This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2493.64 1152.40 3693.27 3088.85 486.56 3092.61 26
fmvsm_l_conf0.5_n75.95 5676.16 4775.31 14176.01 25148.44 22584.98 12871.08 32263.50 10481.70 1693.52 1550.00 5487.18 19887.80 576.87 11290.32 83
fmvsm_l_conf0.5_n_a75.88 5876.07 4875.31 14176.08 24748.34 22885.24 11670.62 32663.13 11281.45 1793.62 1449.98 5687.40 19487.76 676.77 11390.20 88
test_fmvsm_n_192075.56 6475.54 5375.61 12974.60 27049.51 19681.82 21974.08 29766.52 5580.40 2193.46 1746.95 7889.72 11286.69 775.30 12787.61 149
fmvsm_s_conf0.5_n74.48 7474.12 7175.56 13176.96 23647.85 24585.32 11469.80 33364.16 8878.74 2893.48 1645.51 9889.29 12186.48 866.62 19889.55 104
fmvsm_s_conf0.1_n73.80 8573.26 7875.43 13673.28 28547.80 24684.57 14569.43 33563.34 10778.40 3193.29 2244.73 11389.22 12385.99 966.28 20589.26 109
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3693.09 2754.15 2895.57 1285.80 1085.87 3693.31 11
fmvsm_s_conf0.5_n_a73.68 9073.15 7975.29 14475.45 25848.05 23883.88 16368.84 33863.43 10678.60 2993.37 2045.32 9988.92 13885.39 1164.04 21888.89 120
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2791.09 6255.43 1990.09 10385.01 1280.40 8091.99 43
fmvsm_s_conf0.1_n_a72.82 10272.05 10175.12 14970.95 31247.97 24182.72 19668.43 34062.52 12378.17 3293.08 2844.21 11688.86 13984.82 1363.54 22488.54 131
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3593.87 752.58 3593.91 2684.17 1487.92 1592.39 30
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13583.68 14267.85 3869.36 9790.24 8260.20 792.10 5284.14 1580.40 8092.82 21
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2593.10 2549.88 5892.98 3284.09 1684.75 4893.08 17
test_fmvsmconf_n74.41 7674.05 7375.49 13574.16 27648.38 22682.66 19772.57 31067.05 4875.11 4392.88 3146.35 8587.81 17583.93 1771.71 15790.28 84
test_fmvsmconf0.1_n73.69 8973.15 7975.34 13970.71 31348.26 23182.15 20971.83 31466.75 5174.47 5092.59 3644.89 10787.78 18083.59 1871.35 16189.97 95
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12588.63 3666.08 6486.77 392.75 3272.05 191.46 6383.35 1993.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmvis_n_192071.29 12870.38 12474.00 17471.04 31148.79 21379.19 26564.62 34862.75 11766.73 11291.99 4740.94 15888.35 15783.00 2073.18 14384.85 203
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 2187.60 1792.44 29
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 2093.22 2437.77 18992.50 4282.75 2286.25 3391.57 53
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1993.07 2937.63 19492.28 4782.73 2385.71 3791.57 53
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2395.30 156.18 1790.97 7882.57 2486.22 3493.28 13
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 22084.61 494.09 358.81 1196.37 682.28 2587.60 1794.06 3
test_241102_TWO88.76 3257.50 22083.60 694.09 356.14 1896.37 682.28 2587.43 1992.55 27
test_fmvsmconf0.01_n71.97 11770.95 11675.04 15066.21 33947.87 24480.35 25070.08 33065.85 6972.69 6891.68 5439.99 17187.67 18482.03 2769.66 17689.58 103
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21481.91 1393.64 1155.17 2096.44 281.68 2887.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2887.13 2092.47 28
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12888.88 2658.00 20683.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
test_0728_THIRD58.00 20681.91 1393.64 1156.54 1596.44 281.64 3086.86 2492.23 34
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
9.1478.19 2485.67 5388.32 5088.84 2959.89 16574.58 4892.62 3546.80 8092.66 3981.40 3485.62 39
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3892.02 4544.82 11090.23 10080.83 3580.09 8492.08 38
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2693.00 3053.10 3291.76 5780.40 3689.56 892.68 25
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 14080.26 2293.10 2546.53 8492.41 4479.97 3788.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24578.56 3092.49 3748.20 6592.65 4079.49 3883.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6290.52 7645.23 10190.66 8679.37 3980.95 7290.22 86
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5290.91 6842.14 14489.99 10579.30 4079.12 9591.36 61
jason: jason.
test_vis1_n_192068.59 17868.31 15469.44 26469.16 32441.51 32084.63 14368.58 33958.80 19373.26 6188.37 12025.30 30980.60 29179.10 4167.55 19186.23 176
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8588.35 12151.58 4091.22 6879.02 4279.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3392.13 4160.24 694.78 1978.97 4389.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
h-mvs3373.95 8272.89 8477.15 9280.17 18050.37 17484.68 14083.33 14868.08 3371.97 7788.65 11842.50 13891.15 7178.82 4457.78 28189.91 98
hse-mvs271.44 12770.68 11873.73 18476.34 24147.44 25179.45 26279.47 22068.08 3371.97 7786.01 15842.50 13886.93 20778.82 4453.46 31886.83 166
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5492.75 3246.88 7993.28 2978.79 4684.07 5391.50 57
test9_res78.72 4785.44 4191.39 59
test_cas_vis1_n_192067.10 21066.60 18768.59 27765.17 34743.23 30483.23 18569.84 33255.34 25370.67 9287.71 13424.70 31676.66 33078.57 4864.20 21785.89 185
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18271.82 7990.05 9059.72 996.04 1078.37 4988.40 1393.75 7
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 25081.21 1893.69 1056.51 1694.27 2278.36 5085.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss75.54 6575.03 6077.04 9481.37 15552.65 12884.34 14984.46 12561.16 14369.14 9891.76 5139.98 17288.99 13378.19 5184.89 4789.48 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 21172.99 6390.98 6544.99 10488.58 14778.19 5185.32 4291.34 63
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19474.63 4692.38 3847.75 7091.35 6578.18 5386.85 2591.15 66
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3492.11 4450.90 4789.95 10678.18 5377.54 10793.20 15
VDD-MVS76.08 5474.97 6279.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7489.34 10332.52 25892.76 3877.90 5575.96 12092.22 36
diffmvspermissive75.11 7174.65 6776.46 10978.52 21053.35 10983.28 18479.94 20870.51 1871.64 8188.72 11446.02 9086.08 23377.52 5675.75 12489.96 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SDMVSNet71.89 11870.62 12075.70 12781.70 14051.61 14873.89 29688.72 3366.58 5261.64 18282.38 21137.63 19489.48 11777.44 5765.60 20886.01 179
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 4091.99 4754.07 2989.05 12877.34 5877.00 11092.89 20
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11571.65 8091.56 5842.33 14092.56 4177.14 5983.69 5590.15 90
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP76.43 4975.66 5178.73 5281.92 13354.67 7984.06 15885.35 9561.10 14572.99 6391.50 5940.25 16591.00 7576.84 6086.98 2390.51 79
CLD-MVS75.60 6375.39 5576.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13788.93 11042.05 14690.58 8976.57 6173.96 13885.73 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MP-MVScopyleft74.99 7274.33 6976.95 10082.89 11553.05 12085.63 10683.50 14757.86 21067.25 11090.24 8243.38 13088.85 14176.03 6282.23 6388.96 118
