278.96 15442.04 30359.98 31768.86 34251.82 23078.20 18844.30 27677.77 29272.52 282
MVSTER63.29 24461.60 25568.36 21159.77 34646.21 24960.62 30571.32 23641.83 30475.40 18479.12 25130.25 34775.85 21656.30 19079.81 27283.03 155
MIMVSNet54.39 29856.12 29649.20 32572.57 25330.91 35359.98 30948.43 34841.66 30555.94 33383.86 19141.19 28950.42 33826.05 35975.38 30466.27 328
KD-MVS_2432*160052.05 31151.58 31353.44 31252.11 37031.20 35044.88 35464.83 27841.53 30664.37 29070.03 33115.61 37864.20 30936.25 32574.61 30964.93 336
miper_refine_blended52.05 31151.58 31353.44 31252.11 37031.20 35044.88 35464.83 27841.53 30664.37 29070.03 33115.61 37864.20 30936.25 32574.61 30964.93 336
new-patchmatchnet52.89 30555.76 29844.26 34259.94 3446.31 37737.36 36450.76 34141.10 30864.28 29279.82 23844.77 26748.43 34236.24 32787.61 17178.03 241
test22287.30 4169.15 8067.85 22859.59 30341.06 30973.05 21585.72 17148.03 25580.65 26366.92 323
Patchmatch-RL test59.95 27259.12 27362.44 27172.46 25454.61 18659.63 31147.51 35041.05 31074.58 19674.30 29531.06 34165.31 30551.61 22579.85 27167.39 320
thisisatest051560.48 26957.86 28368.34 21267.25 29746.42 24660.58 30662.14 29140.82 31163.58 29969.12 33726.28 35778.34 18448.83 24682.13 24380.26 212
ppachtmachnet_test60.26 27159.61 27162.20 27367.70 29444.33 26158.18 31860.96 29940.75 31265.80 28472.57 31041.23 28763.92 31246.87 26482.42 24178.33 232
PAPM61.79 25960.37 26666.05 23876.09 20141.87 28269.30 20576.79 18840.64 31353.80 34379.62 24244.38 27082.92 10129.64 35273.11 31773.36 275
our_test_356.46 28856.51 29256.30 30567.70 29439.66 29955.36 32952.34 33740.57 31463.85 29569.91 33340.04 29758.22 32943.49 28375.29 30671.03 299
PatchmatchNetpermissive54.60 29754.27 30355.59 30865.17 31539.08 30166.92 24551.80 33839.89 31558.39 32373.12 30731.69 33558.33 32843.01 28458.38 36169.38 312
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
D2MVS62.58 25261.05 26067.20 22763.85 32247.92 23056.29 32469.58 25339.32 31670.07 25278.19 26134.93 31972.68 24953.44 21983.74 23081.00 194
Patchmatch-test47.93 32149.96 32241.84 34657.42 35524.26 36948.75 34241.49 36439.30 31756.79 32973.48 30330.48 34633.87 36829.29 35472.61 31867.39 320
HY-MVS49.31 1957.96 28457.59 28559.10 29666.85 30136.17 32365.13 26865.39 27439.24 31854.69 33978.14 26244.28 27167.18 29533.75 33870.79 32773.95 270
baseline255.57 29452.74 30864.05 25265.26 31244.11 26262.38 29454.43 32539.03 31951.21 34867.35 34933.66 32272.45 25537.14 32064.22 34975.60 256
XXY-MVS55.19 29557.40 28748.56 32964.45 32034.84 33551.54 33853.59 32938.99 32063.79 29779.43 24356.59 20945.57 34736.92 32271.29 32465.25 333
pmmvs-eth3d64.41 23563.27 24267.82 22175.81 20560.18 15069.49 20262.05 29538.81 32174.13 20182.23 21043.76 27468.65 28442.53 28580.63 26574.63 265
DWT-MVSNet_test53.04 30451.12 31758.77 29861.23 33538.67 30562.16 29657.74 30738.24 32251.76 34759.07 36121.36 36867.40 29344.80 27563.76 35070.25 303
MDA-MVSNet_test_wron52.57 30753.49 30649.81 32254.24 36736.47 32140.48 35946.58 35138.13 32375.47 18373.32 30541.05 29243.85 35740.98 29571.20 32569.10 315
YYNet152.58 30653.50 30549.85 32154.15 36836.45 32240.53 35846.55 35238.09 32475.52 18273.31 30641.08 29143.88 35641.10 29471.14 32669.21 313
