This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
SED-MVS99.28 599.11 799.77 899.93 2499.30 1299.96 3598.43 13197.27 3499.80 1899.94 496.71 23100.00 1100.00 1100.00 1100.00 1
IU-MVS99.93 2499.31 1098.41 14897.71 1999.84 12100.00 1100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 3599.80 5197.44 13100.00 1100.00 199.98 32100.00 1
test_241102_TWO98.43 13197.27 3499.80 1899.94 497.18 20100.00 1100.00 1100.00 1100.00 1
PC_three_145296.96 4499.80 1899.79 5797.49 9100.00 199.99 599.98 32100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1299.93 2499.29 1599.95 5398.32 17297.28 3299.83 1399.91 1497.22 18100.00 199.99 5100.00 199.89 84
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND99.82 799.94 1399.47 799.95 5398.43 131100.00 199.99 5100.00 1100.00 1
DPE-MVScopyleft99.26 699.10 899.74 1199.89 4599.24 1999.87 10698.44 12397.48 2799.64 4399.94 496.68 2599.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSC_two_6792asdad99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 148100.00 199.96 9100.00 1100.00 1
patch_mono-298.24 5699.12 595.59 22699.67 7786.91 34599.95 5398.89 4997.60 2299.90 399.76 6596.54 2899.98 4399.94 1199.82 7799.88 85
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 1099.95 5398.43 13196.48 6199.80 1899.93 1197.44 13100.00 199.92 1299.98 32100.00 1
test_0728_THIRD96.48 6199.83 1399.91 1497.87 5100.00 199.92 12100.00 1100.00 1
DeepPCF-MVS95.94 297.71 8298.98 1293.92 28999.63 7981.76 37299.96 3598.56 9299.47 199.19 8499.99 194.16 84100.00 199.92 1299.93 60100.00 1
TSAR-MVS + GP.98.60 3098.51 2898.86 8299.73 7296.63 12299.97 2897.92 21998.07 1198.76 10499.55 11095.00 5799.94 7799.91 1597.68 16399.99 23
MM98.83 2198.53 2799.76 1099.59 8199.33 899.99 599.76 698.39 399.39 7399.80 5190.49 17199.96 6199.89 1699.43 11199.98 48
dcpmvs_297.42 9398.09 5495.42 23199.58 8587.24 34199.23 24496.95 31494.28 13198.93 9499.73 8094.39 7499.16 17699.89 1699.82 7799.86 89
MVS_030498.87 2098.61 2399.67 1699.18 10399.13 2299.87 10699.65 1298.17 898.75 10699.75 7192.76 12399.94 7799.88 1899.44 10999.94 74
fmvsm_l_conf0.5_n_a99.00 1498.91 1499.28 4599.21 10297.91 7699.98 1598.85 5698.25 499.92 299.75 7194.72 6499.97 5399.87 1999.64 8899.95 71
fmvsm_l_conf0.5_n98.94 1598.84 1799.25 4699.17 10697.81 7999.98 1598.86 5398.25 499.90 399.76 6594.21 8299.97 5399.87 1999.52 10099.98 48
APDe-MVScopyleft99.06 1198.91 1499.51 2999.94 1398.76 4599.91 8498.39 15597.20 3899.46 6499.85 3095.53 4499.79 12399.86 21100.00 199.99 23
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
SF-MVS98.67 2798.40 3299.50 3099.77 6598.67 4999.90 9198.21 18693.53 16199.81 1599.89 1994.70 6699.86 10799.84 2299.93 6099.96 64
9.1498.38 3499.87 5199.91 8498.33 17093.22 17199.78 2799.89 1994.57 6899.85 10899.84 2299.97 42
SD-MVS98.92 1798.70 1999.56 2599.70 7698.73 4699.94 6998.34 16996.38 6799.81 1599.76 6594.59 6799.98 4399.84 2299.96 4699.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
TSAR-MVS + MP.98.93 1698.77 1899.41 3899.74 6998.67 4999.77 14898.38 15996.73 5399.88 699.74 7894.89 6099.59 14999.80 2599.98 3299.97 58
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
PHI-MVS98.41 4598.21 4599.03 7099.86 5397.10 10899.98 1598.80 6290.78 26099.62 4799.78 6195.30 48100.00 199.80 2599.93 6099.99 23
test_prior299.95 5395.78 8199.73 3399.76 6596.00 3399.78 27100.00 1
CANet98.27 5297.82 6999.63 1799.72 7499.10 2399.98 1598.51 10797.00 4398.52 11599.71 8587.80 20099.95 6999.75 2899.38 11399.83 91
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1598.69 6898.20 799.93 199.98 296.82 22100.00 199.75 28100.00 199.99 23
SMA-MVScopyleft98.76 2498.48 2999.62 2099.87 5198.87 3399.86 11898.38 15993.19 17299.77 2899.94 495.54 42100.00 199.74 3099.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 2898.64 7698.47 299.13 8699.92 1396.38 30100.00 199.74 30100.00 1100.00 1
CHOSEN 280x42099.01 1399.03 1098.95 7899.38 9698.87 3398.46 31299.42 2297.03 4299.02 9099.09 14999.35 198.21 24399.73 3299.78 8099.77 101
test9_res99.71 3399.99 21100.00 1
ZD-MVS99.92 3198.57 5698.52 10492.34 21199.31 7799.83 4395.06 5399.80 12199.70 3499.97 42
train_agg98.88 1998.65 2099.59 2399.92 3198.92 2999.96 3598.43 13194.35 12599.71 3599.86 2695.94 3499.85 10899.69 3599.98 3299.99 23
test_fmvsmconf_n98.43 4398.32 4098.78 8498.12 18596.41 12999.99 598.83 5998.22 699.67 3999.64 10191.11 15899.94 7799.67 3699.62 9099.98 48
fmvsm_s_conf0.5_n97.80 7497.85 6897.67 15999.06 11194.41 20399.98 1598.97 4097.34 2999.63 4499.69 8987.27 20799.97 5399.62 3799.06 12898.62 222
test_fmvsm_n_192098.44 4198.61 2397.92 14399.27 10195.18 185100.00 198.90 4798.05 1299.80 1899.73 8092.64 12699.99 3699.58 3899.51 10398.59 223
NCCC99.37 299.25 299.71 1499.96 899.15 2199.97 2898.62 8198.02 1399.90 399.95 397.33 16100.00 199.54 39100.00 1100.00 1
MSLP-MVS++99.13 899.01 1199.49 3299.94 1398.46 6199.98 1598.86 5397.10 4099.80 1899.94 495.92 36100.00 199.51 40100.00 1100.00 1
test_fmvsmconf0.1_n97.74 7997.44 8198.64 9495.76 28796.20 14199.94 6998.05 20698.17 898.89 9699.42 12087.65 20299.90 9199.50 4199.60 9699.82 92
MSP-MVS99.09 999.12 598.98 7599.93 2497.24 10099.95 5398.42 14397.50 2699.52 6099.88 2197.43 1599.71 13899.50 4199.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
agg_prior299.48 43100.00 1100.00 1
fmvsm_s_conf0.5_n_a97.73 8197.72 7197.77 15398.63 14894.26 20899.96 3598.92 4697.18 3999.75 3099.69 8987.00 21299.97 5399.46 4498.89 13199.08 199
PAPM98.60 3098.42 3199.14 6196.05 27698.96 2699.90 9199.35 2596.68 5598.35 12499.66 9896.45 2998.51 21099.45 4599.89 6799.96 64
SteuartSystems-ACMMP99.02 1298.97 1399.18 5298.72 14297.71 8199.98 1598.44 12396.85 4699.80 1899.91 1497.57 799.85 10899.44 4699.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
APD-MVScopyleft98.62 2998.35 3999.41 3899.90 4298.51 5999.87 10698.36 16394.08 13999.74 3299.73 8094.08 8599.74 13499.42 4799.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_fmvsmvis_n_192097.67 8397.59 7897.91 14597.02 24595.34 17699.95 5398.45 11897.87 1597.02 16399.59 10689.64 18099.98 4399.41 4899.34 11698.42 226
PS-MVSNAJ98.44 4198.20 4699.16 5798.80 13898.92 2999.54 20398.17 19197.34 2999.85 999.85 3091.20 15499.89 9699.41 4899.67 8698.69 220
xiu_mvs_v2_base98.23 5797.97 5999.02 7298.69 14398.66 5199.52 20598.08 20397.05 4199.86 799.86 2690.65 16799.71 13899.39 5098.63 13998.69 220
HPM-MVS++copyleft99.07 1098.88 1699.63 1799.90 4299.02 2599.95 5398.56 9297.56 2599.44 6699.85 3095.38 47100.00 199.31 5199.99 2199.87 87
SR-MVS98.46 3998.30 4398.93 7999.88 4997.04 10999.84 12698.35 16594.92 10399.32 7699.80 5193.35 10399.78 12599.30 5299.95 4999.96 64
MVS_111021_HR98.72 2598.62 2299.01 7399.36 9797.18 10399.93 7699.90 196.81 5198.67 10999.77 6393.92 8999.89 9699.27 5399.94 5499.96 64
test_fmvsmconf0.01_n96.39 14295.74 15098.32 12091.47 36695.56 16799.84 12697.30 27797.74 1897.89 14099.35 13179.62 28099.85 10899.25 5499.24 12099.55 143
fmvsm_s_conf0.1_n97.30 9797.21 9197.60 16597.38 22994.40 20599.90 9198.64 7696.47 6399.51 6299.65 10084.99 23499.93 8599.22 5599.09 12798.46 224
mvsany_test197.82 7297.90 6697.55 16698.77 14093.04 24199.80 14297.93 21696.95 4599.61 5399.68 9590.92 16299.83 11899.18 5698.29 14999.80 96
MVS_111021_LR98.42 4498.38 3498.53 10799.39 9595.79 15499.87 10699.86 296.70 5498.78 10199.79 5792.03 14499.90 9199.17 5799.86 7199.88 85
PVSNet_BlendedMVS96.05 15495.82 14996.72 19899.59 8196.99 11199.95 5399.10 3194.06 14298.27 12795.80 29389.00 19299.95 6999.12 5887.53 28693.24 344
PVSNet_Blended97.94 6497.64 7498.83 8399.59 8196.99 111100.00 199.10 3195.38 9298.27 12799.08 15089.00 19299.95 6999.12 5899.25 11999.57 141
xiu_mvs_v1_base_debu97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
xiu_mvs_v1_base_debi97.43 8997.06 9598.55 10297.74 20598.14 6499.31 23497.86 22596.43 6499.62 4799.69 8985.56 22699.68 14299.05 6098.31 14697.83 236
fmvsm_s_conf0.1_n_a97.09 10896.90 10397.63 16395.65 29694.21 21099.83 13398.50 11296.27 7299.65 4199.64 10184.72 23599.93 8599.04 6398.84 13498.74 217
CP-MVS98.45 4098.32 4098.87 8199.96 896.62 12399.97 2898.39 15594.43 12098.90 9599.87 2494.30 78100.00 199.04 6399.99 2199.99 23
DeepC-MVS_fast96.59 198.81 2398.54 2699.62 2099.90 4298.85 3599.24 24398.47 11598.14 1099.08 8799.91 1493.09 113100.00 199.04 6399.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
ETV-MVS97.92 6697.80 7098.25 12398.14 18396.48 12699.98 1597.63 23895.61 8699.29 8099.46 11892.55 13098.82 18999.02 6698.54 14099.46 159
