This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort by
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
MM98.86 596.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12199.90 5099.72 398.80 9199.85 30
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 7894.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 7894.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
IU-MVS99.63 1895.38 2297.73 7795.54 2699.54 399.69 699.81 2399.99 1
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 13593.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 8799.98 999.64 799.82 1999.96 10
patch_mono-297.10 2597.97 894.49 16899.21 6183.73 28499.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 7894.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_l_conf0.5_n_a97.70 1197.80 1197.42 4597.59 11692.91 8299.86 498.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9899.40 85
fmvsm_l_conf0.5_n97.65 1297.72 1297.41 4697.51 12092.78 8499.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10399.55 72
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
MVS_030497.53 1397.15 2198.67 1197.30 12696.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 9699.91 4599.43 1598.91 8699.59 71
DeepPCF-MVS93.56 196.55 3997.84 1092.68 22098.71 8578.11 34199.70 2697.71 8298.18 197.36 6299.76 190.37 4799.94 3499.27 1699.54 5299.99 1
APDe-MVScopyleft97.53 1397.47 1597.70 3699.58 3093.63 6499.56 4397.52 12593.59 6398.01 5099.12 4690.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 8793.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
dcpmvs_295.67 6996.18 4494.12 18598.82 8184.22 27797.37 25295.45 28690.70 11895.77 10198.63 10190.47 4398.68 16499.20 2099.22 7099.45 81
fmvsm_s_conf0.5_n96.19 4896.49 3595.30 13997.37 12389.16 16099.86 498.47 2595.68 2398.87 2299.15 3982.44 18099.92 4099.14 2197.43 12796.83 212
test_fmvsmconf_n96.78 3396.84 2896.61 8595.99 18290.25 13199.90 298.13 4296.68 1198.42 3498.92 7485.34 13199.88 5499.12 2299.08 7399.70 52
test_fmvsm_n_192097.08 2697.55 1495.67 12697.94 10489.61 15599.93 198.48 2497.08 599.08 1499.13 4488.17 6899.93 3899.11 2399.06 7597.47 193
TSAR-MVS + GP.96.95 2896.91 2597.07 5798.88 7991.62 9899.58 4196.54 20795.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
test_fmvsmconf0.1_n95.94 5895.79 6196.40 9992.42 28589.92 14799.79 1696.85 19096.53 1597.22 6598.67 9782.71 17299.84 6998.92 2798.98 8099.43 84
fmvsm_s_conf0.5_n_a95.97 5596.19 4295.31 13896.51 15789.01 16699.81 1198.39 2795.46 2899.19 1399.16 3681.44 19499.91 4598.83 2896.97 13697.01 208
CANet97.00 2796.49 3598.55 1298.86 8096.10 1699.83 997.52 12595.90 1997.21 6698.90 7682.66 17399.93 3898.71 2998.80 9199.63 64
9.1496.87 2699.34 5099.50 5197.49 13289.41 15798.59 3099.43 1689.78 5299.69 9198.69 3099.62 44
SD-MVS97.51 1597.40 1897.81 3499.01 7293.79 6399.33 7897.38 14893.73 5998.83 2599.02 5890.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
fmvsm_s_conf0.1_n95.56 7195.68 6495.20 14294.35 24289.10 16299.50 5197.67 9094.76 3498.68 2799.03 5681.13 19799.86 6398.63 3297.36 12996.63 215
test9_res98.60 3399.87 999.90 22
PS-MVSNAJ96.87 3096.40 3898.29 1997.35 12497.29 599.03 11597.11 17295.83 2098.97 1999.14 4282.48 17699.60 10398.60 3399.08 7398.00 180
xiu_mvs_v2_base96.66 3596.17 4798.11 2797.11 13796.96 699.01 11897.04 17995.51 2798.86 2399.11 5082.19 18499.36 13098.59 3598.14 11198.00 180
train_agg97.20 2297.08 2297.57 4299.57 3393.17 7399.38 7197.66 9190.18 13498.39 3599.18 3390.94 3599.66 9498.58 3699.85 1399.88 26
TSAR-MVS + MP.97.44 1797.46 1697.39 4899.12 6593.49 6998.52 16797.50 13094.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
SF-MVS97.22 2196.92 2498.12 2699.11 6694.88 3599.44 6297.45 13889.60 15098.70 2699.42 1790.42 4599.72 8998.47 3899.65 3899.77 43
PHI-MVS96.65 3696.46 3797.21 5499.34 5091.77 9599.70 2698.05 4686.48 24098.05 4799.20 2989.33 5599.96 2898.38 3999.62 4499.90 22
test_fmvsmvis_n_192095.47 7295.40 7095.70 12494.33 24390.22 13499.70 2696.98 18696.80 792.75 14698.89 7882.46 17999.92 4098.36 4098.33 10796.97 209
ZD-MVS99.67 1093.28 7197.61 10487.78 20897.41 6099.16 3690.15 4999.56 10598.35 4199.70 35
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
SMA-MVScopyleft97.24 1996.99 2398.00 2999.30 5494.20 5599.16 9397.65 9689.55 15499.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42096.80 3296.85 2796.66 8497.85 10794.42 5194.76 32198.36 2992.50 8195.62 10597.52 14897.92 197.38 23398.31 4498.80 9198.20 176
test_fmvsmconf0.01_n94.14 10593.51 11296.04 11186.79 35989.19 15999.28 8395.94 24895.70 2195.50 10698.49 11073.27 24999.79 8298.28 4598.32 10999.15 107
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5696.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
fmvsm_s_conf0.1_n_a95.16 8095.15 7695.18 14392.06 29188.94 17099.29 8197.53 12194.46 3898.98 1898.99 6079.99 20299.85 6798.24 4796.86 13896.73 213
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 13699.41 6897.70 8395.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
ETV-MVS96.00 5296.00 5296.00 11496.56 15491.05 11499.63 3696.61 19993.26 6897.39 6198.30 11986.62 10398.13 18298.07 4997.57 12198.82 140
MSLP-MVS++97.50 1697.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5199.81 7997.97 5099.91 699.88 26
APD-MVScopyleft96.95 2896.72 3197.63 3899.51 4193.58 6599.16 9397.44 14190.08 13998.59 3099.07 5189.06 5799.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
SteuartSystems-ACMMP97.25 1897.34 1997.01 6097.38 12291.46 10299.75 2197.66 9194.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
test_vis1_n_192093.08 14193.42 11492.04 23296.31 16679.36 32999.83 996.06 23996.72 998.53 3298.10 12758.57 33799.91 4597.86 5398.79 9496.85 211
agg_prior297.84 5499.87 999.91 21
mvsany_test194.57 9995.09 7992.98 21195.84 18682.07 30598.76 14295.24 29992.87 7796.45 8798.71 9484.81 13899.15 14197.68 5595.49 16297.73 185