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8288.63 11950.89 4990.35 9476.00 6379.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23974.26 5191.60 5754.26 2692.16 4975.87 6479.91 8893.05 18
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16284.88 11471.38 1471.51 8389.15 10850.51 5090.55 9075.71 6578.65 9991.39 59
agg_prior275.65 6685.11 4591.01 68
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10689.97 9248.03 6791.41 6475.60 6784.14 5289.96 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_BlendedMVS73.42 9473.30 7773.76 18285.91 4851.83 14486.18 9284.24 13265.40 7369.09 9980.86 22946.70 8288.13 16675.43 6865.92 20781.33 264
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9989.33 10546.70 8288.13 16675.43 6881.48 7189.55 104
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 11074.63 4690.83 7141.38 15694.40 2075.42 7079.90 8994.72 2
ZD-MVS89.55 1453.46 10284.38 12657.02 22873.97 5391.03 6344.57 11491.17 7075.41 7181.78 69
MVS_111021_HR76.39 5075.38 5679.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12489.88 9343.79 12192.16 4975.03 7280.03 8789.64 102
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6691.98 4945.10 10291.27 6675.02 7384.56 4990.84 72
test_prior289.04 4261.88 13373.55 5691.46 6148.01 6874.73 7485.46 40
SD-MVS76.18 5274.85 6480.18 2885.39 5956.90 2485.75 10282.45 16656.79 23474.48 4991.81 5043.72 12490.75 8474.61 7578.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7391.62 5645.53 9690.99 7774.48 7682.51 6091.23 64
APD-MVScopyleft76.15 5375.68 5077.54 8188.52 2753.44 10587.26 7385.03 11053.79 26774.91 4491.68 5443.80 12090.31 9674.36 7781.82 6788.87 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EC-MVSNet75.30 6675.20 5775.62 12880.98 16049.00 20687.43 6584.68 12163.49 10570.97 9090.15 8842.86 13791.14 7274.33 7881.90 6686.71 168
VDDNet74.37 7772.13 9881.09 1979.58 18756.52 3290.02 2686.70 7052.61 27771.23 8787.20 14231.75 26893.96 2574.30 7975.77 12392.79 23
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22786.41 7469.61 2481.72 1588.16 12655.09 2288.04 17074.12 8086.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 8193.25 294.80 1
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20373.60 5593.31 2143.14 13393.79 2773.81 8288.53 1292.37 31
MTAPA72.73 10371.22 11277.27 8981.54 15053.57 9967.06 33681.31 18559.41 17568.39 10390.96 6736.07 22389.01 13073.80 8382.45 6289.23 111
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4290.15 8846.77 8191.00 7573.52 8478.46 10193.44 9
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3791.72 5249.32 6290.17 10273.46 8582.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base_debi71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
PMMVS72.98 9872.05 10175.78 12683.57 9048.60 21784.08 15682.85 16161.62 13668.24 10490.33 8128.35 28687.78 18072.71 8976.69 11490.95 70
ZNCC-MVS75.82 6275.02 6178.23 6883.88 8753.80 9486.91 8186.05 8159.71 16867.85 10790.55 7442.23 14291.02 7472.66 9085.29 4389.87 99
ET-MVSNet_ETH3D75.23 6874.08 7278.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28690.22 8449.71 5987.62 18972.12 9170.82 16692.82 21
MVS76.91 4175.48 5481.23 1884.56 7355.21 6080.23 25391.64 258.65 19665.37 13291.48 6045.72 9495.05 1672.11 9289.52 993.44 9
nrg03072.27 11471.56 10674.42 16175.93 25250.60 16686.97 7883.21 15362.75 11767.15 11184.38 17250.07 5386.66 21471.19 9362.37 24185.99 181
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8692.75 3245.52 9790.37 9371.15 9485.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0573.51 9372.24 9577.33 8587.93 3655.97 4387.90 5770.81 32568.72 2864.04 15284.36 17447.54 7290.87 8071.11 9567.75 19085.13 197
GST-MVS74.87 7373.90 7577.77 7683.30 9953.45 10485.75 10285.29 9959.22 18166.50 11989.85 9440.94 15890.76 8370.94 9683.35 5689.10 116
CHOSEN 1792x268876.24 5174.03 7482.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13983.49 18841.52 15593.69 2870.55 9781.82 6792.12 37
CDPH-MVS76.05 5575.19 5878.62 5786.51 4454.98 6987.32 6884.59 12358.62 19770.75 9190.85 7043.10 13590.63 8870.50 9884.51 5190.24 85
HPM-MVScopyleft72.60 10571.50 10775.89 12482.02 13151.42 15480.70 24683.05 15656.12 24464.03 15389.53 9937.55 19788.37 15570.48 9980.04 8687.88 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR69.07 16567.91 15972.54 20677.27 22949.56 19379.77 25773.96 30059.33 17960.73 19087.82 13130.19 27881.53 28069.94 10072.19 15486.53 170
test_yl75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
DCV-MVSNet75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
HFP-MVS74.37 7773.13 8378.10 7184.30 7753.68 9785.58 10784.36 12756.82 23265.78 12890.56 7340.70 16390.90 7969.18 10380.88 7389.71 100
ACMMPR73.76 8672.61 8577.24 9183.92 8552.96 12385.58 10784.29 12856.82 23265.12 13390.45 7737.24 20590.18 10169.18 10380.84 7488.58 129
region2R73.75 8772.55 8777.33 8583.90 8652.98 12285.54 11084.09 13456.83 23165.10 13490.45 7737.34 20390.24 9968.89 10580.83 7588.77 125
CP-MVS72.59 10771.46 10876.00 12382.93 11452.32 13586.93 8082.48 16555.15 25463.65 15990.44 8035.03 23688.53 15168.69 10677.83 10587.15 157
baseline275.15 7074.54 6876.98 9981.67 14351.74 14683.84 16491.94 169.97 2158.98 21386.02 15659.73 891.73 5868.37 10770.40 17187.48 151
Effi-MVS+75.24 6773.61 7680.16 2981.92 13357.42 1985.21 11776.71 27460.68 15673.32 6089.34 10347.30 7491.63 5968.28 10879.72 9191.42 58
CostFormer73.89 8472.30 9378.66 5682.36 12856.58 2875.56 28485.30 9866.06 6570.50 9576.88 27357.02 1489.06 12768.27 10968.74 18290.33 82
CANet_DTU73.71 8873.14 8175.40 13782.61 12450.05 18284.67 14279.36 22469.72 2375.39 4190.03 9129.41 28285.93 23967.99 11079.11 9690.22 86
PVSNet_Blended_VisFu73.40 9572.44 8976.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14485.38 16447.11 7787.38 19567.75 11177.55 10686.81 167
MSLP-MVS++74.21 7972.25 9480.11 3181.45 15356.47 3386.32 8979.65 21658.19 20266.36 12092.29 4036.11 22190.66 8667.39 11282.49 6193.18 16
PGM-MVS72.60 10571.20 11376.80 10582.95 11252.82 12583.07 19082.14 16856.51 24063.18 16489.81 9535.68 22789.76 11167.30 11380.19 8387.83 143
EIA-MVS75.92 5775.18 5978.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10290.53 7545.79 9391.58 6067.21 11482.18 6491.20 65
HY-MVS67.03 573.90 8373.14 8176.18 11784.70 7147.36 25275.56 28486.36 7666.27 5970.66 9383.91 18051.05 4589.31 12067.10 11572.61 15091.88 45
BP-MVS66.70 116
HQP-MVS72.34 11071.44 10975.03 15179.02 19751.56 15088.00 5383.68 14265.45 7064.48 14585.13 16537.35 20188.62 14566.70 11673.12 14484.91 201
SR-MVS70.92 13669.73 13674.50 15883.38 9850.48 17084.27 15179.35 22548.96 30266.57 11890.45 7733.65 24987.11 20066.42 11874.56 13585.91 184
gm-plane-assit83.24 10154.21 8870.91 1588.23 12595.25 1466.37 119
PAPR75.20 6974.13 7078.41 6488.31 3155.10 6584.31 15085.66 8763.76 9767.55 10890.73 7243.48 12989.40 11966.36 12077.03 10990.73 74
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 27088.46 4990.32 1171.40 1372.32 7591.72 5253.44 3092.37 4566.28 12175.42 12693.28 13