VDD-MVS93.77 21792.94 22596.27 21298.55 15490.22 30598.77 29497.79 23090.85 25696.82 16999.42 12061.18 37999.77 12898.95 6794.13 23198.82 212
APD-MVS_3200maxsize98.25 5598.08 5598.78 8499.81 6096.60 12499.82 13698.30 17793.95 14899.37 7499.77 6392.84 12099.76 13198.95 6799.92 6399.97 58
VNet97.21 10296.57 11899.13 6598.97 11997.82 7899.03 26799.21 2994.31 12899.18 8598.88 17686.26 22299.89 9698.93 6994.32 22899.69 112
iter_conf05_1196.12 15195.46 15798.10 13198.62 14995.52 169100.00 196.30 35096.54 6099.81 1599.80 5169.19 34899.10 17898.92 7099.91 6699.68 113
bld_raw_dy_0_6494.22 20792.97 22497.98 13898.62 14995.09 18899.89 9993.09 39196.55 5992.59 23499.80 5168.57 35299.19 17398.92 7088.69 26699.68 113
XVS98.70 2698.55 2599.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6999.78 6194.34 7699.96 6198.92 7099.95 4999.99 23
X-MVStestdata93.83 21392.06 24699.15 5999.94 1397.50 9299.94 6998.42 14396.22 7399.41 6941.37 40994.34 7699.96 6198.92 7099.95 4999.99 23
MP-MVS-pluss98.07 6297.64 7499.38 4299.74 6998.41 6299.74 15998.18 19093.35 16696.45 17899.85 3092.64 12699.97 5398.91 7499.89 6799.77 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
SR-MVS-dyc-post98.31 4998.17 4898.71 8899.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7193.28 10899.78 12598.90 7599.92 6399.97 58
RE-MVS-def98.13 5199.79 6296.37 13399.76 15398.31 17494.43 12099.40 7199.75 7192.95 11798.90 7599.92 6399.97 58
HPM-MVScopyleft97.96 6397.72 7198.68 9099.84 5696.39 13299.90 9198.17 19192.61 19698.62 11299.57 10991.87 14799.67 14598.87 7799.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MP-MVScopyleft98.23 5797.97 5999.03 7099.94 1397.17 10699.95 5398.39 15594.70 11198.26 12999.81 5091.84 148100.00 198.85 7899.97 4299.93 76
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_vis1_n_192095.44 17295.31 16395.82 22298.50 15988.74 32499.98 1597.30 27797.84 1699.85 999.19 14466.82 36099.97 5398.82 7999.46 10798.76 215
test_yl97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
DCV-MVSNet97.83 7097.37 8499.21 4999.18 10397.98 7299.64 18799.27 2791.43 23997.88 14198.99 15995.84 3899.84 11698.82 7995.32 21699.79 97
PVSNet_088.03 1991.80 26490.27 27796.38 21098.27 17390.46 30099.94 6999.61 1493.99 14586.26 33397.39 24671.13 34299.89 9698.77 8267.05 38798.79 214
EC-MVSNet97.38 9697.24 8997.80 14897.41 22795.64 16499.99 597.06 30394.59 11499.63 4499.32 13289.20 19098.14 24698.76 8399.23 12199.62 128
CS-MVS-test97.88 6797.94 6397.70 15899.28 10095.20 18499.98 1597.15 29395.53 8999.62 4799.79 5792.08 14398.38 22698.75 8499.28 11899.52 151
MG-MVS98.91 1898.65 2099.68 1599.94 1399.07 2499.64 18799.44 2097.33 3199.00 9199.72 8394.03 8799.98 4398.73 85100.00 1100.00 1
HFP-MVS98.56 3298.37 3699.14 6199.96 897.43 9699.95 5398.61 8294.77 10799.31 7799.85 3094.22 80100.00 198.70 8699.98 3299.98 48
ACMMPR98.50 3698.32 4099.05 6899.96 897.18 10399.95 5398.60 8494.77 10799.31 7799.84 4193.73 96100.00 198.70 8699.98 3299.98 48
MTAPA98.29 5197.96 6299.30 4499.85 5497.93 7599.39 22498.28 17995.76 8297.18 15999.88 2192.74 124100.00 198.67 8899.88 6999.99 23
region2R98.54 3398.37 3699.05 6899.96 897.18 10399.96 3598.55 9894.87 10599.45 6599.85 3094.07 86100.00 198.67 88100.00 199.98 48
ACMMP_NAP98.49 3798.14 5099.54 2799.66 7898.62 5599.85 12198.37 16294.68 11299.53 5899.83 4392.87 119100.00 198.66 9099.84 7299.99 23
test_vis1_n93.61 22393.03 22395.35 23395.86 28286.94 34399.87 10696.36 34896.85 4699.54 5798.79 18652.41 38999.83 11898.64 9198.97 13099.29 182
mPP-MVS98.39 4798.20 4698.97 7699.97 396.92 11499.95 5398.38 15995.04 9998.61 11399.80 5193.39 101100.00 198.64 91100.00 199.98 48
DELS-MVS98.54 3398.22 4499.50 3099.15 10898.65 53100.00 198.58 8797.70 2098.21 13199.24 14192.58 12999.94 7798.63 9399.94 5499.92 81
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
alignmvs97.81 7397.33 8699.25 4698.77 14098.66 5199.99 598.44 12394.40 12498.41 12099.47 11693.65 9899.42 16498.57 9494.26 23099.67 117
CDPH-MVS98.65 2898.36 3899.49 3299.94 1398.73 4699.87 10698.33 17093.97 14699.76 2999.87 2494.99 5899.75 13298.55 95100.00 199.98 48
EI-MVSNet-Vis-set98.27 5298.11 5398.75 8799.83 5796.59 12599.40 22098.51 10795.29 9598.51 11699.76 6593.60 10099.71 13898.53 9699.52 10099.95 71
sasdasda97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
canonicalmvs97.09 10896.32 12499.39 4098.93 12398.95 2799.72 16797.35 27094.45 11797.88 14199.42 12086.71 21499.52 15198.48 9793.97 23499.72 107
API-MVS97.86 6897.66 7398.47 11099.52 8895.41 17499.47 21498.87 5291.68 23098.84 9799.85 3092.34 13799.99 3698.44 9999.96 46100.00 1
lupinMVS97.85 6997.60 7698.62 9597.28 23897.70 8399.99 597.55 24995.50 9199.43 6799.67 9690.92 16298.71 19998.40 10099.62 9099.45 161
MGCFI-Net97.00 11396.22 12899.34 4398.86 13498.80 3999.67 17997.30 27794.31 12897.77 14599.41 12486.36 22099.50 15598.38 10193.90 23699.72 107
CS-MVS97.79 7697.91 6597.43 17399.10 10994.42 20299.99 597.10 29895.07 9899.68 3899.75 7192.95 11798.34 23098.38 10199.14 12499.54 147
EI-MVSNet-UG-set98.14 5997.99 5898.60 9799.80 6196.27 13599.36 22998.50 11295.21 9798.30 12699.75 7193.29 10799.73 13798.37 10399.30 11799.81 94
diffmvspermissive97.00 11396.64 11498.09 13397.64 21696.17 14499.81 13897.19 28794.67 11398.95 9299.28 13386.43 21898.76 19498.37 10397.42 16999.33 176
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CPTT-MVS97.64 8497.32 8798.58 10099.97 395.77 15599.96 3598.35 16589.90 27498.36 12399.79 5791.18 15799.99 3698.37 10399.99 2199.99 23
test_fmvs195.35 17495.68 15494.36 27498.99 11784.98 35499.96 3596.65 33897.60 2299.73 3398.96 16571.58 33899.93 8598.31 10699.37 11498.17 230
ZNCC-MVS98.31 4998.03 5699.17 5599.88 4997.59 8699.94 6998.44 12394.31 12898.50 11799.82 4693.06 11499.99 3698.30 10799.99 2199.93 76
test_fmvs1_n94.25 20694.36 18693.92 28997.68 21383.70 36099.90 9196.57 34197.40 2899.67 3998.88 17661.82 37699.92 8898.23 10899.13 12598.14 233
DP-MVS Recon98.41 4598.02 5799.56 2599.97 398.70 4899.92 7998.44 12392.06 21998.40 12299.84 4195.68 40100.00 198.19 10999.71 8499.97 58
GG-mvs-BLEND98.54 10598.21 17798.01 7093.87 38198.52 10497.92 13897.92 23399.02 297.94 26098.17 11099.58 9799.67 117
GST-MVS98.27 5297.97 5999.17 5599.92 3197.57 8799.93 7698.39 15594.04 14498.80 10099.74 7892.98 116100.00 198.16 11199.76 8199.93 76
CSCG97.10 10697.04 9897.27 18399.89 4591.92 26799.90 9199.07 3488.67 29795.26 20399.82 4693.17 11299.98 4398.15 11299.47 10599.90 83
MAR-MVS97.43 8997.19 9298.15 12999.47 9294.79 19699.05 26498.76 6392.65 19498.66 11099.82 4688.52 19799.98 4398.12 11399.63 8999.67 117
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR98.52 3598.16 4999.58 2499.97 398.77 4299.95 5398.43 13195.35 9398.03 13599.75 7194.03 8799.98 4398.11 11499.83 7399.99 23
CLD-MVS94.06 21093.90 19994.55 26396.02 27790.69 29399.98 1597.72 23296.62 5891.05 25398.85 18477.21 29798.47 21198.11 11489.51 25694.48 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
VDDNet93.12 23491.91 24996.76 19696.67 26692.65 25298.69 30198.21 18682.81 36197.75 14699.28 13361.57 37799.48 16198.09 11694.09 23298.15 231
HY-MVS92.50 797.79 7697.17 9499.63 1798.98 11899.32 997.49 34199.52 1595.69 8498.32 12597.41 24493.32 10599.77 12898.08 11795.75 20799.81 94
EIA-MVS97.53 8697.46 8097.76 15598.04 18894.84 19399.98 1597.61 24394.41 12397.90 13999.59 10692.40 13598.87 18698.04 11899.13 12599.59 134
LFMVS94.75 18893.56 20998.30 12199.03 11395.70 16098.74 29597.98 21187.81 31198.47 11899.39 12767.43 35899.53 15098.01 11995.20 21999.67 117
AdaColmapbinary97.23 10196.80 10898.51 10899.99 195.60 16699.09 25398.84 5893.32 16896.74 17199.72 8386.04 223100.00 198.01 11999.43 11199.94 74
EPNet98.49 3798.40 3298.77 8699.62 8096.80 11999.90 9199.51 1797.60 2299.20 8299.36 13093.71 9799.91 8997.99 12198.71 13899.61 131
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
ACMMPcopyleft97.74 7997.44 8198.66 9299.92 3196.13 14599.18 24899.45 1994.84 10696.41 18199.71 8591.40 15199.99 3697.99 12198.03 15899.87 87
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
WTY-MVS98.10 6197.60 7699.60 2298.92 12699.28 1799.89 9999.52 1595.58 8798.24 13099.39 12793.33 10499.74 13497.98 12395.58 21099.78 100
jason97.24 10096.86 10598.38 11895.73 29097.32 9999.97 2897.40 26795.34 9498.60 11499.54 11287.70 20198.56 20797.94 12499.47 10599.25 186
jason: jason.
