This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
OPU-MVS89.06 194.62 1375.42 293.57 594.02 4582.45 396.87 1683.77 4896.48 694.88 7
HPM-MVS++copyleft89.02 789.15 788.63 295.01 876.03 192.38 2392.85 5380.26 1387.78 2694.27 3475.89 1696.81 1987.45 1696.44 793.05 86
SMA-MVScopyleft89.08 689.23 688.61 394.25 2873.73 892.40 2093.63 2074.77 10592.29 695.97 274.28 3197.24 888.58 1096.91 194.87 9
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
3Dnovator+77.84 485.48 5784.47 7188.51 491.08 8773.49 1593.18 993.78 1880.79 1076.66 17893.37 5760.40 18396.75 2277.20 10893.73 6395.29 2
CNVR-MVS88.93 889.13 888.33 594.77 1073.82 790.51 6093.00 4280.90 988.06 2494.06 4476.43 1396.84 1788.48 1195.99 1594.34 27
SteuartSystems-ACMMP88.72 988.86 988.32 692.14 7572.96 2493.73 393.67 1980.19 1488.10 2394.80 1473.76 3697.11 1087.51 1595.82 2094.90 6
Skip Steuart: Steuart Systems R&D Blog.
MSP-MVS89.51 389.91 488.30 794.28 2773.46 1692.90 1494.11 680.27 1291.35 1194.16 3978.35 1096.77 2089.59 194.22 6094.67 16
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
NCCC88.06 1388.01 1788.24 894.41 2273.62 991.22 4892.83 5481.50 685.79 4193.47 5673.02 4297.00 1484.90 3094.94 4094.10 35
ZNCC-MVS87.94 1787.85 1988.20 994.39 2473.33 1893.03 1293.81 1776.81 6285.24 4794.32 3371.76 5196.93 1585.53 2695.79 2194.32 28
region2R87.42 2787.20 3188.09 1094.63 1273.55 1193.03 1293.12 3776.73 6784.45 6494.52 2169.09 7696.70 2384.37 4094.83 4694.03 39
ACMMPR87.44 2587.23 3088.08 1194.64 1173.59 1093.04 1093.20 3476.78 6484.66 6194.52 2168.81 7996.65 2684.53 3794.90 4194.00 42
DPE-MVScopyleft89.48 489.98 388.01 1294.80 972.69 3091.59 3994.10 875.90 8492.29 695.66 881.67 497.38 687.44 1796.34 1193.95 44
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
XVS87.18 3386.91 3688.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7894.17 3867.45 8896.60 3183.06 5594.50 5294.07 37
X-MVStestdata80.37 14077.83 17488.00 1394.42 2073.33 1892.78 1592.99 4479.14 2183.67 7812.47 36267.45 8896.60 3183.06 5594.50 5294.07 37
ACMMP_NAP88.05 1588.08 1687.94 1593.70 4273.05 2190.86 5393.59 2176.27 7888.14 2295.09 1371.06 5696.67 2587.67 1396.37 1094.09 36
HFP-MVS87.58 2287.47 2487.94 1594.58 1473.54 1393.04 1093.24 3276.78 6484.91 5294.44 2870.78 5896.61 2984.53 3794.89 4293.66 58
#test#87.33 3087.13 3287.94 1594.58 1473.54 1392.34 2593.24 3275.23 9684.91 5294.44 2870.78 5896.61 2983.75 4994.89 4293.66 58
MP-MVScopyleft87.71 2087.64 2287.93 1894.36 2673.88 592.71 1992.65 6377.57 3983.84 7594.40 3272.24 4796.28 3885.65 2595.30 3693.62 65
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
zzz-MVS87.53 2387.41 2687.90 1994.18 3274.25 390.23 7092.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
MTAPA87.23 3287.00 3387.90 1994.18 3274.25 386.58 17892.02 8779.45 1985.88 3894.80 1468.07 8196.21 4086.69 2195.34 3293.23 78
PGM-MVS86.68 4086.27 4487.90 1994.22 3073.38 1790.22 7193.04 3875.53 9083.86 7494.42 3167.87 8596.64 2782.70 6594.57 5193.66 58
GST-MVS87.42 2787.26 2887.89 2294.12 3472.97 2392.39 2293.43 2876.89 6084.68 5893.99 4770.67 6196.82 1884.18 4595.01 3893.90 47
SED-MVS90.08 190.85 187.77 2395.30 270.98 6593.57 594.06 1077.24 4893.10 195.72 682.99 197.44 289.07 696.63 294.88 7
xxxxxxxxxxxxxcwj87.88 1887.92 1887.77 2393.80 3972.35 4290.47 6389.69 16174.31 11489.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
testtj87.78 1987.78 2087.77 2394.55 1672.47 3792.23 2893.49 2474.75 10688.33 2194.43 3073.27 3997.02 1384.18 4594.84 4493.82 52
DeepC-MVS_fast79.65 386.91 3786.62 4087.76 2693.52 4772.37 4191.26 4593.04 3876.62 6984.22 6993.36 5871.44 5496.76 2180.82 7895.33 3494.16 33
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVS89.15 589.63 587.73 2794.49 1871.69 5593.83 293.96 1475.70 8891.06 1296.03 176.84 1297.03 1289.09 395.65 2894.47 23
MCST-MVS87.37 2987.25 2987.73 2794.53 1772.46 3889.82 7893.82 1673.07 14084.86 5792.89 6876.22 1496.33 3684.89 3295.13 3794.40 24
TSAR-MVS + MP.88.02 1688.11 1587.72 2993.68 4472.13 4791.41 4492.35 7374.62 10988.90 1793.85 4975.75 1796.00 5087.80 1294.63 4995.04 3
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
mPP-MVS86.67 4186.32 4387.72 2994.41 2273.55 1192.74 1792.22 8076.87 6182.81 9094.25 3666.44 9796.24 3982.88 6094.28 5893.38 72
test_0728_SECOND87.71 3195.34 171.43 5893.49 794.23 597.49 189.08 496.41 894.21 32
ETH3 D test640087.50 2487.44 2587.70 3293.71 4171.75 5490.62 5894.05 1370.80 17387.59 2993.51 5377.57 1196.63 2883.31 5095.77 2294.72 15
DeepC-MVS79.81 287.08 3686.88 3787.69 3391.16 8672.32 4490.31 6893.94 1577.12 5482.82 8994.23 3772.13 4997.09 1184.83 3395.37 3193.65 63
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CP-MVS87.11 3486.92 3587.68 3494.20 3173.86 693.98 192.82 5776.62 6983.68 7794.46 2567.93 8395.95 5284.20 4494.39 5593.23 78
SF-MVS88.46 1088.74 1087.64 3592.78 6471.95 5092.40 2094.74 275.71 8689.16 1595.10 1175.65 1896.19 4287.07 1896.01 1394.79 11
MP-MVS-pluss87.67 2187.72 2187.54 3693.64 4572.04 4989.80 8093.50 2375.17 9986.34 3695.29 1070.86 5796.00 5088.78 996.04 1294.58 19
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
CANet86.45 4386.10 4987.51 3790.09 10670.94 6989.70 8492.59 6581.78 481.32 10591.43 9470.34 6297.23 984.26 4293.36 6594.37 25
ETH3D-3000-0.188.09 1288.29 1387.50 3892.76 6571.89 5391.43 4394.70 374.47 11188.86 1894.61 1975.23 2195.84 5486.62 2395.92 1794.78 13
HPM-MVScopyleft87.11 3486.98 3487.50 3893.88 3872.16 4692.19 2993.33 3176.07 8183.81 7693.95 4869.77 7096.01 4985.15 2894.66 4894.32 28
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
ETH3D cwj APD-0.1687.31 3187.27 2787.44 4091.60 8272.45 3990.02 7494.37 471.76 15687.28 3094.27 3475.18 2296.08 4685.16 2795.77 2293.80 55
ACMMPcopyleft85.89 5285.39 5887.38 4193.59 4672.63 3292.74 1793.18 3676.78 6480.73 11493.82 5064.33 11896.29 3782.67 6690.69 9193.23 78
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVS89.60 290.35 287.33 4295.27 571.25 5993.49 792.73 5877.33 4692.12 895.78 480.98 797.40 489.08 496.41 893.33 75
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
PHI-MVS86.43 4486.17 4887.24 4390.88 9270.96 6792.27 2794.07 972.45 14585.22 4891.90 8169.47 7296.42 3583.28 5395.94 1694.35 26
APD-MVScopyleft87.44 2587.52 2387.19 4494.24 2972.39 4091.86 3692.83 5473.01 14288.58 1994.52 2173.36 3796.49 3484.26 4295.01 3892.70 96
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CDPH-MVS85.76 5485.29 6287.17 4593.49 4871.08 6388.58 11792.42 7168.32 22584.61 6293.48 5472.32 4696.15 4579.00 8895.43 3094.28 30
train_agg86.43 4486.20 4687.13 4693.26 5172.96 2488.75 10991.89 9668.69 22085.00 5093.10 6274.43 2795.41 7284.97 2995.71 2693.02 88
CSCG86.41 4686.19 4787.07 4792.91 6072.48 3690.81 5493.56 2273.95 12283.16 8391.07 10375.94 1595.19 8279.94 8694.38 5693.55 68
Regformer-286.63 4286.53 4186.95 4889.33 12671.24 6288.43 11992.05 8682.50 186.88 3290.09 12374.45 2695.61 5984.38 3990.63 9294.01 41
SR-MVS86.73 3886.67 3986.91 4994.11 3572.11 4892.37 2492.56 6674.50 11086.84 3394.65 1867.31 9095.77 5684.80 3492.85 6992.84 94
