This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort by
SMA-MVScopyleft89.08 889.23 788.61 694.25 3173.73 992.40 2493.63 2174.77 10992.29 795.97 274.28 2997.24 1288.58 2196.91 194.87 16
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DVP-MVS++90.23 191.01 187.89 2494.34 2771.25 5795.06 194.23 378.38 3392.78 495.74 682.45 397.49 489.42 996.68 294.95 10
PC_three_145268.21 24792.02 1294.00 4682.09 595.98 5284.58 4896.68 294.95 10
SED-MVS90.08 290.85 287.77 2695.30 270.98 6393.57 794.06 1077.24 5093.10 195.72 882.99 197.44 689.07 1496.63 494.88 14
IU-MVS95.30 271.25 5792.95 5266.81 25792.39 688.94 1696.63 494.85 19
test_241102_TWO94.06 1077.24 5092.78 495.72 881.26 897.44 689.07 1496.58 694.26 46
test_0728_THIRD78.38 3392.12 995.78 481.46 797.40 889.42 996.57 794.67 25
OPU-MVS89.06 394.62 1575.42 493.57 794.02 4482.45 396.87 2083.77 5896.48 894.88 14
MSC_two_6792asdad89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
No_MVS89.16 194.34 2775.53 292.99 4697.53 289.67 696.44 994.41 37
HPM-MVS++copyleft89.02 989.15 988.63 595.01 976.03 192.38 2792.85 5580.26 1187.78 3094.27 3275.89 1996.81 2387.45 3296.44 993.05 101
DVP-MVScopyleft89.60 390.35 387.33 4095.27 571.25 5793.49 992.73 6077.33 4892.12 995.78 480.98 997.40 889.08 1296.41 1293.33 89
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND87.71 3295.34 171.43 5693.49 994.23 397.49 489.08 1296.41 1294.21 47
ACMMP_NAP88.05 1788.08 1787.94 1993.70 4173.05 2290.86 5593.59 2376.27 8188.14 2495.09 1571.06 5996.67 2987.67 2996.37 1494.09 51
DPE-MVScopyleft89.48 589.98 488.01 1694.80 1172.69 3191.59 4394.10 875.90 8792.29 795.66 1081.67 697.38 1087.44 3396.34 1593.95 57
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4472.04 4889.80 7893.50 2575.17 10286.34 4695.29 1270.86 6196.00 4988.78 1996.04 1694.58 29
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SF-MVS88.46 1288.74 1287.64 3592.78 6171.95 5092.40 2494.74 275.71 8989.16 1995.10 1475.65 2196.19 4387.07 3496.01 1794.79 21
CNVR-MVS88.93 1089.13 1088.33 894.77 1273.82 890.51 6093.00 4380.90 788.06 2694.06 4276.43 1696.84 2188.48 2495.99 1894.34 42
PHI-MVS86.43 3986.17 4387.24 4190.88 8770.96 6592.27 3294.07 972.45 15485.22 5691.90 9269.47 7696.42 3783.28 6295.94 1994.35 41
test_prior288.85 11275.41 9584.91 6193.54 5674.28 2983.31 6195.86 20
SteuartSystems-ACMMP88.72 1188.86 1188.32 992.14 6972.96 2593.73 593.67 2080.19 1288.10 2594.80 1773.76 3397.11 1587.51 3195.82 2194.90 13
Skip Steuart: Steuart Systems R&D Blog.
ZNCC-MVS87.94 1987.85 2088.20 1294.39 2473.33 1993.03 1493.81 1776.81 6385.24 5594.32 3171.76 5096.93 1985.53 3995.79 2294.32 43
9.1488.26 1592.84 6091.52 4694.75 173.93 12788.57 2294.67 1975.57 2295.79 5486.77 3595.76 23
DeepPCF-MVS80.84 188.10 1388.56 1386.73 5092.24 6869.03 10089.57 8793.39 3077.53 4589.79 1894.12 3978.98 1296.58 3585.66 3795.72 2494.58 29
train_agg86.43 3986.20 4187.13 4493.26 5072.96 2588.75 11591.89 9968.69 23985.00 5993.10 6774.43 2695.41 7084.97 4195.71 2593.02 103
test9_res84.90 4295.70 2692.87 107
APDe-MVScopyleft89.15 789.63 687.73 2894.49 1871.69 5293.83 493.96 1375.70 9191.06 1696.03 176.84 1497.03 1789.09 1195.65 2794.47 34
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM89.16 689.23 788.97 490.79 9173.65 1092.66 2391.17 12386.57 187.39 3794.97 1671.70 5297.68 192.19 195.63 2895.57 1
MVS_030488.08 1488.08 1788.08 1489.67 11672.04 4892.26 3389.26 18084.19 285.01 5795.18 1369.93 7197.20 1491.63 295.60 2994.99 9
agg_prior282.91 6695.45 3092.70 110
CDPH-MVS85.76 5185.29 6187.17 4393.49 4771.08 6188.58 12392.42 7668.32 24684.61 7093.48 5872.32 4496.15 4579.00 10195.43 3194.28 45
DeepC-MVS79.81 287.08 3286.88 3487.69 3391.16 8072.32 4390.31 6893.94 1477.12 5582.82 10194.23 3572.13 4797.09 1684.83 4595.37 3293.65 74
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MTAPA87.23 2887.00 2987.90 2294.18 3574.25 586.58 18992.02 9079.45 1985.88 4894.80 1768.07 9696.21 4286.69 3695.34 3393.23 92
DeepC-MVS_fast79.65 386.91 3386.62 3687.76 2793.52 4672.37 4191.26 4893.04 3876.62 7184.22 7993.36 6371.44 5696.76 2580.82 8995.33 3494.16 48
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MP-MVScopyleft87.71 2087.64 2287.93 2194.36 2673.88 692.71 2292.65 6577.57 4183.84 8794.40 3072.24 4596.28 4085.65 3895.30 3593.62 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
MCST-MVS87.37 2787.25 2687.73 2894.53 1772.46 3889.82 7693.82 1673.07 14984.86 6492.89 7476.22 1796.33 3884.89 4495.13 3694.40 39
GST-MVS87.42 2587.26 2587.89 2494.12 3672.97 2492.39 2693.43 2876.89 6184.68 6593.99 4870.67 6496.82 2284.18 5695.01 3793.90 60
APD-MVScopyleft87.44 2387.52 2387.19 4294.24 3272.39 3991.86 4192.83 5673.01 15188.58 2194.52 2173.36 3496.49 3684.26 5295.01 3792.70 110
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NCCC88.06 1588.01 1988.24 1194.41 2273.62 1191.22 5292.83 5681.50 585.79 5093.47 6073.02 4097.00 1884.90 4294.94 3994.10 50
ACMMPR87.44 2387.23 2788.08 1494.64 1373.59 1293.04 1293.20 3476.78 6584.66 6894.52 2168.81 9096.65 3084.53 4994.90 4094.00 55
CS-MVS-test86.29 4286.48 3785.71 6991.02 8367.21 15492.36 2993.78 1878.97 2883.51 9391.20 11370.65 6595.15 8181.96 7694.89 4194.77 22
HFP-MVS87.58 2287.47 2487.94 1994.58 1673.54 1593.04 1293.24 3376.78 6584.91 6194.44 2870.78 6296.61 3284.53 4994.89 4193.66 70
ZD-MVS94.38 2572.22 4492.67 6270.98 18587.75 3294.07 4174.01 3296.70 2784.66 4794.84 43
region2R87.42 2587.20 2888.09 1394.63 1473.55 1393.03 1493.12 3776.73 6884.45 7594.52 2169.09 8196.70 2784.37 5194.83 4494.03 54
原ACMM184.35 11093.01 5768.79 10792.44 7363.96 29981.09 12391.57 10166.06 11895.45 6667.19 21994.82 4588.81 255
HPM-MVScopyleft87.11 3086.98 3087.50 3893.88 3972.16 4592.19 3493.33 3176.07 8483.81 8893.95 5169.77 7496.01 4885.15 4094.66 4694.32 43
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
DPM-MVS84.93 6784.29 7586.84 4790.20 10173.04 2387.12 17193.04 3869.80 21182.85 10091.22 11273.06 3996.02 4776.72 12994.63 4791.46 155
TSAR-MVS + MP.88.02 1888.11 1687.72 3093.68 4372.13 4691.41 4792.35 7874.62 11388.90 2093.85 5275.75 2096.00 4987.80 2894.63 4795.04 7
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PGM-MVS86.68 3686.27 4087.90 2294.22 3373.38 1890.22 7093.04 3875.53 9383.86 8694.42 2967.87 9996.64 3182.70 7294.57 4993.66 70
XVS87.18 2986.91 3388.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9094.17 3667.45 10296.60 3383.06 6394.50 5094.07 52
X-MVStestdata80.37 15177.83 18688.00 1794.42 2073.33 1992.78 1892.99 4679.14 2183.67 9012.47 40867.45 10296.60 3383.06 6394.50 5094.07 52
test1286.80 4992.63 6470.70 7291.79 10582.71 10371.67 5396.16 4494.50 5093.54 82
mamv485.00 6584.68 6885.93 6489.51 12267.64 13988.38 13292.65 6572.35 15984.47 7490.26 13668.98 8795.69 5981.09 8594.45 5394.47 34
MVSMamba_pp84.98 6684.70 6785.80 6789.43 12667.63 14088.44 12692.64 6772.17 16284.54 7390.39 13468.88 8895.28 7681.45 8194.39 5494.49 33
CP-MVS87.11 3086.92 3287.68 3494.20 3473.86 793.98 392.82 5976.62 7183.68 8994.46 2567.93 9795.95 5384.20 5594.39 5493.23 92
CSCG86.41 4186.19 4287.07 4592.91 5872.48 3790.81 5693.56 2473.95 12583.16 9691.07 11875.94 1895.19 7979.94 9994.38 5693.55 81
MSLP-MVS++85.43 5785.76 5184.45 10691.93 7270.24 7690.71 5792.86 5477.46 4784.22 7992.81 7867.16 10692.94 18480.36 9494.35 5790.16 200
mPP-MVS86.67 3786.32 3987.72 3094.41 2273.55 1392.74 2092.22 8476.87 6282.81 10294.25 3466.44 11296.24 4182.88 6794.28 5893.38 86
