This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 5977.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8592.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 52
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 5894.67 24
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 8991.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 31
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9073.65 1092.66 2391.17 11686.57 187.39 3594.97 1671.70 5097.68 192.19 195.63 2895.57 1
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10792.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5480.26 1187.78 2994.27 3275.89 1996.81 2387.45 3296.44 993.05 96
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6193.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 37
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8789.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 9989.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 27
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13687.63 3094.27 5793.65 69
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
9.1488.26 1592.84 6091.52 4694.75 173.93 12588.57 2294.67 1975.57 2295.79 5386.77 3595.76 23
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7474.62 11188.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MVS_030488.08 1488.08 1788.08 1489.67 11472.04 4892.26 3389.26 17384.19 285.01 5595.18 1369.93 6997.20 1491.63 295.60 2994.99 9
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5693.59 2376.27 7988.14 2495.09 1571.06 5796.67 2987.67 2996.37 1494.09 46
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5581.50 585.79 4893.47 6073.02 3997.00 1884.90 4294.94 3994.10 45
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5394.32 3171.76 4896.93 1985.53 3995.79 2294.32 38
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7993.50 2575.17 10086.34 4495.29 1270.86 5996.00 4988.78 1996.04 1694.58 27
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6477.57 4183.84 8294.40 3072.24 4396.28 4085.65 3895.30 3593.62 72
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5573.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 105
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 5994.44 2870.78 6096.61 3284.53 4994.89 4193.66 65
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6393.99 4870.67 6296.82 2284.18 5695.01 3793.90 55
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7793.82 1673.07 14984.86 6292.89 7476.22 1796.33 3884.89 4495.13 3694.40 34
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6694.52 2168.81 8496.65 3084.53 4994.90 4094.00 50
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7094.52 2169.09 7896.70 2784.37 5194.83 4494.03 49
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18792.02 8579.45 1985.88 4694.80 1768.07 8996.21 4286.69 3695.34 3393.23 87
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8283.81 8393.95 5169.77 7296.01 4885.15 4094.66 4694.32 38
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CS-MVS86.69 3586.95 3185.90 6390.76 9167.57 14092.83 1793.30 3279.67 1784.57 6992.27 8671.47 5395.02 8684.24 5493.46 6395.13 6
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5876.62 7083.68 8494.46 2567.93 9095.95 5284.20 5594.39 5393.23 87
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8594.17 3667.45 9596.60 3383.06 6394.50 5094.07 47
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 9694.23 3572.13 4597.09 1684.83 4595.37 3293.65 69
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 6774.50 11286.84 4294.65 2067.31 9795.77 5484.80 4692.85 6792.84 103
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7084.22 7493.36 6371.44 5496.76 2580.82 8595.33 3494.16 43
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CS-MVS-test86.29 4286.48 3785.71 6591.02 8367.21 15292.36 2993.78 1878.97 2883.51 8891.20 11170.65 6395.15 7781.96 7694.89 4194.77 22
EC-MVSNet86.01 4386.38 3884.91 8889.31 13166.27 16692.32 3093.63 2179.37 2084.17 7691.88 9369.04 8295.43 6583.93 5793.77 6193.01 99
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8076.87 6282.81 9794.25 3466.44 10596.24 4182.88 6794.28 5693.38 81
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9183.86 8194.42 2967.87 9296.64 3182.70 7294.57 4993.66 65
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9368.69 23785.00 5793.10 6774.43 2695.41 6784.97 4195.71 2593.02 98
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5793.56 2473.95 12383.16 9191.07 11675.94 1895.19 7579.94 9494.38 5493.55 76
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5491.90 9269.47 7496.42 3783.28 6295.94 1994.35 36
dcpmvs_285.63 5286.15 4484.06 12591.71 7564.94 19786.47 19091.87 9573.63 13286.60 4393.02 7276.57 1591.87 21683.36 6092.15 7595.35 3
CANet86.45 3886.10 4587.51 3790.09 10270.94 6789.70 8392.59 6681.78 481.32 11291.43 10670.34 6497.23 1384.26 5293.36 6494.37 35
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 6687.65 19867.22 15188.69 11993.04 3879.64 1885.33 5292.54 8373.30 3594.50 10783.49 5991.14 8995.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsmconf_n85.92 4686.04 4785.57 6885.03 25369.51 9089.62 8690.58 13173.42 13987.75 3194.02 4472.85 4093.24 16090.37 390.75 9393.96 51
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4573.54 13685.94 4594.51 2465.80 11595.61 5783.04 6592.51 7193.53 78
canonicalmvs85.91 4785.87 4986.04 6089.84 11269.44 9590.45 6693.00 4376.70 6988.01 2891.23 10973.28 3693.91 13181.50 7988.80 12094.77 22
MSLP-MVS++85.43 5685.76 5084.45 10391.93 7270.24 7690.71 5892.86 5377.46 4784.22 7492.81 7867.16 9992.94 18080.36 9094.35 5590.16 196
test_fmvsmconf0.1_n85.61 5385.65 5185.50 6982.99 29869.39 9689.65 8490.29 14473.31 14287.77 3094.15 3871.72 4993.23 16190.31 490.67 9593.89 56
SR-MVS-dyc-post85.77 4985.61 5286.23 5693.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2665.00 12395.56 5882.75 6891.87 7992.50 114
RE-MVS-def85.48 5393.06 5570.63 7391.88 3992.27 7673.53 13785.69 4994.45 2663.87 12982.75 6891.87 7992.50 114
ACMMPcopyleft85.89 4885.39 5487.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12193.82 5364.33 12596.29 3982.67 7390.69 9493.23 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsm_n_192085.29 5985.34 5585.13 7986.12 23269.93 8388.65 12190.78 12769.97 20488.27 2393.98 4971.39 5591.54 22888.49 2390.45 9793.91 53
TSAR-MVS + GP.85.71 5185.33 5686.84 4791.34 7872.50 3689.07 10487.28 22876.41 7285.80 4790.22 13474.15 3195.37 7281.82 7791.88 7892.65 109
alignmvs85.48 5485.32 5785.96 6289.51 12069.47 9289.74 8192.47 6876.17 8087.73 3391.46 10570.32 6593.78 13681.51 7888.95 11794.63 26
DELS-MVS85.41 5785.30 5885.77 6488.49 16267.93 13285.52 21993.44 2778.70 2983.63 8789.03 16474.57 2495.71 5680.26 9294.04 5993.66 65
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CDPH-MVS85.76 5085.29 5987.17 4393.49 4771.08 6188.58 12392.42 7268.32 24484.61 6793.48 5872.32 4296.15 4579.00 9895.43 3194.28 40
casdiffmvspermissive85.11 6185.14 6085.01 8287.20 21465.77 17987.75 15392.83 5577.84 3784.36 7392.38 8572.15 4493.93 13081.27 8190.48 9695.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline84.93 6384.98 6184.80 9287.30 21265.39 18887.30 16592.88 5277.62 3984.04 7992.26 8771.81 4793.96 12481.31 8090.30 9995.03 8
UA-Net85.08 6284.96 6285.45 7092.07 7068.07 12989.78 8090.86 12682.48 384.60 6893.20 6669.35 7595.22 7471.39 17490.88 9293.07 95
HPM-MVS_fast85.35 5884.95 6386.57 5393.69 4270.58 7592.15 3691.62 10373.89 12682.67 9994.09 4062.60 14495.54 6080.93 8392.93 6693.57 74
MVS_111021_HR85.14 6084.75 6486.32 5591.65 7672.70 3085.98 20290.33 14176.11 8182.08 10291.61 10071.36 5694.17 12081.02 8292.58 7092.08 131
ETV-MVS84.90 6584.67 6585.59 6789.39 12568.66 11688.74 11792.64 6579.97 1584.10 7785.71 25469.32 7695.38 6980.82 8591.37 8692.72 104
fmvsm_l_conf0.5_n84.47 6784.54 6684.27 11385.42 24268.81 10588.49 12587.26 22968.08 24688.03 2793.49 5772.04 4691.77 21888.90 1789.14 11692.24 125
patch_mono-283.65 7684.54 6680.99 22090.06 10765.83 17584.21 24788.74 19871.60 16985.01 5592.44 8474.51 2583.50 33382.15 7592.15 7593.64 71
test_fmvsmconf0.01_n84.73 6684.52 6885.34 7280.25 33869.03 9989.47 8889.65 16173.24 14686.98 4094.27 3266.62 10193.23 16190.26 589.95 10793.78 62
3Dnovator+77.84 485.48 5484.47 6988.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19593.37 6260.40 18896.75 2677.20 11793.73 6295.29 5
DPM-MVS84.93 6384.29 7086.84 4790.20 10073.04 2387.12 16993.04 3869.80 20882.85 9591.22 11073.06 3896.02 4776.72 12694.63 4791.46 150