DPM-MVS84.93 6884.29 7286.84 5090.20 10473.04 2287.12 16093.04 3869.80 19382.85 8891.22 9873.06 4196.02 4876.72 11594.63 4991.46 137
TSAR-MVS + GP.85.71 5585.33 5986.84 5091.34 8472.50 3589.07 9887.28 22576.41 7185.80 4090.22 12174.15 3495.37 7881.82 7091.88 7692.65 100
test1286.80 5292.63 6870.70 7691.79 10182.71 9171.67 5296.16 4494.50 5293.54 69
DeepPCF-MVS80.84 188.10 1188.56 1186.73 5392.24 7369.03 10589.57 8693.39 3077.53 4389.79 1494.12 4178.98 996.58 3385.66 2495.72 2594.58 19
SD-MVS88.06 1388.50 1286.71 5492.60 7172.71 2891.81 3793.19 3577.87 3490.32 1394.00 4674.83 2493.78 13987.63 1494.27 5993.65 63
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
Regformer-186.41 4686.33 4286.64 5589.33 12670.93 7088.43 11991.39 11582.14 386.65 3490.09 12374.39 2995.01 9183.97 4790.63 9293.97 43
agg_prior186.22 4886.09 5086.62 5692.85 6171.94 5188.59 11691.78 10268.96 21584.41 6593.18 6174.94 2394.93 9284.75 3595.33 3493.01 89
3Dnovator76.31 583.38 8282.31 9186.59 5787.94 17972.94 2790.64 5792.14 8477.21 5075.47 20392.83 7058.56 19094.72 10473.24 14592.71 7192.13 119
HPM-MVS_fast85.35 6184.95 6786.57 5893.69 4370.58 8092.15 3191.62 10673.89 12582.67 9294.09 4262.60 14095.54 6480.93 7692.93 6793.57 67
Regformer-485.68 5685.45 5786.35 5988.95 14369.67 9588.29 12991.29 11781.73 585.36 4590.01 12672.62 4495.35 7983.28 5387.57 12594.03 39
test_prior386.73 3886.86 3886.33 6092.61 6969.59 9688.85 10592.97 4775.41 9284.91 5293.54 5174.28 3195.48 6683.31 5095.86 1893.91 45
test_prior86.33 6092.61 6969.59 9692.97 4795.48 6693.91 45
MVS_111021_HR85.14 6584.75 6986.32 6291.65 8172.70 2985.98 19390.33 14376.11 8082.08 9591.61 8871.36 5594.17 12281.02 7592.58 7392.08 120
SR-MVS-dyc-post85.77 5385.61 5586.23 6393.06 5770.63 7791.88 3492.27 7673.53 13385.69 4294.45 2665.00 11595.56 6182.75 6191.87 7792.50 103
APD-MVS_3200maxsize85.97 5085.88 5186.22 6492.69 6769.53 9891.93 3392.99 4473.54 13285.94 3794.51 2465.80 10795.61 5983.04 5792.51 7493.53 70
DP-MVS Recon83.11 8782.09 9486.15 6594.44 1970.92 7188.79 10792.20 8170.53 18079.17 12691.03 10664.12 12096.03 4768.39 18690.14 9991.50 134
EPNet83.72 7582.92 8386.14 6684.22 24569.48 9991.05 5185.27 25081.30 776.83 17391.65 8566.09 10295.56 6176.00 12093.85 6293.38 72
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test117286.20 4986.22 4586.12 6793.95 3769.89 9191.79 3892.28 7575.07 10086.40 3594.58 2065.00 11595.56 6184.34 4192.60 7292.90 92
abl_685.23 6384.95 6786.07 6892.23 7470.48 8190.80 5592.08 8573.51 13585.26 4694.16 3962.75 13995.92 5382.46 6891.30 8691.81 127
canonicalmvs85.91 5185.87 5286.04 6989.84 11269.44 10390.45 6693.00 4276.70 6888.01 2591.23 9773.28 3893.91 13481.50 7288.80 11394.77 14
hse-mvs383.15 8482.19 9286.02 7090.56 9770.85 7388.15 13689.16 17776.02 8284.67 5991.39 9561.54 15895.50 6582.71 6375.48 27091.72 129
alignmvs85.48 5785.32 6085.96 7189.51 11969.47 10089.74 8292.47 6776.17 7987.73 2891.46 9370.32 6393.78 13981.51 7188.95 11094.63 18
DELS-MVS85.41 6085.30 6185.77 7288.49 16167.93 13485.52 21093.44 2778.70 2883.63 8089.03 15374.57 2595.71 5880.26 8494.04 6193.66 58
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
Regformer-385.23 6385.07 6485.70 7388.95 14369.01 10788.29 12989.91 15580.95 885.01 4990.01 12672.45 4594.19 12082.50 6787.57 12593.90 47
ETV-MVS84.90 7084.67 7085.59 7489.39 12468.66 12188.74 11192.64 6479.97 1784.10 7185.71 24069.32 7495.38 7580.82 7891.37 8492.72 95
UA-Net85.08 6784.96 6685.45 7592.07 7668.07 13289.78 8190.86 13082.48 284.60 6393.20 6069.35 7395.22 8171.39 15890.88 9093.07 85
Vis-MVSNetpermissive83.46 7982.80 8585.43 7690.25 10368.74 11590.30 6990.13 14976.33 7780.87 11392.89 6861.00 17294.20 11972.45 15290.97 8893.35 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EI-MVSNet-Vis-set84.19 7183.81 7385.31 7788.18 17167.85 13587.66 14789.73 16080.05 1682.95 8589.59 13770.74 6094.82 10080.66 8184.72 16193.28 77
mvs-test180.88 12179.40 13985.29 7885.13 23369.75 9489.28 8988.10 20674.99 10176.44 18486.72 21257.27 20294.26 11873.53 13883.18 18191.87 124
MAR-MVS81.84 10480.70 11485.27 7991.32 8571.53 5789.82 7890.92 12769.77 19478.50 13886.21 23262.36 14694.52 10865.36 21192.05 7589.77 202
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
Effi-MVS+83.62 7783.08 7985.24 8088.38 16667.45 14288.89 10389.15 17875.50 9182.27 9388.28 17269.61 7194.45 11077.81 10287.84 12393.84 51
MVSFormer82.85 9082.05 9685.24 8087.35 19570.21 8390.50 6190.38 13968.55 22281.32 10589.47 14061.68 15593.46 15778.98 8990.26 9792.05 121
OPM-MVS83.50 7882.95 8285.14 8288.79 15170.95 6889.13 9791.52 10977.55 4280.96 11291.75 8360.71 17594.50 10979.67 8786.51 14489.97 194
HQP_MVS83.64 7683.14 7885.14 8290.08 10768.71 11791.25 4692.44 6879.12 2378.92 13091.00 10760.42 18195.38 7578.71 9186.32 14691.33 139
EI-MVSNet-UG-set83.81 7383.38 7685.09 8487.87 18067.53 14187.44 15389.66 16279.74 1882.23 9489.41 14670.24 6494.74 10379.95 8583.92 16992.99 90
QAPM80.88 12179.50 13785.03 8588.01 17868.97 10991.59 3992.00 9066.63 24075.15 21792.16 7657.70 19695.45 6863.52 22188.76 11490.66 160
casdiffmvs85.11 6685.14 6385.01 8687.20 20265.77 17287.75 14592.83 5477.84 3584.36 6892.38 7472.15 4893.93 13381.27 7490.48 9495.33 1
PCF-MVS73.52 780.38 13978.84 15185.01 8687.71 18768.99 10883.65 24691.46 11463.00 28077.77 15590.28 11866.10 10195.09 8961.40 24388.22 12290.94 152
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
nrg03083.88 7283.53 7484.96 8886.77 21069.28 10490.46 6592.67 6074.79 10482.95 8591.33 9672.70 4393.09 17480.79 8079.28 22792.50 103
VDD-MVS83.01 8982.36 9084.96 8891.02 8966.40 15988.91 10288.11 20577.57 3984.39 6793.29 5952.19 23893.91 13477.05 11088.70 11594.57 21
PVSNet_Blended_VisFu82.62 9381.83 10184.96 8890.80 9469.76 9388.74 11191.70 10569.39 20078.96 12888.46 16765.47 10994.87 9974.42 13088.57 11690.24 176
CPTT-MVS83.73 7483.33 7784.92 9193.28 5070.86 7292.09 3290.38 13968.75 21979.57 12292.83 7060.60 17993.04 17880.92 7791.56 8290.86 154
test_part182.78 9182.08 9584.89 9290.66 9566.97 15390.96 5292.93 5077.19 5180.53 11690.04 12563.44 12595.39 7476.04 11976.90 24792.31 110
OMC-MVS82.69 9281.97 9984.85 9388.75 15367.42 14387.98 13890.87 12974.92 10379.72 12191.65 8562.19 15093.96 12775.26 12786.42 14593.16 83
EIA-MVS83.31 8382.80 8584.82 9489.59 11565.59 17488.21 13292.68 5974.66 10878.96 12886.42 22869.06 7795.26 8075.54 12590.09 10093.62 65
PAPM_NR83.02 8882.41 8884.82 9492.47 7266.37 16087.93 14291.80 10073.82 12677.32 16390.66 11267.90 8494.90 9670.37 16689.48 10793.19 82
baseline84.93 6884.98 6584.80 9687.30 20065.39 17987.30 15692.88 5177.62 3784.04 7392.26 7571.81 5093.96 12781.31 7390.30 9695.03 4
lupinMVS81.39 11580.27 12484.76 9787.35 19570.21 8385.55 20686.41 23762.85 28381.32 10588.61 16261.68 15592.24 20178.41 9790.26 9791.83 125
jason81.39 11580.29 12384.70 9886.63 21269.90 9085.95 19486.77 23363.24 27681.07 11189.47 14061.08 17192.15 20478.33 9890.07 10292.05 121
jason: jason.