SD-MVS88.06 1588.50 1486.71 5192.60 6672.71 2991.81 4293.19 3577.87 3690.32 1794.00 4674.83 2393.78 13987.63 3094.27 5993.65 74
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSP-MVS89.51 489.91 588.30 1094.28 3073.46 1792.90 1694.11 680.27 1091.35 1494.16 3778.35 1396.77 2489.59 894.22 6094.67 25
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
DELS-MVS85.41 5885.30 6085.77 6888.49 16767.93 13385.52 22193.44 2778.70 2983.63 9289.03 16974.57 2495.71 5880.26 9794.04 6193.66 70
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
EPNet83.72 8082.92 9286.14 5984.22 27069.48 9191.05 5485.27 26381.30 676.83 19491.65 9766.09 11795.56 6176.00 13593.85 6293.38 86
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
iter_conf05_1184.86 7084.52 7285.87 6690.86 8867.18 15589.63 8592.15 8871.48 17484.64 6990.81 12668.82 8996.00 4978.50 10793.84 6394.43 36
EC-MVSNet86.01 4386.38 3884.91 9289.31 13566.27 17092.32 3093.63 2179.37 2084.17 8191.88 9369.04 8595.43 6883.93 5793.77 6493.01 104
3Dnovator+77.84 485.48 5584.47 7488.51 791.08 8173.49 1693.18 1193.78 1880.79 876.66 19993.37 6260.40 19596.75 2677.20 12293.73 6595.29 5
CS-MVS86.69 3586.95 3185.90 6590.76 9267.57 14292.83 1793.30 3279.67 1784.57 7292.27 8671.47 5595.02 9084.24 5493.46 6695.13 6
CANet86.45 3886.10 4587.51 3790.09 10370.94 6789.70 8292.59 7081.78 481.32 11891.43 10670.34 6697.23 1384.26 5293.36 6794.37 40
新几何183.42 15193.13 5270.71 7185.48 26257.43 35781.80 11291.98 9063.28 14092.27 20564.60 24092.99 6887.27 287
HPM-MVS_fast85.35 5984.95 6586.57 5393.69 4270.58 7592.15 3691.62 10973.89 12882.67 10494.09 4062.60 15195.54 6380.93 8792.93 6993.57 79
SR-MVS86.73 3486.67 3586.91 4694.11 3772.11 4792.37 2892.56 7174.50 11486.84 4494.65 2067.31 10495.77 5584.80 4692.85 7092.84 108
旧先验191.96 7165.79 18186.37 25093.08 7169.31 8092.74 7188.74 259
3Dnovator76.31 583.38 9082.31 10186.59 5287.94 18972.94 2890.64 5892.14 8977.21 5275.47 22492.83 7658.56 20294.72 10473.24 16292.71 7292.13 135
MVS_111021_HR85.14 6184.75 6686.32 5591.65 7672.70 3085.98 20490.33 14876.11 8382.08 10791.61 10071.36 5894.17 12281.02 8692.58 7392.08 136
APD-MVS_3200maxsize85.97 4585.88 4886.22 5792.69 6369.53 8991.93 3892.99 4673.54 13785.94 4794.51 2465.80 12295.61 6083.04 6592.51 7493.53 83
test250677.30 22476.49 22079.74 24990.08 10452.02 35987.86 15463.10 39474.88 10680.16 13392.79 7938.29 36392.35 20268.74 20592.50 7594.86 17
ECVR-MVScopyleft79.61 16279.26 15580.67 23190.08 10454.69 34387.89 15277.44 35174.88 10680.27 13092.79 7948.96 29992.45 19668.55 20692.50 7594.86 17
test111179.43 16979.18 15880.15 24189.99 10953.31 35687.33 16677.05 35475.04 10380.23 13292.77 8148.97 29892.33 20468.87 20392.40 7794.81 20
patch_mono-283.65 8184.54 7080.99 22390.06 10865.83 17984.21 24988.74 20471.60 17185.01 5792.44 8474.51 2583.50 33682.15 7592.15 7893.64 76
dcpmvs_285.63 5386.15 4484.06 12991.71 7564.94 19986.47 19291.87 10173.63 13386.60 4593.02 7276.57 1591.87 22083.36 6092.15 7895.35 3
bld_raw_dy_0_6482.00 11181.23 11584.34 11188.75 15866.52 16681.95 28191.90 9863.91 30075.26 23890.15 14169.37 7795.74 5777.66 11792.08 8090.76 175
MAR-MVS81.84 11480.70 12585.27 7891.32 7971.53 5489.82 7690.92 12969.77 21378.50 15686.21 24862.36 15794.52 10965.36 23392.05 8189.77 224
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
TSAR-MVS + GP.85.71 5285.33 5886.84 4791.34 7872.50 3689.07 10587.28 23476.41 7485.80 4990.22 13974.15 3195.37 7581.82 7791.88 8292.65 114
SR-MVS-dyc-post85.77 5085.61 5386.23 5693.06 5570.63 7391.88 3992.27 8073.53 13885.69 5194.45 2665.00 13095.56 6182.75 6891.87 8392.50 119
RE-MVS-def85.48 5593.06 5570.63 7391.88 3992.27 8073.53 13885.69 5194.45 2663.87 13682.75 6891.87 8392.50 119
IS-MVSNet83.15 9482.81 9484.18 12089.94 11163.30 23491.59 4388.46 21079.04 2579.49 13992.16 8865.10 12794.28 11567.71 21291.86 8594.95 10
Vis-MVSNet (Re-imp)78.36 19678.45 17078.07 28088.64 16351.78 36586.70 18679.63 33674.14 12375.11 24390.83 12561.29 17789.75 27258.10 29891.60 8692.69 112
MG-MVS83.41 8883.45 8183.28 15692.74 6262.28 25188.17 14189.50 17175.22 9881.49 11692.74 8266.75 10795.11 8472.85 16591.58 8792.45 122
CPTT-MVS83.73 7983.33 8584.92 9193.28 4970.86 6992.09 3790.38 14468.75 23879.57 13892.83 7660.60 19193.04 18280.92 8891.56 8890.86 172
test22291.50 7768.26 12584.16 25083.20 29454.63 36879.74 13591.63 9958.97 20091.42 8986.77 300
ETV-MVS84.90 6984.67 6985.59 7189.39 13068.66 11788.74 11792.64 6779.97 1584.10 8285.71 25769.32 7995.38 7280.82 8991.37 9092.72 109
testdata79.97 24490.90 8664.21 21484.71 26859.27 34185.40 5392.91 7362.02 16489.08 28468.95 20291.37 9086.63 304
API-MVS81.99 11281.23 11584.26 11890.94 8570.18 8291.10 5389.32 17671.51 17378.66 15288.28 18965.26 12595.10 8764.74 23991.23 9287.51 281
casdiffmvs_mvgpermissive85.99 4486.09 4685.70 7087.65 20267.22 15388.69 11993.04 3879.64 1885.33 5492.54 8373.30 3594.50 11083.49 5991.14 9395.37 2
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive83.46 8782.80 9585.43 7590.25 10068.74 11190.30 6990.13 15576.33 8080.87 12692.89 7461.00 18394.20 12072.45 17190.97 9493.35 88
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
OpenMVScopyleft72.83 1079.77 16078.33 17584.09 12585.17 25069.91 8490.57 5990.97 12866.70 26072.17 27991.91 9154.70 23193.96 12661.81 26690.95 9588.41 266
UA-Net85.08 6384.96 6485.45 7492.07 7068.07 13089.78 7990.86 13382.48 384.60 7193.20 6669.35 7895.22 7871.39 17790.88 9693.07 100
test_fmvsmconf_n85.92 4686.04 4785.57 7285.03 25669.51 9089.62 8690.58 13873.42 14087.75 3294.02 4472.85 4193.24 16490.37 390.75 9793.96 56
ACMMPcopyleft85.89 4985.39 5687.38 3993.59 4572.63 3392.74 2093.18 3676.78 6580.73 12793.82 5364.33 13296.29 3982.67 7390.69 9893.23 92
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test_fmvsmconf0.1_n85.61 5485.65 5285.50 7382.99 30169.39 9789.65 8390.29 15173.31 14387.77 3194.15 3871.72 5193.23 16590.31 490.67 9993.89 61
casdiffmvspermissive85.11 6285.14 6285.01 8687.20 21865.77 18287.75 15592.83 5677.84 3784.36 7892.38 8572.15 4693.93 13281.27 8490.48 10095.33 4
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test_fmvsm_n_192085.29 6085.34 5785.13 8386.12 23669.93 8388.65 12190.78 13469.97 20788.27 2393.98 4971.39 5791.54 23288.49 2390.45 10193.91 58
UGNet80.83 13579.59 14784.54 10288.04 18668.09 12989.42 9288.16 21276.95 5976.22 21089.46 15949.30 29393.94 12968.48 20790.31 10291.60 146
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline84.93 6784.98 6384.80 9687.30 21665.39 18987.30 16792.88 5377.62 3984.04 8492.26 8771.81 4993.96 12681.31 8290.30 10395.03 8
MVSFormer82.85 10082.05 10585.24 7987.35 21070.21 7790.50 6190.38 14468.55 24181.32 11889.47 15761.68 16693.46 15678.98 10290.26 10492.05 137
lupinMVS81.39 12680.27 13584.76 9787.35 21070.21 7785.55 21786.41 24862.85 31081.32 11888.61 17961.68 16692.24 20778.41 11090.26 10491.83 142
DP-MVS Recon83.11 9782.09 10486.15 5894.44 1970.92 6888.79 11392.20 8570.53 19579.17 14391.03 12164.12 13496.03 4668.39 20990.14 10691.50 151
EIA-MVS83.31 9282.80 9584.82 9489.59 11865.59 18488.21 13992.68 6174.66 11178.96 14586.42 24469.06 8395.26 7775.54 14190.09 10793.62 77
MVS_111021_LR82.61 10382.11 10384.11 12188.82 15371.58 5385.15 22486.16 25374.69 11080.47 12991.04 11962.29 15890.55 26080.33 9590.08 10890.20 199
jason81.39 12680.29 13484.70 9886.63 23069.90 8585.95 20586.77 24463.24 30381.07 12489.47 15761.08 18292.15 20978.33 11190.07 10992.05 137
jason: jason.