fmvsm_l_conf0.5_n_a84.13 6984.16 7184.06 12585.38 24368.40 12088.34 13286.85 23767.48 25387.48 3493.40 6170.89 5891.61 22288.38 2589.22 11592.16 129
test_fmvsmvis_n_192084.02 7083.87 7284.49 10184.12 26969.37 9788.15 14087.96 21270.01 20283.95 8093.23 6568.80 8591.51 23188.61 2089.96 10692.57 110
EI-MVSNet-Vis-set84.19 6883.81 7385.31 7388.18 17367.85 13387.66 15589.73 15980.05 1482.95 9289.59 14870.74 6194.82 9580.66 8984.72 17093.28 86
fmvsm_s_conf0.5_n83.80 7383.71 7484.07 12386.69 22467.31 14789.46 8983.07 29271.09 17986.96 4193.70 5569.02 8391.47 23388.79 1884.62 17293.44 80
nrg03083.88 7183.53 7584.96 8486.77 22269.28 9890.46 6592.67 6174.79 10682.95 9291.33 10872.70 4193.09 17480.79 8779.28 25192.50 114
MG-MVS83.41 8383.45 7683.28 15292.74 6262.28 24888.17 13889.50 16475.22 9681.49 11192.74 8266.75 10095.11 8072.85 16291.58 8392.45 117
fmvsm_s_conf0.5_n_a83.63 7883.41 7784.28 11186.14 23168.12 12789.43 9082.87 29770.27 19887.27 3793.80 5469.09 7891.58 22488.21 2683.65 19393.14 93
fmvsm_s_conf0.1_n83.56 8083.38 7884.10 11884.86 25567.28 14889.40 9383.01 29370.67 18787.08 3893.96 5068.38 8791.45 23488.56 2284.50 17393.56 75
EI-MVSNet-UG-set83.81 7283.38 7885.09 8087.87 18667.53 14187.44 16189.66 16079.74 1682.23 10189.41 15770.24 6694.74 9879.95 9383.92 18592.99 100
CPTT-MVS83.73 7483.33 8084.92 8793.28 4970.86 6992.09 3790.38 13768.75 23679.57 13292.83 7660.60 18493.04 17880.92 8491.56 8490.86 169
HQP_MVS83.64 7783.14 8185.14 7790.08 10368.71 11291.25 5092.44 6979.12 2378.92 14191.00 12060.42 18695.38 6978.71 10286.32 15191.33 151
Effi-MVS+83.62 7983.08 8285.24 7588.38 16867.45 14288.89 10989.15 17975.50 9282.27 10088.28 18669.61 7394.45 10977.81 11187.84 13093.84 59
MVS_Test83.15 8883.06 8383.41 14986.86 21863.21 23486.11 20092.00 8774.31 11682.87 9489.44 15670.03 6793.21 16377.39 11688.50 12693.81 60
EPP-MVSNet83.40 8483.02 8484.57 9690.13 10164.47 20792.32 3090.73 12874.45 11579.35 13591.10 11469.05 8195.12 7872.78 16387.22 13894.13 44
fmvsm_s_conf0.1_n_a83.32 8682.99 8584.28 11183.79 27668.07 12989.34 9582.85 29869.80 20887.36 3694.06 4268.34 8891.56 22687.95 2783.46 19993.21 90
OPM-MVS83.50 8182.95 8685.14 7788.79 15270.95 6689.13 10391.52 10677.55 4480.96 11991.75 9560.71 17994.50 10779.67 9586.51 14989.97 212
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
EPNet83.72 7582.92 8786.14 5984.22 26769.48 9191.05 5585.27 25781.30 676.83 19091.65 9766.09 11095.56 5876.00 13293.85 6093.38 81
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
IS-MVSNet83.15 8882.81 8884.18 11689.94 11063.30 23291.59 4388.46 20479.04 2579.49 13392.16 8865.10 12094.28 11267.71 20991.86 8194.95 10
EIA-MVS83.31 8782.80 8984.82 9089.59 11665.59 18188.21 13692.68 6074.66 10978.96 13986.42 24169.06 8095.26 7375.54 13890.09 10393.62 72
Vis-MVSNetpermissive83.46 8282.80 8985.43 7190.25 9968.74 11090.30 6990.13 14876.33 7880.87 12092.89 7461.00 17694.20 11872.45 16890.97 9093.35 83
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FIs82.07 10382.42 9181.04 21988.80 15158.34 28888.26 13593.49 2676.93 6078.47 15391.04 11769.92 7092.34 19969.87 19084.97 16792.44 118
VNet82.21 10082.41 9281.62 20090.82 8860.93 26284.47 23889.78 15676.36 7784.07 7891.88 9364.71 12490.26 25870.68 18088.89 11893.66 65
PAPM_NR83.02 9282.41 9284.82 9092.47 6766.37 16487.93 14891.80 9873.82 12777.32 17990.66 12567.90 9194.90 9170.37 18389.48 11293.19 91
VDD-MVS83.01 9382.36 9484.96 8491.02 8366.40 16388.91 10888.11 20777.57 4184.39 7293.29 6452.19 24793.91 13177.05 11988.70 12294.57 29
3Dnovator76.31 583.38 8582.31 9586.59 5287.94 18472.94 2890.64 5992.14 8477.21 5275.47 22192.83 7658.56 19594.72 9973.24 15992.71 6992.13 130
h-mvs3383.15 8882.19 9686.02 6190.56 9370.85 7088.15 14089.16 17876.02 8384.67 6491.39 10761.54 16295.50 6182.71 7075.48 29891.72 139
MVS_111021_LR82.61 9782.11 9784.11 11788.82 14971.58 5385.15 22286.16 24774.69 10880.47 12391.04 11762.29 15190.55 25680.33 9190.08 10490.20 195
DP-MVS Recon83.11 9182.09 9886.15 5894.44 1970.92 6888.79 11392.20 8170.53 19279.17 13791.03 11964.12 12796.03 4668.39 20690.14 10291.50 146
MVSFormer82.85 9482.05 9985.24 7587.35 20670.21 7790.50 6290.38 13768.55 23981.32 11289.47 15161.68 15993.46 15378.98 9990.26 10092.05 132
FC-MVSNet-test81.52 11682.02 10080.03 24088.42 16755.97 32687.95 14693.42 2977.10 5677.38 17790.98 12269.96 6891.79 21768.46 20584.50 17392.33 119
HQP-MVS82.61 9782.02 10084.37 10589.33 12866.98 15589.17 9892.19 8276.41 7277.23 18290.23 13360.17 18995.11 8077.47 11485.99 15991.03 163
OMC-MVS82.69 9581.97 10284.85 8988.75 15467.42 14387.98 14490.87 12574.92 10379.72 13091.65 9762.19 15493.96 12475.26 14086.42 15093.16 92
diffmvspermissive82.10 10181.88 10382.76 18283.00 29663.78 22083.68 25489.76 15772.94 15282.02 10389.85 14065.96 11490.79 25282.38 7487.30 13793.71 64
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu82.62 9681.83 10484.96 8490.80 8969.76 8788.74 11791.70 10269.39 21678.96 13988.46 18165.47 11794.87 9474.42 14588.57 12390.24 194
CLD-MVS82.31 9981.65 10584.29 11088.47 16367.73 13685.81 21092.35 7475.78 8678.33 15686.58 23664.01 12894.35 11076.05 13187.48 13590.79 170
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
UniMVSNet_NR-MVSNet81.88 10681.54 10682.92 17188.46 16463.46 22887.13 16892.37 7380.19 1278.38 15489.14 16071.66 5293.05 17670.05 18676.46 28192.25 123
PS-MVSNAJss82.07 10381.31 10784.34 10886.51 22767.27 14989.27 9691.51 10771.75 16379.37 13490.22 13463.15 13894.27 11377.69 11282.36 21391.49 147
LPG-MVS_test82.08 10281.27 10884.50 9989.23 13568.76 10890.22 7091.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
LFMVS81.82 10881.23 10983.57 14491.89 7363.43 23089.84 7681.85 30877.04 5883.21 8993.10 6752.26 24693.43 15571.98 16989.95 10793.85 57
API-MVS81.99 10581.23 10984.26 11490.94 8570.18 8291.10 5389.32 16971.51 17178.66 14788.28 18665.26 11895.10 8364.74 23691.23 8887.51 278
UniMVSNet (Re)81.60 11581.11 11183.09 16288.38 16864.41 20987.60 15693.02 4278.42 3278.56 15088.16 19069.78 7193.26 15969.58 19376.49 28091.60 140
xiu_mvs_v2_base81.69 11181.05 11283.60 14289.15 13868.03 13184.46 24090.02 15070.67 18781.30 11586.53 23963.17 13794.19 11975.60 13788.54 12488.57 260
PS-MVSNAJ81.69 11181.02 11383.70 14189.51 12068.21 12684.28 24690.09 14970.79 18481.26 11685.62 25963.15 13894.29 11175.62 13688.87 11988.59 259
GeoE81.71 11081.01 11483.80 13989.51 12064.45 20888.97 10688.73 19971.27 17578.63 14889.76 14266.32 10793.20 16669.89 18986.02 15893.74 63
hse-mvs281.72 10980.94 11584.07 12388.72 15567.68 13885.87 20687.26 22976.02 8384.67 6488.22 18961.54 16293.48 15182.71 7073.44 32691.06 161
PAPR81.66 11480.89 11683.99 13390.27 9864.00 21586.76 18391.77 10168.84 23577.13 18889.50 14967.63 9394.88 9367.55 21188.52 12593.09 94
mvsmamba81.69 11180.74 11784.56 9787.45 20566.72 15991.26 4885.89 25174.66 10978.23 15990.56 12754.33 22794.91 8880.73 8883.54 19792.04 134
MAR-MVS81.84 10780.70 11885.27 7491.32 7971.53 5489.82 7790.92 12269.77 21078.50 15186.21 24562.36 15094.52 10665.36 23092.05 7789.77 220
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
VDDNet81.52 11680.67 11984.05 12890.44 9664.13 21489.73 8285.91 25071.11 17883.18 9093.48 5850.54 27193.49 15073.40 15688.25 12894.54 30
ACMP74.13 681.51 11880.57 12084.36 10689.42 12368.69 11589.97 7491.50 11074.46 11475.04 24290.41 13053.82 23394.54 10477.56 11382.91 20589.86 216
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
VPA-MVSNet80.60 13880.55 12180.76 22688.07 18060.80 26586.86 17791.58 10575.67 9080.24 12589.45 15563.34 13290.25 25970.51 18279.22 25291.23 155
DU-MVS81.12 12380.52 12282.90 17287.80 19063.46 22887.02 17291.87 9579.01 2678.38 15489.07 16265.02 12193.05 17670.05 18676.46 28192.20 126
test_yl81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
DCV-MVSNet81.17 12180.47 12383.24 15589.13 13963.62 22186.21 19789.95 15372.43 15781.78 10889.61 14657.50 20593.58 14470.75 17886.90 14292.52 112
PVSNet_Blended80.98 12480.34 12582.90 17288.85 14665.40 18684.43 24292.00 8767.62 25078.11 16385.05 27366.02 11294.27 11371.52 17189.50 11189.01 242
TranMVSNet+NR-MVSNet80.84 12780.31 12682.42 18787.85 18762.33 24687.74 15491.33 11280.55 977.99 16789.86 13965.23 11992.62 18667.05 21875.24 30892.30 121
jason81.39 11980.29 12784.70 9486.63 22669.90 8585.95 20386.77 23863.24 30081.07 11889.47 15161.08 17592.15 20578.33 10790.07 10592.05 132
jason: jason.