ET-MVSNet_ETH3D78.63 17776.63 20684.64 9986.73 21169.47 10085.01 21684.61 25769.54 19866.51 30686.59 22150.16 26491.75 21676.26 11684.24 16792.69 98
EPP-MVSNet83.40 8183.02 8184.57 10090.13 10564.47 19692.32 2690.73 13174.45 11379.35 12591.10 10169.05 7895.12 8472.78 14987.22 13394.13 34
UGNet80.83 12579.59 13584.54 10188.04 17668.09 13189.42 8788.16 20476.95 5876.22 18889.46 14249.30 27593.94 13068.48 18490.31 9591.60 130
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
LPG-MVS_test82.08 9981.27 10584.50 10289.23 13468.76 11390.22 7191.94 9475.37 9476.64 17991.51 9054.29 22194.91 9478.44 9583.78 17089.83 199
LGP-MVS_train84.50 10289.23 13468.76 11391.94 9475.37 9476.64 17991.51 9054.29 22194.91 9478.44 9583.78 17089.83 199
MSLP-MVS++85.43 5985.76 5384.45 10491.93 7870.24 8290.71 5692.86 5277.46 4584.22 6992.81 7267.16 9292.94 18080.36 8294.35 5790.16 178
Effi-MVS+-dtu80.03 14678.57 15584.42 10585.13 23368.74 11588.77 10888.10 20674.99 10174.97 22283.49 27657.27 20293.36 16073.53 13880.88 20591.18 143
RRT_MVS79.88 14978.38 16084.38 10685.42 22770.60 7988.71 11388.75 19672.30 15078.83 13289.14 14844.44 30592.18 20378.50 9479.33 22690.35 172
HQP-MVS82.61 9482.02 9784.37 10789.33 12666.98 15189.17 9292.19 8276.41 7177.23 16690.23 12060.17 18495.11 8577.47 10585.99 15291.03 148
ACMP74.13 681.51 11480.57 11684.36 10889.42 12268.69 12089.97 7691.50 11374.46 11275.04 22190.41 11753.82 22694.54 10677.56 10482.91 18489.86 198
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
原ACMM184.35 10993.01 5968.79 11192.44 6863.96 27481.09 11091.57 8966.06 10395.45 6867.19 19794.82 4788.81 231
PS-MVSNAJss82.07 10081.31 10484.34 11086.51 21367.27 14789.27 9091.51 11071.75 15779.37 12490.22 12163.15 13394.27 11477.69 10382.36 19291.49 135
thisisatest053079.40 15977.76 17884.31 11187.69 18965.10 18687.36 15484.26 26470.04 18777.42 16088.26 17449.94 26794.79 10270.20 16784.70 16293.03 87
CS-MVS85.32 6285.66 5484.30 11288.28 16965.31 18191.18 4993.48 2678.06 3383.14 8490.53 11569.93 6795.45 6882.96 5893.40 6492.15 118
CLD-MVS82.31 9681.65 10284.29 11388.47 16267.73 13885.81 20192.35 7375.78 8578.33 14386.58 22364.01 12194.35 11176.05 11887.48 13090.79 155
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
API-MVS81.99 10281.23 10684.26 11490.94 9070.18 8891.10 5089.32 16971.51 16378.66 13588.28 17265.26 11095.10 8864.74 21791.23 8787.51 258
114514_t80.68 13279.51 13684.20 11594.09 3667.27 14789.64 8591.11 12458.75 31774.08 23190.72 11158.10 19295.04 9069.70 17489.42 10890.30 174
IS-MVSNet83.15 8482.81 8484.18 11689.94 11063.30 22191.59 3988.46 20279.04 2579.49 12392.16 7665.10 11294.28 11367.71 18991.86 7994.95 5
MVS_111021_LR82.61 9482.11 9384.11 11788.82 14871.58 5685.15 21386.16 24274.69 10780.47 11791.04 10462.29 14790.55 24680.33 8390.08 10190.20 177
Anonymous2024052980.19 14478.89 15084.10 11890.60 9664.75 19088.95 10190.90 12865.97 24880.59 11591.17 10049.97 26693.73 14569.16 18082.70 18993.81 53
OpenMVScopyleft72.83 1079.77 15078.33 16384.09 11985.17 23069.91 8990.57 5990.97 12666.70 23672.17 24991.91 8054.70 21893.96 12761.81 24090.95 8988.41 242
hse-mvs281.72 10680.94 11284.07 12088.72 15467.68 13985.87 19787.26 22676.02 8284.67 5988.22 17561.54 15893.48 15582.71 6373.44 29791.06 146
AdaColmapbinary80.58 13679.42 13884.06 12193.09 5668.91 11089.36 8888.97 18769.27 20375.70 20089.69 13257.20 20495.77 5663.06 22788.41 12087.50 259
AUN-MVS79.21 16477.60 18384.05 12288.71 15567.61 14085.84 19987.26 22669.08 21077.23 16688.14 18053.20 23193.47 15675.50 12673.45 29691.06 146
112180.84 12379.77 13084.05 12293.11 5570.78 7484.66 22385.42 24957.37 32681.76 10392.02 7863.41 12694.12 12367.28 19492.93 6787.26 265
VDDNet81.52 11280.67 11584.05 12290.44 10064.13 20389.73 8385.91 24571.11 16883.18 8293.48 5450.54 26193.49 15473.40 14288.25 12194.54 22
xiu_mvs_v1_base_debu80.80 12879.72 13284.03 12587.35 19570.19 8585.56 20388.77 19269.06 21181.83 9788.16 17650.91 25592.85 18278.29 9987.56 12789.06 216
xiu_mvs_v1_base80.80 12879.72 13284.03 12587.35 19570.19 8585.56 20388.77 19269.06 21181.83 9788.16 17650.91 25592.85 18278.29 9987.56 12789.06 216
xiu_mvs_v1_base_debi80.80 12879.72 13284.03 12587.35 19570.19 8585.56 20388.77 19269.06 21181.83 9788.16 17650.91 25592.85 18278.29 9987.56 12789.06 216
PAPR81.66 11080.89 11383.99 12890.27 10264.00 20486.76 17491.77 10468.84 21877.13 17189.50 13867.63 8694.88 9867.55 19188.52 11893.09 84
XVG-OURS80.41 13879.23 14483.97 12985.64 22369.02 10683.03 25990.39 13871.09 16977.63 15791.49 9254.62 22091.35 22775.71 12183.47 17791.54 132
XVG-OURS-SEG-HR80.81 12679.76 13183.96 13085.60 22468.78 11283.54 25190.50 13670.66 17876.71 17791.66 8460.69 17691.26 22976.94 11281.58 19991.83 125
HyFIR lowres test77.53 20575.40 22083.94 13189.59 11566.62 15680.36 28288.64 19956.29 33276.45 18185.17 25357.64 19793.28 16261.34 24583.10 18391.91 123
tttt051779.40 15977.91 17183.90 13288.10 17463.84 20788.37 12684.05 26671.45 16476.78 17589.12 15049.93 26994.89 9770.18 16883.18 18192.96 91
GeoE81.71 10781.01 11183.80 13389.51 11964.45 19788.97 10088.73 19771.27 16678.63 13689.76 13166.32 9993.20 16669.89 17286.02 15193.74 56
PS-MVSNAJ81.69 10881.02 11083.70 13489.51 11968.21 13084.28 23790.09 15070.79 17481.26 10985.62 24463.15 13394.29 11275.62 12388.87 11288.59 237
xiu_mvs_v2_base81.69 10881.05 10983.60 13589.15 13768.03 13384.46 23190.02 15170.67 17781.30 10886.53 22663.17 13294.19 12075.60 12488.54 11788.57 238
ACMM73.20 880.78 13179.84 12983.58 13689.31 13168.37 12589.99 7591.60 10770.28 18477.25 16489.66 13353.37 22993.53 15374.24 13382.85 18588.85 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
LFMVS81.82 10581.23 10683.57 13791.89 7963.43 21989.84 7781.85 29677.04 5783.21 8193.10 6252.26 23793.43 15971.98 15389.95 10393.85 49
Fast-Effi-MVS+80.81 12679.92 12783.47 13888.85 14564.51 19385.53 20889.39 16770.79 17478.49 13985.06 25667.54 8793.58 14867.03 20086.58 14292.32 109
CHOSEN 1792x268877.63 20475.69 21383.44 13989.98 10968.58 12378.70 30087.50 22156.38 33175.80 19986.84 20858.67 18991.40 22661.58 24285.75 15590.34 173
新几何183.42 14093.13 5370.71 7585.48 24857.43 32581.80 10091.98 7963.28 12892.27 19864.60 21892.99 6687.27 264
DP-MVS76.78 21774.57 22983.42 14093.29 4969.46 10288.55 11883.70 27063.98 27370.20 26688.89 15554.01 22594.80 10146.66 32981.88 19786.01 291
MVS_Test83.15 8483.06 8083.41 14286.86 20663.21 22386.11 19192.00 9074.31 11482.87 8789.44 14570.03 6593.21 16477.39 10788.50 11993.81 53
LS3D76.95 21574.82 22783.37 14390.45 9967.36 14689.15 9686.94 23161.87 29369.52 27890.61 11351.71 24994.53 10746.38 33286.71 14188.21 244
IB-MVS68.01 1575.85 23173.36 24383.31 14484.76 23766.03 16383.38 25285.06 25270.21 18669.40 27981.05 30045.76 29894.66 10565.10 21475.49 26989.25 213