BP-MVS97.92 125
HQP-MVS94.61 19394.50 18494.92 24895.78 28391.85 26899.87 10697.89 22196.82 4893.37 22398.65 19680.65 27198.39 22297.92 12589.60 25194.53 262
SDMVSNet94.80 18493.96 19797.33 18198.92 12695.42 17399.59 19398.99 3792.41 20892.55 23697.85 23475.81 31598.93 18597.90 12791.62 24797.64 241
casdiffmvs_mvgpermissive96.43 13995.94 14397.89 14797.44 22695.47 17099.86 11897.29 28093.35 16696.03 18899.19 14485.39 22998.72 19897.89 12897.04 17899.49 157
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
testing1197.48 8897.27 8898.10 13198.36 16596.02 14899.92 7998.45 11893.45 16598.15 13398.70 19195.48 4599.22 16797.85 12995.05 22099.07 200
h-mvs3394.92 18294.36 18696.59 20298.85 13591.29 28398.93 27698.94 4195.90 7898.77 10298.42 21790.89 16599.77 12897.80 13070.76 37698.72 219
hse-mvs294.38 20094.08 19495.31 23698.27 17390.02 31099.29 23998.56 9295.90 7898.77 10298.00 22890.89 16598.26 24197.80 13069.20 38297.64 241
131496.84 12095.96 14099.48 3496.74 26398.52 5898.31 32098.86 5395.82 8089.91 26598.98 16187.49 20499.96 6197.80 13099.73 8399.96 64
HQP_MVS94.49 19794.36 18694.87 24995.71 29391.74 27299.84 12697.87 22396.38 6793.01 22798.59 20180.47 27598.37 22897.79 13389.55 25494.52 264
plane_prior597.87 22398.37 22897.79 13389.55 25494.52 264
gg-mvs-nofinetune93.51 22591.86 25198.47 11097.72 21097.96 7492.62 38598.51 10774.70 38797.33 15569.59 40098.91 397.79 26497.77 13599.56 9899.67 117
casdiffmvspermissive96.42 14195.97 13997.77 15397.30 23694.98 18999.84 12697.09 30093.75 15696.58 17599.26 13985.07 23298.78 19297.77 13597.04 17899.54 147
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS98.34 4898.13 5198.99 7499.92 3197.00 11099.75 15699.50 1893.90 15199.37 7499.76 6593.24 110100.00 197.75 13799.96 4699.98 48
test_cas_vis1_n_192096.59 13496.23 12797.65 16098.22 17694.23 20999.99 597.25 28497.77 1799.58 5499.08 15077.10 29899.97 5397.64 13899.45 10898.74 217
DeepC-MVS94.51 496.92 11896.40 12398.45 11299.16 10795.90 15199.66 18198.06 20496.37 7094.37 21299.49 11583.29 24899.90 9197.63 13999.61 9499.55 143
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
HPM-MVS_fast97.80 7497.50 7998.68 9099.79 6296.42 12899.88 10398.16 19591.75 22998.94 9399.54 11291.82 14999.65 14797.62 14099.99 2199.99 23
baseline96.43 13995.98 13697.76 15597.34 23295.17 18699.51 20797.17 29093.92 15096.90 16699.28 13385.37 23098.64 20497.50 14196.86 18499.46 159
PLCcopyleft95.54 397.93 6597.89 6798.05 13699.82 5894.77 19799.92 7998.46 11793.93 14997.20 15899.27 13695.44 4699.97 5397.41 14299.51 10399.41 166
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MVS96.60 13395.56 15699.72 1396.85 25699.22 2098.31 32098.94 4191.57 23290.90 25499.61 10586.66 21699.96 6197.36 14399.88 6999.99 23
XVG-OURS-SEG-HR94.79 18594.70 18295.08 24298.05 18789.19 31999.08 25597.54 25193.66 15894.87 20699.58 10878.78 28999.79 12397.31 14493.40 24096.25 254
3Dnovator91.47 1296.28 14995.34 16299.08 6796.82 25897.47 9599.45 21798.81 6095.52 9089.39 27999.00 15881.97 25499.95 6997.27 14599.83 7399.84 90
iter_conf0596.07 15395.95 14296.44 20798.43 16297.52 8999.91 8496.85 32594.16 13592.49 23897.98 23198.20 497.34 27997.26 14688.29 27494.45 272
cascas94.64 19293.61 20497.74 15797.82 20096.26 13699.96 3597.78 23185.76 33694.00 21897.54 24176.95 30299.21 16897.23 14795.43 21397.76 240
LCM-MVSNet-Re92.31 25392.60 23491.43 33297.53 22179.27 38299.02 26891.83 39692.07 21780.31 36294.38 34983.50 24695.48 35497.22 14897.58 16599.54 147
CNLPA97.76 7897.38 8398.92 8099.53 8796.84 11699.87 10698.14 19993.78 15496.55 17699.69 8992.28 13899.98 4397.13 14999.44 10999.93 76
Effi-MVS+96.30 14795.69 15298.16 12697.85 19896.26 13697.41 34397.21 28690.37 26698.65 11198.58 20486.61 21798.70 20097.11 15097.37 17199.52 151
PVSNet_Blended_VisFu97.27 9996.81 10798.66 9298.81 13796.67 12199.92 7998.64 7694.51 11696.38 18298.49 21089.05 19199.88 10297.10 15198.34 14499.43 164
3Dnovator+91.53 1196.31 14695.24 16599.52 2896.88 25598.64 5499.72 16798.24 18395.27 9688.42 30498.98 16182.76 25099.94 7797.10 15199.83 7399.96 64
testing9997.17 10396.91 10297.95 14098.35 16795.70 16099.91 8498.43 13192.94 17897.36 15498.72 18994.83 6199.21 16897.00 15394.64 22298.95 205
PAPM_NR98.12 6097.93 6498.70 8999.94 1396.13 14599.82 13698.43 13194.56 11597.52 14999.70 8794.40 7199.98 4397.00 15399.98 3299.99 23
testing9197.16 10496.90 10397.97 13998.35 16795.67 16399.91 8498.42 14392.91 18097.33 15598.72 18994.81 6299.21 16896.98 15594.63 22399.03 202
CHOSEN 1792x268896.81 12196.53 11997.64 16198.91 13093.07 23899.65 18399.80 395.64 8595.39 20098.86 18184.35 24199.90 9196.98 15599.16 12399.95 71
旧先验299.46 21694.21 13499.85 999.95 6996.96 157
PMMVS96.76 12596.76 10996.76 19698.28 17292.10 26299.91 8497.98 21194.12 13799.53 5899.39 12786.93 21398.73 19696.95 15897.73 16199.45 161
EPP-MVSNet96.69 13096.60 11696.96 19097.74 20593.05 24099.37 22798.56 9288.75 29595.83 19499.01 15696.01 3298.56 20796.92 15997.20 17499.25 186
ET-MVSNet_ETH3D94.37 20193.28 21997.64 16198.30 16997.99 7199.99 597.61 24394.35 12571.57 38799.45 11996.23 3195.34 35796.91 16085.14 30299.59 134
HyFIR lowres test96.66 13296.43 12297.36 17999.05 11293.91 21999.70 17499.80 390.54 26396.26 18498.08 22592.15 14198.23 24296.84 16195.46 21199.93 76
OMC-MVS97.28 9897.23 9097.41 17499.76 6693.36 23699.65 18397.95 21496.03 7797.41 15399.70 8789.61 18199.51 15396.73 16298.25 15099.38 168
mvsmamba94.10 20893.72 20395.25 23893.57 32994.13 21299.67 17996.45 34693.63 16091.34 24997.77 23786.29 22197.22 28996.65 16388.10 27894.40 274
CostFormer96.10 15295.88 14796.78 19597.03 24492.55 25497.08 35197.83 22890.04 27398.72 10794.89 33595.01 5698.29 23596.54 16495.77 20599.50 155
sss97.57 8597.03 9999.18 5298.37 16498.04 6999.73 16499.38 2393.46 16398.76 10499.06 15291.21 15399.89 9696.33 16597.01 18099.62 128
114514_t97.41 9496.83 10699.14 6199.51 9097.83 7799.89 9998.27 18188.48 30199.06 8899.66 9890.30 17399.64 14896.32 16699.97 4299.96 64
test_vis1_rt86.87 32786.05 32989.34 34896.12 27378.07 38399.87 10683.54 40792.03 22078.21 37289.51 37845.80 39399.91 8996.25 16793.11 24490.03 377
ACMP92.05 992.74 24392.42 24193.73 29595.91 28188.72 32599.81 13897.53 25394.13 13687.00 32198.23 22174.07 32998.47 21196.22 16888.86 26393.99 313
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
IB-MVS92.85 694.99 18193.94 19898.16 12697.72 21095.69 16299.99 598.81 6094.28 13192.70 23396.90 26195.08 5299.17 17596.07 16973.88 37199.60 133
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
XVG-OURS94.82 18394.74 18195.06 24398.00 18989.19 31999.08 25597.55 24994.10 13894.71 20799.62 10480.51 27399.74 13496.04 17093.06 24596.25 254
ab-mvs94.69 18993.42 21398.51 10898.07 18696.26 13696.49 36098.68 7090.31 26894.54 20897.00 25976.30 31099.71 13895.98 17193.38 24199.56 142
mvs_anonymous95.65 16895.03 17397.53 16798.19 17995.74 15799.33 23197.49 25890.87 25590.47 25897.10 25388.23 19897.16 29195.92 17297.66 16499.68 113
nrg03093.51 22592.53 23896.45 20594.36 31697.20 10299.81 13897.16 29291.60 23189.86 26797.46 24286.37 21997.68 26895.88 17380.31 34194.46 267
testing22297.08 11196.75 11098.06 13598.56 15196.82 11799.85 12198.61 8292.53 20298.84 9798.84 18593.36 10298.30 23495.84 17494.30 22999.05 201
LPG-MVS_test92.96 23792.71 23293.71 29795.43 30088.67 32699.75 15697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