lupinMVS81.39 11980.27 12884.76 9387.35 20670.21 7785.55 21586.41 24262.85 30781.32 11288.61 17661.68 15992.24 20378.41 10690.26 10091.83 136
SDMVSNet80.38 14380.18 12980.99 22089.03 14464.94 19780.45 30389.40 16675.19 9876.61 19889.98 13760.61 18387.69 30176.83 12383.55 19590.33 190
PVSNet_BlendedMVS80.60 13880.02 13082.36 18988.85 14665.40 18686.16 19992.00 8769.34 21878.11 16386.09 24966.02 11294.27 11371.52 17182.06 21687.39 280
EI-MVSNet80.52 14179.98 13182.12 19084.28 26563.19 23686.41 19188.95 18974.18 12078.69 14587.54 20666.62 10192.43 19372.57 16680.57 23590.74 174
Fast-Effi-MVS+80.81 12979.92 13283.47 14588.85 14664.51 20485.53 21789.39 16770.79 18478.49 15285.06 27267.54 9493.58 14467.03 21986.58 14792.32 120
FA-MVS(test-final)80.96 12579.91 13384.10 11888.30 17165.01 19584.55 23790.01 15173.25 14579.61 13187.57 20358.35 19794.72 9971.29 17586.25 15392.56 111
CANet_DTU80.61 13779.87 13482.83 17485.60 23963.17 23787.36 16288.65 20076.37 7675.88 21488.44 18253.51 23693.07 17573.30 15789.74 11092.25 123
ACMM73.20 880.78 13479.84 13583.58 14389.31 13168.37 12189.99 7391.60 10470.28 19777.25 18089.66 14453.37 23893.53 14974.24 14882.85 20688.85 250
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
XVG-OURS-SEG-HR80.81 12979.76 13683.96 13585.60 23968.78 10783.54 26090.50 13470.66 19076.71 19491.66 9660.69 18091.26 23976.94 12081.58 22291.83 136
xiu_mvs_v1_base_debu80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
xiu_mvs_v1_base_debi80.80 13179.72 13784.03 13087.35 20670.19 7985.56 21288.77 19469.06 22981.83 10488.16 19050.91 26592.85 18278.29 10887.56 13289.06 237
UGNet80.83 12879.59 14084.54 9888.04 18168.09 12889.42 9188.16 20676.95 5976.22 20789.46 15349.30 28693.94 12768.48 20490.31 9891.60 140
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
114514_t80.68 13579.51 14184.20 11594.09 3867.27 14989.64 8591.11 11958.75 34474.08 25490.72 12458.10 19895.04 8569.70 19189.42 11390.30 192
QAPM80.88 12679.50 14285.03 8188.01 18368.97 10391.59 4392.00 8766.63 26475.15 23892.16 8857.70 20295.45 6363.52 24288.76 12190.66 176
AdaColmapbinary80.58 14079.42 14384.06 12593.09 5468.91 10489.36 9488.97 18869.27 21975.70 21789.69 14357.20 20995.77 5463.06 24788.41 12787.50 279
NR-MVSNet80.23 14879.38 14482.78 18087.80 19063.34 23186.31 19491.09 12079.01 2672.17 27689.07 16267.20 9892.81 18566.08 22575.65 29492.20 126
IterMVS-LS80.06 15179.38 14482.11 19185.89 23463.20 23586.79 18089.34 16874.19 11975.45 22486.72 22666.62 10192.39 19572.58 16576.86 27590.75 173
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
iter_conf_final80.63 13679.35 14684.46 10289.36 12767.70 13789.85 7584.49 26773.19 14778.30 15788.94 16545.98 31394.56 10279.59 9684.48 17791.11 158
test_djsdf80.30 14779.32 14783.27 15383.98 27365.37 18990.50 6290.38 13768.55 23976.19 20888.70 17256.44 21393.46 15378.98 9980.14 24190.97 166
v2v48280.23 14879.29 14883.05 16583.62 27964.14 21387.04 17189.97 15273.61 13378.18 16287.22 21461.10 17493.82 13476.11 12976.78 27891.18 156
ECVR-MVScopyleft79.61 15879.26 14980.67 22890.08 10354.69 34087.89 15077.44 34874.88 10480.27 12492.79 7948.96 29392.45 19268.55 20392.50 7294.86 17
XVG-OURS80.41 14279.23 15083.97 13485.64 23869.02 10183.03 27190.39 13671.09 17977.63 17391.49 10454.62 22691.35 23775.71 13483.47 19891.54 143
RRT_MVS80.35 14679.22 15183.74 14087.63 19965.46 18591.08 5488.92 19173.82 12776.44 20390.03 13649.05 29194.25 11776.84 12179.20 25391.51 144
WR-MVS79.49 16279.22 15180.27 23688.79 15258.35 28785.06 22488.61 20278.56 3077.65 17288.34 18463.81 13190.66 25564.98 23477.22 27091.80 138
test111179.43 16579.18 15380.15 23889.99 10853.31 35387.33 16477.05 35175.04 10180.23 12692.77 8148.97 29292.33 20068.87 20092.40 7494.81 20
mvs_anonymous79.42 16679.11 15480.34 23484.45 26457.97 29482.59 27387.62 22167.40 25476.17 21188.56 17968.47 8689.59 27170.65 18186.05 15793.47 79
v114480.03 15279.03 15583.01 16783.78 27764.51 20487.11 17090.57 13371.96 16278.08 16586.20 24661.41 16693.94 12774.93 14177.23 26990.60 179
v879.97 15579.02 15682.80 17784.09 27064.50 20687.96 14590.29 14474.13 12275.24 23586.81 22362.88 14393.89 13374.39 14675.40 30390.00 208
ab-mvs79.51 16178.97 15781.14 21688.46 16460.91 26383.84 25289.24 17570.36 19479.03 13888.87 16963.23 13690.21 26065.12 23282.57 21192.28 122
Anonymous2024052980.19 15078.89 15884.10 11890.60 9264.75 20188.95 10790.90 12365.97 27280.59 12291.17 11349.97 27693.73 14269.16 19782.70 21093.81 60
PCF-MVS73.52 780.38 14378.84 15985.01 8287.71 19568.99 10283.65 25591.46 11163.00 30477.77 17190.28 13166.10 10995.09 8461.40 26688.22 12990.94 167
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
iter_conf0580.00 15478.70 16083.91 13787.84 18865.83 17588.84 11284.92 26271.61 16878.70 14488.94 16543.88 32994.56 10279.28 9784.28 18191.33 151
v1079.74 15778.67 16182.97 17084.06 27164.95 19687.88 15190.62 13073.11 14875.11 23986.56 23761.46 16594.05 12373.68 15175.55 29689.90 214
VPNet78.69 18578.66 16278.76 26388.31 17055.72 32984.45 24186.63 24076.79 6478.26 15890.55 12859.30 19189.70 27066.63 22077.05 27290.88 168
BH-untuned79.47 16378.60 16382.05 19289.19 13765.91 17386.07 20188.52 20372.18 15975.42 22587.69 20061.15 17393.54 14860.38 27386.83 14486.70 299
Effi-MVS+-dtu80.03 15278.57 16484.42 10485.13 25068.74 11088.77 11488.10 20874.99 10274.97 24383.49 30157.27 20893.36 15673.53 15380.88 22991.18 156
WR-MVS_H78.51 18978.49 16578.56 26788.02 18256.38 32088.43 12692.67 6177.14 5473.89 25587.55 20566.25 10889.24 27758.92 28673.55 32490.06 206
Vis-MVSNet (Re-imp)78.36 19278.45 16678.07 27788.64 15851.78 36286.70 18479.63 33274.14 12175.11 23990.83 12361.29 17089.75 26858.10 29591.60 8292.69 107
BH-RMVSNet79.61 15878.44 16783.14 16089.38 12665.93 17284.95 22787.15 23273.56 13578.19 16189.79 14156.67 21293.36 15659.53 28086.74 14590.13 198
v119279.59 16078.43 16883.07 16483.55 28164.52 20386.93 17590.58 13170.83 18377.78 17085.90 25059.15 19293.94 12773.96 15077.19 27190.76 172
v14419279.47 16378.37 16982.78 18083.35 28463.96 21686.96 17390.36 14069.99 20377.50 17485.67 25760.66 18193.77 13874.27 14776.58 27990.62 177
CP-MVSNet78.22 19478.34 17077.84 27987.83 18954.54 34287.94 14791.17 11677.65 3873.48 26088.49 18062.24 15388.43 29262.19 25774.07 31790.55 181
Baseline_NR-MVSNet78.15 19878.33 17177.61 28485.79 23556.21 32486.78 18185.76 25373.60 13477.93 16887.57 20365.02 12188.99 28167.14 21775.33 30587.63 274
OpenMVScopyleft72.83 1079.77 15678.33 17184.09 12185.17 24669.91 8490.57 6090.97 12166.70 25872.17 27691.91 9154.70 22493.96 12461.81 26390.95 9188.41 263
UniMVSNet_ETH3D79.10 17578.24 17381.70 19986.85 21960.24 27487.28 16688.79 19374.25 11876.84 18990.53 12949.48 28291.56 22667.98 20782.15 21493.29 85
V4279.38 16978.24 17382.83 17481.10 33065.50 18385.55 21589.82 15571.57 17078.21 16086.12 24860.66 18193.18 16975.64 13575.46 30089.81 219
PS-CasMVS78.01 20378.09 17577.77 28187.71 19554.39 34488.02 14391.22 11377.50 4673.26 26288.64 17560.73 17888.41 29361.88 26173.88 32190.53 182