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MG-MVS83.41 8083.45 7583.28 14592.74 6662.28 23788.17 13489.50 16575.22 9781.49 10492.74 7366.75 9395.11 8572.85 14891.58 8192.45 106
jajsoiax79.29 16277.96 16983.27 14684.68 23966.57 15889.25 9190.16 14869.20 20775.46 20589.49 13945.75 29993.13 17276.84 11380.80 20790.11 182
test_djsdf80.30 14179.32 14283.27 14683.98 25065.37 18090.50 6190.38 13968.55 22276.19 18988.70 15856.44 20893.46 15778.98 8980.14 21790.97 151
test_yl81.17 11780.47 11983.24 14889.13 13863.62 21086.21 18889.95 15372.43 14881.78 10189.61 13557.50 19993.58 14870.75 16186.90 13792.52 101
DCV-MVSNet81.17 11780.47 11983.24 14889.13 13863.62 21086.21 18889.95 15372.43 14881.78 10189.61 13557.50 19993.58 14870.75 16186.90 13792.52 101
mvs_tets79.13 16677.77 17783.22 15084.70 23866.37 16089.17 9290.19 14769.38 20175.40 20889.46 14244.17 30793.15 17076.78 11480.70 20990.14 179
thisisatest051577.33 20975.38 22183.18 15185.27 22963.80 20882.11 26683.27 27965.06 25775.91 19583.84 27049.54 27194.27 11467.24 19686.19 14891.48 136
CDS-MVSNet79.07 16877.70 18083.17 15287.60 19068.23 12984.40 23586.20 24167.49 23076.36 18586.54 22561.54 15890.79 24261.86 23987.33 13190.49 167
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
v7n78.97 17177.58 18483.14 15383.45 25865.51 17588.32 12791.21 12073.69 12872.41 24686.32 23157.93 19393.81 13869.18 17975.65 26690.11 182
BH-RMVSNet79.61 15278.44 15883.14 15389.38 12565.93 16784.95 21887.15 22873.56 13178.19 14689.79 13056.67 20793.36 16059.53 25786.74 14090.13 180
UniMVSNet (Re)81.60 11181.11 10883.09 15588.38 16664.41 19887.60 14893.02 4178.42 3178.56 13788.16 17669.78 6993.26 16369.58 17676.49 25491.60 130
PLCcopyleft70.83 1178.05 19376.37 21083.08 15691.88 8067.80 13688.19 13389.46 16664.33 26769.87 27588.38 16953.66 22793.58 14858.86 26482.73 18787.86 250
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
v119279.59 15378.43 15983.07 15783.55 25764.52 19286.93 16690.58 13470.83 17277.78 15485.90 23659.15 18793.94 13073.96 13577.19 24490.76 156
v2v48280.23 14279.29 14383.05 15883.62 25564.14 20287.04 16289.97 15273.61 12978.18 14787.22 20061.10 17093.82 13776.11 11776.78 25291.18 143
TAMVS78.89 17377.51 18583.03 15987.80 18367.79 13784.72 22285.05 25367.63 22776.75 17687.70 18562.25 14890.82 24158.53 26887.13 13490.49 167
v114480.03 14679.03 14783.01 16083.78 25364.51 19387.11 16190.57 13571.96 15578.08 15086.20 23361.41 16293.94 13074.93 12877.23 24290.60 163
cascas76.72 21874.64 22882.99 16185.78 22165.88 16982.33 26489.21 17560.85 29972.74 24181.02 30147.28 28693.75 14367.48 19285.02 15789.34 211
anonymousdsp78.60 17877.15 19182.98 16280.51 31267.08 14987.24 15889.53 16465.66 25175.16 21687.19 20252.52 23292.25 20077.17 10979.34 22589.61 206
v1079.74 15178.67 15282.97 16384.06 24864.95 18787.88 14490.62 13373.11 13975.11 21886.56 22461.46 16194.05 12673.68 13675.55 26889.90 196
UniMVSNet_NR-MVSNet81.88 10381.54 10382.92 16488.46 16363.46 21787.13 15992.37 7280.19 1478.38 14189.14 14871.66 5393.05 17670.05 16976.46 25592.25 113
DU-MVS81.12 11980.52 11882.90 16587.80 18363.46 21787.02 16391.87 9879.01 2678.38 14189.07 15165.02 11393.05 17670.05 16976.46 25592.20 115
PVSNet_Blended80.98 12080.34 12182.90 16588.85 14565.40 17784.43 23392.00 9067.62 22878.11 14885.05 25766.02 10494.27 11471.52 15589.50 10689.01 221
CANet_DTU80.61 13379.87 12882.83 16785.60 22463.17 22687.36 15488.65 19876.37 7575.88 19788.44 16853.51 22893.07 17573.30 14389.74 10592.25 113
V4279.38 16178.24 16582.83 16781.10 30665.50 17685.55 20689.82 15671.57 16278.21 14586.12 23460.66 17793.18 16975.64 12275.46 27289.81 201
Anonymous2023121178.97 17177.69 18182.81 16990.54 9864.29 20090.11 7391.51 11065.01 25976.16 19388.13 18150.56 26093.03 17969.68 17577.56 24091.11 145
v192192079.22 16378.03 16882.80 17083.30 26163.94 20686.80 17090.33 14369.91 19177.48 15985.53 24558.44 19193.75 14373.60 13776.85 25090.71 159
v879.97 14879.02 14882.80 17084.09 24764.50 19587.96 13990.29 14674.13 12175.24 21586.81 20962.88 13893.89 13674.39 13175.40 27490.00 190
TAPA-MVS73.13 979.15 16577.94 17082.79 17289.59 11562.99 23088.16 13591.51 11065.77 24977.14 17091.09 10260.91 17393.21 16450.26 31287.05 13592.17 117
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v14419279.47 15678.37 16182.78 17383.35 25963.96 20586.96 16490.36 14269.99 18877.50 15885.67 24260.66 17793.77 14174.27 13276.58 25390.62 161
NR-MVSNet80.23 14279.38 14082.78 17387.80 18363.34 22086.31 18591.09 12579.01 2672.17 24989.07 15167.20 9192.81 18566.08 20675.65 26692.20 115
diffmvs82.10 9881.88 10082.76 17583.00 27163.78 20983.68 24589.76 15872.94 14382.02 9689.85 12965.96 10690.79 24282.38 6987.30 13293.71 57
v124078.99 17077.78 17682.64 17683.21 26363.54 21486.62 17790.30 14569.74 19777.33 16285.68 24157.04 20593.76 14273.13 14676.92 24690.62 161
Fast-Effi-MVS+-dtu78.02 19476.49 20782.62 17783.16 26766.96 15486.94 16587.45 22372.45 14571.49 25684.17 26554.79 21791.58 22067.61 19080.31 21489.30 212
RPMNet73.51 25270.49 26882.58 17881.32 30365.19 18375.92 31692.27 7657.60 32472.73 24276.45 33552.30 23695.43 7148.14 32477.71 23787.11 271
F-COLMAP76.38 22574.33 23482.50 17989.28 13266.95 15588.41 12289.03 18264.05 27166.83 30088.61 16246.78 28992.89 18157.48 27678.55 22987.67 253
TranMVSNet+NR-MVSNet80.84 12380.31 12282.42 18087.85 18162.33 23587.74 14691.33 11680.55 1177.99 15189.86 12865.23 11192.62 18667.05 19975.24 28092.30 111
MVSTER79.01 16977.88 17382.38 18183.07 26864.80 18984.08 24288.95 18869.01 21478.69 13387.17 20354.70 21892.43 19274.69 12980.57 21189.89 197
PVSNet_BlendedMVS80.60 13480.02 12582.36 18288.85 14565.40 17786.16 19092.00 9069.34 20278.11 14886.09 23566.02 10494.27 11471.52 15582.06 19487.39 260
EI-MVSNet80.52 13779.98 12682.12 18384.28 24363.19 22586.41 18288.95 18874.18 11978.69 13387.54 19166.62 9492.43 19272.57 15180.57 21190.74 158
IterMVS-LS80.06 14579.38 14082.11 18485.89 21963.20 22486.79 17189.34 16874.19 11875.45 20686.72 21266.62 9492.39 19472.58 15076.86 24990.75 157
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
bset_n11_16_dypcd77.12 21175.47 21782.06 18581.12 30565.99 16581.37 27583.20 28269.94 19076.09 19483.38 27847.75 28392.26 19978.51 9377.91 23687.95 246
BH-untuned79.47 15678.60 15482.05 18689.19 13665.91 16886.07 19288.52 20172.18 15175.42 20787.69 18661.15 16993.54 15260.38 25086.83 13986.70 279
ACMH+68.96 1476.01 22974.01 23682.03 18788.60 15865.31 18188.86 10487.55 21970.25 18567.75 28987.47 19341.27 32293.19 16858.37 26975.94 26387.60 255
Anonymous20240521178.25 18577.01 19381.99 18891.03 8860.67 25584.77 22183.90 26870.65 17980.00 11991.20 9941.08 32491.43 22565.21 21285.26 15693.85 49
GA-MVS76.87 21675.17 22581.97 18982.75 27762.58 23281.44 27486.35 24072.16 15374.74 22582.89 28246.20 29492.02 20868.85 18381.09 20391.30 141
CNLPA78.08 19176.79 20081.97 18990.40 10171.07 6487.59 14984.55 25866.03 24772.38 24789.64 13457.56 19886.04 29759.61 25683.35 17888.79 232
