| MM | | | | | 80.89 20 | | 55.40 54 | 92.16 9 | 89.85 15 | 75.28 4 | 82.41 10 | 93.86 8 | 54.30 25 | 93.98 23 | 90.29 1 | 87.13 20 | 93.30 12 |
|
| OPU-MVS | | | | | 81.71 12 | 92.05 3 | 55.97 43 | 92.48 3 | | | | 94.01 5 | 67.21 2 | 95.10 15 | 89.82 2 | 92.55 3 | 94.06 3 |
|
| PC_three_1452 | | | | | | | | | | 66.58 52 | 87.27 2 | 93.70 9 | 66.82 4 | 94.95 17 | 89.74 3 | 91.98 4 | 93.98 5 |
|
| MVS_0304 | | | 81.58 8 | 82.05 6 | 80.20 27 | 82.36 128 | 54.70 76 | 91.13 19 | 88.95 23 | 74.49 5 | 80.04 24 | 93.64 11 | 52.40 36 | 93.27 30 | 88.85 4 | 86.56 30 | 92.61 26 |
|
| fmvsm_l_conf0.5_n | | | 75.95 56 | 76.16 47 | 75.31 141 | 76.01 251 | 48.44 225 | 84.98 128 | 71.08 322 | 63.50 104 | 81.70 16 | 93.52 15 | 50.00 54 | 87.18 198 | 87.80 5 | 76.87 112 | 90.32 83 |
|
| fmvsm_l_conf0.5_n_a | | | 75.88 58 | 76.07 48 | 75.31 141 | 76.08 247 | 48.34 228 | 85.24 116 | 70.62 326 | 63.13 112 | 81.45 17 | 93.62 14 | 49.98 56 | 87.40 194 | 87.76 6 | 76.77 113 | 90.20 88 |
|
| test_fmvsm_n_1920 | | | 75.56 64 | 75.54 53 | 75.61 129 | 74.60 270 | 49.51 196 | 81.82 219 | 74.08 297 | 66.52 55 | 80.40 21 | 93.46 17 | 46.95 78 | 89.72 112 | 86.69 7 | 75.30 127 | 87.61 149 |
|
| fmvsm_s_conf0.5_n | | | 74.48 74 | 74.12 71 | 75.56 131 | 76.96 236 | 47.85 245 | 85.32 114 | 69.80 333 | 64.16 88 | 78.74 28 | 93.48 16 | 45.51 98 | 89.29 121 | 86.48 8 | 66.62 198 | 89.55 104 |
|
| fmvsm_s_conf0.1_n | | | 73.80 85 | 73.26 78 | 75.43 136 | 73.28 285 | 47.80 246 | 84.57 145 | 69.43 335 | 63.34 107 | 78.40 31 | 93.29 22 | 44.73 113 | 89.22 123 | 85.99 9 | 66.28 205 | 89.26 109 |
|
| MCST-MVS | | | 83.01 1 | 83.30 2 | 82.15 10 | 92.84 2 | 57.58 14 | 93.77 1 | 91.10 6 | 75.95 3 | 77.10 36 | 93.09 27 | 54.15 28 | 95.57 12 | 85.80 10 | 85.87 36 | 93.31 11 |
|
| fmvsm_s_conf0.5_n_a | | | 73.68 90 | 73.15 79 | 75.29 144 | 75.45 258 | 48.05 238 | 83.88 163 | 68.84 338 | 63.43 106 | 78.60 29 | 93.37 20 | 45.32 99 | 88.92 138 | 85.39 11 | 64.04 218 | 88.89 120 |
|
| patch_mono-2 | | | 80.84 11 | 81.59 9 | 78.62 57 | 90.34 9 | 53.77 95 | 88.08 52 | 88.36 43 | 76.17 2 | 79.40 27 | 91.09 62 | 55.43 19 | 90.09 103 | 85.01 12 | 80.40 80 | 91.99 43 |
|
| fmvsm_s_conf0.1_n_a | | | 72.82 102 | 72.05 101 | 75.12 149 | 70.95 312 | 47.97 241 | 82.72 196 | 68.43 340 | 62.52 123 | 78.17 32 | 93.08 28 | 44.21 116 | 88.86 139 | 84.82 13 | 63.54 224 | 88.54 131 |
|
| CNVR-MVS | | | 81.76 7 | 81.90 7 | 81.33 17 | 90.04 10 | 57.70 12 | 91.71 10 | 88.87 28 | 70.31 19 | 77.64 35 | 93.87 7 | 52.58 35 | 93.91 26 | 84.17 14 | 87.92 15 | 92.39 30 |
|
| dcpmvs_2 | | | 79.33 19 | 78.94 19 | 80.49 22 | 89.75 12 | 56.54 31 | 84.83 135 | 83.68 142 | 67.85 38 | 69.36 97 | 90.24 82 | 60.20 7 | 92.10 52 | 84.14 15 | 80.40 80 | 92.82 21 |
|
| CANet | | | 80.90 10 | 81.17 11 | 80.09 32 | 87.62 37 | 54.21 88 | 91.60 13 | 86.47 73 | 73.13 8 | 79.89 25 | 93.10 25 | 49.88 58 | 92.98 32 | 84.09 16 | 84.75 48 | 93.08 17 |
|
| test_fmvsmconf_n | | | 74.41 76 | 74.05 73 | 75.49 135 | 74.16 276 | 48.38 226 | 82.66 197 | 72.57 310 | 67.05 48 | 75.11 43 | 92.88 31 | 46.35 85 | 87.81 175 | 83.93 17 | 71.71 157 | 90.28 84 |
|
| test_fmvsmconf0.1_n | | | 73.69 89 | 73.15 79 | 75.34 139 | 70.71 313 | 48.26 231 | 82.15 209 | 71.83 314 | 66.75 51 | 74.47 50 | 92.59 36 | 44.89 107 | 87.78 180 | 83.59 18 | 71.35 161 | 89.97 95 |
|
| MSP-MVS | | | 82.30 5 | 83.47 1 | 78.80 50 | 82.99 111 | 52.71 126 | 85.04 125 | 88.63 36 | 66.08 64 | 86.77 3 | 92.75 32 | 72.05 1 | 91.46 63 | 83.35 19 | 93.53 1 | 92.23 34 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| test_fmvsmvis_n_1920 | | | 71.29 128 | 70.38 124 | 74.00 174 | 71.04 311 | 48.79 213 | 79.19 265 | 64.62 348 | 62.75 117 | 66.73 112 | 91.99 47 | 40.94 158 | 88.35 157 | 83.00 20 | 73.18 143 | 84.85 203 |
|
| IU-MVS | | | | | | 89.48 17 | 57.49 15 | | 91.38 5 | 66.22 60 | 88.26 1 | | | | 82.83 21 | 87.60 17 | 92.44 29 |
|
| PS-MVSNAJ | | | 80.06 15 | 79.52 16 | 81.68 13 | 85.58 55 | 60.97 3 | 91.69 11 | 87.02 63 | 70.62 16 | 80.75 20 | 93.22 24 | 37.77 189 | 92.50 42 | 82.75 22 | 86.25 33 | 91.57 53 |
|
| xiu_mvs_v2_base | | | 79.86 16 | 79.31 17 | 81.53 14 | 85.03 67 | 60.73 4 | 91.65 12 | 86.86 66 | 70.30 20 | 80.77 19 | 93.07 29 | 37.63 194 | 92.28 47 | 82.73 23 | 85.71 37 | 91.57 53 |
|
| DeepPCF-MVS | | 69.37 1 | 80.65 12 | 81.56 10 | 77.94 75 | 85.46 58 | 49.56 193 | 90.99 21 | 86.66 71 | 70.58 17 | 80.07 23 | 95.30 1 | 56.18 17 | 90.97 78 | 82.57 24 | 86.22 34 | 93.28 13 |
|
| SED-MVS | | | 81.92 6 | 81.75 8 | 82.44 7 | 89.48 17 | 56.89 25 | 92.48 3 | 88.94 24 | 57.50 220 | 84.61 4 | 94.09 3 | 58.81 11 | 96.37 6 | 82.28 25 | 87.60 17 | 94.06 3 |
|
| test_241102_TWO | | | | | | | | | 88.76 32 | 57.50 220 | 83.60 6 | 94.09 3 | 56.14 18 | 96.37 6 | 82.28 25 | 87.43 19 | 92.55 27 |
|
| test_fmvsmconf0.01_n | | | 71.97 117 | 70.95 116 | 75.04 150 | 66.21 339 | 47.87 244 | 80.35 250 | 70.08 330 | 65.85 69 | 72.69 68 | 91.68 54 | 39.99 171 | 87.67 184 | 82.03 27 | 69.66 176 | 89.58 103 |
|
| DVP-MVS |  | | 81.30 9 | 81.00 12 | 82.20 8 | 89.40 20 | 57.45 17 | 92.34 5 | 89.99 13 | 57.71 214 | 81.91 13 | 93.64 11 | 55.17 20 | 96.44 2 | 81.68 28 | 87.13 20 | 92.72 24 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_SECOND | | | | | 82.20 8 | 89.50 15 | 57.73 11 | 92.34 5 | 88.88 26 | | | | | 96.39 4 | 81.68 28 | 87.13 20 | 92.47 28 |
|
| DVP-MVS++ | | | 82.44 2 | 82.38 4 | 82.62 4 | 91.77 4 | 57.49 15 | 84.98 128 | 88.88 26 | 58.00 206 | 83.60 6 | 93.39 18 | 67.21 2 | 96.39 4 | 81.64 30 | 91.98 4 | 93.98 5 |
|
| test_0728_THIRD | | | | | | | | | | 58.00 206 | 81.91 13 | 93.64 11 | 56.54 15 | 96.44 2 | 81.64 30 | 86.86 24 | 92.23 34 |
|
| MSC_two_6792asdad | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 6 | | | | | 96.22 8 | 81.46 32 | 86.80 26 | 92.34 32 |
|
| No_MVS | | | | | 81.53 14 | 91.77 4 | 56.03 41 | | 91.10 6 | | | | | 96.22 8 | 81.46 32 | 86.80 26 | 92.34 32 |
|
| 9.14 | | | | 78.19 24 | | 85.67 53 | | 88.32 50 | 88.84 29 | 59.89 165 | 74.58 48 | 92.62 35 | 46.80 80 | 92.66 39 | 81.40 34 | 85.62 39 | |
|
| lupinMVS | | | 78.38 24 | 78.11 25 | 79.19 40 | 83.02 109 | 55.24 58 | 91.57 14 | 84.82 115 | 69.12 27 | 76.67 38 | 92.02 45 | 44.82 110 | 90.23 100 | 80.83 35 | 80.09 84 | 92.08 38 |
|
| HPM-MVS++ |  | | 80.50 13 | 80.71 13 | 79.88 34 | 87.34 39 | 55.20 61 | 89.93 29 | 87.55 58 | 66.04 67 | 79.46 26 | 93.00 30 | 53.10 32 | 91.76 57 | 80.40 36 | 89.56 8 | 92.68 25 |
|
| SMA-MVS |  | | 79.10 20 | 78.76 20 | 80.12 30 | 84.42 75 | 55.87 45 | 87.58 64 | 86.76 68 | 61.48 140 | 80.26 22 | 93.10 25 | 46.53 84 | 92.41 44 | 79.97 37 | 88.77 10 | 92.08 38 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| APDe-MVS |  | | 78.44 22 | 78.20 23 | 79.19 40 | 88.56 26 | 54.55 82 | 89.76 33 | 87.77 53 | 55.91 245 | 78.56 30 | 92.49 37 | 48.20 65 | 92.65 40 | 79.49 38 | 83.04 57 | 90.39 80 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| ETV-MVS | | | 77.17 38 | 76.74 39 | 78.48 61 | 81.80 136 | 54.55 82 | 86.13 93 | 85.33 96 | 68.20 32 | 73.10 62 | 90.52 76 | 45.23 101 | 90.66 86 | 79.37 39 | 80.95 72 | 90.22 86 |
|
| jason | | | 77.01 40 | 76.45 42 | 78.69 54 | 79.69 186 | 54.74 73 | 90.56 24 | 83.99 138 | 68.26 31 | 74.10 52 | 90.91 68 | 42.14 144 | 89.99 105 | 79.30 40 | 79.12 95 | 91.36 61 |
| jason: jason. |
| test_vis1_n_1920 | | | 68.59 178 | 68.31 154 | 69.44 264 | 69.16 324 | 41.51 320 | 84.63 143 | 68.58 339 | 58.80 193 | 73.26 61 | 88.37 120 | 25.30 309 | 80.60 291 | 79.10 41 | 67.55 191 | 86.23 176 |
|
| casdiffmvs_mvg |  | | 77.75 32 | 77.28 33 | 79.16 42 | 80.42 177 | 54.44 84 | 87.76 58 | 85.46 90 | 71.67 11 | 71.38 85 | 88.35 121 | 51.58 40 | 91.22 68 | 79.02 42 | 79.89 90 | 91.83 47 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| DELS-MVS | | | 82.32 4 | 82.50 3 | 81.79 11 | 86.80 42 | 56.89 25 | 92.77 2 | 86.30 77 | 77.83 1 | 77.88 33 | 92.13 41 | 60.24 6 | 94.78 19 | 78.97 43 | 89.61 7 | 93.69 8 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| h-mvs33 | | | 73.95 82 | 72.89 84 | 77.15 92 | 80.17 180 | 50.37 174 | 84.68 140 | 83.33 148 | 68.08 33 | 71.97 77 | 88.65 118 | 42.50 138 | 91.15 71 | 78.82 44 | 57.78 281 | 89.91 98 |
|
| hse-mvs2 | | | 71.44 127 | 70.68 118 | 73.73 184 | 76.34 241 | 47.44 251 | 79.45 262 | 79.47 220 | 68.08 33 | 71.97 77 | 86.01 158 | 42.50 138 | 86.93 207 | 78.82 44 | 53.46 318 | 86.83 166 |
|
| NCCC | | | 79.57 18 | 79.23 18 | 80.59 21 | 89.50 15 | 56.99 23 | 91.38 15 | 88.17 45 | 67.71 41 | 73.81 54 | 92.75 32 | 46.88 79 | 93.28 29 | 78.79 46 | 84.07 53 | 91.50 57 |
|
| test9_res | | | | | | | | | | | | | | | 78.72 47 | 85.44 41 | 91.39 59 |
|
| test_cas_vis1_n_1920 | | | 67.10 210 | 66.60 187 | 68.59 277 | 65.17 347 | 43.23 304 | 83.23 185 | 69.84 332 | 55.34 253 | 70.67 92 | 87.71 134 | 24.70 316 | 76.66 330 | 78.57 48 | 64.20 217 | 85.89 185 |
|
| CSCG | | | 80.41 14 | 79.72 14 | 82.49 5 | 89.12 25 | 57.67 13 | 89.29 40 | 91.54 3 | 59.19 182 | 71.82 79 | 90.05 90 | 59.72 9 | 96.04 10 | 78.37 49 | 88.40 13 | 93.75 7 |
|
| DPE-MVS |  | | 79.82 17 | 79.66 15 | 80.29 25 | 89.27 24 | 55.08 66 | 88.70 46 | 87.92 49 | 55.55 250 | 81.21 18 | 93.69 10 | 56.51 16 | 94.27 22 | 78.36 50 | 85.70 38 | 91.51 56 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MP-MVS-pluss | | | 75.54 65 | 75.03 60 | 77.04 94 | 81.37 155 | 52.65 128 | 84.34 149 | 84.46 125 | 61.16 143 | 69.14 98 | 91.76 51 | 39.98 172 | 88.99 133 | 78.19 51 | 84.89 47 | 89.48 107 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| train_agg | | | 76.91 41 | 76.40 43 | 78.45 63 | 85.68 51 | 55.42 51 | 87.59 62 | 84.00 136 | 57.84 211 | 72.99 63 | 90.98 65 | 44.99 104 | 88.58 147 | 78.19 51 | 85.32 42 | 91.34 63 |
|
| SF-MVS | | | 77.64 33 | 77.42 32 | 78.32 67 | 83.75 89 | 52.47 131 | 86.63 85 | 87.80 50 | 58.78 194 | 74.63 46 | 92.38 38 | 47.75 70 | 91.35 65 | 78.18 53 | 86.85 25 | 91.15 66 |
|
| canonicalmvs | | | 78.17 27 | 77.86 28 | 79.12 44 | 84.30 77 | 54.22 87 | 87.71 59 | 84.57 124 | 67.70 42 | 77.70 34 | 92.11 44 | 50.90 47 | 89.95 106 | 78.18 53 | 77.54 107 | 93.20 15 |
|
| VDD-MVS | | | 76.08 54 | 74.97 62 | 79.44 36 | 84.27 79 | 53.33 111 | 91.13 19 | 85.88 83 | 65.33 76 | 72.37 74 | 89.34 103 | 32.52 258 | 92.76 38 | 77.90 55 | 75.96 120 | 92.22 36 |
|
| diffmvs |  | | 75.11 71 | 74.65 67 | 76.46 109 | 78.52 210 | 53.35 109 | 83.28 184 | 79.94 208 | 70.51 18 | 71.64 81 | 88.72 114 | 46.02 90 | 86.08 233 | 77.52 56 | 75.75 124 | 89.96 96 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| SDMVSNet | | | 71.89 118 | 70.62 120 | 75.70 127 | 81.70 140 | 51.61 148 | 73.89 296 | 88.72 33 | 66.58 52 | 61.64 182 | 82.38 211 | 37.63 194 | 89.48 117 | 77.44 57 | 65.60 208 | 86.01 179 |