HPM-MVS++copyleft97.72 1097.59 1398.14 2399.53 4094.76 4299.19 8797.75 7395.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
test_vis1_n90.40 19190.27 18290.79 26191.55 30176.48 34699.12 10594.44 32294.31 4197.34 6396.95 17543.60 37699.42 12397.57 5797.60 12096.47 222
SR-MVS96.13 4996.16 4996.07 11099.42 4789.04 16498.59 16297.33 15290.44 12896.84 7699.12 4686.75 9999.41 12697.47 5899.44 5899.76 45
PVSNet_BlendedMVS93.36 13193.20 12093.84 19698.77 8391.61 9999.47 5598.04 4891.44 10494.21 12692.63 27183.50 15199.87 5897.41 5983.37 26790.05 331
PVSNet_Blended95.94 5895.66 6596.75 7698.77 8391.61 9999.88 398.04 4893.64 6294.21 12697.76 13583.50 15199.87 5897.41 5997.75 11998.79 143
test_fmvs192.35 15492.94 12990.57 26697.19 13075.43 35099.55 4494.97 30695.20 3196.82 7997.57 14759.59 33599.84 6997.30 6198.29 11096.46 223
EC-MVSNet95.09 8295.17 7594.84 15695.42 20088.17 18699.48 5395.92 25291.47 10397.34 6398.36 11682.77 16897.41 23297.24 6298.58 10098.94 128
MVS_111021_HR96.69 3496.69 3296.72 8098.58 8891.00 11699.14 10199.45 193.86 5495.15 11398.73 8988.48 6499.76 8697.23 6399.56 5099.40 85
test_fmvs1_n91.07 17991.41 16090.06 28094.10 24874.31 35499.18 8994.84 31094.81 3396.37 8997.46 15150.86 36599.82 7697.14 6497.90 11396.04 230
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
lupinMVS96.32 4495.94 5397.44 4495.05 22394.87 3699.86 496.50 20993.82 5798.04 4898.77 8585.52 12398.09 18596.98 6898.97 8199.37 88
CS-MVS-test95.98 5496.34 4094.90 15398.06 10187.66 19899.69 3396.10 23593.66 6098.35 3899.05 5486.28 11297.66 21596.96 6998.90 8799.37 88
MVS_111021_LR95.78 6495.94 5395.28 14098.19 9787.69 19598.80 13699.26 793.39 6595.04 11598.69 9684.09 14599.76 8696.96 6999.06 7598.38 165
VNet95.08 8394.26 8997.55 4398.07 10093.88 6198.68 14898.73 1890.33 13197.16 7097.43 15379.19 21099.53 10996.91 7191.85 20199.24 100
test_cas_vis1_n_192093.86 11593.74 10894.22 18195.39 20386.08 24199.73 2296.07 23896.38 1797.19 6997.78 13465.46 31299.86 6396.71 7298.92 8596.73 213
CS-MVS95.75 6796.19 4294.40 17297.88 10686.22 23599.66 3496.12 23492.69 7898.07 4698.89 7887.09 9097.59 22196.71 7298.62 9999.39 87
APD-MVS_3200maxsize95.64 7095.65 6795.62 12899.24 5887.80 19498.42 18097.22 15988.93 17196.64 8698.98 6185.49 12699.36 13096.68 7499.27 6899.70 52
SR-MVS-dyc-post95.75 6795.86 5695.41 13499.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6286.73 10199.36 13096.62 7599.31 6599.60 67
RE-MVS-def95.70 6399.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6285.24 13296.62 7599.31 6599.60 67
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2499.61 2494.45 4998.85 13197.64 9796.51 1695.88 9799.39 1887.35 8799.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDD-MVS91.24 17790.18 18394.45 17197.08 13885.84 25098.40 18596.10 23586.99 22393.36 13998.16 12554.27 35499.20 13896.59 7890.63 21998.31 171
MP-MVS-pluss95.80 6395.30 7197.29 5098.95 7692.66 8598.59 16297.14 16888.95 16993.12 14299.25 2385.62 12299.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
diffmvspermissive94.59 9894.19 9295.81 12095.54 19690.69 12398.70 14695.68 27391.61 9995.96 9497.81 13180.11 20198.06 18796.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ACMMP_NAP96.59 3796.18 4497.81 3498.82 8193.55 6698.88 13097.59 11090.66 11997.98 5199.14 4286.59 104100.00 196.47 8199.46 5599.89 25
PAPM96.35 4295.94 5397.58 4094.10 24895.25 2498.93 12598.17 3794.26 4293.94 13198.72 9189.68 5397.88 19796.36 8299.29 6799.62 66
MTAPA96.09 5095.80 6096.96 6799.29 5591.19 10697.23 26097.45 13892.58 7994.39 12499.24 2586.43 11099.99 596.22 8399.40 6299.71 51
alignmvs95.77 6595.00 8198.06 2897.35 12495.68 1999.71 2597.50 13091.50 10296.16 9298.61 10386.28 11299.00 15096.19 8491.74 20399.51 77
canonicalmvs95.02 8493.96 10298.20 2197.53 11995.92 1798.71 14496.19 22991.78 9795.86 9998.49 11079.53 20799.03 14996.12 8591.42 21199.66 60
DELS-MVS97.12 2496.60 3498.68 1098.03 10296.57 1199.84 897.84 5996.36 1895.20 11298.24 12188.17 6899.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
jason95.40 7694.86 8297.03 5992.91 28094.23 5499.70 2696.30 22093.56 6496.73 8298.52 10681.46 19397.91 19496.08 8798.47 10598.96 123
jason: jason.
CP-MVS96.22 4796.15 5096.42 9799.67 1089.62 15499.70 2697.61 10490.07 14096.00 9399.16 3687.43 8199.92 4096.03 8899.72 3199.70 52
MP-MVScopyleft96.00 5295.82 5796.54 9199.47 4690.13 13899.36 7597.41 14590.64 12295.49 10798.95 6985.51 12599.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
h-mvs3392.47 15391.95 14994.05 18997.13 13585.01 26798.36 19198.08 4493.85 5596.27 9096.73 18783.19 16099.43 12295.81 9068.09 35497.70 186
hse-mvs291.67 16891.51 15892.15 22996.22 17082.61 30197.74 23797.53 12193.85 5596.27 9096.15 20283.19 16097.44 23095.81 9066.86 36196.40 225
HFP-MVS96.42 4196.26 4196.90 6999.69 890.96 11799.47 5597.81 6590.54 12596.88 7399.05 5487.57 7899.96 2895.65 9299.72 3199.78 38
XVS96.47 4096.37 3996.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7498.96 6687.37 8399.87 5895.65 9299.43 5999.78 38
X-MVStestdata90.69 18888.66 21196.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7429.59 40087.37 8399.87 5895.65 9299.43 5999.78 38
ACMMPR96.28 4696.14 5196.73 7899.68 990.47 12899.47 5597.80 6790.54 12596.83 7899.03 5686.51 10899.95 3195.65 9299.72 3199.75 46
HPM-MVScopyleft95.41 7595.22 7495.99 11599.29 5589.14 16199.17 9297.09 17687.28 22195.40 10898.48 11284.93 13599.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
test_yl95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
DCV-MVSNet95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
region2R96.30 4596.17 4796.70 8199.70 790.31 13099.46 5997.66 9190.55 12497.07 7199.07 5186.85 9799.97 2195.43 9999.74 2999.81 33
EI-MVSNet-Vis-set95.76 6695.63 6996.17 10799.14 6490.33 12998.49 17397.82 6291.92 9594.75 11898.88 8087.06 9299.48 11695.40 10097.17 13498.70 150