test_fmvsmvis_n_192084.02 7583.87 7784.49 10584.12 27269.37 9888.15 14387.96 21870.01 20583.95 8593.23 6568.80 9191.51 23588.61 2089.96 11092.57 115
test_fmvsmconf0.01_n84.73 7184.52 7285.34 7680.25 34169.03 10089.47 8889.65 16873.24 14786.98 4294.27 3266.62 10893.23 16590.26 589.95 11193.78 67
LFMVS81.82 11581.23 11583.57 14891.89 7363.43 23289.84 7581.85 31277.04 5883.21 9493.10 6752.26 25393.43 15871.98 17289.95 11193.85 62
MVS78.19 20176.99 20881.78 20185.66 24166.99 15784.66 23490.47 14255.08 36772.02 28185.27 26863.83 13794.11 12466.10 22789.80 11384.24 338
CANet_DTU80.61 14379.87 14182.83 17885.60 24363.17 23987.36 16488.65 20676.37 7875.88 21788.44 18553.51 24393.07 17973.30 16089.74 11492.25 128
PVSNet_Blended80.98 13180.34 13282.90 17688.85 15065.40 18784.43 24492.00 9267.62 25278.11 16785.05 27666.02 11994.27 11671.52 17489.50 11589.01 245
PAPM_NR83.02 9882.41 9884.82 9492.47 6766.37 16887.93 15091.80 10473.82 12977.32 18390.66 12867.90 9894.90 9570.37 18689.48 11693.19 96
114514_t80.68 14279.51 14884.20 11994.09 3867.27 15189.64 8491.11 12658.75 34774.08 25890.72 12758.10 20595.04 8969.70 19489.42 11790.30 196
LCM-MVSNet-Re77.05 22676.94 20977.36 29087.20 21851.60 36680.06 31080.46 32675.20 9967.69 32286.72 22962.48 15488.98 28663.44 24789.25 11891.51 150
fmvsm_l_conf0.5_n_a84.13 7484.16 7684.06 12985.38 24768.40 12188.34 13486.85 24367.48 25587.48 3693.40 6170.89 6091.61 22688.38 2589.22 11992.16 134
fmvsm_l_conf0.5_n84.47 7284.54 7084.27 11785.42 24668.81 10688.49 12587.26 23568.08 24888.03 2793.49 5772.04 4891.77 22288.90 1789.14 12092.24 130
alignmvs85.48 5585.32 5985.96 6389.51 12269.47 9289.74 8092.47 7276.17 8287.73 3491.46 10570.32 6793.78 13981.51 7888.95 12194.63 28
VNet82.21 10682.41 9881.62 20490.82 8960.93 26584.47 24089.78 16376.36 7984.07 8391.88 9364.71 13190.26 26270.68 18388.89 12293.66 70
PS-MVSNAJ81.69 11881.02 12083.70 14489.51 12268.21 12784.28 24890.09 15670.79 18781.26 12285.62 26263.15 14594.29 11475.62 13988.87 12388.59 262
sasdasda85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
canonicalmvs85.91 4785.87 4986.04 6089.84 11369.44 9590.45 6593.00 4376.70 6988.01 2891.23 11073.28 3693.91 13381.50 7988.80 12494.77 22
QAPM80.88 13379.50 14985.03 8588.01 18868.97 10491.59 4392.00 9266.63 26675.15 24292.16 8857.70 20995.45 6663.52 24588.76 12690.66 180
MGCFI-Net85.06 6485.51 5483.70 14489.42 12763.01 24089.43 9092.62 6976.43 7387.53 3591.34 10872.82 4293.42 15981.28 8388.74 12794.66 27
VDD-MVS83.01 9982.36 10084.96 8891.02 8366.40 16788.91 10988.11 21377.57 4184.39 7793.29 6452.19 25493.91 13377.05 12488.70 12894.57 31
PVSNet_Blended_VisFu82.62 10281.83 11084.96 8890.80 9069.76 8788.74 11791.70 10869.39 21978.96 14588.46 18465.47 12494.87 9874.42 14888.57 12990.24 198
xiu_mvs_v2_base81.69 11881.05 11983.60 14689.15 14268.03 13284.46 24290.02 15770.67 19081.30 12186.53 24263.17 14494.19 12175.60 14088.54 13088.57 263
PAPR81.66 12180.89 12383.99 13790.27 9964.00 21786.76 18591.77 10768.84 23777.13 19289.50 15567.63 10094.88 9767.55 21488.52 13193.09 99
MVS_Test83.15 9483.06 8883.41 15386.86 22263.21 23686.11 20292.00 9274.31 11882.87 9989.44 16270.03 6993.21 16777.39 12188.50 13293.81 65
AdaColmapbinary80.58 14679.42 15084.06 12993.09 5468.91 10589.36 9588.97 19569.27 22275.70 22089.69 14957.20 21695.77 5563.06 25088.41 13387.50 282
VDDNet81.52 12380.67 12684.05 13290.44 9764.13 21689.73 8185.91 25671.11 18183.18 9593.48 5850.54 27893.49 15373.40 15988.25 13494.54 32
PCF-MVS73.52 780.38 14978.84 16485.01 8687.71 19968.99 10383.65 25791.46 11863.00 30777.77 17590.28 13566.10 11695.09 8861.40 26988.22 13590.94 170
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
Effi-MVS+83.62 8483.08 8785.24 7988.38 17367.45 14488.89 11089.15 18675.50 9482.27 10588.28 18969.61 7594.45 11277.81 11587.84 13693.84 64
gg-mvs-nofinetune69.95 30767.96 31175.94 30183.07 29654.51 34677.23 34270.29 37863.11 30570.32 29462.33 38943.62 33488.69 29153.88 32387.76 13784.62 335
xiu_mvs_v1_base_debu80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
xiu_mvs_v1_base80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
xiu_mvs_v1_base_debi80.80 13879.72 14484.03 13487.35 21070.19 7985.56 21488.77 20069.06 23181.83 10988.16 19350.91 27292.85 18678.29 11287.56 13889.06 240
CLD-MVS82.31 10581.65 11184.29 11488.47 16867.73 13785.81 21292.35 7875.78 8878.33 16186.58 23964.01 13594.35 11376.05 13487.48 14190.79 173
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CDS-MVSNet79.07 18077.70 19383.17 16387.60 20368.23 12684.40 24686.20 25267.49 25476.36 20786.54 24161.54 16990.79 25661.86 26587.33 14290.49 188
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
diffmvspermissive82.10 10781.88 10982.76 18683.00 29963.78 22283.68 25689.76 16472.94 15282.02 10889.85 14665.96 12190.79 25682.38 7487.30 14393.71 69
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
EPP-MVSNet83.40 8983.02 8984.57 10090.13 10264.47 20992.32 3090.73 13574.45 11779.35 14191.10 11669.05 8495.12 8272.78 16687.22 14494.13 49
TAMVS78.89 18577.51 19883.03 17087.80 19467.79 13684.72 23385.05 26667.63 25176.75 19787.70 20262.25 15990.82 25558.53 29487.13 14590.49 188
TAPA-MVS73.13 979.15 17777.94 18282.79 18389.59 11862.99 24488.16 14291.51 11465.77 27577.14 19191.09 11760.91 18493.21 16750.26 34487.05 14692.17 133
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
PAPM77.68 21776.40 22381.51 20787.29 21761.85 25683.78 25589.59 16964.74 28671.23 28788.70 17562.59 15293.66 14652.66 32987.03 14789.01 245
test_yl81.17 12880.47 13083.24 15989.13 14363.62 22386.21 19989.95 16072.43 15781.78 11389.61 15257.50 21293.58 14770.75 18186.90 14892.52 117
DCV-MVSNet81.17 12880.47 13083.24 15989.13 14363.62 22386.21 19989.95 16072.43 15781.78 11389.61 15257.50 21293.58 14770.75 18186.90 14892.52 117
BH-untuned79.47 16778.60 16782.05 19689.19 14165.91 17786.07 20388.52 20972.18 16175.42 22887.69 20361.15 18093.54 15160.38 27686.83 15086.70 302
BH-RMVSNet79.61 16278.44 17183.14 16489.38 13165.93 17684.95 22987.15 23873.56 13678.19 16589.79 14756.67 21993.36 16059.53 28386.74 15190.13 202
LS3D76.95 22974.82 24483.37 15490.45 9667.36 14889.15 10386.94 24161.87 32269.52 30790.61 12951.71 26694.53 10846.38 36586.71 15288.21 268
Fast-Effi-MVS+80.81 13679.92 13983.47 14988.85 15064.51 20685.53 21989.39 17470.79 18778.49 15785.06 27567.54 10193.58 14767.03 22286.58 15392.32 125
EPNet_dtu75.46 25274.86 24377.23 29382.57 31054.60 34486.89 17883.09 29571.64 16766.25 34285.86 25555.99 22188.04 30054.92 31886.55 15489.05 243
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS83.50 8682.95 9185.14 8188.79 15670.95 6689.13 10491.52 11277.55 4480.96 12591.75 9560.71 18694.50 11079.67 10086.51 15589.97 216
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
OMC-MVS82.69 10181.97 10884.85 9388.75 15867.42 14587.98 14690.87 13274.92 10579.72 13691.65 9762.19 16193.96 12675.26 14386.42 15693.16 97
HQP_MVS83.64 8283.14 8685.14 8190.08 10468.71 11391.25 5092.44 7379.12 2378.92 14791.00 12260.42 19395.38 7278.71 10586.32 15791.33 156
plane_prior592.44 7395.38 7278.71 10586.32 15791.33 156
FA-MVS(test-final)80.96 13279.91 14084.10 12288.30 17665.01 19784.55 23990.01 15873.25 14679.61 13787.57 20658.35 20494.72 10471.29 17886.25 15992.56 116
thisisatest051577.33 22375.38 23783.18 16285.27 24963.80 22182.11 28083.27 29165.06 28275.91 21683.84 29649.54 28894.27 11667.24 21886.19 16091.48 153
plane_prior68.71 11390.38 6777.62 3986.16 161
UWE-MVS72.13 28771.49 27874.03 32286.66 22947.70 37981.40 29176.89 35663.60 30275.59 22184.22 29039.94 35585.62 31948.98 35086.13 16288.77 257
mvs_anonymous79.42 17079.11 15980.34 23784.45 26757.97 29782.59 27587.62 22767.40 25676.17 21488.56 18268.47 9389.59 27570.65 18486.05 16393.47 84
GeoE81.71 11781.01 12183.80 14389.51 12264.45 21088.97 10788.73 20571.27 17878.63 15389.76 14866.32 11493.20 17069.89 19286.02 16493.74 68