|
| alignmvs | | | 78.08 28 | 77.98 26 | 78.39 65 | 83.53 92 | 53.22 114 | 89.77 32 | 85.45 91 | 66.11 62 | 76.59 40 | 91.99 47 | 54.07 29 | 89.05 128 | 77.34 58 | 77.00 110 | 92.89 20 |
|
| SteuartSystems-ACMMP | | | 77.08 39 | 76.33 44 | 79.34 38 | 80.98 160 | 55.31 56 | 89.76 33 | 86.91 65 | 62.94 115 | 71.65 80 | 91.56 58 | 42.33 140 | 92.56 41 | 77.14 59 | 83.69 55 | 90.15 90 |
| Skip Steuart: Steuart Systems R&D Blog. |
| ACMMP_NAP | | | 76.43 49 | 75.66 51 | 78.73 52 | 81.92 133 | 54.67 79 | 84.06 158 | 85.35 95 | 61.10 145 | 72.99 63 | 91.50 59 | 40.25 165 | 91.00 75 | 76.84 60 | 86.98 23 | 90.51 79 |
|
| CLD-MVS | | | 75.60 63 | 75.39 55 | 76.24 112 | 80.69 171 | 52.40 132 | 90.69 23 | 86.20 79 | 74.40 6 | 65.01 137 | 88.93 110 | 42.05 146 | 90.58 89 | 76.57 61 | 73.96 138 | 85.73 187 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| MP-MVS |  | | 74.99 72 | 74.33 69 | 76.95 100 | 82.89 115 | 53.05 120 | 85.63 106 | 83.50 147 | 57.86 210 | 67.25 110 | 90.24 82 | 43.38 130 | 88.85 141 | 76.03 62 | 82.23 63 | 88.96 118 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| casdiffmvs |  | | 77.36 36 | 76.85 38 | 78.88 48 | 80.40 178 | 54.66 80 | 87.06 76 | 85.88 83 | 72.11 10 | 71.57 82 | 88.63 119 | 50.89 49 | 90.35 94 | 76.00 63 | 79.11 96 | 91.63 50 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| TSAR-MVS + GP. | | | 77.82 31 | 77.59 30 | 78.49 60 | 85.25 63 | 50.27 180 | 90.02 26 | 90.57 10 | 56.58 239 | 74.26 51 | 91.60 57 | 54.26 26 | 92.16 49 | 75.87 64 | 79.91 88 | 93.05 18 |
|
| baseline | | | 76.86 44 | 76.24 46 | 78.71 53 | 80.47 176 | 54.20 90 | 83.90 162 | 84.88 114 | 71.38 14 | 71.51 83 | 89.15 108 | 50.51 50 | 90.55 90 | 75.71 65 | 78.65 99 | 91.39 59 |
|
| agg_prior2 | | | | | | | | | | | | | | | 75.65 66 | 85.11 45 | 91.01 68 |
|
| DeepC-MVS | | 67.15 4 | 76.90 43 | 76.27 45 | 78.80 50 | 80.70 170 | 55.02 67 | 86.39 87 | 86.71 69 | 66.96 49 | 67.91 106 | 89.97 92 | 48.03 67 | 91.41 64 | 75.60 67 | 84.14 52 | 89.96 96 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| PVSNet_BlendedMVS | | | 73.42 94 | 73.30 77 | 73.76 182 | 85.91 48 | 51.83 144 | 86.18 92 | 84.24 132 | 65.40 73 | 69.09 99 | 80.86 229 | 46.70 82 | 88.13 166 | 75.43 68 | 65.92 207 | 81.33 264 |
|
| PVSNet_Blended | | | 76.53 48 | 76.54 41 | 76.50 108 | 85.91 48 | 51.83 144 | 88.89 44 | 84.24 132 | 67.82 39 | 69.09 99 | 89.33 105 | 46.70 82 | 88.13 166 | 75.43 68 | 81.48 71 | 89.55 104 |
|
| LFMVS | | | 78.52 21 | 77.14 35 | 82.67 3 | 89.58 13 | 58.90 7 | 91.27 18 | 88.05 47 | 63.22 110 | 74.63 46 | 90.83 71 | 41.38 156 | 94.40 20 | 75.42 70 | 79.90 89 | 94.72 2 |
|
| ZD-MVS | | | | | | 89.55 14 | 53.46 102 | | 84.38 126 | 57.02 228 | 73.97 53 | 91.03 63 | 44.57 114 | 91.17 70 | 75.41 71 | 81.78 69 | |
|
| MVS_111021_HR | | | 76.39 50 | 75.38 56 | 79.42 37 | 85.33 61 | 56.47 33 | 88.15 51 | 84.97 111 | 65.15 79 | 66.06 124 | 89.88 93 | 43.79 121 | 92.16 49 | 75.03 72 | 80.03 87 | 89.64 102 |
|
| CS-MVS-test | | | 77.20 37 | 77.25 34 | 77.05 93 | 84.60 72 | 49.04 205 | 89.42 36 | 85.83 85 | 65.90 68 | 72.85 66 | 91.98 49 | 45.10 102 | 91.27 66 | 75.02 73 | 84.56 49 | 90.84 72 |
|
| test_prior2 | | | | | | | | 89.04 42 | | 61.88 133 | 73.55 56 | 91.46 61 | 48.01 68 | | 74.73 74 | 85.46 40 | |
|
| SD-MVS | | | 76.18 52 | 74.85 64 | 80.18 28 | 85.39 59 | 56.90 24 | 85.75 102 | 82.45 166 | 56.79 234 | 74.48 49 | 91.81 50 | 43.72 124 | 90.75 84 | 74.61 75 | 78.65 99 | 92.91 19 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| CS-MVS | | | 76.77 45 | 76.70 40 | 76.99 98 | 83.55 91 | 48.75 214 | 88.60 47 | 85.18 104 | 66.38 57 | 72.47 73 | 91.62 56 | 45.53 96 | 90.99 77 | 74.48 76 | 82.51 60 | 91.23 64 |
|
| APD-MVS |  | | 76.15 53 | 75.68 50 | 77.54 81 | 88.52 27 | 53.44 105 | 87.26 73 | 85.03 110 | 53.79 267 | 74.91 44 | 91.68 54 | 43.80 120 | 90.31 96 | 74.36 77 | 81.82 67 | 88.87 121 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| EC-MVSNet | | | 75.30 66 | 75.20 57 | 75.62 128 | 80.98 160 | 49.00 206 | 87.43 65 | 84.68 121 | 63.49 105 | 70.97 90 | 90.15 88 | 42.86 137 | 91.14 72 | 74.33 78 | 81.90 66 | 86.71 168 |
|
| VDDNet | | | 74.37 77 | 72.13 98 | 81.09 19 | 79.58 187 | 56.52 32 | 90.02 26 | 86.70 70 | 52.61 277 | 71.23 87 | 87.20 142 | 31.75 268 | 93.96 25 | 74.30 79 | 75.77 123 | 92.79 23 |
|
| TSAR-MVS + MP. | | | 78.31 26 | 78.26 22 | 78.48 61 | 81.33 156 | 56.31 37 | 81.59 227 | 86.41 74 | 69.61 24 | 81.72 15 | 88.16 126 | 55.09 22 | 88.04 170 | 74.12 80 | 86.31 32 | 91.09 67 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| DPM-MVS | | | 82.39 3 | 82.36 5 | 82.49 5 | 80.12 181 | 59.50 5 | 92.24 8 | 90.72 9 | 69.37 26 | 83.22 8 | 94.47 2 | 63.81 5 | 93.18 31 | 74.02 81 | 93.25 2 | 94.80 1 |
|
| PHI-MVS | | | 77.49 34 | 77.00 36 | 78.95 45 | 85.33 61 | 50.69 164 | 88.57 48 | 88.59 39 | 58.14 203 | 73.60 55 | 93.31 21 | 43.14 133 | 93.79 27 | 73.81 82 | 88.53 12 | 92.37 31 |
|
| MTAPA | | | 72.73 103 | 71.22 112 | 77.27 89 | 81.54 150 | 53.57 99 | 67.06 336 | 81.31 185 | 59.41 175 | 68.39 103 | 90.96 67 | 36.07 223 | 89.01 130 | 73.80 83 | 82.45 62 | 89.23 111 |
|
| VNet | | | 77.99 30 | 77.92 27 | 78.19 69 | 87.43 38 | 50.12 181 | 90.93 22 | 91.41 4 | 67.48 44 | 75.12 42 | 90.15 88 | 46.77 81 | 91.00 75 | 73.52 84 | 78.46 101 | 93.44 9 |
|
| EPNet | | | 78.36 25 | 78.49 21 | 77.97 73 | 85.49 57 | 52.04 138 | 89.36 38 | 84.07 135 | 73.22 7 | 77.03 37 | 91.72 52 | 49.32 62 | 90.17 102 | 73.46 85 | 82.77 58 | 91.69 48 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| xiu_mvs_v1_base_debu | | | 71.60 123 | 70.29 127 | 75.55 132 | 77.26 230 | 53.15 115 | 85.34 111 | 79.37 221 | 55.83 246 | 72.54 69 | 90.19 85 | 22.38 329 | 86.66 214 | 73.28 86 | 76.39 116 | 86.85 163 |
|
| xiu_mvs_v1_base | | | 71.60 123 | 70.29 127 | 75.55 132 | 77.26 230 | 53.15 115 | 85.34 111 | 79.37 221 | 55.83 246 | 72.54 69 | 90.19 85 | 22.38 329 | 86.66 214 | 73.28 86 | 76.39 116 | 86.85 163 |
|
| xiu_mvs_v1_base_debi | | | 71.60 123 | 70.29 127 | 75.55 132 | 77.26 230 | 53.15 115 | 85.34 111 | 79.37 221 | 55.83 246 | 72.54 69 | 90.19 85 | 22.38 329 | 86.66 214 | 73.28 86 | 76.39 116 | 86.85 163 |
|
| PMMVS | | | 72.98 98 | 72.05 101 | 75.78 126 | 83.57 90 | 48.60 217 | 84.08 156 | 82.85 161 | 61.62 136 | 68.24 104 | 90.33 81 | 28.35 286 | 87.78 180 | 72.71 89 | 76.69 114 | 90.95 70 |
|
| ZNCC-MVS | | | 75.82 62 | 75.02 61 | 78.23 68 | 83.88 87 | 53.80 94 | 86.91 81 | 86.05 81 | 59.71 168 | 67.85 107 | 90.55 74 | 42.23 142 | 91.02 74 | 72.66 90 | 85.29 43 | 89.87 99 |
|
| ET-MVSNet_ETH3D | | | 75.23 68 | 74.08 72 | 78.67 55 | 84.52 74 | 55.59 47 | 88.92 43 | 89.21 19 | 68.06 36 | 53.13 286 | 90.22 84 | 49.71 59 | 87.62 189 | 72.12 91 | 70.82 166 | 92.82 21 |
|
| MVS | | | 76.91 41 | 75.48 54 | 81.23 18 | 84.56 73 | 55.21 60 | 80.23 253 | 91.64 2 | 58.65 196 | 65.37 132 | 91.48 60 | 45.72 94 | 95.05 16 | 72.11 92 | 89.52 9 | 93.44 9 |
|
| nrg030 | | | 72.27 114 | 71.56 106 | 74.42 161 | 75.93 252 | 50.60 166 | 86.97 78 | 83.21 153 | 62.75 117 | 67.15 111 | 84.38 172 | 50.07 53 | 86.66 214 | 71.19 93 | 62.37 241 | 85.99 181 |
|
| DeepC-MVS_fast | | 67.50 3 | 78.00 29 | 77.63 29 | 79.13 43 | 88.52 27 | 55.12 63 | 89.95 28 | 85.98 82 | 68.31 30 | 71.33 86 | 92.75 32 | 45.52 97 | 90.37 93 | 71.15 94 | 85.14 44 | 91.91 44 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| iter_conf05 | | | 73.51 93 | 72.24 95 | 77.33 85 | 87.93 36 | 55.97 43 | 87.90 57 | 70.81 325 | 68.72 28 | 64.04 152 | 84.36 174 | 47.54 72 | 90.87 80 | 71.11 95 | 67.75 190 | 85.13 197 |
|
| GST-MVS | | | 74.87 73 | 73.90 75 | 77.77 76 | 83.30 99 | 53.45 104 | 85.75 102 | 85.29 99 | 59.22 181 | 66.50 119 | 89.85 94 | 40.94 158 | 90.76 83 | 70.94 96 | 83.35 56 | 89.10 116 |
|
| CHOSEN 1792x2688 | | | 76.24 51 | 74.03 74 | 82.88 1 | 83.09 106 | 62.84 2 | 85.73 104 | 85.39 93 | 69.79 22 | 64.87 139 | 83.49 188 | 41.52 155 | 93.69 28 | 70.55 97 | 81.82 67 | 92.12 37 |
|
| CDPH-MVS | | | 76.05 55 | 75.19 58 | 78.62 57 | 86.51 44 | 54.98 69 | 87.32 68 | 84.59 123 | 58.62 197 | 70.75 91 | 90.85 70 | 43.10 135 | 90.63 88 | 70.50 98 | 84.51 51 | 90.24 85 |
|
| HPM-MVS |  | | 72.60 105 | 71.50 107 | 75.89 124 | 82.02 131 | 51.42 154 | 80.70 246 | 83.05 156 | 56.12 244 | 64.03 153 | 89.53 99 | 37.55 197 | 88.37 155 | 70.48 99 | 80.04 86 | 87.88 142 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| MVS_111021_LR | | | 69.07 165 | 67.91 159 | 72.54 206 | 77.27 229 | 49.56 193 | 79.77 257 | 73.96 300 | 59.33 179 | 60.73 190 | 87.82 131 | 30.19 278 | 81.53 280 | 69.94 100 | 72.19 154 | 86.53 170 |
|
| test_yl | | | 75.85 59 | 74.83 65 | 78.91 46 | 88.08 34 | 51.94 140 | 91.30 16 | 89.28 17 | 57.91 208 | 71.19 88 | 89.20 106 | 42.03 147 | 92.77 36 | 69.41 101 | 75.07 132 | 92.01 41 |
|
| DCV-MVSNet | | | 75.85 59 | 74.83 65 | 78.91 46 | 88.08 34 | 51.94 140 | 91.30 16 | 89.28 17 | 57.91 208 | 71.19 88 | 89.20 106 | 42.03 147 | 92.77 36 | 69.41 101 | 75.07 132 | 92.01 41 |
|
| HFP-MVS | | | 74.37 77 | 73.13 83 | 78.10 71 | 84.30 77 | 53.68 97 | 85.58 107 | 84.36 127 | 56.82 232 | 65.78 128 | 90.56 73 | 40.70 163 | 90.90 79 | 69.18 103 | 80.88 73 | 89.71 100 |
|
| ACMMPR | | | 73.76 86 | 72.61 85 | 77.24 91 | 83.92 85 | 52.96 123 | 85.58 107 | 84.29 128 | 56.82 232 | 65.12 133 | 90.45 77 | 37.24 205 | 90.18 101 | 69.18 103 | 80.84 74 | 88.58 129 |
|
| region2R | | | 73.75 87 | 72.55 87 | 77.33 85 | 83.90 86 | 52.98 122 | 85.54 110 | 84.09 134 | 56.83 231 | 65.10 134 | 90.45 77 | 37.34 203 | 90.24 99 | 68.89 105 | 80.83 75 | 88.77 125 |
|
| CP-MVS | | | 72.59 107 | 71.46 108 | 76.00 123 | 82.93 114 | 52.32 135 | 86.93 80 | 82.48 165 | 55.15 254 | 63.65 159 | 90.44 80 | 35.03 236 | 88.53 151 | 68.69 106 | 77.83 105 | 87.15 157 |
|
| baseline2 | | | 75.15 70 | 74.54 68 | 76.98 99 | 81.67 143 | 51.74 146 | 83.84 164 | 91.94 1 | 69.97 21 | 58.98 213 | 86.02 156 | 59.73 8 | 91.73 58 | 68.37 107 | 70.40 171 | 87.48 151 |
|
| Effi-MVS+ | | | 75.24 67 | 73.61 76 | 80.16 29 | 81.92 133 | 57.42 19 | 85.21 117 | 76.71 274 | 60.68 156 | 73.32 60 | 89.34 103 | 47.30 74 | 91.63 59 | 68.28 108 | 79.72 91 | 91.42 58 |
|
| CostFormer | | | 73.89 84 | 72.30 93 | 78.66 56 | 82.36 128 | 56.58 28 | 75.56 284 | 85.30 98 | 66.06 65 | 70.50 95 | 76.88 273 | 57.02 14 | 89.06 127 | 68.27 109 | 68.74 182 | 90.33 82 |
|