EPNet96.82 3196.68 3397.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8099.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MG-MVS97.24 1996.83 3098.47 1599.79 595.71 1899.07 10999.06 1094.45 4096.42 8898.70 9588.81 6199.74 8895.35 10199.86 1299.97 7
HY-MVS88.56 795.29 7794.23 9098.48 1497.72 10996.41 1394.03 32998.74 1692.42 8495.65 10494.76 23086.52 10799.49 11295.29 10392.97 18299.53 74
mPP-MVS95.90 6095.75 6296.38 10099.58 3089.41 15899.26 8497.41 14590.66 11994.82 11798.95 6986.15 11699.98 995.24 10499.64 4099.74 47
ZNCC-MVS96.09 5095.81 5996.95 6899.42 4791.19 10699.55 4497.53 12189.72 14595.86 9998.94 7286.59 10499.97 2195.13 10599.56 5099.68 56
GG-mvs-BLEND96.98 6596.53 15594.81 4187.20 36997.74 7493.91 13296.40 19696.56 296.94 24795.08 10698.95 8499.20 104
EIA-MVS95.11 8195.27 7394.64 16596.34 16586.51 22399.59 4096.62 19892.51 8094.08 12998.64 9986.05 11798.24 17995.07 10798.50 10399.18 105
DeepC-MVS91.02 494.56 10093.92 10496.46 9497.16 13290.76 12198.39 18997.11 17293.92 5088.66 20098.33 11778.14 21899.85 6795.02 10898.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive94.00 10893.33 11696.03 11295.22 20790.90 11999.09 10795.99 24190.58 12391.55 16397.37 15579.91 20398.06 18795.01 10995.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WTY-MVS95.97 5595.11 7898.54 1397.62 11396.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 10699.46 11895.00 11092.69 18699.50 78
CSCG94.87 8694.71 8395.36 13599.54 3686.49 22499.34 7798.15 4082.71 30290.15 18799.25 2389.48 5499.86 6394.97 11198.82 9099.72 50
EI-MVSNet-UG-set95.43 7395.29 7295.86 11999.07 7089.87 14898.43 17997.80 6791.78 9794.11 12898.77 8586.25 11499.48 11694.95 11296.45 14398.22 174
CPTT-MVS94.60 9794.43 8795.09 14699.66 1286.85 21999.44 6297.47 13583.22 29194.34 12598.96 6682.50 17499.55 10694.81 11399.50 5398.88 133
PVSNet_083.28 1687.31 25185.16 26693.74 20094.78 23384.59 27298.91 12898.69 2189.81 14478.59 31793.23 26161.95 32699.34 13494.75 11455.72 38197.30 197
CLD-MVS91.06 18090.71 17692.10 23094.05 25286.10 24099.55 4496.29 22394.16 4584.70 23597.17 16669.62 27797.82 20194.74 11586.08 24292.39 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
casdiffmvspermissive93.98 11093.43 11395.61 12995.07 22289.86 14998.80 13695.84 26590.98 11392.74 14797.66 14279.71 20498.10 18494.72 11695.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
VDDNet90.08 20188.54 21794.69 16294.41 24187.68 19698.21 20396.40 21476.21 34993.33 14097.75 13654.93 35298.77 15794.71 11790.96 21497.61 191
iter_conf0593.48 12593.18 12194.39 17597.15 13394.17 5799.30 8092.97 34692.38 8886.70 22195.42 21795.67 596.59 25994.67 11884.32 25692.39 254
CDPH-MVS96.56 3896.18 4497.70 3699.59 2893.92 6099.13 10497.44 14189.02 16697.90 5399.22 2788.90 6099.49 11294.63 11999.79 2799.68 56
GST-MVS95.97 5595.66 6596.90 6999.49 4591.22 10499.45 6197.48 13389.69 14695.89 9698.72 9186.37 11199.95 3194.62 12099.22 7099.52 75
Effi-MVS+93.87 11493.15 12296.02 11395.79 18790.76 12196.70 28295.78 26686.98 22695.71 10297.17 16679.58 20598.01 19294.57 12196.09 15299.31 94
LFMVS92.23 15990.84 17296.42 9798.24 9491.08 11398.24 20096.22 22683.39 28994.74 11998.31 11861.12 33098.85 15494.45 12292.82 18399.32 93
ET-MVSNet_ETH3D92.56 15191.45 15995.88 11896.39 16394.13 5899.46 5996.97 18792.18 9166.94 36998.29 12094.65 1594.28 34294.34 12383.82 26399.24 100
baseline93.91 11293.30 11795.72 12395.10 22090.07 14097.48 24895.91 25791.03 11193.54 13797.68 14079.58 20598.02 19194.27 12495.14 16599.08 115
SDMVSNet91.09 17889.91 18694.65 16396.80 14790.54 12797.78 23297.81 6588.34 19085.73 22595.26 22166.44 30398.26 17794.25 12586.75 23495.14 234
PAPR96.35 4295.82 5797.94 3199.63 1894.19 5699.42 6797.55 11792.43 8293.82 13599.12 4687.30 8899.91 4594.02 12699.06 7599.74 47
iter_conf_final93.22 13793.04 12593.76 19897.03 14192.22 9299.05 11293.31 34392.11 9386.93 21695.42 21795.01 1096.59 25993.98 12784.48 25392.46 253
PGM-MVS95.85 6195.65 6796.45 9599.50 4289.77 15198.22 20198.90 1389.19 16196.74 8198.95 6985.91 12099.92 4093.94 12899.46 5599.66 60
gg-mvs-nofinetune90.00 20287.71 22896.89 7396.15 17594.69 4585.15 37597.74 7468.32 37592.97 14560.16 38896.10 396.84 25093.89 12998.87 8899.14 108
MVS93.92 11192.28 14098.83 795.69 19196.82 896.22 29798.17 3784.89 26684.34 24098.61 10379.32 20999.83 7393.88 13099.43 5999.86 29
旧先验298.67 15085.75 25198.96 2098.97 15293.84 131
ACMMPcopyleft94.67 9594.30 8895.79 12199.25 5788.13 18898.41 18298.67 2290.38 13091.43 16598.72 9182.22 18399.95 3193.83 13295.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
BP-MVS93.82 133
HQP-MVS91.50 16991.23 16392.29 22493.95 25386.39 22899.16 9396.37 21693.92 5087.57 20796.67 19073.34 24697.77 20593.82 13386.29 23792.72 248
DP-MVS Recon95.85 6195.15 7697.95 3099.87 294.38 5299.60 3897.48 13386.58 23594.42 12399.13 4487.36 8699.98 993.64 13598.33 10799.48 79
CHOSEN 1792x268894.35 10293.82 10695.95 11797.40 12188.74 17898.41 18298.27 3192.18 9191.43 16596.40 19678.88 21199.81 7993.59 13697.81 11599.30 95
cascas90.93 18389.33 19795.76 12295.69 19193.03 7898.99 12096.59 20180.49 32986.79 22094.45 23465.23 31398.60 16793.52 13792.18 19695.66 233
HQP_MVS91.26 17490.95 16992.16 22893.84 26086.07 24399.02 11696.30 22093.38 6686.99 21496.52 19272.92 25297.75 21193.46 13886.17 24092.67 250
plane_prior596.30 22097.75 21193.46 13886.17 24092.67 250
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10297.14 13491.10 11199.32 7997.43 14392.10 9491.53 16496.38 19983.29 15799.68 9293.42 14096.37 14598.25 172
AdaColmapbinary93.82 11693.06 12396.10 10999.88 189.07 16398.33 19397.55 11786.81 23190.39 18498.65 9875.09 23199.98 993.32 14197.53 12499.26 99
HyFIR lowres test93.68 12193.29 11894.87 15497.57 11888.04 19098.18 20598.47 2587.57 21691.24 17095.05 22485.49 12697.46 22893.22 14292.82 18399.10 113