v192192079.22 17178.03 17682.80 17783.30 28663.94 21786.80 17990.33 14169.91 20677.48 17585.53 26058.44 19693.75 14073.60 15276.85 27690.71 175
jajsoiax79.29 17077.96 17783.27 15384.68 25866.57 16289.25 9790.16 14769.20 22475.46 22389.49 15045.75 31893.13 17276.84 12180.80 23190.11 200
TAPA-MVS73.13 979.15 17377.94 17882.79 17989.59 11662.99 24188.16 13991.51 10765.77 27377.14 18791.09 11560.91 17793.21 16350.26 34187.05 14092.17 128
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tttt051779.40 16777.91 17983.90 13888.10 17863.84 21888.37 13184.05 27571.45 17276.78 19289.12 16149.93 27994.89 9270.18 18583.18 20392.96 101
c3_l78.75 18277.91 17981.26 21182.89 30061.56 25784.09 25089.13 18169.97 20475.56 21984.29 28466.36 10692.09 20773.47 15575.48 29890.12 199
MVSTER79.01 17777.88 18182.38 18883.07 29364.80 20084.08 25188.95 18969.01 23278.69 14587.17 21754.70 22492.43 19374.69 14280.57 23589.89 215
tt080578.73 18377.83 18281.43 20585.17 24660.30 27389.41 9290.90 12371.21 17677.17 18688.73 17146.38 30693.21 16372.57 16678.96 25490.79 170
X-MVStestdata80.37 14577.83 18288.00 1794.42 2073.33 1992.78 1892.99 4579.14 2183.67 8512.47 40367.45 9596.60 3383.06 6394.50 5094.07 47
v14878.72 18477.80 18481.47 20482.73 30361.96 25286.30 19588.08 20973.26 14476.18 20985.47 26262.46 14892.36 19771.92 17073.82 32290.09 202
v124078.99 17877.78 18582.64 18383.21 28863.54 22586.62 18690.30 14369.74 21377.33 17885.68 25657.04 21093.76 13973.13 16076.92 27390.62 177
mvs_tets79.13 17477.77 18683.22 15784.70 25766.37 16489.17 9890.19 14669.38 21775.40 22689.46 15344.17 32793.15 17076.78 12480.70 23390.14 197
miper_ehance_all_eth78.59 18877.76 18781.08 21882.66 30561.56 25783.65 25589.15 17968.87 23475.55 22083.79 29566.49 10492.03 20873.25 15876.39 28389.64 223
thisisatest053079.40 16777.76 18784.31 10987.69 19765.10 19487.36 16284.26 27370.04 20177.42 17688.26 18849.94 27794.79 9770.20 18484.70 17193.03 97
CDS-MVSNet79.07 17677.70 18983.17 15987.60 20068.23 12584.40 24486.20 24667.49 25276.36 20486.54 23861.54 16290.79 25261.86 26287.33 13690.49 184
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Anonymous2023121178.97 17977.69 19082.81 17690.54 9464.29 21190.11 7291.51 10765.01 28276.16 21288.13 19550.56 27093.03 17969.68 19277.56 26891.11 158
PEN-MVS77.73 20977.69 19077.84 27987.07 21753.91 34787.91 14991.18 11577.56 4373.14 26488.82 17061.23 17189.17 27859.95 27672.37 33290.43 186
AUN-MVS79.21 17277.60 19284.05 12888.71 15667.61 13985.84 20887.26 22969.08 22877.23 18288.14 19453.20 24093.47 15275.50 13973.45 32591.06 161
v7n78.97 17977.58 19383.14 16083.45 28365.51 18288.32 13391.21 11473.69 13172.41 27386.32 24457.93 19993.81 13569.18 19675.65 29490.11 200
TAMVS78.89 18177.51 19483.03 16687.80 19067.79 13584.72 23185.05 26067.63 24976.75 19387.70 19962.25 15290.82 25158.53 29187.13 13990.49 184
sd_testset77.70 21277.40 19578.60 26689.03 14460.02 27679.00 32185.83 25275.19 9876.61 19889.98 13754.81 21985.46 31962.63 25383.55 19590.33 190
GBi-Net78.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
test178.40 19077.40 19581.40 20787.60 20063.01 23888.39 12889.28 17071.63 16575.34 22887.28 21054.80 22091.11 24262.72 24979.57 24590.09 202
BH-w/o78.21 19577.33 19880.84 22488.81 15065.13 19384.87 22887.85 21769.75 21174.52 25084.74 27761.34 16893.11 17358.24 29485.84 16184.27 334
FMVSNet278.20 19677.21 19981.20 21487.60 20062.89 24287.47 16089.02 18471.63 16575.29 23487.28 21054.80 22091.10 24562.38 25479.38 24989.61 224
anonymousdsp78.60 18777.15 20082.98 16980.51 33667.08 15387.24 16789.53 16365.66 27575.16 23787.19 21652.52 24192.25 20277.17 11879.34 25089.61 224
HY-MVS69.67 1277.95 20477.15 20080.36 23387.57 20460.21 27583.37 26287.78 21966.11 26875.37 22787.06 22163.27 13490.48 25761.38 26782.43 21290.40 188
cl2278.07 20077.01 20281.23 21282.37 31261.83 25483.55 25987.98 21168.96 23375.06 24183.87 29161.40 16791.88 21573.53 15376.39 28389.98 211
Anonymous20240521178.25 19377.01 20281.99 19491.03 8260.67 26784.77 23083.90 27770.65 19180.00 12891.20 11141.08 34791.43 23565.21 23185.26 16593.85 57
MVS78.19 19776.99 20481.78 19785.66 23766.99 15484.66 23290.47 13555.08 36472.02 27885.27 26563.83 13094.11 12266.10 22489.80 10984.24 335
LCM-MVSNet-Re77.05 22376.94 20577.36 28787.20 21451.60 36380.06 30780.46 32275.20 9767.69 31986.72 22662.48 14788.98 28263.44 24489.25 11491.51 144
miper_enhance_ethall77.87 20776.86 20680.92 22381.65 31961.38 25982.68 27288.98 18665.52 27775.47 22182.30 31865.76 11692.00 21072.95 16176.39 28389.39 229
FMVSNet377.88 20676.85 20780.97 22286.84 22062.36 24586.52 18988.77 19471.13 17775.34 22886.66 23254.07 23191.10 24562.72 24979.57 24589.45 228
DTE-MVSNet76.99 22476.80 20877.54 28686.24 22953.06 35587.52 15890.66 12977.08 5772.50 27188.67 17460.48 18589.52 27257.33 30270.74 34390.05 207
CNLPA78.08 19976.79 20981.97 19590.40 9771.07 6287.59 15784.55 26666.03 27172.38 27489.64 14557.56 20486.04 31259.61 27983.35 20088.79 253
cl____77.72 21076.76 21080.58 22982.49 30960.48 27083.09 26787.87 21569.22 22274.38 25285.22 26862.10 15591.53 22971.09 17675.41 30289.73 222
DIV-MVS_self_test77.72 21076.76 21080.58 22982.48 31060.48 27083.09 26787.86 21669.22 22274.38 25285.24 26662.10 15591.53 22971.09 17675.40 30389.74 221
baseline176.98 22576.75 21277.66 28288.13 17655.66 33085.12 22381.89 30673.04 15076.79 19188.90 16762.43 14987.78 30063.30 24671.18 34189.55 226
eth_miper_zixun_eth77.92 20576.69 21381.61 20283.00 29661.98 25183.15 26589.20 17769.52 21574.86 24584.35 28361.76 15892.56 18971.50 17372.89 33090.28 193
pm-mvs177.25 22276.68 21478.93 26184.22 26758.62 28686.41 19188.36 20571.37 17373.31 26188.01 19661.22 17289.15 27964.24 24073.01 32989.03 241
ET-MVSNet_ETH3D78.63 18676.63 21584.64 9586.73 22369.47 9285.01 22584.61 26569.54 21466.51 33786.59 23450.16 27491.75 21976.26 12884.24 18292.69 107
test250677.30 22076.49 21679.74 24690.08 10352.02 35687.86 15263.10 39174.88 10480.16 12792.79 7938.29 36092.35 19868.74 20292.50 7294.86 17
Fast-Effi-MVS+-dtu78.02 20276.49 21682.62 18483.16 29266.96 15786.94 17487.45 22672.45 15471.49 28384.17 28854.79 22391.58 22467.61 21080.31 23889.30 233
1112_ss77.40 21876.43 21880.32 23589.11 14360.41 27283.65 25587.72 22062.13 31773.05 26586.72 22662.58 14689.97 26462.11 26080.80 23190.59 180
PAPM77.68 21376.40 21981.51 20387.29 21361.85 25383.78 25389.59 16264.74 28471.23 28488.70 17262.59 14593.66 14352.66 32687.03 14189.01 242
PLCcopyleft70.83 1178.05 20176.37 22083.08 16391.88 7467.80 13488.19 13789.46 16564.33 29069.87 30188.38 18353.66 23493.58 14458.86 28782.73 20887.86 270
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 21676.18 22181.20 21488.24 17263.24 23384.61 23586.40 24367.55 25177.81 16986.48 24054.10 23093.15 17057.75 29882.72 20987.20 285
FMVSNet177.44 21676.12 22281.40 20786.81 22163.01 23888.39 12889.28 17070.49 19374.39 25187.28 21049.06 29091.11 24260.91 27078.52 25790.09 202