| CANet_DTU | | | 73.71 88 | 73.14 81 | 75.40 137 | 82.61 124 | 50.05 182 | 84.67 142 | 79.36 224 | 69.72 23 | 75.39 41 | 90.03 91 | 29.41 282 | 85.93 239 | 67.99 110 | 79.11 96 | 90.22 86 |
|
| PVSNet_Blended_VisFu | | | 73.40 95 | 72.44 89 | 76.30 110 | 81.32 157 | 54.70 76 | 85.81 98 | 78.82 234 | 63.70 98 | 64.53 144 | 85.38 164 | 47.11 77 | 87.38 195 | 67.75 111 | 77.55 106 | 86.81 167 |
|
| MSLP-MVS++ | | | 74.21 79 | 72.25 94 | 80.11 31 | 81.45 153 | 56.47 33 | 86.32 89 | 79.65 216 | 58.19 202 | 66.36 120 | 92.29 40 | 36.11 221 | 90.66 86 | 67.39 112 | 82.49 61 | 93.18 16 |
|
| PGM-MVS | | | 72.60 105 | 71.20 113 | 76.80 105 | 82.95 112 | 52.82 125 | 83.07 190 | 82.14 168 | 56.51 240 | 63.18 164 | 89.81 95 | 35.68 227 | 89.76 111 | 67.30 113 | 80.19 83 | 87.83 143 |
|
| EIA-MVS | | | 75.92 57 | 75.18 59 | 78.13 70 | 85.14 64 | 51.60 149 | 87.17 74 | 85.32 97 | 64.69 82 | 68.56 102 | 90.53 75 | 45.79 93 | 91.58 60 | 67.21 114 | 82.18 64 | 91.20 65 |
|
| HY-MVS | | 67.03 5 | 73.90 83 | 73.14 81 | 76.18 117 | 84.70 71 | 47.36 252 | 75.56 284 | 86.36 76 | 66.27 59 | 70.66 93 | 83.91 180 | 51.05 45 | 89.31 120 | 67.10 115 | 72.61 150 | 91.88 45 |
|
| BP-MVS | | | | | | | | | | | | | | | 66.70 116 | | |
|
| HQP-MVS | | | 72.34 110 | 71.44 109 | 75.03 151 | 79.02 197 | 51.56 150 | 88.00 53 | 83.68 142 | 65.45 70 | 64.48 145 | 85.13 165 | 37.35 201 | 88.62 145 | 66.70 116 | 73.12 144 | 84.91 201 |
|
| SR-MVS | | | 70.92 136 | 69.73 136 | 74.50 158 | 83.38 98 | 50.48 170 | 84.27 151 | 79.35 225 | 48.96 302 | 66.57 118 | 90.45 77 | 33.65 249 | 87.11 200 | 66.42 118 | 74.56 135 | 85.91 184 |
|
| gm-plane-assit | | | | | | 83.24 101 | 54.21 88 | | | 70.91 15 | | 88.23 125 | | 95.25 14 | 66.37 119 | | |
|
| PAPR | | | 75.20 69 | 74.13 70 | 78.41 64 | 88.31 31 | 55.10 65 | 84.31 150 | 85.66 87 | 63.76 97 | 67.55 108 | 90.73 72 | 43.48 129 | 89.40 119 | 66.36 120 | 77.03 109 | 90.73 74 |
|
| WTY-MVS | | | 77.47 35 | 77.52 31 | 77.30 87 | 88.33 30 | 46.25 270 | 88.46 49 | 90.32 11 | 71.40 13 | 72.32 75 | 91.72 52 | 53.44 30 | 92.37 45 | 66.28 121 | 75.42 126 | 93.28 13 |
|
| tpmrst | | | 71.04 133 | 69.77 135 | 74.86 154 | 83.19 103 | 55.86 46 | 75.64 283 | 78.73 238 | 67.88 37 | 64.99 138 | 73.73 302 | 49.96 57 | 79.56 305 | 65.92 122 | 67.85 189 | 89.14 115 |
|
| MVS_Test | | | 75.85 59 | 74.93 63 | 78.62 57 | 84.08 81 | 55.20 61 | 83.99 160 | 85.17 105 | 68.07 35 | 73.38 59 | 82.76 198 | 50.44 51 | 89.00 131 | 65.90 123 | 80.61 76 | 91.64 49 |
|
| ACMMP |  | | 70.81 138 | 69.29 144 | 75.39 138 | 81.52 152 | 51.92 142 | 83.43 176 | 83.03 157 | 56.67 237 | 58.80 220 | 88.91 111 | 31.92 266 | 88.58 147 | 65.89 124 | 73.39 142 | 85.67 188 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| XVS | | | 72.92 99 | 71.62 105 | 76.81 102 | 83.41 94 | 52.48 129 | 84.88 133 | 83.20 154 | 58.03 204 | 63.91 155 | 89.63 98 | 35.50 228 | 89.78 109 | 65.50 125 | 80.50 78 | 88.16 135 |
|
| X-MVStestdata | | | 65.85 231 | 62.20 239 | 76.81 102 | 83.41 94 | 52.48 129 | 84.88 133 | 83.20 154 | 58.03 204 | 63.91 155 | 4.82 398 | 35.50 228 | 89.78 109 | 65.50 125 | 80.50 78 | 88.16 135 |
|
| PAPM | | | 76.76 46 | 76.07 48 | 78.81 49 | 80.20 179 | 59.11 6 | 86.86 82 | 86.23 78 | 68.60 29 | 70.18 96 | 88.84 113 | 51.57 41 | 87.16 199 | 65.48 127 | 86.68 28 | 90.15 90 |
|
| HQP_MVS | | | 70.96 135 | 69.91 134 | 74.12 170 | 77.95 218 | 49.57 191 | 85.76 100 | 82.59 163 | 63.60 101 | 62.15 177 | 83.28 192 | 36.04 224 | 88.30 161 | 65.46 128 | 72.34 152 | 84.49 205 |
|
| plane_prior5 | | | | | | | | | 82.59 163 | | | | | 88.30 161 | 65.46 128 | 72.34 152 | 84.49 205 |
|
| mPP-MVS | | | 71.79 122 | 70.38 124 | 76.04 121 | 82.65 123 | 52.06 137 | 84.45 146 | 81.78 178 | 55.59 249 | 62.05 179 | 89.68 97 | 33.48 250 | 88.28 163 | 65.45 130 | 78.24 104 | 87.77 145 |
|
| OPM-MVS | | | 70.75 139 | 69.58 138 | 74.26 167 | 75.55 257 | 51.34 156 | 86.05 95 | 83.29 152 | 61.94 132 | 62.95 168 | 85.77 159 | 34.15 243 | 88.44 153 | 65.44 131 | 71.07 163 | 82.99 237 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| iter_conf_final | | | 71.46 126 | 69.68 137 | 76.81 102 | 86.03 46 | 53.49 100 | 84.73 137 | 74.37 294 | 60.27 161 | 66.28 121 | 84.36 174 | 35.14 233 | 90.87 80 | 65.41 132 | 70.51 169 | 86.05 178 |
|
| Effi-MVS+-dtu | | | 66.24 227 | 64.96 223 | 70.08 256 | 75.17 259 | 49.64 190 | 82.01 212 | 74.48 293 | 62.15 127 | 57.83 234 | 76.08 286 | 30.59 275 | 83.79 264 | 65.40 133 | 60.93 248 | 76.81 314 |
|
| EI-MVSNet-Vis-set | | | 73.19 97 | 72.60 86 | 74.99 153 | 82.56 125 | 49.80 189 | 82.55 202 | 89.00 22 | 66.17 61 | 65.89 127 | 88.98 109 | 43.83 119 | 92.29 46 | 65.38 134 | 69.01 180 | 82.87 240 |
|
| TESTMET0.1,1 | | | 72.86 101 | 72.33 91 | 74.46 159 | 81.98 132 | 50.77 162 | 85.13 120 | 85.47 89 | 66.09 63 | 67.30 109 | 83.69 185 | 37.27 204 | 83.57 268 | 65.06 135 | 78.97 98 | 89.05 117 |
|
| MVSTER | | | 73.25 96 | 72.33 91 | 76.01 122 | 85.54 56 | 53.76 96 | 83.52 169 | 87.16 61 | 67.06 47 | 63.88 157 | 81.66 221 | 52.77 33 | 90.44 91 | 64.66 136 | 64.69 214 | 83.84 222 |
|
| CPTT-MVS | | | 67.15 209 | 65.84 204 | 71.07 241 | 80.96 162 | 50.32 177 | 81.94 214 | 74.10 296 | 46.18 320 | 57.91 233 | 87.64 136 | 29.57 281 | 81.31 282 | 64.10 137 | 70.18 173 | 81.56 254 |
|
| miper_enhance_ethall | | | 69.77 156 | 68.90 148 | 72.38 211 | 78.93 200 | 49.91 185 | 83.29 183 | 78.85 232 | 64.90 80 | 59.37 206 | 79.46 239 | 52.77 33 | 85.16 251 | 63.78 138 | 58.72 263 | 82.08 246 |
|
| EI-MVSNet-UG-set | | | 72.37 109 | 71.73 104 | 74.29 166 | 81.60 146 | 49.29 200 | 81.85 217 | 88.64 35 | 65.29 78 | 65.05 135 | 88.29 124 | 43.18 131 | 91.83 56 | 63.74 139 | 67.97 187 | 81.75 251 |
|
| ab-mvs | | | 70.65 140 | 69.11 146 | 75.29 144 | 80.87 166 | 46.23 271 | 73.48 300 | 85.24 103 | 59.99 164 | 66.65 114 | 80.94 228 | 43.13 134 | 88.69 143 | 63.58 140 | 68.07 185 | 90.95 70 |
|
| VPA-MVSNet | | | 71.12 130 | 70.66 119 | 72.49 208 | 78.75 203 | 44.43 291 | 87.64 60 | 90.02 12 | 63.97 93 | 65.02 136 | 81.58 223 | 42.14 144 | 87.42 193 | 63.42 141 | 63.38 229 | 85.63 191 |
|
| mvsmamba | | | 66.93 217 | 64.88 224 | 73.09 195 | 75.06 262 | 47.26 254 | 83.36 182 | 69.21 336 | 62.64 120 | 55.68 264 | 81.43 224 | 29.72 280 | 89.20 125 | 63.35 142 | 63.50 225 | 82.79 241 |
|
| APD-MVS_3200maxsize | | | 69.62 161 | 68.23 156 | 73.80 181 | 81.58 148 | 48.22 232 | 81.91 215 | 79.50 219 | 48.21 305 | 64.24 150 | 89.75 96 | 31.91 267 | 87.55 191 | 63.08 143 | 73.85 140 | 85.64 190 |
|
| v2v482 | | | 69.55 162 | 67.64 167 | 75.26 147 | 72.32 298 | 53.83 93 | 84.93 132 | 81.94 172 | 65.37 75 | 60.80 189 | 79.25 243 | 41.62 152 | 88.98 134 | 63.03 144 | 59.51 256 | 82.98 238 |
|
| PS-MVSNAJss | | | 68.78 174 | 67.17 177 | 73.62 188 | 73.01 288 | 48.33 230 | 84.95 131 | 84.81 116 | 59.30 180 | 58.91 217 | 79.84 237 | 37.77 189 | 88.86 139 | 62.83 145 | 63.12 235 | 83.67 225 |
|
| cl22 | | | 68.85 169 | 67.69 166 | 72.35 212 | 78.07 217 | 49.98 184 | 82.45 205 | 78.48 244 | 62.50 124 | 58.46 227 | 77.95 253 | 49.99 55 | 85.17 250 | 62.55 146 | 58.72 263 | 81.90 249 |
|
| V42 | | | 67.66 194 | 65.60 211 | 73.86 178 | 70.69 315 | 53.63 98 | 81.50 230 | 78.61 241 | 63.85 95 | 59.49 205 | 77.49 260 | 37.98 186 | 87.65 185 | 62.33 147 | 58.43 266 | 80.29 278 |
|
| AUN-MVS | | | 68.20 186 | 66.35 190 | 73.76 182 | 76.37 240 | 47.45 250 | 79.52 261 | 79.52 218 | 60.98 148 | 62.34 173 | 86.02 156 | 36.59 218 | 86.94 206 | 62.32 148 | 53.47 317 | 86.89 160 |
|
| MG-MVS | | | 78.42 23 | 76.99 37 | 82.73 2 | 93.17 1 | 64.46 1 | 89.93 29 | 88.51 41 | 64.83 81 | 73.52 57 | 88.09 127 | 48.07 66 | 92.19 48 | 62.24 149 | 84.53 50 | 91.53 55 |
|
| Patchmatch-RL test | | | 58.72 285 | 54.32 297 | 71.92 226 | 63.91 354 | 44.25 293 | 61.73 351 | 55.19 362 | 57.38 222 | 49.31 309 | 54.24 370 | 37.60 196 | 80.89 285 | 62.19 150 | 47.28 338 | 90.63 75 |
|
| mvs_anonymous | | | 72.29 112 | 70.74 117 | 76.94 101 | 82.85 116 | 54.72 75 | 78.43 270 | 81.54 181 | 63.77 96 | 61.69 181 | 79.32 241 | 51.11 44 | 85.31 246 | 62.15 151 | 75.79 122 | 90.79 73 |
|
| miper_ehance_all_eth | | | 68.70 177 | 67.58 168 | 72.08 216 | 76.91 237 | 49.48 197 | 82.47 204 | 78.45 245 | 62.68 119 | 58.28 231 | 77.88 255 | 50.90 47 | 85.01 254 | 61.91 152 | 58.72 263 | 81.75 251 |
|
| HyFIR lowres test | | | 69.94 154 | 67.58 168 | 77.04 94 | 77.11 235 | 57.29 20 | 81.49 232 | 79.11 230 | 58.27 201 | 58.86 218 | 80.41 232 | 42.33 140 | 86.96 205 | 61.91 152 | 68.68 183 | 86.87 161 |
|
| sss | | | 70.49 142 | 70.13 131 | 71.58 233 | 81.59 147 | 39.02 332 | 80.78 245 | 84.71 120 | 59.34 177 | 66.61 116 | 88.09 127 | 37.17 206 | 85.52 242 | 61.82 154 | 71.02 164 | 90.20 88 |
|
| 1314 | | | 71.11 131 | 69.41 140 | 76.22 113 | 79.32 191 | 50.49 169 | 80.23 253 | 85.14 108 | 59.44 174 | 58.93 215 | 88.89 112 | 33.83 248 | 89.60 116 | 61.49 155 | 77.42 108 | 88.57 130 |
|
| GA-MVS | | | 69.04 166 | 66.70 184 | 76.06 120 | 75.11 260 | 52.36 133 | 83.12 188 | 80.23 203 | 63.32 108 | 60.65 191 | 79.22 244 | 30.98 273 | 88.37 155 | 61.25 156 | 66.41 201 | 87.46 152 |
|
| ECVR-MVS |  | | 71.81 120 | 71.00 115 | 74.26 167 | 80.12 181 | 43.49 300 | 84.69 139 | 82.16 167 | 64.02 90 | 64.64 141 | 87.43 139 | 35.04 235 | 89.21 124 | 61.24 157 | 79.66 92 | 90.08 92 |
|
| VPNet | | | 72.07 115 | 71.42 110 | 74.04 172 | 78.64 208 | 47.17 257 | 89.91 31 | 87.97 48 | 72.56 9 | 64.66 140 | 85.04 167 | 41.83 151 | 88.33 159 | 61.17 158 | 60.97 247 | 86.62 169 |
|
| ACMP | | 61.11 9 | 66.24 227 | 64.33 228 | 72.00 220 | 74.89 266 | 49.12 201 | 83.18 187 | 79.83 211 | 55.41 252 | 52.29 292 | 82.68 202 | 25.83 305 | 86.10 230 | 60.89 159 | 63.94 221 | 80.78 271 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| MVSFormer | | | 73.53 92 | 72.19 97 | 77.57 80 | 83.02 109 | 55.24 58 | 81.63 224 | 81.44 183 | 50.28 292 | 76.67 38 | 90.91 68 | 44.82 110 | 86.11 228 | 60.83 160 | 80.09 84 | 91.36 61 |
|
| test_djsdf | | | 63.84 240 | 61.56 244 | 70.70 246 | 68.78 326 | 44.69 288 | 81.63 224 | 81.44 183 | 50.28 292 | 52.27 293 | 76.26 281 | 26.72 299 | 86.11 228 | 60.83 160 | 55.84 298 | 81.29 267 |
|
| v148 | | | 68.24 185 | 66.35 190 | 73.88 177 | 71.76 301 | 51.47 153 | 84.23 152 | 81.90 176 | 63.69 99 | 58.94 214 | 76.44 278 | 43.72 124 | 87.78 180 | 60.63 162 | 55.86 297 | 82.39 244 |
|
| c3_l | | | 67.97 187 | 66.66 185 | 71.91 227 | 76.20 246 | 49.31 199 | 82.13 211 | 78.00 251 | 61.99 130 | 57.64 240 | 76.94 270 | 49.41 60 | 84.93 255 | 60.62 163 | 57.01 285 | 81.49 255 |
|