HPM-MVS_fast94.89 8594.62 8495.70 12499.11 6688.44 18499.14 10197.11 17285.82 24895.69 10398.47 11383.46 15399.32 13593.16 14399.63 4399.35 90
PMMVS93.62 12493.90 10592.79 21596.79 14981.40 31298.85 13196.81 19191.25 10996.82 7998.15 12677.02 22498.13 18293.15 14496.30 14898.83 139
LCM-MVSNet-Re88.59 23188.61 21288.51 31295.53 19772.68 36296.85 27488.43 38188.45 18373.14 34690.63 31075.82 22794.38 34192.95 14595.71 15998.48 160
EPP-MVSNet93.75 11893.67 10994.01 19195.86 18585.70 25298.67 15097.66 9184.46 27191.36 16897.18 16591.16 3197.79 20392.93 14693.75 17698.53 157
CostFormer92.89 14392.48 13894.12 18594.99 22585.89 24792.89 33997.00 18586.98 22695.00 11690.78 30290.05 5097.51 22692.92 14791.73 20498.96 123
XVG-OURS-SEG-HR90.95 18290.66 17891.83 23595.18 21281.14 31995.92 30495.92 25288.40 18790.33 18597.85 12970.66 27299.38 12892.83 14888.83 22694.98 237
mvsmamba89.99 20389.42 19491.69 24290.64 31486.34 23198.40 18592.27 35591.01 11284.80 23494.93 22576.12 22696.51 26792.81 14983.84 26092.21 264
sss94.85 8793.94 10397.58 4096.43 16094.09 5998.93 12599.16 889.50 15595.27 11097.85 12981.50 19199.65 9892.79 15094.02 17498.99 120
test_vis1_rt81.31 31580.05 31885.11 33591.29 30670.66 36898.98 12277.39 39685.76 25068.80 36082.40 36736.56 38399.44 11992.67 15186.55 23685.24 371
MAR-MVS94.43 10194.09 9695.45 13299.10 6887.47 20498.39 18997.79 6988.37 18894.02 13099.17 3578.64 21699.91 4592.48 15298.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
API-MVS94.78 8994.18 9496.59 8799.21 6190.06 14398.80 13697.78 7083.59 28693.85 13399.21 2883.79 14899.97 2192.37 15399.00 7999.74 47
nrg03090.23 19588.87 20594.32 17791.53 30293.54 6798.79 14095.89 26088.12 19884.55 23794.61 23278.80 21496.88 24992.35 15475.21 30992.53 252
OMC-MVS93.90 11393.62 11094.73 16198.63 8787.00 21798.04 21996.56 20592.19 9092.46 14998.73 8979.49 20899.14 14592.16 15594.34 17298.03 179
131493.44 12791.98 14897.84 3295.24 20594.38 5296.22 29797.92 5590.18 13482.28 26997.71 13977.63 22199.80 8191.94 15698.67 9799.34 92
DPM-MVS97.86 897.25 2099.68 198.25 9399.10 199.76 2097.78 7096.61 1298.15 4199.53 793.62 17100.00 191.79 15799.80 2699.94 18
mvs_anonymous92.50 15291.65 15595.06 14796.60 15389.64 15397.06 26696.44 21386.64 23484.14 24193.93 24382.49 17596.17 29391.47 15896.08 15399.35 90
baseline294.04 10793.80 10794.74 16093.07 27990.25 13198.12 21098.16 3989.86 14286.53 22296.95 17595.56 698.05 18991.44 15994.53 16995.93 231
IB-MVS89.43 692.12 16190.83 17495.98 11695.40 20290.78 12099.81 1198.06 4591.23 11085.63 22893.66 25190.63 4198.78 15691.22 16071.85 34498.36 168
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
ab-mvs91.05 18189.17 19996.69 8295.96 18391.72 9792.62 34397.23 15885.61 25289.74 19293.89 24568.55 28299.42 12391.09 16187.84 22998.92 131
XVG-OURS90.83 18490.49 18091.86 23495.23 20681.25 31695.79 31295.92 25288.96 16890.02 18998.03 12871.60 26699.35 13391.06 16287.78 23094.98 237
3Dnovator87.35 1193.17 13991.77 15397.37 4995.41 20193.07 7698.82 13497.85 5891.53 10182.56 26197.58 14671.97 26199.82 7691.01 16399.23 6999.22 103
VPA-MVSNet89.10 21487.66 22993.45 20392.56 28291.02 11597.97 22398.32 3086.92 22886.03 22492.01 27868.84 28197.10 24190.92 16475.34 30892.23 262
PAPM_NR95.43 7395.05 8096.57 9099.42 4790.14 13698.58 16497.51 12790.65 12192.44 15098.90 7687.77 7799.90 5090.88 16599.32 6499.68 56
3Dnovator+87.72 893.43 12891.84 15198.17 2295.73 19095.08 3298.92 12797.04 17991.42 10681.48 28697.60 14474.60 23499.79 8290.84 16698.97 8199.64 62
test_fmvs285.10 28585.45 26384.02 34389.85 32465.63 37798.49 17392.59 35190.45 12785.43 23193.32 25743.94 37496.59 25990.81 16784.19 25789.85 335
gm-plane-assit94.69 23588.14 18788.22 19597.20 16398.29 17590.79 168
MVSTER92.71 14592.32 13993.86 19597.29 12792.95 8199.01 11896.59 20190.09 13885.51 22994.00 24194.61 1696.56 26390.77 16983.03 27092.08 271
ACMP87.39 1088.71 22888.24 22090.12 27993.91 25881.06 32098.50 17195.67 27489.43 15680.37 29595.55 21365.67 30797.83 20090.55 17084.51 25191.47 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_MVS88.91 21888.56 21589.93 28590.31 31881.61 30998.08 21696.38 21589.30 15882.41 26694.84 22873.15 25096.04 29990.38 17182.23 27792.15 267
ECVR-MVScopyleft92.29 15691.33 16195.15 14496.41 16187.84 19398.10 21394.84 31090.82 11691.42 16797.28 15765.61 30998.49 16890.33 17297.19 13299.12 111
testdata95.26 14198.20 9587.28 21197.60 10685.21 25798.48 3399.15 3988.15 7098.72 16290.29 17399.45 5799.78 38
LPG-MVS_test88.86 22088.47 21890.06 28093.35 27480.95 32198.22 20195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
LGP-MVS_train90.06 28093.35 27480.95 32195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
MVSFormer94.71 9494.08 9796.61 8595.05 22394.87 3697.77 23496.17 23186.84 22998.04 4898.52 10685.52 12395.99 30089.83 17698.97 8198.96 123
test_djsdf88.26 23687.73 22789.84 28888.05 34882.21 30397.77 23496.17 23186.84 22982.41 26691.95 28272.07 26095.99 30089.83 17684.50 25291.32 297
test250694.80 8894.21 9196.58 8896.41 16192.18 9398.01 22098.96 1190.82 11693.46 13897.28 15785.92 11898.45 16989.82 17897.19 13299.12 111
tpmrst92.78 14492.16 14394.65 16396.27 16887.45 20591.83 34897.10 17589.10 16594.68 12090.69 30688.22 6797.73 21389.78 17991.80 20298.77 146
PLCcopyleft91.07 394.23 10494.01 9894.87 15499.17 6387.49 20399.25 8596.55 20688.43 18691.26 16998.21 12485.92 11899.86 6389.77 18097.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
test111192.12 16191.19 16494.94 15296.15 17587.36 20898.12 21094.84 31090.85 11590.97 17297.26 15965.60 31098.37 17189.74 18197.14 13599.07 117
CDS-MVSNet93.47 12693.04 12594.76 15894.75 23489.45 15798.82 13497.03 18187.91 20590.97 17296.48 19489.06 5796.36 27789.50 18292.81 18598.49 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
Effi-MVS+-dtu89.97 20490.68 17787.81 31795.15 21371.98 36497.87 22895.40 29091.92 9587.57 20791.44 29074.27 24096.84 25089.45 18393.10 18194.60 239