MVS78.19 18976.99 19581.78 19185.66 22266.99 15084.66 22390.47 13755.08 33672.02 25185.27 25063.83 12394.11 12566.10 20589.80 10484.24 310
ACMH67.68 1675.89 23073.93 23781.77 19288.71 15566.61 15788.62 11589.01 18469.81 19266.78 30186.70 21741.95 32191.51 22455.64 28878.14 23587.17 267
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet_ETH3D79.10 16778.24 16581.70 19386.85 20760.24 26187.28 15788.79 19174.25 11776.84 17290.53 11549.48 27291.56 22167.98 18782.15 19393.29 76
VNet82.21 9782.41 8881.62 19490.82 9360.93 25184.47 22989.78 15776.36 7684.07 7291.88 8264.71 11790.26 24870.68 16388.89 11193.66 58
XVG-ACMP-BASELINE76.11 22874.27 23581.62 19483.20 26464.67 19183.60 24989.75 15969.75 19571.85 25287.09 20532.78 34692.11 20569.99 17180.43 21388.09 245
eth_miper_zixun_eth77.92 19776.69 20481.61 19683.00 27161.98 24083.15 25589.20 17669.52 19974.86 22484.35 26361.76 15492.56 18971.50 15772.89 30190.28 175
PAPM77.68 20376.40 20981.51 19787.29 20161.85 24283.78 24489.59 16364.74 26171.23 25788.70 15862.59 14193.66 14752.66 29987.03 13689.01 221
v14878.72 17577.80 17581.47 19882.73 27861.96 24186.30 18688.08 20873.26 13876.18 19085.47 24762.46 14492.36 19671.92 15473.82 29390.09 184
LTVRE_ROB69.57 1376.25 22674.54 23181.41 19988.60 15864.38 19979.24 29389.12 18170.76 17669.79 27787.86 18349.09 27793.20 16656.21 28780.16 21586.65 280
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
GBi-Net78.40 18177.40 18681.40 20087.60 19063.01 22788.39 12389.28 17071.63 15975.34 21087.28 19654.80 21491.11 23262.72 22879.57 22090.09 184
test178.40 18177.40 18681.40 20087.60 19063.01 22788.39 12389.28 17071.63 15975.34 21087.28 19654.80 21491.11 23262.72 22879.57 22090.09 184
FMVSNet177.44 20676.12 21281.40 20086.81 20963.01 22788.39 12389.28 17070.49 18174.39 22887.28 19649.06 27891.11 23260.91 24778.52 23090.09 184
RRT_test8_iter0578.38 18377.40 18681.34 20386.00 21858.86 27086.55 18091.26 11872.13 15475.91 19587.42 19444.97 30293.73 14577.02 11175.30 27791.45 138
baseline275.70 23273.83 24081.30 20483.26 26261.79 24482.57 26280.65 30566.81 23366.88 29883.42 27757.86 19592.19 20263.47 22279.57 22089.91 195
cl_fuxian78.75 17477.91 17181.26 20582.89 27561.56 24684.09 24189.13 18069.97 18975.56 20184.29 26466.36 9892.09 20673.47 14175.48 27090.12 181
cl-mvsnet278.07 19277.01 19381.23 20682.37 28761.83 24383.55 25087.98 21068.96 21575.06 22083.87 26861.40 16391.88 21473.53 13876.39 25789.98 193
FMVSNet278.20 18877.21 19081.20 20787.60 19062.89 23187.47 15289.02 18371.63 15975.29 21487.28 19654.80 21491.10 23562.38 23279.38 22489.61 206
TR-MVS77.44 20676.18 21181.20 20788.24 17063.24 22284.61 22786.40 23867.55 22977.81 15386.48 22754.10 22393.15 17057.75 27582.72 18887.20 266
ab-mvs79.51 15478.97 14981.14 20988.46 16360.91 25283.84 24389.24 17470.36 18279.03 12788.87 15663.23 13190.21 25065.12 21382.57 19092.28 112
MVP-Stereo76.12 22774.46 23381.13 21085.37 22869.79 9284.42 23487.95 21165.03 25867.46 29285.33 24953.28 23091.73 21858.01 27383.27 17981.85 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
miper_ehance_all_eth78.59 17977.76 17881.08 21182.66 28061.56 24683.65 24689.15 17868.87 21775.55 20283.79 27266.49 9692.03 20773.25 14476.39 25789.64 205
FIs82.07 10082.42 8781.04 21288.80 15058.34 27588.26 13193.49 2476.93 5978.47 14091.04 10469.92 6892.34 19769.87 17384.97 15892.44 107
FMVSNet377.88 19876.85 19880.97 21386.84 20862.36 23486.52 18188.77 19271.13 16775.34 21086.66 21954.07 22491.10 23562.72 22879.57 22089.45 209
miper_enhance_ethall77.87 19976.86 19780.92 21481.65 29461.38 24882.68 26088.98 18565.52 25375.47 20382.30 29065.76 10892.00 20972.95 14776.39 25789.39 210
BH-w/o78.21 18777.33 18980.84 21588.81 14965.13 18584.87 21987.85 21569.75 19574.52 22784.74 26061.34 16493.11 17358.24 27185.84 15484.27 309
COLMAP_ROBcopyleft66.92 1773.01 25970.41 27080.81 21687.13 20465.63 17388.30 12884.19 26562.96 28163.80 32487.69 18638.04 33492.56 18946.66 32974.91 28284.24 310
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VPA-MVSNet80.60 13480.55 11780.76 21788.07 17560.80 25486.86 16891.58 10875.67 8980.24 11889.45 14463.34 12790.25 24970.51 16579.22 22891.23 142
EG-PatchMatch MVS74.04 24771.82 25680.71 21884.92 23667.42 14385.86 19888.08 20866.04 24664.22 32083.85 26935.10 34292.56 18957.44 27780.83 20682.16 328
cl-mvsnet____77.72 20176.76 20180.58 21982.49 28460.48 25883.09 25687.87 21369.22 20574.38 22985.22 25262.10 15191.53 22271.09 15975.41 27389.73 204
cl-mvsnet177.72 20176.76 20180.58 21982.48 28560.48 25883.09 25687.86 21469.22 20574.38 22985.24 25162.10 15191.53 22271.09 15975.40 27489.74 203
MSDG73.36 25570.99 26480.49 22184.51 24165.80 17080.71 27986.13 24365.70 25065.46 31183.74 27344.60 30390.91 24051.13 30576.89 24884.74 305
pmmvs474.03 24871.91 25480.39 22281.96 29168.32 12681.45 27382.14 29259.32 31169.87 27585.13 25452.40 23588.13 28260.21 25274.74 28484.73 306
HY-MVS69.67 1277.95 19677.15 19180.36 22387.57 19460.21 26283.37 25387.78 21666.11 24475.37 20987.06 20763.27 12990.48 24761.38 24482.43 19190.40 171
mvs_anonymous79.42 15879.11 14680.34 22484.45 24257.97 28182.59 26187.62 21867.40 23176.17 19288.56 16568.47 8089.59 25970.65 16486.05 15093.47 71
1112_ss77.40 20876.43 20880.32 22589.11 14260.41 26083.65 24687.72 21762.13 29173.05 23986.72 21262.58 14289.97 25362.11 23780.80 20790.59 164
WR-MVS79.49 15579.22 14580.27 22688.79 15158.35 27485.06 21588.61 20078.56 2977.65 15688.34 17063.81 12490.66 24564.98 21577.22 24391.80 128
131476.53 21975.30 22480.21 22783.93 25162.32 23684.66 22388.81 19060.23 30370.16 26984.07 26755.30 21290.73 24467.37 19383.21 18087.59 257
IterMVS-SCA-FT75.43 23673.87 23980.11 22882.69 27964.85 18881.57 27283.47 27669.16 20870.49 26384.15 26651.95 24488.15 28169.23 17872.14 30687.34 262
FC-MVSNet-test81.52 11282.02 9780.03 22988.42 16555.97 31187.95 14093.42 2977.10 5577.38 16190.98 10969.96 6691.79 21568.46 18584.50 16392.33 108
testdata79.97 23090.90 9164.21 20184.71 25559.27 31285.40 4492.91 6762.02 15389.08 26868.95 18291.37 8486.63 281
SCA74.22 24572.33 25279.91 23184.05 24962.17 23879.96 28779.29 31966.30 24372.38 24780.13 31051.95 24488.60 27659.25 25977.67 23988.96 225
thres40076.50 22075.37 22279.86 23289.13 13857.65 28785.17 21183.60 27173.41 13676.45 18186.39 22952.12 23991.95 21048.33 32083.75 17290.00 190
test_040272.79 26270.44 26979.84 23388.13 17265.99 16585.93 19584.29 26265.57 25267.40 29485.49 24646.92 28892.61 18735.88 35074.38 28780.94 334
OurMVSNet-221017-074.26 24472.42 25179.80 23483.76 25459.59 26685.92 19686.64 23466.39 24266.96 29787.58 18839.46 32891.60 21965.76 20969.27 31888.22 243
SixPastTwentyTwo73.37 25371.26 26379.70 23585.08 23557.89 28385.57 20283.56 27371.03 17065.66 31085.88 23742.10 31992.57 18859.11 26163.34 33588.65 236