HQP3-MVS92.19 8685.99 165
HQP-MVS82.61 10382.02 10684.37 10889.33 13266.98 15889.17 9992.19 8676.41 7477.23 18690.23 13860.17 19695.11 8477.47 11985.99 16591.03 166
BH-w/o78.21 19977.33 20280.84 22788.81 15465.13 19484.87 23087.85 22369.75 21474.52 25484.74 28061.34 17593.11 17758.24 29785.84 16784.27 337
FE-MVS77.78 21275.68 22984.08 12688.09 18466.00 17483.13 26887.79 22468.42 24578.01 17085.23 27045.50 32595.12 8259.11 28785.83 16891.11 162
testing22274.04 26572.66 26878.19 27787.89 19055.36 33681.06 29479.20 34071.30 17774.65 25283.57 30339.11 35988.67 29251.43 33685.75 16990.53 186
iter_conf0583.17 9382.90 9383.97 13887.59 20765.09 19688.29 13791.52 11272.35 15981.39 11790.13 14268.76 9294.84 9980.30 9685.75 16991.98 140
CHOSEN 1792x268877.63 21875.69 22883.44 15089.98 11068.58 11978.70 32887.50 23056.38 36275.80 21986.84 22558.67 20191.40 24061.58 26885.75 16990.34 193
Anonymous20240521178.25 19777.01 20681.99 19891.03 8260.67 27084.77 23283.90 28170.65 19480.00 13491.20 11341.08 35091.43 23965.21 23485.26 17293.85 62
cascas76.72 23274.64 24582.99 17285.78 24065.88 17882.33 27789.21 18360.85 32872.74 27081.02 33247.28 30693.75 14367.48 21585.02 17389.34 235
FIs82.07 10982.42 9781.04 22288.80 15558.34 29188.26 13893.49 2676.93 6078.47 15891.04 11969.92 7292.34 20369.87 19384.97 17492.44 123
test-LLR72.94 28072.43 27074.48 31781.35 32958.04 29578.38 33177.46 34966.66 26169.95 30279.00 35248.06 30279.24 35666.13 22584.83 17586.15 310
test-mter71.41 29170.39 29474.48 31781.35 32958.04 29578.38 33177.46 34960.32 33169.95 30279.00 35236.08 37079.24 35666.13 22584.83 17586.15 310
EI-MVSNet-Vis-set84.19 7383.81 7885.31 7788.18 17867.85 13487.66 15789.73 16680.05 1482.95 9789.59 15470.74 6394.82 10080.66 9384.72 17793.28 91
thisisatest053079.40 17177.76 19184.31 11387.69 20165.10 19587.36 16484.26 27770.04 20477.42 18088.26 19149.94 28494.79 10270.20 18784.70 17893.03 102
fmvsm_s_conf0.5_n83.80 7883.71 7984.07 12786.69 22867.31 14989.46 8983.07 29671.09 18286.96 4393.70 5569.02 8691.47 23788.79 1884.62 17993.44 85
testing9176.54 23375.66 23179.18 26188.43 17155.89 33081.08 29383.00 29873.76 13175.34 23184.29 28746.20 31790.07 26664.33 24184.50 18091.58 148
fmvsm_s_conf0.1_n83.56 8583.38 8384.10 12284.86 25867.28 15089.40 9483.01 29770.67 19087.08 4093.96 5068.38 9491.45 23888.56 2284.50 18093.56 80
GG-mvs-BLEND75.38 30981.59 32455.80 33179.32 31969.63 38067.19 32873.67 37843.24 33688.90 29050.41 33984.50 18081.45 364
FC-MVSNet-test81.52 12382.02 10680.03 24388.42 17255.97 32987.95 14893.42 2977.10 5677.38 18190.98 12469.96 7091.79 22168.46 20884.50 18092.33 124
PVSNet64.34 1872.08 28870.87 28875.69 30486.21 23456.44 32174.37 35980.73 32162.06 32170.17 29782.23 32342.86 33983.31 33854.77 31984.45 18487.32 286
ETVMVS72.25 28671.05 28575.84 30287.77 19851.91 36279.39 31874.98 36369.26 22373.71 26082.95 31140.82 35286.14 31446.17 36684.43 18589.47 231
MS-PatchMatch73.83 26872.67 26777.30 29283.87 27866.02 17381.82 28284.66 26961.37 32668.61 31682.82 31547.29 30588.21 29759.27 28484.32 18677.68 376
ET-MVSNet_ETH3D78.63 19076.63 21984.64 9986.73 22769.47 9285.01 22784.61 27069.54 21766.51 34086.59 23750.16 28191.75 22376.26 13184.24 18792.69 112
testing9976.09 24475.12 24279.00 26288.16 17955.50 33580.79 29781.40 31673.30 14475.17 24084.27 28944.48 33090.02 26764.28 24284.22 18891.48 153
TESTMET0.1,169.89 30869.00 30272.55 33479.27 35756.85 31378.38 33174.71 36757.64 35468.09 31977.19 36537.75 36576.70 36963.92 24484.09 18984.10 341
EI-MVSNet-UG-set83.81 7783.38 8385.09 8487.87 19167.53 14387.44 16389.66 16779.74 1682.23 10689.41 16370.24 6894.74 10379.95 9883.92 19092.99 105
LPG-MVS_test82.08 10881.27 11484.50 10389.23 13968.76 10990.22 7091.94 9675.37 9676.64 20091.51 10254.29 23594.91 9278.44 10883.78 19189.83 221
LGP-MVS_train84.50 10389.23 13968.76 10991.94 9675.37 9676.64 20091.51 10254.29 23594.91 9278.44 10883.78 19189.83 221
testing1175.14 25774.01 25378.53 27288.16 17956.38 32380.74 30080.42 32770.67 19072.69 27383.72 30043.61 33589.86 26962.29 25983.76 19389.36 234
thres100view90076.50 23575.55 23379.33 25789.52 12156.99 31285.83 21183.23 29273.94 12676.32 20887.12 22151.89 26391.95 21548.33 35383.75 19489.07 238
tfpn200view976.42 23875.37 23879.55 25689.13 14357.65 30385.17 22283.60 28473.41 14176.45 20486.39 24552.12 25591.95 21548.33 35383.75 19489.07 238
thres40076.50 23575.37 23879.86 24689.13 14357.65 30385.17 22283.60 28473.41 14176.45 20486.39 24552.12 25591.95 21548.33 35383.75 19490.00 212
thres600view776.50 23575.44 23479.68 25189.40 12957.16 30985.53 21983.23 29273.79 13076.26 20987.09 22251.89 26391.89 21848.05 35883.72 19790.00 212
fmvsm_s_conf0.5_n_a83.63 8383.41 8284.28 11586.14 23568.12 12889.43 9082.87 30170.27 20187.27 3993.80 5469.09 8191.58 22888.21 2683.65 19893.14 98
thres20075.55 25074.47 24978.82 26587.78 19757.85 30083.07 27183.51 28772.44 15675.84 21884.42 28252.08 25891.75 22347.41 36083.64 19986.86 298
SDMVSNet80.38 14980.18 13680.99 22389.03 14864.94 19980.45 30689.40 17375.19 10076.61 20289.98 14360.61 19087.69 30476.83 12783.55 20090.33 194
sd_testset77.70 21677.40 19978.60 26989.03 14860.02 27979.00 32485.83 25875.19 10076.61 20289.98 14354.81 22685.46 32262.63 25683.55 20090.33 194
mvsmamba81.69 11880.74 12484.56 10187.45 20966.72 16291.26 4885.89 25774.66 11178.23 16390.56 13054.33 23494.91 9280.73 9283.54 20292.04 139
XVG-OURS80.41 14879.23 15683.97 13885.64 24269.02 10283.03 27390.39 14371.09 18277.63 17791.49 10454.62 23391.35 24175.71 13783.47 20391.54 149
fmvsm_s_conf0.1_n_a83.32 9182.99 9084.28 11583.79 27968.07 13089.34 9682.85 30269.80 21187.36 3894.06 4268.34 9591.56 23087.95 2783.46 20493.21 95
CNLPA78.08 20376.79 21381.97 19990.40 9871.07 6287.59 15984.55 27166.03 27372.38 27789.64 15157.56 21186.04 31559.61 28283.35 20588.79 256
MVP-Stereo76.12 24274.46 25081.13 22085.37 24869.79 8684.42 24587.95 21965.03 28367.46 32585.33 26753.28 24691.73 22558.01 29983.27 20681.85 362
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
131476.53 23475.30 24080.21 24083.93 27762.32 25084.66 23488.81 19860.23 33270.16 29884.07 29355.30 22490.73 25867.37 21683.21 20787.59 280
tttt051779.40 17177.91 18383.90 14288.10 18363.84 22088.37 13384.05 27971.45 17576.78 19689.12 16649.93 28694.89 9670.18 18883.18 20892.96 106
HyFIR lowres test77.53 21975.40 23683.94 14189.59 11866.62 16380.36 30788.64 20756.29 36376.45 20485.17 27257.64 21093.28 16261.34 27183.10 20991.91 141
ACMP74.13 681.51 12580.57 12784.36 10989.42 12768.69 11689.97 7491.50 11774.46 11675.04 24690.41 13353.82 24094.54 10777.56 11882.91 21089.86 220
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ACMM73.20 880.78 14179.84 14283.58 14789.31 13568.37 12289.99 7391.60 11070.28 20077.25 18489.66 15053.37 24593.53 15274.24 15182.85 21188.85 253
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PMMVS69.34 31168.67 30371.35 34375.67 37062.03 25375.17 35373.46 37050.00 38068.68 31479.05 35052.07 25978.13 36161.16 27282.77 21273.90 382
PLCcopyleft70.83 1178.05 20576.37 22483.08 16791.88 7467.80 13588.19 14089.46 17264.33 29269.87 30488.38 18653.66 24193.58 14758.86 29082.73 21387.86 273
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
TR-MVS77.44 22076.18 22581.20 21788.24 17763.24 23584.61 23786.40 24967.55 25377.81 17386.48 24354.10 23793.15 17457.75 30182.72 21487.20 288
Anonymous2024052980.19 15578.89 16384.10 12290.60 9364.75 20388.95 10890.90 13065.97 27480.59 12891.17 11549.97 28393.73 14569.16 20082.70 21593.81 65
ab-mvs79.51 16578.97 16281.14 21988.46 16960.91 26683.84 25489.24 18270.36 19779.03 14488.87 17263.23 14390.21 26465.12 23582.57 21692.28 127
HY-MVS69.67 1277.95 20877.15 20480.36 23687.57 20860.21 27883.37 26487.78 22566.11 27075.37 23087.06 22463.27 14190.48 26161.38 27082.43 21790.40 192