1112_ss59.48 27558.99 27560.96 28577.84 17842.39 27961.42 30068.45 26137.96 32559.93 32067.46 34745.11 26665.07 30740.89 29671.81 32275.41 259
UnsupCasMVSNet_eth52.26 30953.29 30749.16 32655.08 36433.67 34150.03 34058.79 30537.67 32663.43 30274.75 28841.82 28545.83 34638.59 30959.42 35767.98 319
tpm50.60 31452.42 31145.14 33965.18 31426.29 36560.30 30743.50 35537.41 32757.01 32779.09 25230.20 34942.32 36032.77 34166.36 34466.81 326
gm-plane-assit62.51 32833.91 34037.25 32862.71 35672.74 24838.70 306
CostFormer57.35 28756.14 29560.97 28463.76 32438.43 30667.50 23260.22 30037.14 32959.12 32276.34 27732.78 32771.99 26139.12 30469.27 33672.47 283
pmmvs460.78 26659.04 27466.00 23973.06 25057.67 16964.53 27560.22 30036.91 33065.96 28277.27 27039.66 30068.54 28538.87 30574.89 30771.80 290
PVSNet43.83 2151.56 31351.17 31652.73 31568.34 28638.27 30848.22 34453.56 33036.41 33154.29 34064.94 35434.60 32054.20 33630.34 34769.87 33365.71 331
tpmrst50.15 31651.38 31546.45 33456.05 35924.77 36864.40 27749.98 34236.14 33253.32 34469.59 33535.16 31848.69 34139.24 30358.51 36065.89 329
MS-PatchMatch55.59 29354.89 30157.68 30269.18 28149.05 21861.00 30462.93 28835.98 33358.36 32468.93 34036.71 31566.59 30137.62 31763.30 35157.39 353
MDTV_nov1_ep1354.05 30465.54 31129.30 35859.00 31455.22 32135.96 33452.44 34575.98 27830.77 34459.62 32538.21 31173.33 316
USDC62.80 25063.10 24461.89 27565.19 31343.30 27167.42 23474.20 21035.80 33572.25 22584.48 18345.67 26171.95 26237.95 31484.97 21070.42 302
jason64.47 23362.84 24669.34 19676.91 19059.20 15667.15 24065.67 27035.29 33665.16 28776.74 27444.67 26870.68 27054.74 20479.28 27878.14 239
jason: jason.
Anonymous2023120654.13 29955.82 29749.04 32870.89 26435.96 32551.73 33750.87 34034.86 33762.49 30379.22 24842.52 28344.29 35527.95 35781.88 24666.88 324
dp44.09 33244.88 33341.72 34858.53 35123.18 37054.70 33142.38 36034.80 33844.25 36565.61 35324.48 36444.80 35229.77 35149.42 36857.18 354
Test_1112_low_res58.78 28058.69 27759.04 29779.41 15138.13 31157.62 32066.98 26634.74 33959.62 32177.56 26842.92 27963.65 31438.66 30770.73 32875.35 261
EPMVS45.74 32546.53 32843.39 34454.14 36922.33 37155.02 33035.00 37334.69 34051.09 34970.20 33025.92 35942.04 36237.19 31955.50 36565.78 330
lupinMVS63.36 24261.49 25668.97 20274.93 21359.19 15765.80 25964.52 28134.68 34163.53 30074.25 29743.19 27770.62 27153.88 21578.67 28377.10 248
UnsupCasMVSNet_bld50.01 31751.03 31946.95 33058.61 35032.64 34448.31 34353.27 33334.27 34260.47 31571.53 32141.40 28647.07 34430.68 34660.78 35461.13 348
CMPMVSbinary48.73 2061.54 26160.89 26163.52 25861.08 33751.55 20268.07 22768.00 26333.88 34365.87 28381.25 22137.91 30967.71 28949.32 24382.60 23971.31 294
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
WTY-MVS49.39 31850.31 32146.62 33361.22 33632.00 34846.61 35049.77 34333.87 34454.12 34169.55 33641.96 28445.40 34931.28 34564.42 34862.47 345
N_pmnet52.06 31051.11 31854.92 30959.64 34771.03 5937.42 36361.62 29833.68 34557.12 32672.10 31137.94 30831.03 36929.13 35671.35 32362.70 343
HyFIR lowres test63.01 24760.47 26570.61 17483.04 10854.10 18859.93 31072.24 22633.67 34669.00 26075.63 28038.69 30476.93 20636.60 32375.45 30380.81 202
tpm256.12 28954.64 30260.55 28866.24 30536.01 32468.14 22556.77 31733.60 34758.25 32575.52 28330.25 34774.33 23833.27 33969.76 33571.32 293