LGP-MVS_train93.71 29795.43 30088.67 32697.62 24092.81 18490.05 26098.49 21075.24 31998.40 22095.84 17489.12 25894.07 305
ETVMVS97.03 11296.64 11498.20 12598.67 14597.12 10799.89 9998.57 8991.10 25098.17 13298.59 20193.86 9398.19 24495.64 17795.24 21899.28 183
VPA-MVSNet92.70 24491.55 25696.16 21495.09 30496.20 14198.88 28199.00 3691.02 25391.82 24495.29 32276.05 31497.96 25795.62 17881.19 32994.30 283
ECVR-MVScopyleft95.66 16795.05 17297.51 16998.66 14693.71 22398.85 28798.45 11894.93 10196.86 16798.96 16575.22 32199.20 17195.34 17998.15 15199.64 123
F-COLMAP96.93 11796.95 10196.87 19399.71 7591.74 27299.85 12197.95 21493.11 17595.72 19699.16 14792.35 13699.94 7795.32 18099.35 11598.92 206
BH-w/o95.71 16495.38 16196.68 19998.49 16092.28 25899.84 12697.50 25792.12 21692.06 24398.79 18684.69 23698.67 20395.29 18199.66 8799.09 197
原ACMM198.96 7799.73 7296.99 11198.51 10794.06 14299.62 4799.85 3094.97 5999.96 6195.11 18299.95 4999.92 81
RRT_MVS93.14 23392.92 22693.78 29493.31 33690.04 30999.66 18197.69 23492.53 20288.91 29397.76 23884.36 23996.93 30995.10 18386.99 28994.37 277
Anonymous20240521193.10 23591.99 24796.40 20899.10 10989.65 31698.88 28197.93 21683.71 35594.00 21898.75 18868.79 34999.88 10295.08 18491.71 24699.68 113
test111195.57 16994.98 17597.37 17798.56 15193.37 23598.86 28598.45 11894.95 10096.63 17398.95 17075.21 32299.11 17795.02 18598.14 15399.64 123
testdata98.42 11599.47 9295.33 17798.56 9293.78 15499.79 2699.85 3093.64 9999.94 7794.97 18699.94 54100.00 1
test250697.53 8697.19 9298.58 10098.66 14696.90 11598.81 29099.77 594.93 10197.95 13798.96 16592.51 13199.20 17194.93 18798.15 15199.64 123
gm-plane-assit96.97 24893.76 22291.47 23798.96 16598.79 19194.92 188
PVSNet91.05 1397.13 10596.69 11398.45 11299.52 8895.81 15399.95 5399.65 1294.73 10999.04 8999.21 14384.48 23899.95 6994.92 18898.74 13799.58 140
tpmrst96.27 15095.98 13697.13 18597.96 19193.15 23796.34 36398.17 19192.07 21798.71 10895.12 32693.91 9098.73 19694.91 19096.62 18599.50 155
VPNet91.81 26190.46 27195.85 22194.74 31095.54 16898.98 27098.59 8692.14 21590.77 25697.44 24368.73 35197.54 27394.89 19177.89 35494.46 267
baseline296.71 12996.49 12097.37 17795.63 29895.96 15099.74 15998.88 5192.94 17891.61 24598.97 16397.72 698.62 20594.83 19298.08 15797.53 246
Effi-MVS+-dtu94.53 19695.30 16492.22 32597.77 20382.54 36599.59 19397.06 30394.92 10395.29 20295.37 31685.81 22497.89 26194.80 19397.07 17696.23 256
MVSTER95.53 17095.22 16696.45 20598.56 15197.72 8099.91 8497.67 23692.38 21091.39 24797.14 25197.24 1797.30 28394.80 19387.85 28194.34 282
thisisatest051597.41 9497.02 10098.59 9997.71 21297.52 8999.97 2898.54 10191.83 22597.45 15299.04 15397.50 899.10 17894.75 19596.37 19299.16 191
mvs_tets91.81 26191.08 26394.00 28691.63 36490.58 29798.67 30397.43 26292.43 20787.37 31897.05 25771.76 33697.32 28294.75 19588.68 26794.11 303
Anonymous2024052992.10 25790.65 26896.47 20398.82 13690.61 29698.72 29798.67 7375.54 38493.90 22098.58 20466.23 36299.90 9194.70 19790.67 24998.90 209
MVSFormer96.94 11696.60 11697.95 14097.28 23897.70 8399.55 20197.27 28291.17 24699.43 6799.54 11290.92 16296.89 31194.67 19899.62 9099.25 186
test_djsdf92.83 24192.29 24294.47 26891.90 36092.46 25599.55 20197.27 28291.17 24689.96 26396.07 29081.10 26496.89 31194.67 19888.91 26094.05 307
UGNet95.33 17594.57 18397.62 16498.55 15494.85 19298.67 30399.32 2695.75 8396.80 17096.27 28272.18 33599.96 6194.58 20099.05 12998.04 234
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
jajsoiax91.92 25991.18 26294.15 27891.35 36790.95 28999.00 26997.42 26492.61 19687.38 31797.08 25472.46 33497.36 27794.53 20188.77 26494.13 302
MVS_Test96.46 13895.74 15098.61 9698.18 18097.23 10199.31 23497.15 29391.07 25198.84 9797.05 25788.17 19998.97 18294.39 20297.50 16699.61 131
PS-MVSNAJss93.64 22293.31 21894.61 25892.11 35792.19 26099.12 25197.38 26892.51 20588.45 29996.99 26091.20 15497.29 28694.36 20387.71 28394.36 278
无先验99.49 21198.71 6693.46 163100.00 194.36 20399.99 23
MDTV_nov1_ep13_2view96.26 13696.11 36891.89 22398.06 13494.40 7194.30 20599.67 117
thres20096.96 11596.21 12999.22 4898.97 11998.84 3699.85 12199.71 793.17 17396.26 18498.88 17689.87 17899.51 15394.26 20694.91 22199.31 178
BH-untuned95.18 17694.83 17896.22 21398.36 16591.22 28499.80 14297.32 27590.91 25491.08 25198.67 19383.51 24598.54 20994.23 20799.61 9498.92 206
FIs94.10 20893.43 21296.11 21594.70 31196.82 11799.58 19598.93 4592.54 20189.34 28197.31 24787.62 20397.10 29794.22 20886.58 29194.40 274
tpm295.47 17195.18 16896.35 21196.91 25191.70 27696.96 35497.93 21688.04 30898.44 11995.40 31293.32 10597.97 25594.00 20995.61 20999.38 168
sd_testset93.55 22492.83 22895.74 22498.92 12690.89 29198.24 32398.85 5692.41 20892.55 23697.85 23471.07 34398.68 20293.93 21091.62 24797.64 241
dmvs_re93.20 23193.15 22193.34 30696.54 26783.81 35998.71 29898.51 10791.39 24392.37 23998.56 20678.66 29197.83 26393.89 21189.74 25098.38 227
OpenMVScopyleft90.15 1594.77 18793.59 20798.33 11996.07 27597.48 9499.56 19998.57 8990.46 26486.51 32798.95 17078.57 29299.94 7793.86 21299.74 8297.57 245
thres100view90096.74 12795.92 14599.18 5298.90 13198.77 4299.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.84 21394.57 22499.27 184
tfpn200view996.79 12295.99 13499.19 5198.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.27 184
thres40096.78 12495.99 13499.16 5798.94 12198.82 3799.78 14599.71 792.86 18196.02 18998.87 17989.33 18599.50 15593.84 21394.57 22499.16 191
DPM-MVS98.83 2198.46 3099.97 199.33 9899.92 199.96 3598.44 12397.96 1499.55 5599.94 497.18 20100.00 193.81 21699.94 5499.98 48
CDS-MVSNet96.34 14496.07 13197.13 18597.37 23094.96 19099.53 20497.91 22091.55 23395.37 20198.32 22095.05 5497.13 29493.80 21795.75 20799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
baseline195.78 16194.86 17798.54 10598.47 16198.07 6799.06 26097.99 20992.68 19294.13 21798.62 20093.28 10898.69 20193.79 21885.76 29598.84 211
OPM-MVS93.21 23092.80 22994.44 27093.12 34090.85 29299.77 14897.61 24396.19 7591.56 24698.65 19675.16 32398.47 21193.78 21989.39 25793.99 313
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
TAMVS95.85 15995.58 15596.65 20197.07 24293.50 23099.17 24997.82 22991.39 24395.02 20598.01 22792.20 13997.30 28393.75 22095.83 20499.14 194
thisisatest053097.10 10696.72 11198.22 12497.60 21896.70 12099.92 7998.54 10191.11 24997.07 16298.97 16397.47 1199.03 18093.73 22196.09 19598.92 206
IS-MVSNet96.29 14895.90 14697.45 17198.13 18494.80 19599.08 25597.61 24392.02 22195.54 19998.96 16590.64 16898.08 24993.73 22197.41 17099.47 158
ACMM91.95 1092.88 24092.52 23993.98 28895.75 28989.08 32299.77 14897.52 25593.00 17689.95 26497.99 23076.17 31298.46 21493.63 22388.87 26294.39 276
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Vis-MVSNet (Re-imp)96.32 14595.98 13697.35 18097.93 19394.82 19499.47 21498.15 19891.83 22595.09 20499.11 14891.37 15297.47 27593.47 22497.43 16799.74 104
thres600view796.69 13095.87 14899.14 6198.90 13198.78 4199.74 15999.71 792.59 19895.84 19298.86 18189.25 18799.50 15593.44 22594.50 22799.16 191
Vis-MVSNetpermissive95.72 16295.15 16997.45 17197.62 21794.28 20799.28 24098.24 18394.27 13396.84 16898.94 17279.39 28298.76 19493.25 22698.49 14199.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