thres600view776.50 22075.44 21879.68 23689.40 12357.16 29285.53 20883.23 28073.79 12776.26 18787.09 20551.89 24691.89 21348.05 32583.72 17590.00 190
CR-MVSNet73.37 25371.27 26279.67 23781.32 30365.19 18375.92 31680.30 31159.92 30672.73 24281.19 29852.50 23386.69 29259.84 25477.71 23787.11 271
D2MVS74.82 24073.21 24479.64 23879.81 31962.56 23380.34 28387.35 22464.37 26668.86 28282.66 28646.37 29190.10 25267.91 18881.24 20286.25 284
AllTest70.96 27368.09 28579.58 23985.15 23163.62 21084.58 22879.83 31562.31 28960.32 33486.73 21032.02 34788.96 27250.28 31071.57 31086.15 287
TestCases79.58 23985.15 23163.62 21079.83 31562.31 28960.32 33486.73 21032.02 34788.96 27250.28 31071.57 31086.15 287
tfpn200view976.42 22375.37 22279.55 24189.13 13857.65 28785.17 21183.60 27173.41 13676.45 18186.39 22952.12 23991.95 21048.33 32083.75 17289.07 214
thres100view90076.50 22075.55 21679.33 24289.52 11856.99 29585.83 20083.23 28073.94 12376.32 18687.12 20451.89 24691.95 21048.33 32083.75 17289.07 214
CostFormer75.24 23973.90 23879.27 24382.65 28158.27 27680.80 27682.73 28861.57 29475.33 21383.13 28055.52 21091.07 23864.98 21578.34 23488.45 240
Test_1112_low_res76.40 22475.44 21879.27 24389.28 13258.09 27781.69 27087.07 22959.53 31072.48 24586.67 21861.30 16589.33 26360.81 24980.15 21690.41 170
DWT-MVSNet_test73.70 25071.86 25579.21 24582.91 27458.94 26982.34 26382.17 29165.21 25471.05 26078.31 32444.21 30690.17 25163.29 22677.28 24188.53 239
K. test v371.19 27168.51 27979.21 24583.04 27057.78 28684.35 23676.91 33072.90 14462.99 32782.86 28339.27 32991.09 23761.65 24152.66 34888.75 233
lessismore_v078.97 24781.01 30757.15 29365.99 35361.16 33282.82 28439.12 33091.34 22859.67 25546.92 35388.43 241
pm-mvs177.25 21076.68 20578.93 24884.22 24558.62 27386.41 18288.36 20371.37 16573.31 23588.01 18261.22 16889.15 26764.24 21973.01 30089.03 220
thres20075.55 23474.47 23278.82 24987.78 18657.85 28483.07 25883.51 27472.44 14775.84 19884.42 26252.08 24191.75 21647.41 32783.64 17686.86 275
VPNet78.69 17678.66 15378.76 25088.31 16855.72 31384.45 23286.63 23576.79 6378.26 14490.55 11459.30 18689.70 25866.63 20177.05 24590.88 153
tpm273.26 25671.46 25878.63 25183.34 26056.71 30080.65 28080.40 31056.63 33073.55 23382.02 29551.80 24891.24 23056.35 28678.42 23387.95 246
pmmvs674.69 24173.39 24278.61 25281.38 30057.48 29086.64 17687.95 21164.99 26070.18 26786.61 22050.43 26289.52 26062.12 23670.18 31688.83 230
WR-MVS_H78.51 18078.49 15678.56 25388.02 17756.38 30688.43 11992.67 6077.14 5373.89 23287.55 19066.25 10089.24 26558.92 26373.55 29590.06 188
RPSCF73.23 25771.46 25878.54 25482.50 28359.85 26382.18 26582.84 28758.96 31471.15 25989.41 14645.48 30184.77 30758.82 26571.83 30891.02 150
pmmvs-eth3d70.50 27867.83 28978.52 25577.37 33466.18 16281.82 26781.51 29858.90 31563.90 32380.42 30842.69 31486.28 29658.56 26765.30 33183.11 321
PatchmatchNetpermissive73.12 25871.33 26178.49 25683.18 26560.85 25379.63 28978.57 32164.13 26871.73 25379.81 31551.20 25385.97 29857.40 27876.36 26088.66 235
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
IterMVS74.29 24372.94 24778.35 25781.53 29763.49 21681.58 27182.49 28968.06 22669.99 27283.69 27451.66 25085.54 30065.85 20871.64 30986.01 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ITE_SJBPF78.22 25881.77 29360.57 25683.30 27869.25 20467.54 29187.20 20136.33 33987.28 29054.34 29274.62 28586.80 276
ppachtmachnet_test70.04 28267.34 29578.14 25979.80 32061.13 24979.19 29580.59 30659.16 31365.27 31379.29 31646.75 29087.29 28949.33 31666.72 32586.00 293
tfpnnormal74.39 24273.16 24578.08 26086.10 21758.05 27884.65 22687.53 22070.32 18371.22 25885.63 24354.97 21389.86 25443.03 34175.02 28186.32 283
Vis-MVSNet (Re-imp)78.36 18478.45 15778.07 26188.64 15751.78 33386.70 17579.63 31774.14 12075.11 21890.83 11061.29 16689.75 25658.10 27291.60 8092.69 98
TransMVSNet (Re)75.39 23874.56 23077.86 26285.50 22657.10 29486.78 17286.09 24472.17 15271.53 25587.34 19563.01 13789.31 26456.84 28361.83 33687.17 267
PEN-MVS77.73 20077.69 18177.84 26387.07 20553.91 32387.91 14391.18 12177.56 4173.14 23888.82 15761.23 16789.17 26659.95 25372.37 30390.43 169
CP-MVSNet78.22 18678.34 16277.84 26387.83 18254.54 31887.94 14191.17 12277.65 3673.48 23488.49 16662.24 14988.43 27862.19 23474.07 28890.55 165
PS-CasMVS78.01 19578.09 16777.77 26587.71 18754.39 32088.02 13791.22 11977.50 4473.26 23688.64 16160.73 17488.41 27961.88 23873.88 29290.53 166
baseline176.98 21476.75 20377.66 26688.13 17255.66 31485.12 21481.89 29473.04 14176.79 17488.90 15462.43 14587.78 28663.30 22571.18 31289.55 208
OpenMVS_ROBcopyleft64.09 1970.56 27768.19 28277.65 26780.26 31359.41 26885.01 21682.96 28658.76 31665.43 31282.33 28937.63 33691.23 23145.34 33776.03 26282.32 326
Patchmatch-RL test70.24 28067.78 29177.61 26877.43 33359.57 26771.16 33270.33 34462.94 28268.65 28472.77 34250.62 25985.49 30169.58 17666.58 32787.77 252
Baseline_NR-MVSNet78.15 19078.33 16377.61 26885.79 22056.21 30986.78 17285.76 24673.60 13077.93 15287.57 18965.02 11388.99 26967.14 19875.33 27687.63 254
DTE-MVSNet76.99 21376.80 19977.54 27086.24 21553.06 33087.52 15090.66 13277.08 5672.50 24488.67 16060.48 18089.52 26057.33 27970.74 31490.05 189
LCM-MVSNet-Re77.05 21276.94 19677.36 27187.20 20251.60 33480.06 28580.46 30975.20 9867.69 29086.72 21262.48 14388.98 27063.44 22389.25 10991.51 133
tpm cat170.57 27668.31 28177.35 27282.41 28657.95 28278.08 30580.22 31352.04 34268.54 28677.66 33052.00 24387.84 28551.77 30172.07 30786.25 284
MS-PatchMatch73.83 24972.67 24877.30 27383.87 25266.02 16481.82 26784.66 25661.37 29768.61 28582.82 28447.29 28588.21 28059.27 25884.32 16677.68 343
MVS_030472.48 26370.89 26677.24 27482.20 28859.68 26484.11 24083.49 27567.10 23266.87 29980.59 30635.00 34387.40 28859.07 26279.58 21984.63 307
EPNet_dtu75.46 23574.86 22677.23 27582.57 28254.60 31786.89 16783.09 28471.64 15866.25 30885.86 23855.99 20988.04 28354.92 29086.55 14389.05 219
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
miper_lstm_enhance74.11 24673.11 24677.13 27680.11 31559.62 26572.23 33086.92 23266.76 23570.40 26482.92 28156.93 20682.92 31869.06 18172.63 30288.87 228
TDRefinement67.49 29664.34 30576.92 27773.47 34961.07 25084.86 22082.98 28559.77 30758.30 34085.13 25426.06 35287.89 28447.92 32660.59 34081.81 330
JIA-IIPM66.32 30562.82 31576.82 27877.09 33561.72 24565.34 34875.38 33358.04 32164.51 31862.32 34942.05 32086.51 29451.45 30469.22 31982.21 327
PatchMatch-RL72.38 26570.90 26576.80 27988.60 15867.38 14579.53 29076.17 33262.75 28569.36 28082.00 29645.51 30084.89 30653.62 29580.58 21078.12 342
tpmvs71.09 27269.29 27576.49 28082.04 29056.04 31078.92 29881.37 30064.05 27167.18 29678.28 32549.74 27089.77 25549.67 31572.37 30383.67 315
CMPMVSbinary51.72 2170.19 28168.16 28376.28 28173.15 35157.55 28979.47 29183.92 26748.02 34656.48 34584.81 25843.13 31186.42 29562.67 23181.81 19884.89 303