jajsoiax87.35 25086.51 24789.87 28687.75 35381.74 30797.03 26795.98 24288.47 18080.15 29893.80 24761.47 32796.36 27789.44 18484.47 25491.50 288
mvs_tets87.09 25386.22 25089.71 29187.87 34981.39 31396.73 28195.90 25888.19 19679.99 30093.61 25259.96 33496.31 28589.40 18584.34 25591.43 292
PS-MVSNAJss89.54 21089.05 20291.00 25488.77 33984.36 27597.39 24995.97 24388.47 18081.88 27993.80 24782.48 17696.50 26889.34 18683.34 26992.15 267
VPNet88.30 23486.57 24593.49 20291.95 29491.35 10398.18 20597.20 16488.61 17784.52 23894.89 22662.21 32596.76 25589.34 18672.26 34192.36 256
114514_t94.06 10693.05 12497.06 5899.08 6992.26 9198.97 12397.01 18482.58 30492.57 14898.22 12280.68 19999.30 13689.34 18699.02 7899.63 64
OPM-MVS89.76 20689.15 20091.57 24490.53 31585.58 25598.11 21295.93 25192.88 7686.05 22396.47 19567.06 29897.87 19889.29 18986.08 24291.26 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MVS_Test93.67 12292.67 13496.69 8296.72 15192.66 8597.22 26196.03 24087.69 21495.12 11494.03 23981.55 19098.28 17689.17 19096.46 14299.14 108
BH-w/o92.32 15591.79 15293.91 19496.85 14486.18 23799.11 10695.74 26988.13 19784.81 23397.00 17377.26 22397.91 19489.16 19198.03 11297.64 187
TAMVS92.62 14892.09 14694.20 18294.10 24887.68 19698.41 18296.97 18787.53 21889.74 19296.04 20684.77 14096.49 27088.97 19292.31 19398.42 161
CNLPA93.64 12392.74 13296.36 10198.96 7590.01 14699.19 8795.89 26086.22 24389.40 19598.85 8180.66 20099.84 6988.57 19396.92 13799.24 100
baseline192.61 14991.28 16296.58 8897.05 14094.63 4697.72 23896.20 22789.82 14388.56 20196.85 18186.85 9797.82 20188.42 19480.10 28697.30 197
CANet_DTU94.31 10393.35 11597.20 5597.03 14194.71 4498.62 15695.54 28195.61 2597.21 6698.47 11371.88 26299.84 6988.38 19597.46 12697.04 206
thisisatest051594.75 9094.19 9296.43 9696.13 18092.64 8899.47 5597.60 10687.55 21793.17 14197.59 14594.71 1398.42 17088.28 19693.20 17998.24 173
原ACMM196.18 10599.03 7190.08 13997.63 10188.98 16797.00 7298.97 6288.14 7199.71 9088.23 19799.62 4498.76 147
UGNet91.91 16590.85 17195.10 14597.06 13988.69 17998.01 22098.24 3492.41 8592.39 15193.61 25260.52 33299.68 9288.14 19897.25 13096.92 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
AUN-MVS90.17 19889.50 19192.19 22796.21 17182.67 29997.76 23697.53 12188.05 19991.67 15896.15 20283.10 16297.47 22788.11 19966.91 36096.43 224
Vis-MVSNet (Re-imp)93.26 13693.00 12894.06 18896.14 17786.71 22298.68 14896.70 19488.30 19289.71 19497.64 14385.43 12996.39 27588.06 20096.32 14699.08 115
bld_raw_dy_0_6487.82 23986.71 24491.15 25089.54 33085.61 25397.37 25289.16 37989.26 15983.42 24794.50 23365.79 30696.18 29188.00 20183.37 26791.67 278
PVSNet87.13 1293.69 11992.83 13196.28 10397.99 10390.22 13499.38 7198.93 1291.42 10693.66 13697.68 14071.29 26999.64 10087.94 20297.20 13198.98 121
FIs90.70 18789.87 18793.18 20792.29 28691.12 10998.17 20798.25 3289.11 16483.44 24694.82 22982.26 18296.17 29387.76 20382.76 27292.25 260
tpm291.77 16691.09 16593.82 19794.83 23285.56 25692.51 34497.16 16784.00 27793.83 13490.66 30887.54 7997.17 23787.73 20491.55 20798.72 148
无先验98.52 16797.82 6287.20 22299.90 5087.64 20599.85 30
Anonymous20240521188.84 22187.03 23994.27 17898.14 9984.18 27898.44 17895.58 27976.79 34889.34 19696.88 18053.42 35799.54 10887.53 20687.12 23399.09 114
IS-MVSNet93.00 14292.51 13794.49 16896.14 17787.36 20898.31 19695.70 27188.58 17990.17 18697.50 14983.02 16497.22 23687.06 20796.07 15498.90 132
MDTV_nov1_ep13_2view91.17 10891.38 35587.45 21993.08 14386.67 10287.02 20898.95 127
Anonymous2024052987.66 24785.58 26093.92 19397.59 11685.01 26798.13 20897.13 17066.69 38088.47 20296.01 20755.09 35199.51 11087.00 20984.12 25897.23 200
UniMVSNet_NR-MVSNet89.60 20888.55 21692.75 21792.17 28990.07 14098.74 14398.15 4088.37 18883.21 24993.98 24282.86 16695.93 30486.95 21072.47 33892.25 260
DU-MVS88.83 22387.51 23092.79 21591.46 30390.07 14098.71 14497.62 10388.87 17383.21 24993.68 24974.63 23295.93 30486.95 21072.47 33892.36 256
FA-MVS(test-final)92.22 16091.08 16695.64 12796.05 18188.98 16791.60 35297.25 15486.99 22391.84 15592.12 27483.03 16399.00 15086.91 21293.91 17598.93 129
ACMM86.95 1388.77 22688.22 22190.43 27193.61 26681.34 31498.50 17195.92 25287.88 20683.85 24495.20 22367.20 29697.89 19686.90 21384.90 24992.06 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
UniMVSNet (Re)89.50 21188.32 21993.03 20992.21 28890.96 11798.90 12998.39 2789.13 16383.22 24892.03 27681.69 18996.34 28386.79 21472.53 33791.81 276
BH-untuned91.46 17190.84 17293.33 20596.51 15784.83 27098.84 13395.50 28386.44 24283.50 24596.70 18875.49 23097.77 20586.78 21597.81 11597.40 194
mvsany_test375.85 33874.52 34079.83 35673.53 38760.64 38191.73 35087.87 38383.91 28070.55 35582.52 36631.12 38593.66 34586.66 21662.83 36785.19 372
miper_enhance_ethall90.33 19389.70 18892.22 22597.12 13688.93 17298.35 19295.96 24588.60 17883.14 25392.33 27387.38 8296.18 29186.49 21777.89 29591.55 287
thisisatest053094.00 10893.52 11195.43 13395.76 18990.02 14598.99 12097.60 10686.58 23591.74 15797.36 15694.78 1298.34 17286.37 21892.48 19097.94 182
TESTMET0.1,193.82 11693.26 11995.49 13195.21 20890.25 13199.15 9897.54 12089.18 16291.79 15694.87 22789.13 5697.63 21886.21 21996.29 14998.60 155
anonymousdsp86.69 25985.75 25889.53 29686.46 36182.94 29296.39 28895.71 27083.97 27879.63 30590.70 30568.85 28095.94 30386.01 22084.02 25989.72 337
F-COLMAP92.07 16391.75 15493.02 21098.16 9882.89 29598.79 14095.97 24386.54 23787.92 20597.80 13278.69 21599.65 9885.97 22195.93 15696.53 221
cl2289.57 20988.79 20891.91 23397.94 10487.62 19997.98 22296.51 20885.03 26282.37 26891.79 28383.65 14996.50 26885.96 22277.89 29591.61 284
test-LLR93.11 14092.68 13394.40 17294.94 22887.27 21299.15 9897.25 15490.21 13291.57 16094.04 23784.89 13697.58 22285.94 22396.13 15098.36 168