bld_raw_dy_0_6477.29 22175.98 22381.22 21385.04 25265.47 18488.14 14277.56 34569.20 22473.77 25689.40 15942.24 34188.85 28776.78 12481.64 22189.33 232
test_vis1_n_192075.52 24875.78 22474.75 31379.84 34457.44 30483.26 26385.52 25562.83 30879.34 13686.17 24745.10 32279.71 35278.75 10181.21 22687.10 292
CHOSEN 1792x268877.63 21475.69 22583.44 14689.98 10968.58 11878.70 32587.50 22456.38 35975.80 21686.84 22258.67 19491.40 23661.58 26585.75 16390.34 189
FE-MVS77.78 20875.68 22684.08 12288.09 17966.00 17083.13 26687.79 21868.42 24378.01 16685.23 26745.50 32095.12 7859.11 28485.83 16291.11 158
WTY-MVS75.65 24675.68 22675.57 30386.40 22856.82 31177.92 33582.40 30265.10 27976.18 20987.72 19863.13 14180.90 34860.31 27481.96 21789.00 244
testing9176.54 23075.66 22879.18 25888.43 16655.89 32781.08 29083.00 29473.76 13075.34 22884.29 28446.20 31190.07 26264.33 23884.50 17391.58 142
XXY-MVS75.41 25175.56 22974.96 30983.59 28057.82 29880.59 30083.87 27866.54 26574.93 24488.31 18563.24 13580.09 35162.16 25876.85 27686.97 293
thres100view90076.50 23275.55 23079.33 25489.52 11956.99 30985.83 20983.23 28873.94 12476.32 20587.12 21851.89 25691.95 21148.33 35083.75 18989.07 235
thres600view776.50 23275.44 23179.68 24889.40 12457.16 30685.53 21783.23 28873.79 12976.26 20687.09 21951.89 25691.89 21448.05 35583.72 19290.00 208
Test_1112_low_res76.40 23675.44 23179.27 25589.28 13358.09 29081.69 28287.07 23359.53 33672.48 27286.67 23161.30 16989.33 27560.81 27280.15 24090.41 187
HyFIR lowres test77.53 21575.40 23383.94 13689.59 11666.62 16080.36 30488.64 20156.29 36076.45 20085.17 26957.64 20393.28 15861.34 26883.10 20491.91 135
thisisatest051577.33 21975.38 23483.18 15885.27 24563.80 21982.11 27883.27 28765.06 28075.91 21383.84 29349.54 28194.27 11367.24 21586.19 15491.48 148
tfpn200view976.42 23575.37 23579.55 25389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18989.07 235
thres40076.50 23275.37 23579.86 24389.13 13957.65 30085.17 22083.60 28073.41 14076.45 20086.39 24252.12 24891.95 21148.33 35083.75 18990.00 208
131476.53 23175.30 23780.21 23783.93 27462.32 24784.66 23288.81 19260.23 32970.16 29584.07 29055.30 21790.73 25467.37 21383.21 20287.59 277
GA-MVS76.87 22775.17 23881.97 19582.75 30262.58 24381.44 28786.35 24572.16 16174.74 24682.89 31046.20 31192.02 20968.85 20181.09 22791.30 154
testing9976.09 24175.12 23979.00 25988.16 17455.50 33280.79 29481.40 31273.30 14375.17 23684.27 28644.48 32590.02 26364.28 23984.22 18391.48 148
EPNet_dtu75.46 24974.86 24077.23 29082.57 30754.60 34186.89 17683.09 29171.64 16466.25 33985.86 25255.99 21488.04 29754.92 31586.55 14889.05 240
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
LS3D76.95 22674.82 24183.37 15090.45 9567.36 14689.15 10286.94 23561.87 31969.52 30490.61 12651.71 25994.53 10546.38 36286.71 14688.21 265
cascas76.72 22974.64 24282.99 16885.78 23665.88 17482.33 27589.21 17660.85 32572.74 26781.02 32947.28 30093.75 14067.48 21285.02 16689.34 231
DP-MVS76.78 22874.57 24383.42 14793.29 4869.46 9488.55 12483.70 27963.98 29670.20 29288.89 16854.01 23294.80 9646.66 35981.88 21986.01 311
TransMVSNet (Re)75.39 25274.56 24477.86 27885.50 24157.10 30886.78 18186.09 24972.17 16071.53 28287.34 20963.01 14289.31 27656.84 30761.83 36987.17 286
LTVRE_ROB69.57 1376.25 23874.54 24581.41 20688.60 15964.38 21079.24 31789.12 18270.76 18669.79 30387.86 19749.09 28993.20 16656.21 31280.16 23986.65 300
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
thres20075.55 24774.47 24678.82 26287.78 19357.85 29783.07 26983.51 28372.44 15675.84 21584.42 27952.08 25191.75 21947.41 35783.64 19486.86 295
MVP-Stereo76.12 23974.46 24781.13 21785.37 24469.79 8684.42 24387.95 21365.03 28167.46 32285.33 26453.28 23991.73 22158.01 29683.27 20181.85 359
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
F-COLMAP76.38 23774.33 24882.50 18689.28 13366.95 15888.41 12789.03 18364.05 29466.83 32988.61 17646.78 30492.89 18157.48 29978.55 25687.67 273
XVG-ACMP-BASELINE76.11 24074.27 24981.62 20083.20 28964.67 20283.60 25889.75 15869.75 21171.85 27987.09 21932.78 37292.11 20669.99 18880.43 23788.09 266
testing1175.14 25474.01 25078.53 26988.16 17456.38 32080.74 29780.42 32370.67 18772.69 27083.72 29743.61 33189.86 26562.29 25683.76 18889.36 230
ACMH+68.96 1476.01 24274.01 25082.03 19388.60 15965.31 19088.86 11087.55 22270.25 19967.75 31887.47 20841.27 34593.19 16858.37 29275.94 29187.60 275
ACMH67.68 1675.89 24373.93 25281.77 19888.71 15666.61 16188.62 12289.01 18569.81 20766.78 33086.70 23041.95 34491.51 23155.64 31378.14 26387.17 286
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CostFormer75.24 25373.90 25379.27 25582.65 30658.27 28980.80 29382.73 30061.57 32075.33 23283.13 30655.52 21591.07 24864.98 23478.34 26288.45 261
IterMVS-SCA-FT75.43 25073.87 25480.11 23982.69 30464.85 19981.57 28483.47 28469.16 22670.49 28984.15 28951.95 25488.15 29569.23 19572.14 33587.34 282
baseline275.70 24573.83 25581.30 21083.26 28761.79 25582.57 27480.65 31866.81 25566.88 32883.42 30257.86 20192.19 20463.47 24379.57 24589.91 213
test_cas_vis1_n_192073.76 26673.74 25673.81 32175.90 36559.77 27880.51 30182.40 30258.30 34681.62 11085.69 25544.35 32676.41 37076.29 12778.61 25585.23 322
sss73.60 26773.64 25773.51 32382.80 30155.01 33876.12 34281.69 30962.47 31374.68 24785.85 25357.32 20778.11 35960.86 27180.93 22887.39 280
pmmvs674.69 25673.39 25878.61 26581.38 32557.48 30386.64 18587.95 21364.99 28370.18 29386.61 23350.43 27289.52 27262.12 25970.18 34588.83 251
IB-MVS68.01 1575.85 24473.36 25983.31 15184.76 25666.03 16883.38 26185.06 25970.21 20069.40 30581.05 32845.76 31794.66 10165.10 23375.49 29789.25 234
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
D2MVS74.82 25573.21 26079.64 25079.81 34562.56 24480.34 30587.35 22764.37 28968.86 31082.66 31446.37 30790.10 26167.91 20881.24 22586.25 304
tfpnnormal74.39 25773.16 26178.08 27686.10 23358.05 29184.65 23487.53 22370.32 19671.22 28585.63 25854.97 21889.86 26543.03 37375.02 31086.32 303
miper_lstm_enhance74.11 26173.11 26277.13 29180.11 34059.62 28072.23 36286.92 23666.76 25770.40 29082.92 30956.93 21182.92 33769.06 19872.63 33188.87 249
IterMVS74.29 25872.94 26378.35 27281.53 32263.49 22781.58 28382.49 30168.06 24769.99 29883.69 29851.66 26085.54 31765.85 22771.64 33886.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MS-PatchMatch73.83 26572.67 26477.30 28983.87 27566.02 16981.82 27984.66 26461.37 32368.61 31382.82 31247.29 29988.21 29459.27 28184.32 18077.68 373
testing22274.04 26272.66 26578.19 27487.89 18555.36 33381.06 29179.20 33671.30 17474.65 24883.57 30039.11 35688.67 28951.43 33385.75 16390.53 182
CVMVSNet72.99 27672.58 26674.25 31784.28 26550.85 36886.41 19183.45 28544.56 38173.23 26387.54 20649.38 28485.70 31465.90 22678.44 25986.19 306
test-LLR72.94 27772.43 26774.48 31481.35 32658.04 29278.38 32877.46 34666.66 25969.95 29979.00 34948.06 29679.24 35366.13 22284.83 16886.15 307
OurMVSNet-221017-074.26 25972.42 26879.80 24583.76 27859.59 28185.92 20586.64 23966.39 26666.96 32787.58 20239.46 35391.60 22365.76 22869.27 34888.22 264