FC-MVSNet-test93.81 21593.15 22195.80 22394.30 31896.20 14199.42 21998.89 4992.33 21289.03 29197.27 24987.39 20696.83 31593.20 22786.48 29294.36 278
UniMVSNet_NR-MVSNet92.95 23892.11 24495.49 22794.61 31395.28 17999.83 13399.08 3391.49 23489.21 28696.86 26487.14 20996.73 31993.20 22777.52 35794.46 267
DU-MVS92.46 25091.45 25995.49 22794.05 32195.28 17999.81 13898.74 6492.25 21489.21 28696.64 27281.66 25796.73 31993.20 22777.52 35794.46 267
WR-MVS92.31 25391.25 26195.48 23094.45 31595.29 17899.60 19298.68 7090.10 27088.07 30796.89 26280.68 27096.80 31793.14 23079.67 34594.36 278
UniMVSNet (Re)93.07 23692.13 24395.88 21994.84 30896.24 14099.88 10398.98 3892.49 20689.25 28395.40 31287.09 21097.14 29393.13 23178.16 35294.26 285
QAPM95.40 17394.17 19299.10 6696.92 25097.71 8199.40 22098.68 7089.31 28088.94 29298.89 17582.48 25199.96 6193.12 23299.83 7399.62 128
tttt051796.85 11996.49 12097.92 14397.48 22595.89 15299.85 12198.54 10190.72 26196.63 17398.93 17497.47 1199.02 18193.03 23395.76 20698.85 210
test_fmvs289.47 31189.70 28888.77 35594.54 31475.74 38499.83 13394.70 37994.71 11091.08 25196.82 26954.46 38697.78 26692.87 23488.27 27592.80 352
TR-MVS94.54 19493.56 20997.49 17097.96 19194.34 20698.71 29897.51 25690.30 26994.51 21098.69 19275.56 31698.77 19392.82 23595.99 19799.35 173
CANet_DTU96.76 12596.15 13098.60 9798.78 13997.53 8899.84 12697.63 23897.25 3799.20 8299.64 10181.36 26199.98 4392.77 23698.89 13198.28 229
AUN-MVS93.28 22992.60 23495.34 23498.29 17090.09 30899.31 23498.56 9291.80 22896.35 18398.00 22889.38 18498.28 23792.46 23769.22 38197.64 241
anonymousdsp91.79 26690.92 26594.41 27390.76 37292.93 24398.93 27697.17 29089.08 28287.46 31695.30 31978.43 29596.92 31092.38 23888.73 26593.39 340
XVG-ACMP-BASELINE91.22 27590.75 26692.63 32293.73 32785.61 34998.52 31197.44 26192.77 18789.90 26696.85 26566.64 36198.39 22292.29 23988.61 26893.89 321
miper_enhance_ethall94.36 20393.98 19695.49 22798.68 14495.24 18199.73 16497.29 28093.28 17089.86 26795.97 29194.37 7597.05 30092.20 24084.45 30794.19 291
FA-MVS(test-final)95.86 15895.09 17198.15 12997.74 20595.62 16596.31 36498.17 19191.42 24196.26 18496.13 28790.56 16999.47 16292.18 24197.07 17699.35 173
UWE-MVS96.79 12296.72 11197.00 18898.51 15893.70 22499.71 17098.60 8492.96 17797.09 16098.34 21996.67 2798.85 18892.11 24296.50 18898.44 225
RPSCF91.80 26492.79 23088.83 35298.15 18269.87 39098.11 33096.60 34083.93 35394.33 21399.27 13679.60 28199.46 16391.99 24393.16 24397.18 248
cl2293.77 21793.25 22095.33 23599.49 9194.43 20199.61 19198.09 20190.38 26589.16 28995.61 30090.56 16997.34 27991.93 24484.45 30794.21 290
1112_ss96.01 15695.20 16798.42 11597.80 20196.41 12999.65 18396.66 33792.71 18992.88 23199.40 12592.16 14099.30 16591.92 24593.66 23799.55 143
Test_1112_low_res95.72 16294.83 17898.42 11597.79 20296.41 12999.65 18396.65 33892.70 19092.86 23296.13 28792.15 14199.30 16591.88 24693.64 23899.55 143
tmp_tt65.23 36862.94 37172.13 38344.90 41250.03 40881.05 39989.42 40338.45 40248.51 40499.90 1854.09 38778.70 40491.84 24718.26 40687.64 388
XXY-MVS91.82 26090.46 27195.88 21993.91 32495.40 17598.87 28497.69 23488.63 29987.87 30997.08 25474.38 32897.89 26191.66 24884.07 31194.35 281
D2MVS92.76 24292.59 23793.27 30995.13 30389.54 31899.69 17599.38 2392.26 21387.59 31294.61 34385.05 23397.79 26491.59 24988.01 27992.47 357
UniMVSNet_ETH3D90.06 30288.58 31094.49 26794.67 31288.09 33597.81 33997.57 24883.91 35488.44 30097.41 24457.44 38397.62 27191.41 25088.59 27097.77 239
NR-MVSNet91.56 26990.22 27895.60 22594.05 32195.76 15698.25 32298.70 6791.16 24880.78 36196.64 27283.23 24996.57 32591.41 25077.73 35694.46 267
新几何199.42 3799.75 6898.27 6398.63 8092.69 19199.55 5599.82 4694.40 71100.00 191.21 25299.94 5499.99 23
UA-Net96.54 13595.96 14098.27 12298.23 17595.71 15998.00 33498.45 11893.72 15798.41 12099.27 13688.71 19699.66 14691.19 25397.69 16299.44 163
EPMVS96.53 13696.01 13398.09 13398.43 16296.12 14796.36 36299.43 2193.53 16197.64 14795.04 32894.41 7098.38 22691.13 25498.11 15499.75 103
EI-MVSNet93.73 21993.40 21694.74 25396.80 25992.69 24999.06 26097.67 23688.96 28991.39 24799.02 15488.75 19597.30 28391.07 25587.85 28194.22 288
test_post195.78 37459.23 40893.20 11197.74 26791.06 256
SCA94.69 18993.81 20297.33 18197.10 24194.44 20098.86 28598.32 17293.30 16996.17 18795.59 30276.48 30897.95 25891.06 25697.43 16799.59 134
Baseline_NR-MVSNet90.33 29489.51 29492.81 32092.84 34689.95 31299.77 14893.94 38684.69 35089.04 29095.66 29981.66 25796.52 32690.99 25876.98 36391.97 363
IterMVS-LS92.69 24592.11 24494.43 27296.80 25992.74 24699.45 21796.89 32288.98 28789.65 27495.38 31588.77 19496.34 33490.98 25982.04 32394.22 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
LS3D95.84 16095.11 17098.02 13799.85 5495.10 18798.74 29598.50 11287.22 31893.66 22199.86 2687.45 20599.95 6990.94 26099.81 7999.02 203
CVMVSNet94.68 19194.94 17693.89 29296.80 25986.92 34499.06 26098.98 3894.45 11794.23 21699.02 15485.60 22595.31 35890.91 26195.39 21499.43 164
BH-RMVSNet95.18 17694.31 18997.80 14898.17 18195.23 18299.76 15397.53 25392.52 20494.27 21599.25 14076.84 30398.80 19090.89 26299.54 9999.35 173
Anonymous2023121189.86 30588.44 31294.13 28098.93 12390.68 29498.54 30998.26 18276.28 38086.73 32395.54 30470.60 34497.56 27290.82 26380.27 34294.15 298
miper_ehance_all_eth93.16 23292.60 23494.82 25297.57 21993.56 22899.50 20997.07 30288.75 29588.85 29495.52 30690.97 16196.74 31890.77 26484.45 30794.17 292
mvsany_test382.12 34881.14 35085.06 36581.87 39470.41 38997.09 35092.14 39491.27 24577.84 37388.73 38139.31 39695.49 35390.75 26571.24 37589.29 385
tpm93.70 22193.41 21594.58 26195.36 30287.41 34097.01 35296.90 32190.85 25696.72 17294.14 35190.40 17296.84 31490.75 26588.54 27199.51 153
tt080591.28 27290.18 28094.60 25996.26 27187.55 33898.39 31898.72 6589.00 28689.22 28598.47 21462.98 37398.96 18390.57 26788.00 28097.28 247
TESTMET0.1,196.74 12796.26 12698.16 12697.36 23196.48 12699.96 3598.29 17891.93 22295.77 19598.07 22695.54 4298.29 23590.55 26898.89 13199.70 110
testdata299.99 3690.54 269
c3_l92.53 24891.87 25094.52 26497.40 22892.99 24299.40 22096.93 31987.86 30988.69 29795.44 31089.95 17796.44 33090.45 27080.69 33894.14 301
test-LLR96.47 13796.04 13297.78 15197.02 24595.44 17199.96 3598.21 18694.07 14095.55 19796.38 27893.90 9198.27 23990.42 27198.83 13599.64 123
test-mter96.39 14295.93 14497.78 15197.02 24595.44 17199.96 3598.21 18691.81 22795.55 19796.38 27895.17 4998.27 23990.42 27198.83 13599.64 123
PCF-MVS94.20 595.18 17694.10 19398.43 11498.55 15495.99 14997.91 33697.31 27690.35 26789.48 27899.22 14285.19 23199.89 9690.40 27398.47 14299.41 166
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CP-MVSNet91.23 27490.22 27894.26 27693.96 32392.39 25799.09 25398.57 8988.95 29086.42 33096.57 27579.19 28596.37 33290.29 27478.95 34794.02 308
TranMVSNet+NR-MVSNet91.68 26890.61 27094.87 24993.69 32893.98 21799.69 17598.65 7491.03 25288.44 30096.83 26880.05 27896.18 34090.26 27576.89 36594.45 272
PatchMatch-RL96.04 15595.40 15997.95 14099.59 8195.22 18399.52 20599.07 3493.96 14796.49 17798.35 21882.28 25299.82 12090.15 27699.22 12298.81 213
MDTV_nov1_ep1395.69 15297.90 19494.15 21195.98 37198.44 12393.12 17497.98 13695.74 29595.10 5198.58 20690.02 27796.92 182