PS-MVSNAJss82.07 10981.31 11384.34 11186.51 23167.27 15189.27 9791.51 11471.75 16679.37 14090.22 13963.15 14594.27 11677.69 11682.36 21891.49 152
UniMVSNet_ETH3D79.10 17978.24 17781.70 20386.85 22360.24 27787.28 16888.79 19974.25 12076.84 19390.53 13249.48 28991.56 23067.98 21082.15 21993.29 90
WB-MVSnew71.96 28971.65 27772.89 33184.67 26451.88 36382.29 27877.57 34862.31 31773.67 26183.00 31053.49 24481.10 35045.75 36982.13 22085.70 319
PVSNet_BlendedMVS80.60 14480.02 13782.36 19388.85 15065.40 18786.16 20192.00 9269.34 22178.11 16786.09 25266.02 11994.27 11671.52 17482.06 22187.39 283
WTY-MVS75.65 24975.68 22975.57 30686.40 23256.82 31477.92 33882.40 30665.10 28176.18 21287.72 20163.13 14880.90 35160.31 27781.96 22289.00 247
ACMMP++_ref81.95 223
DP-MVS76.78 23174.57 24683.42 15193.29 4869.46 9488.55 12483.70 28363.98 29870.20 29588.89 17154.01 23994.80 10146.66 36281.88 22486.01 314
CMPMVSbinary51.72 2170.19 30568.16 30876.28 29973.15 38557.55 30579.47 31783.92 28048.02 38256.48 38284.81 27843.13 33786.42 31262.67 25581.81 22584.89 331
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
XVG-OURS-SEG-HR80.81 13679.76 14383.96 14085.60 24368.78 10883.54 26290.50 14170.66 19376.71 19891.66 9660.69 18791.26 24376.94 12581.58 22691.83 142
MIMVSNet70.69 29969.30 29874.88 31384.52 26556.35 32575.87 34979.42 33764.59 28767.76 32082.41 31941.10 34981.54 34746.64 36481.34 22786.75 301
ACMMP++81.25 228
D2MVS74.82 25873.21 26379.64 25379.81 34862.56 24780.34 30887.35 23364.37 29168.86 31382.66 31746.37 31390.10 26567.91 21181.24 22986.25 307
test_vis1_n_192075.52 25175.78 22774.75 31679.84 34757.44 30783.26 26585.52 26162.83 31179.34 14286.17 25045.10 32779.71 35578.75 10481.21 23087.10 295
GA-MVS76.87 23075.17 24181.97 19982.75 30562.58 24681.44 29086.35 25172.16 16474.74 25082.89 31346.20 31792.02 21368.85 20481.09 23191.30 158
sss73.60 27073.64 26073.51 32682.80 30455.01 34176.12 34581.69 31362.47 31674.68 25185.85 25657.32 21478.11 36260.86 27480.93 23287.39 283
Effi-MVS+-dtu80.03 15778.57 16884.42 10785.13 25468.74 11188.77 11488.10 21474.99 10474.97 24783.49 30457.27 21593.36 16073.53 15680.88 23391.18 160
EG-PatchMatch MVS74.04 26571.82 27580.71 23084.92 25767.42 14585.86 20988.08 21566.04 27264.22 35483.85 29535.10 37292.56 19357.44 30380.83 23482.16 361
jajsoiax79.29 17477.96 18183.27 15784.68 26166.57 16589.25 9890.16 15469.20 22775.46 22689.49 15645.75 32393.13 17676.84 12680.80 23590.11 204
1112_ss77.40 22276.43 22280.32 23889.11 14760.41 27583.65 25787.72 22662.13 32073.05 26886.72 22962.58 15389.97 26862.11 26380.80 23590.59 184
mvs_tets79.13 17877.77 19083.22 16184.70 26066.37 16889.17 9990.19 15369.38 22075.40 22989.46 15944.17 33293.15 17476.78 12880.70 23790.14 201
PatchMatch-RL72.38 28370.90 28776.80 29788.60 16467.38 14779.53 31676.17 36062.75 31369.36 30982.00 32745.51 32484.89 32753.62 32480.58 23878.12 375
EI-MVSNet80.52 14779.98 13882.12 19484.28 26863.19 23886.41 19388.95 19674.18 12278.69 15087.54 20966.62 10892.43 19772.57 16980.57 23990.74 178
MVSTER79.01 18177.88 18582.38 19283.07 29664.80 20284.08 25388.95 19669.01 23478.69 15087.17 22054.70 23192.43 19774.69 14580.57 23989.89 219
XVG-ACMP-BASELINE76.11 24374.27 25281.62 20483.20 29264.67 20483.60 26089.75 16569.75 21471.85 28287.09 22232.78 37592.11 21069.99 19180.43 24188.09 269
Fast-Effi-MVS+-dtu78.02 20676.49 22082.62 18883.16 29566.96 16086.94 17687.45 23272.45 15471.49 28684.17 29154.79 23091.58 22867.61 21380.31 24289.30 236
LTVRE_ROB69.57 1376.25 24174.54 24881.41 21088.60 16464.38 21279.24 32089.12 18970.76 18969.79 30687.86 20049.09 29693.20 17056.21 31580.16 24386.65 303
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Test_1112_low_res76.40 23975.44 23479.27 25889.28 13758.09 29381.69 28587.07 23959.53 33972.48 27586.67 23461.30 17689.33 27960.81 27580.15 24490.41 191
test_djsdf80.30 15279.32 15383.27 15783.98 27665.37 19090.50 6190.38 14468.55 24176.19 21188.70 17556.44 22093.46 15678.98 10280.14 24590.97 169
test_fmvs170.93 29670.52 29072.16 33673.71 37855.05 34080.82 29578.77 34251.21 37978.58 15484.41 28331.20 38076.94 36875.88 13680.12 24684.47 336
test_fmvs1_n70.86 29770.24 29572.73 33372.51 38955.28 33881.27 29279.71 33551.49 37878.73 14984.87 27727.54 38577.02 36776.06 13379.97 24785.88 317
CHOSEN 280x42066.51 33264.71 33371.90 33781.45 32663.52 22857.98 39868.95 38453.57 37062.59 36376.70 36646.22 31675.29 38355.25 31779.68 24876.88 378
baseline275.70 24873.83 25881.30 21483.26 29061.79 25882.57 27680.65 32266.81 25766.88 33183.42 30557.86 20892.19 20863.47 24679.57 24989.91 217
GBi-Net78.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
test178.40 19477.40 19981.40 21187.60 20363.01 24088.39 12989.28 17771.63 16875.34 23187.28 21354.80 22791.11 24662.72 25279.57 24990.09 206
FMVSNet377.88 21076.85 21180.97 22586.84 22462.36 24886.52 19188.77 20071.13 18075.34 23186.66 23554.07 23891.10 24962.72 25279.57 24989.45 232
FMVSNet278.20 20077.21 20381.20 21787.60 20362.89 24587.47 16289.02 19171.63 16875.29 23787.28 21354.80 22791.10 24962.38 25779.38 25389.61 228
anonymousdsp78.60 19177.15 20482.98 17380.51 33967.08 15687.24 16989.53 17065.66 27775.16 24187.19 21952.52 24892.25 20677.17 12379.34 25489.61 228
nrg03083.88 7683.53 8084.96 8886.77 22669.28 9990.46 6492.67 6274.79 10882.95 9791.33 10972.70 4393.09 17880.79 9179.28 25592.50 119
VPA-MVSNet80.60 14480.55 12880.76 22988.07 18560.80 26886.86 17991.58 11175.67 9280.24 13189.45 16163.34 13990.25 26370.51 18579.22 25691.23 159
tt080578.73 18777.83 18681.43 20985.17 25060.30 27689.41 9390.90 13071.21 17977.17 19088.73 17446.38 31293.21 16772.57 16978.96 25790.79 173
test_cas_vis1_n_192073.76 26973.74 25973.81 32475.90 36859.77 28180.51 30482.40 30658.30 34981.62 11585.69 25844.35 33176.41 37376.29 13078.61 25885.23 325
F-COLMAP76.38 24074.33 25182.50 19089.28 13766.95 16188.41 12889.03 19064.05 29666.83 33288.61 17946.78 31092.89 18557.48 30278.55 25987.67 276
FMVSNet177.44 22076.12 22681.40 21186.81 22563.01 24088.39 12989.28 17770.49 19674.39 25587.28 21349.06 29791.11 24660.91 27378.52 26090.09 206
MDTV_nov1_ep1369.97 29783.18 29353.48 35377.10 34380.18 33260.45 32969.33 31080.44 33848.89 30086.90 30851.60 33478.51 261
CVMVSNet72.99 27972.58 26974.25 32084.28 26850.85 37186.41 19383.45 28944.56 38673.23 26687.54 20949.38 29185.70 31765.90 22978.44 26286.19 309
tpm273.26 27571.46 27978.63 26783.34 28856.71 31780.65 30280.40 32856.63 36173.55 26282.02 32651.80 26591.24 24456.35 31478.42 26387.95 270
test_vis1_n69.85 30969.21 30071.77 33872.66 38855.27 33981.48 28876.21 35952.03 37575.30 23683.20 30828.97 38376.22 37574.60 14678.41 26483.81 344
CostFormer75.24 25673.90 25679.27 25882.65 30958.27 29280.80 29682.73 30461.57 32375.33 23583.13 30955.52 22291.07 25264.98 23778.34 26588.45 264
ACMH67.68 1675.89 24673.93 25581.77 20288.71 16166.61 16488.62 12289.01 19269.81 21066.78 33386.70 23341.95 34791.51 23555.64 31678.14 26687.17 289
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
dmvs_re71.14 29370.58 28972.80 33281.96 31859.68 28275.60 35179.34 33868.55 24169.27 31180.72 33749.42 29076.54 37052.56 33077.79 26782.19 360
CR-MVSNet73.37 27271.27 28379.67 25281.32 33165.19 19275.92 34780.30 32959.92 33572.73 27181.19 32952.50 24986.69 30959.84 28077.71 26887.11 293
RPMNet73.51 27170.49 29182.58 18981.32 33165.19 19275.92 34792.27 8057.60 35572.73 27176.45 36852.30 25295.43 6848.14 35777.71 26887.11 293
SCA74.22 26372.33 27279.91 24584.05 27562.17 25279.96 31379.29 33966.30 26972.38 27780.13 34151.95 26188.60 29359.25 28577.67 27088.96 249
Anonymous2023121178.97 18377.69 19482.81 18090.54 9564.29 21390.11 7291.51 11465.01 28476.16 21588.13 19850.56 27793.03 18369.68 19577.56 27191.11 162
v114480.03 15779.03 16083.01 17183.78 28064.51 20687.11 17290.57 14071.96 16578.08 16986.20 24961.41 17393.94 12974.93 14477.23 27290.60 183
