This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
MM82.69 283.29 380.89 2284.38 8355.40 5992.16 1089.85 2075.28 582.41 1193.86 1054.30 3093.98 2590.29 187.13 2193.30 14
OPU-MVS81.71 1492.05 355.97 4892.48 494.01 567.21 295.10 1589.82 292.55 394.06 3
PC_three_145266.58 6087.27 293.70 1166.82 494.95 1789.74 391.98 493.98 5
MVS_030481.58 982.05 780.20 3182.36 13754.70 8291.13 2088.95 2974.49 780.04 2593.64 1352.40 4193.27 3288.85 486.56 3192.61 30
fmvsm_l_conf0.5_n75.95 6376.16 5475.31 14876.01 26248.44 23384.98 13871.08 33163.50 11481.70 1793.52 1750.00 6087.18 20687.80 576.87 11590.32 92
fmvsm_l_conf0.5_n_a75.88 6576.07 5575.31 14876.08 25848.34 23685.24 12670.62 33563.13 12281.45 1893.62 1649.98 6287.40 20287.76 676.77 11690.20 97
test_fmvsm_n_192075.56 7275.54 6075.61 13674.60 28149.51 20381.82 22874.08 30666.52 6380.40 2293.46 1946.95 8589.72 11886.69 775.30 13287.61 159
fmvsm_s_conf0.5_n74.48 8374.12 8075.56 13876.96 24747.85 25385.32 12469.80 34264.16 9878.74 2993.48 1845.51 10589.29 12786.48 866.62 20889.55 113
fmvsm_s_conf0.1_n73.80 9573.26 8775.43 14373.28 29647.80 25484.57 15469.43 34463.34 11778.40 3293.29 2444.73 12189.22 13085.99 966.28 21589.26 118
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 1075.95 477.10 3893.09 2954.15 3395.57 1285.80 1085.87 3793.31 13
fmvsm_s_conf0.5_n_a73.68 10073.15 8975.29 15175.45 26948.05 24683.88 17268.84 34763.43 11678.60 3093.37 2245.32 10688.92 14585.39 1164.04 22888.89 129
patch_mono-280.84 1281.59 1078.62 6490.34 953.77 10288.08 5488.36 5076.17 379.40 2891.09 6655.43 2390.09 10885.01 1280.40 8191.99 48
fmvsm_s_conf0.1_n_a72.82 11272.05 11275.12 15670.95 32347.97 24982.72 20568.43 34962.52 13378.17 3393.08 3044.21 12488.86 14684.82 1363.54 23488.54 140
CNVR-MVS81.76 881.90 881.33 1990.04 1057.70 1291.71 1188.87 3470.31 2677.64 3793.87 952.58 4093.91 2884.17 1487.92 1692.39 34
dcpmvs_279.33 2178.94 2080.49 2589.75 1256.54 3684.83 14583.68 15067.85 4569.36 10490.24 8660.20 792.10 5784.14 1580.40 8192.82 25
CANet80.90 1181.17 1280.09 3787.62 4254.21 9591.60 1486.47 8073.13 1079.89 2693.10 2749.88 6492.98 3484.09 1684.75 4993.08 20
iter_conf05_1179.47 2078.68 2381.84 1287.91 4057.01 2493.27 279.49 22974.74 683.40 894.00 621.51 34694.70 2184.07 1789.68 793.82 7
bld_raw_dy_0_6475.36 7473.18 8881.89 1187.91 4057.01 2486.77 9067.69 35278.56 165.01 14593.99 722.18 34194.84 1984.07 1772.45 16093.82 7
test_fmvsmconf_n74.41 8574.05 8275.49 14274.16 28748.38 23482.66 20672.57 31967.05 5675.11 4592.88 3346.35 9287.81 18283.93 1971.71 16790.28 93
test_fmvsmconf0.1_n73.69 9973.15 8975.34 14670.71 32448.26 23982.15 21871.83 32366.75 5974.47 5392.59 3844.89 11587.78 18783.59 2071.35 17189.97 104
MSP-MVS82.30 683.47 178.80 5782.99 11952.71 13285.04 13588.63 4366.08 7286.77 392.75 3472.05 191.46 6883.35 2193.53 192.23 38
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
test_fmvsmvis_n_192071.29 13870.38 13574.00 18171.04 32248.79 22179.19 27564.62 35862.75 12766.73 12091.99 5040.94 16688.35 16483.00 2273.18 15284.85 212
IU-MVS89.48 1757.49 1591.38 966.22 6888.26 182.83 2387.60 1892.44 33
PS-MVSNAJ80.06 1679.52 1781.68 1585.58 6160.97 391.69 1287.02 7070.62 2380.75 2193.22 2637.77 19792.50 4682.75 2486.25 3491.57 59
xiu_mvs_v2_base79.86 1779.31 1881.53 1685.03 7360.73 491.65 1386.86 7370.30 2780.77 2093.07 3137.63 20292.28 5282.73 2585.71 3891.57 59
DeepPCF-MVS69.37 180.65 1381.56 1177.94 8285.46 6449.56 20090.99 2286.66 7870.58 2480.07 2495.30 156.18 2090.97 8482.57 2686.22 3593.28 15
SED-MVS81.92 781.75 982.44 789.48 1756.89 2992.48 488.94 3057.50 23084.61 494.09 358.81 1196.37 682.28 2787.60 1894.06 3
test_241102_TWO88.76 3957.50 23083.60 694.09 356.14 2196.37 682.28 2787.43 2092.55 31
test_fmvsmconf0.01_n71.97 12870.95 12775.04 15766.21 34947.87 25280.35 25970.08 33965.85 7772.69 7191.68 5839.99 17987.67 19182.03 2969.66 18689.58 112
DVP-MVScopyleft81.30 1081.00 1382.20 889.40 2057.45 1792.34 689.99 1857.71 22481.91 1493.64 1355.17 2596.44 281.68 3087.13 2192.72 28
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND82.20 889.50 1557.73 1192.34 688.88 3296.39 481.68 3087.13 2192.47 32
DVP-MVS++82.44 382.38 582.62 491.77 457.49 1584.98 13888.88 3258.00 21683.60 693.39 2067.21 296.39 481.64 3291.98 493.98 5
test_0728_THIRD58.00 21681.91 1493.64 1356.54 1796.44 281.64 3286.86 2592.23 38
MSC_two_6792asdad81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
No_MVS81.53 1691.77 456.03 4691.10 1096.22 881.46 3486.80 2792.34 36
9.1478.19 2785.67 5988.32 5188.84 3659.89 17574.58 5192.62 3746.80 8792.66 4181.40 3685.62 40
lupinMVS78.38 2878.11 2879.19 4583.02 11755.24 6391.57 1584.82 12269.12 3476.67 4092.02 4844.82 11890.23 10580.83 3780.09 8592.08 42
HPM-MVS++copyleft80.50 1480.71 1479.88 3987.34 4455.20 6689.93 3087.55 6566.04 7579.46 2793.00 3253.10 3791.76 6280.40 3889.56 992.68 29
SMA-MVScopyleft79.10 2378.76 2280.12 3584.42 8155.87 5087.58 6986.76 7561.48 15080.26 2393.10 2746.53 9192.41 4879.97 3988.77 1192.08 42
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
APDe-MVScopyleft78.44 2678.20 2679.19 4588.56 2654.55 8889.76 3487.77 6055.91 25578.56 3192.49 3948.20 7192.65 4279.49 4083.04 5890.39 89
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
ETV-MVS77.17 4576.74 4678.48 6881.80 14654.55 8886.13 10185.33 10368.20 3973.10 6590.52 8045.23 10890.66 9179.37 4180.95 7390.22 95
jason77.01 4776.45 4978.69 6179.69 19654.74 7990.56 2583.99 14668.26 3874.10 5590.91 7242.14 15289.99 11079.30 4279.12 9691.36 67
jason: jason.
test_vis1_n_192068.59 18968.31 16469.44 27469.16 33541.51 32984.63 15268.58 34858.80 20373.26 6488.37 12525.30 31780.60 30179.10 4367.55 20186.23 186
casdiffmvs_mvgpermissive77.75 3877.28 3979.16 4780.42 18754.44 9087.76 6285.46 9771.67 1671.38 8888.35 12751.58 4591.22 7479.02 4479.89 9191.83 53
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
DELS-MVS82.32 582.50 481.79 1386.80 4856.89 2992.77 386.30 8477.83 277.88 3492.13 4360.24 694.78 2078.97 4589.61 893.69 10
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
h-mvs3373.95 9272.89 9477.15 9980.17 19050.37 18184.68 14983.33 15668.08 4071.97 8088.65 12342.50 14691.15 7778.82 4657.78 29089.91 107
hse-mvs271.44 13770.68 12973.73 19176.34 25247.44 25979.45 27279.47 23068.08 4071.97 8086.01 16742.50 14686.93 21578.82 4653.46 32786.83 176
NCCC79.57 1979.23 1980.59 2489.50 1556.99 2691.38 1688.17 5267.71 4873.81 5792.75 3446.88 8693.28 3178.79 4884.07 5491.50 63
test9_res78.72 4985.44 4291.39 65
test_cas_vis1_n_192067.10 22166.60 19868.59 28765.17 35743.23 31383.23 19469.84 34155.34 26370.67 9887.71 14324.70 32476.66 33978.57 5064.20 22785.89 194
CSCG80.41 1579.72 1582.49 589.12 2557.67 1389.29 4191.54 559.19 19271.82 8290.05 9459.72 996.04 1078.37 5188.40 1493.75 9
DPE-MVScopyleft79.82 1879.66 1680.29 2989.27 2455.08 7188.70 4787.92 5655.55 26081.21 1993.69 1256.51 1894.27 2478.36 5285.70 3991.51 62
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss75.54 7375.03 6877.04 10181.37 16552.65 13484.34 15884.46 13361.16 15469.14 10591.76 5539.98 18088.99 14078.19 5384.89 4889.48 116
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
train_agg76.91 4876.40 5078.45 7085.68 5755.42 5687.59 6784.00 14457.84 22172.99 6690.98 6944.99 11288.58 15478.19 5385.32 4391.34 69
sasdasda78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
SF-MVS77.64 4077.42 3878.32 7483.75 9752.47 13786.63 9387.80 5758.78 20474.63 4992.38 4047.75 7791.35 7078.18 5586.85 2691.15 74
canonicalmvs78.17 3277.86 3179.12 5084.30 8454.22 9387.71 6384.57 13167.70 4977.70 3592.11 4650.90 5289.95 11178.18 5577.54 10893.20 17
VDD-MVS76.08 6174.97 7079.44 4184.27 8753.33 11791.13 2085.88 9065.33 8672.37 7789.34 10732.52 26692.76 4077.90 5875.96 12592.22 40
diffmvspermissive75.11 8074.65 7576.46 11678.52 22153.35 11583.28 19379.94 21770.51 2571.64 8488.72 11846.02 9786.08 24177.52 5975.75 12989.96 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
SDMVSNet71.89 12970.62 13175.70 13481.70 15051.61 15473.89 30588.72 4066.58 6061.64 19282.38 22037.63 20289.48 12377.44 6065.60 21886.01 188
alignmvs78.08 3477.98 2978.39 7283.53 10053.22 12089.77 3385.45 9866.11 7076.59 4291.99 5054.07 3489.05 13577.34 6177.00 11392.89 23
SteuartSystems-ACMMP77.08 4676.33 5179.34 4380.98 17055.31 6189.76 3486.91 7262.94 12571.65 8391.56 6242.33 14892.56 4577.14 6283.69 5690.15 99
Skip Steuart: Steuart Systems R&D Blog.