tpmrst71.04 13369.77 13574.86 15483.19 10355.86 4675.64 28378.73 23867.88 3764.99 13873.73 30249.96 5779.56 30565.92 12267.85 18989.14 115
MVS_Test75.85 5974.93 6378.62 5784.08 8155.20 6183.99 16085.17 10568.07 3573.38 5982.76 19850.44 5189.00 13165.90 12380.61 7691.64 49
ACMMPcopyleft70.81 13869.29 14475.39 13881.52 15251.92 14283.43 17683.03 15756.67 23758.80 22088.91 11131.92 26688.58 14765.89 12473.39 14285.67 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS72.92 9971.62 10576.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 15589.63 9835.50 22889.78 10965.50 12580.50 7888.16 135
X-MVStestdata65.85 23162.20 23976.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 1554.82 39835.50 22889.78 10965.50 12580.50 7888.16 135
PAPM76.76 4676.07 4878.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9688.84 11351.57 4187.16 19965.48 12786.68 2890.15 90
HQP_MVS70.96 13569.91 13474.12 17077.95 21849.57 19185.76 10082.59 16363.60 10162.15 17783.28 19236.04 22488.30 16165.46 12872.34 15284.49 205
plane_prior582.59 16388.30 16165.46 12872.34 15284.49 205
mPP-MVS71.79 12270.38 12476.04 12182.65 12352.06 13784.45 14681.78 17855.59 24962.05 17989.68 9733.48 25088.28 16365.45 13078.24 10487.77 145
OPM-MVS70.75 13969.58 13874.26 16775.55 25751.34 15686.05 9583.29 15261.94 13262.95 16885.77 15934.15 24388.44 15365.44 13171.07 16382.99 237
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
iter_conf_final71.46 12669.68 13776.81 10286.03 4653.49 10084.73 13774.37 29460.27 16166.28 12184.36 17435.14 23390.87 8065.41 13270.51 16986.05 178
Effi-MVS+-dtu66.24 22764.96 22370.08 25675.17 25949.64 19082.01 21274.48 29362.15 12757.83 23476.08 28630.59 27583.79 26465.40 13360.93 24876.81 314
EI-MVSNet-Vis-set73.19 9772.60 8674.99 15382.56 12549.80 18982.55 20289.00 2266.17 6165.89 12788.98 10943.83 11992.29 4665.38 13469.01 18082.87 240
TESTMET0.1,172.86 10172.33 9174.46 15981.98 13250.77 16285.13 12085.47 8966.09 6367.30 10983.69 18537.27 20483.57 26865.06 13578.97 9889.05 117
MVSTER73.25 9672.33 9176.01 12285.54 5653.76 9683.52 16987.16 6167.06 4763.88 15781.66 22152.77 3390.44 9164.66 13664.69 21483.84 222
CPTT-MVS67.15 20965.84 20471.07 24180.96 16250.32 17781.94 21474.10 29646.18 32057.91 23387.64 13629.57 28181.31 28264.10 13770.18 17381.56 254
miper_enhance_ethall69.77 15668.90 14872.38 21178.93 20049.91 18583.29 18378.85 23264.90 8059.37 20679.46 23952.77 3385.16 25163.78 13858.72 26382.08 246
EI-MVSNet-UG-set72.37 10971.73 10474.29 16681.60 14649.29 20081.85 21788.64 3565.29 7865.05 13588.29 12443.18 13191.83 5663.74 13967.97 18781.75 251
ab-mvs70.65 14069.11 14675.29 14480.87 16646.23 27173.48 30085.24 10359.99 16466.65 11480.94 22843.13 13488.69 14363.58 14068.07 18590.95 70
VPA-MVSNet71.12 13070.66 11972.49 20878.75 20344.43 29187.64 6090.02 1263.97 9365.02 13681.58 22342.14 14487.42 19363.42 14163.38 22985.63 191
mvsmamba66.93 21764.88 22473.09 19575.06 26247.26 25483.36 18269.21 33662.64 12055.68 26481.43 22429.72 28089.20 12563.35 14263.50 22582.79 241
APD-MVS_3200maxsize69.62 16168.23 15673.80 18181.58 14848.22 23281.91 21579.50 21948.21 30564.24 15089.75 9631.91 26787.55 19163.08 14373.85 14085.64 190
v2v48269.55 16267.64 16775.26 14772.32 29853.83 9384.93 13281.94 17265.37 7560.80 18979.25 24341.62 15288.98 13463.03 14459.51 25682.98 238
PS-MVSNAJss68.78 17467.17 17773.62 18873.01 28848.33 23084.95 13184.81 11659.30 18058.91 21779.84 23737.77 18988.86 13962.83 14563.12 23583.67 225
cl2268.85 16967.69 16672.35 21278.07 21749.98 18482.45 20578.48 24462.50 12458.46 22777.95 25349.99 5585.17 25062.55 14658.72 26381.90 249
V4267.66 19465.60 21173.86 17870.69 31553.63 9881.50 23078.61 24163.85 9559.49 20577.49 26037.98 18687.65 18562.33 14758.43 26680.29 278
AUN-MVS68.20 18666.35 19073.76 18276.37 24047.45 25079.52 26179.52 21860.98 14862.34 17386.02 15636.59 21886.94 20662.32 14853.47 31786.89 160
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5788.09 12748.07 6692.19 4862.24 14984.53 5091.53 55
Patchmatch-RL test58.72 28554.32 29771.92 22663.91 35444.25 29361.73 35155.19 36257.38 22249.31 30954.24 37037.60 19680.89 28562.19 15047.28 33890.63 75
mvs_anonymous72.29 11270.74 11776.94 10182.85 11654.72 7578.43 27081.54 18163.77 9661.69 18179.32 24151.11 4485.31 24662.15 15175.79 12290.79 73
miper_ehance_all_eth68.70 17767.58 16872.08 21676.91 23749.48 19782.47 20478.45 24562.68 11958.28 23177.88 25550.90 4785.01 25461.91 15258.72 26381.75 251
HyFIR lowres test69.94 15467.58 16877.04 9477.11 23557.29 2081.49 23279.11 23058.27 20158.86 21880.41 23242.33 14086.96 20561.91 15268.68 18386.87 161
sss70.49 14270.13 13171.58 23381.59 14739.02 33280.78 24584.71 12059.34 17766.61 11688.09 12737.17 20685.52 24261.82 15471.02 16490.20 88
131471.11 13169.41 14076.22 11379.32 19150.49 16980.23 25385.14 10859.44 17458.93 21588.89 11233.83 24889.60 11661.49 15577.42 10888.57 130
GA-MVS69.04 16666.70 18476.06 12075.11 26052.36 13383.12 18880.23 20363.32 10860.65 19179.22 24430.98 27388.37 15561.25 15666.41 20187.46 152
ECVR-MVScopyleft71.81 12071.00 11574.26 16780.12 18143.49 30084.69 13982.16 16764.02 9064.64 14187.43 13935.04 23589.21 12461.24 15779.66 9290.08 92
VPNet72.07 11571.42 11074.04 17278.64 20847.17 25789.91 3187.97 4872.56 964.66 14085.04 16741.83 15188.33 15961.17 15860.97 24786.62 169
ACMP61.11 966.24 22764.33 22872.00 22074.89 26649.12 20183.18 18779.83 21155.41 25252.29 29282.68 20225.83 30586.10 23060.89 15963.94 22180.78 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer73.53 9272.19 9777.57 8083.02 10955.24 5881.63 22481.44 18350.28 29276.67 3890.91 6844.82 11086.11 22860.83 16080.09 8491.36 61
test_djsdf63.84 24061.56 24470.70 24668.78 32644.69 28881.63 22481.44 18350.28 29252.27 29376.26 28126.72 29986.11 22860.83 16055.84 29881.29 267
v14868.24 18566.35 19073.88 17771.76 30151.47 15384.23 15281.90 17663.69 9958.94 21476.44 27843.72 12487.78 18060.63 16255.86 29782.39 244
c3_l67.97 18766.66 18571.91 22776.20 24649.31 19982.13 21178.00 25161.99 13057.64 24076.94 27049.41 6084.93 25560.62 16357.01 28581.49 255
test-LLR69.65 16069.01 14771.60 23178.67 20548.17 23385.13 12079.72 21359.18 18463.13 16582.58 20536.91 21080.24 29660.56 16475.17 12986.39 174
test-mter68.36 18067.29 17471.60 23178.67 20548.17 23385.13 12079.72 21353.38 27163.13 16582.58 20527.23 29680.24 29660.56 16475.17 12986.39 174
SR-MVS-dyc-post68.27 18466.87 17972.48 20980.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10131.17 27286.09 23260.52 16672.06 15583.19 233
RE-MVS-def66.66 18580.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10129.28 28460.52 16672.06 15583.19 233
IB-MVS68.87 274.01 8172.03 10379.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18481.74 22053.21 3194.28 2160.45 16862.41 24090.03 94
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v114468.81 17266.82 18074.80 15572.34 29753.46 10284.68 14081.77 17964.25 8660.28 19377.91 25440.23 16688.95 13560.37 16959.52 25581.97 247
LPG-MVS_test66.44 22464.58 22672.02 21874.42 27248.60 21783.07 19080.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