WR-MVS79.49 16679.22 15780.27 23988.79 15658.35 29085.06 22688.61 20878.56 3077.65 17688.34 18763.81 13890.66 25964.98 23777.22 27391.80 144
v119279.59 16478.43 17283.07 16883.55 28464.52 20586.93 17790.58 13870.83 18677.78 17485.90 25359.15 19993.94 12973.96 15377.19 27490.76 175
VPNet78.69 18978.66 16678.76 26688.31 17555.72 33284.45 24386.63 24676.79 6478.26 16290.55 13159.30 19889.70 27466.63 22377.05 27590.88 171
v124078.99 18277.78 18982.64 18783.21 29163.54 22786.62 18890.30 15069.74 21677.33 18285.68 25957.04 21793.76 14273.13 16376.92 27690.62 181
MSDG73.36 27470.99 28680.49 23484.51 26665.80 18080.71 30186.13 25465.70 27665.46 34583.74 29944.60 32890.91 25451.13 33776.89 27784.74 333
IterMVS-LS80.06 15679.38 15182.11 19585.89 23863.20 23786.79 18289.34 17574.19 12175.45 22786.72 22966.62 10892.39 19972.58 16876.86 27890.75 177
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v192192079.22 17578.03 18082.80 18183.30 28963.94 21986.80 18190.33 14869.91 20977.48 17985.53 26358.44 20393.75 14373.60 15576.85 27990.71 179
XXY-MVS75.41 25475.56 23274.96 31283.59 28357.82 30180.59 30383.87 28266.54 26774.93 24888.31 18863.24 14280.09 35462.16 26176.85 27986.97 296
v2v48280.23 15379.29 15483.05 16983.62 28264.14 21587.04 17389.97 15973.61 13478.18 16687.22 21761.10 18193.82 13776.11 13276.78 28191.18 160
v14419279.47 16778.37 17382.78 18483.35 28763.96 21886.96 17590.36 14769.99 20677.50 17885.67 26060.66 18893.77 14174.27 15076.58 28290.62 181
UniMVSNet (Re)81.60 12281.11 11883.09 16688.38 17364.41 21187.60 15893.02 4278.42 3278.56 15588.16 19369.78 7393.26 16369.58 19676.49 28391.60 146
UniMVSNet_NR-MVSNet81.88 11381.54 11282.92 17588.46 16963.46 23087.13 17092.37 7780.19 1278.38 15989.14 16571.66 5493.05 18070.05 18976.46 28492.25 128
DU-MVS81.12 13080.52 12982.90 17687.80 19463.46 23087.02 17491.87 10179.01 2678.38 15989.07 16765.02 12893.05 18070.05 18976.46 28492.20 131
cl2278.07 20477.01 20681.23 21682.37 31561.83 25783.55 26187.98 21768.96 23575.06 24583.87 29461.40 17491.88 21973.53 15676.39 28689.98 215
miper_ehance_all_eth78.59 19277.76 19181.08 22182.66 30861.56 26083.65 25789.15 18668.87 23675.55 22383.79 29866.49 11192.03 21273.25 16176.39 28689.64 227
miper_enhance_ethall77.87 21176.86 21080.92 22681.65 32261.38 26282.68 27488.98 19365.52 27975.47 22482.30 32165.76 12392.00 21472.95 16476.39 28689.39 233
Syy-MVS68.05 32267.85 31368.67 35884.68 26140.97 39978.62 32973.08 37266.65 26466.74 33479.46 34752.11 25782.30 34332.89 39176.38 28982.75 356
myMVS_eth3d67.02 32866.29 32969.21 35384.68 26142.58 39478.62 32973.08 37266.65 26466.74 33479.46 34731.53 37982.30 34339.43 38476.38 28982.75 356
PatchmatchNetpermissive73.12 27771.33 28278.49 27483.18 29360.85 26779.63 31578.57 34364.13 29371.73 28379.81 34651.20 27085.97 31657.40 30476.36 29188.66 260
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
USDC70.33 30368.37 30576.21 30080.60 33756.23 32679.19 32286.49 24760.89 32761.29 36585.47 26531.78 37889.47 27853.37 32676.21 29282.94 355
OpenMVS_ROBcopyleft64.09 1970.56 30168.19 30777.65 28680.26 34059.41 28685.01 22782.96 30058.76 34665.43 34682.33 32037.63 36691.23 24545.34 37276.03 29382.32 358
ACMH+68.96 1476.01 24574.01 25382.03 19788.60 16465.31 19188.86 11187.55 22870.25 20267.75 32187.47 21141.27 34893.19 17258.37 29575.94 29487.60 278
tpm72.37 28471.71 27674.35 31982.19 31652.00 36079.22 32177.29 35264.56 28872.95 26983.68 30251.35 26883.26 33958.33 29675.80 29587.81 274
Anonymous2023120668.60 31667.80 31671.02 34680.23 34250.75 37278.30 33480.47 32556.79 36066.11 34382.63 31846.35 31478.95 35843.62 37575.70 29683.36 348
v7n78.97 18377.58 19783.14 16483.45 28665.51 18588.32 13591.21 12173.69 13272.41 27686.32 24757.93 20693.81 13869.18 19975.65 29790.11 204
NR-MVSNet80.23 15379.38 15182.78 18487.80 19463.34 23386.31 19691.09 12779.01 2672.17 27989.07 16767.20 10592.81 18966.08 22875.65 29792.20 131
v1079.74 16178.67 16582.97 17484.06 27464.95 19887.88 15390.62 13773.11 14875.11 24386.56 24061.46 17294.05 12573.68 15475.55 29989.90 218
IB-MVS68.01 1575.85 24773.36 26283.31 15584.76 25966.03 17283.38 26385.06 26570.21 20369.40 30881.05 33145.76 32294.66 10665.10 23675.49 30089.25 237
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
h-mvs3383.15 9482.19 10286.02 6290.56 9470.85 7088.15 14389.16 18576.02 8584.67 6691.39 10761.54 16995.50 6482.71 7075.48 30191.72 145
c3_l78.75 18677.91 18381.26 21582.89 30361.56 26084.09 25289.13 18869.97 20775.56 22284.29 28766.36 11392.09 21173.47 15875.48 30190.12 203
V4279.38 17378.24 17782.83 17881.10 33365.50 18685.55 21789.82 16271.57 17278.21 16486.12 25160.66 18893.18 17375.64 13875.46 30389.81 223
testing368.56 31867.67 31971.22 34587.33 21542.87 39383.06 27271.54 37570.36 19769.08 31284.38 28430.33 38285.69 31837.50 38775.45 30485.09 330
cl____77.72 21476.76 21480.58 23282.49 31260.48 27383.09 26987.87 22169.22 22574.38 25685.22 27162.10 16291.53 23371.09 17975.41 30589.73 226
DIV-MVS_self_test77.72 21476.76 21480.58 23282.48 31360.48 27383.09 26987.86 22269.22 22574.38 25685.24 26962.10 16291.53 23371.09 17975.40 30689.74 225
v879.97 15979.02 16182.80 18184.09 27364.50 20887.96 14790.29 15174.13 12475.24 23986.81 22662.88 15093.89 13674.39 14975.40 30690.00 212
Baseline_NR-MVSNet78.15 20278.33 17577.61 28785.79 23956.21 32786.78 18385.76 25973.60 13577.93 17287.57 20665.02 12888.99 28567.14 22075.33 30887.63 277
pmmvs571.55 29070.20 29675.61 30577.83 36156.39 32281.74 28480.89 31857.76 35367.46 32584.49 28149.26 29485.32 32457.08 30775.29 30985.11 329
EPMVS69.02 31368.16 30871.59 33979.61 35249.80 37777.40 34066.93 38662.82 31270.01 29979.05 35045.79 32177.86 36456.58 31275.26 31087.13 292
TranMVSNet+NR-MVSNet80.84 13480.31 13382.42 19187.85 19262.33 24987.74 15691.33 11980.55 977.99 17189.86 14565.23 12692.62 19067.05 22175.24 31192.30 126
test_fmvs268.35 32167.48 32270.98 34769.50 39251.95 36180.05 31176.38 35849.33 38174.65 25284.38 28423.30 39375.40 38274.51 14775.17 31285.60 320
tfpnnormal74.39 26073.16 26478.08 27986.10 23758.05 29484.65 23687.53 22970.32 19971.22 28885.63 26154.97 22589.86 26943.03 37675.02 31386.32 306
COLMAP_ROBcopyleft66.92 1773.01 27870.41 29380.81 22887.13 22065.63 18388.30 13684.19 27862.96 30863.80 35887.69 20338.04 36492.56 19346.66 36274.91 31484.24 338
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
PatchT68.46 32067.85 31370.29 34980.70 33643.93 39172.47 36474.88 36460.15 33370.55 29076.57 36749.94 28481.59 34650.58 33874.83 31585.34 323
pmmvs474.03 26771.91 27480.39 23581.96 31868.32 12381.45 28982.14 30859.32 34069.87 30485.13 27352.40 25188.13 29960.21 27874.74 31684.73 334
ITE_SJBPF78.22 27681.77 32160.57 27183.30 29069.25 22467.54 32387.20 21836.33 36987.28 30754.34 32174.62 31786.80 299
test0.0.03 168.00 32367.69 31868.90 35577.55 36247.43 38075.70 35072.95 37466.66 26166.56 33682.29 32248.06 30275.87 37744.97 37374.51 31883.41 347
test_040272.79 28170.44 29279.84 24788.13 18165.99 17585.93 20684.29 27565.57 27867.40 32785.49 26446.92 30992.61 19135.88 38874.38 31980.94 367
CP-MVSNet78.22 19878.34 17477.84 28287.83 19354.54 34587.94 14991.17 12377.65 3873.48 26388.49 18362.24 16088.43 29562.19 26074.07 32090.55 185
FMVSNet569.50 31067.96 31174.15 32182.97 30255.35 33780.01 31282.12 30962.56 31563.02 35981.53 32836.92 36781.92 34548.42 35274.06 32185.17 328
MVS-HIRNet59.14 35057.67 35363.57 36781.65 32243.50 39271.73 36665.06 39139.59 39351.43 38857.73 39538.34 36282.58 34239.53 38273.95 32264.62 391
tpmrst72.39 28272.13 27373.18 33080.54 33849.91 37579.91 31479.08 34163.11 30571.69 28479.95 34355.32 22382.77 34165.66 23273.89 32386.87 297
PS-CasMVS78.01 20778.09 17977.77 28487.71 19954.39 34788.02 14591.22 12077.50 4673.26 26588.64 17860.73 18588.41 29661.88 26473.88 32490.53 186