ACMMP_NAP76.43 5675.66 5878.73 5981.92 14354.67 8584.06 16785.35 10261.10 15672.99 6691.50 6340.25 17391.00 8176.84 6386.98 2490.51 88
CLD-MVS75.60 7175.39 6376.24 11980.69 18152.40 13890.69 2486.20 8674.40 865.01 14588.93 11442.05 15490.58 9476.57 6473.96 14785.73 196
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
MP-MVScopyleft74.99 8174.33 7876.95 10782.89 12453.05 12685.63 11583.50 15557.86 22067.25 11890.24 8643.38 13888.85 14876.03 6582.23 6488.96 127
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvspermissive77.36 4376.85 4578.88 5580.40 18854.66 8687.06 8285.88 9072.11 1471.57 8588.63 12450.89 5590.35 9976.00 6679.11 9791.63 56
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TSAR-MVS + GP.77.82 3777.59 3578.49 6785.25 6950.27 18790.02 2790.57 1556.58 24974.26 5491.60 6154.26 3192.16 5475.87 6779.91 8993.05 21
baseline76.86 5176.24 5378.71 6080.47 18654.20 9783.90 17184.88 12171.38 2071.51 8689.15 11250.51 5690.55 9575.71 6878.65 10091.39 65
agg_prior275.65 6985.11 4691.01 77
DeepC-MVS67.15 476.90 5076.27 5278.80 5780.70 18055.02 7286.39 9586.71 7666.96 5767.91 11489.97 9648.03 7391.41 6975.60 7084.14 5389.96 105
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PVSNet_BlendedMVS73.42 10473.30 8673.76 18985.91 5451.83 15086.18 10084.24 14065.40 8369.09 10680.86 23946.70 8988.13 17375.43 7165.92 21781.33 273
PVSNet_Blended76.53 5576.54 4876.50 11585.91 5451.83 15088.89 4584.24 14067.82 4669.09 10689.33 10946.70 8988.13 17375.43 7181.48 7289.55 113
LFMVS78.52 2477.14 4282.67 389.58 1358.90 791.27 1988.05 5463.22 12074.63 4990.83 7541.38 16494.40 2275.42 7379.90 9094.72 2
ZD-MVS89.55 1453.46 10884.38 13457.02 23873.97 5691.03 6744.57 12291.17 7675.41 7481.78 70
testing1179.18 2278.85 2180.16 3388.33 3056.99 2688.31 5292.06 172.82 1170.62 10088.37 12557.69 1492.30 5075.25 7576.24 12491.20 72
MVS_111021_HR76.39 5775.38 6479.42 4285.33 6756.47 3888.15 5384.97 11865.15 8966.06 13189.88 9743.79 12992.16 5475.03 7680.03 8889.64 111
CS-MVS-test77.20 4477.25 4077.05 10084.60 7849.04 21389.42 3785.83 9265.90 7672.85 6991.98 5245.10 10991.27 7175.02 7784.56 5090.84 81
test_prior289.04 4361.88 14373.55 5991.46 6548.01 7474.73 7885.46 41
SD-MVS76.18 5974.85 7280.18 3285.39 6556.90 2885.75 11082.45 17456.79 24474.48 5291.81 5443.72 13290.75 8974.61 7978.65 10092.91 22
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS76.77 5276.70 4776.99 10583.55 9948.75 22288.60 4885.18 11166.38 6572.47 7691.62 6045.53 10390.99 8374.48 8082.51 6191.23 71
APD-MVScopyleft76.15 6075.68 5777.54 8888.52 2753.44 11187.26 7885.03 11753.79 27774.91 4791.68 5843.80 12890.31 10174.36 8181.82 6888.87 130
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
EC-MVSNet75.30 7575.20 6575.62 13580.98 17049.00 21487.43 7084.68 12863.49 11570.97 9490.15 9242.86 14591.14 7874.33 8281.90 6786.71 178
VDDNet74.37 8672.13 10981.09 2179.58 19756.52 3790.02 2786.70 7752.61 28771.23 9087.20 15131.75 27693.96 2774.30 8375.77 12892.79 27
TSAR-MVS + MP.78.31 3078.26 2578.48 6881.33 16656.31 4281.59 23686.41 8169.61 3181.72 1688.16 13255.09 2788.04 17774.12 8486.31 3391.09 75
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
DPM-MVS82.39 482.36 682.49 580.12 19159.50 592.24 990.72 1469.37 3383.22 994.47 263.81 593.18 3374.02 8593.25 294.80 1
PHI-MVS77.49 4177.00 4378.95 5285.33 6750.69 17088.57 4988.59 4658.14 21373.60 5893.31 2343.14 14193.79 2973.81 8688.53 1392.37 35
MTAPA72.73 11371.22 12377.27 9681.54 16053.57 10667.06 34581.31 19359.41 18568.39 11190.96 7136.07 23189.01 13773.80 8782.45 6389.23 120
VNet77.99 3677.92 3078.19 7687.43 4350.12 18890.93 2391.41 867.48 5275.12 4490.15 9246.77 8891.00 8173.52 8878.46 10293.44 11
EPNet78.36 2978.49 2477.97 8085.49 6352.04 14489.36 3984.07 14373.22 977.03 3991.72 5649.32 6890.17 10773.46 8982.77 5991.69 54
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
xiu_mvs_v1_base_debu71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
xiu_mvs_v1_base71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
xiu_mvs_v1_base_debi71.60 13470.29 13875.55 13977.26 24153.15 12185.34 12179.37 23155.83 25672.54 7290.19 8922.38 33786.66 22273.28 9076.39 11986.85 173
PMMVS72.98 10872.05 11275.78 13383.57 9848.60 22584.08 16582.85 16961.62 14668.24 11290.33 8528.35 29487.78 18772.71 9376.69 11790.95 79
ZNCC-MVS75.82 6975.02 6978.23 7583.88 9553.80 10186.91 8786.05 8859.71 17867.85 11590.55 7842.23 15091.02 8072.66 9485.29 4489.87 108
ET-MVSNet_ETH3D75.23 7774.08 8178.67 6284.52 8055.59 5288.92 4489.21 2568.06 4353.13 29690.22 8849.71 6587.62 19672.12 9570.82 17692.82 25
MVS76.91 4875.48 6181.23 2084.56 7955.21 6580.23 26291.64 458.65 20665.37 14091.48 6445.72 10195.05 1672.11 9689.52 1093.44 11
MGCFI-Net74.07 9074.64 7672.34 22182.90 12343.33 31280.04 26579.96 21665.61 7874.93 4691.85 5348.01 7480.86 29671.41 9777.10 11192.84 24
nrg03072.27 12471.56 11774.42 16875.93 26350.60 17286.97 8483.21 16162.75 12767.15 11984.38 18250.07 5986.66 22271.19 9862.37 25185.99 190
DeepC-MVS_fast67.50 378.00 3577.63 3479.13 4988.52 2755.12 6889.95 2985.98 8968.31 3771.33 8992.75 3445.52 10490.37 9871.15 9985.14 4591.91 49
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
iter_conf0573.51 10372.24 10577.33 9287.93 3955.97 4887.90 6170.81 33468.72 3564.04 16284.36 18447.54 7990.87 8671.11 10067.75 20085.13 206
GST-MVS74.87 8273.90 8477.77 8383.30 10753.45 11085.75 11085.29 10659.22 19166.50 12789.85 9840.94 16690.76 8870.94 10183.35 5789.10 125
CHOSEN 1792x268876.24 5874.03 8382.88 183.09 11462.84 285.73 11285.39 10069.79 2964.87 14883.49 19741.52 16393.69 3070.55 10281.82 6892.12 41
CDPH-MVS76.05 6275.19 6678.62 6486.51 5054.98 7487.32 7384.59 13058.62 20770.75 9690.85 7443.10 14390.63 9370.50 10384.51 5290.24 94
HPM-MVScopyleft72.60 11571.50 11875.89 13182.02 14151.42 16080.70 25583.05 16456.12 25464.03 16389.53 10337.55 20588.37 16270.48 10480.04 8787.88 152
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR69.07 17667.91 17072.54 21477.27 24049.56 20079.77 26773.96 30959.33 18960.73 20087.82 14030.19 28681.53 28969.94 10572.19 16486.53 180
testing9178.30 3177.54 3680.61 2388.16 3557.12 2387.94 6091.07 1371.43 1870.75 9688.04 13755.82 2292.65 4269.61 10675.00 14192.05 44
test_yl75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
DCV-MVSNet75.85 6674.83 7378.91 5388.08 3751.94 14691.30 1789.28 2357.91 21871.19 9189.20 11042.03 15592.77 3869.41 10775.07 13992.01 46
testing9978.45 2577.78 3380.45 2788.28 3356.81 3287.95 5991.49 671.72 1570.84 9588.09 13357.29 1592.63 4469.24 10975.13 13791.91 49
HFP-MVS74.37 8673.13 9378.10 7884.30 8453.68 10485.58 11684.36 13556.82 24265.78 13690.56 7740.70 17190.90 8569.18 11080.88 7489.71 109
ACMMPR73.76 9672.61 9577.24 9883.92 9352.96 12985.58 11684.29 13656.82 24265.12 14190.45 8137.24 21390.18 10669.18 11080.84 7588.58 138
region2R73.75 9772.55 9777.33 9283.90 9452.98 12885.54 12084.09 14256.83 24165.10 14290.45 8137.34 21190.24 10468.89 11280.83 7688.77 134
CP-MVS72.59 11771.46 11976.00 13082.93 12252.32 14186.93 8682.48 17355.15 26463.65 16990.44 8435.03 24388.53 15868.69 11377.83 10687.15 167
baseline275.15 7974.54 7776.98 10681.67 15351.74 15283.84 17391.94 369.97 2858.98 22386.02 16559.73 891.73 6368.37 11470.40 18187.48 161
Effi-MVS+75.24 7673.61 8580.16 3381.92 14357.42 1985.21 12776.71 28460.68 16773.32 6389.34 10747.30 8191.63 6468.28 11579.72 9291.42 64
CostFormer73.89 9472.30 10378.66 6382.36 13756.58 3375.56 29385.30 10566.06 7370.50 10276.88 28257.02 1689.06 13468.27 11668.74 19290.33 91