| test-LLR | | | 69.65 160 | 69.01 147 | 71.60 231 | 78.67 205 | 48.17 233 | 85.13 120 | 79.72 213 | 59.18 184 | 63.13 165 | 82.58 205 | 36.91 210 | 80.24 296 | 60.56 164 | 75.17 129 | 86.39 174 |
|
| test-mter | | | 68.36 180 | 67.29 174 | 71.60 231 | 78.67 205 | 48.17 233 | 85.13 120 | 79.72 213 | 53.38 271 | 63.13 165 | 82.58 205 | 27.23 296 | 80.24 296 | 60.56 164 | 75.17 129 | 86.39 174 |
|
| SR-MVS-dyc-post | | | 68.27 184 | 66.87 179 | 72.48 209 | 80.96 162 | 48.14 235 | 81.54 228 | 76.98 268 | 46.42 317 | 62.75 170 | 89.42 101 | 31.17 272 | 86.09 232 | 60.52 166 | 72.06 155 | 83.19 233 |
|
| RE-MVS-def | | | | 66.66 185 | | 80.96 162 | 48.14 235 | 81.54 228 | 76.98 268 | 46.42 317 | 62.75 170 | 89.42 101 | 29.28 284 | | 60.52 166 | 72.06 155 | 83.19 233 |
|
| IB-MVS | | 68.87 2 | 74.01 81 | 72.03 103 | 79.94 33 | 83.04 108 | 55.50 49 | 90.24 25 | 88.65 34 | 67.14 46 | 61.38 184 | 81.74 220 | 53.21 31 | 94.28 21 | 60.45 168 | 62.41 240 | 90.03 94 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| v1144 | | | 68.81 172 | 66.82 180 | 74.80 155 | 72.34 297 | 53.46 102 | 84.68 140 | 81.77 179 | 64.25 86 | 60.28 193 | 77.91 254 | 40.23 166 | 88.95 135 | 60.37 169 | 59.52 255 | 81.97 247 |
|
| LPG-MVS_test | | | 66.44 224 | 64.58 226 | 72.02 218 | 74.42 272 | 48.60 217 | 83.07 190 | 80.64 196 | 54.69 261 | 53.75 282 | 83.83 181 | 25.73 307 | 86.98 203 | 60.33 170 | 64.71 212 | 80.48 275 |
|
| LGP-MVS_train | | | | | 72.02 218 | 74.42 272 | 48.60 217 | | 80.64 196 | 54.69 261 | 53.75 282 | 83.83 181 | 25.73 307 | 86.98 203 | 60.33 170 | 64.71 212 | 80.48 275 |
|
| MVP-Stereo | | | 70.97 134 | 70.44 122 | 72.59 205 | 76.03 250 | 51.36 155 | 85.02 127 | 86.99 64 | 60.31 160 | 56.53 257 | 78.92 247 | 40.11 169 | 90.00 104 | 60.00 172 | 90.01 6 | 76.41 321 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| jajsoiax | | | 63.21 248 | 60.84 253 | 70.32 252 | 68.33 331 | 44.45 290 | 81.23 234 | 81.05 189 | 53.37 272 | 50.96 302 | 77.81 257 | 17.49 353 | 85.49 244 | 59.31 173 | 58.05 274 | 81.02 269 |
|
| test2506 | | | 72.91 100 | 72.43 90 | 74.32 165 | 80.12 181 | 44.18 295 | 83.19 186 | 84.77 118 | 64.02 90 | 65.97 125 | 87.43 139 | 47.67 71 | 88.72 142 | 59.08 174 | 79.66 92 | 90.08 92 |
|
| baseline1 | | | 72.51 108 | 72.12 99 | 73.69 185 | 85.05 65 | 44.46 289 | 83.51 173 | 86.13 80 | 71.61 12 | 64.64 141 | 87.97 130 | 55.00 23 | 89.48 117 | 59.07 175 | 56.05 294 | 87.13 158 |
|
| mvs_tets | | | 62.96 251 | 60.55 255 | 70.19 253 | 68.22 334 | 44.24 294 | 80.90 242 | 80.74 195 | 52.99 275 | 50.82 304 | 77.56 258 | 16.74 357 | 85.44 245 | 59.04 176 | 57.94 276 | 80.89 270 |
|
| HPM-MVS_fast | | | 67.86 189 | 66.28 193 | 72.61 204 | 80.67 172 | 48.34 228 | 81.18 236 | 75.95 283 | 50.81 290 | 59.55 203 | 88.05 129 | 27.86 291 | 85.98 235 | 58.83 177 | 73.58 141 | 83.51 226 |
|
| eth_miper_zixun_eth | | | 66.98 215 | 65.28 218 | 72.06 217 | 75.61 256 | 50.40 172 | 81.00 239 | 76.97 271 | 62.00 129 | 56.99 251 | 76.97 269 | 44.84 109 | 85.58 241 | 58.75 178 | 54.42 309 | 80.21 279 |
|
| v144192 | | | 67.86 189 | 65.76 206 | 74.16 169 | 71.68 302 | 53.09 118 | 84.14 155 | 80.83 194 | 62.85 116 | 59.21 211 | 77.28 264 | 39.30 176 | 88.00 171 | 58.67 179 | 57.88 279 | 81.40 261 |
|
| test1111 | | | 71.06 132 | 70.42 123 | 72.97 198 | 79.48 188 | 41.49 321 | 84.82 136 | 82.74 162 | 64.20 87 | 62.98 167 | 87.43 139 | 35.20 231 | 87.92 172 | 58.54 180 | 78.42 102 | 89.49 106 |
|
| thisisatest0515 | | | 73.64 91 | 72.20 96 | 77.97 73 | 81.63 144 | 53.01 121 | 86.69 84 | 88.81 30 | 62.53 122 | 64.06 151 | 85.65 160 | 52.15 39 | 92.50 42 | 58.43 181 | 69.84 174 | 88.39 134 |
|
| v8 | | | 67.25 206 | 64.99 222 | 74.04 172 | 72.89 291 | 53.31 112 | 82.37 207 | 80.11 205 | 61.54 138 | 54.29 277 | 76.02 287 | 42.89 136 | 88.41 154 | 58.43 181 | 56.36 287 | 80.39 277 |
|
| XXY-MVS | | | 70.18 145 | 69.28 145 | 72.89 201 | 77.64 222 | 42.88 308 | 85.06 124 | 87.50 59 | 62.58 121 | 62.66 172 | 82.34 213 | 43.64 126 | 89.83 108 | 58.42 183 | 63.70 223 | 85.96 183 |
|
| 3Dnovator | | 64.70 6 | 74.46 75 | 72.48 88 | 80.41 24 | 82.84 117 | 55.40 54 | 83.08 189 | 88.61 38 | 67.61 43 | 59.85 196 | 88.66 115 | 34.57 240 | 93.97 24 | 58.42 183 | 88.70 11 | 91.85 46 |
|
| 旧先验2 | | | | | | | | 81.73 222 | | 45.53 323 | 74.66 45 | | | 70.48 356 | 58.31 185 | | |
|
| test_fmvs1 | | | 53.60 315 | 52.54 310 | 56.78 340 | 58.07 365 | 30.26 362 | 68.95 329 | 42.19 376 | 32.46 364 | 63.59 161 | 82.56 207 | 11.55 366 | 60.81 365 | 58.25 186 | 55.27 302 | 79.28 286 |
|
| v1192 | | | 67.96 188 | 65.74 207 | 74.63 156 | 71.79 300 | 53.43 107 | 84.06 158 | 80.99 192 | 63.19 111 | 59.56 202 | 77.46 261 | 37.50 200 | 88.65 144 | 58.20 187 | 58.93 262 | 81.79 250 |
|
| EPP-MVSNet | | | 71.14 129 | 70.07 132 | 74.33 164 | 79.18 194 | 46.52 263 | 83.81 165 | 86.49 72 | 56.32 243 | 57.95 232 | 84.90 170 | 54.23 27 | 89.14 126 | 58.14 188 | 69.65 177 | 87.33 154 |
|
| OMC-MVS | | | 65.97 230 | 65.06 221 | 68.71 274 | 72.97 289 | 42.58 313 | 78.61 268 | 75.35 288 | 54.72 260 | 59.31 208 | 86.25 155 | 33.30 251 | 77.88 319 | 57.99 189 | 67.05 194 | 85.66 189 |
|
| cl____ | | | 67.43 201 | 65.93 202 | 71.95 224 | 76.33 242 | 48.02 239 | 82.58 199 | 79.12 229 | 61.30 142 | 56.72 253 | 76.92 271 | 46.12 87 | 86.44 221 | 57.98 190 | 56.31 289 | 81.38 263 |
|
| DIV-MVS_self_test | | | 67.43 201 | 65.93 202 | 71.94 225 | 76.33 242 | 48.01 240 | 82.57 200 | 79.11 230 | 61.31 141 | 56.73 252 | 76.92 271 | 46.09 88 | 86.43 222 | 57.98 190 | 56.31 289 | 81.39 262 |
|
| MS-PatchMatch | | | 72.34 110 | 71.26 111 | 75.61 129 | 82.38 127 | 55.55 48 | 88.00 53 | 89.95 14 | 65.38 74 | 56.51 258 | 80.74 231 | 32.28 261 | 92.89 33 | 57.95 192 | 88.10 14 | 78.39 299 |
|
| MAR-MVS | | | 76.76 46 | 75.60 52 | 80.21 26 | 90.87 7 | 54.68 78 | 89.14 41 | 89.11 20 | 62.95 114 | 70.54 94 | 92.33 39 | 41.05 157 | 94.95 17 | 57.90 193 | 86.55 31 | 91.00 69 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| test_fmvs1_n | | | 52.55 319 | 51.19 314 | 56.65 341 | 51.90 375 | 30.14 363 | 67.66 333 | 42.84 375 | 32.27 365 | 62.30 175 | 82.02 218 | 9.12 374 | 60.84 364 | 57.82 194 | 54.75 308 | 78.99 288 |
|
| anonymousdsp | | | 60.46 269 | 57.65 275 | 68.88 268 | 63.63 355 | 45.09 283 | 72.93 304 | 78.63 240 | 46.52 315 | 51.12 299 | 72.80 314 | 21.46 337 | 83.07 273 | 57.79 195 | 53.97 311 | 78.47 296 |
|
| Anonymous20240529 | | | 69.71 157 | 67.28 175 | 77.00 97 | 83.78 88 | 50.36 175 | 88.87 45 | 85.10 109 | 47.22 310 | 64.03 153 | 83.37 190 | 27.93 290 | 92.10 52 | 57.78 196 | 67.44 192 | 88.53 132 |
|
| Fast-Effi-MVS+-dtu | | | 66.53 222 | 64.10 231 | 73.84 179 | 72.41 296 | 52.30 136 | 84.73 137 | 75.66 284 | 59.51 172 | 56.34 259 | 79.11 246 | 28.11 288 | 85.85 240 | 57.74 197 | 63.29 230 | 83.35 227 |
|
| v1921920 | | | 67.45 200 | 65.23 219 | 74.10 171 | 71.51 305 | 52.90 124 | 83.75 167 | 80.44 199 | 62.48 125 | 59.12 212 | 77.13 265 | 36.98 208 | 87.90 173 | 57.53 198 | 58.14 273 | 81.49 255 |
|
| IterMVS-LS | | | 66.63 220 | 65.36 217 | 70.42 250 | 75.10 261 | 48.90 210 | 81.45 233 | 76.69 275 | 61.05 146 | 55.71 263 | 77.10 267 | 45.86 92 | 83.65 267 | 57.44 199 | 57.88 279 | 78.70 292 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| EI-MVSNet | | | 69.70 159 | 68.70 149 | 72.68 203 | 75.00 264 | 48.90 210 | 79.54 259 | 87.16 61 | 61.05 146 | 63.88 157 | 83.74 183 | 45.87 91 | 90.44 91 | 57.42 200 | 64.68 215 | 78.70 292 |
|
| CDS-MVSNet | | | 70.48 143 | 69.43 139 | 73.64 186 | 77.56 225 | 48.83 212 | 83.51 173 | 77.45 260 | 63.27 109 | 62.33 174 | 85.54 163 | 43.85 118 | 83.29 272 | 57.38 201 | 74.00 137 | 88.79 124 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| 3Dnovator+ | | 62.71 7 | 72.29 112 | 70.50 121 | 77.65 79 | 83.40 97 | 51.29 158 | 87.32 68 | 86.40 75 | 59.01 189 | 58.49 226 | 88.32 123 | 32.40 259 | 91.27 66 | 57.04 202 | 82.15 65 | 90.38 81 |
|
| test_vis1_n | | | 51.19 324 | 49.66 321 | 55.76 345 | 51.26 376 | 29.85 367 | 67.20 335 | 38.86 380 | 32.12 366 | 59.50 204 | 79.86 236 | 8.78 375 | 58.23 372 | 56.95 203 | 52.46 321 | 79.19 287 |
|
| bld_raw_dy_0_64 | | | 59.75 272 | 57.01 282 | 67.96 282 | 66.73 338 | 45.30 281 | 77.59 275 | 59.97 358 | 50.49 291 | 47.15 323 | 77.03 268 | 17.45 354 | 79.06 306 | 56.92 204 | 59.76 254 | 79.51 285 |
|
| miper_lstm_enhance | | | 63.91 239 | 62.30 238 | 68.75 273 | 75.06 262 | 46.78 259 | 69.02 327 | 81.14 188 | 59.68 170 | 52.76 289 | 72.39 319 | 40.71 162 | 77.99 317 | 56.81 205 | 53.09 319 | 81.48 257 |
|
| PAPM_NR | | | 71.80 121 | 69.98 133 | 77.26 90 | 81.54 150 | 53.34 110 | 78.60 269 | 85.25 102 | 53.46 270 | 60.53 192 | 88.66 115 | 45.69 95 | 89.24 122 | 56.49 206 | 79.62 94 | 89.19 113 |
|
| v10 | | | 66.61 221 | 64.20 230 | 73.83 180 | 72.59 294 | 53.37 108 | 81.88 216 | 79.91 210 | 61.11 144 | 54.09 279 | 75.60 289 | 40.06 170 | 88.26 164 | 56.47 207 | 56.10 293 | 79.86 283 |
|
| v1240 | | | 66.99 214 | 64.68 225 | 73.93 175 | 71.38 308 | 52.66 127 | 83.39 180 | 79.98 207 | 61.97 131 | 58.44 229 | 77.11 266 | 35.25 230 | 87.81 175 | 56.46 208 | 58.15 271 | 81.33 264 |
|
| Anonymous202405211 | | | 70.11 146 | 67.88 161 | 76.79 106 | 87.20 40 | 47.24 256 | 89.49 35 | 77.38 262 | 54.88 259 | 66.14 122 | 86.84 147 | 20.93 339 | 91.54 61 | 56.45 209 | 71.62 158 | 91.59 51 |
|
| Fast-Effi-MVS+ | | | 72.73 103 | 71.15 114 | 77.48 82 | 82.75 119 | 54.76 72 | 86.77 83 | 80.64 196 | 63.05 113 | 65.93 126 | 84.01 178 | 44.42 115 | 89.03 129 | 56.45 209 | 76.36 119 | 88.64 127 |
|
| sd_testset | | | 67.79 192 | 65.95 201 | 73.32 191 | 81.70 140 | 46.33 268 | 68.99 328 | 80.30 202 | 66.58 52 | 61.64 182 | 82.38 211 | 30.45 276 | 87.63 187 | 55.86 211 | 65.60 208 | 86.01 179 |
|
| 114514_t | | | 69.87 155 | 67.88 161 | 75.85 125 | 88.38 29 | 52.35 134 | 86.94 79 | 83.68 142 | 53.70 268 | 55.68 264 | 85.60 161 | 30.07 279 | 91.20 69 | 55.84 212 | 71.02 164 | 83.99 215 |
|
| tpm2 | | | 70.82 137 | 68.44 152 | 77.98 72 | 80.78 168 | 56.11 39 | 74.21 295 | 81.28 187 | 60.24 162 | 68.04 105 | 75.27 291 | 52.26 38 | 88.50 152 | 55.82 213 | 68.03 186 | 89.33 108 |
|
| PCF-MVS | | 61.03 10 | 70.10 147 | 68.40 153 | 75.22 148 | 77.15 234 | 51.99 139 | 79.30 264 | 82.12 169 | 56.47 241 | 61.88 180 | 86.48 154 | 43.98 117 | 87.24 197 | 55.37 214 | 72.79 149 | 86.43 173 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| PVSNet | | 62.49 8 | 69.27 164 | 67.81 165 | 73.64 186 | 84.41 76 | 51.85 143 | 84.63 143 | 77.80 253 | 66.42 56 | 59.80 197 | 84.95 169 | 22.14 334 | 80.44 294 | 55.03 215 | 75.11 131 | 88.62 128 |