v14878.72 18877.80 18881.47 20882.73 30661.96 25586.30 19788.08 21573.26 14576.18 21285.47 26562.46 15592.36 20171.92 17373.82 32590.09 206
Patchmatch-test64.82 34063.24 34169.57 35179.42 35549.82 37663.49 39569.05 38351.98 37659.95 37180.13 34150.91 27270.98 39140.66 38173.57 32687.90 272
WR-MVS_H78.51 19378.49 16978.56 27088.02 18756.38 32388.43 12792.67 6277.14 5473.89 25987.55 20866.25 11589.24 28158.92 28973.55 32790.06 210
AUN-MVS79.21 17677.60 19684.05 13288.71 16167.61 14185.84 21087.26 23569.08 23077.23 18688.14 19753.20 24793.47 15575.50 14273.45 32891.06 164
hse-mvs281.72 11680.94 12284.07 12788.72 16067.68 13885.87 20887.26 23576.02 8584.67 6688.22 19261.54 16993.48 15482.71 7073.44 32991.06 164
testgi66.67 33166.53 32867.08 36375.62 37141.69 39875.93 34676.50 35766.11 27065.20 35086.59 23735.72 37174.71 38443.71 37473.38 33084.84 332
Anonymous2024052168.80 31567.22 32473.55 32574.33 37554.11 34883.18 26685.61 26058.15 35061.68 36480.94 33430.71 38181.27 34957.00 30873.34 33185.28 324
pm-mvs177.25 22576.68 21878.93 26484.22 27058.62 28986.41 19388.36 21171.37 17673.31 26488.01 19961.22 17989.15 28364.24 24373.01 33289.03 244
eth_miper_zixun_eth77.92 20976.69 21781.61 20683.00 29961.98 25483.15 26789.20 18469.52 21874.86 24984.35 28661.76 16592.56 19371.50 17672.89 33390.28 197
miper_lstm_enhance74.11 26473.11 26577.13 29480.11 34359.62 28372.23 36586.92 24266.76 25970.40 29382.92 31256.93 21882.92 34069.06 20172.63 33488.87 252
tpmvs71.09 29469.29 29976.49 29882.04 31756.04 32878.92 32681.37 31764.05 29667.18 32978.28 35849.74 28789.77 27149.67 34772.37 33583.67 345
PEN-MVS77.73 21377.69 19477.84 28287.07 22153.91 35087.91 15191.18 12277.56 4373.14 26788.82 17361.23 17889.17 28259.95 27972.37 33590.43 190
DSMNet-mixed57.77 35256.90 35460.38 37167.70 39435.61 40269.18 37753.97 40332.30 40157.49 37979.88 34440.39 35468.57 39638.78 38572.37 33576.97 377
IterMVS-SCA-FT75.43 25373.87 25780.11 24282.69 30764.85 20181.57 28783.47 28869.16 22870.49 29284.15 29251.95 26188.15 29869.23 19872.14 33887.34 285
tpm cat170.57 30068.31 30677.35 29182.41 31457.95 29878.08 33580.22 33152.04 37468.54 31777.66 36352.00 26087.84 30251.77 33272.07 33986.25 307
RPSCF73.23 27671.46 27978.54 27182.50 31159.85 28082.18 27982.84 30358.96 34471.15 28989.41 16345.48 32684.77 32858.82 29171.83 34091.02 168
IterMVS74.29 26172.94 26678.35 27581.53 32563.49 22981.58 28682.49 30568.06 24969.99 30183.69 30151.66 26785.54 32065.85 23071.64 34186.01 314
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
AllTest70.96 29568.09 31079.58 25485.15 25263.62 22384.58 23879.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
TestCases79.58 25485.15 25263.62 22379.83 33362.31 31760.32 36986.73 22732.02 37688.96 28850.28 34271.57 34286.15 310
baseline176.98 22876.75 21677.66 28588.13 18155.66 33385.12 22581.89 31073.04 15076.79 19588.90 17062.43 15687.78 30363.30 24971.18 34489.55 230
Patchmtry70.74 29869.16 30175.49 30880.72 33554.07 34974.94 35880.30 32958.34 34870.01 29981.19 32952.50 24986.54 31053.37 32671.09 34585.87 318
DTE-MVSNet76.99 22776.80 21277.54 28986.24 23353.06 35887.52 16090.66 13677.08 5772.50 27488.67 17760.48 19289.52 27657.33 30570.74 34690.05 211
MIMVSNet168.58 31766.78 32773.98 32380.07 34451.82 36480.77 29884.37 27264.40 29059.75 37282.16 32436.47 36883.63 33542.73 37770.33 34786.48 305
pmmvs674.69 25973.39 26178.61 26881.38 32857.48 30686.64 18787.95 21964.99 28570.18 29686.61 23650.43 27989.52 27662.12 26270.18 34888.83 254
test_vis1_rt60.28 34958.42 35265.84 36467.25 39555.60 33470.44 37360.94 39744.33 38759.00 37366.64 38724.91 38868.67 39562.80 25169.48 34973.25 383
TinyColmap67.30 32764.81 33274.76 31581.92 32056.68 31880.29 30981.49 31560.33 33056.27 38383.22 30624.77 38987.66 30545.52 37069.47 35079.95 371
OurMVSNet-221017-074.26 26272.42 27179.80 24883.76 28159.59 28485.92 20786.64 24566.39 26866.96 33087.58 20539.46 35691.60 22765.76 23169.27 35188.22 267
JIA-IIPM66.32 33462.82 34576.82 29677.09 36561.72 25965.34 39175.38 36158.04 35264.51 35262.32 39042.05 34686.51 31151.45 33569.22 35282.21 359
ADS-MVSNet266.20 33763.33 34074.82 31479.92 34558.75 28867.55 38375.19 36253.37 37165.25 34875.86 37142.32 34280.53 35341.57 37968.91 35385.18 326
ADS-MVSNet64.36 34162.88 34468.78 35779.92 34547.17 38167.55 38371.18 37653.37 37165.25 34875.86 37142.32 34273.99 38741.57 37968.91 35385.18 326
test20.0367.45 32566.95 32668.94 35475.48 37244.84 38977.50 33977.67 34766.66 26163.01 36083.80 29747.02 30878.40 36042.53 37868.86 35583.58 346
EU-MVSNet68.53 31967.61 32071.31 34478.51 36047.01 38284.47 24084.27 27642.27 38966.44 34184.79 27940.44 35383.76 33358.76 29268.54 35683.17 349
dmvs_testset62.63 34564.11 33658.19 37378.55 35924.76 41175.28 35265.94 38967.91 25060.34 36876.01 37053.56 24273.94 38831.79 39267.65 35775.88 380
our_test_369.14 31267.00 32575.57 30679.80 34958.80 28777.96 33677.81 34659.55 33862.90 36278.25 35947.43 30483.97 33251.71 33367.58 35883.93 343
ppachtmachnet_test70.04 30667.34 32378.14 27879.80 34961.13 26379.19 32280.59 32359.16 34265.27 34779.29 34946.75 31187.29 30649.33 34866.72 35986.00 316
LF4IMVS64.02 34262.19 34669.50 35270.90 39053.29 35776.13 34477.18 35352.65 37358.59 37480.98 33323.55 39276.52 37153.06 32866.66 36078.68 374
Patchmatch-RL test70.24 30467.78 31777.61 28777.43 36359.57 28571.16 36870.33 37762.94 30968.65 31572.77 38050.62 27685.49 32169.58 19666.58 36187.77 275
dp66.80 32965.43 33170.90 34879.74 35148.82 37875.12 35674.77 36559.61 33764.08 35577.23 36442.89 33880.72 35248.86 35166.58 36183.16 350
test_fmvs363.36 34461.82 34767.98 36062.51 40046.96 38377.37 34174.03 36945.24 38567.50 32478.79 35512.16 40472.98 39072.77 16766.02 36383.99 342
CL-MVSNet_self_test72.37 28471.46 27975.09 31179.49 35453.53 35280.76 29985.01 26769.12 22970.51 29182.05 32557.92 20784.13 33152.27 33166.00 36487.60 278
FPMVS53.68 35751.64 35959.81 37265.08 39751.03 37069.48 37669.58 38141.46 39040.67 39672.32 38116.46 40070.00 39424.24 40065.42 36558.40 396
pmmvs-eth3d70.50 30267.83 31578.52 27377.37 36466.18 17181.82 28281.51 31458.90 34563.90 35780.42 33942.69 34086.28 31358.56 29365.30 36683.11 351
N_pmnet52.79 35953.26 35851.40 38378.99 3587.68 41769.52 3753.89 41651.63 37757.01 38074.98 37540.83 35165.96 39837.78 38664.67 36780.56 370
PM-MVS66.41 33364.14 33573.20 32973.92 37756.45 32078.97 32564.96 39263.88 30164.72 35180.24 34019.84 39683.44 33766.24 22464.52 36879.71 372
KD-MVS_self_test68.81 31467.59 32172.46 33574.29 37645.45 38477.93 33787.00 24063.12 30463.99 35678.99 35442.32 34284.77 32856.55 31364.09 36987.16 291
SixPastTwentyTwo73.37 27271.26 28479.70 25085.08 25557.89 29985.57 21383.56 28671.03 18465.66 34485.88 25442.10 34592.57 19259.11 28763.34 37088.65 261
EGC-MVSNET52.07 36147.05 36567.14 36283.51 28560.71 26980.50 30567.75 3850.07 4110.43 41275.85 37324.26 39081.54 34728.82 39462.25 37159.16 394
TransMVSNet (Re)75.39 25574.56 24777.86 28185.50 24557.10 31186.78 18386.09 25572.17 16271.53 28587.34 21263.01 14989.31 28056.84 31061.83 37287.17 289
MDA-MVSNet_test_wron65.03 33862.92 34271.37 34175.93 36756.73 31569.09 38074.73 36657.28 35854.03 38677.89 36045.88 31974.39 38649.89 34661.55 37382.99 354
YYNet165.03 33862.91 34371.38 34075.85 36956.60 31969.12 37974.66 36857.28 35854.12 38577.87 36145.85 32074.48 38549.95 34561.52 37483.05 352
mvsany_test162.30 34661.26 35065.41 36569.52 39154.86 34266.86 38549.78 40546.65 38368.50 31883.21 30749.15 29566.28 39756.93 30960.77 37575.11 381
ambc75.24 31073.16 38450.51 37363.05 39687.47 23164.28 35377.81 36217.80 39889.73 27357.88 30060.64 37685.49 321
TDRefinement67.49 32464.34 33476.92 29573.47 38261.07 26484.86 23182.98 29959.77 33658.30 37685.13 27326.06 38687.89 30147.92 35960.59 37781.81 363