CANet_DTU73.71 9873.14 9175.40 14482.61 13350.05 18984.67 15179.36 23469.72 3075.39 4390.03 9529.41 29085.93 24767.99 11779.11 9790.22 95
PVSNet_Blended_VisFu73.40 10572.44 9976.30 11781.32 16754.70 8285.81 10678.82 24463.70 10864.53 15485.38 17347.11 8487.38 20367.75 11877.55 10786.81 177
MSLP-MVS++74.21 8872.25 10480.11 3681.45 16356.47 3886.32 9779.65 22558.19 21266.36 12892.29 4236.11 22990.66 9167.39 11982.49 6293.18 19
PGM-MVS72.60 11571.20 12476.80 11282.95 12052.82 13183.07 19982.14 17656.51 25063.18 17489.81 9935.68 23589.76 11767.30 12080.19 8487.83 153
EIA-MVS75.92 6475.18 6778.13 7785.14 7051.60 15587.17 8085.32 10464.69 9268.56 11090.53 7945.79 10091.58 6567.21 12182.18 6591.20 72
HY-MVS67.03 573.90 9373.14 9176.18 12484.70 7747.36 26075.56 29386.36 8366.27 6770.66 9983.91 18951.05 5089.31 12667.10 12272.61 15991.88 51
BP-MVS66.70 123
HQP-MVS72.34 12071.44 12075.03 15879.02 20851.56 15688.00 5583.68 15065.45 8064.48 15585.13 17437.35 20988.62 15266.70 12373.12 15384.91 210
SR-MVS70.92 14669.73 14774.50 16583.38 10650.48 17684.27 16079.35 23548.96 31166.57 12690.45 8133.65 25787.11 20866.42 12574.56 14485.91 193
gm-plane-assit83.24 10954.21 9570.91 2288.23 13195.25 1466.37 126
PAPR75.20 7874.13 7978.41 7188.31 3255.10 7084.31 15985.66 9463.76 10767.55 11690.73 7643.48 13789.40 12566.36 12777.03 11290.73 83
WTY-MVS77.47 4277.52 3777.30 9488.33 3046.25 27888.46 5090.32 1671.40 1972.32 7891.72 5653.44 3592.37 4966.28 12875.42 13193.28 15
tpmrst71.04 14369.77 14674.86 16183.19 11155.86 5175.64 29278.73 24867.88 4464.99 14773.73 31149.96 6379.56 31565.92 12967.85 19989.14 124
MVS_Test75.85 6674.93 7178.62 6484.08 8955.20 6683.99 16985.17 11268.07 4273.38 6282.76 20750.44 5789.00 13865.90 13080.61 7791.64 55
ACMMPcopyleft70.81 14869.29 15475.39 14581.52 16251.92 14883.43 18583.03 16556.67 24758.80 23088.91 11531.92 27488.58 15465.89 13173.39 15185.67 197
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
XVS72.92 10971.62 11676.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 16589.63 10235.50 23689.78 11565.50 13280.50 7988.16 144
X-MVStestdata65.85 24262.20 25076.81 11083.41 10252.48 13584.88 14383.20 16258.03 21463.91 1654.82 40735.50 23689.78 11565.50 13280.50 7988.16 144
PAPM76.76 5376.07 5578.81 5680.20 18959.11 686.86 8886.23 8568.60 3670.18 10388.84 11751.57 4687.16 20765.48 13486.68 2990.15 99
HQP_MVS70.96 14569.91 14574.12 17777.95 22949.57 19885.76 10882.59 17163.60 11162.15 18783.28 20136.04 23288.30 16865.46 13572.34 16284.49 214
plane_prior582.59 17188.30 16865.46 13572.34 16284.49 214
mPP-MVS71.79 13370.38 13576.04 12882.65 13252.06 14384.45 15581.78 18655.59 25962.05 18989.68 10133.48 25888.28 17065.45 13778.24 10587.77 155
OPM-MVS70.75 14969.58 14874.26 17475.55 26851.34 16286.05 10383.29 16061.94 14262.95 17885.77 16834.15 25188.44 16065.44 13871.07 17382.99 246
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
Effi-MVS+-dtu66.24 23864.96 23470.08 26675.17 27049.64 19782.01 22174.48 30362.15 13757.83 24476.08 29530.59 28383.79 27365.40 13960.93 25876.81 323
EI-MVSNet-Vis-set73.19 10772.60 9674.99 16082.56 13449.80 19682.55 21189.00 2866.17 6965.89 13488.98 11343.83 12792.29 5165.38 14069.01 19082.87 249
testing22277.70 3977.22 4179.14 4886.95 4654.89 7787.18 7991.96 272.29 1371.17 9388.70 11955.19 2491.24 7365.18 14176.32 12391.29 70
TESTMET0.1,172.86 11172.33 10174.46 16681.98 14250.77 16885.13 13085.47 9666.09 7167.30 11783.69 19437.27 21283.57 27765.06 14278.97 9989.05 126
MVSTER73.25 10672.33 10176.01 12985.54 6253.76 10383.52 17887.16 6867.06 5563.88 16781.66 23152.77 3890.44 9664.66 14364.69 22483.84 231
CPTT-MVS67.15 22065.84 21571.07 25180.96 17250.32 18481.94 22374.10 30546.18 32957.91 24387.64 14529.57 28981.31 29164.10 14470.18 18381.56 263
miper_enhance_ethall69.77 16668.90 15872.38 21978.93 21149.91 19283.29 19278.85 24264.90 9059.37 21679.46 24952.77 3885.16 25963.78 14558.72 27282.08 255
EI-MVSNet-UG-set72.37 11971.73 11574.29 17381.60 15649.29 20881.85 22688.64 4265.29 8865.05 14388.29 13043.18 13991.83 6163.74 14667.97 19781.75 260
ab-mvs70.65 15069.11 15675.29 15180.87 17646.23 27973.48 30985.24 11059.99 17466.65 12280.94 23843.13 14288.69 15063.58 14768.07 19590.95 79
VPA-MVSNet71.12 14070.66 13072.49 21678.75 21444.43 29887.64 6590.02 1763.97 10365.02 14481.58 23342.14 15287.42 20163.42 14863.38 23985.63 200
mvsmamba66.93 22864.88 23573.09 20275.06 27347.26 26283.36 19169.21 34562.64 13055.68 27481.43 23429.72 28889.20 13263.35 14963.50 23582.79 250
APD-MVS_3200maxsize69.62 17168.23 16773.80 18881.58 15848.22 24081.91 22479.50 22848.21 31464.24 16089.75 10031.91 27587.55 19863.08 15073.85 14985.64 199
v2v48269.55 17267.64 17875.26 15472.32 30953.83 10084.93 14281.94 18065.37 8560.80 19979.25 25341.62 16088.98 14163.03 15159.51 26582.98 247
PS-MVSNAJss68.78 18567.17 18873.62 19573.01 29948.33 23884.95 14184.81 12359.30 19058.91 22779.84 24737.77 19788.86 14662.83 15263.12 24583.67 234
cl2268.85 18067.69 17772.35 22078.07 22849.98 19182.45 21478.48 25462.50 13458.46 23777.95 26349.99 6185.17 25862.55 15358.72 27281.90 258
V4267.66 20565.60 22273.86 18570.69 32653.63 10581.50 23978.61 25163.85 10559.49 21577.49 27037.98 19487.65 19262.33 15458.43 27580.29 288
AUN-MVS68.20 19766.35 20173.76 18976.37 25147.45 25879.52 27179.52 22760.98 15962.34 18386.02 16536.59 22686.94 21462.32 15553.47 32686.89 170
MG-MVS78.42 2776.99 4482.73 293.17 164.46 189.93 3088.51 4864.83 9173.52 6088.09 13348.07 7292.19 5362.24 15684.53 5191.53 61
Patchmatch-RL test58.72 29554.32 30771.92 23663.91 36444.25 30161.73 36055.19 37157.38 23249.31 31954.24 37937.60 20480.89 29462.19 15747.28 34790.63 84
mvs_anonymous72.29 12270.74 12876.94 10882.85 12554.72 8178.43 28081.54 18963.77 10661.69 19179.32 25151.11 4985.31 25462.15 15875.79 12790.79 82
miper_ehance_all_eth68.70 18867.58 17972.08 22676.91 24849.48 20482.47 21378.45 25562.68 12958.28 24177.88 26550.90 5285.01 26261.91 15958.72 27281.75 260
HyFIR lowres test69.94 16467.58 17977.04 10177.11 24657.29 2081.49 24179.11 24058.27 21158.86 22880.41 24242.33 14886.96 21361.91 15968.68 19386.87 171
sss70.49 15270.13 14271.58 24381.59 15739.02 34180.78 25484.71 12759.34 18766.61 12488.09 13337.17 21485.52 25061.82 16171.02 17490.20 97
131471.11 14169.41 15076.22 12079.32 20150.49 17580.23 26285.14 11559.44 18458.93 22588.89 11633.83 25689.60 12261.49 16277.42 11088.57 139
GA-MVS69.04 17766.70 19576.06 12775.11 27152.36 13983.12 19780.23 21163.32 11860.65 20179.22 25430.98 28188.37 16261.25 16366.41 21187.46 162
ECVR-MVScopyleft71.81 13171.00 12674.26 17480.12 19143.49 30884.69 14882.16 17564.02 10064.64 15087.43 14835.04 24289.21 13161.24 16479.66 9390.08 101
VPNet72.07 12671.42 12174.04 17978.64 21947.17 26589.91 3287.97 5572.56 1264.66 14985.04 17741.83 15988.33 16661.17 16560.97 25786.62 179
ACMP61.11 966.24 23864.33 23972.00 23074.89 27749.12 20983.18 19679.83 22055.41 26252.29 30282.68 21125.83 31386.10 23860.89 16663.94 23180.78 281
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
MVSFormer73.53 10272.19 10777.57 8783.02 11755.24 6381.63 23381.44 19150.28 30176.67 4090.91 7244.82 11886.11 23660.83 16780.09 8591.36 67
test_djsdf63.84 25161.56 25570.70 25668.78 33744.69 29581.63 23381.44 19150.28 30152.27 30376.26 29026.72 30786.11 23660.83 16755.84 30781.29 276
v14868.24 19666.35 20173.88 18471.76 31251.47 15984.23 16181.90 18463.69 10958.94 22476.44 28743.72 13287.78 18760.63 16955.86 30682.39 253