LGP-MVS_train72.02 21874.42 27248.60 21780.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
MVP-Stereo70.97 13470.44 12272.59 20576.03 25051.36 15585.02 12786.99 6460.31 16056.53 25778.92 24740.11 16990.00 10460.00 17290.01 676.41 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax63.21 24860.84 25370.32 25268.33 33144.45 29081.23 23481.05 18953.37 27250.96 30277.81 25717.49 35385.49 24459.31 17358.05 27481.02 269
test250672.91 10072.43 9074.32 16580.12 18144.18 29583.19 18684.77 11864.02 9065.97 12587.43 13947.67 7188.72 14259.08 17479.66 9290.08 92
baseline172.51 10872.12 9973.69 18585.05 6544.46 28983.51 17386.13 8071.61 1264.64 14187.97 13055.00 2389.48 11759.07 17556.05 29487.13 158
mvs_tets62.96 25160.55 25570.19 25368.22 33444.24 29480.90 24280.74 19552.99 27550.82 30477.56 25816.74 35785.44 24559.04 17657.94 27680.89 270
HPM-MVS_fast67.86 18966.28 19372.61 20480.67 17248.34 22881.18 23675.95 28350.81 29059.55 20388.05 12927.86 29185.98 23558.83 17773.58 14183.51 226
eth_miper_zixun_eth66.98 21565.28 21872.06 21775.61 25650.40 17281.00 23976.97 27162.00 12956.99 25176.97 26944.84 10985.58 24158.75 17854.42 30980.21 279
v14419267.86 18965.76 20674.16 16971.68 30253.09 11884.14 15580.83 19462.85 11659.21 21177.28 26439.30 17688.00 17158.67 17957.88 27981.40 261
test111171.06 13270.42 12372.97 19879.48 18841.49 32184.82 13682.74 16264.20 8762.98 16787.43 13935.20 23187.92 17258.54 18078.42 10289.49 106
thisisatest051573.64 9172.20 9677.97 7381.63 14453.01 12186.69 8488.81 3062.53 12264.06 15185.65 16052.15 3992.50 4258.43 18169.84 17488.39 134
v867.25 20664.99 22274.04 17272.89 29153.31 11282.37 20780.11 20561.54 13854.29 27776.02 28742.89 13688.41 15458.43 18156.36 28780.39 277
XXY-MVS70.18 14569.28 14572.89 20177.64 22242.88 30885.06 12487.50 5962.58 12162.66 17282.34 21343.64 12689.83 10858.42 18363.70 22385.96 183
3Dnovator64.70 674.46 7572.48 8880.41 2482.84 11755.40 5483.08 18988.61 3867.61 4359.85 19688.66 11534.57 24093.97 2458.42 18388.70 1191.85 46
旧先验281.73 22245.53 32374.66 4570.48 35658.31 185
test_fmvs153.60 31552.54 31056.78 34058.07 36530.26 36268.95 32942.19 37632.46 36463.59 16182.56 20711.55 36660.81 36558.25 18655.27 30279.28 286
v119267.96 18865.74 20774.63 15671.79 30053.43 10784.06 15880.99 19263.19 11159.56 20277.46 26137.50 20088.65 14458.20 18758.93 26281.79 250
EPP-MVSNet71.14 12970.07 13274.33 16479.18 19446.52 26383.81 16586.49 7256.32 24357.95 23284.90 17054.23 2789.14 12658.14 18869.65 17787.33 154
OMC-MVS65.97 23065.06 22168.71 27472.97 28942.58 31378.61 26875.35 28854.72 26059.31 20886.25 15533.30 25177.88 31957.99 18967.05 19485.66 189
cl____67.43 20165.93 20271.95 22476.33 24248.02 23982.58 19979.12 22961.30 14256.72 25376.92 27146.12 8786.44 22157.98 19056.31 28981.38 263
DIV-MVS_self_test67.43 20165.93 20271.94 22576.33 24248.01 24082.57 20079.11 23061.31 14156.73 25276.92 27146.09 8886.43 22257.98 19056.31 28981.39 262
MS-PatchMatch72.34 11071.26 11175.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25880.74 23132.28 26192.89 3357.95 19288.10 1478.39 299
MAR-MVS76.76 4675.60 5280.21 2690.87 754.68 7889.14 4189.11 2062.95 11470.54 9492.33 3941.05 15794.95 1757.90 19386.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvs1_n52.55 31951.19 31456.65 34151.90 37530.14 36367.66 33342.84 37532.27 36562.30 17582.02 2189.12 37460.84 36457.82 19454.75 30878.99 288
anonymousdsp60.46 26957.65 27568.88 26863.63 35545.09 28372.93 30478.63 24046.52 31551.12 29972.80 31421.46 33783.07 27357.79 19553.97 31178.47 296
Anonymous2024052969.71 15767.28 17577.00 9783.78 8850.36 17588.87 4585.10 10947.22 31064.03 15383.37 19027.93 29092.10 5257.78 19667.44 19288.53 132
Fast-Effi-MVS+-dtu66.53 22264.10 23173.84 17972.41 29652.30 13684.73 13775.66 28459.51 17256.34 25979.11 24628.11 28885.85 24057.74 19763.29 23083.35 227
v192192067.45 20065.23 21974.10 17171.51 30552.90 12483.75 16780.44 19962.48 12559.12 21277.13 26536.98 20887.90 17357.53 19858.14 27381.49 255
IterMVS-LS66.63 22065.36 21770.42 25075.10 26148.90 21081.45 23376.69 27561.05 14655.71 26377.10 26745.86 9283.65 26757.44 19957.88 27978.70 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet69.70 15968.70 14972.68 20375.00 26448.90 21079.54 25987.16 6161.05 14663.88 15783.74 18345.87 9190.44 9157.42 20064.68 21578.70 292
CDS-MVSNet70.48 14369.43 13973.64 18677.56 22548.83 21283.51 17377.45 26063.27 10962.33 17485.54 16343.85 11883.29 27257.38 20174.00 13788.79 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+62.71 772.29 11270.50 12177.65 7983.40 9751.29 15887.32 6886.40 7559.01 18958.49 22688.32 12332.40 25991.27 6657.04 20282.15 6590.38 81
test_vis1_n51.19 32449.66 32155.76 34551.26 37629.85 36767.20 33538.86 38032.12 36659.50 20479.86 2368.78 37558.23 37256.95 20352.46 32179.19 287
bld_raw_dy_0_6459.75 27257.01 28267.96 28266.73 33845.30 28177.59 27559.97 35850.49 29147.15 32377.03 26817.45 35479.06 30656.92 20459.76 25479.51 285
miper_lstm_enhance63.91 23962.30 23868.75 27375.06 26246.78 25969.02 32781.14 18859.68 17052.76 28972.39 31940.71 16277.99 31756.81 20553.09 31981.48 257
PAPM_NR71.80 12169.98 13377.26 9081.54 15053.34 11078.60 26985.25 10253.46 27060.53 19288.66 11545.69 9589.24 12256.49 20679.62 9489.19 113
v1066.61 22164.20 23073.83 18072.59 29453.37 10881.88 21679.91 21061.11 14454.09 27975.60 28940.06 17088.26 16456.47 20756.10 29379.86 283
v124066.99 21464.68 22573.93 17571.38 30852.66 12783.39 18079.98 20761.97 13158.44 22977.11 26635.25 23087.81 17556.46 20858.15 27181.33 264
Anonymous20240521170.11 14667.88 16176.79 10687.20 4047.24 25689.49 3577.38 26254.88 25966.14 12286.84 14720.93 33991.54 6156.45 20971.62 15891.59 51
Fast-Effi-MVS+72.73 10371.15 11477.48 8282.75 11954.76 7286.77 8380.64 19663.05 11365.93 12684.01 17844.42 11589.03 12956.45 20976.36 11988.64 127
sd_testset67.79 19265.95 20173.32 19181.70 14046.33 26868.99 32880.30 20266.58 5261.64 18282.38 21130.45 27687.63 18755.86 21165.60 20886.01 179
114514_t69.87 15567.88 16175.85 12588.38 2952.35 13486.94 7983.68 14253.70 26855.68 26485.60 16130.07 27991.20 6955.84 21271.02 16483.99 215
tpm270.82 13768.44 15277.98 7280.78 16856.11 3974.21 29581.28 18760.24 16268.04 10575.27 29152.26 3888.50 15255.82 21368.03 18689.33 108
PCF-MVS61.03 1070.10 14768.40 15375.22 14877.15 23451.99 13979.30 26482.12 16956.47 24161.88 18086.48 15443.98 11787.24 19755.37 21472.79 14986.43 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet62.49 869.27 16467.81 16573.64 18684.41 7651.85 14384.63 14377.80 25366.42 5659.80 19784.95 16922.14 33480.44 29455.03 21575.11 13188.62 128
CHOSEN 280x42057.53 29456.38 28760.97 32974.01 27748.10 23746.30 37354.31 36448.18 30650.88 30377.43 26238.37 18559.16 37154.83 21663.14 23475.66 325
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 33088.45 4268.73 10187.45 13859.15 1090.67 8554.83 21687.67 1692.03 40
TAMVS69.51 16368.16 15773.56 18976.30 24448.71 21682.57 20077.17 26562.10 12861.32 18584.23 17641.90 14983.46 27054.80 21873.09 14688.50 133
D2MVS63.49 24561.39 24669.77 26069.29 32348.93 20978.89 26777.71 25660.64 15749.70 30772.10 32427.08 29783.48 26954.48 21962.65 23876.90 313