FE-MVS95.70 16695.01 17497.79 15098.21 17794.57 19895.03 37698.69 6888.90 29297.50 15196.19 28492.60 12899.49 16089.99 27897.94 16099.31 178
eth_miper_zixun_eth92.41 25191.93 24893.84 29397.28 23890.68 29498.83 28896.97 31388.57 30089.19 28895.73 29789.24 18996.69 32189.97 27981.55 32694.15 298
Fast-Effi-MVS+95.02 18094.19 19197.52 16897.88 19594.55 19999.97 2897.08 30188.85 29494.47 21197.96 23284.59 23798.41 21889.84 28097.10 17599.59 134
Fast-Effi-MVS+-dtu93.72 22093.86 20193.29 30897.06 24386.16 34699.80 14296.83 32792.66 19392.58 23597.83 23681.39 26097.67 26989.75 28196.87 18396.05 259
ACMH89.72 1790.64 28689.63 28993.66 30195.64 29788.64 32898.55 30797.45 26089.03 28481.62 35697.61 24069.75 34698.41 21889.37 28287.62 28593.92 319
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs492.10 25791.07 26495.18 24092.82 34894.96 19099.48 21396.83 32787.45 31488.66 29896.56 27683.78 24496.83 31589.29 28384.77 30593.75 329
PatchmatchNetpermissive95.94 15795.45 15897.39 17697.83 19994.41 20396.05 36998.40 15292.86 18197.09 16095.28 32394.21 8298.07 25189.26 28498.11 15499.70 110
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMH+89.98 1690.35 29389.54 29292.78 32195.99 27886.12 34798.81 29097.18 28989.38 27983.14 34997.76 23868.42 35498.43 21689.11 28586.05 29493.78 328
DP-MVS94.54 19493.42 21397.91 14599.46 9494.04 21498.93 27697.48 25981.15 36890.04 26299.55 11087.02 21199.95 6988.97 28698.11 15499.73 105
PS-CasMVS90.63 28789.51 29493.99 28793.83 32591.70 27698.98 27098.52 10488.48 30186.15 33496.53 27775.46 31796.31 33688.83 28778.86 34993.95 316
test_fmvs379.99 35580.17 35479.45 37284.02 39162.83 39399.05 26493.49 39088.29 30580.06 36586.65 38928.09 40188.00 39388.63 28873.27 37387.54 389
cl____92.31 25391.58 25494.52 26497.33 23492.77 24499.57 19796.78 33286.97 32387.56 31395.51 30789.43 18396.62 32388.60 28982.44 32094.16 297
DIV-MVS_self_test92.32 25291.60 25394.47 26897.31 23592.74 24699.58 19596.75 33386.99 32287.64 31195.54 30489.55 18296.50 32788.58 29082.44 32094.17 292
pmmvs590.17 30089.09 30193.40 30592.10 35889.77 31599.74 15995.58 36585.88 33587.24 32095.74 29573.41 33296.48 32888.54 29183.56 31493.95 316
LF4IMVS89.25 31588.85 30590.45 34192.81 34981.19 37598.12 32994.79 37691.44 23886.29 33297.11 25265.30 36798.11 24888.53 29285.25 30092.07 360
JIA-IIPM91.76 26790.70 26794.94 24796.11 27487.51 33993.16 38498.13 20075.79 38397.58 14877.68 39792.84 12097.97 25588.47 29396.54 18699.33 176
miper_lstm_enhance91.81 26191.39 26093.06 31697.34 23289.18 32199.38 22596.79 33186.70 32687.47 31595.22 32490.00 17695.86 35188.26 29481.37 32894.15 298
WR-MVS_H91.30 27090.35 27494.15 27894.17 32092.62 25399.17 24998.94 4188.87 29386.48 32994.46 34884.36 23996.61 32488.19 29578.51 35093.21 345
tpmvs94.28 20593.57 20896.40 20898.55 15491.50 28195.70 37598.55 9887.47 31392.15 24094.26 35091.42 15098.95 18488.15 29695.85 20398.76 215
OurMVSNet-221017-089.81 30689.48 29690.83 33791.64 36381.21 37498.17 32895.38 36991.48 23685.65 33897.31 24772.66 33397.29 28688.15 29684.83 30493.97 315
GeoE94.36 20393.48 21196.99 18997.29 23793.54 22999.96 3596.72 33588.35 30493.43 22298.94 17282.05 25398.05 25288.12 29896.48 19099.37 170
TDRefinement84.76 33782.56 34591.38 33374.58 40384.80 35697.36 34494.56 38084.73 34980.21 36396.12 28963.56 37198.39 22287.92 29963.97 39290.95 371
CMPMVSbinary61.59 2184.75 33885.14 33383.57 36790.32 37562.54 39596.98 35397.59 24774.33 38869.95 38996.66 27064.17 36998.32 23287.88 30088.41 27389.84 379
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Patchmatch-RL test86.90 32685.98 33089.67 34684.45 38975.59 38589.71 39592.43 39386.89 32477.83 37490.94 37394.22 8093.63 37587.75 30169.61 37899.79 97
GA-MVS93.83 21392.84 22796.80 19495.73 29093.57 22799.88 10397.24 28592.57 20092.92 22996.66 27078.73 29097.67 26987.75 30194.06 23399.17 190
ADS-MVSNet293.80 21693.88 20093.55 30397.87 19685.94 34894.24 37796.84 32690.07 27196.43 17994.48 34690.29 17495.37 35687.44 30397.23 17299.36 171
ADS-MVSNet94.79 18594.02 19597.11 18797.87 19693.79 22094.24 37798.16 19590.07 27196.43 17994.48 34690.29 17498.19 24487.44 30397.23 17299.36 171
v14890.70 28489.63 28993.92 28992.97 34490.97 28699.75 15696.89 32287.51 31288.27 30595.01 32981.67 25697.04 30287.40 30577.17 36293.75 329
V4291.28 27290.12 28394.74 25393.42 33493.46 23199.68 17797.02 30687.36 31589.85 26995.05 32781.31 26397.34 27987.34 30680.07 34393.40 339
v2v48291.30 27090.07 28495.01 24493.13 33893.79 22099.77 14897.02 30688.05 30789.25 28395.37 31680.73 26997.15 29287.28 30780.04 34494.09 304
IterMVS90.91 27990.17 28193.12 31396.78 26290.42 30298.89 27997.05 30589.03 28486.49 32895.42 31176.59 30695.02 36087.22 30884.09 31093.93 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
myMVS_eth3d94.46 19894.76 18093.55 30397.68 21390.97 28699.71 17098.35 16590.79 25892.10 24198.67 19392.46 13493.09 37987.13 30995.95 20096.59 252
PEN-MVS90.19 29989.06 30293.57 30293.06 34290.90 29099.06 26098.47 11588.11 30685.91 33696.30 28176.67 30495.94 35087.07 31076.91 36493.89 321
IterMVS-SCA-FT90.85 28290.16 28292.93 31896.72 26489.96 31198.89 27996.99 30988.95 29086.63 32595.67 29876.48 30895.00 36187.04 31184.04 31393.84 325
tpm cat193.51 22592.52 23996.47 20397.77 20391.47 28296.13 36798.06 20480.98 36992.91 23093.78 35489.66 17998.87 18687.03 31296.39 19199.09 197
GBi-Net90.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
test190.88 28089.82 28694.08 28197.53 22191.97 26398.43 31496.95 31487.05 31989.68 27194.72 33771.34 33996.11 34287.01 31385.65 29694.17 292
FMVSNet392.69 24591.58 25495.99 21798.29 17097.42 9799.26 24297.62 24089.80 27689.68 27195.32 31881.62 25996.27 33787.01 31385.65 29694.29 284
dp95.05 17994.43 18596.91 19197.99 19092.73 24896.29 36597.98 21189.70 27795.93 19194.67 34193.83 9598.45 21586.91 31696.53 18799.54 147
MSDG94.37 20193.36 21797.40 17598.88 13393.95 21899.37 22797.38 26885.75 33890.80 25599.17 14684.11 24399.88 10286.35 31798.43 14398.36 228
EU-MVSNet90.14 30190.34 27589.54 34792.55 35181.06 37698.69 30198.04 20791.41 24286.59 32696.84 26780.83 26893.31 37886.20 31881.91 32494.26 285
pm-mvs189.36 31387.81 31994.01 28593.40 33591.93 26698.62 30696.48 34586.25 33183.86 34696.14 28673.68 33197.04 30286.16 31975.73 36993.04 348
COLMAP_ROBcopyleft90.47 1492.18 25691.49 25894.25 27799.00 11688.04 33698.42 31796.70 33682.30 36488.43 30299.01 15676.97 30199.85 10886.11 32096.50 18894.86 261
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WAC-MVS90.97 28686.10 321
ITE_SJBPF92.38 32395.69 29585.14 35295.71 36192.81 18489.33 28298.11 22470.23 34598.42 21785.91 32288.16 27793.59 336
K. test v388.05 32187.24 32390.47 34091.82 36282.23 36898.96 27397.42 26489.05 28376.93 37795.60 30168.49 35395.42 35585.87 32381.01 33593.75 329
AllTest92.48 24991.64 25295.00 24599.01 11488.43 33098.94 27596.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
TestCases95.00 24599.01 11488.43 33096.82 32986.50 32788.71 29598.47 21474.73 32599.88 10285.39 32496.18 19396.71 250
FMVSNet291.02 27789.56 29195.41 23297.53 22195.74 15798.98 27097.41 26687.05 31988.43 30295.00 33171.34 33996.24 33985.12 32685.21 30194.25 287
v114491.09 27689.83 28594.87 24993.25 33793.69 22599.62 19096.98 31186.83 32589.64 27594.99 33280.94 26697.05 30085.08 32781.16 33093.87 323