|
| CHOSEN 280x420 | | | 57.53 294 | 56.38 287 | 60.97 329 | 74.01 277 | 48.10 237 | 46.30 373 | 54.31 364 | 48.18 306 | 50.88 303 | 77.43 262 | 38.37 185 | 59.16 371 | 54.83 216 | 63.14 234 | 75.66 325 |
|
| GG-mvs-BLEND | | | | | 77.77 76 | 86.68 43 | 50.61 165 | 68.67 330 | 88.45 42 | | 68.73 101 | 87.45 138 | 59.15 10 | 90.67 85 | 54.83 216 | 87.67 16 | 92.03 40 |
|
| TAMVS | | | 69.51 163 | 68.16 157 | 73.56 189 | 76.30 244 | 48.71 216 | 82.57 200 | 77.17 265 | 62.10 128 | 61.32 185 | 84.23 176 | 41.90 149 | 83.46 270 | 54.80 218 | 73.09 146 | 88.50 133 |
|
| D2MVS | | | 63.49 245 | 61.39 246 | 69.77 260 | 69.29 323 | 48.93 209 | 78.89 267 | 77.71 256 | 60.64 157 | 49.70 307 | 72.10 324 | 27.08 297 | 83.48 269 | 54.48 219 | 62.65 238 | 76.90 313 |
|
| IterMVS | | | 63.77 242 | 61.67 242 | 70.08 256 | 72.68 293 | 51.24 159 | 80.44 248 | 75.51 285 | 60.51 158 | 51.41 297 | 73.70 305 | 32.08 263 | 78.91 307 | 54.30 220 | 54.35 310 | 80.08 281 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| RRT_MVS | | | 63.68 243 | 61.01 252 | 71.70 229 | 73.48 281 | 45.98 273 | 81.19 235 | 76.08 281 | 54.33 265 | 52.84 288 | 79.27 242 | 22.21 332 | 87.65 185 | 54.13 221 | 55.54 301 | 81.46 258 |
|
| DP-MVS Recon | | | 71.99 116 | 70.31 126 | 77.01 96 | 90.65 8 | 53.44 105 | 89.37 37 | 82.97 159 | 56.33 242 | 63.56 162 | 89.47 100 | 34.02 244 | 92.15 51 | 54.05 222 | 72.41 151 | 85.43 194 |
|
| tpm | | | 68.36 180 | 67.48 172 | 70.97 243 | 79.93 184 | 51.34 156 | 76.58 281 | 78.75 237 | 67.73 40 | 63.54 163 | 74.86 293 | 48.33 64 | 72.36 350 | 53.93 223 | 63.71 222 | 89.21 112 |
|
| XVG-OURS-SEG-HR | | | 62.02 260 | 59.54 264 | 69.46 263 | 65.30 345 | 45.88 274 | 65.06 339 | 73.57 304 | 46.45 316 | 57.42 247 | 83.35 191 | 26.95 298 | 78.09 313 | 53.77 224 | 64.03 219 | 84.42 207 |
|
| FA-MVS(test-final) | | | 69.00 168 | 66.60 187 | 76.19 116 | 83.48 93 | 47.96 243 | 74.73 291 | 82.07 170 | 57.27 224 | 62.18 176 | 78.47 251 | 36.09 222 | 92.89 33 | 53.76 225 | 71.32 162 | 87.73 146 |
|
| cascas | | | 69.01 167 | 66.13 196 | 77.66 78 | 79.36 189 | 55.41 53 | 86.99 77 | 83.75 141 | 56.69 236 | 58.92 216 | 81.35 225 | 24.31 318 | 92.10 52 | 53.23 226 | 70.61 167 | 85.46 193 |
|
| UniMVSNet_NR-MVSNet | | | 68.82 171 | 68.29 155 | 70.40 251 | 75.71 255 | 42.59 311 | 84.23 152 | 86.78 67 | 66.31 58 | 58.51 223 | 82.45 208 | 51.57 41 | 84.64 259 | 53.11 227 | 55.96 295 | 83.96 219 |
|
| DU-MVS | | | 66.84 219 | 65.74 207 | 70.16 254 | 73.27 286 | 42.59 311 | 81.50 230 | 82.92 160 | 63.53 103 | 58.51 223 | 82.11 216 | 40.75 160 | 84.64 259 | 53.11 227 | 55.96 295 | 83.24 231 |
|
| 1112_ss | | | 70.05 149 | 69.37 141 | 72.10 215 | 80.77 169 | 42.78 309 | 85.12 123 | 76.75 272 | 59.69 169 | 61.19 186 | 92.12 42 | 47.48 73 | 83.84 263 | 53.04 229 | 68.21 184 | 89.66 101 |
|
| XVG-OURS | | | 61.88 261 | 59.34 266 | 69.49 262 | 65.37 344 | 46.27 269 | 64.80 340 | 73.49 305 | 47.04 312 | 57.41 248 | 82.85 196 | 25.15 311 | 78.18 311 | 53.00 230 | 64.98 210 | 84.01 214 |
|
| thisisatest0530 | | | 70.47 144 | 68.56 150 | 76.20 115 | 79.78 185 | 51.52 152 | 83.49 175 | 88.58 40 | 57.62 217 | 58.60 222 | 82.79 197 | 51.03 46 | 91.48 62 | 52.84 231 | 62.36 242 | 85.59 192 |
|
| UGNet | | | 68.71 175 | 67.11 178 | 73.50 190 | 80.55 175 | 47.61 248 | 84.08 156 | 78.51 243 | 59.45 173 | 65.68 130 | 82.73 201 | 23.78 320 | 85.08 253 | 52.80 232 | 76.40 115 | 87.80 144 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| Anonymous20231211 | | | 66.08 229 | 63.67 232 | 73.31 192 | 83.07 107 | 48.75 214 | 86.01 97 | 84.67 122 | 45.27 324 | 56.54 256 | 76.67 276 | 28.06 289 | 88.95 135 | 52.78 233 | 59.95 250 | 82.23 245 |
|
| æ— å…ˆéªŒ | | | | | | | | 85.19 118 | 78.00 251 | 49.08 300 | | | | 85.13 252 | 52.78 233 | | 87.45 153 |
|
| PVSNet_0 | | 57.04 13 | 61.19 265 | 57.24 278 | 73.02 196 | 77.45 227 | 50.31 178 | 79.43 263 | 77.36 263 | 63.96 94 | 47.51 321 | 72.45 318 | 25.03 312 | 83.78 265 | 52.76 235 | 19.22 388 | 84.96 200 |
|
| FIs | | | 70.00 151 | 70.24 130 | 69.30 265 | 77.93 220 | 38.55 335 | 83.99 160 | 87.72 55 | 66.86 50 | 57.66 239 | 84.17 177 | 52.28 37 | 85.31 246 | 52.72 236 | 68.80 181 | 84.02 213 |
|
| Vis-MVSNet |  | | 70.61 141 | 69.34 142 | 74.42 161 | 80.95 165 | 48.49 222 | 86.03 96 | 77.51 259 | 58.74 195 | 65.55 131 | 87.78 132 | 34.37 241 | 85.95 238 | 52.53 237 | 80.61 76 | 88.80 123 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| testdata | | | | | 67.08 289 | 77.59 224 | 45.46 280 | | 69.20 337 | 44.47 329 | 71.50 84 | 88.34 122 | 31.21 271 | 70.76 355 | 52.20 238 | 75.88 121 | 85.03 198 |
|
| API-MVS | | | 74.17 80 | 72.07 100 | 80.49 22 | 90.02 11 | 58.55 8 | 87.30 70 | 84.27 129 | 57.51 219 | 65.77 129 | 87.77 133 | 41.61 153 | 95.97 11 | 51.71 239 | 82.63 59 | 86.94 159 |
|
| GeoE | | | 69.96 153 | 67.88 161 | 76.22 113 | 81.11 159 | 51.71 147 | 84.15 154 | 76.74 273 | 59.83 166 | 60.91 187 | 84.38 172 | 41.56 154 | 88.10 168 | 51.67 240 | 70.57 168 | 88.84 122 |
|
| dmvs_re | | | 67.61 195 | 66.00 199 | 72.42 210 | 81.86 135 | 43.45 301 | 64.67 341 | 80.00 206 | 69.56 25 | 60.07 194 | 85.00 168 | 34.71 238 | 87.63 187 | 51.48 241 | 66.68 196 | 86.17 177 |
|
| ACMM | | 58.35 12 | 64.35 236 | 62.01 241 | 71.38 235 | 74.21 275 | 48.51 221 | 82.25 208 | 79.66 215 | 47.61 308 | 54.54 274 | 80.11 233 | 25.26 310 | 86.00 234 | 51.26 242 | 63.16 233 | 79.64 284 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| 原ACMM1 | | | | | 76.13 118 | 84.89 69 | 54.59 81 | | 85.26 101 | 51.98 281 | 66.70 113 | 87.07 145 | 40.15 168 | 89.70 113 | 51.23 243 | 85.06 46 | 84.10 211 |
|
| UniMVSNet (Re) | | | 67.71 193 | 66.80 181 | 70.45 249 | 74.44 271 | 42.93 307 | 82.42 206 | 84.90 113 | 63.69 99 | 59.63 200 | 80.99 227 | 47.18 75 | 85.23 249 | 51.17 244 | 56.75 286 | 83.19 233 |
|
| IterMVS-SCA-FT | | | 59.12 278 | 58.81 271 | 60.08 331 | 70.68 316 | 45.07 284 | 80.42 249 | 74.25 295 | 43.54 336 | 50.02 306 | 73.73 302 | 31.97 264 | 56.74 373 | 51.06 245 | 53.60 315 | 78.42 298 |
|
| Test_1112_low_res | | | 67.18 208 | 66.23 194 | 70.02 259 | 78.75 203 | 41.02 325 | 83.43 176 | 73.69 302 | 57.29 223 | 58.45 228 | 82.39 210 | 45.30 100 | 80.88 286 | 50.50 246 | 66.26 206 | 88.16 135 |
|
| pmmvs4 | | | 63.34 247 | 61.07 251 | 70.16 254 | 70.14 317 | 50.53 168 | 79.97 256 | 71.41 321 | 55.08 255 | 54.12 278 | 78.58 249 | 32.79 256 | 82.09 278 | 50.33 247 | 57.22 284 | 77.86 305 |
|
| Baseline_NR-MVSNet | | | 65.49 233 | 64.27 229 | 69.13 266 | 74.37 274 | 41.65 318 | 83.39 180 | 78.85 232 | 59.56 171 | 59.62 201 | 76.88 273 | 40.75 160 | 87.44 192 | 49.99 248 | 55.05 303 | 78.28 301 |
|
| UniMVSNet_ETH3D | | | 62.51 255 | 60.49 256 | 68.57 278 | 68.30 332 | 40.88 327 | 73.89 296 | 79.93 209 | 51.81 285 | 54.77 271 | 79.61 238 | 24.80 314 | 81.10 283 | 49.93 249 | 61.35 245 | 83.73 223 |
|
| BH-w/o | | | 70.02 150 | 68.51 151 | 74.56 157 | 82.77 118 | 50.39 173 | 86.60 86 | 78.14 249 | 59.77 167 | 59.65 199 | 85.57 162 | 39.27 177 | 87.30 196 | 49.86 250 | 74.94 134 | 85.99 181 |
|
| LCM-MVSNet-Re | | | 58.82 284 | 56.54 283 | 65.68 299 | 79.31 192 | 29.09 372 | 61.39 354 | 45.79 370 | 60.73 155 | 37.65 358 | 72.47 317 | 31.42 270 | 81.08 284 | 49.66 251 | 70.41 170 | 86.87 161 |
|
| gg-mvs-nofinetune | | | 67.43 201 | 64.53 227 | 76.13 118 | 85.95 47 | 47.79 247 | 64.38 342 | 88.28 44 | 39.34 345 | 66.62 115 | 41.27 379 | 58.69 13 | 89.00 131 | 49.64 252 | 86.62 29 | 91.59 51 |
|
| TranMVSNet+NR-MVSNet | | | 66.94 216 | 65.61 210 | 70.93 244 | 73.45 282 | 43.38 303 | 83.02 192 | 84.25 130 | 65.31 77 | 58.33 230 | 81.90 219 | 39.92 173 | 85.52 242 | 49.43 253 | 54.89 305 | 83.89 221 |
|
| tttt0517 | | | 68.33 182 | 66.29 192 | 74.46 159 | 78.08 216 | 49.06 202 | 80.88 243 | 89.08 21 | 54.40 264 | 54.75 272 | 80.77 230 | 51.31 43 | 90.33 95 | 49.35 254 | 58.01 275 | 83.99 215 |
|
| test_fmvs2 | | | 45.89 333 | 44.32 335 | 50.62 351 | 45.85 384 | 24.70 378 | 58.87 361 | 37.84 383 | 25.22 374 | 52.46 291 | 74.56 296 | 7.07 378 | 54.69 374 | 49.28 255 | 47.70 334 | 72.48 347 |
|
| WR-MVS | | | 67.58 196 | 66.76 182 | 70.04 258 | 75.92 253 | 45.06 287 | 86.23 91 | 85.28 100 | 64.31 85 | 58.50 225 | 81.00 226 | 44.80 112 | 82.00 279 | 49.21 256 | 55.57 300 | 83.06 236 |
|
| tt0805 | | | 63.39 246 | 61.31 248 | 69.64 261 | 69.36 322 | 38.87 333 | 78.00 271 | 85.48 88 | 48.82 303 | 55.66 267 | 81.66 221 | 24.38 317 | 86.37 223 | 49.04 257 | 59.36 259 | 83.68 224 |
|
| test_post1 | | | | | | | | 70.84 320 | | | | 14.72 397 | 34.33 242 | 83.86 262 | 48.80 258 | | |
|
| SCA | | | 63.84 240 | 60.01 262 | 75.32 140 | 78.58 209 | 57.92 10 | 61.61 352 | 77.53 258 | 56.71 235 | 57.75 238 | 70.77 330 | 31.97 264 | 79.91 302 | 48.80 258 | 56.36 287 | 88.13 138 |
|
| pmmvs5 | | | 62.80 253 | 61.18 249 | 67.66 284 | 69.53 321 | 42.37 316 | 82.65 198 | 75.19 289 | 54.30 266 | 52.03 295 | 78.51 250 | 31.64 269 | 80.67 289 | 48.60 260 | 58.15 271 | 79.95 282 |
|
| æ–°å‡ ä½•1 | | | | | 73.30 193 | 83.10 104 | 53.48 101 | | 71.43 320 | 45.55 322 | 66.14 122 | 87.17 143 | 33.88 247 | 80.54 292 | 48.50 261 | 80.33 82 | 85.88 186 |
|
| pm-mvs1 | | | 64.12 238 | 62.56 236 | 68.78 272 | 71.68 302 | 38.87 333 | 82.89 194 | 81.57 180 | 55.54 251 | 53.89 281 | 77.82 256 | 37.73 192 | 86.74 211 | 48.46 262 | 53.49 316 | 80.72 272 |
|
| PM-MVS | | | 46.92 332 | 43.76 337 | 56.41 343 | 52.18 374 | 32.26 358 | 63.21 347 | 38.18 381 | 37.99 350 | 40.78 349 | 66.20 345 | 5.09 386 | 65.42 361 | 48.19 263 | 41.99 354 | 71.54 353 |
|
| FC-MVSNet-test | | | 67.49 199 | 67.91 159 | 66.21 297 | 76.06 248 | 33.06 354 | 80.82 244 | 87.18 60 | 64.44 84 | 54.81 270 | 82.87 195 | 50.40 52 | 82.60 274 | 48.05 264 | 66.55 200 | 82.98 238 |
|
| CMPMVS |  | 40.41 21 | 55.34 305 | 52.64 308 | 63.46 313 | 60.88 363 | 43.84 297 | 61.58 353 | 71.06 323 | 30.43 369 | 36.33 360 | 74.63 295 | 24.14 319 | 75.44 334 | 48.05 264 | 66.62 198 | 71.12 355 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| NR-MVSNet | | | 67.25 206 | 65.99 200 | 71.04 242 | 73.27 286 | 43.91 296 | 85.32 114 | 84.75 119 | 66.05 66 | 53.65 284 | 82.11 216 | 45.05 103 | 85.97 237 | 47.55 266 | 56.18 292 | 83.24 231 |
|
| QAPM | | | 71.88 119 | 69.33 143 | 79.52 35 | 82.20 130 | 54.30 86 | 86.30 90 | 88.77 31 | 56.61 238 | 59.72 198 | 87.48 137 | 33.90 246 | 95.36 13 | 47.48 267 | 81.49 70 | 88.90 119 |
|