IterMVS63.77 24261.67 24270.08 25672.68 29351.24 15980.44 24875.51 28560.51 15851.41 29773.70 30532.08 26378.91 30754.30 22054.35 31080.08 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS63.68 24361.01 25271.70 22973.48 28145.98 27381.19 23576.08 28154.33 26552.84 28879.27 24222.21 33287.65 18554.13 22155.54 30181.46 258
DP-MVS Recon71.99 11670.31 12677.01 9690.65 853.44 10589.37 3782.97 15956.33 24263.56 16289.47 10034.02 24492.15 5154.05 22272.41 15185.43 194
tpm68.36 18067.48 17270.97 24379.93 18451.34 15676.58 28178.75 23767.73 4063.54 16374.86 29348.33 6472.36 35053.93 22363.71 22289.21 112
XVG-OURS-SEG-HR62.02 26059.54 26469.46 26365.30 34545.88 27465.06 33973.57 30446.45 31657.42 24783.35 19126.95 29878.09 31353.77 22464.03 21984.42 207
FA-MVS(test-final)69.00 16866.60 18776.19 11683.48 9347.96 24374.73 29182.07 17057.27 22462.18 17678.47 25136.09 22292.89 3353.76 22571.32 16287.73 146
cascas69.01 16766.13 19677.66 7879.36 18955.41 5386.99 7783.75 14156.69 23658.92 21681.35 22524.31 31892.10 5253.23 22670.61 16785.46 193
UniMVSNet_NR-MVSNet68.82 17168.29 15570.40 25175.71 25542.59 31184.23 15286.78 6766.31 5858.51 22382.45 20851.57 4184.64 25953.11 22755.96 29583.96 219
DU-MVS66.84 21965.74 20770.16 25473.27 28642.59 31181.50 23082.92 16063.53 10358.51 22382.11 21640.75 16084.64 25953.11 22755.96 29583.24 231
1112_ss70.05 14969.37 14172.10 21580.77 16942.78 30985.12 12376.75 27259.69 16961.19 18692.12 4247.48 7383.84 26353.04 22968.21 18489.66 101
XVG-OURS61.88 26159.34 26669.49 26265.37 34446.27 26964.80 34073.49 30547.04 31257.41 24882.85 19625.15 31178.18 31153.00 23064.98 21084.01 214
thisisatest053070.47 14468.56 15076.20 11579.78 18551.52 15283.49 17588.58 4057.62 21758.60 22282.79 19751.03 4691.48 6252.84 23162.36 24285.59 192
UGNet68.71 17567.11 17873.50 19080.55 17547.61 24884.08 15678.51 24359.45 17365.68 13082.73 20123.78 32085.08 25352.80 23276.40 11587.80 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121166.08 22963.67 23273.31 19283.07 10748.75 21486.01 9784.67 12245.27 32456.54 25676.67 27628.06 28988.95 13552.78 23359.95 25082.23 245
无先验85.19 11878.00 25149.08 30085.13 25252.78 23387.45 153
PVSNet_057.04 1361.19 26557.24 27873.02 19677.45 22750.31 17879.43 26377.36 26363.96 9447.51 32172.45 31825.03 31283.78 26552.76 23519.22 38884.96 200
FIs70.00 15170.24 13069.30 26577.93 22038.55 33583.99 16087.72 5566.86 5057.66 23984.17 17752.28 3785.31 24652.72 23668.80 18184.02 213
Vis-MVSNetpermissive70.61 14169.34 14274.42 16180.95 16548.49 22286.03 9677.51 25958.74 19565.55 13187.78 13234.37 24185.95 23852.53 23780.61 7688.80 123
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
testdata67.08 28977.59 22445.46 28069.20 33744.47 32971.50 8488.34 12231.21 27170.76 35552.20 23875.88 12185.03 198
API-MVS74.17 8072.07 10080.49 2290.02 1158.55 887.30 7084.27 12957.51 21965.77 12987.77 13341.61 15395.97 1151.71 23982.63 5986.94 159
GeoE69.96 15367.88 16176.22 11381.11 15951.71 14784.15 15476.74 27359.83 16660.91 18784.38 17241.56 15488.10 16851.67 24070.57 16888.84 122
dmvs_re67.61 19566.00 19972.42 21081.86 13543.45 30164.67 34180.00 20669.56 2560.07 19485.00 16834.71 23887.63 18751.48 24166.68 19686.17 177
ACMM58.35 1264.35 23662.01 24171.38 23574.21 27548.51 22182.25 20879.66 21547.61 30854.54 27480.11 23325.26 31086.00 23451.26 24263.16 23379.64 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 28166.70 11387.07 14540.15 16889.70 11351.23 24385.06 4684.10 211
UniMVSNet (Re)67.71 19366.80 18170.45 24974.44 27142.93 30782.42 20684.90 11363.69 9959.63 20080.99 22747.18 7585.23 24951.17 24456.75 28683.19 233
IterMVS-SCA-FT59.12 27858.81 27160.08 33170.68 31645.07 28480.42 24974.25 29543.54 33650.02 30673.73 30231.97 26456.74 37351.06 24553.60 31578.42 298
Test_1112_low_res67.18 20866.23 19470.02 25978.75 20341.02 32583.43 17673.69 30257.29 22358.45 22882.39 21045.30 10080.88 28650.50 24666.26 20688.16 135
pmmvs463.34 24761.07 25170.16 25470.14 31750.53 16879.97 25671.41 32155.08 25554.12 27878.58 24932.79 25682.09 27850.33 24757.22 28477.86 305
Baseline_NR-MVSNet65.49 23364.27 22969.13 26674.37 27441.65 31883.39 18078.85 23259.56 17159.62 20176.88 27340.75 16087.44 19249.99 24855.05 30378.28 301
UniMVSNet_ETH3D62.51 25560.49 25668.57 27868.30 33240.88 32773.89 29679.93 20951.81 28554.77 27179.61 23824.80 31481.10 28349.93 24961.35 24583.73 223
BH-w/o70.02 15068.51 15174.56 15782.77 11850.39 17386.60 8678.14 24959.77 16759.65 19985.57 16239.27 17787.30 19649.86 25074.94 13485.99 181
LCM-MVSNet-Re58.82 28456.54 28365.68 29979.31 19229.09 37261.39 35445.79 37060.73 15537.65 35872.47 31731.42 27081.08 28449.66 25170.41 17086.87 161
gg-mvs-nofinetune67.43 20164.53 22776.13 11885.95 4747.79 24764.38 34288.28 4439.34 34566.62 11541.27 37958.69 1389.00 13149.64 25286.62 2991.59 51
TranMVSNet+NR-MVSNet66.94 21665.61 21070.93 24473.45 28243.38 30383.02 19284.25 13065.31 7758.33 23081.90 21939.92 17385.52 24249.43 25354.89 30583.89 221
tttt051768.33 18266.29 19274.46 15978.08 21649.06 20280.88 24389.08 2154.40 26454.75 27280.77 23051.31 4390.33 9549.35 25458.01 27583.99 215
test_fmvs245.89 33344.32 33550.62 35145.85 38424.70 37858.87 36137.84 38325.22 37452.46 29174.56 2967.07 37854.69 37449.28 25547.70 33472.48 347
WR-MVS67.58 19666.76 18270.04 25875.92 25345.06 28786.23 9185.28 10064.31 8558.50 22581.00 22644.80 11282.00 27949.21 25655.57 30083.06 236
tt080563.39 24661.31 24869.64 26169.36 32238.87 33378.00 27185.48 8848.82 30355.66 26781.66 22124.38 31786.37 22349.04 25759.36 25983.68 224
test_post170.84 32014.72 39734.33 24283.86 26248.80 258
SCA63.84 24060.01 26275.32 14078.58 20957.92 1061.61 35277.53 25856.71 23557.75 23870.77 33031.97 26479.91 30248.80 25856.36 28788.13 138
pmmvs562.80 25361.18 24967.66 28469.53 32142.37 31682.65 19875.19 28954.30 26652.03 29578.51 25031.64 26980.67 28948.60 26058.15 27179.95 282
新几何173.30 19383.10 10453.48 10171.43 32045.55 32266.14 12287.17 14333.88 24780.54 29248.50 26180.33 8285.88 186
pm-mvs164.12 23862.56 23668.78 27271.68 30238.87 33382.89 19481.57 18055.54 25153.89 28177.82 25637.73 19286.74 21148.46 26253.49 31680.72 272
PM-MVS46.92 33243.76 33756.41 34352.18 37432.26 35863.21 34738.18 38137.99 35040.78 34966.20 3455.09 38665.42 36148.19 26341.99 35471.54 353
FC-MVSNet-test67.49 19967.91 15966.21 29776.06 24833.06 35480.82 24487.18 6064.44 8454.81 27082.87 19550.40 5282.60 27448.05 26466.55 20082.98 238
CMPMVSbinary40.41 2155.34 30552.64 30863.46 31360.88 36343.84 29761.58 35371.06 32330.43 36936.33 36074.63 29524.14 31975.44 33448.05 26466.62 19871.12 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NR-MVSNet67.25 20665.99 20071.04 24273.27 28643.91 29685.32 11484.75 11966.05 6653.65 28482.11 21645.05 10385.97 23747.55 26656.18 29283.24 231
QAPM71.88 11969.33 14379.52 3582.20 13054.30 8686.30 9088.77 3156.61 23859.72 19887.48 13733.90 24695.36 1347.48 26781.49 7088.90 119
EPMVS68.45 17965.44 21577.47 8384.91 6856.17 3871.89 31681.91 17561.72 13560.85 18872.49 31636.21 22087.06 20247.32 26871.62 15889.17 114