SCA74.22 26072.33 26979.91 24284.05 27262.17 24979.96 31079.29 33566.30 26772.38 27480.13 33851.95 25488.60 29059.25 28277.67 26788.96 246
tpmrst72.39 27972.13 27073.18 32780.54 33549.91 37279.91 31179.08 33763.11 30271.69 28179.95 34055.32 21682.77 33865.66 22973.89 32086.87 294
pmmvs474.03 26471.91 27180.39 23281.96 31568.32 12281.45 28682.14 30459.32 33769.87 30185.13 27052.40 24488.13 29660.21 27574.74 31384.73 331
EG-PatchMatch MVS74.04 26271.82 27280.71 22784.92 25467.42 14385.86 20788.08 20966.04 27064.22 35183.85 29235.10 36992.56 18957.44 30080.83 23082.16 358
tpm72.37 28171.71 27374.35 31682.19 31352.00 35779.22 31877.29 34964.56 28672.95 26683.68 29951.35 26183.26 33658.33 29375.80 29287.81 271
WB-MVSnew71.96 28671.65 27472.89 32884.67 26151.88 36082.29 27677.57 34462.31 31473.67 25883.00 30753.49 23781.10 34745.75 36682.13 21585.70 316
UWE-MVS72.13 28471.49 27574.03 31986.66 22547.70 37681.40 28876.89 35363.60 29975.59 21884.22 28739.94 35285.62 31648.98 34786.13 15688.77 254
CL-MVSNet_self_test72.37 28171.46 27675.09 30879.49 35153.53 34980.76 29685.01 26169.12 22770.51 28882.05 32257.92 20084.13 32852.27 32866.00 36187.60 275
tpm273.26 27271.46 27678.63 26483.34 28556.71 31480.65 29980.40 32456.63 35873.55 25982.02 32351.80 25891.24 24056.35 31178.42 26087.95 267
RPSCF73.23 27371.46 27678.54 26882.50 30859.85 27782.18 27782.84 29958.96 34171.15 28689.41 15745.48 32184.77 32558.82 28871.83 33791.02 165
PatchmatchNetpermissive73.12 27471.33 27978.49 27183.18 29060.85 26479.63 31278.57 33964.13 29171.73 28079.81 34351.20 26385.97 31357.40 30176.36 28888.66 257
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet73.37 26971.27 28079.67 24981.32 32865.19 19175.92 34480.30 32559.92 33272.73 26881.19 32652.50 24286.69 30659.84 27777.71 26587.11 290
SixPastTwentyTwo73.37 26971.26 28179.70 24785.08 25157.89 29685.57 21183.56 28271.03 18165.66 34185.88 25142.10 34292.57 18859.11 28463.34 36788.65 258
ETVMVS72.25 28371.05 28275.84 29987.77 19451.91 35979.39 31574.98 36069.26 22073.71 25782.95 30840.82 34986.14 31146.17 36384.43 17989.47 227
MSDG73.36 27170.99 28380.49 23184.51 26365.80 17780.71 29886.13 24865.70 27465.46 34283.74 29644.60 32390.91 25051.13 33476.89 27484.74 330
PatchMatch-RL72.38 28070.90 28476.80 29488.60 15967.38 14579.53 31376.17 35762.75 31069.36 30682.00 32445.51 31984.89 32453.62 32180.58 23478.12 372
PVSNet64.34 1872.08 28570.87 28575.69 30186.21 23056.44 31874.37 35680.73 31762.06 31870.17 29482.23 32042.86 33583.31 33554.77 31684.45 17887.32 283
dmvs_re71.14 29070.58 28672.80 32981.96 31559.68 27975.60 34879.34 33468.55 23969.27 30880.72 33449.42 28376.54 36752.56 32777.79 26482.19 357
test_fmvs170.93 29370.52 28772.16 33373.71 37555.05 33780.82 29278.77 33851.21 37578.58 14984.41 28031.20 37776.94 36575.88 13380.12 24284.47 333
RPMNet73.51 26870.49 28882.58 18581.32 32865.19 19175.92 34492.27 7657.60 35272.73 26876.45 36552.30 24595.43 6548.14 35477.71 26587.11 290
test_040272.79 27870.44 28979.84 24488.13 17665.99 17185.93 20484.29 27165.57 27667.40 32485.49 26146.92 30392.61 18735.88 38574.38 31680.94 364
COLMAP_ROBcopyleft66.92 1773.01 27570.41 29080.81 22587.13 21665.63 18088.30 13484.19 27462.96 30563.80 35587.69 20038.04 36192.56 18946.66 35974.91 31184.24 335
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test-mter71.41 28870.39 29174.48 31481.35 32658.04 29278.38 32877.46 34660.32 32869.95 29979.00 34936.08 36779.24 35366.13 22284.83 16886.15 307
test_fmvs1_n70.86 29470.24 29272.73 33072.51 38555.28 33581.27 28979.71 33151.49 37478.73 14384.87 27427.54 38277.02 36476.06 13079.97 24385.88 314
pmmvs571.55 28770.20 29375.61 30277.83 35856.39 31981.74 28180.89 31457.76 35067.46 32284.49 27849.26 28785.32 32157.08 30475.29 30685.11 326
MDTV_nov1_ep1369.97 29483.18 29053.48 35077.10 34080.18 32860.45 32669.33 30780.44 33548.89 29486.90 30551.60 33178.51 258
MIMVSNet70.69 29669.30 29574.88 31084.52 26256.35 32275.87 34679.42 33364.59 28567.76 31782.41 31641.10 34681.54 34446.64 36181.34 22386.75 298
tpmvs71.09 29169.29 29676.49 29582.04 31456.04 32578.92 32381.37 31364.05 29467.18 32678.28 35549.74 28089.77 26749.67 34472.37 33283.67 342
test_vis1_n69.85 30669.21 29771.77 33572.66 38455.27 33681.48 28576.21 35652.03 37175.30 23383.20 30528.97 38076.22 37274.60 14378.41 26183.81 341
Patchmtry70.74 29569.16 29875.49 30580.72 33254.07 34674.94 35580.30 32558.34 34570.01 29681.19 32652.50 24286.54 30753.37 32371.09 34285.87 315
TESTMET0.1,169.89 30569.00 29972.55 33179.27 35456.85 31078.38 32874.71 36457.64 35168.09 31677.19 36237.75 36276.70 36663.92 24184.09 18484.10 338
PMMVS69.34 30868.67 30071.35 34075.67 36762.03 25075.17 35073.46 36750.00 37668.68 31179.05 34752.07 25278.13 35861.16 26982.77 20773.90 379
K. test v371.19 28968.51 30179.21 25783.04 29557.78 29984.35 24576.91 35272.90 15362.99 35882.86 31139.27 35491.09 24761.65 26452.66 38588.75 255
USDC70.33 30068.37 30276.21 29780.60 33456.23 32379.19 31986.49 24160.89 32461.29 36285.47 26231.78 37589.47 27453.37 32376.21 28982.94 352
tpm cat170.57 29768.31 30377.35 28882.41 31157.95 29578.08 33280.22 32752.04 37068.54 31477.66 36052.00 25387.84 29951.77 32972.07 33686.25 304
OpenMVS_ROBcopyleft64.09 1970.56 29868.19 30477.65 28380.26 33759.41 28385.01 22582.96 29658.76 34365.43 34382.33 31737.63 36391.23 24145.34 36976.03 29082.32 355
EPMVS69.02 31068.16 30571.59 33679.61 34949.80 37477.40 33766.93 38362.82 30970.01 29679.05 34745.79 31677.86 36156.58 30975.26 30787.13 289
CMPMVSbinary51.72 2170.19 30268.16 30576.28 29673.15 38157.55 30279.47 31483.92 27648.02 37856.48 37984.81 27543.13 33386.42 30962.67 25281.81 22084.89 328
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
AllTest70.96 29268.09 30779.58 25185.15 24863.62 22184.58 23679.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
gg-mvs-nofinetune69.95 30467.96 30875.94 29883.07 29354.51 34377.23 33970.29 37563.11 30270.32 29162.33 38643.62 33088.69 28853.88 32087.76 13184.62 332
FMVSNet569.50 30767.96 30874.15 31882.97 29955.35 33480.01 30982.12 30562.56 31263.02 35681.53 32536.92 36481.92 34248.42 34974.06 31885.17 325
Syy-MVS68.05 31967.85 31068.67 35584.68 25840.97 39678.62 32673.08 36966.65 26266.74 33179.46 34452.11 25082.30 34032.89 38876.38 28682.75 353
PatchT68.46 31767.85 31070.29 34680.70 33343.93 38872.47 36174.88 36160.15 33070.55 28776.57 36449.94 27781.59 34350.58 33574.83 31285.34 320
pmmvs-eth3d70.50 29967.83 31278.52 27077.37 36166.18 16781.82 27981.51 31058.90 34263.90 35480.42 33642.69 33686.28 31058.56 29065.30 36383.11 348
Anonymous2023120668.60 31367.80 31371.02 34380.23 33950.75 36978.30 33180.47 32156.79 35766.11 34082.63 31546.35 30878.95 35543.62 37275.70 29383.36 345
Patchmatch-RL test70.24 30167.78 31477.61 28477.43 36059.57 28271.16 36570.33 37462.94 30668.65 31272.77 37750.62 26985.49 31869.58 19366.58 35887.77 272
test0.0.03 168.00 32067.69 31568.90 35277.55 35947.43 37775.70 34772.95 37166.66 25966.56 33382.29 31948.06 29675.87 37444.97 37074.51 31583.41 344