v890.54 28989.17 29994.66 25693.43 33393.40 23499.20 24696.94 31885.76 33687.56 31394.51 34481.96 25597.19 29084.94 32878.25 35193.38 341
ambc83.23 36877.17 40162.61 39487.38 39794.55 38176.72 37886.65 38930.16 39896.36 33384.85 32969.86 37790.73 372
test_f78.40 35777.59 35980.81 37180.82 39662.48 39696.96 35493.08 39283.44 35774.57 38484.57 39327.95 40292.63 38284.15 33072.79 37487.32 390
LTVRE_ROB88.28 1890.29 29689.05 30394.02 28495.08 30590.15 30797.19 34797.43 26284.91 34883.99 34597.06 25674.00 33098.28 23784.08 33187.71 28393.62 335
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
SixPastTwentyTwo88.73 31788.01 31890.88 33591.85 36182.24 36798.22 32695.18 37488.97 28882.26 35296.89 26271.75 33796.67 32284.00 33282.98 31593.72 333
v14419290.79 28389.52 29394.59 26093.11 34192.77 24499.56 19996.99 30986.38 32989.82 27094.95 33480.50 27497.10 29783.98 33380.41 33993.90 320
USDC90.00 30388.96 30493.10 31594.81 30988.16 33498.71 29895.54 36693.66 15883.75 34797.20 25065.58 36498.31 23383.96 33487.49 28792.85 351
MVP-Stereo90.93 27890.45 27392.37 32491.25 36988.76 32398.05 33396.17 35387.27 31784.04 34495.30 31978.46 29497.27 28883.78 33599.70 8591.09 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
MS-PatchMatch90.65 28590.30 27691.71 33194.22 31985.50 35198.24 32397.70 23388.67 29786.42 33096.37 28067.82 35698.03 25383.62 33699.62 9091.60 365
DTE-MVSNet89.40 31288.24 31592.88 31992.66 35089.95 31299.10 25298.22 18587.29 31685.12 34196.22 28376.27 31195.30 35983.56 33775.74 36893.41 338
pmmvs685.69 33083.84 33791.26 33490.00 37884.41 35797.82 33896.15 35475.86 38281.29 35895.39 31461.21 37896.87 31383.52 33873.29 37292.50 356
lessismore_v090.53 33890.58 37380.90 37795.80 35977.01 37695.84 29266.15 36396.95 30783.03 33975.05 37093.74 332
v1090.25 29788.82 30694.57 26293.53 33193.43 23299.08 25596.87 32485.00 34587.34 31994.51 34480.93 26797.02 30682.85 34079.23 34693.26 343
DeepMVS_CXcopyleft82.92 36995.98 28058.66 40096.01 35692.72 18878.34 37195.51 30758.29 38298.08 24982.57 34185.29 29992.03 362
testing393.92 21194.23 19092.99 31797.54 22090.23 30499.99 599.16 3090.57 26291.33 25098.63 19992.99 11592.52 38382.46 34295.39 21496.22 257
PM-MVS80.47 35278.88 35785.26 36483.79 39272.22 38895.89 37391.08 39785.71 33976.56 37988.30 38236.64 39793.90 37282.39 34369.57 37989.66 382
v119290.62 28889.25 29894.72 25593.13 33893.07 23899.50 20997.02 30686.33 33089.56 27795.01 32979.22 28497.09 29982.34 34481.16 33094.01 310
v192192090.46 29089.12 30094.50 26692.96 34592.46 25599.49 21196.98 31186.10 33289.61 27695.30 31978.55 29397.03 30482.17 34580.89 33794.01 310
MIMVSNet90.30 29588.67 30995.17 24196.45 26891.64 27892.39 38697.15 29385.99 33390.50 25793.19 36166.95 35994.86 36482.01 34693.43 23999.01 204
UnsupCasMVSNet_eth85.52 33283.99 33490.10 34389.36 38083.51 36196.65 35897.99 20989.14 28175.89 38193.83 35363.25 37293.92 37181.92 34767.90 38692.88 350
FMVSNet188.50 31886.64 32494.08 28195.62 29991.97 26398.43 31496.95 31483.00 35986.08 33594.72 33759.09 38196.11 34281.82 34884.07 31194.17 292
test0.0.03 193.86 21293.61 20494.64 25795.02 30792.18 26199.93 7698.58 8794.07 14087.96 30898.50 20993.90 9194.96 36281.33 34993.17 24296.78 249
v7n89.65 30988.29 31493.72 29692.22 35590.56 29899.07 25997.10 29885.42 34386.73 32394.72 33780.06 27797.13 29481.14 35078.12 35393.49 337
pmmvs-eth3d84.03 34381.97 34790.20 34284.15 39087.09 34298.10 33194.73 37883.05 35874.10 38587.77 38665.56 36594.01 37081.08 35169.24 38089.49 383
v124090.20 29888.79 30794.44 27093.05 34392.27 25999.38 22596.92 32085.89 33489.36 28094.87 33677.89 29697.03 30480.66 35281.08 33394.01 310
our_test_390.39 29189.48 29693.12 31392.40 35389.57 31799.33 23196.35 34987.84 31085.30 33994.99 33284.14 24296.09 34580.38 35384.56 30693.71 334
test_vis3_rt68.82 36166.69 36675.21 37776.24 40260.41 39896.44 36168.71 41275.13 38650.54 40369.52 40116.42 41196.32 33580.27 35466.92 38868.89 399
TinyColmap87.87 32486.51 32591.94 32895.05 30685.57 35097.65 34094.08 38384.40 35181.82 35596.85 26562.14 37598.33 23180.25 35586.37 29391.91 364
Patchmtry89.70 30888.49 31193.33 30796.24 27289.94 31491.37 39196.23 35178.22 37787.69 31093.31 35991.04 15996.03 34780.18 35682.10 32294.02 308
WB-MVSnew92.90 23992.77 23193.26 31096.95 24993.63 22699.71 17098.16 19591.49 23494.28 21498.14 22381.33 26296.48 32879.47 35795.46 21189.68 380
KD-MVS_2432*160088.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
miper_refine_blended88.00 32286.10 32693.70 29996.91 25194.04 21497.17 34897.12 29684.93 34681.96 35392.41 36592.48 13294.51 36779.23 35852.68 39992.56 354
CR-MVSNet93.45 22892.62 23395.94 21896.29 26992.66 25092.01 38896.23 35192.62 19596.94 16493.31 35991.04 15996.03 34779.23 35895.96 19899.13 195
EG-PatchMatch MVS85.35 33583.81 33889.99 34590.39 37481.89 37098.21 32796.09 35581.78 36674.73 38393.72 35551.56 39197.12 29679.16 36188.61 26890.96 370
test_method80.79 35179.70 35584.08 36692.83 34767.06 39299.51 20795.42 36754.34 39881.07 36093.53 35644.48 39492.22 38578.90 36277.23 36192.94 349
DSMNet-mixed88.28 32088.24 31588.42 35789.64 37975.38 38698.06 33289.86 40085.59 34088.20 30692.14 36976.15 31391.95 38678.46 36396.05 19697.92 235
UnsupCasMVSNet_bld79.97 35677.03 36188.78 35385.62 38881.98 36993.66 38297.35 27075.51 38570.79 38883.05 39448.70 39294.91 36378.31 36460.29 39789.46 384
EPNet_dtu95.71 16495.39 16096.66 20098.92 12693.41 23399.57 19798.90 4796.19 7597.52 14998.56 20692.65 12597.36 27777.89 36598.33 14599.20 189
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
testgi89.01 31688.04 31791.90 32993.49 33284.89 35599.73 16495.66 36393.89 15385.14 34098.17 22259.68 38094.66 36677.73 36688.88 26196.16 258
Patchmatch-test92.65 24791.50 25796.10 21696.85 25690.49 29991.50 39097.19 28782.76 36290.23 25995.59 30295.02 5598.00 25477.41 36796.98 18199.82 92
YYNet185.50 33483.33 34092.00 32790.89 37188.38 33399.22 24596.55 34279.60 37557.26 39892.72 36279.09 28893.78 37477.25 36877.37 36093.84 325
MDA-MVSNet_test_wron85.51 33383.32 34192.10 32690.96 37088.58 32999.20 24696.52 34379.70 37457.12 39992.69 36379.11 28693.86 37377.10 36977.46 35993.86 324
tfpnnormal89.29 31487.61 32094.34 27594.35 31794.13 21298.95 27498.94 4183.94 35284.47 34395.51 30774.84 32497.39 27677.05 37080.41 33991.48 367
TransMVSNet (Re)87.25 32585.28 33293.16 31293.56 33091.03 28598.54 30994.05 38583.69 35681.09 35996.16 28575.32 31896.40 33176.69 37168.41 38392.06 361
FMVSNet588.32 31987.47 32190.88 33596.90 25488.39 33297.28 34595.68 36282.60 36384.67 34292.40 36779.83 27991.16 38876.39 37281.51 32793.09 346
ppachtmachnet_test89.58 31088.35 31393.25 31192.40 35390.44 30199.33 23196.73 33485.49 34185.90 33795.77 29481.09 26596.00 34976.00 37382.49 31993.30 342
MVS-HIRNet86.22 32983.19 34295.31 23696.71 26590.29 30392.12 38797.33 27462.85 39486.82 32270.37 39969.37 34797.49 27475.12 37497.99 15998.15 231
MDA-MVSNet-bldmvs84.09 34281.52 34991.81 33091.32 36888.00 33798.67 30395.92 35880.22 37255.60 40093.32 35868.29 35593.60 37673.76 37576.61 36693.82 327
KD-MVS_self_test83.59 34682.06 34688.20 35886.93 38580.70 37897.21 34696.38 34782.87 36082.49 35188.97 38067.63 35792.32 38473.75 37662.30 39591.58 366
Anonymous2024052185.15 33683.81 33889.16 35088.32 38282.69 36398.80 29295.74 36079.72 37381.53 35790.99 37265.38 36694.16 36972.69 37781.11 33290.63 373