GBi-Net67.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
test167.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
FMVSNet368.84 17067.40 17373.19 19485.05 6548.53 22085.71 10585.36 9460.90 15257.58 24179.15 24542.16 14386.77 21047.25 26963.40 22684.27 209
v7n62.50 25659.27 26772.20 21467.25 33749.83 18877.87 27380.12 20452.50 27848.80 31273.07 31032.10 26287.90 17346.83 27254.92 30478.86 290
CVMVSNet60.85 26760.44 25762.07 31975.00 26432.73 35679.54 25973.49 30536.98 35356.28 26083.74 18329.28 28469.53 35846.48 27363.23 23183.94 220
TR-MVS69.71 15767.85 16475.27 14682.94 11348.48 22387.40 6780.86 19357.15 22764.61 14387.08 14432.67 25789.64 11546.38 27471.55 16087.68 148
MDTV_nov1_ep13_2view43.62 29971.13 31954.95 25859.29 21036.76 21246.33 27587.32 155
FMVSNet267.57 19765.79 20572.90 19982.71 12047.97 24185.15 11984.93 11258.55 19856.71 25478.26 25236.72 21586.67 21346.15 27662.94 23784.07 212
UnsupCasMVSNet_eth57.56 29355.15 29364.79 30864.57 35233.12 35373.17 30383.87 14058.98 19041.75 34470.03 33422.54 32879.92 30046.12 27735.31 36581.32 266
testdata277.81 32145.64 278
XVG-ACMP-BASELINE56.03 30252.85 30665.58 30061.91 36040.95 32663.36 34472.43 31145.20 32546.02 32974.09 2989.20 37378.12 31245.13 27958.27 26977.66 308
AdaColmapbinary67.86 18965.48 21275.00 15288.15 3354.99 6886.10 9476.63 27649.30 29957.80 23586.65 15129.39 28388.94 13745.10 28070.21 17281.06 268
BH-untuned68.28 18366.40 18973.91 17681.62 14550.01 18385.56 10977.39 26157.63 21657.47 24683.69 18536.36 21987.08 20144.81 28173.08 14784.65 204
mvsany_test143.38 33642.57 33845.82 35550.96 37726.10 37655.80 36427.74 39327.15 37247.41 32274.39 29718.67 34844.95 38544.66 28236.31 36366.40 364
BH-RMVSNet70.08 14868.01 15876.27 11184.21 8051.22 16087.29 7179.33 22758.96 19163.63 16086.77 14833.29 25290.30 9844.63 28373.96 13887.30 156
test_vis1_rt40.29 33938.64 34145.25 35748.91 38130.09 36459.44 35827.07 39424.52 37638.48 35651.67 3756.71 38149.44 37944.33 28446.59 34456.23 373
IS-MVSNet68.80 17367.55 17072.54 20678.50 21143.43 30281.03 23879.35 22559.12 18757.27 24986.71 14946.05 8987.70 18344.32 28575.60 12586.49 171
pmmvs-eth3d55.97 30352.78 30765.54 30161.02 36246.44 26475.36 28867.72 34249.61 29843.65 33567.58 34221.63 33677.04 32444.11 28644.33 34973.15 346
pmmvs659.64 27357.15 27967.09 28866.01 34036.86 34280.50 24778.64 23945.05 32649.05 31073.94 30027.28 29586.10 23043.96 28749.94 32878.31 300
EPNet_dtu66.25 22666.71 18364.87 30778.66 20734.12 34982.80 19575.51 28561.75 13464.47 14886.90 14637.06 20772.46 34943.65 28869.63 17888.02 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat166.28 22562.78 23576.77 10781.40 15457.14 2270.03 32377.19 26453.00 27458.76 22170.73 33246.17 8686.73 21243.27 28964.46 21686.44 172
OpenMVScopyleft61.00 1169.99 15267.55 17077.30 8778.37 21454.07 9284.36 14885.76 8657.22 22556.71 25487.67 13530.79 27492.83 3543.04 29084.06 5485.01 199
PatchmatchNetpermissive67.07 21363.63 23377.40 8483.10 10458.03 972.11 31477.77 25458.85 19259.37 20670.83 32937.84 18884.93 25542.96 29169.83 17589.26 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet62.47 25759.04 26972.77 20273.97 27956.57 2960.52 35571.72 31660.04 16357.49 24465.86 34638.94 17980.31 29542.86 29259.93 25181.42 259
test_fmvs337.95 34135.75 34444.55 35835.50 39018.92 38848.32 37034.00 38818.36 38241.31 34761.58 3562.29 39348.06 38342.72 29337.71 36266.66 363
FMVSNet164.57 23462.11 24071.96 22177.32 22846.36 26583.52 16983.31 14952.43 27954.42 27576.23 28227.80 29286.20 22442.59 29461.34 24683.32 228
UA-Net67.32 20566.23 19470.59 24778.85 20141.23 32473.60 29875.45 28761.54 13866.61 11684.53 17138.73 18286.57 21942.48 29574.24 13683.98 217
CL-MVSNet_self_test62.98 25061.14 25068.50 27965.86 34242.96 30684.37 14782.98 15860.98 14853.95 28072.70 31540.43 16483.71 26641.10 29647.93 33378.83 291
MIMVSNet63.12 24960.29 25971.61 23075.92 25346.65 26165.15 33881.94 17259.14 18654.65 27369.47 33625.74 30680.63 29041.03 29769.56 17987.55 150
FE-MVS64.15 23760.43 25875.30 14380.85 16749.86 18768.28 33278.37 24650.26 29559.31 20873.79 30126.19 30391.92 5540.19 29866.67 19784.12 210
EG-PatchMatch MVS62.40 25959.59 26370.81 24573.29 28449.05 20385.81 9884.78 11751.85 28444.19 33273.48 30815.52 36289.85 10740.16 29967.24 19373.54 342
UnsupCasMVSNet_bld53.86 31250.53 31663.84 31063.52 35634.75 34571.38 31781.92 17446.53 31438.95 35457.93 36620.55 34080.20 29839.91 30034.09 37276.57 319
dp64.41 23561.58 24372.90 19982.40 12654.09 9172.53 30676.59 27760.39 15955.68 26470.39 33335.18 23276.90 32839.34 30161.71 24487.73 146
TransMVSNet (Re)62.82 25260.76 25469.02 26773.98 27841.61 31986.36 8879.30 22856.90 22952.53 29076.44 27841.85 15087.60 19038.83 30240.61 35777.86 305
USDC54.36 30951.23 31363.76 31164.29 35337.71 33962.84 34973.48 30756.85 23035.47 36371.94 3259.23 37278.43 30938.43 30348.57 33075.13 330
PLCcopyleft52.38 1860.89 26658.97 27066.68 29581.77 13745.70 27878.96 26674.04 29943.66 33547.63 31883.19 19423.52 32377.78 32237.47 30460.46 24976.55 320
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test0.0.03 162.54 25462.44 23762.86 31872.28 29929.51 36982.93 19378.78 23559.18 18453.07 28782.41 20936.91 21077.39 32337.45 30558.96 26181.66 253
OurMVSNet-221017-052.39 32048.73 32363.35 31565.21 34638.42 33668.54 33164.95 34638.19 34839.57 35171.43 32613.23 36579.92 30037.16 30640.32 35871.72 351
CNLPA60.59 26858.44 27267.05 29079.21 19347.26 25479.75 25864.34 35042.46 34151.90 29683.94 17927.79 29375.41 33537.12 30759.49 25778.47 296
K. test v354.04 31149.42 32267.92 28368.55 32842.57 31475.51 28663.07 35352.07 28039.21 35264.59 35019.34 34482.21 27537.11 30825.31 38178.97 289
Vis-MVSNet (Re-imp)65.52 23265.63 20965.17 30577.49 22630.54 36175.49 28777.73 25559.34 17752.26 29486.69 15049.38 6180.53 29337.07 30975.28 12884.42 207
PatchMatch-RL56.66 29653.75 30165.37 30477.91 22145.28 28269.78 32560.38 35641.35 34247.57 31973.73 30216.83 35676.91 32636.99 31059.21 26073.92 339
Patchmtry56.56 29852.95 30567.42 28672.53 29550.59 16759.05 35971.72 31637.86 35146.92 32465.86 34638.94 17980.06 29936.94 31146.72 34371.60 352
FMVSNet558.61 28656.45 28465.10 30677.20 23339.74 32974.77 29077.12 26650.27 29443.28 33867.71 34126.15 30476.90 32836.78 31254.78 30678.65 294
MDTV_nov1_ep1361.56 24481.68 14255.12 6372.41 30878.18 24859.19 18258.85 21969.29 33734.69 23986.16 22736.76 31362.96 236
JIA-IIPM52.33 32147.77 32866.03 29871.20 30946.92 25840.00 38176.48 27837.10 35246.73 32537.02 38132.96 25377.88 31935.97 31452.45 32273.29 344
lessismore_v067.98 28164.76 35141.25 32345.75 37136.03 36265.63 34819.29 34584.11 26135.67 31521.24 38678.59 295
CP-MVSNet58.54 28957.57 27761.46 32668.50 32933.96 35076.90 27978.60 24251.67 28647.83 31676.60 27734.99 23772.79 34735.45 31647.58 33577.64 309
Anonymous2024052151.65 32248.42 32461.34 32856.43 36939.65 33173.57 29973.47 30836.64 35536.59 35963.98 35110.75 36972.25 35135.35 31749.01 32972.11 349
ambc62.06 32053.98 37229.38 37035.08 38479.65 21641.37 34559.96 3616.27 38482.15 27635.34 31838.22 36174.65 334