test-mter93.27 13592.89 13094.40 17294.94 22887.27 21299.15 9897.25 15488.95 16991.57 16094.04 23788.03 7397.58 22285.94 22396.13 15098.36 168
FC-MVSNet-test90.22 19689.40 19592.67 22191.78 29889.86 14997.89 22598.22 3588.81 17482.96 25494.66 23181.90 18895.96 30285.89 22582.52 27592.20 266
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18598.48 17596.81 19191.61 9992.16 15497.22 16271.58 26798.00 19385.85 22697.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
sd_testset89.23 21288.05 22592.74 21896.80 14785.33 26095.85 31097.03 18188.34 19085.73 22595.26 22161.12 33097.76 21085.61 22786.75 23495.14 234
test_fmvs375.09 33975.19 33674.81 36177.45 38354.08 38795.93 30390.64 37182.51 30773.29 34481.19 37222.29 39086.29 38385.50 22867.89 35684.06 374
WR-MVS88.54 23287.22 23792.52 22291.93 29689.50 15698.56 16597.84 5986.99 22381.87 28093.81 24674.25 24195.92 30685.29 22974.43 31892.12 269
XXY-MVS87.75 24386.02 25392.95 21390.46 31689.70 15297.71 24095.90 25884.02 27680.95 28994.05 23667.51 29497.10 24185.16 23078.41 29292.04 273
thres20093.69 11992.59 13696.97 6697.76 10894.74 4399.35 7699.36 289.23 16091.21 17196.97 17483.42 15498.77 15785.08 23190.96 21497.39 195
tttt051793.30 13393.01 12794.17 18395.57 19486.47 22598.51 17097.60 10685.99 24690.55 17997.19 16494.80 1198.31 17385.06 23291.86 20097.74 184
XVG-ACMP-BASELINE85.86 27484.95 27088.57 31189.90 32277.12 34594.30 32595.60 27887.40 22082.12 27292.99 26753.42 35797.66 21585.02 23383.83 26190.92 308
dmvs_re88.69 22988.06 22490.59 26593.83 26278.68 33595.75 31396.18 23087.99 20284.48 23996.32 20067.52 29396.94 24784.98 23485.49 24696.14 228
新几何197.40 4798.92 7792.51 9097.77 7285.52 25396.69 8399.06 5388.08 7299.89 5384.88 23599.62 4499.79 36
1112_ss92.71 14591.55 15796.20 10495.56 19591.12 10998.48 17594.69 31788.29 19386.89 21898.50 10887.02 9398.66 16584.75 23689.77 22498.81 141
miper_ehance_all_eth88.94 21788.12 22391.40 24595.32 20486.93 21897.85 22995.55 28084.19 27481.97 27791.50 28984.16 14495.91 30784.69 23777.89 29591.36 295
Test_1112_low_res92.27 15890.97 16896.18 10595.53 19791.10 11198.47 17794.66 31888.28 19486.83 21993.50 25687.00 9498.65 16684.69 23789.74 22598.80 142
TR-MVS90.77 18589.44 19394.76 15896.31 16688.02 19197.92 22495.96 24585.52 25388.22 20497.23 16166.80 29998.09 18584.58 23992.38 19198.17 177
tt080586.50 26584.79 27491.63 24391.97 29281.49 31096.49 28697.38 14882.24 31182.44 26395.82 21051.22 36298.25 17884.55 24080.96 28295.13 236
OpenMVScopyleft85.28 1490.75 18688.84 20696.48 9393.58 26793.51 6898.80 13697.41 14582.59 30378.62 31597.49 15068.00 28999.82 7684.52 24198.55 10296.11 229
UniMVSNet_ETH3D85.65 28183.79 28991.21 24890.41 31780.75 32395.36 31695.78 26678.76 33881.83 28394.33 23549.86 36796.66 25684.30 24283.52 26696.22 227
NR-MVSNet87.74 24686.00 25492.96 21291.46 30390.68 12496.65 28397.42 14488.02 20173.42 34393.68 24977.31 22295.83 31084.26 24371.82 34592.36 256
D2MVS87.96 23887.39 23289.70 29291.84 29783.40 28798.31 19698.49 2388.04 20078.23 32190.26 32173.57 24496.79 25484.21 24483.53 26588.90 347
testdata299.88 5484.16 245
Baseline_NR-MVSNet85.83 27584.82 27388.87 31088.73 34083.34 28898.63 15591.66 36480.41 33282.44 26391.35 29274.63 23295.42 32184.13 24671.39 34787.84 353
thres100view90093.34 13292.15 14496.90 6997.62 11394.84 3899.06 11199.36 287.96 20390.47 18296.78 18583.29 15798.75 15984.11 24790.69 21697.12 201
tfpn200view993.43 12892.27 14196.90 6997.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21697.12 201
thres40093.39 13092.27 14196.73 7897.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21696.61 216
c3_l88.19 23787.23 23691.06 25294.97 22686.17 23897.72 23895.38 29183.43 28881.68 28491.37 29182.81 16795.72 31384.04 25073.70 32691.29 299
UA-Net93.30 13392.62 13595.34 13696.27 16888.53 18395.88 30796.97 18790.90 11495.37 10997.07 17082.38 18199.10 14783.91 25194.86 16898.38 165
IterMVS-LS88.34 23387.44 23191.04 25394.10 24885.85 24998.10 21395.48 28485.12 25882.03 27691.21 29581.35 19595.63 31683.86 25275.73 30791.63 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 20589.38 19691.36 24794.32 24485.87 24897.61 24596.59 20185.10 25985.51 22997.10 16881.30 19696.56 26383.85 25383.03 27091.64 279
tpm89.67 20788.95 20491.82 23692.54 28381.43 31192.95 33895.92 25287.81 20790.50 18189.44 33484.99 13495.65 31583.67 25482.71 27398.38 165
eth_miper_zixun_eth87.76 24287.00 24090.06 28094.67 23682.65 30097.02 26995.37 29284.19 27481.86 28291.58 28881.47 19295.90 30883.24 25573.61 32791.61 284
Fast-Effi-MVS+91.72 16790.79 17594.49 16895.89 18487.40 20799.54 4995.70 27185.01 26489.28 19795.68 21277.75 22097.57 22583.22 25695.06 16698.51 158
test_post190.74 36341.37 39985.38 13096.36 27783.16 257
SCA90.64 18989.25 19894.83 15794.95 22788.83 17496.26 29497.21 16090.06 14190.03 18890.62 31166.61 30096.81 25283.16 25794.36 17198.84 136
TranMVSNet+NR-MVSNet87.75 24386.31 24992.07 23190.81 31188.56 18098.33 19397.18 16587.76 20981.87 28093.90 24472.45 25695.43 32083.13 25971.30 34892.23 262
CMPMVSbinary58.40 2180.48 31880.11 31781.59 35485.10 36559.56 38294.14 32895.95 24768.54 37460.71 37893.31 25855.35 35097.87 19883.06 26084.85 25087.33 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thres600view793.18 13892.00 14796.75 7697.62 11394.92 3399.07 10999.36 287.96 20390.47 18296.78 18583.29 15798.71 16382.93 26190.47 22096.61 216
pmmvs487.58 24986.17 25291.80 23789.58 32888.92 17397.25 25895.28 29582.54 30580.49 29493.17 26375.62 22996.05 29882.75 26278.90 29090.42 322
CVMVSNet90.30 19490.91 17088.46 31394.32 24473.58 35897.61 24597.59 11090.16 13788.43 20397.10 16876.83 22592.86 35282.64 26393.54 17898.93 129
Anonymous2023121184.72 28982.65 30090.91 25697.71 11084.55 27397.28 25696.67 19566.88 37979.18 31190.87 30158.47 33896.60 25882.61 26474.20 32291.59 286
GA-MVS90.10 20088.69 21094.33 17692.44 28487.97 19299.08 10896.26 22489.65 14786.92 21793.11 26468.09 28796.96 24582.54 26590.15 22198.05 178