c3_l67.97 19866.66 19671.91 23776.20 25749.31 20782.13 22078.00 26161.99 14057.64 25076.94 27949.41 6684.93 26360.62 17057.01 29481.49 264
test-LLR69.65 17069.01 15771.60 24178.67 21648.17 24185.13 13079.72 22259.18 19463.13 17582.58 21436.91 21880.24 30660.56 17175.17 13586.39 184
test-mter68.36 19167.29 18571.60 24178.67 21648.17 24185.13 13079.72 22253.38 28163.13 17582.58 21427.23 30480.24 30660.56 17175.17 13586.39 184
SR-MVS-dyc-post68.27 19566.87 19072.48 21780.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10531.17 28086.09 24060.52 17372.06 16583.19 242
RE-MVS-def66.66 19680.96 17248.14 24381.54 23776.98 27846.42 32662.75 18089.42 10529.28 29260.52 17372.06 16583.19 242
IB-MVS68.87 274.01 9172.03 11479.94 3883.04 11655.50 5490.24 2688.65 4167.14 5461.38 19481.74 23053.21 3694.28 2360.45 17562.41 25090.03 103
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
v114468.81 18366.82 19174.80 16272.34 30853.46 10884.68 14981.77 18764.25 9660.28 20377.91 26440.23 17488.95 14260.37 17659.52 26481.97 256
LPG-MVS_test66.44 23564.58 23772.02 22874.42 28348.60 22583.07 19980.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
LGP-MVS_train72.02 22874.42 28348.60 22580.64 20454.69 27153.75 29283.83 19025.73 31586.98 21160.33 17764.71 22280.48 285
MVP-Stereo70.97 14470.44 13372.59 21376.03 26151.36 16185.02 13786.99 7160.31 17156.53 26778.92 25740.11 17790.00 10960.00 17990.01 676.41 330
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
jajsoiax63.21 25960.84 26470.32 26268.33 34244.45 29781.23 24381.05 19753.37 28250.96 31277.81 26717.49 36385.49 25259.31 18058.05 28381.02 279
test250672.91 11072.43 10074.32 17280.12 19144.18 30383.19 19584.77 12564.02 10065.97 13287.43 14847.67 7888.72 14959.08 18179.66 9390.08 101
baseline172.51 11872.12 11073.69 19285.05 7144.46 29683.51 18286.13 8771.61 1764.64 15087.97 13855.00 2889.48 12359.07 18256.05 30387.13 168
mvs_tets62.96 26260.55 26670.19 26368.22 34544.24 30280.90 25180.74 20352.99 28550.82 31477.56 26816.74 36685.44 25359.04 18357.94 28580.89 280
HPM-MVS_fast67.86 20066.28 20472.61 21280.67 18248.34 23681.18 24575.95 29350.81 30059.55 21388.05 13627.86 29985.98 24358.83 18473.58 15083.51 235
eth_miper_zixun_eth66.98 22665.28 22972.06 22775.61 26750.40 17881.00 24876.97 28162.00 13956.99 26176.97 27844.84 11785.58 24958.75 18554.42 31880.21 289
v14419267.86 20065.76 21774.16 17671.68 31353.09 12484.14 16480.83 20262.85 12659.21 22177.28 27439.30 18488.00 17858.67 18657.88 28881.40 270
test111171.06 14270.42 13472.97 20579.48 19841.49 33084.82 14682.74 17064.20 9762.98 17787.43 14835.20 23987.92 17958.54 18778.42 10389.49 115
thisisatest051573.64 10172.20 10677.97 8081.63 15453.01 12786.69 9288.81 3762.53 13264.06 16185.65 16952.15 4492.50 4658.43 18869.84 18488.39 143
v867.25 21764.99 23374.04 17972.89 30253.31 11882.37 21680.11 21361.54 14854.29 28776.02 29642.89 14488.41 16158.43 18856.36 29680.39 287
XXY-MVS70.18 15569.28 15572.89 20877.64 23342.88 31785.06 13487.50 6662.58 13162.66 18282.34 22343.64 13489.83 11458.42 19063.70 23385.96 192
3Dnovator64.70 674.46 8472.48 9880.41 2882.84 12655.40 5983.08 19888.61 4567.61 5159.85 20688.66 12034.57 24793.97 2658.42 19088.70 1291.85 52
旧先验281.73 23145.53 33274.66 4870.48 36558.31 192
test_fmvs153.60 32552.54 32056.78 34958.07 37530.26 37168.95 33842.19 38532.46 37363.59 17182.56 21611.55 37560.81 37458.25 19355.27 31179.28 295
v119267.96 19965.74 21874.63 16371.79 31153.43 11384.06 16780.99 20063.19 12159.56 21277.46 27137.50 20888.65 15158.20 19458.93 27181.79 259
EPP-MVSNet71.14 13970.07 14374.33 17179.18 20546.52 27183.81 17486.49 7956.32 25357.95 24284.90 18054.23 3289.14 13358.14 19569.65 18787.33 164
OMC-MVS65.97 24165.06 23268.71 28472.97 30042.58 32278.61 27875.35 29854.72 27059.31 21886.25 16433.30 25977.88 32857.99 19667.05 20485.66 198
cl____67.43 21265.93 21371.95 23476.33 25348.02 24782.58 20879.12 23961.30 15356.72 26376.92 28046.12 9486.44 22957.98 19756.31 29881.38 272
DIV-MVS_self_test67.43 21265.93 21371.94 23576.33 25348.01 24882.57 20979.11 24061.31 15256.73 26276.92 28046.09 9586.43 23057.98 19756.31 29881.39 271
MS-PatchMatch72.34 12071.26 12275.61 13682.38 13655.55 5388.00 5589.95 1965.38 8456.51 26880.74 24132.28 26992.89 3557.95 19988.10 1578.39 308
MAR-MVS76.76 5375.60 5980.21 3090.87 754.68 8489.14 4289.11 2662.95 12470.54 10192.33 4141.05 16594.95 1757.90 20086.55 3291.00 78
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvs1_n52.55 32951.19 32456.65 35051.90 38530.14 37267.66 34242.84 38432.27 37462.30 18582.02 2289.12 38360.84 37357.82 20154.75 31778.99 297
anonymousdsp60.46 28057.65 28668.88 27863.63 36545.09 29072.93 31378.63 25046.52 32451.12 30972.80 32321.46 34783.07 28257.79 20253.97 32078.47 305
Anonymous2024052969.71 16767.28 18677.00 10483.78 9650.36 18288.87 4685.10 11647.22 31964.03 16383.37 19927.93 29892.10 5757.78 20367.44 20288.53 141
Fast-Effi-MVS+-dtu66.53 23364.10 24273.84 18672.41 30752.30 14284.73 14775.66 29459.51 18256.34 26979.11 25628.11 29685.85 24857.74 20463.29 24083.35 236
v192192067.45 21165.23 23074.10 17871.51 31652.90 13083.75 17680.44 20762.48 13559.12 22277.13 27536.98 21687.90 18057.53 20558.14 28281.49 264
IterMVS-LS66.63 23165.36 22870.42 26075.10 27248.90 21881.45 24276.69 28561.05 15755.71 27377.10 27745.86 9983.65 27657.44 20657.88 28878.70 301
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet69.70 16968.70 15972.68 21175.00 27548.90 21879.54 26987.16 6861.05 15763.88 16783.74 19245.87 9890.44 9657.42 20764.68 22578.70 301
CDS-MVSNet70.48 15369.43 14973.64 19377.56 23648.83 22083.51 18277.45 27063.27 11962.33 18485.54 17243.85 12683.29 28157.38 20874.00 14688.79 133
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
3Dnovator+62.71 772.29 12270.50 13277.65 8683.40 10551.29 16487.32 7386.40 8259.01 19958.49 23688.32 12932.40 26791.27 7157.04 20982.15 6690.38 90
test_vis1_n51.19 33449.66 33155.76 35451.26 38629.85 37667.20 34438.86 38932.12 37559.50 21479.86 2468.78 38458.23 38156.95 21052.46 33079.19 296
miper_lstm_enhance63.91 25062.30 24968.75 28375.06 27346.78 26769.02 33681.14 19659.68 18052.76 29972.39 32840.71 17077.99 32656.81 21153.09 32881.48 266
ETVMVS75.80 7075.44 6276.89 10986.23 5250.38 18085.55 11991.42 771.30 2168.80 10887.94 13956.42 1989.24 12856.54 21274.75 14391.07 76
PAPM_NR71.80 13269.98 14477.26 9781.54 16053.34 11678.60 27985.25 10953.46 28060.53 20288.66 12045.69 10289.24 12856.49 21379.62 9589.19 122
v1066.61 23264.20 24173.83 18772.59 30553.37 11481.88 22579.91 21961.11 15554.09 28975.60 29840.06 17888.26 17156.47 21456.10 30279.86 293
v124066.99 22564.68 23673.93 18271.38 31952.66 13383.39 18979.98 21561.97 14158.44 23977.11 27635.25 23887.81 18256.46 21558.15 28081.33 273
Anonymous20240521170.11 15667.88 17276.79 11387.20 4547.24 26489.49 3677.38 27254.88 26966.14 12986.84 15620.93 34991.54 6656.45 21671.62 16891.59 57
Fast-Effi-MVS+72.73 11371.15 12577.48 8982.75 12854.76 7886.77 9080.64 20463.05 12365.93 13384.01 18744.42 12389.03 13656.45 21676.36 12288.64 136
sd_testset67.79 20365.95 21273.32 19881.70 15046.33 27668.99 33780.30 21066.58 6061.64 19282.38 22030.45 28487.63 19455.86 21865.60 21886.01 188
114514_t69.87 16567.88 17275.85 13288.38 2952.35 14086.94 8583.68 15053.70 27855.68 27485.60 17030.07 28791.20 7555.84 21971.02 17483.99 224
tpm270.82 14768.44 16277.98 7980.78 17856.11 4474.21 30481.28 19560.24 17268.04 11375.27 30052.26 4388.50 15955.82 22068.03 19689.33 117
PCF-MVS61.03 1070.10 15768.40 16375.22 15577.15 24551.99 14579.30 27482.12 17756.47 25161.88 19086.48 16343.98 12587.24 20555.37 22172.79 15886.43 183