KD-MVS_2432*160059.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
miper_refine_blended59.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
PS-CasMVS58.12 29157.03 28161.37 32768.24 33333.80 35276.73 28078.01 25051.20 28847.54 32076.20 28532.85 25472.76 34835.17 32147.37 33777.55 310
EU-MVSNet52.63 31850.72 31558.37 33762.69 35928.13 37472.60 30575.97 28230.94 36840.76 35072.11 32320.16 34170.80 35435.11 32246.11 34576.19 323
ACMH+54.58 1558.55 28855.24 29268.50 27974.68 26845.80 27780.27 25170.21 32947.15 31142.77 34075.48 29016.73 35885.98 23535.10 32354.78 30673.72 340
pmmvs345.53 33541.55 33957.44 33948.97 38039.68 33070.06 32257.66 36028.32 37134.06 36657.29 3678.50 37666.85 36034.86 32434.26 37065.80 366
our_test_359.11 27955.08 29571.18 24071.42 30653.29 11381.96 21374.52 29248.32 30442.08 34169.28 33828.14 28782.15 27634.35 32545.68 34778.11 304
PEN-MVS58.35 29057.15 27961.94 32267.55 33634.39 34677.01 27778.35 24751.87 28347.72 31776.73 27533.91 24573.75 34234.03 32647.17 33977.68 307
KD-MVS_self_test49.24 32746.85 33056.44 34254.32 37022.87 38057.39 36273.36 30944.36 33137.98 35759.30 36418.97 34671.17 35333.48 32742.44 35375.26 328
tpmvs62.45 25859.42 26571.53 23483.93 8454.32 8570.03 32377.61 25751.91 28253.48 28568.29 34037.91 18786.66 21433.36 32858.27 26973.62 341
YYNet153.82 31349.96 31865.41 30370.09 31948.95 20772.30 30971.66 31844.25 33231.89 37263.07 35423.73 32173.95 34033.26 32939.40 35973.34 343
MDA-MVSNet_test_wron53.82 31349.95 31965.43 30270.13 31849.05 20372.30 30971.65 31944.23 33331.85 37363.13 35323.68 32274.01 33933.25 33039.35 36073.23 345
Anonymous2023120659.08 28057.59 27663.55 31268.77 32732.14 35980.26 25279.78 21250.00 29649.39 30872.39 31926.64 30078.36 31033.12 33157.94 27680.14 280
F-COLMAP55.96 30453.65 30262.87 31772.76 29242.77 31074.70 29370.37 32840.03 34441.11 34879.36 24017.77 35273.70 34332.80 33253.96 31272.15 348
PatchT56.60 29752.97 30467.48 28572.94 29046.16 27257.30 36373.78 30138.77 34754.37 27657.26 36837.52 19878.06 31432.02 33352.79 32078.23 303
SixPastTwentyTwo54.37 30850.10 31767.21 28770.70 31441.46 32274.73 29164.69 34747.56 30939.12 35369.49 33518.49 35084.69 25831.87 33434.20 37175.48 326
WR-MVS_H58.91 28358.04 27461.54 32569.07 32533.83 35176.91 27881.99 17151.40 28748.17 31374.67 29440.23 16674.15 33831.78 33548.10 33176.64 318
ACMH53.70 1659.78 27155.94 29071.28 23676.59 23948.35 22780.15 25576.11 28049.74 29741.91 34373.45 30916.50 35990.31 9631.42 33657.63 28275.17 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG59.44 27455.14 29472.32 21374.69 26750.71 16374.39 29473.58 30344.44 33043.40 33777.52 25919.45 34390.87 8031.31 33757.49 28375.38 327
thres20068.71 17567.27 17673.02 19684.73 7046.76 26085.03 12687.73 5462.34 12659.87 19583.45 18943.15 13288.32 16031.25 33867.91 18883.98 217
DTE-MVSNet57.03 29555.73 29160.95 33065.94 34132.57 35775.71 28277.09 26751.16 28946.65 32776.34 28032.84 25573.22 34630.94 33944.87 34877.06 312
ppachtmachnet_test58.56 28754.34 29671.24 23771.42 30654.74 7381.84 21872.27 31249.02 30145.86 33168.99 33926.27 30183.30 27130.12 34043.23 35275.69 324
mvsany_test328.00 35025.98 35234.05 36828.97 39515.31 39434.54 38518.17 39916.24 38329.30 37653.37 3732.79 39133.38 39630.01 34120.41 38753.45 376
MVS-HIRNet49.01 32844.71 33261.92 32376.06 24846.61 26263.23 34654.90 36324.77 37533.56 36836.60 38321.28 33875.88 33329.49 34262.54 23963.26 371
test20.0355.22 30654.07 29958.68 33663.14 35725.00 37777.69 27474.78 29152.64 27643.43 33672.39 31926.21 30274.76 33729.31 34347.05 34176.28 322
testgi54.25 31052.57 30959.29 33462.76 35821.65 38472.21 31170.47 32753.25 27341.94 34277.33 26314.28 36377.95 31829.18 34451.72 32478.28 301
thres100view90066.87 21865.42 21671.24 23783.29 10043.15 30581.67 22387.78 5159.04 18855.92 26282.18 21543.73 12287.80 17728.80 34566.36 20282.78 242
tfpn200view967.57 19766.13 19671.89 22884.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20282.78 242
thres40067.40 20466.13 19671.19 23984.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20280.71 273
ADS-MVSNet255.21 30751.44 31266.51 29680.60 17349.56 19355.03 36665.44 34544.72 32751.00 30061.19 35822.83 32575.41 33528.54 34853.63 31374.57 335
ADS-MVSNet56.17 30151.95 31168.84 26980.60 17353.07 11955.03 36670.02 33144.72 32751.00 30061.19 35822.83 32578.88 30828.54 34853.63 31374.57 335
LTVRE_ROB45.45 1952.73 31749.74 32061.69 32469.78 32034.99 34444.52 37467.60 34343.11 33843.79 33474.03 29918.54 34981.45 28128.39 35057.94 27668.62 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis3_rt24.79 35622.95 35930.31 37328.59 39618.92 38837.43 38317.27 40112.90 38621.28 38429.92 3901.02 40036.35 39028.28 35129.82 37835.65 384
new-patchmatchnet48.21 32946.55 33153.18 34857.73 36718.19 39270.24 32171.02 32445.70 32133.70 36760.23 36018.00 35169.86 35727.97 35234.35 36971.49 354
OpenMVS_ROBcopyleft53.19 1759.20 27756.00 28968.83 27071.13 31044.30 29283.64 16875.02 29046.42 31746.48 32873.03 31118.69 34788.14 16527.74 35361.80 24374.05 338
RPSCF45.77 33444.13 33650.68 35057.67 36829.66 36854.92 36845.25 37226.69 37345.92 33075.92 28817.43 35545.70 38427.44 35445.95 34676.67 315
MDA-MVSNet-bldmvs51.56 32347.75 32963.00 31671.60 30447.32 25369.70 32672.12 31343.81 33427.65 38063.38 35221.97 33575.96 33227.30 35532.19 37365.70 367
RPMNet59.29 27554.25 29874.42 16173.97 27956.57 2960.52 35576.98 26835.72 35757.49 24458.87 36537.73 19285.26 24827.01 35659.93 25181.42 259
thres600view766.46 22365.12 22070.47 24883.41 9443.80 29882.15 20987.78 5159.37 17656.02 26182.21 21443.73 12286.90 20826.51 35764.94 21180.71 273
TAPA-MVS56.12 1461.82 26260.18 26166.71 29378.48 21237.97 33875.19 28976.41 27946.82 31357.04 25086.52 15327.67 29477.03 32526.50 35867.02 19585.14 196
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ITE_SJBPF51.84 34958.03 36631.94 36053.57 36736.67 35441.32 34675.23 29211.17 36851.57 37825.81 35948.04 33272.02 350
Patchmatch-test53.33 31648.17 32568.81 27173.31 28342.38 31542.98 37658.23 35932.53 36338.79 35570.77 33039.66 17473.51 34425.18 36052.06 32390.55 76
test_f27.12 35224.85 35333.93 36926.17 40015.25 39530.24 38922.38 39812.53 38828.23 37749.43 3762.59 39234.34 39525.12 36126.99 37952.20 377
TinyColmap48.15 33044.49 33459.13 33565.73 34338.04 33763.34 34562.86 35438.78 34629.48 37567.23 3446.46 38373.30 34524.59 36241.90 35566.04 365
AllTest47.32 33144.66 33355.32 34665.08 34837.50 34062.96 34854.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
TestCases55.32 34665.08 34837.50 34054.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
N_pmnet41.25 33739.77 34045.66 35668.50 3290.82 40672.51 3070.38 40535.61 35835.26 36461.51 35720.07 34267.74 35923.51 36540.63 35668.42 360
dmvs_testset57.65 29258.21 27355.97 34474.62 2699.82 40063.75 34363.34 35267.23 4548.89 31183.68 18739.12 17876.14 33123.43 36659.80 25381.96 248
myMVS_eth3d63.52 24463.56 23463.40 31481.73 13834.28 34780.97 24081.02 19060.93 15055.06 26882.64 20348.00 6980.81 28723.42 36758.32 26775.10 331