| EPMVS | | | 68.45 179 | 65.44 215 | 77.47 83 | 84.91 68 | 56.17 38 | 71.89 316 | 81.91 175 | 61.72 135 | 60.85 188 | 72.49 316 | 36.21 220 | 87.06 202 | 47.32 268 | 71.62 158 | 89.17 114 |
|
| GBi-Net | | | 67.09 211 | 65.47 213 | 71.96 221 | 82.71 120 | 46.36 265 | 83.52 169 | 83.31 149 | 58.55 198 | 57.58 241 | 76.23 282 | 36.72 215 | 86.20 224 | 47.25 269 | 63.40 226 | 83.32 228 |
|
| test1 | | | 67.09 211 | 65.47 213 | 71.96 221 | 82.71 120 | 46.36 265 | 83.52 169 | 83.31 149 | 58.55 198 | 57.58 241 | 76.23 282 | 36.72 215 | 86.20 224 | 47.25 269 | 63.40 226 | 83.32 228 |
|
| FMVSNet3 | | | 68.84 170 | 67.40 173 | 73.19 194 | 85.05 65 | 48.53 220 | 85.71 105 | 85.36 94 | 60.90 152 | 57.58 241 | 79.15 245 | 42.16 143 | 86.77 210 | 47.25 269 | 63.40 226 | 84.27 209 |
|
| v7n | | | 62.50 256 | 59.27 267 | 72.20 214 | 67.25 337 | 49.83 188 | 77.87 273 | 80.12 204 | 52.50 278 | 48.80 312 | 73.07 310 | 32.10 262 | 87.90 173 | 46.83 272 | 54.92 304 | 78.86 290 |
|
| CVMVSNet | | | 60.85 267 | 60.44 257 | 62.07 319 | 75.00 264 | 32.73 356 | 79.54 259 | 73.49 305 | 36.98 353 | 56.28 260 | 83.74 183 | 29.28 284 | 69.53 358 | 46.48 273 | 63.23 231 | 83.94 220 |
|
| TR-MVS | | | 69.71 157 | 67.85 164 | 75.27 146 | 82.94 113 | 48.48 223 | 87.40 67 | 80.86 193 | 57.15 227 | 64.61 143 | 87.08 144 | 32.67 257 | 89.64 115 | 46.38 274 | 71.55 160 | 87.68 148 |
|
| MDTV_nov1_ep13_2view | | | | | | | 43.62 299 | 71.13 319 | | 54.95 258 | 59.29 210 | | 36.76 212 | | 46.33 275 | | 87.32 155 |
|
| FMVSNet2 | | | 67.57 197 | 65.79 205 | 72.90 199 | 82.71 120 | 47.97 241 | 85.15 119 | 84.93 112 | 58.55 198 | 56.71 254 | 78.26 252 | 36.72 215 | 86.67 213 | 46.15 276 | 62.94 237 | 84.07 212 |
|
| UnsupCasMVSNet_eth | | | 57.56 293 | 55.15 293 | 64.79 308 | 64.57 352 | 33.12 353 | 73.17 303 | 83.87 140 | 58.98 190 | 41.75 344 | 70.03 334 | 22.54 328 | 79.92 300 | 46.12 277 | 35.31 365 | 81.32 266 |
|
| testdata2 | | | | | | | | | | | | | | 77.81 321 | 45.64 278 | | |
|
| XVG-ACMP-BASELINE | | | 56.03 302 | 52.85 306 | 65.58 300 | 61.91 360 | 40.95 326 | 63.36 344 | 72.43 311 | 45.20 325 | 46.02 329 | 74.09 298 | 9.20 373 | 78.12 312 | 45.13 279 | 58.27 269 | 77.66 308 |
|
| AdaColmap |  | | 67.86 189 | 65.48 212 | 75.00 152 | 88.15 33 | 54.99 68 | 86.10 94 | 76.63 276 | 49.30 299 | 57.80 235 | 86.65 151 | 29.39 283 | 88.94 137 | 45.10 280 | 70.21 172 | 81.06 268 |
|
| BH-untuned | | | 68.28 183 | 66.40 189 | 73.91 176 | 81.62 145 | 50.01 183 | 85.56 109 | 77.39 261 | 57.63 216 | 57.47 246 | 83.69 185 | 36.36 219 | 87.08 201 | 44.81 281 | 73.08 147 | 84.65 204 |
|
| mvsany_test1 | | | 43.38 336 | 42.57 338 | 45.82 355 | 50.96 377 | 26.10 376 | 55.80 364 | 27.74 393 | 27.15 372 | 47.41 322 | 74.39 297 | 18.67 348 | 44.95 385 | 44.66 282 | 36.31 363 | 66.40 364 |
|
| BH-RMVSNet | | | 70.08 148 | 68.01 158 | 76.27 111 | 84.21 80 | 51.22 160 | 87.29 71 | 79.33 227 | 58.96 191 | 63.63 160 | 86.77 148 | 33.29 252 | 90.30 98 | 44.63 283 | 73.96 138 | 87.30 156 |
|
| test_vis1_rt | | | 40.29 339 | 38.64 341 | 45.25 357 | 48.91 381 | 30.09 364 | 59.44 358 | 27.07 394 | 24.52 376 | 38.48 356 | 51.67 375 | 6.71 381 | 49.44 379 | 44.33 284 | 46.59 344 | 56.23 373 |
|
| IS-MVSNet | | | 68.80 173 | 67.55 170 | 72.54 206 | 78.50 211 | 43.43 302 | 81.03 238 | 79.35 225 | 59.12 187 | 57.27 249 | 86.71 149 | 46.05 89 | 87.70 183 | 44.32 285 | 75.60 125 | 86.49 171 |
|
| pmmvs-eth3d | | | 55.97 303 | 52.78 307 | 65.54 301 | 61.02 362 | 46.44 264 | 75.36 288 | 67.72 342 | 49.61 298 | 43.65 335 | 67.58 342 | 21.63 336 | 77.04 324 | 44.11 286 | 44.33 349 | 73.15 346 |
|
| pmmvs6 | | | 59.64 273 | 57.15 279 | 67.09 288 | 66.01 340 | 36.86 342 | 80.50 247 | 78.64 239 | 45.05 326 | 49.05 310 | 73.94 300 | 27.28 295 | 86.10 230 | 43.96 287 | 49.94 328 | 78.31 300 |
|
| EPNet_dtu | | | 66.25 226 | 66.71 183 | 64.87 307 | 78.66 207 | 34.12 349 | 82.80 195 | 75.51 285 | 61.75 134 | 64.47 148 | 86.90 146 | 37.06 207 | 72.46 349 | 43.65 288 | 69.63 178 | 88.02 141 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| tpm cat1 | | | 66.28 225 | 62.78 235 | 76.77 107 | 81.40 154 | 57.14 22 | 70.03 323 | 77.19 264 | 53.00 274 | 58.76 221 | 70.73 332 | 46.17 86 | 86.73 212 | 43.27 289 | 64.46 216 | 86.44 172 |
|
| OpenMVS |  | 61.00 11 | 69.99 152 | 67.55 170 | 77.30 87 | 78.37 214 | 54.07 92 | 84.36 148 | 85.76 86 | 57.22 225 | 56.71 254 | 87.67 135 | 30.79 274 | 92.83 35 | 43.04 290 | 84.06 54 | 85.01 199 |
|
| PatchmatchNet |  | | 67.07 213 | 63.63 233 | 77.40 84 | 83.10 104 | 58.03 9 | 72.11 314 | 77.77 254 | 58.85 192 | 59.37 206 | 70.83 329 | 37.84 188 | 84.93 255 | 42.96 291 | 69.83 175 | 89.26 109 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| CR-MVSNet | | | 62.47 257 | 59.04 269 | 72.77 202 | 73.97 279 | 56.57 29 | 60.52 355 | 71.72 316 | 60.04 163 | 57.49 244 | 65.86 346 | 38.94 179 | 80.31 295 | 42.86 292 | 59.93 251 | 81.42 259 |
|
| test_fmvs3 | | | 37.95 341 | 35.75 344 | 44.55 358 | 35.50 390 | 18.92 388 | 48.32 370 | 34.00 388 | 18.36 382 | 41.31 347 | 61.58 356 | 2.29 393 | 48.06 383 | 42.72 293 | 37.71 362 | 66.66 363 |
|
| FMVSNet1 | | | 64.57 234 | 62.11 240 | 71.96 221 | 77.32 228 | 46.36 265 | 83.52 169 | 83.31 149 | 52.43 279 | 54.42 275 | 76.23 282 | 27.80 292 | 86.20 224 | 42.59 294 | 61.34 246 | 83.32 228 |
|
| UA-Net | | | 67.32 205 | 66.23 194 | 70.59 247 | 78.85 201 | 41.23 324 | 73.60 298 | 75.45 287 | 61.54 138 | 66.61 116 | 84.53 171 | 38.73 182 | 86.57 219 | 42.48 295 | 74.24 136 | 83.98 217 |
|
| CL-MVSNet_self_test | | | 62.98 250 | 61.14 250 | 68.50 279 | 65.86 342 | 42.96 306 | 84.37 147 | 82.98 158 | 60.98 148 | 53.95 280 | 72.70 315 | 40.43 164 | 83.71 266 | 41.10 296 | 47.93 333 | 78.83 291 |
|
| MIMVSNet | | | 63.12 249 | 60.29 259 | 71.61 230 | 75.92 253 | 46.65 261 | 65.15 338 | 81.94 172 | 59.14 186 | 54.65 273 | 69.47 336 | 25.74 306 | 80.63 290 | 41.03 297 | 69.56 179 | 87.55 150 |
|
| FE-MVS | | | 64.15 237 | 60.43 258 | 75.30 143 | 80.85 167 | 49.86 187 | 68.28 332 | 78.37 246 | 50.26 295 | 59.31 208 | 73.79 301 | 26.19 303 | 91.92 55 | 40.19 298 | 66.67 197 | 84.12 210 |
|
| EG-PatchMatch MVS | | | 62.40 259 | 59.59 263 | 70.81 245 | 73.29 284 | 49.05 203 | 85.81 98 | 84.78 117 | 51.85 284 | 44.19 332 | 73.48 308 | 15.52 362 | 89.85 107 | 40.16 299 | 67.24 193 | 73.54 342 |
|
| UnsupCasMVSNet_bld | | | 53.86 312 | 50.53 316 | 63.84 310 | 63.52 356 | 34.75 345 | 71.38 317 | 81.92 174 | 46.53 314 | 38.95 354 | 57.93 366 | 20.55 340 | 80.20 298 | 39.91 300 | 34.09 372 | 76.57 319 |
|
| dp | | | 64.41 235 | 61.58 243 | 72.90 199 | 82.40 126 | 54.09 91 | 72.53 306 | 76.59 277 | 60.39 159 | 55.68 264 | 70.39 333 | 35.18 232 | 76.90 328 | 39.34 301 | 61.71 244 | 87.73 146 |
|
| TransMVSNet (Re) | | | 62.82 252 | 60.76 254 | 69.02 267 | 73.98 278 | 41.61 319 | 86.36 88 | 79.30 228 | 56.90 229 | 52.53 290 | 76.44 278 | 41.85 150 | 87.60 190 | 38.83 302 | 40.61 357 | 77.86 305 |
|
| USDC | | | 54.36 309 | 51.23 313 | 63.76 311 | 64.29 353 | 37.71 339 | 62.84 349 | 73.48 307 | 56.85 230 | 35.47 363 | 71.94 325 | 9.23 372 | 78.43 309 | 38.43 303 | 48.57 330 | 75.13 330 |
|
| PLC |  | 52.38 18 | 60.89 266 | 58.97 270 | 66.68 295 | 81.77 137 | 45.70 278 | 78.96 266 | 74.04 299 | 43.66 335 | 47.63 318 | 83.19 194 | 23.52 323 | 77.78 322 | 37.47 304 | 60.46 249 | 76.55 320 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| test0.0.03 1 | | | 62.54 254 | 62.44 237 | 62.86 318 | 72.28 299 | 29.51 369 | 82.93 193 | 78.78 235 | 59.18 184 | 53.07 287 | 82.41 209 | 36.91 210 | 77.39 323 | 37.45 305 | 58.96 261 | 81.66 253 |
|
| OurMVSNet-221017-0 | | | 52.39 320 | 48.73 323 | 63.35 315 | 65.21 346 | 38.42 336 | 68.54 331 | 64.95 346 | 38.19 348 | 39.57 351 | 71.43 326 | 13.23 365 | 79.92 300 | 37.16 306 | 40.32 358 | 71.72 351 |
|
| CNLPA | | | 60.59 268 | 58.44 272 | 67.05 290 | 79.21 193 | 47.26 254 | 79.75 258 | 64.34 350 | 42.46 341 | 51.90 296 | 83.94 179 | 27.79 293 | 75.41 335 | 37.12 307 | 59.49 257 | 78.47 296 |
|
| K. test v3 | | | 54.04 311 | 49.42 322 | 67.92 283 | 68.55 328 | 42.57 314 | 75.51 286 | 63.07 353 | 52.07 280 | 39.21 352 | 64.59 350 | 19.34 344 | 82.21 275 | 37.11 308 | 25.31 381 | 78.97 289 |
|
| Vis-MVSNet (Re-imp) | | | 65.52 232 | 65.63 209 | 65.17 305 | 77.49 226 | 30.54 361 | 75.49 287 | 77.73 255 | 59.34 177 | 52.26 294 | 86.69 150 | 49.38 61 | 80.53 293 | 37.07 309 | 75.28 128 | 84.42 207 |
|
| PatchMatch-RL | | | 56.66 296 | 53.75 301 | 65.37 304 | 77.91 221 | 45.28 282 | 69.78 325 | 60.38 356 | 41.35 342 | 47.57 319 | 73.73 302 | 16.83 356 | 76.91 326 | 36.99 310 | 59.21 260 | 73.92 339 |
|
| Patchmtry | | | 56.56 298 | 52.95 305 | 67.42 286 | 72.53 295 | 50.59 167 | 59.05 359 | 71.72 316 | 37.86 351 | 46.92 324 | 65.86 346 | 38.94 179 | 80.06 299 | 36.94 311 | 46.72 343 | 71.60 352 |
|
| FMVSNet5 | | | 58.61 286 | 56.45 284 | 65.10 306 | 77.20 233 | 39.74 329 | 74.77 290 | 77.12 266 | 50.27 294 | 43.28 338 | 67.71 341 | 26.15 304 | 76.90 328 | 36.78 312 | 54.78 306 | 78.65 294 |
|
| MDTV_nov1_ep13 | | | | 61.56 244 | | 81.68 142 | 55.12 63 | 72.41 308 | 78.18 248 | 59.19 182 | 58.85 219 | 69.29 337 | 34.69 239 | 86.16 227 | 36.76 313 | 62.96 236 | |
|
| JIA-IIPM | | | 52.33 321 | 47.77 328 | 66.03 298 | 71.20 309 | 46.92 258 | 40.00 381 | 76.48 278 | 37.10 352 | 46.73 325 | 37.02 381 | 32.96 253 | 77.88 319 | 35.97 314 | 52.45 322 | 73.29 344 |
|
| lessismore_v0 | | | | | 67.98 281 | 64.76 351 | 41.25 323 | | 45.75 371 | | 36.03 362 | 65.63 348 | 19.29 345 | 84.11 261 | 35.67 315 | 21.24 386 | 78.59 295 |
|
| CP-MVSNet | | | 58.54 289 | 57.57 277 | 61.46 326 | 68.50 329 | 33.96 350 | 76.90 279 | 78.60 242 | 51.67 286 | 47.83 316 | 76.60 277 | 34.99 237 | 72.79 347 | 35.45 316 | 47.58 335 | 77.64 309 |
|
| Anonymous20240521 | | | 51.65 322 | 48.42 324 | 61.34 328 | 56.43 369 | 39.65 331 | 73.57 299 | 73.47 308 | 36.64 355 | 36.59 359 | 63.98 351 | 10.75 369 | 72.25 351 | 35.35 317 | 49.01 329 | 72.11 349 |
|
| ambc | | | | | 62.06 320 | 53.98 372 | 29.38 370 | 35.08 384 | 79.65 216 | | 41.37 345 | 59.96 361 | 6.27 384 | 82.15 276 | 35.34 318 | 38.22 361 | 74.65 334 |
|
| KD-MVS_2432*1600 | | | 59.04 281 | 56.44 285 | 66.86 291 | 79.07 195 | 45.87 275 | 72.13 312 | 80.42 200 | 55.03 256 | 48.15 314 | 71.01 327 | 36.73 213 | 78.05 315 | 35.21 319 | 30.18 376 | 76.67 315 |
|
| miper_refine_blended | | | 59.04 281 | 56.44 285 | 66.86 291 | 79.07 195 | 45.87 275 | 72.13 312 | 80.42 200 | 55.03 256 | 48.15 314 | 71.01 327 | 36.73 213 | 78.05 315 | 35.21 319 | 30.18 376 | 76.67 315 |
|