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
PVSNet62.49 869.27 17567.81 17673.64 19384.41 8251.85 14984.63 15277.80 26366.42 6459.80 20784.95 17922.14 34380.44 30455.03 22275.11 13888.62 137
CHOSEN 280x42057.53 30456.38 29760.97 33874.01 28848.10 24546.30 38254.31 37348.18 31550.88 31377.43 27238.37 19359.16 38054.83 22363.14 24475.66 334
GG-mvs-BLEND77.77 8386.68 4950.61 17168.67 33988.45 4968.73 10987.45 14759.15 1090.67 9054.83 22387.67 1792.03 45
TAMVS69.51 17368.16 16873.56 19676.30 25548.71 22482.57 20977.17 27562.10 13861.32 19584.23 18541.90 15783.46 27954.80 22573.09 15588.50 142
D2MVS63.49 25661.39 25769.77 27069.29 33448.93 21778.89 27777.71 26660.64 16849.70 31772.10 33327.08 30583.48 27854.48 22662.65 24876.90 322
IterMVS63.77 25361.67 25370.08 26672.68 30451.24 16580.44 25775.51 29560.51 16951.41 30773.70 31432.08 27178.91 31654.30 22754.35 31980.08 291
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
RRT_MVS63.68 25461.01 26371.70 23973.48 29245.98 28181.19 24476.08 29154.33 27552.84 29879.27 25222.21 34087.65 19254.13 22855.54 31081.46 267
UWE-MVS72.17 12572.15 10872.21 22382.26 13944.29 30086.83 8989.58 2165.58 7965.82 13585.06 17645.02 11184.35 26954.07 22975.18 13487.99 151
DP-MVS Recon71.99 12770.31 13777.01 10390.65 853.44 11189.37 3882.97 16756.33 25263.56 17289.47 10434.02 25292.15 5654.05 23072.41 16185.43 203
tpm68.36 19167.48 18370.97 25379.93 19451.34 16276.58 29078.75 24767.73 4763.54 17374.86 30248.33 7072.36 35953.93 23163.71 23289.21 121
XVG-OURS-SEG-HR62.02 27159.54 27569.46 27365.30 35545.88 28265.06 34873.57 31346.45 32557.42 25783.35 20026.95 30678.09 32253.77 23264.03 22984.42 216
FA-MVS(test-final)69.00 17966.60 19876.19 12383.48 10147.96 25174.73 30082.07 17857.27 23462.18 18678.47 26136.09 23092.89 3553.76 23371.32 17287.73 156
cascas69.01 17866.13 20777.66 8579.36 19955.41 5886.99 8383.75 14956.69 24658.92 22681.35 23524.31 32692.10 5753.23 23470.61 17885.46 202
UniMVSNet_NR-MVSNet68.82 18268.29 16570.40 26175.71 26642.59 32084.23 16186.78 7466.31 6658.51 23382.45 21751.57 4684.64 26753.11 23555.96 30483.96 228
DU-MVS66.84 23065.74 21870.16 26473.27 29742.59 32081.50 23982.92 16863.53 11358.51 23382.11 22640.75 16884.64 26753.11 23555.96 30483.24 240
1112_ss70.05 15969.37 15172.10 22580.77 17942.78 31885.12 13376.75 28259.69 17961.19 19692.12 4447.48 8083.84 27253.04 23768.21 19489.66 110
XVG-OURS61.88 27259.34 27769.49 27265.37 35446.27 27764.80 34973.49 31447.04 32157.41 25882.85 20525.15 31978.18 32053.00 23864.98 22084.01 223
thisisatest053070.47 15468.56 16076.20 12279.78 19551.52 15883.49 18488.58 4757.62 22758.60 23282.79 20651.03 5191.48 6752.84 23962.36 25285.59 201
UGNet68.71 18667.11 18973.50 19780.55 18547.61 25684.08 16578.51 25359.45 18365.68 13882.73 21023.78 32885.08 26152.80 24076.40 11887.80 154
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Anonymous2023121166.08 24063.67 24373.31 19983.07 11548.75 22286.01 10584.67 12945.27 33356.54 26676.67 28528.06 29788.95 14252.78 24159.95 26082.23 254
无先验85.19 12878.00 26149.08 30985.13 26052.78 24187.45 163
PVSNet_057.04 1361.19 27657.24 28973.02 20377.45 23850.31 18579.43 27377.36 27363.96 10447.51 33172.45 32725.03 32083.78 27452.76 24319.22 39784.96 209
FIs70.00 16170.24 14169.30 27577.93 23138.55 34483.99 16987.72 6266.86 5857.66 24984.17 18652.28 4285.31 25452.72 24468.80 19184.02 222
Vis-MVSNetpermissive70.61 15169.34 15274.42 16880.95 17548.49 23086.03 10477.51 26958.74 20565.55 13987.78 14134.37 24985.95 24652.53 24580.61 7788.80 132
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
testdata67.08 29877.59 23545.46 28869.20 34644.47 33871.50 8788.34 12831.21 27970.76 36452.20 24675.88 12685.03 207
API-MVS74.17 8972.07 11180.49 2590.02 1158.55 887.30 7584.27 13757.51 22965.77 13787.77 14241.61 16195.97 1151.71 24782.63 6086.94 169
GeoE69.96 16367.88 17276.22 12081.11 16951.71 15384.15 16376.74 28359.83 17660.91 19784.38 18241.56 16288.10 17551.67 24870.57 17988.84 131
dmvs_re67.61 20666.00 21072.42 21881.86 14543.45 30964.67 35080.00 21469.56 3260.07 20485.00 17834.71 24587.63 19451.48 24966.68 20686.17 187
ACMM58.35 1264.35 24762.01 25271.38 24574.21 28648.51 22982.25 21779.66 22447.61 31754.54 28480.11 24325.26 31886.00 24251.26 25063.16 24379.64 294
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
原ACMM176.13 12584.89 7554.59 8785.26 10851.98 29166.70 12187.07 15440.15 17689.70 11951.23 25185.06 4784.10 220
UniMVSNet (Re)67.71 20466.80 19270.45 25974.44 28242.93 31682.42 21584.90 12063.69 10959.63 21080.99 23747.18 8285.23 25751.17 25256.75 29583.19 242
IterMVS-SCA-FT59.12 28858.81 28260.08 34070.68 32745.07 29180.42 25874.25 30443.54 34550.02 31673.73 31131.97 27256.74 38251.06 25353.60 32478.42 307
Test_1112_low_res67.18 21966.23 20570.02 26978.75 21441.02 33483.43 18573.69 31157.29 23358.45 23882.39 21945.30 10780.88 29550.50 25466.26 21688.16 144
pmmvs463.34 25861.07 26270.16 26470.14 32850.53 17479.97 26671.41 33055.08 26554.12 28878.58 25932.79 26482.09 28750.33 25557.22 29377.86 314
Baseline_NR-MVSNet65.49 24464.27 24069.13 27674.37 28541.65 32783.39 18978.85 24259.56 18159.62 21176.88 28240.75 16887.44 20049.99 25655.05 31278.28 310
UniMVSNet_ETH3D62.51 26660.49 26768.57 28868.30 34340.88 33673.89 30579.93 21851.81 29554.77 28179.61 24824.80 32281.10 29249.93 25761.35 25583.73 232
BH-w/o70.02 16068.51 16174.56 16482.77 12750.39 17986.60 9478.14 25959.77 17759.65 20985.57 17139.27 18587.30 20449.86 25874.94 14285.99 190
LCM-MVSNet-Re58.82 29456.54 29365.68 30879.31 20229.09 38161.39 36345.79 37960.73 16637.65 36772.47 32631.42 27881.08 29349.66 25970.41 18086.87 171
gg-mvs-nofinetune67.43 21264.53 23876.13 12585.95 5347.79 25564.38 35188.28 5139.34 35466.62 12341.27 38858.69 1389.00 13849.64 26086.62 3091.59 57
TranMVSNet+NR-MVSNet66.94 22765.61 22170.93 25473.45 29343.38 31183.02 20184.25 13865.31 8758.33 24081.90 22939.92 18185.52 25049.43 26154.89 31483.89 230
tttt051768.33 19366.29 20374.46 16678.08 22749.06 21080.88 25289.08 2754.40 27454.75 28280.77 24051.31 4890.33 10049.35 26258.01 28483.99 224
test_fmvs245.89 34344.32 34550.62 36045.85 39424.70 38758.87 37037.84 39225.22 38352.46 30174.56 3057.07 38754.69 38349.28 26347.70 34372.48 356
WR-MVS67.58 20766.76 19370.04 26875.92 26445.06 29486.23 9985.28 10764.31 9558.50 23581.00 23644.80 12082.00 28849.21 26455.57 30983.06 245
tt080563.39 25761.31 25969.64 27169.36 33338.87 34278.00 28185.48 9548.82 31255.66 27781.66 23124.38 32586.37 23149.04 26559.36 26883.68 233
test_post170.84 32914.72 40634.33 25083.86 27148.80 266
SCA63.84 25160.01 27375.32 14778.58 22057.92 1061.61 36177.53 26856.71 24557.75 24870.77 33931.97 27279.91 31248.80 26656.36 29688.13 147
pmmvs562.80 26461.18 26067.66 29369.53 33242.37 32582.65 20775.19 29954.30 27652.03 30578.51 26031.64 27780.67 29948.60 26858.15 28079.95 292
新几何173.30 20083.10 11253.48 10771.43 32945.55 33166.14 12987.17 15233.88 25580.54 30248.50 26980.33 8385.88 195
pm-mvs164.12 24962.56 24768.78 28271.68 31338.87 34282.89 20381.57 18855.54 26153.89 29177.82 26637.73 20086.74 21948.46 27053.49 32580.72 282
PM-MVS46.92 34243.76 34756.41 35252.18 38432.26 36763.21 35638.18 39037.99 35940.78 35866.20 3545.09 39565.42 37048.19 27141.99 36371.54 362
FC-MVSNet-test67.49 21067.91 17066.21 30676.06 25933.06 36380.82 25387.18 6764.44 9454.81 28082.87 20450.40 5882.60 28348.05 27266.55 21082.98 247