testing368.56 31567.67 31671.22 34287.33 21142.87 39083.06 27071.54 37270.36 19469.08 30984.38 28130.33 37985.69 31537.50 38475.45 30185.09 327
EU-MVSNet68.53 31667.61 31771.31 34178.51 35747.01 37984.47 23884.27 27242.27 38466.44 33884.79 27640.44 35083.76 33058.76 28968.54 35383.17 346
KD-MVS_self_test68.81 31167.59 31872.46 33274.29 37345.45 38177.93 33487.00 23463.12 30163.99 35378.99 35142.32 33884.77 32556.55 31064.09 36687.16 288
test_fmvs268.35 31867.48 31970.98 34469.50 38851.95 35880.05 30876.38 35549.33 37774.65 24884.38 28123.30 38875.40 37974.51 14475.17 30985.60 317
ppachtmachnet_test70.04 30367.34 32078.14 27579.80 34661.13 26079.19 31980.59 31959.16 33965.27 34479.29 34646.75 30587.29 30349.33 34566.72 35686.00 313
Anonymous2024052168.80 31267.22 32173.55 32274.33 37254.11 34583.18 26485.61 25458.15 34761.68 36180.94 33130.71 37881.27 34657.00 30573.34 32885.28 321
our_test_369.14 30967.00 32275.57 30379.80 34658.80 28477.96 33377.81 34259.55 33562.90 35978.25 35647.43 29883.97 32951.71 33067.58 35583.93 340
test20.0367.45 32266.95 32368.94 35175.48 36944.84 38677.50 33677.67 34366.66 25963.01 35783.80 29447.02 30278.40 35742.53 37568.86 35283.58 343
MIMVSNet168.58 31466.78 32473.98 32080.07 34151.82 36180.77 29584.37 26864.40 28859.75 36982.16 32136.47 36583.63 33242.73 37470.33 34486.48 302
testgi66.67 32866.53 32567.08 36075.62 36841.69 39575.93 34376.50 35466.11 26865.20 34786.59 23435.72 36874.71 38143.71 37173.38 32784.84 329
myMVS_eth3d67.02 32566.29 32669.21 35084.68 25842.58 39178.62 32673.08 36966.65 26266.74 33179.46 34431.53 37682.30 34039.43 38176.38 28682.75 353
UnsupCasMVSNet_eth67.33 32365.99 32771.37 33873.48 37851.47 36575.16 35185.19 25865.20 27860.78 36480.93 33342.35 33777.20 36357.12 30353.69 38485.44 319
dp66.80 32665.43 32870.90 34579.74 34848.82 37575.12 35374.77 36259.61 33464.08 35277.23 36142.89 33480.72 34948.86 34866.58 35883.16 347
TinyColmap67.30 32464.81 32974.76 31281.92 31756.68 31580.29 30681.49 31160.33 32756.27 38083.22 30324.77 38587.66 30245.52 36769.47 34779.95 368
CHOSEN 280x42066.51 32964.71 33071.90 33481.45 32363.52 22657.98 39368.95 38153.57 36662.59 36076.70 36346.22 31075.29 38055.25 31479.68 24476.88 375
TDRefinement67.49 32164.34 33176.92 29273.47 37961.07 26184.86 22982.98 29559.77 33358.30 37385.13 27026.06 38387.89 29847.92 35660.59 37481.81 360
PM-MVS66.41 33064.14 33273.20 32673.92 37456.45 31778.97 32264.96 38963.88 29864.72 34880.24 33719.84 39183.44 33466.24 22164.52 36579.71 369
dmvs_testset62.63 34264.11 33358.19 37078.55 35624.76 40675.28 34965.94 38667.91 24860.34 36576.01 36753.56 23573.94 38531.79 38967.65 35475.88 377
KD-MVS_2432*160066.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
miper_refine_blended66.22 33263.89 33473.21 32475.47 37053.42 35170.76 36884.35 26964.10 29266.52 33578.52 35334.55 37084.98 32250.40 33750.33 38881.23 362
MDA-MVSNet-bldmvs66.68 32763.66 33675.75 30079.28 35360.56 26973.92 35878.35 34064.43 28750.13 38779.87 34244.02 32883.67 33146.10 36456.86 37783.03 350
ADS-MVSNet266.20 33463.33 33774.82 31179.92 34258.75 28567.55 37975.19 35953.37 36765.25 34575.86 36842.32 33880.53 35041.57 37668.91 35085.18 323
Patchmatch-test64.82 33763.24 33869.57 34879.42 35249.82 37363.49 39069.05 38051.98 37259.95 36880.13 33850.91 26570.98 38840.66 37873.57 32387.90 269
MDA-MVSNet_test_wron65.03 33562.92 33971.37 33875.93 36456.73 31269.09 37774.73 36357.28 35554.03 38377.89 35745.88 31474.39 38349.89 34361.55 37082.99 351
YYNet165.03 33562.91 34071.38 33775.85 36656.60 31669.12 37674.66 36557.28 35554.12 38277.87 35845.85 31574.48 38249.95 34261.52 37183.05 349
ADS-MVSNet64.36 33862.88 34168.78 35479.92 34247.17 37867.55 37971.18 37353.37 36765.25 34575.86 36842.32 33873.99 38441.57 37668.91 35085.18 323
JIA-IIPM66.32 33162.82 34276.82 29377.09 36261.72 25665.34 38675.38 35858.04 34964.51 34962.32 38742.05 34386.51 30851.45 33269.22 34982.21 356
LF4IMVS64.02 33962.19 34369.50 34970.90 38653.29 35476.13 34177.18 35052.65 36958.59 37180.98 33023.55 38776.52 36853.06 32566.66 35778.68 371
test_fmvs363.36 34161.82 34467.98 35762.51 39546.96 38077.37 33874.03 36645.24 38067.50 32178.79 35212.16 39972.98 38772.77 16466.02 36083.99 339
new-patchmatchnet61.73 34461.73 34561.70 36672.74 38324.50 40769.16 37578.03 34161.40 32156.72 37875.53 37138.42 35876.48 36945.95 36557.67 37684.13 337
UnsupCasMVSNet_bld63.70 34061.53 34670.21 34773.69 37651.39 36672.82 36081.89 30655.63 36257.81 37571.80 37938.67 35778.61 35649.26 34652.21 38680.63 365
mvsany_test162.30 34361.26 34765.41 36269.52 38754.86 33966.86 38149.78 40246.65 37968.50 31583.21 30449.15 28866.28 39456.93 30660.77 37275.11 378
PVSNet_057.27 2061.67 34559.27 34868.85 35379.61 34957.44 30468.01 37873.44 36855.93 36158.54 37270.41 38244.58 32477.55 36247.01 35835.91 39471.55 382
test_vis1_rt60.28 34658.42 34965.84 36167.25 39155.60 33170.44 37060.94 39444.33 38259.00 37066.64 38424.91 38468.67 39262.80 24869.48 34673.25 380
MVS-HIRNet59.14 34757.67 35063.57 36481.65 31943.50 38971.73 36365.06 38839.59 38851.43 38557.73 39238.34 35982.58 33939.53 37973.95 31964.62 388
DSMNet-mixed57.77 34956.90 35160.38 36867.70 39035.61 39969.18 37453.97 40032.30 39657.49 37679.88 34140.39 35168.57 39338.78 38272.37 33276.97 374
WB-MVS54.94 35054.72 35255.60 37673.50 37720.90 40874.27 35761.19 39359.16 33950.61 38674.15 37347.19 30175.78 37517.31 40035.07 39570.12 383
pmmvs357.79 34854.26 35368.37 35664.02 39456.72 31375.12 35365.17 38740.20 38652.93 38469.86 38320.36 39075.48 37745.45 36855.25 38372.90 381
SSC-MVS53.88 35353.59 35454.75 37872.87 38219.59 40973.84 35960.53 39557.58 35349.18 38873.45 37646.34 30975.47 37816.20 40332.28 39769.20 384
N_pmnet52.79 35653.26 35551.40 38078.99 3557.68 41269.52 3723.89 41151.63 37357.01 37774.98 37240.83 34865.96 39537.78 38364.67 36480.56 367
FPMVS53.68 35451.64 35659.81 36965.08 39351.03 36769.48 37369.58 37841.46 38540.67 39172.32 37816.46 39570.00 39124.24 39765.42 36258.40 393
mvsany_test353.99 35251.45 35761.61 36755.51 39944.74 38763.52 38945.41 40643.69 38358.11 37476.45 36517.99 39263.76 39754.77 31647.59 39076.34 376
test_f52.09 35750.82 35855.90 37453.82 40242.31 39459.42 39258.31 39836.45 39156.12 38170.96 38112.18 39857.79 39953.51 32256.57 37967.60 385
new_pmnet50.91 35950.29 35952.78 37968.58 38934.94 40163.71 38856.63 39939.73 38744.95 38965.47 38521.93 38958.48 39834.98 38656.62 37864.92 387
APD_test153.31 35549.93 36063.42 36565.68 39250.13 37171.59 36466.90 38434.43 39340.58 39271.56 3808.65 40476.27 37134.64 38755.36 38263.86 389
LCM-MVSNet54.25 35149.68 36167.97 35853.73 40345.28 38466.85 38280.78 31635.96 39239.45 39362.23 3888.70 40378.06 36048.24 35351.20 38780.57 366
EGC-MVSNET52.07 35847.05 36267.14 35983.51 28260.71 26680.50 30267.75 3820.07 4060.43 40775.85 37024.26 38681.54 34428.82 39162.25 36859.16 391
test_vis3_rt49.26 36147.02 36356.00 37354.30 40045.27 38566.76 38348.08 40336.83 39044.38 39053.20 3957.17 40664.07 39656.77 30855.66 38058.65 392