| PS-CasMVS | | | 58.12 291 | 57.03 281 | 61.37 327 | 68.24 333 | 33.80 352 | 76.73 280 | 78.01 250 | 51.20 288 | 47.54 320 | 76.20 285 | 32.85 254 | 72.76 348 | 35.17 321 | 47.37 337 | 77.55 310 |
|
| EU-MVSNet | | | 52.63 318 | 50.72 315 | 58.37 337 | 62.69 359 | 28.13 374 | 72.60 305 | 75.97 282 | 30.94 368 | 40.76 350 | 72.11 323 | 20.16 341 | 70.80 354 | 35.11 322 | 46.11 345 | 76.19 323 |
|
| ACMH+ | | 54.58 15 | 58.55 288 | 55.24 292 | 68.50 279 | 74.68 268 | 45.80 277 | 80.27 251 | 70.21 329 | 47.15 311 | 42.77 340 | 75.48 290 | 16.73 358 | 85.98 235 | 35.10 323 | 54.78 306 | 73.72 340 |
|
| pmmvs3 | | | 45.53 335 | 41.55 339 | 57.44 339 | 48.97 380 | 39.68 330 | 70.06 322 | 57.66 360 | 28.32 371 | 34.06 366 | 57.29 367 | 8.50 376 | 66.85 360 | 34.86 324 | 34.26 370 | 65.80 366 |
|
| our_test_3 | | | 59.11 279 | 55.08 295 | 71.18 240 | 71.42 306 | 53.29 113 | 81.96 213 | 74.52 292 | 48.32 304 | 42.08 341 | 69.28 338 | 28.14 287 | 82.15 276 | 34.35 325 | 45.68 347 | 78.11 304 |
|
| PEN-MVS | | | 58.35 290 | 57.15 279 | 61.94 322 | 67.55 336 | 34.39 346 | 77.01 277 | 78.35 247 | 51.87 283 | 47.72 317 | 76.73 275 | 33.91 245 | 73.75 342 | 34.03 326 | 47.17 339 | 77.68 307 |
|
| KD-MVS_self_test | | | 49.24 327 | 46.85 330 | 56.44 342 | 54.32 370 | 22.87 380 | 57.39 362 | 73.36 309 | 44.36 331 | 37.98 357 | 59.30 364 | 18.97 346 | 71.17 353 | 33.48 327 | 42.44 353 | 75.26 328 |
|
| tpmvs | | | 62.45 258 | 59.42 265 | 71.53 234 | 83.93 84 | 54.32 85 | 70.03 323 | 77.61 257 | 51.91 282 | 53.48 285 | 68.29 340 | 37.91 187 | 86.66 214 | 33.36 328 | 58.27 269 | 73.62 341 |
|
| YYNet1 | | | 53.82 313 | 49.96 318 | 65.41 303 | 70.09 319 | 48.95 207 | 72.30 309 | 71.66 318 | 44.25 332 | 31.89 372 | 63.07 354 | 23.73 321 | 73.95 340 | 33.26 329 | 39.40 359 | 73.34 343 |
|
| MDA-MVSNet_test_wron | | | 53.82 313 | 49.95 319 | 65.43 302 | 70.13 318 | 49.05 203 | 72.30 309 | 71.65 319 | 44.23 333 | 31.85 373 | 63.13 353 | 23.68 322 | 74.01 339 | 33.25 330 | 39.35 360 | 73.23 345 |
|
| Anonymous20231206 | | | 59.08 280 | 57.59 276 | 63.55 312 | 68.77 327 | 32.14 359 | 80.26 252 | 79.78 212 | 50.00 296 | 49.39 308 | 72.39 319 | 26.64 300 | 78.36 310 | 33.12 331 | 57.94 276 | 80.14 280 |
|
| F-COLMAP | | | 55.96 304 | 53.65 302 | 62.87 317 | 72.76 292 | 42.77 310 | 74.70 293 | 70.37 328 | 40.03 344 | 41.11 348 | 79.36 240 | 17.77 352 | 73.70 343 | 32.80 332 | 53.96 312 | 72.15 348 |
|
| PatchT | | | 56.60 297 | 52.97 304 | 67.48 285 | 72.94 290 | 46.16 272 | 57.30 363 | 73.78 301 | 38.77 347 | 54.37 276 | 57.26 368 | 37.52 198 | 78.06 314 | 32.02 333 | 52.79 320 | 78.23 303 |
|
| SixPastTwentyTwo | | | 54.37 308 | 50.10 317 | 67.21 287 | 70.70 314 | 41.46 322 | 74.73 291 | 64.69 347 | 47.56 309 | 39.12 353 | 69.49 335 | 18.49 350 | 84.69 258 | 31.87 334 | 34.20 371 | 75.48 326 |
|
| WR-MVS_H | | | 58.91 283 | 58.04 274 | 61.54 325 | 69.07 325 | 33.83 351 | 76.91 278 | 81.99 171 | 51.40 287 | 48.17 313 | 74.67 294 | 40.23 166 | 74.15 338 | 31.78 335 | 48.10 331 | 76.64 318 |
|
| ACMH | | 53.70 16 | 59.78 271 | 55.94 290 | 71.28 236 | 76.59 239 | 48.35 227 | 80.15 255 | 76.11 280 | 49.74 297 | 41.91 343 | 73.45 309 | 16.50 359 | 90.31 96 | 31.42 336 | 57.63 282 | 75.17 329 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| MSDG | | | 59.44 274 | 55.14 294 | 72.32 213 | 74.69 267 | 50.71 163 | 74.39 294 | 73.58 303 | 44.44 330 | 43.40 337 | 77.52 259 | 19.45 343 | 90.87 80 | 31.31 337 | 57.49 283 | 75.38 327 |
|
| thres200 | | | 68.71 175 | 67.27 176 | 73.02 196 | 84.73 70 | 46.76 260 | 85.03 126 | 87.73 54 | 62.34 126 | 59.87 195 | 83.45 189 | 43.15 132 | 88.32 160 | 31.25 338 | 67.91 188 | 83.98 217 |
|
| DTE-MVSNet | | | 57.03 295 | 55.73 291 | 60.95 330 | 65.94 341 | 32.57 357 | 75.71 282 | 77.09 267 | 51.16 289 | 46.65 327 | 76.34 280 | 32.84 255 | 73.22 346 | 30.94 339 | 44.87 348 | 77.06 312 |
|
| ppachtmachnet_test | | | 58.56 287 | 54.34 296 | 71.24 237 | 71.42 306 | 54.74 73 | 81.84 218 | 72.27 312 | 49.02 301 | 45.86 331 | 68.99 339 | 26.27 301 | 83.30 271 | 30.12 340 | 43.23 352 | 75.69 324 |
|
| mvsany_test3 | | | 28.00 350 | 25.98 352 | 34.05 368 | 28.97 395 | 15.31 394 | 34.54 385 | 18.17 399 | 16.24 383 | 29.30 376 | 53.37 373 | 2.79 391 | 33.38 396 | 30.01 341 | 20.41 387 | 53.45 376 |
|
| MVS-HIRNet | | | 49.01 328 | 44.71 332 | 61.92 323 | 76.06 248 | 46.61 262 | 63.23 346 | 54.90 363 | 24.77 375 | 33.56 368 | 36.60 383 | 21.28 338 | 75.88 333 | 29.49 342 | 62.54 239 | 63.26 371 |
|
| test20.03 | | | 55.22 306 | 54.07 299 | 58.68 336 | 63.14 357 | 25.00 377 | 77.69 274 | 74.78 291 | 52.64 276 | 43.43 336 | 72.39 319 | 26.21 302 | 74.76 337 | 29.31 343 | 47.05 341 | 76.28 322 |
|
| testgi | | | 54.25 310 | 52.57 309 | 59.29 334 | 62.76 358 | 21.65 384 | 72.21 311 | 70.47 327 | 53.25 273 | 41.94 342 | 77.33 263 | 14.28 363 | 77.95 318 | 29.18 344 | 51.72 324 | 78.28 301 |
|
| thres100view900 | | | 66.87 218 | 65.42 216 | 71.24 237 | 83.29 100 | 43.15 305 | 81.67 223 | 87.78 51 | 59.04 188 | 55.92 262 | 82.18 215 | 43.73 122 | 87.80 177 | 28.80 345 | 66.36 202 | 82.78 242 |
|
| tfpn200view9 | | | 67.57 197 | 66.13 196 | 71.89 228 | 84.05 82 | 45.07 284 | 83.40 178 | 87.71 56 | 60.79 153 | 57.79 236 | 82.76 198 | 43.53 127 | 87.80 177 | 28.80 345 | 66.36 202 | 82.78 242 |
|
| thres400 | | | 67.40 204 | 66.13 196 | 71.19 239 | 84.05 82 | 45.07 284 | 83.40 178 | 87.71 56 | 60.79 153 | 57.79 236 | 82.76 198 | 43.53 127 | 87.80 177 | 28.80 345 | 66.36 202 | 80.71 273 |
|
| ADS-MVSNet2 | | | 55.21 307 | 51.44 312 | 66.51 296 | 80.60 173 | 49.56 193 | 55.03 366 | 65.44 345 | 44.72 327 | 51.00 300 | 61.19 358 | 22.83 325 | 75.41 335 | 28.54 348 | 53.63 313 | 74.57 335 |
|
| ADS-MVSNet | | | 56.17 301 | 51.95 311 | 68.84 269 | 80.60 173 | 53.07 119 | 55.03 366 | 70.02 331 | 44.72 327 | 51.00 300 | 61.19 358 | 22.83 325 | 78.88 308 | 28.54 348 | 53.63 313 | 74.57 335 |
|
| LTVRE_ROB | | 45.45 19 | 52.73 317 | 49.74 320 | 61.69 324 | 69.78 320 | 34.99 344 | 44.52 374 | 67.60 343 | 43.11 338 | 43.79 334 | 74.03 299 | 18.54 349 | 81.45 281 | 28.39 350 | 57.94 276 | 68.62 359 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| test_vis3_rt | | | 24.79 356 | 22.95 359 | 30.31 373 | 28.59 396 | 18.92 388 | 37.43 383 | 17.27 401 | 12.90 386 | 21.28 384 | 29.92 390 | 1.02 400 | 36.35 390 | 28.28 351 | 29.82 378 | 35.65 384 |
|
| new-patchmatchnet | | | 48.21 329 | 46.55 331 | 53.18 348 | 57.73 367 | 18.19 392 | 70.24 321 | 71.02 324 | 45.70 321 | 33.70 367 | 60.23 360 | 18.00 351 | 69.86 357 | 27.97 352 | 34.35 369 | 71.49 354 |
|
| OpenMVS_ROB |  | 53.19 17 | 59.20 277 | 56.00 289 | 68.83 270 | 71.13 310 | 44.30 292 | 83.64 168 | 75.02 290 | 46.42 317 | 46.48 328 | 73.03 311 | 18.69 347 | 88.14 165 | 27.74 353 | 61.80 243 | 74.05 338 |
|
| RPSCF | | | 45.77 334 | 44.13 336 | 50.68 350 | 57.67 368 | 29.66 368 | 54.92 368 | 45.25 372 | 26.69 373 | 45.92 330 | 75.92 288 | 17.43 355 | 45.70 384 | 27.44 354 | 45.95 346 | 76.67 315 |
|
| MDA-MVSNet-bldmvs | | | 51.56 323 | 47.75 329 | 63.00 316 | 71.60 304 | 47.32 253 | 69.70 326 | 72.12 313 | 43.81 334 | 27.65 380 | 63.38 352 | 21.97 335 | 75.96 332 | 27.30 355 | 32.19 373 | 65.70 367 |
|
| RPMNet | | | 59.29 275 | 54.25 298 | 74.42 161 | 73.97 279 | 56.57 29 | 60.52 355 | 76.98 268 | 35.72 357 | 57.49 244 | 58.87 365 | 37.73 192 | 85.26 248 | 27.01 356 | 59.93 251 | 81.42 259 |
|
| thres600view7 | | | 66.46 223 | 65.12 220 | 70.47 248 | 83.41 94 | 43.80 298 | 82.15 209 | 87.78 51 | 59.37 176 | 56.02 261 | 82.21 214 | 43.73 122 | 86.90 208 | 26.51 357 | 64.94 211 | 80.71 273 |
|
| TAPA-MVS | | 56.12 14 | 61.82 262 | 60.18 261 | 66.71 293 | 78.48 212 | 37.97 338 | 75.19 289 | 76.41 279 | 46.82 313 | 57.04 250 | 86.52 153 | 27.67 294 | 77.03 325 | 26.50 358 | 67.02 195 | 85.14 196 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| ITE_SJBPF | | | | | 51.84 349 | 58.03 366 | 31.94 360 | | 53.57 367 | 36.67 354 | 41.32 346 | 75.23 292 | 11.17 368 | 51.57 378 | 25.81 359 | 48.04 332 | 72.02 350 |
|
| Patchmatch-test | | | 53.33 316 | 48.17 325 | 68.81 271 | 73.31 283 | 42.38 315 | 42.98 376 | 58.23 359 | 32.53 363 | 38.79 355 | 70.77 330 | 39.66 174 | 73.51 344 | 25.18 360 | 52.06 323 | 90.55 76 |
|
| test_f | | | 27.12 352 | 24.85 353 | 33.93 369 | 26.17 400 | 15.25 395 | 30.24 389 | 22.38 398 | 12.53 388 | 28.23 377 | 49.43 376 | 2.59 392 | 34.34 395 | 25.12 361 | 26.99 379 | 52.20 377 |
|
| TinyColmap | | | 48.15 330 | 44.49 334 | 59.13 335 | 65.73 343 | 38.04 337 | 63.34 345 | 62.86 354 | 38.78 346 | 29.48 375 | 67.23 344 | 6.46 383 | 73.30 345 | 24.59 362 | 41.90 355 | 66.04 365 |
|
| AllTest | | | 47.32 331 | 44.66 333 | 55.32 346 | 65.08 348 | 37.50 340 | 62.96 348 | 54.25 365 | 35.45 359 | 33.42 369 | 72.82 312 | 9.98 370 | 59.33 368 | 24.13 363 | 43.84 350 | 69.13 357 |
|
| TestCases | | | | | 55.32 346 | 65.08 348 | 37.50 340 | | 54.25 365 | 35.45 359 | 33.42 369 | 72.82 312 | 9.98 370 | 59.33 368 | 24.13 363 | 43.84 350 | 69.13 357 |
|
| N_pmnet | | | 41.25 337 | 39.77 340 | 45.66 356 | 68.50 329 | 0.82 406 | 72.51 307 | 0.38 405 | 35.61 358 | 35.26 364 | 61.51 357 | 20.07 342 | 67.74 359 | 23.51 365 | 40.63 356 | 68.42 360 |
|
| dmvs_testset | | | 57.65 292 | 58.21 273 | 55.97 344 | 74.62 269 | 9.82 400 | 63.75 343 | 63.34 352 | 67.23 45 | 48.89 311 | 83.68 187 | 39.12 178 | 76.14 331 | 23.43 366 | 59.80 253 | 81.96 248 |
|
| myMVS_eth3d | | | 63.52 244 | 63.56 234 | 63.40 314 | 81.73 138 | 34.28 347 | 80.97 240 | 81.02 190 | 60.93 150 | 55.06 268 | 82.64 203 | 48.00 69 | 80.81 287 | 23.42 367 | 58.32 267 | 75.10 331 |
|
| WAC-MVS | | | | | | | 34.28 347 | | | | | | | | 22.56 368 | | |
|
| DP-MVS | | | 59.24 276 | 56.12 288 | 68.63 275 | 88.24 32 | 50.35 176 | 82.51 203 | 64.43 349 | 41.10 343 | 46.70 326 | 78.77 248 | 24.75 315 | 88.57 150 | 22.26 369 | 56.29 291 | 66.96 362 |
|
| MIMVSNet1 | | | 50.35 326 | 47.81 327 | 57.96 338 | 61.53 361 | 27.80 375 | 67.40 334 | 74.06 298 | 43.25 337 | 33.31 371 | 65.38 349 | 16.03 360 | 71.34 352 | 21.80 370 | 47.55 336 | 74.75 333 |
|
| tfpnnormal | | | 61.47 264 | 59.09 268 | 68.62 276 | 76.29 245 | 41.69 317 | 81.14 237 | 85.16 106 | 54.48 263 | 51.32 298 | 73.63 306 | 32.32 260 | 86.89 209 | 21.78 371 | 55.71 299 | 77.29 311 |
|
| LF4IMVS | | | 33.04 348 | 32.55 348 | 34.52 367 | 40.96 385 | 22.03 382 | 44.45 375 | 35.62 385 | 20.42 378 | 28.12 378 | 62.35 355 | 5.03 387 | 31.88 397 | 21.61 372 | 34.42 368 | 49.63 379 |
|