CMPMVSbinary40.41 2155.34 31552.64 31863.46 32260.88 37343.84 30561.58 36271.06 33230.43 37836.33 36974.63 30424.14 32775.44 34348.05 27266.62 20871.12 364
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
NR-MVSNet67.25 21765.99 21171.04 25273.27 29743.91 30485.32 12484.75 12666.05 7453.65 29482.11 22645.05 11085.97 24547.55 27456.18 30183.24 240
QAPM71.88 13069.33 15379.52 4082.20 14054.30 9286.30 9888.77 3856.61 24859.72 20887.48 14633.90 25495.36 1347.48 27581.49 7188.90 128
EPMVS68.45 19065.44 22677.47 9084.91 7456.17 4371.89 32581.91 18361.72 14560.85 19872.49 32536.21 22887.06 21047.32 27671.62 16889.17 123
GBi-Net67.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
test167.09 22265.47 22471.96 23182.71 12946.36 27383.52 17883.31 15758.55 20857.58 25176.23 29136.72 22386.20 23247.25 27763.40 23683.32 237
FMVSNet368.84 18167.40 18473.19 20185.05 7148.53 22885.71 11485.36 10160.90 16357.58 25179.15 25542.16 15186.77 21847.25 27763.40 23684.27 218
v7n62.50 26759.27 27872.20 22467.25 34849.83 19577.87 28380.12 21252.50 28848.80 32273.07 31932.10 27087.90 18046.83 28054.92 31378.86 299
WB-MVSnew69.36 17468.24 16672.72 21079.26 20349.40 20585.72 11388.85 3561.33 15164.59 15382.38 22034.57 24787.53 19946.82 28170.63 17781.22 277
CVMVSNet60.85 27860.44 26862.07 32875.00 27532.73 36579.54 26973.49 31436.98 36256.28 27083.74 19229.28 29269.53 36746.48 28263.23 24183.94 229
TR-MVS69.71 16767.85 17575.27 15382.94 12148.48 23187.40 7280.86 20157.15 23764.61 15287.08 15332.67 26589.64 12146.38 28371.55 17087.68 158
MDTV_nov1_ep13_2view43.62 30771.13 32854.95 26859.29 22036.76 22046.33 28487.32 165
FMVSNet267.57 20865.79 21672.90 20682.71 12947.97 24985.15 12984.93 11958.55 20856.71 26478.26 26236.72 22386.67 22146.15 28562.94 24784.07 221
UnsupCasMVSNet_eth57.56 30355.15 30364.79 31764.57 36233.12 36273.17 31283.87 14858.98 20041.75 35370.03 34322.54 33679.92 31046.12 28635.31 37481.32 275
testdata277.81 33045.64 287
XVG-ACMP-BASELINE56.03 31252.85 31665.58 30961.91 37040.95 33563.36 35372.43 32045.20 33446.02 33874.09 3079.20 38278.12 32145.13 28858.27 27877.66 317
AdaColmapbinary67.86 20065.48 22375.00 15988.15 3654.99 7386.10 10276.63 28649.30 30857.80 24586.65 16029.39 29188.94 14445.10 28970.21 18281.06 278
BH-untuned68.28 19466.40 20073.91 18381.62 15550.01 19085.56 11877.39 27157.63 22657.47 25683.69 19436.36 22787.08 20944.81 29073.08 15684.65 213
mvsany_test143.38 34642.57 34845.82 36450.96 38726.10 38555.80 37327.74 40227.15 38147.41 33274.39 30618.67 35844.95 39444.66 29136.31 37266.40 373
BH-RMVSNet70.08 15868.01 16976.27 11884.21 8851.22 16687.29 7679.33 23758.96 20163.63 17086.77 15733.29 26090.30 10344.63 29273.96 14787.30 166
test_vis1_rt40.29 34938.64 35145.25 36648.91 39130.09 37359.44 36727.07 40324.52 38538.48 36551.67 3846.71 39049.44 38844.33 29346.59 35356.23 382
IS-MVSNet68.80 18467.55 18172.54 21478.50 22243.43 31081.03 24779.35 23559.12 19757.27 25986.71 15846.05 9687.70 19044.32 29475.60 13086.49 181
pmmvs-eth3d55.97 31352.78 31765.54 31061.02 37246.44 27275.36 29767.72 35149.61 30743.65 34467.58 35121.63 34577.04 33344.11 29544.33 35873.15 355
pmmvs659.64 28357.15 29067.09 29766.01 35036.86 35180.50 25678.64 24945.05 33549.05 32073.94 30927.28 30386.10 23843.96 29649.94 33778.31 309
EPNet_dtu66.25 23766.71 19464.87 31678.66 21834.12 35882.80 20475.51 29561.75 14464.47 15886.90 15537.06 21572.46 35843.65 29769.63 18888.02 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
tpm cat166.28 23662.78 24676.77 11481.40 16457.14 2270.03 33277.19 27453.00 28458.76 23170.73 34146.17 9386.73 22043.27 29864.46 22686.44 182
OpenMVScopyleft61.00 1169.99 16267.55 18177.30 9478.37 22554.07 9984.36 15785.76 9357.22 23556.71 26487.67 14430.79 28292.83 3743.04 29984.06 5585.01 208
PatchmatchNetpermissive67.07 22463.63 24477.40 9183.10 11258.03 972.11 32377.77 26458.85 20259.37 21670.83 33837.84 19684.93 26342.96 30069.83 18589.26 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CR-MVSNet62.47 26859.04 28072.77 20973.97 29056.57 3460.52 36471.72 32560.04 17357.49 25465.86 35538.94 18780.31 30542.86 30159.93 26181.42 268
test_fmvs337.95 35135.75 35444.55 36735.50 40018.92 39748.32 37934.00 39718.36 39141.31 35661.58 3652.29 40248.06 39242.72 30237.71 37166.66 372
FMVSNet164.57 24562.11 25171.96 23177.32 23946.36 27383.52 17883.31 15752.43 28954.42 28576.23 29127.80 30086.20 23242.59 30361.34 25683.32 237
UA-Net67.32 21666.23 20570.59 25778.85 21241.23 33373.60 30775.45 29761.54 14866.61 12484.53 18138.73 19086.57 22742.48 30474.24 14583.98 226
CL-MVSNet_self_test62.98 26161.14 26168.50 28965.86 35242.96 31584.37 15682.98 16660.98 15953.95 29072.70 32440.43 17283.71 27541.10 30547.93 34278.83 300
MIMVSNet63.12 26060.29 27071.61 24075.92 26446.65 26965.15 34781.94 18059.14 19654.65 28369.47 34525.74 31480.63 30041.03 30669.56 18987.55 160
FE-MVS64.15 24860.43 26975.30 15080.85 17749.86 19468.28 34178.37 25650.26 30459.31 21873.79 31026.19 31191.92 6040.19 30766.67 20784.12 219
EG-PatchMatch MVS62.40 27059.59 27470.81 25573.29 29549.05 21185.81 10684.78 12451.85 29444.19 34173.48 31715.52 37189.85 11340.16 30867.24 20373.54 351
UnsupCasMVSNet_bld53.86 32250.53 32663.84 31963.52 36634.75 35471.38 32681.92 18246.53 32338.95 36357.93 37520.55 35080.20 30839.91 30934.09 38176.57 328
dp64.41 24661.58 25472.90 20682.40 13554.09 9872.53 31576.59 28760.39 17055.68 27470.39 34235.18 24076.90 33739.34 31061.71 25487.73 156
TransMVSNet (Re)62.82 26360.76 26569.02 27773.98 28941.61 32886.36 9679.30 23856.90 23952.53 30076.44 28741.85 15887.60 19738.83 31140.61 36677.86 314
USDC54.36 31951.23 32363.76 32064.29 36337.71 34862.84 35873.48 31656.85 24035.47 37271.94 3349.23 38178.43 31838.43 31248.57 33975.13 339
PLCcopyleft52.38 1860.89 27758.97 28166.68 30481.77 14745.70 28678.96 27674.04 30843.66 34447.63 32883.19 20323.52 33177.78 33137.47 31360.46 25976.55 329
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test0.0.03 162.54 26562.44 24862.86 32772.28 31029.51 37882.93 20278.78 24559.18 19453.07 29782.41 21836.91 21877.39 33237.45 31458.96 27081.66 262
OurMVSNet-221017-052.39 33048.73 33363.35 32465.21 35638.42 34568.54 34064.95 35638.19 35739.57 36071.43 33513.23 37479.92 31037.16 31540.32 36771.72 360
CNLPA60.59 27958.44 28367.05 29979.21 20447.26 26279.75 26864.34 36042.46 35051.90 30683.94 18827.79 30175.41 34437.12 31659.49 26678.47 305
K. test v354.04 32149.42 33267.92 29268.55 33942.57 32375.51 29563.07 36352.07 29039.21 36164.59 35919.34 35482.21 28437.11 31725.31 39078.97 298
Vis-MVSNet (Re-imp)65.52 24365.63 22065.17 31477.49 23730.54 37075.49 29677.73 26559.34 18752.26 30486.69 15949.38 6780.53 30337.07 31875.28 13384.42 216
PatchMatch-RL56.66 30653.75 31165.37 31377.91 23245.28 28969.78 33460.38 36641.35 35147.57 32973.73 31116.83 36576.91 33536.99 31959.21 26973.92 348
Patchmtry56.56 30852.95 31567.42 29572.53 30650.59 17359.05 36871.72 32537.86 36046.92 33365.86 35538.94 18780.06 30936.94 32046.72 35271.60 361
FMVSNet558.61 29656.45 29465.10 31577.20 24439.74 33874.77 29977.12 27650.27 30343.28 34767.71 35026.15 31276.90 33736.78 32154.78 31578.65 303
MDTV_nov1_ep1361.56 25581.68 15255.12 6872.41 31778.18 25859.19 19258.85 22969.29 34634.69 24686.16 23536.76 32262.96 246
JIA-IIPM52.33 33147.77 33866.03 30771.20 32046.92 26640.00 39076.48 28837.10 36146.73 33437.02 39032.96 26177.88 32835.97 32352.45 33173.29 353
lessismore_v067.98 29164.76 36141.25 33245.75 38036.03 37165.63 35719.29 35584.11 27035.67 32421.24 39578.59 304