QAPM91.41 17289.49 19297.17 5695.66 19393.42 7098.60 16097.51 12780.92 32781.39 28797.41 15472.89 25499.87 5882.33 26698.68 9698.21 175
Patchmatch-RL test81.90 31380.13 31687.23 32380.71 37770.12 37184.07 38188.19 38283.16 29370.57 35482.18 36987.18 8992.59 35782.28 26762.78 36898.98 121
v2v48287.27 25285.76 25791.78 24189.59 32787.58 20098.56 16595.54 28184.53 27082.51 26291.78 28473.11 25196.47 27182.07 26874.14 32491.30 298
Fast-Effi-MVS+-dtu88.84 22188.59 21489.58 29593.44 27278.18 33998.65 15294.62 31988.46 18284.12 24295.37 22068.91 27996.52 26682.06 26991.70 20594.06 240
pmmvs585.87 27384.40 28490.30 27688.53 34384.23 27698.60 16093.71 33781.53 31980.29 29692.02 27764.51 31595.52 31882.04 27078.34 29391.15 302
V4287.00 25485.68 25990.98 25589.91 32186.08 24198.32 19595.61 27783.67 28582.72 25690.67 30774.00 24396.53 26581.94 27174.28 32190.32 324
EPMVS92.59 15091.59 15695.59 13097.22 12990.03 14491.78 34998.04 4890.42 12991.66 15990.65 30986.49 10997.46 22881.78 27296.31 14799.28 97
DIV-MVS_self_test87.82 23986.81 24290.87 25994.87 23185.39 25997.81 23095.22 30482.92 30080.76 29191.31 29381.99 18595.81 31181.36 27375.04 31191.42 293
cl____87.82 23986.79 24390.89 25894.88 23085.43 25797.81 23095.24 29982.91 30180.71 29291.22 29481.97 18795.84 30981.34 27475.06 31091.40 294
RPSCF85.33 28385.55 26184.67 34094.63 23862.28 37993.73 33193.76 33574.38 35785.23 23297.06 17164.09 31698.31 17380.98 27586.08 24293.41 245
OurMVSNet-221017-084.13 30083.59 29085.77 33387.81 35070.24 36994.89 32093.65 33986.08 24476.53 32593.28 26061.41 32896.14 29580.95 27677.69 30090.93 307
v14886.38 26785.06 26790.37 27589.47 33384.10 27998.52 16795.48 28483.80 28180.93 29090.22 32574.60 23496.31 28580.92 27771.55 34690.69 317
PatchMatch-RL91.47 17090.54 17994.26 17998.20 9586.36 23096.94 27097.14 16887.75 21088.98 19895.75 21171.80 26499.40 12780.92 27797.39 12897.02 207
FE-MVS91.38 17390.16 18495.05 14996.46 15987.53 20289.69 36697.84 5982.97 29692.18 15392.00 28084.07 14698.93 15380.71 27995.52 16198.68 151
miper_lstm_enhance86.90 25586.20 25189.00 30794.53 23981.19 31796.74 28095.24 29982.33 31080.15 29890.51 31881.99 18594.68 33880.71 27973.58 32891.12 303
PCF-MVS89.78 591.26 17489.63 18996.16 10895.44 19991.58 10195.29 31796.10 23585.07 26182.75 25597.45 15278.28 21799.78 8480.60 28195.65 16097.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
BH-RMVSNet91.25 17689.99 18595.03 15096.75 15088.55 18198.65 15294.95 30787.74 21187.74 20697.80 13268.27 28598.14 18180.53 28297.49 12598.41 162
GeoE90.60 19089.56 19093.72 20195.10 22085.43 25799.41 6894.94 30883.96 27987.21 21396.83 18474.37 23897.05 24380.50 28393.73 17798.67 152
CP-MVSNet86.54 26385.45 26389.79 29091.02 31082.78 29897.38 25197.56 11685.37 25579.53 30793.03 26571.86 26395.25 32579.92 28473.43 33291.34 296
PatchmatchNetpermissive92.05 16491.04 16795.06 14796.17 17489.04 16491.26 35797.26 15389.56 15390.64 17890.56 31588.35 6697.11 23979.53 28596.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
v114486.83 25785.31 26591.40 24589.75 32587.21 21698.31 19695.45 28683.22 29182.70 25790.78 30273.36 24596.36 27779.49 28674.69 31590.63 319
IterMVS85.81 27684.67 27789.22 30293.51 26883.67 28596.32 29194.80 31385.09 26078.69 31390.17 32866.57 30293.17 35179.48 28777.42 30190.81 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
IterMVS-SCA-FT85.73 27984.64 27889.00 30793.46 27182.90 29496.27 29294.70 31685.02 26378.62 31590.35 32066.61 30093.33 34879.38 28877.36 30290.76 314
GBi-Net86.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
test186.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
FMVSNet388.81 22587.08 23893.99 19296.52 15694.59 4798.08 21696.20 22785.85 24782.12 27291.60 28774.05 24295.40 32279.04 28980.24 28391.99 274
LF4IMVS81.94 31281.17 31184.25 34287.23 35768.87 37493.35 33591.93 36283.35 29075.40 33493.00 26649.25 37096.65 25778.88 29278.11 29487.22 360
v886.11 27084.45 28191.10 25189.99 32086.85 21997.24 25995.36 29381.99 31479.89 30289.86 33074.53 23696.39 27578.83 29372.32 34090.05 331
pm-mvs184.68 29082.78 29790.40 27289.58 32885.18 26397.31 25494.73 31581.93 31676.05 32892.01 27865.48 31196.11 29678.75 29469.14 35189.91 334
test_f71.94 34470.82 34575.30 36072.77 38853.28 38891.62 35189.66 37775.44 35264.47 37478.31 38020.48 39189.56 37578.63 29566.02 36383.05 379
v14419286.40 26684.89 27190.91 25689.48 33285.59 25498.21 20395.43 28982.45 30882.62 26090.58 31472.79 25596.36 27778.45 29674.04 32590.79 312
PS-CasMVS85.81 27684.58 27989.49 29990.77 31282.11 30497.20 26297.36 15084.83 26779.12 31292.84 26867.42 29595.16 32778.39 29773.25 33391.21 301
tmp_tt53.66 35852.86 36056.05 37632.75 40341.97 40073.42 39076.12 39721.91 39739.68 39396.39 19842.59 37765.10 39678.00 29814.92 39761.08 389
JIA-IIPM85.97 27284.85 27289.33 30193.23 27673.68 35785.05 37697.13 17069.62 37191.56 16268.03 38688.03 7396.96 24577.89 29993.12 18097.34 196
MDTV_nov1_ep1390.47 18196.14 17788.55 18191.34 35697.51 12789.58 15192.24 15290.50 31986.99 9597.61 22077.64 30092.34 192
v119286.32 26884.71 27691.17 24989.53 33186.40 22798.13 20895.44 28882.52 30682.42 26590.62 31171.58 26796.33 28477.23 30174.88 31290.79 312
FMVSNet286.90 25584.79 27493.24 20695.11 21792.54 8997.67 24395.86 26482.94 29780.55 29391.17 29662.89 32295.29 32477.23 30179.71 28991.90 275
MVP-Stereo86.61 26285.83 25688.93 30988.70 34183.85 28396.07 30194.41 32682.15 31375.64 33391.96 28167.65 29296.45 27377.20 30398.72 9586.51 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpm cat188.89 21987.27 23593.76 19895.79 18785.32 26190.76 36297.09 17676.14 35085.72 22788.59 34082.92 16598.04 19076.96 30491.43 21097.90 183
v1085.73 27984.01 28790.87 25990.03 31986.73 22197.20 26295.22 30481.25 32279.85 30389.75 33173.30 24896.28 28976.87 30572.64 33689.61 339