131459.83 27358.86 27662.74 26965.71 31044.78 25868.59 21872.63 22133.54 34861.05 31267.29 35043.62 27571.26 26749.49 24267.84 34272.19 287
CR-MVSNet58.96 27858.49 27960.36 28966.37 30248.24 22570.93 18756.40 31932.87 34961.35 30886.66 14233.19 32463.22 31648.50 25170.17 33169.62 309
MVS60.62 26859.97 26862.58 27068.13 28947.28 23968.59 21873.96 21132.19 35059.94 31968.86 34250.48 23877.64 19941.85 29075.74 29862.83 342
tpm cat154.02 30152.63 30958.19 30164.85 31939.86 29866.26 25357.28 31232.16 35156.90 32870.39 32832.75 32865.30 30634.29 33558.79 35869.41 311
pmmvs552.49 30852.58 31052.21 31854.99 36532.38 34555.45 32853.84 32832.15 35255.49 33674.81 28638.08 30757.37 33134.02 33674.40 31166.88 324
PMMVS237.74 33640.87 33728.36 35342.41 3765.35 37824.61 36627.75 37532.15 35247.85 35770.27 32935.85 31729.51 37019.08 37067.85 34150.22 359
sss47.59 32348.32 32345.40 33856.73 35833.96 33945.17 35348.51 34732.11 35452.37 34665.79 35240.39 29641.91 36331.85 34261.97 35260.35 349
test-mter48.56 32048.20 32549.64 32360.76 33841.87 28253.18 33445.48 35331.91 35549.41 35560.47 35918.34 37244.73 35342.09 28872.14 32062.33 346
MDTV_nov1_ep13_2view18.41 37353.74 33331.57 35644.89 36229.90 35132.93 34071.48 292
ADS-MVSNet248.76 31947.25 32753.29 31455.90 36140.54 29447.34 34854.99 32431.41 35750.48 35172.06 31631.23 33854.26 33525.93 36055.93 36365.07 334
ADS-MVSNet44.62 33045.58 32941.73 34755.90 36120.83 37247.34 34839.94 36831.41 35750.48 35172.06 31631.23 33839.31 36525.93 36055.93 36365.07 334
PVSNet_036.71 2241.12 33540.78 33842.14 34559.97 34340.13 29640.97 35742.24 36230.81 35944.86 36349.41 36740.70 29345.12 35123.15 36634.96 37041.16 366
MVS-HIRNet45.53 32647.29 32640.24 34962.29 32926.82 36456.02 32637.41 37129.74 36043.69 36781.27 22033.96 32155.48 33224.46 36556.79 36238.43 368
CHOSEN 1792x268858.09 28356.30 29463.45 25979.95 14550.93 20554.07 33265.59 27228.56 36161.53 30774.33 29441.09 29066.52 30233.91 33767.69 34372.92 278
TESTMET0.1,145.17 32744.93 33245.89 33656.02 36038.31 30753.18 33441.94 36327.85 36244.86 36356.47 36217.93 37341.50 36438.08 31368.06 34057.85 352
CHOSEN 280x42041.62 33439.89 33946.80 33261.81 33151.59 20133.56 36535.74 37227.48 36337.64 37153.53 36323.24 36742.09 36127.39 35858.64 35946.72 362
EU-MVSNet60.82 26560.80 26360.86 28668.37 28541.16 28572.27 16268.27 26226.96 36469.08 25975.71 27932.09 33267.44 29255.59 19878.90 28073.97 269
CVMVSNet59.21 27758.44 28061.51 27873.94 23547.76 23371.31 18164.56 28026.91 36560.34 31670.44 32636.24 31667.65 29053.57 21768.66 33969.12 314
new_pmnet37.55 33739.80 34030.79 35256.83 35616.46 37539.35 36030.65 37425.59 36645.26 36161.60 35824.54 36328.02 37121.60 36752.80 36747.90 361
MVEpermissive27.91 2336.69 33835.64 34139.84 35043.37 37535.85 32719.49 36724.61 37724.68 36739.05 36962.63 35738.67 30527.10 37221.04 36847.25 36956.56 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
pmmvs346.71 32445.09 33151.55 31956.76 35748.25 22455.78 32739.53 36924.13 36850.35 35363.40 35515.90 37751.08 33729.29 35470.69 32955.33 356
PMMVS44.69 32943.95 33646.92 33150.05 37353.47 19448.08 34642.40 35922.36 36944.01 36653.05 36442.60 28245.49 34831.69 34361.36 35341.79 365
DSMNet-mixed43.18 33344.66 33438.75 35154.75 36628.88 36057.06 32227.42 37613.47 37047.27 35977.67 26738.83 30339.29 36625.32 36460.12 35648.08 360