| COLMAP_ROB |  | 43.60 20 | 50.90 325 | 48.05 326 | 59.47 332 | 67.81 335 | 40.57 328 | 71.25 318 | 62.72 355 | 36.49 356 | 36.19 361 | 73.51 307 | 13.48 364 | 73.92 341 | 20.71 373 | 50.26 327 | 63.92 369 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| LCM-MVSNet | | | 28.07 349 | 23.85 357 | 40.71 360 | 27.46 399 | 18.93 387 | 30.82 388 | 46.19 369 | 12.76 387 | 16.40 385 | 34.70 386 | 1.90 396 | 48.69 382 | 20.25 374 | 24.22 382 | 54.51 375 |
|
| DSMNet-mixed | | | 38.35 340 | 35.36 345 | 47.33 354 | 48.11 382 | 14.91 396 | 37.87 382 | 36.60 384 | 19.18 380 | 34.37 365 | 59.56 363 | 15.53 361 | 53.01 377 | 20.14 375 | 46.89 342 | 74.07 337 |
|
| new_pmnet | | | 33.56 347 | 31.89 349 | 38.59 363 | 49.01 379 | 20.42 385 | 51.01 369 | 37.92 382 | 20.58 377 | 23.45 382 | 46.79 377 | 6.66 382 | 49.28 381 | 20.00 376 | 31.57 375 | 46.09 382 |
|
| LS3D | | | 56.40 300 | 53.82 300 | 64.12 309 | 81.12 158 | 45.69 279 | 73.42 301 | 66.14 344 | 35.30 361 | 43.24 339 | 79.88 235 | 22.18 333 | 79.62 304 | 19.10 377 | 64.00 220 | 67.05 361 |
|
| test_method | | | 24.09 357 | 21.07 361 | 33.16 370 | 27.67 398 | 8.35 404 | 26.63 390 | 35.11 387 | 3.40 396 | 14.35 388 | 36.98 382 | 3.46 390 | 35.31 392 | 19.08 378 | 22.95 383 | 55.81 374 |
|
| TDRefinement | | | 40.91 338 | 38.37 342 | 48.55 353 | 50.45 378 | 33.03 355 | 58.98 360 | 50.97 368 | 28.50 370 | 29.89 374 | 67.39 343 | 6.21 385 | 54.51 375 | 17.67 379 | 35.25 366 | 58.11 372 |
|
| testing3 | | | 59.97 270 | 60.19 260 | 59.32 333 | 77.60 223 | 30.01 366 | 81.75 221 | 81.79 177 | 53.54 269 | 50.34 305 | 79.94 234 | 48.99 63 | 76.91 326 | 17.19 380 | 50.59 326 | 71.03 356 |
|
| test_0402 | | | 56.45 299 | 53.03 303 | 66.69 294 | 76.78 238 | 50.31 178 | 81.76 220 | 69.61 334 | 42.79 339 | 43.88 333 | 72.13 322 | 22.82 327 | 86.46 220 | 16.57 381 | 50.94 325 | 63.31 370 |
|
| Syy-MVS | | | 61.51 263 | 61.35 247 | 62.00 321 | 81.73 138 | 30.09 364 | 80.97 240 | 81.02 190 | 60.93 150 | 55.06 268 | 82.64 203 | 35.09 234 | 80.81 287 | 16.40 382 | 58.32 267 | 75.10 331 |
|
| PMMVS2 | | | 26.71 353 | 22.98 358 | 37.87 365 | 36.89 388 | 8.51 403 | 42.51 377 | 29.32 392 | 19.09 381 | 13.01 389 | 37.54 380 | 2.23 394 | 53.11 376 | 14.54 383 | 11.71 391 | 51.99 378 |
|
| ANet_high | | | 34.39 345 | 29.59 351 | 48.78 352 | 30.34 394 | 22.28 381 | 55.53 365 | 63.79 351 | 38.11 349 | 15.47 387 | 36.56 384 | 6.94 379 | 59.98 367 | 13.93 384 | 5.64 398 | 64.08 368 |
|
| tmp_tt | | | 9.44 364 | 10.68 367 | 5.73 381 | 2.49 403 | 4.21 405 | 10.48 394 | 18.04 400 | 0.34 398 | 12.59 390 | 20.49 392 | 11.39 367 | 7.03 400 | 13.84 385 | 6.46 397 | 5.95 395 |
|
| APD_test1 | | | 26.46 354 | 24.41 355 | 32.62 372 | 37.58 387 | 21.74 383 | 40.50 380 | 30.39 390 | 11.45 389 | 16.33 386 | 43.76 378 | 1.63 398 | 41.62 387 | 11.24 386 | 26.82 380 | 34.51 386 |
|
| EGC-MVSNET | | | 33.75 346 | 30.42 350 | 43.75 359 | 64.94 350 | 36.21 343 | 60.47 357 | 40.70 379 | 0.02 399 | 0.10 400 | 53.79 371 | 7.39 377 | 60.26 366 | 11.09 387 | 35.23 367 | 34.79 385 |
|
| FPMVS | | | 35.40 343 | 33.67 347 | 40.57 361 | 46.34 383 | 28.74 373 | 41.05 378 | 57.05 361 | 20.37 379 | 22.27 383 | 53.38 372 | 6.87 380 | 44.94 386 | 8.62 388 | 47.11 340 | 48.01 380 |
|
| Gipuma |  | | 27.47 351 | 24.26 356 | 37.12 366 | 60.55 364 | 29.17 371 | 11.68 393 | 60.00 357 | 14.18 385 | 10.52 394 | 15.12 395 | 2.20 395 | 63.01 363 | 8.39 389 | 35.65 364 | 19.18 391 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| testf1 | | | 21.11 358 | 19.08 362 | 27.18 375 | 30.56 392 | 18.28 390 | 33.43 386 | 24.48 395 | 8.02 393 | 12.02 391 | 33.50 387 | 0.75 402 | 35.09 393 | 7.68 390 | 21.32 384 | 28.17 388 |
|
| APD_test2 | | | 21.11 358 | 19.08 362 | 27.18 375 | 30.56 392 | 18.28 390 | 33.43 386 | 24.48 395 | 8.02 393 | 12.02 391 | 33.50 387 | 0.75 402 | 35.09 393 | 7.68 390 | 21.32 384 | 28.17 388 |
|
| MVE |  | 16.60 23 | 17.34 363 | 13.39 366 | 29.16 374 | 28.43 397 | 19.72 386 | 13.73 392 | 23.63 397 | 7.23 395 | 7.96 395 | 21.41 391 | 0.80 401 | 36.08 391 | 6.97 392 | 10.39 392 | 31.69 387 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| DeepMVS_CX |  | | | | 13.10 379 | 21.34 402 | 8.99 401 | | 10.02 403 | 10.59 391 | 7.53 396 | 30.55 389 | 1.82 397 | 14.55 398 | 6.83 393 | 7.52 394 | 15.75 392 |
|
| WB-MVS | | | 37.41 342 | 36.37 343 | 40.54 362 | 54.23 371 | 10.43 399 | 65.29 337 | 43.75 373 | 34.86 362 | 27.81 379 | 54.63 369 | 24.94 313 | 63.21 362 | 6.81 394 | 15.00 389 | 47.98 381 |
|
| SSC-MVS | | | 35.20 344 | 34.30 346 | 37.90 364 | 52.58 373 | 8.65 402 | 61.86 350 | 41.64 377 | 31.81 367 | 25.54 381 | 52.94 374 | 23.39 324 | 59.28 370 | 6.10 395 | 12.86 390 | 45.78 383 |
|
| E-PMN | | | 19.16 360 | 18.40 364 | 21.44 377 | 36.19 389 | 13.63 397 | 47.59 371 | 30.89 389 | 10.73 390 | 5.91 397 | 16.59 393 | 3.66 389 | 39.77 388 | 5.95 396 | 8.14 393 | 10.92 393 |
|
| PMVS |  | 19.57 22 | 25.07 355 | 22.43 360 | 32.99 371 | 23.12 401 | 22.98 379 | 40.98 379 | 35.19 386 | 15.99 384 | 11.95 393 | 35.87 385 | 1.47 399 | 49.29 380 | 5.41 397 | 31.90 374 | 26.70 390 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| EMVS | | | 18.42 361 | 17.66 365 | 20.71 378 | 34.13 391 | 12.64 398 | 46.94 372 | 29.94 391 | 10.46 392 | 5.58 398 | 14.93 396 | 4.23 388 | 38.83 389 | 5.24 398 | 7.51 395 | 10.67 394 |
|
| wuyk23d | | | 9.11 365 | 8.77 369 | 10.15 380 | 40.18 386 | 16.76 393 | 20.28 391 | 1.01 404 | 2.58 397 | 2.66 399 | 0.98 399 | 0.23 404 | 12.49 399 | 4.08 399 | 6.90 396 | 1.19 396 |
|
| testmvs | | | 6.14 367 | 8.18 370 | 0.01 382 | 0.01 404 | 0.00 408 | 73.40 302 | 0.00 406 | 0.00 400 | 0.02 401 | 0.15 400 | 0.00 405 | 0.00 401 | 0.02 400 | 0.00 399 | 0.02 397 |
|
| test123 | | | 6.01 368 | 8.01 371 | 0.01 382 | 0.00 405 | 0.01 407 | 71.93 315 | 0.00 406 | 0.00 400 | 0.02 401 | 0.11 401 | 0.00 405 | 0.00 401 | 0.02 400 | 0.00 399 | 0.02 397 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 18.33 362 | 24.44 354 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 89.40 16 | 0.00 400 | 0.00 403 | 92.02 45 | 38.55 183 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 3.15 369 | 4.20 372 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 37.77 189 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| ab-mvs-re | | | 7.68 366 | 10.24 368 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 92.12 42 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 405 | 0.00 408 | 0.00 395 | 0.00 406 | 0.00 400 | 0.00 403 | 0.00 402 | 0.00 405 | 0.00 401 | 0.00 402 | 0.00 399 | 0.00 399 |
|
| FOURS1 | | | | | | 83.24 101 | 49.90 186 | 84.98 128 | 78.76 236 | 47.71 307 | 73.42 58 | | | | | | |
|
| test_one_0601 | | | | | | 89.39 22 | 57.29 20 | | 88.09 46 | 57.21 226 | 82.06 12 | 93.39 18 | 54.94 24 | | | | |
|
| eth-test2 | | | | | | 0.00 405 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 405 | | | | | | | | | | | |
|
| test_241102_ONE | | | | | | 89.48 17 | 56.89 25 | | 88.94 24 | 57.53 218 | 84.61 4 | 93.29 22 | 58.81 11 | 96.45 1 | | | |
|
| save fliter | | | | | | 85.35 60 | 56.34 36 | 89.31 39 | 81.46 182 | 61.55 137 | | | | | | | |
|
| test0726 | | | | | | 89.40 20 | 57.45 17 | 92.32 7 | 88.63 36 | 57.71 214 | 83.14 9 | 93.96 6 | 55.17 20 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 88.13 138 |
|
| test_part2 | | | | | | 89.33 23 | 55.48 50 | | | | 82.27 11 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 38.86 181 | | | | 88.13 138 |
|
| sam_mvs | | | | | | | | | | | | | 35.99 226 | | | | |
|
| MTGPA |  | | | | | | | | 81.31 185 | | | | | | | | |
|
| test_post | | | | | | | | | | | | 16.22 394 | 37.52 198 | 84.72 257 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 59.74 362 | 38.41 184 | 79.91 302 | | | |
|
| MTMP | | | | | | | | 87.27 72 | 15.34 402 | | | | | | | | |
|
| TEST9 | | | | | | 85.68 51 | 55.42 51 | 87.59 62 | 84.00 136 | 57.72 213 | 72.99 63 | 90.98 65 | 44.87 108 | 88.58 147 | | | |
|
| test_8 | | | | | | 85.72 50 | 55.31 56 | 87.60 61 | 83.88 139 | 57.84 211 | 72.84 67 | 90.99 64 | 44.99 104 | 88.34 158 | | | |
|
| agg_prior | | | | | | 85.64 54 | 54.92 70 | | 83.61 146 | | 72.53 72 | | | 88.10 168 | | | |
|
| test_prior4 | | | | | | | 56.39 35 | 87.15 75 | | | | | | | | | |
|
| test_prior | | | | | 78.39 65 | 86.35 45 | 54.91 71 | | 85.45 91 | | | | | 89.70 113 | | | 90.55 76 |
|
| æ–°å‡ ä½•2 | | | | | | | | 81.61 226 | | | | | | | | | |
|
| 旧先验1 | | | | | | 81.57 149 | 47.48 249 | | 71.83 314 | | | 88.66 115 | 36.94 209 | | | 78.34 103 | 88.67 126 |
|
| 原ACMM2 | | | | | | | | 83.77 166 | | | | | | | | | |
|
| test222 | | | | | | 79.36 189 | 50.97 161 | 77.99 272 | 67.84 341 | 42.54 340 | 62.84 169 | 86.53 152 | 30.26 277 | | | 76.91 111 | 85.23 195 |
|
| segment_acmp | | | | | | | | | | | | | 44.97 106 | | | | |
|
| testdata1 | | | | | | | | 77.55 276 | | 64.14 89 | | | | | | | |
|
| test12 | | | | | 79.24 39 | 86.89 41 | 56.08 40 | | 85.16 106 | | 72.27 76 | | 47.15 76 | 91.10 73 | | 85.93 35 | 90.54 78 |
|
| plane_prior7 | | | | | | 77.95 218 | 48.46 224 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 78.42 213 | 49.39 198 | | | | | | 36.04 224 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 83.28 192 | | | | | |
|
| plane_prior3 | | | | | | | 48.95 207 | | | 64.01 92 | 62.15 177 | | | | | | |
|
| plane_prior2 | | | | | | | | 85.76 100 | | 63.60 101 | | | | | | | |
|
| plane_prior1 | | | | | | 78.31 215 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 49.57 191 | 87.43 65 | | 64.57 83 | | | | | | 72.84 148 | |
|
| n2 | | | | | | | | | 0.00 406 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 406 | | | | | | | | |
|
| door-mid | | | | | | | | | 41.31 378 | | | | | | | | |
|
| test11 | | | | | | | | | 84.25 130 | | | | | | | | |
|
| door | | | | | | | | | 43.27 374 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 51.56 150 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 79.02 197 | | 88.00 53 | | 65.45 70 | 64.48 145 | | | | | | |
|
| ACMP_Plane | | | | | | 79.02 197 | | 88.00 53 | | 65.45 70 | 64.48 145 | | | | | | |
|
| HQP4-MVS | | | | | | | | | | | 64.47 148 | | | 88.61 146 | | | 84.91 201 |
|
| HQP3-MVS | | | | | | | | | 83.68 142 | | | | | | | 73.12 144 | |
|
| HQP2-MVS | | | | | | | | | | | | | 37.35 201 | | | | |
|
| NP-MVS | | | | | | 78.76 202 | 50.43 171 | | | | | 85.12 166 | | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 63.20 232 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 59.38 258 | |
|
| Test By Simon | | | | | | | | | | | | | 39.38 175 | | | | |
|