Gipumacopyleft45.18 36841.86 37155.16 38077.03 36651.52 36732.50 40480.52 32432.46 40027.12 40335.02 4049.52 40775.50 37922.31 40160.21 37838.45 403
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new-patchmatchnet61.73 34761.73 34861.70 36972.74 38724.50 41269.16 37878.03 34561.40 32456.72 38175.53 37438.42 36176.48 37245.95 36857.67 37984.13 340
MDA-MVSNet-bldmvs66.68 33063.66 33975.75 30379.28 35660.56 27273.92 36178.35 34464.43 28950.13 39079.87 34544.02 33383.67 33446.10 36756.86 38083.03 353
new_pmnet50.91 36250.29 36252.78 38268.58 39334.94 40463.71 39356.63 40239.73 39244.95 39365.47 38821.93 39458.48 40234.98 38956.62 38164.92 390
test_f52.09 36050.82 36155.90 37753.82 40742.31 39759.42 39758.31 40136.45 39656.12 38470.96 38412.18 40357.79 40353.51 32556.57 38267.60 388
test_vis3_rt49.26 36447.02 36656.00 37654.30 40545.27 38866.76 38748.08 40636.83 39544.38 39453.20 3997.17 41164.07 39956.77 31155.66 38358.65 395
PMVScopyleft37.38 2244.16 36940.28 37355.82 37840.82 41342.54 39665.12 39263.99 39334.43 39824.48 40457.12 3973.92 41476.17 37617.10 40555.52 38448.75 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
APD_test153.31 35849.93 36363.42 36865.68 39650.13 37471.59 36766.90 38734.43 39840.58 39771.56 3838.65 40976.27 37434.64 39055.36 38563.86 392
pmmvs357.79 35154.26 35668.37 35964.02 39956.72 31675.12 35665.17 39040.20 39152.93 38769.86 38620.36 39575.48 38045.45 37155.25 38672.90 384
UnsupCasMVSNet_eth67.33 32665.99 33071.37 34173.48 38151.47 36875.16 35485.19 26465.20 28060.78 36780.93 33642.35 34177.20 36657.12 30653.69 38785.44 322
K. test v371.19 29268.51 30479.21 26083.04 29857.78 30284.35 24776.91 35572.90 15362.99 36182.86 31439.27 35791.09 25161.65 26752.66 38888.75 258
UnsupCasMVSNet_bld63.70 34361.53 34970.21 35073.69 37951.39 36972.82 36381.89 31055.63 36557.81 37871.80 38238.67 36078.61 35949.26 34952.21 38980.63 368
LCM-MVSNet54.25 35449.68 36467.97 36153.73 40845.28 38766.85 38680.78 32035.96 39739.45 39862.23 3918.70 40878.06 36348.24 35651.20 39080.57 369
KD-MVS_2432*160066.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29466.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
miper_refine_blended66.22 33563.89 33773.21 32775.47 37353.42 35470.76 37184.35 27364.10 29466.52 33878.52 35634.55 37384.98 32550.40 34050.33 39181.23 365
mvsany_test353.99 35551.45 36061.61 37055.51 40444.74 39063.52 39445.41 40943.69 38858.11 37776.45 36817.99 39763.76 40054.77 31947.59 39376.34 379
lessismore_v078.97 26381.01 33457.15 31065.99 38861.16 36682.82 31539.12 35891.34 24259.67 28146.92 39488.43 265
testf145.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
APD_test245.72 36541.96 36957.00 37456.90 40245.32 38566.14 38859.26 39926.19 40230.89 40160.96 3934.14 41270.64 39226.39 39846.73 39555.04 397
PVSNet_057.27 2061.67 34859.27 35168.85 35679.61 35257.44 30768.01 38173.44 37155.93 36458.54 37570.41 38544.58 32977.55 36547.01 36135.91 39771.55 385
WB-MVS54.94 35354.72 35555.60 37973.50 38020.90 41374.27 36061.19 39659.16 34250.61 38974.15 37647.19 30775.78 37817.31 40435.07 39870.12 386
test_method31.52 37329.28 37738.23 38727.03 4156.50 41820.94 40662.21 3954.05 40922.35 40752.50 40013.33 40147.58 40727.04 39734.04 39960.62 393
SSC-MVS53.88 35653.59 35754.75 38172.87 38619.59 41473.84 36260.53 39857.58 35649.18 39273.45 37946.34 31575.47 38116.20 40732.28 40069.20 387
PMMVS240.82 37038.86 37446.69 38453.84 40616.45 41548.61 40149.92 40437.49 39431.67 39960.97 3928.14 41056.42 40428.42 39530.72 40167.19 389
dongtai45.42 36745.38 36845.55 38573.36 38326.85 40967.72 38234.19 41154.15 36949.65 39156.41 39825.43 38762.94 40119.45 40228.09 40246.86 401
kuosan39.70 37140.40 37237.58 38864.52 39826.98 40765.62 39033.02 41246.12 38442.79 39548.99 40124.10 39146.56 40912.16 41026.30 40339.20 402
DeepMVS_CXcopyleft27.40 39140.17 41426.90 40824.59 41517.44 40723.95 40548.61 4029.77 40626.48 41018.06 40324.47 40428.83 404
MVEpermissive26.22 2330.37 37525.89 37943.81 38644.55 41235.46 40328.87 40539.07 41018.20 40618.58 40840.18 4032.68 41547.37 40817.07 40623.78 40548.60 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
E-PMN31.77 37230.64 37535.15 38952.87 40927.67 40657.09 39947.86 40724.64 40416.40 40933.05 40511.23 40554.90 40514.46 40818.15 40622.87 405
EMVS30.81 37429.65 37634.27 39050.96 41025.95 41056.58 40046.80 40824.01 40515.53 41030.68 40612.47 40254.43 40612.81 40917.05 40722.43 406
ANet_high50.57 36346.10 36763.99 36648.67 41139.13 40070.99 37080.85 31961.39 32531.18 40057.70 39617.02 39973.65 38931.22 39315.89 40879.18 373
tmp_tt18.61 37721.40 38010.23 3934.82 41610.11 41634.70 40330.74 4141.48 41023.91 40626.07 40728.42 38413.41 41227.12 39615.35 4097.17 407
wuyk23d16.82 37815.94 38119.46 39258.74 40131.45 40539.22 4023.74 4176.84 4086.04 4112.70 4111.27 41624.29 41110.54 41114.40 4102.63 408
testmvs6.04 3818.02 3840.10 3950.08 4170.03 42069.74 3740.04 4180.05 4120.31 4131.68 4120.02 4180.04 4130.24 4120.02 4110.25 410
test1236.12 3808.11 3830.14 3940.06 4180.09 41971.05 3690.03 4190.04 4130.25 4141.30 4130.05 4170.03 4140.21 4130.01 4120.29 409
test_blank0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uanet_test0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
DCPMVS0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
cdsmvs_eth3d_5k19.96 37626.61 3780.00 3960.00 4190.00 4210.00 40789.26 1800.00 4140.00 41588.61 17961.62 1680.00 4150.00 4140.00 4130.00 411
pcd_1.5k_mvsjas5.26 3827.02 3850.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 41463.15 1450.00 4150.00 4140.00 4130.00 411
sosnet-low-res0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
sosnet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
uncertanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
Regformer0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
ab-mvs-re7.23 3799.64 3820.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 41586.72 2290.00 4190.00 4150.00 4140.00 4130.00 411
uanet0.00 3830.00 3860.00 3960.00 4190.00 4210.00 4070.00 4200.00 4140.00 4150.00 4140.00 4190.00 4150.00 4140.00 4130.00 411
WAC-MVS42.58 39439.46 383
FOURS195.00 1072.39 3995.06 193.84 1574.49 11591.30 15
test_one_060195.07 771.46 5594.14 578.27 3592.05 1195.74 680.83 11
eth-test20.00 419
eth-test0.00 419
test_241102_ONE95.30 270.98 6394.06 1077.17 5393.10 195.39 1182.99 197.27 11
save fliter93.80 4072.35 4290.47 6391.17 12374.31 118
test072695.27 571.25 5793.60 694.11 677.33 4892.81 395.79 380.98 9
GSMVS88.96 249
test_part295.06 872.65 3291.80 13
sam_mvs151.32 26988.96 249
sam_mvs50.01 282
MTGPAbinary92.02 90
test_post178.90 3275.43 41048.81 30185.44 32359.25 285
test_post5.46 40950.36 28084.24 330
patchmatchnet-post74.00 37751.12 27188.60 293
MTMP92.18 3532.83 413
gm-plane-assit81.40 32753.83 35162.72 31480.94 33492.39 19963.40 248
TEST993.26 5072.96 2588.75 11591.89 9968.44 24485.00 5993.10 6774.36 2895.41 70
test_893.13 5272.57 3588.68 12091.84 10368.69 23984.87 6393.10 6774.43 2695.16 80
agg_prior92.85 5971.94 5191.78 10684.41 7694.93 91
test_prior472.60 3489.01 106
test_prior86.33 5492.61 6569.59 8892.97 5195.48 6593.91 58
旧先验286.56 19058.10 35187.04 4188.98 28674.07 152
新几何286.29 198
无先验87.48 16188.98 19360.00 33494.12 12367.28 21788.97 248
原ACMM286.86 179
testdata291.01 25362.37 258
segment_acmp73.08 38
testdata184.14 25175.71 89
plane_prior790.08 10468.51 120
plane_prior689.84 11368.70 11560.42 193
plane_prior491.00 122
plane_prior368.60 11878.44 3178.92 147
plane_prior291.25 5079.12 23
plane_prior189.90 112
n20.00 420
nn0.00 420
door-mid69.98 379
test1192.23 83
door69.44 382
HQP5-MVS66.98 158
HQP-NCC89.33 13289.17 9976.41 7477.23 186
ACMP_Plane89.33 13289.17 9976.41 7477.23 186
BP-MVS77.47 119
HQP4-MVS77.24 18595.11 8491.03 166
HQP2-MVS60.17 196
NP-MVS89.62 11768.32 12390.24 137
MDTV_nov1_ep13_2view37.79 40175.16 35455.10 36666.53 33749.34 29253.98 32287.94 271
Test By Simon64.33 132