CP-MVSNet58.54 29957.57 28861.46 33568.50 34033.96 35976.90 28878.60 25251.67 29647.83 32676.60 28634.99 24472.79 35635.45 32547.58 34477.64 318
Anonymous2024052151.65 33248.42 33461.34 33756.43 37939.65 34073.57 30873.47 31736.64 36436.59 36863.98 36010.75 37872.25 36035.35 32649.01 33872.11 358
ambc62.06 32953.98 38229.38 37935.08 39379.65 22541.37 35459.96 3706.27 39382.15 28535.34 32738.22 37074.65 343
KD-MVS_2432*160059.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
miper_refine_blended59.04 29156.44 29566.86 30079.07 20645.87 28372.13 32180.42 20855.03 26648.15 32471.01 33636.73 22178.05 32435.21 32830.18 38576.67 324
PS-CasMVS58.12 30157.03 29261.37 33668.24 34433.80 36176.73 28978.01 26051.20 29847.54 33076.20 29432.85 26272.76 35735.17 33047.37 34677.55 319
EU-MVSNet52.63 32850.72 32558.37 34662.69 36928.13 38372.60 31475.97 29230.94 37740.76 35972.11 33220.16 35170.80 36335.11 33146.11 35476.19 332
ACMH+54.58 1558.55 29855.24 30268.50 28974.68 27945.80 28580.27 26070.21 33847.15 32042.77 34975.48 29916.73 36785.98 24335.10 33254.78 31573.72 349
pmmvs345.53 34541.55 34957.44 34848.97 39039.68 33970.06 33157.66 36928.32 38034.06 37557.29 3768.50 38566.85 36934.86 33334.26 37965.80 375
our_test_359.11 28955.08 30571.18 25071.42 31753.29 11981.96 22274.52 30248.32 31342.08 35069.28 34728.14 29582.15 28534.35 33445.68 35678.11 313
PEN-MVS58.35 30057.15 29061.94 33167.55 34734.39 35577.01 28678.35 25751.87 29347.72 32776.73 28433.91 25373.75 35134.03 33547.17 34877.68 316
KD-MVS_self_test49.24 33746.85 34056.44 35154.32 38022.87 38957.39 37173.36 31844.36 34037.98 36659.30 37318.97 35671.17 36233.48 33642.44 36275.26 337
tpmvs62.45 26959.42 27671.53 24483.93 9254.32 9170.03 33277.61 26751.91 29253.48 29568.29 34937.91 19586.66 22233.36 33758.27 27873.62 350
YYNet153.82 32349.96 32865.41 31270.09 33048.95 21572.30 31871.66 32744.25 34131.89 38163.07 36323.73 32973.95 34933.26 33839.40 36873.34 352
MDA-MVSNet_test_wron53.82 32349.95 32965.43 31170.13 32949.05 21172.30 31871.65 32844.23 34231.85 38263.13 36223.68 33074.01 34833.25 33939.35 36973.23 354
Anonymous2023120659.08 29057.59 28763.55 32168.77 33832.14 36880.26 26179.78 22150.00 30549.39 31872.39 32826.64 30878.36 31933.12 34057.94 28580.14 290
F-COLMAP55.96 31453.65 31262.87 32672.76 30342.77 31974.70 30270.37 33740.03 35341.11 35779.36 25017.77 36273.70 35232.80 34153.96 32172.15 357
PatchT56.60 30752.97 31467.48 29472.94 30146.16 28057.30 37273.78 31038.77 35654.37 28657.26 37737.52 20678.06 32332.02 34252.79 32978.23 312
SixPastTwentyTwo54.37 31850.10 32767.21 29670.70 32541.46 33174.73 30064.69 35747.56 31839.12 36269.49 34418.49 36084.69 26631.87 34334.20 38075.48 335
WR-MVS_H58.91 29358.04 28561.54 33469.07 33633.83 36076.91 28781.99 17951.40 29748.17 32374.67 30340.23 17474.15 34731.78 34448.10 34076.64 327
ACMH53.70 1659.78 28255.94 30071.28 24676.59 25048.35 23580.15 26476.11 29049.74 30641.91 35273.45 31816.50 36890.31 10131.42 34557.63 29175.17 338
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MSDG59.44 28455.14 30472.32 22274.69 27850.71 16974.39 30373.58 31244.44 33943.40 34677.52 26919.45 35390.87 8631.31 34657.49 29275.38 336
thres20068.71 18667.27 18773.02 20384.73 7646.76 26885.03 13687.73 6162.34 13659.87 20583.45 19843.15 14088.32 16731.25 34767.91 19883.98 226
DTE-MVSNet57.03 30555.73 30160.95 33965.94 35132.57 36675.71 29177.09 27751.16 29946.65 33676.34 28932.84 26373.22 35530.94 34844.87 35777.06 321
ppachtmachnet_test58.56 29754.34 30671.24 24771.42 31754.74 7981.84 22772.27 32149.02 31045.86 34068.99 34826.27 30983.30 28030.12 34943.23 36175.69 333
mvsany_test328.00 36025.98 36234.05 37728.97 40515.31 40334.54 39418.17 40816.24 39229.30 38553.37 3822.79 40033.38 40530.01 35020.41 39653.45 385
MVS-HIRNet49.01 33844.71 34261.92 33276.06 25946.61 27063.23 35554.90 37224.77 38433.56 37736.60 39221.28 34875.88 34229.49 35162.54 24963.26 380
test20.0355.22 31654.07 30958.68 34563.14 36725.00 38677.69 28474.78 30152.64 28643.43 34572.39 32826.21 31074.76 34629.31 35247.05 35076.28 331
testgi54.25 32052.57 31959.29 34362.76 36821.65 39372.21 32070.47 33653.25 28341.94 35177.33 27314.28 37277.95 32729.18 35351.72 33378.28 310
thres100view90066.87 22965.42 22771.24 24783.29 10843.15 31481.67 23287.78 5859.04 19855.92 27282.18 22543.73 13087.80 18428.80 35466.36 21282.78 251
tfpn200view967.57 20866.13 20771.89 23884.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21282.78 251
thres40067.40 21566.13 20771.19 24984.05 9045.07 29183.40 18787.71 6360.79 16457.79 24682.76 20743.53 13587.80 18428.80 35466.36 21280.71 283
ADS-MVSNet255.21 31751.44 32266.51 30580.60 18349.56 20055.03 37565.44 35544.72 33651.00 31061.19 36722.83 33375.41 34428.54 35753.63 32274.57 344
ADS-MVSNet56.17 31151.95 32168.84 27980.60 18353.07 12555.03 37570.02 34044.72 33651.00 31061.19 36722.83 33378.88 31728.54 35753.63 32274.57 344
LTVRE_ROB45.45 1952.73 32749.74 33061.69 33369.78 33134.99 35344.52 38367.60 35343.11 34743.79 34374.03 30818.54 35981.45 29028.39 35957.94 28568.62 368
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_vis3_rt24.79 36622.95 36930.31 38228.59 40618.92 39737.43 39217.27 41012.90 39521.28 39329.92 3991.02 40936.35 39928.28 36029.82 38735.65 393
new-patchmatchnet48.21 33946.55 34153.18 35757.73 37718.19 40170.24 33071.02 33345.70 33033.70 37660.23 36918.00 36169.86 36627.97 36134.35 37871.49 363
OpenMVS_ROBcopyleft53.19 1759.20 28756.00 29968.83 28071.13 32144.30 29983.64 17775.02 30046.42 32646.48 33773.03 32018.69 35788.14 17227.74 36261.80 25374.05 347
RPSCF45.77 34444.13 34650.68 35957.67 37829.66 37754.92 37745.25 38126.69 38245.92 33975.92 29717.43 36445.70 39327.44 36345.95 35576.67 324
MDA-MVSNet-bldmvs51.56 33347.75 33963.00 32571.60 31547.32 26169.70 33572.12 32243.81 34327.65 38963.38 36121.97 34475.96 34127.30 36432.19 38265.70 376
RPMNet59.29 28554.25 30874.42 16873.97 29056.57 3460.52 36476.98 27835.72 36657.49 25458.87 37437.73 20085.26 25627.01 36559.93 26181.42 268
thres600view766.46 23465.12 23170.47 25883.41 10243.80 30682.15 21887.78 5859.37 18656.02 27182.21 22443.73 13086.90 21626.51 36664.94 22180.71 283
TAPA-MVS56.12 1461.82 27360.18 27266.71 30278.48 22337.97 34775.19 29876.41 28946.82 32257.04 26086.52 16227.67 30277.03 33426.50 36767.02 20585.14 205
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
ITE_SJBPF51.84 35858.03 37631.94 36953.57 37636.67 36341.32 35575.23 30111.17 37751.57 38725.81 36848.04 34172.02 359
Patchmatch-test53.33 32648.17 33568.81 28173.31 29442.38 32442.98 38558.23 36832.53 37238.79 36470.77 33939.66 18273.51 35325.18 36952.06 33290.55 85
test_f27.12 36224.85 36333.93 37826.17 41015.25 40430.24 39822.38 40712.53 39728.23 38649.43 3852.59 40134.34 40425.12 37026.99 38852.20 386
TinyColmap48.15 34044.49 34459.13 34465.73 35338.04 34663.34 35462.86 36438.78 35529.48 38467.23 3536.46 39273.30 35424.59 37141.90 36466.04 374
AllTest47.32 34144.66 34355.32 35565.08 35837.50 34962.96 35754.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
TestCases55.32 35565.08 35837.50 34954.25 37435.45 36833.42 37872.82 3219.98 37959.33 37724.13 37243.84 35969.13 366
N_pmnet41.25 34739.77 35045.66 36568.50 3400.82 41572.51 3160.38 41435.61 36735.26 37361.51 36620.07 35267.74 36823.51 37440.63 36568.42 369
dmvs_testset57.65 30258.21 28455.97 35374.62 2809.82 40963.75 35263.34 36267.23 5348.89 32183.68 19639.12 18676.14 34023.43 37559.80 26381.96 257
myMVS_eth3d63.52 25563.56 24563.40 32381.73 14834.28 35680.97 24981.02 19860.93 16155.06 27882.64 21248.00 7680.81 29723.42 37658.32 27675.10 340