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
USDC70.33 27968.37 28076.21 28280.60 31056.23 30879.19 29586.49 23660.89 29861.29 33185.47 24731.78 34989.47 26253.37 29676.21 26182.94 325
gg-mvs-nofinetune69.95 28367.96 28675.94 28383.07 26854.51 31977.23 31170.29 34563.11 27870.32 26562.33 34843.62 30988.69 27553.88 29487.76 12484.62 308
MDA-MVSNet-bldmvs66.68 30163.66 30975.75 28479.28 32760.56 25773.92 32778.35 32264.43 26450.13 35179.87 31444.02 30883.67 31346.10 33356.86 34383.03 323
PVSNet64.34 1872.08 26870.87 26775.69 28586.21 21656.44 30474.37 32680.73 30462.06 29270.17 26882.23 29242.86 31383.31 31654.77 29184.45 16587.32 263
pmmvs571.55 26970.20 27275.61 28677.83 33156.39 30581.74 26980.89 30157.76 32267.46 29284.49 26149.26 27685.32 30357.08 28175.29 27885.11 302
our_test_369.14 28767.00 29775.57 28779.80 32058.80 27177.96 30677.81 32459.55 30962.90 32878.25 32647.43 28483.97 31151.71 30267.58 32483.93 314
WTY-MVS75.65 23375.68 21475.57 28786.40 21456.82 29777.92 30882.40 29065.10 25676.18 19087.72 18463.13 13680.90 32560.31 25181.96 19589.00 223
Patchmtry70.74 27469.16 27675.49 28980.72 30854.07 32274.94 32580.30 31158.34 31870.01 27081.19 29852.50 23386.54 29353.37 29671.09 31385.87 294
GG-mvs-BLEND75.38 29081.59 29655.80 31279.32 29269.63 34767.19 29573.67 34143.24 31088.90 27450.41 30784.50 16381.45 331
ambc75.24 29173.16 35050.51 34163.05 35287.47 22264.28 31977.81 32917.80 35889.73 25757.88 27460.64 33985.49 295
CL-MVSNet_2432*160072.37 26671.46 25875.09 29279.49 32553.53 32580.76 27885.01 25469.12 20970.51 26282.05 29457.92 19484.13 31052.27 30066.00 32987.60 255
XXY-MVS75.41 23775.56 21574.96 29383.59 25657.82 28580.59 28183.87 26966.54 24174.93 22388.31 17163.24 13080.09 32862.16 23576.85 25086.97 273
MIMVSNet70.69 27569.30 27474.88 29484.52 24056.35 30775.87 31879.42 31864.59 26267.76 28882.41 28841.10 32381.54 32346.64 33181.34 20086.75 278
ADS-MVSNet266.20 30863.33 31074.82 29579.92 31758.75 27267.55 34575.19 33453.37 33965.25 31475.86 33642.32 31680.53 32741.57 34468.91 32085.18 299
TinyColmap67.30 29964.81 30374.76 29681.92 29256.68 30180.29 28481.49 29960.33 30156.27 34683.22 27924.77 35387.66 28745.52 33569.47 31779.95 338
test-LLR72.94 26172.43 25074.48 29781.35 30158.04 27978.38 30177.46 32666.66 23769.95 27379.00 31948.06 28179.24 32966.13 20384.83 15986.15 287
test-mter71.41 27070.39 27174.48 29781.35 30158.04 27978.38 30177.46 32660.32 30269.95 27379.00 31936.08 34079.24 32966.13 20384.83 15986.15 287
tpm72.37 26671.71 25774.35 29982.19 28952.00 33179.22 29477.29 32864.56 26372.95 24083.68 27551.35 25183.26 31758.33 27075.80 26487.81 251
CVMVSNet72.99 26072.58 24974.25 30084.28 24350.85 33986.41 18283.45 27744.56 34773.23 23787.54 19149.38 27385.70 29965.90 20778.44 23286.19 286
FMVSNet569.50 28567.96 28674.15 30182.97 27355.35 31580.01 28682.12 29362.56 28763.02 32581.53 29736.92 33781.92 32148.42 31974.06 28985.17 301
MIMVSNet168.58 29266.78 29973.98 30280.07 31651.82 33280.77 27784.37 25964.40 26559.75 33782.16 29336.47 33883.63 31442.73 34270.33 31586.48 282
Anonymous2024052168.80 29067.22 29673.55 30374.33 34454.11 32183.18 25485.61 24758.15 31961.68 33080.94 30330.71 35081.27 32457.00 28273.34 29985.28 298
sss73.60 25173.64 24173.51 30482.80 27655.01 31676.12 31481.69 29762.47 28874.68 22685.85 23957.32 20178.11 33560.86 24880.93 20487.39 260
KD-MVS_2432*160066.22 30663.89 30773.21 30575.47 34253.42 32770.76 33584.35 26064.10 26966.52 30478.52 32234.55 34484.98 30450.40 30850.33 35181.23 332
miper_refine_blended66.22 30663.89 30773.21 30575.47 34253.42 32770.76 33584.35 26064.10 26966.52 30478.52 32234.55 34484.98 30450.40 30850.33 35181.23 332
PM-MVS66.41 30464.14 30673.20 30773.92 34656.45 30378.97 29764.96 35663.88 27564.72 31780.24 30919.84 35783.44 31566.24 20264.52 33379.71 339
tpmrst72.39 26472.13 25373.18 30880.54 31149.91 34279.91 28879.08 32063.11 27871.69 25479.95 31255.32 21182.77 31965.66 21073.89 29186.87 274
TESTMET0.1,169.89 28469.00 27772.55 30979.27 32856.85 29678.38 30174.71 33857.64 32368.09 28777.19 33237.75 33576.70 34063.92 22084.09 16884.10 313
DIV-MVS_2432*160068.81 28967.59 29472.46 31074.29 34545.45 34977.93 30787.00 23063.12 27763.99 32278.99 32142.32 31684.77 30756.55 28564.09 33487.16 269
CHOSEN 280x42066.51 30364.71 30471.90 31181.45 29863.52 21557.98 35368.95 35153.57 33862.59 32976.70 33346.22 29375.29 34755.25 28979.68 21876.88 345
EPMVS69.02 28868.16 28371.59 31279.61 32349.80 34477.40 31066.93 35262.82 28470.01 27079.05 31745.79 29777.86 33756.58 28475.26 27987.13 270
YYNet165.03 30962.91 31371.38 31375.85 33856.60 30269.12 34274.66 33957.28 32754.12 34777.87 32845.85 29674.48 34949.95 31361.52 33883.05 322
MDA-MVSNet_test_wron65.03 30962.92 31271.37 31475.93 33756.73 29869.09 34374.73 33757.28 32754.03 34877.89 32745.88 29574.39 35049.89 31461.55 33782.99 324
UnsupCasMVSNet_eth67.33 29865.99 30171.37 31473.48 34851.47 33675.16 32185.19 25165.20 25560.78 33380.93 30542.35 31577.20 33957.12 28053.69 34785.44 296
PMMVS69.34 28668.67 27871.35 31675.67 33962.03 23975.17 32073.46 34050.00 34568.68 28379.05 31752.07 24278.13 33461.16 24682.77 18673.90 346
EU-MVSNet68.53 29367.61 29371.31 31778.51 33047.01 34884.47 22984.27 26342.27 34866.44 30784.79 25940.44 32683.76 31258.76 26668.54 32383.17 319
Anonymous2023120668.60 29167.80 29071.02 31880.23 31450.75 34078.30 30480.47 30856.79 32966.11 30982.63 28746.35 29278.95 33143.62 34075.70 26583.36 318
dp66.80 30065.43 30270.90 31979.74 32248.82 34575.12 32374.77 33659.61 30864.08 32177.23 33142.89 31280.72 32648.86 31866.58 32783.16 320
PatchT68.46 29467.85 28870.29 32080.70 30943.93 35272.47 32974.88 33560.15 30470.55 26176.57 33449.94 26781.59 32250.58 30674.83 28385.34 297
UnsupCasMVSNet_bld63.70 31461.53 31870.21 32173.69 34751.39 33772.82 32881.89 29455.63 33457.81 34171.80 34438.67 33178.61 33249.26 31752.21 34980.63 335
Patchmatch-test64.82 31163.24 31169.57 32279.42 32649.82 34363.49 35169.05 35051.98 34359.95 33680.13 31050.91 25570.98 35340.66 34673.57 29487.90 249
LF4IMVS64.02 31362.19 31669.50 32370.90 35353.29 32976.13 31377.18 32952.65 34158.59 33880.98 30223.55 35476.52 34153.06 29866.66 32678.68 341
test20.0367.45 29766.95 29868.94 32475.48 34144.84 35177.50 30977.67 32566.66 23763.01 32683.80 27147.02 28778.40 33342.53 34368.86 32283.58 316
test0.0.03 168.00 29567.69 29268.90 32577.55 33247.43 34675.70 31972.95 34266.66 23766.56 30282.29 29148.06 28175.87 34444.97 33874.51 28683.41 317
PVSNet_057.27 2061.67 31659.27 31968.85 32679.61 32357.44 29168.01 34473.44 34155.93 33358.54 33970.41 34544.58 30477.55 33847.01 32835.91 35471.55 348
ADS-MVSNet64.36 31262.88 31468.78 32779.92 31747.17 34767.55 34571.18 34353.37 33965.25 31475.86 33642.32 31673.99 35141.57 34468.91 32085.18 299