APD_test181.15 35080.92 35181.86 37092.45 35259.76 39996.04 37093.61 38973.29 39077.06 37596.64 27244.28 39596.16 34172.35 37882.52 31889.67 381
new_pmnet84.49 34182.92 34489.21 34990.03 37782.60 36496.89 35695.62 36480.59 37075.77 38289.17 37965.04 36894.79 36572.12 37981.02 33490.23 375
new-patchmatchnet81.19 34979.34 35686.76 36282.86 39380.36 38197.92 33595.27 37182.09 36572.02 38686.87 38862.81 37490.74 39071.10 38063.08 39389.19 386
pmmvs380.27 35377.77 35887.76 36080.32 39882.43 36698.23 32591.97 39572.74 39178.75 36887.97 38557.30 38490.99 38970.31 38162.37 39489.87 378
TAPA-MVS92.12 894.42 19993.60 20696.90 19299.33 9891.78 27199.78 14598.00 20889.89 27594.52 20999.47 11691.97 14599.18 17469.90 38299.52 10099.73 105
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CL-MVSNet_self_test84.50 34083.15 34388.53 35686.00 38781.79 37198.82 28997.35 27085.12 34483.62 34890.91 37476.66 30591.40 38769.53 38360.36 39692.40 358
LCM-MVSNet67.77 36564.73 36876.87 37562.95 40956.25 40289.37 39693.74 38844.53 40161.99 39380.74 39520.42 40886.53 39869.37 38459.50 39887.84 387
OpenMVS_ROBcopyleft79.82 2083.77 34581.68 34890.03 34488.30 38382.82 36298.46 31295.22 37273.92 38976.00 38091.29 37155.00 38596.94 30868.40 38588.51 27290.34 374
N_pmnet80.06 35480.78 35277.89 37391.94 35945.28 41198.80 29256.82 41378.10 37880.08 36493.33 35777.03 29995.76 35268.14 38682.81 31692.64 353
Anonymous2023120686.32 32885.42 33189.02 35189.11 38180.53 38099.05 26495.28 37085.43 34282.82 35093.92 35274.40 32793.44 37766.99 38781.83 32593.08 347
dmvs_testset83.79 34486.07 32876.94 37492.14 35648.60 40996.75 35790.27 39989.48 27878.65 36998.55 20879.25 28386.65 39766.85 38882.69 31795.57 260
test20.0384.72 33983.99 33486.91 36188.19 38480.62 37998.88 28195.94 35788.36 30378.87 36794.62 34268.75 35089.11 39266.52 38975.82 36791.00 369
PatchT90.38 29288.75 30895.25 23895.99 27890.16 30691.22 39297.54 25176.80 37997.26 15786.01 39191.88 14696.07 34666.16 39095.91 20299.51 153
test_040285.58 33183.94 33690.50 33993.81 32685.04 35398.55 30795.20 37376.01 38179.72 36695.13 32564.15 37096.26 33866.04 39186.88 29090.21 376
MIMVSNet182.58 34780.51 35388.78 35386.68 38684.20 35896.65 35895.41 36878.75 37678.59 37092.44 36451.88 39089.76 39165.26 39278.95 34792.38 359
Syy-MVS90.00 30390.63 26988.11 35997.68 21374.66 38799.71 17098.35 16590.79 25892.10 24198.67 19379.10 28793.09 37963.35 39395.95 20096.59 252
RPMNet89.76 30787.28 32297.19 18496.29 26992.66 25092.01 38898.31 17470.19 39396.94 16485.87 39287.25 20899.78 12562.69 39495.96 19899.13 195
FPMVS68.72 36268.72 36368.71 38465.95 40744.27 41395.97 37294.74 37751.13 39953.26 40190.50 37625.11 40483.00 40060.80 39580.97 33678.87 397
PMMVS267.15 36664.15 36976.14 37670.56 40662.07 39793.89 38087.52 40458.09 39560.02 39478.32 39622.38 40584.54 39959.56 39647.03 40181.80 394
EGC-MVSNET69.38 36063.76 37086.26 36390.32 37581.66 37396.24 36693.85 3870.99 4103.22 41192.33 36852.44 38892.92 38159.53 39784.90 30384.21 391
testf168.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
APD_test268.38 36366.92 36472.78 38078.80 39950.36 40690.95 39387.35 40555.47 39658.95 39588.14 38320.64 40687.60 39457.28 39864.69 39080.39 395
testmvs40.60 37444.45 37729.05 39119.49 41514.11 41799.68 17718.47 41420.74 40764.59 39298.48 21310.95 41217.09 41156.66 40011.01 40755.94 404
Gipumacopyleft66.95 36765.00 36772.79 37991.52 36567.96 39166.16 40295.15 37547.89 40058.54 39767.99 40229.74 39987.54 39650.20 40177.83 35562.87 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test12337.68 37539.14 37833.31 39019.94 41424.83 41698.36 3199.75 41515.53 40851.31 40287.14 38719.62 40917.74 41047.10 4023.47 40957.36 403
ANet_high56.10 36952.24 37267.66 38549.27 41156.82 40183.94 39882.02 40870.47 39233.28 40864.54 40317.23 41069.16 40645.59 40323.85 40577.02 398
PMVScopyleft49.05 2353.75 37051.34 37460.97 38740.80 41334.68 41474.82 40189.62 40237.55 40328.67 40972.12 3987.09 41381.63 40343.17 40468.21 38466.59 401
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive53.74 2251.54 37247.86 37662.60 38659.56 41050.93 40579.41 40077.69 40935.69 40536.27 40761.76 4065.79 41569.63 40537.97 40536.61 40267.24 400
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS76.28 35877.28 36073.29 37881.18 39554.68 40397.87 33794.19 38281.30 36769.43 39090.70 37577.02 30082.06 40135.71 40668.11 38583.13 392
SSC-MVS75.42 35976.40 36272.49 38280.68 39753.62 40497.42 34294.06 38480.42 37168.75 39190.14 37776.54 30781.66 40233.25 40766.34 38982.19 393
E-PMN52.30 37152.18 37352.67 38871.51 40445.40 41093.62 38376.60 41036.01 40443.50 40564.13 40427.11 40367.31 40731.06 40826.06 40345.30 406
EMVS51.44 37351.22 37552.11 38970.71 40544.97 41294.04 37975.66 41135.34 40642.40 40661.56 40728.93 40065.87 40827.64 40924.73 40445.49 405
wuyk23d20.37 37720.84 38018.99 39265.34 40827.73 41550.43 4037.67 4169.50 4098.01 4106.34 4106.13 41426.24 40923.40 41010.69 4082.99 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.02 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k23.43 37631.24 3790.00 3930.00 4160.00 4180.00 40498.09 2010.00 4110.00 41299.67 9683.37 2470.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas7.60 37910.13 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41291.20 1540.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.28 37811.04 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41299.40 1250.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4120.00 4160.00 4120.00 4110.00 4100.00 408
FOURS199.92 3197.66 8599.95 5398.36 16395.58 8799.52 60
test_one_060199.94 1399.30 1298.41 14896.63 5699.75 3099.93 1197.49 9
eth-test20.00 416
eth-test0.00 416
test_241102_ONE99.93 2499.30 1298.43 13197.26 3699.80 1899.88 2196.71 23100.00 1
save fliter99.82 5898.79 4099.96 3598.40 15297.66 21
test072699.93 2499.29 1599.96 3598.42 14397.28 3299.86 799.94 497.22 18
GSMVS99.59 134
test_part299.89 4599.25 1899.49 63
sam_mvs194.72 6499.59 134
sam_mvs94.25 79
MTGPAbinary98.28 179
test_post63.35 40594.43 6998.13 247
patchmatchnet-post91.70 37095.12 5097.95 258
MTMP99.87 10696.49 344
TEST999.92 3198.92 2999.96 3598.43 13193.90 15199.71 3599.86 2695.88 3799.85 108
test_899.92 3198.88 3299.96 3598.43 13194.35 12599.69 3799.85 3095.94 3499.85 108
agg_prior99.93 2498.77 4298.43 13199.63 4499.85 108
test_prior498.05 6899.94 69
test_prior99.43 3599.94 1398.49 6098.65 7499.80 12199.99 23
新几何299.40 220
旧先验199.76 6697.52 8998.64 7699.85 3095.63 4199.94 5499.99 23
原ACMM299.90 91
test22299.55 8697.41 9899.34 23098.55 9891.86 22499.27 8199.83 4393.84 9499.95 4999.99 23
segment_acmp96.68 25
testdata199.28 24096.35 71
test1299.43 3599.74 6998.56 5798.40 15299.65 4194.76 6399.75 13299.98 3299.99 23
plane_prior795.71 29391.59 280
plane_prior695.76 28791.72 27580.47 275
plane_prior498.59 201
plane_prior391.64 27896.63 5693.01 227
plane_prior299.84 12696.38 67
plane_prior195.73 290
plane_prior91.74 27299.86 11896.76 5289.59 253
n20.00 417
nn0.00 417
door-mid89.69 401
test1198.44 123
door90.31 398
HQP5-MVS91.85 268
HQP-NCC95.78 28399.87 10696.82 4893.37 223
ACMP_Plane95.78 28399.87 10696.82 4893.37 223
HQP4-MVS93.37 22398.39 22294.53 262
HQP3-MVS97.89 22189.60 251
HQP2-MVS80.65 271
NP-MVS95.77 28691.79 27098.65 196
ACMMP++_ref87.04 288
ACMMP++88.23 276
Test By Simon92.82 122