WAC-MVS34.28 35622.56 377
DP-MVS59.24 28656.12 29868.63 28588.24 3450.35 18382.51 21264.43 35941.10 35246.70 33578.77 25824.75 32388.57 15722.26 37856.29 30066.96 371
MIMVSNet150.35 33647.81 33757.96 34761.53 37127.80 38467.40 34374.06 30743.25 34633.31 38065.38 35816.03 36971.34 36121.80 37947.55 34574.75 342
tfpnnormal61.47 27559.09 27968.62 28676.29 25641.69 32681.14 24685.16 11354.48 27351.32 30873.63 31532.32 26886.89 21721.78 38055.71 30877.29 320
LF4IMVS33.04 35832.55 35834.52 37640.96 39522.03 39144.45 38435.62 39420.42 38728.12 38762.35 3645.03 39631.88 40621.61 38134.42 37749.63 388
COLMAP_ROBcopyleft43.60 2050.90 33548.05 33659.47 34167.81 34640.57 33771.25 32762.72 36536.49 36536.19 37073.51 31613.48 37373.92 35020.71 38250.26 33663.92 378
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
LCM-MVSNet28.07 35923.85 36740.71 36927.46 40918.93 39630.82 39746.19 37812.76 39616.40 39434.70 3951.90 40548.69 39120.25 38324.22 39154.51 384
DSMNet-mixed38.35 35035.36 35547.33 36348.11 39214.91 40537.87 39136.60 39319.18 38934.37 37459.56 37215.53 37053.01 38620.14 38446.89 35174.07 346
new_pmnet33.56 35731.89 35938.59 37249.01 38920.42 39451.01 37837.92 39120.58 38623.45 39146.79 3866.66 39149.28 39020.00 38531.57 38446.09 391
LS3D56.40 31053.82 31064.12 31881.12 16845.69 28773.42 31066.14 35435.30 37043.24 34879.88 24522.18 34179.62 31419.10 38664.00 23067.05 370
test_method24.09 36721.07 37133.16 37927.67 4088.35 41326.63 39935.11 3963.40 40514.35 39736.98 3913.46 39935.31 40119.08 38722.95 39255.81 383
TDRefinement40.91 34838.37 35248.55 36250.45 38833.03 36458.98 36950.97 37728.50 37929.89 38367.39 3526.21 39454.51 38417.67 38835.25 37558.11 381
testing359.97 28160.19 27159.32 34277.60 23430.01 37581.75 23081.79 18553.54 27950.34 31579.94 24448.99 6976.91 33517.19 38950.59 33571.03 365
test_040256.45 30953.03 31366.69 30376.78 24950.31 18581.76 22969.61 34342.79 34843.88 34272.13 33122.82 33586.46 22816.57 39050.94 33463.31 379
Syy-MVS61.51 27461.35 25862.00 33081.73 14830.09 37380.97 24981.02 19860.93 16155.06 27882.64 21235.09 24180.81 29716.40 39158.32 27675.10 340
PMMVS226.71 36322.98 36837.87 37436.89 3988.51 41242.51 38629.32 40119.09 39013.01 39837.54 3892.23 40353.11 38514.54 39211.71 40051.99 387
ANet_high34.39 35529.59 36148.78 36130.34 40422.28 39055.53 37463.79 36138.11 35815.47 39636.56 3936.94 38859.98 37613.93 3935.64 40764.08 377
tmp_tt9.44 37410.68 3775.73 3902.49 4134.21 41410.48 40318.04 4090.34 40712.59 39920.49 40111.39 3767.03 40913.84 3946.46 4065.95 404
APD_test126.46 36424.41 36532.62 38137.58 39721.74 39240.50 38930.39 39911.45 39816.33 39543.76 3871.63 40741.62 39611.24 39526.82 38934.51 395
EGC-MVSNET33.75 35630.42 36043.75 36864.94 36036.21 35260.47 36640.70 3880.02 4080.10 40953.79 3807.39 38660.26 37511.09 39635.23 37634.79 394
FPMVS35.40 35333.67 35740.57 37046.34 39328.74 38241.05 38757.05 37020.37 38822.27 39253.38 3816.87 38944.94 3958.62 39747.11 34948.01 389
Gipumacopyleft27.47 36124.26 36637.12 37560.55 37429.17 38011.68 40260.00 36714.18 39410.52 40315.12 4042.20 40463.01 3728.39 39835.65 37319.18 400
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
testf121.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
APD_test221.11 36819.08 37227.18 38430.56 40218.28 39933.43 39524.48 4048.02 40212.02 40033.50 3960.75 41135.09 4027.68 39921.32 39328.17 397
MVEpermissive16.60 2317.34 37313.39 37629.16 38328.43 40719.72 39513.73 40123.63 4067.23 4047.96 40421.41 4000.80 41036.08 4006.97 40110.39 40131.69 396
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
DeepMVS_CXcopyleft13.10 38821.34 4128.99 41010.02 41210.59 4007.53 40530.55 3981.82 40614.55 4076.83 4027.52 40315.75 401
WB-MVS37.41 35236.37 35340.54 37154.23 38110.43 40865.29 34643.75 38234.86 37127.81 38854.63 37824.94 32163.21 3716.81 40315.00 39847.98 390
SSC-MVS35.20 35434.30 35637.90 37352.58 3838.65 41161.86 35941.64 38631.81 37625.54 39052.94 38323.39 33259.28 3796.10 40412.86 39945.78 392
E-PMN19.16 37018.40 37421.44 38636.19 39913.63 40647.59 38030.89 39810.73 3995.91 40616.59 4023.66 39839.77 3975.95 4058.14 40210.92 402
PMVScopyleft19.57 2225.07 36522.43 37032.99 38023.12 41122.98 38840.98 38835.19 39515.99 39311.95 40235.87 3941.47 40849.29 3895.41 40631.90 38326.70 399
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS18.42 37117.66 37520.71 38734.13 40112.64 40746.94 38129.94 40010.46 4015.58 40714.93 4054.23 39738.83 3985.24 4077.51 40410.67 403
wuyk23d9.11 3758.77 37910.15 38940.18 39616.76 40220.28 4001.01 4132.58 4062.66 4080.98 4080.23 41312.49 4084.08 4086.90 4051.19 405
testmvs6.14 3778.18 3800.01 3910.01 4140.00 41773.40 3110.00 4150.00 4090.02 4100.15 4090.00 4140.00 4100.02 4090.00 4080.02 406
test1236.01 3788.01 3810.01 3910.00 4150.01 41671.93 3240.00 4150.00 4090.02 4100.11 4100.00 4140.00 4100.02 4090.00 4080.02 406
test_blank0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
cdsmvs_eth3d_5k18.33 37224.44 3640.00 3930.00 4150.00 4170.00 40489.40 220.00 4090.00 41292.02 4838.55 1910.00 4100.00 4110.00 4080.00 408
pcd_1.5k_mvsjas3.15 3794.20 3820.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 41137.77 1970.00 4100.00 4110.00 4080.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
sosnet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
Regformer0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
ab-mvs-re7.68 37610.24 3780.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 41292.12 440.00 4140.00 4100.00 4110.00 4080.00 408
uanet0.00 3800.00 3830.00 3930.00 4150.00 4170.00 4040.00 4150.00 4090.00 4120.00 4110.00 4140.00 4100.00 4110.00 4080.00 408
FOURS183.24 10949.90 19384.98 13878.76 24647.71 31673.42 61
test_one_060189.39 2257.29 2088.09 5357.21 23682.06 1393.39 2054.94 29
eth-test20.00 415
eth-test0.00 415
test_241102_ONE89.48 1756.89 2988.94 3057.53 22884.61 493.29 2458.81 1196.45 1
save fliter85.35 6656.34 4189.31 4081.46 19061.55 147
test072689.40 2057.45 1792.32 888.63 4357.71 22483.14 1093.96 855.17 25
GSMVS88.13 147
test_part289.33 2355.48 5582.27 12
sam_mvs138.86 18988.13 147
sam_mvs35.99 234
MTGPAbinary81.31 193
test_post16.22 40337.52 20684.72 265
patchmatchnet-post59.74 37138.41 19279.91 312
MTMP87.27 7715.34 411
TEST985.68 5755.42 5687.59 6784.00 14457.72 22372.99 6690.98 6944.87 11688.58 154
test_885.72 5655.31 6187.60 6683.88 14757.84 22172.84 7090.99 6844.99 11288.34 165
agg_prior85.64 6054.92 7583.61 15472.53 7588.10 175
test_prior456.39 4087.15 81
test_prior78.39 7286.35 5154.91 7685.45 9889.70 11990.55 85
新几何281.61 235
旧先验181.57 15947.48 25771.83 32388.66 12036.94 21778.34 10488.67 135
原ACMM283.77 175
test22279.36 19950.97 16777.99 28267.84 35042.54 34962.84 17986.53 16130.26 28576.91 11485.23 204
segment_acmp44.97 114
testdata177.55 28564.14 99
test1279.24 4486.89 4756.08 4585.16 11372.27 7947.15 8391.10 7985.93 3690.54 87
plane_prior777.95 22948.46 232
plane_prior678.42 22449.39 20636.04 232
plane_prior483.28 201
plane_prior348.95 21564.01 10262.15 187
plane_prior285.76 10863.60 111
plane_prior178.31 226
plane_prior49.57 19887.43 7064.57 9372.84 157
n20.00 415
nn0.00 415
door-mid41.31 387
test1184.25 138
door43.27 383
HQP5-MVS51.56 156
HQP-NCC79.02 20888.00 5565.45 8064.48 155
ACMP_Plane79.02 20888.00 5565.45 8064.48 155
HQP4-MVS64.47 15888.61 15384.91 210
HQP3-MVS83.68 15073.12 153
HQP2-MVS37.35 209
NP-MVS78.76 21350.43 17785.12 175
ACMMP++_ref63.20 242
ACMMP++59.38 267
Test By Simon39.38 183