ANet_high50.57 36046.10 36463.99 36348.67 40639.13 39770.99 36780.85 31561.39 32231.18 39557.70 39317.02 39473.65 38631.22 39015.89 40379.18 370
testf145.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
APD_test245.72 36241.96 36557.00 37156.90 39745.32 38266.14 38459.26 39626.19 39730.89 39660.96 3904.14 40770.64 38926.39 39546.73 39255.04 394
Gipumacopyleft45.18 36441.86 36755.16 37777.03 36351.52 36432.50 39980.52 32032.46 39527.12 39835.02 3999.52 40275.50 37622.31 39860.21 37538.45 398
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft37.38 2244.16 36540.28 36855.82 37540.82 40842.54 39365.12 38763.99 39034.43 39324.48 39957.12 3943.92 40976.17 37317.10 40155.52 38148.75 396
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
PMMVS240.82 36638.86 36946.69 38153.84 40116.45 41048.61 39649.92 40137.49 38931.67 39460.97 3898.14 40556.42 40028.42 39230.72 39867.19 386
E-PMN31.77 36730.64 37035.15 38452.87 40427.67 40357.09 39447.86 40424.64 39916.40 40433.05 40011.23 40054.90 40114.46 40418.15 40122.87 400
EMVS30.81 36929.65 37134.27 38550.96 40525.95 40556.58 39546.80 40524.01 40015.53 40530.68 40112.47 39754.43 40212.81 40517.05 40222.43 401
test_method31.52 36829.28 37238.23 38327.03 4106.50 41320.94 40162.21 3924.05 40422.35 40252.50 39613.33 39647.58 40327.04 39434.04 39660.62 390
cdsmvs_eth3d_5k19.96 37126.61 3730.00 3910.00 4140.00 4160.00 40289.26 1730.00 4090.00 41088.61 17661.62 1610.00 4100.00 4090.00 4080.00 406
MVEpermissive26.22 2330.37 37025.89 37443.81 38244.55 40735.46 40028.87 40039.07 40718.20 40118.58 40340.18 3982.68 41047.37 40417.07 40223.78 40048.60 397
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt18.61 37221.40 37510.23 3884.82 41110.11 41134.70 39830.74 4091.48 40523.91 40126.07 40228.42 38113.41 40727.12 39315.35 4047.17 402
wuyk23d16.82 37315.94 37619.46 38758.74 39631.45 40239.22 3973.74 4126.84 4036.04 4062.70 4061.27 41124.29 40610.54 40614.40 4052.63 403
ab-mvs-re7.23 3749.64 3770.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 41086.72 2260.00 4140.00 4100.00 4090.00 4080.00 406
test1236.12 3758.11 3780.14 3890.06 4130.09 41471.05 3660.03 4140.04 4080.25 4091.30 4080.05 4120.03 4090.21 4080.01 4070.29 404
testmvs6.04 3768.02 3790.10 3900.08 4120.03 41569.74 3710.04 4130.05 4070.31 4081.68 4070.02 4130.04 4080.24 4070.02 4060.25 405
pcd_1.5k_mvsjas5.26 3777.02 3800.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 40963.15 1380.00 4100.00 4090.00 4080.00 406
test_blank0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet_test0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
DCPMVS0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet-low-res0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
sosnet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uncertanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
Regformer0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
uanet0.00 3780.00 3810.00 3910.00 4140.00 4160.00 4020.00 4150.00 4090.00 4100.00 4090.00 4140.00 4100.00 4090.00 4080.00 406
WAC-MVS42.58 39139.46 380
FOURS195.00 1072.39 3995.06 193.84 1574.49 11391.30 15
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
PC_three_145268.21 24592.02 1294.00 4682.09 595.98 5184.58 4896.68 294.95 10
No_MVS89.16 194.34 2775.53 292.99 4597.53 289.67 696.44 994.41 32
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 414
eth-test0.00 414
ZD-MVS94.38 2572.22 4492.67 6170.98 18287.75 3194.07 4174.01 3296.70 2784.66 4794.84 43
IU-MVS95.30 271.25 5792.95 5166.81 25592.39 688.94 1696.63 494.85 19
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 41
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6491.17 11674.31 116
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 24
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 42
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 246
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26288.96 246
sam_mvs50.01 275
ambc75.24 30773.16 38050.51 37063.05 39187.47 22564.28 35077.81 35917.80 39389.73 26957.88 29760.64 37385.49 318
MTGPAbinary92.02 85
test_post178.90 3245.43 40548.81 29585.44 32059.25 282
test_post5.46 40450.36 27384.24 327
patchmatchnet-post74.00 37451.12 26488.60 290
GG-mvs-BLEND75.38 30681.59 32155.80 32879.32 31669.63 37767.19 32573.67 37543.24 33288.90 28650.41 33684.50 17381.45 361
MTMP92.18 3532.83 408
gm-plane-assit81.40 32453.83 34862.72 31180.94 33192.39 19563.40 245
test9_res84.90 4295.70 2692.87 102
TEST993.26 5072.96 2588.75 11591.89 9368.44 24285.00 5793.10 6774.36 2895.41 67
test_893.13 5272.57 3588.68 12091.84 9768.69 23784.87 6193.10 6774.43 2695.16 76
agg_prior282.91 6695.45 3092.70 105
agg_prior92.85 5971.94 5191.78 10084.41 7194.93 87
TestCases79.58 25185.15 24863.62 22179.83 32962.31 31460.32 36686.73 22432.02 37388.96 28450.28 33971.57 33986.15 307
test_prior472.60 3489.01 105
test_prior288.85 11175.41 9384.91 5993.54 5674.28 2983.31 6195.86 20
test_prior86.33 5492.61 6569.59 8892.97 5095.48 6293.91 53
旧先验286.56 18858.10 34887.04 3988.98 28274.07 149
新几何286.29 196
新几何183.42 14793.13 5270.71 7185.48 25657.43 35481.80 10791.98 9063.28 13392.27 20164.60 23792.99 6587.27 284
旧先验191.96 7165.79 17886.37 24493.08 7169.31 7792.74 6888.74 256
无先验87.48 15988.98 18660.00 33194.12 12167.28 21488.97 245
原ACMM286.86 177
原ACMM184.35 10793.01 5768.79 10692.44 6963.96 29781.09 11791.57 10166.06 11195.45 6367.19 21694.82 4588.81 252
test22291.50 7768.26 12484.16 24883.20 29054.63 36579.74 12991.63 9958.97 19391.42 8586.77 297
testdata291.01 24962.37 255
segment_acmp73.08 37
testdata79.97 24190.90 8664.21 21284.71 26359.27 33885.40 5192.91 7362.02 15789.08 28068.95 19991.37 8686.63 301
testdata184.14 24975.71 87
test1286.80 4992.63 6470.70 7291.79 9982.71 9871.67 5196.16 4494.50 5093.54 77
plane_prior790.08 10368.51 119
plane_prior689.84 11268.70 11460.42 186
plane_prior592.44 6995.38 6978.71 10286.32 15191.33 151
plane_prior491.00 120
plane_prior368.60 11778.44 3178.92 141
plane_prior291.25 5079.12 23
plane_prior189.90 111
plane_prior68.71 11290.38 6777.62 3986.16 155
n20.00 415
nn0.00 415
door-mid69.98 376
lessismore_v078.97 26081.01 33157.15 30765.99 38561.16 36382.82 31239.12 35591.34 23859.67 27846.92 39188.43 262
LGP-MVS_train84.50 9989.23 13568.76 10891.94 9175.37 9476.64 19691.51 10254.29 22894.91 8878.44 10483.78 18689.83 217
test1192.23 79
door69.44 379
HQP5-MVS66.98 155
HQP-NCC89.33 12889.17 9876.41 7277.23 182
ACMP_Plane89.33 12889.17 9876.41 7277.23 182
BP-MVS77.47 114
HQP4-MVS77.24 18195.11 8091.03 163
HQP3-MVS92.19 8285.99 159
HQP2-MVS60.17 189
NP-MVS89.62 11568.32 12290.24 132
MDTV_nov1_ep13_2view37.79 39875.16 35155.10 36366.53 33449.34 28553.98 31987.94 268
ACMMP++_ref81.95 218
ACMMP++81.25 224
Test By Simon64.33 125
ITE_SJBPF78.22 27381.77 31860.57 26883.30 28669.25 22167.54 32087.20 21536.33 36687.28 30454.34 31874.62 31486.80 296
DeepMVS_CXcopyleft27.40 38640.17 40926.90 40424.59 41017.44 40223.95 40048.61 3979.77 40126.48 40518.06 39924.47 39928.83 399