DeepMVS_CXcopyleft11.83 35515.51 37713.86 37611.25 3805.76 37120.85 37326.46 37017.06 3769.22 3749.69 37313.82 37312.42 370
test_method19.26 33919.12 34319.71 3549.09 3781.91 3807.79 36953.44 3311.42 37210.27 37435.80 36917.42 37525.11 37312.44 37124.38 37232.10 369
EGC-MVSNET64.77 22861.17 25875.60 10586.90 4774.47 3584.04 3868.62 2600.60 3731.13 37591.61 2765.32 13174.15 24164.01 12688.28 16178.17 238
tmp_tt11.98 34114.73 3443.72 3562.28 3794.62 37919.44 36814.50 3790.47 37421.55 3729.58 37225.78 3604.57 37511.61 37227.37 3711.96 371
test1234.43 3445.78 3470.39 3580.97 3800.28 38146.33 3520.45 3810.31 3750.62 3761.50 3750.61 3810.11 3770.56 3740.63 3740.77 373
testmvs4.06 3455.28 3480.41 3570.64 3810.16 38242.54 3560.31 3820.26 3760.50 3771.40 3760.77 3800.17 3760.56 3740.55 3750.90 372
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k17.71 34023.62 3420.00 3590.00 3820.00 3830.00 37070.17 2510.00 3770.00 37874.25 29768.16 1010.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas5.20 3436.93 3460.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37762.39 1500.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re5.62 3427.50 3450.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37867.46 3470.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3770.00 3820.00 3780.00 3760.00 3760.00 374
MSC_two_6792asdad79.02 5983.14 10367.03 9380.75 12586.24 2377.27 3594.85 2683.78 130
No_MVS79.02 5983.14 10367.03 9380.75 12586.24 2377.27 3594.85 2683.78 130
eth-test20.00 382
eth-test0.00 382
OPU-MVS78.65 6683.44 10166.85 9583.62 4586.12 16266.82 11386.01 3161.72 14789.79 14283.08 152
test_0728_SECOND76.57 9186.20 5460.57 14783.77 4385.49 3585.90 3775.86 4294.39 4383.25 147
GSMVS70.05 304
test_part285.90 6366.44 9884.61 63
sam_mvs131.41 33670.05 304
sam_mvs31.21 340
ambc70.10 18677.74 18050.21 21074.28 15177.93 17579.26 12588.29 11354.11 22179.77 15764.43 12291.10 10980.30 211
MTGPAbinary80.63 128
test_post166.63 2492.08 37330.66 34559.33 32640.34 299
test_post1.99 37430.91 34354.76 334
patchmatchnet-post68.99 33831.32 33769.38 280
GG-mvs-BLEND52.24 31760.64 34029.21 35969.73 20042.41 35845.47 36052.33 36520.43 37068.16 28725.52 36365.42 34659.36 351
MTMP84.83 3319.26 378
test9_res72.12 7091.37 10177.40 246
agg_prior270.70 7790.93 11478.55 231
agg_prior84.44 8766.02 10278.62 16376.95 15680.34 146
test_prior470.14 6977.57 106
test_prior75.27 10982.15 12259.85 15384.33 6783.39 9182.58 168
新几何271.33 180
旧先验184.55 8460.36 14963.69 28487.05 12854.65 21883.34 23369.66 308
原ACMM274.78 143
testdata267.30 29448.34 252
segment_acmp68.30 100
test1276.51 9282.28 12060.94 14181.64 10773.60 20664.88 13485.19 5990.42 12783.38 143
plane_prior785.18 7266.21 100
plane_prior684.18 9165.31 10760.83 168
plane_prior585.49 3586.15 2871.09 7490.94 11284.82 96
plane_prior489.11 95
plane_prior184.46 86
n20.00 383
nn0.00 383
door-mid55.02 323
lessismore_v072.75 15179.60 14956.83 17457.37 31183.80 7489.01 9847.45 25778.74 17164.39 12386.49 19382.69 166
test1182.71 94
door52.91 335
HQP5-MVS58.80 163
BP-MVS67.38 104
HQP4-MVS71.59 23185.31 5283.74 132
HQP3-MVS84.12 7589.16 152
HQP2-MVS58.09 193
NP-MVS83.34 10263.07 12685.97 166
ACMMP++_ref89.47 148
ACMMP++91.96 90
Test By Simon62.56 146