pmmvs357.79 31854.26 32268.37 32864.02 35756.72 29975.12 32365.17 35440.20 35052.93 34969.86 34620.36 35675.48 34645.45 33655.25 34672.90 347
LCM-MVSNet54.25 32049.68 32667.97 32953.73 36045.28 35066.85 34780.78 30335.96 35439.45 35462.23 3508.70 36678.06 33648.24 32351.20 35080.57 336
testgi66.67 30266.53 30067.08 33075.62 34041.69 35575.93 31576.50 33166.11 24465.20 31686.59 22135.72 34174.71 34843.71 33973.38 29884.84 304
ANet_high50.57 32446.10 32763.99 33148.67 36339.13 35670.99 33480.85 30261.39 29631.18 35657.70 35317.02 35973.65 35231.22 35215.89 36179.18 340
MVS-HIRNet59.14 31757.67 32063.57 33281.65 29443.50 35371.73 33165.06 35539.59 35251.43 35057.73 35238.34 33382.58 32039.53 34773.95 29064.62 351
new-patchmatchnet61.73 31561.73 31761.70 33372.74 35224.50 36569.16 34178.03 32361.40 29556.72 34475.53 33838.42 33276.48 34245.95 33457.67 34284.13 312
DSMNet-mixed57.77 31956.90 32160.38 33467.70 35535.61 35869.18 34053.97 36032.30 35757.49 34279.88 31340.39 32768.57 35538.78 34872.37 30376.97 344
FPMVS53.68 32151.64 32459.81 33565.08 35651.03 33869.48 33969.58 34841.46 34940.67 35372.32 34316.46 36070.00 35424.24 35665.42 33058.40 353
PMVScopyleft37.38 2244.16 32640.28 32955.82 33640.82 36542.54 35465.12 34963.99 35734.43 35524.48 35857.12 3543.92 36876.17 34317.10 35955.52 34548.75 354
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft45.18 32541.86 32855.16 33777.03 33651.52 33532.50 35980.52 30732.46 35627.12 35735.02 3589.52 36575.50 34522.31 35760.21 34138.45 356
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
new_pmnet50.91 32350.29 32552.78 33868.58 35434.94 36063.71 35056.63 35939.73 35144.95 35265.47 34721.93 35558.48 35734.98 35156.62 34464.92 350
N_pmnet52.79 32253.26 32351.40 33978.99 3297.68 36869.52 3383.89 36851.63 34457.01 34374.98 33940.83 32565.96 35637.78 34964.67 33280.56 337
PMMVS240.82 32738.86 33046.69 34053.84 35916.45 36648.61 35649.92 36137.49 35331.67 35560.97 3518.14 36756.42 35828.42 35330.72 35667.19 349
MVEpermissive26.22 2330.37 33125.89 33543.81 34144.55 36435.46 35928.87 36039.07 36418.20 36018.58 36240.18 3572.68 36947.37 36217.07 36023.78 35848.60 355
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method31.52 32929.28 33338.23 34227.03 3676.50 36920.94 36162.21 3584.05 36322.35 36152.50 35513.33 36147.58 36127.04 35534.04 35560.62 352
E-PMN31.77 32830.64 33135.15 34352.87 36127.67 36257.09 35447.86 36224.64 35816.40 36333.05 35911.23 36354.90 35914.46 36118.15 35922.87 358
EMVS30.81 33029.65 33234.27 34450.96 36225.95 36456.58 35546.80 36324.01 35915.53 36430.68 36012.47 36254.43 36012.81 36217.05 36022.43 359
DeepMVS_CXcopyleft27.40 34540.17 36626.90 36324.59 36717.44 36123.95 35948.61 3569.77 36426.48 36318.06 35824.47 35728.83 357
wuyk23d16.82 33415.94 33719.46 34658.74 35831.45 36139.22 3573.74 3696.84 3626.04 3652.70 3651.27 37024.29 36410.54 36314.40 3632.63 361
tmp_tt18.61 33321.40 33610.23 3474.82 36810.11 36734.70 35830.74 3661.48 36423.91 36026.07 36128.42 35113.41 36527.12 35415.35 3627.17 360
test1236.12 3368.11 3390.14 3480.06 3700.09 37071.05 3330.03 3710.04 3660.25 3671.30 3670.05 3710.03 3670.21 3650.01 3650.29 362
testmvs6.04 3378.02 3400.10 3490.08 3690.03 37169.74 3370.04 3700.05 3650.31 3661.68 3660.02 3720.04 3660.24 3640.02 3640.25 363
uanet_test0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
cdsmvs_eth3d_5k19.96 33226.61 3340.00 3500.00 3710.00 3720.00 36289.26 1730.00 3670.00 36888.61 16261.62 1570.00 3680.00 3660.00 3660.00 364
pcd_1.5k_mvsjas5.26 3387.02 3410.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 36863.15 1330.00 3680.00 3660.00 3660.00 364
sosnet-low-res0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
sosnet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
uncertanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
Regformer0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ab-mvs-re7.23 3359.64 3380.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 36886.72 2120.00 3730.00 3680.00 3660.00 3660.00 364
uanet0.00 3390.00 3420.00 3500.00 3710.00 3720.00 3620.00 3720.00 3670.00 3680.00 3680.00 3730.00 3680.00 3660.00 3660.00 364
ZD-MVS94.38 2572.22 4592.67 6070.98 17187.75 2794.07 4374.01 3596.70 2384.66 3694.84 44
RE-MVS-def85.48 5693.06 5770.63 7791.88 3492.27 7673.53 13385.69 4294.45 2663.87 12282.75 6191.87 7792.50 103
IU-MVS95.30 271.25 5992.95 4966.81 23392.39 588.94 896.63 294.85 10
test_241102_TWO94.06 1077.24 4892.78 495.72 681.26 697.44 289.07 696.58 494.26 31
test_241102_ONE95.30 270.98 6594.06 1077.17 5293.10 195.39 982.99 197.27 7
9.1488.26 1492.84 6391.52 4294.75 173.93 12488.57 2094.67 1775.57 2095.79 5586.77 2095.76 24
save fliter93.80 3972.35 4290.47 6391.17 12274.31 114
test_0728_THIRD78.38 3292.12 895.78 481.46 597.40 489.42 296.57 594.67 16
test072695.27 571.25 5993.60 494.11 677.33 4692.81 395.79 380.98 7
GSMVS88.96 225
test_part295.06 772.65 3191.80 10
sam_mvs151.32 25288.96 225
sam_mvs50.01 265
MTGPAbinary92.02 87
test_post178.90 2995.43 36448.81 28085.44 30259.25 259
test_post5.46 36350.36 26384.24 309
patchmatchnet-post74.00 34051.12 25488.60 276
MTMP92.18 3032.83 365
gm-plane-assit81.40 29953.83 32462.72 28680.94 30392.39 19463.40 224
test9_res84.90 3095.70 2792.87 93
TEST993.26 5172.96 2488.75 10991.89 9668.44 22485.00 5093.10 6274.36 3095.41 72
test_893.13 5372.57 3488.68 11491.84 9968.69 22084.87 5693.10 6274.43 2795.16 83
agg_prior282.91 5995.45 2992.70 96
agg_prior92.85 6171.94 5191.78 10284.41 6594.93 92
test_prior472.60 3389.01 99
test_prior288.85 10575.41 9284.91 5293.54 5174.28 3183.31 5095.86 18
旧先验286.56 17958.10 32087.04 3188.98 27074.07 134
新几何286.29 187
旧先验191.96 7765.79 17186.37 23993.08 6669.31 7592.74 7088.74 234
无先验87.48 15188.98 18560.00 30594.12 12367.28 19488.97 224
原ACMM286.86 168
test22291.50 8368.26 12884.16 23883.20 28254.63 33779.74 12091.63 8758.97 18891.42 8386.77 277
testdata291.01 23962.37 233
segment_acmp73.08 40
testdata184.14 23975.71 86
plane_prior790.08 10768.51 124
plane_prior689.84 11268.70 11960.42 181
plane_prior592.44 6895.38 7578.71 9186.32 14691.33 139
plane_prior491.00 107
plane_prior368.60 12278.44 3078.92 130
plane_prior291.25 4679.12 23
plane_prior189.90 111
plane_prior68.71 11790.38 6777.62 3786.16 149
n20.00 372
nn0.00 372
door-mid69.98 346
test1192.23 79
door69.44 349
HQP5-MVS66.98 151
HQP-NCC89.33 12689.17 9276.41 7177.23 166
ACMP_Plane89.33 12689.17 9276.41 7177.23 166
BP-MVS77.47 105
HQP4-MVS77.24 16595.11 8591.03 148
HQP3-MVS92.19 8285.99 152
HQP2-MVS60.17 184
NP-MVS89.62 11468.32 12690.24 119
MDTV_nov1_ep13_2view37.79 35775.16 32155.10 33566.53 30349.34 27453.98 29387.94 248
MDTV_nov1_ep1369.97 27383.18 26553.48 32677.10 31280.18 31460.45 30069.33 28180.44 30748.89 27986.90 29151.60 30378.51 231
ACMMP++_ref81.95 196
ACMMP++81.25 201
Test By Simon64.33 118