WAC-MVS34.28 34722.56 368
DP-MVS59.24 27656.12 28868.63 27588.24 3250.35 17682.51 20364.43 34941.10 34346.70 32678.77 24824.75 31588.57 15022.26 36956.29 29166.96 362
MIMVSNet150.35 32647.81 32757.96 33861.53 36127.80 37567.40 33474.06 29843.25 33733.31 37165.38 34916.03 36071.34 35221.80 37047.55 33674.75 333
tfpnnormal61.47 26459.09 26868.62 27676.29 24541.69 31781.14 23785.16 10654.48 26351.32 29873.63 30632.32 26086.89 20921.78 37155.71 29977.29 311
LF4IMVS33.04 34832.55 34834.52 36740.96 38522.03 38244.45 37535.62 38520.42 37828.12 37862.35 3555.03 38731.88 39721.61 37234.42 36849.63 379
COLMAP_ROBcopyleft43.60 2050.90 32548.05 32659.47 33267.81 33540.57 32871.25 31862.72 35536.49 35636.19 36173.51 30713.48 36473.92 34120.71 37350.26 32763.92 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LCM-MVSNet28.07 34923.85 35740.71 36027.46 39918.93 38730.82 38846.19 36912.76 38716.40 38534.70 3861.90 39648.69 38220.25 37424.22 38254.51 375
DSMNet-mixed38.35 34035.36 34547.33 35448.11 38214.91 39637.87 38236.60 38419.18 38034.37 36559.56 36315.53 36153.01 37720.14 37546.89 34274.07 337
new_pmnet33.56 34731.89 34938.59 36349.01 37920.42 38551.01 36937.92 38220.58 37723.45 38246.79 3776.66 38249.28 38120.00 37631.57 37546.09 382
LS3D56.40 30053.82 30064.12 30981.12 15845.69 27973.42 30166.14 34435.30 36143.24 33979.88 23522.18 33379.62 30419.10 37764.00 22067.05 361
test_method24.09 35721.07 36133.16 37027.67 3988.35 40426.63 39035.11 3873.40 39614.35 38836.98 3823.46 39035.31 39219.08 37822.95 38355.81 374
TDRefinement40.91 33838.37 34248.55 35350.45 37833.03 35558.98 36050.97 36828.50 37029.89 37467.39 3436.21 38554.51 37517.67 37935.25 36658.11 372
testing359.97 27060.19 26059.32 33377.60 22330.01 36681.75 22181.79 17753.54 26950.34 30579.94 23448.99 6376.91 32617.19 38050.59 32671.03 356
test_040256.45 29953.03 30366.69 29476.78 23850.31 17881.76 22069.61 33442.79 33943.88 33372.13 32222.82 32786.46 22016.57 38150.94 32563.31 370
Syy-MVS61.51 26361.35 24762.00 32181.73 13830.09 36480.97 24081.02 19060.93 15055.06 26882.64 20335.09 23480.81 28716.40 38258.32 26775.10 331
PMMVS226.71 35322.98 35837.87 36536.89 3888.51 40342.51 37729.32 39219.09 38113.01 38937.54 3802.23 39453.11 37614.54 38311.71 39151.99 378
ANet_high34.39 34529.59 35148.78 35230.34 39422.28 38155.53 36563.79 35138.11 34915.47 38736.56 3846.94 37959.98 36713.93 3845.64 39864.08 368
tmp_tt9.44 36410.68 3675.73 3812.49 4034.21 40510.48 39418.04 4000.34 39812.59 39020.49 39211.39 3677.03 40013.84 3856.46 3975.95 395
APD_test126.46 35424.41 35532.62 37237.58 38721.74 38340.50 38030.39 39011.45 38916.33 38643.76 3781.63 39841.62 38711.24 38626.82 38034.51 386
EGC-MVSNET33.75 34630.42 35043.75 35964.94 35036.21 34360.47 35740.70 3790.02 3990.10 40053.79 3717.39 37760.26 36611.09 38735.23 36734.79 385
FPMVS35.40 34333.67 34740.57 36146.34 38328.74 37341.05 37857.05 36120.37 37922.27 38353.38 3726.87 38044.94 3868.62 38847.11 34048.01 380
Gipumacopyleft27.47 35124.26 35637.12 36660.55 36429.17 37111.68 39360.00 35714.18 38510.52 39415.12 3952.20 39563.01 3638.39 38935.65 36419.18 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf121.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
APD_test221.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
MVEpermissive16.60 2317.34 36313.39 36629.16 37428.43 39719.72 38613.73 39223.63 3977.23 3957.96 39521.41 3910.80 40136.08 3916.97 39210.39 39231.69 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft13.10 37921.34 4028.99 40110.02 40310.59 3917.53 39630.55 3891.82 39714.55 3986.83 3937.52 39415.75 392
WB-MVS37.41 34236.37 34340.54 36254.23 37110.43 39965.29 33743.75 37334.86 36227.81 37954.63 36924.94 31363.21 3626.81 39415.00 38947.98 381
SSC-MVS35.20 34434.30 34637.90 36452.58 3738.65 40261.86 35041.64 37731.81 36725.54 38152.94 37423.39 32459.28 3706.10 39512.86 39045.78 383
E-PMN19.16 36018.40 36421.44 37736.19 38913.63 39747.59 37130.89 38910.73 3905.91 39716.59 3933.66 38939.77 3885.95 3968.14 39310.92 393
PMVScopyleft19.57 2225.07 35522.43 36032.99 37123.12 40122.98 37940.98 37935.19 38615.99 38411.95 39335.87 3851.47 39949.29 3805.41 39731.90 37426.70 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS18.42 36117.66 36520.71 37834.13 39112.64 39846.94 37229.94 39110.46 3925.58 39814.93 3964.23 38838.83 3895.24 3987.51 39510.67 394
wuyk23d9.11 3658.77 36910.15 38040.18 38616.76 39320.28 3911.01 4042.58 3972.66 3990.98 3990.23 40412.49 3994.08 3996.90 3961.19 396
testmvs6.14 3678.18 3700.01 3820.01 4040.00 40873.40 3020.00 4060.00 4000.02 4010.15 4000.00 4050.00 4010.02 4000.00 3990.02 397
test1236.01 3688.01 3710.01 3820.00 4050.01 40771.93 3150.00 4060.00 4000.02 4010.11 4010.00 4050.00 4010.02 4000.00 3990.02 397
test_blank0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
cdsmvs_eth3d_5k18.33 36224.44 3540.00 3840.00 4050.00 4080.00 39589.40 160.00 4000.00 40392.02 4538.55 1830.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.15 3694.20 3720.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 40237.77 1890.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
ab-mvs-re7.68 36610.24 3680.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 40392.12 420.00 4050.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
FOURS183.24 10149.90 18684.98 12878.76 23647.71 30773.42 58
test_one_060189.39 2257.29 2088.09 4657.21 22682.06 1293.39 1854.94 24
eth-test20.00 405
eth-test0.00 405
test_241102_ONE89.48 1756.89 2588.94 2457.53 21884.61 493.29 2258.81 1196.45 1
save fliter85.35 6056.34 3689.31 3981.46 18261.55 137
test072689.40 2057.45 1792.32 788.63 3657.71 21483.14 993.96 655.17 20
GSMVS88.13 138
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 18188.13 138
sam_mvs35.99 226
MTGPAbinary81.31 185
test_post16.22 39437.52 19884.72 257
patchmatchnet-post59.74 36238.41 18479.91 302
MTMP87.27 7215.34 402
TEST985.68 5155.42 5187.59 6284.00 13657.72 21372.99 6390.98 6544.87 10888.58 147
test_885.72 5055.31 5687.60 6183.88 13957.84 21172.84 6790.99 6444.99 10488.34 158
agg_prior85.64 5454.92 7083.61 14672.53 7288.10 168
test_prior456.39 3587.15 75
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
新几何281.61 226
旧先验181.57 14947.48 24971.83 31488.66 11536.94 20978.34 10388.67 126
原ACMM283.77 166
test22279.36 18950.97 16177.99 27267.84 34142.54 34062.84 16986.53 15230.26 27776.91 11185.23 195
segment_acmp44.97 106
testdata177.55 27664.14 89
test1279.24 3986.89 4156.08 4085.16 10672.27 7647.15 7691.10 7385.93 3590.54 78
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 224
plane_prior483.28 192
plane_prior348.95 20764.01 9262.15 177
plane_prior285.76 10063.60 101
plane_prior178.31 215
plane_prior49.57 19187.43 6564.57 8372.84 148
n20.00 406
nn0.00 406
door-mid41.31 378
test1184.25 130
door43.27 374
HQP5-MVS51.56 150
HQP-NCC79.02 19788.00 5365.45 7064.48 145
ACMP_Plane79.02 19788.00 5365.45 7064.48 145
HQP4-MVS64.47 14888.61 14684.91 201
HQP3-MVS83.68 14273.12 144
HQP2-MVS37.35 201
NP-MVS78.76 20250.43 17185.12 166
ACMMP++_ref63.20 232
ACMMP++59.38 258
Test By Simon39.38 175