v192192086.02 27184.44 28290.77 26289.32 33485.20 26298.10 21395.35 29482.19 31282.25 27090.71 30470.73 27096.30 28876.85 30674.49 31790.80 311
MS-PatchMatch86.75 25885.92 25589.22 30291.97 29282.47 30296.91 27196.14 23383.74 28277.73 32293.53 25558.19 33997.37 23576.75 30798.35 10687.84 353
K. test v381.04 31679.77 31984.83 33887.41 35470.23 37095.60 31593.93 33483.70 28467.51 36789.35 33655.76 34593.58 34776.67 30868.03 35590.67 318
PM-MVS74.88 34072.85 34380.98 35578.98 38164.75 37890.81 36185.77 38580.95 32668.23 36482.81 36529.08 38792.84 35376.54 30962.46 37085.36 369
WR-MVS_H86.53 26485.49 26289.66 29491.04 30983.31 28997.53 24798.20 3684.95 26579.64 30490.90 30078.01 21995.33 32376.29 31072.81 33490.35 323
ACMH+83.78 1584.21 29782.56 30289.15 30493.73 26579.16 33096.43 28794.28 32881.09 32474.00 34094.03 23954.58 35397.67 21476.10 31178.81 29190.63 319
PEN-MVS85.21 28483.93 28889.07 30689.89 32381.31 31597.09 26597.24 15784.45 27278.66 31492.68 27068.44 28494.87 33275.98 31270.92 34991.04 305
USDC84.74 28882.93 29390.16 27891.73 29983.54 28695.00 31993.30 34488.77 17573.19 34593.30 25953.62 35697.65 21775.88 31381.54 28089.30 342
EU-MVSNet84.19 29884.42 28383.52 34688.64 34267.37 37596.04 30295.76 26885.29 25678.44 31893.18 26270.67 27191.48 36875.79 31475.98 30591.70 277
v124085.77 27884.11 28590.73 26389.26 33585.15 26597.88 22795.23 30381.89 31782.16 27190.55 31669.60 27896.31 28575.59 31574.87 31390.72 316
ITE_SJBPF87.93 31592.26 28776.44 34793.47 34287.67 21579.95 30195.49 21656.50 34497.38 23375.24 31682.33 27689.98 333
dp90.16 19988.83 20794.14 18496.38 16486.42 22691.57 35397.06 17884.76 26888.81 19990.19 32784.29 14397.43 23175.05 31791.35 21398.56 156
LS3D90.19 19788.72 20994.59 16798.97 7386.33 23296.90 27296.60 20074.96 35484.06 24398.74 8875.78 22899.83 7374.93 31897.57 12197.62 190
TDRefinement78.01 33175.31 33586.10 33170.06 39073.84 35693.59 33491.58 36674.51 35673.08 34891.04 29749.63 36997.12 23874.88 31959.47 37487.33 358
tpmvs89.16 21387.76 22693.35 20497.19 13084.75 27190.58 36497.36 15081.99 31484.56 23689.31 33783.98 14798.17 18074.85 32090.00 22397.12 201
pmmvs679.90 32177.31 32787.67 31884.17 36878.13 34095.86 30993.68 33867.94 37672.67 35189.62 33350.98 36495.75 31274.80 32166.04 36289.14 345
SixPastTwentyTwo82.63 30881.58 30685.79 33288.12 34771.01 36795.17 31892.54 35284.33 27372.93 35092.08 27560.41 33395.61 31774.47 32274.15 32390.75 315
ACMH83.09 1784.60 29182.61 30190.57 26693.18 27782.94 29296.27 29294.92 30981.01 32572.61 35293.61 25256.54 34397.79 20374.31 32381.07 28190.99 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
test_vis3_rt61.29 35158.75 35468.92 36867.41 39152.84 39091.18 35959.23 40366.96 37841.96 39158.44 39111.37 39994.72 33774.25 32457.97 37759.20 390
ADS-MVSNet287.62 24886.88 24189.86 28796.21 17179.14 33187.15 37092.99 34583.01 29489.91 19087.27 35078.87 21292.80 35574.20 32592.27 19497.64 187
ADS-MVSNet88.99 21587.30 23494.07 18796.21 17187.56 20187.15 37096.78 19383.01 29489.91 19087.27 35078.87 21297.01 24474.20 32592.27 19497.64 187
lessismore_v085.08 33685.59 36469.28 37290.56 37267.68 36690.21 32654.21 35595.46 31973.88 32762.64 36990.50 321
MIMVSNet84.48 29481.83 30492.42 22391.73 29987.36 20885.52 37394.42 32581.40 32081.91 27887.58 34451.92 36092.81 35473.84 32888.15 22897.08 205
v7n84.42 29682.75 29889.43 30088.15 34681.86 30696.75 27995.67 27480.53 32878.38 31989.43 33569.89 27396.35 28273.83 32972.13 34290.07 329
ambc79.60 35772.76 38956.61 38476.20 38892.01 36168.25 36380.23 37623.34 38994.73 33673.78 33060.81 37287.48 355
pmmvs-eth3d78.71 32876.16 33386.38 32780.25 37981.19 31794.17 32792.13 35977.97 34166.90 37082.31 36855.76 34592.56 35873.63 33162.31 37185.38 368
FMVSNet183.94 30281.32 31091.80 23791.94 29588.81 17596.77 27695.25 29677.98 34078.25 32090.25 32250.37 36694.97 32973.27 33277.81 29991.62 281
MSDG88.29 23586.37 24894.04 19096.90 14386.15 23996.52 28594.36 32777.89 34479.22 31096.95 17569.72 27599.59 10473.20 33392.58 18996.37 226
test0.0.03 188.96 21688.61 21290.03 28491.09 30884.43 27498.97 12397.02 18390.21 13280.29 29696.31 20184.89 13691.93 36672.98 33485.70 24593.73 241
UnsupCasMVSNet_eth78.90 32676.67 33185.58 33482.81 37374.94 35291.98 34796.31 21984.64 26965.84 37387.71 34351.33 36192.23 36272.89 33556.50 38089.56 340
DTE-MVSNet84.14 29982.80 29588.14 31488.95 33879.87 32696.81 27596.24 22583.50 28777.60 32392.52 27267.89 29194.24 34372.64 33669.05 35290.32 324
EPNet_dtu92.28 15792.15 14492.70 21997.29 12784.84 26998.64 15497.82 6292.91 7593.02 14497.02 17285.48 12895.70 31472.25 33794.89 16797.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
AllTest84.97 28783.12 29290.52 26996.82 14578.84 33395.89 30592.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
TestCases90.52 26996.82 14578.84 33392.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
DP-MVS88.75 22786.56 24695.34 13698.92 7787.45 20597.64 24493.52 34170.55 36681.49 28597.25 16074.43 23799.88 5471.14 34094.09 17398.67 152
CR-MVSNet88.83 22387.38 23393.16 20893.47 26986.24 23384.97 37794.20 33088.92 17290.76 17686.88 35484.43 14194.82 33470.64 34192.17 19798.41 162
KD-MVS_2432*160082.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
miper_refine_blended82.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
test_method70.10 34668.66 34974.41 36386.30 36355.84 38594.47 32289.82 37535.18 39266.15 37284.75 36230.54 38677.96 39370.40 34460.33 37389.44 341
LTVRE_ROB81.71 1984.59 29282.72 29990.18 27792.89 28183.18 29093.15 33694.74 31478.99 33575.14 33692.69 26965.64 30897.63 21869.46 34581.82 27989.74 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
myMVS_eth3d88.68 23089.07 20187.50 32095.14 21479.74 32797.68 24196.66 19686.52 23882.63 25896.84 18285.22 13389.89 37269.43 34691.54 20892.87 246
FMVSNet582.29 30980.54 31387.52 31993.79 26484.01 28093.73 33192.47 35376.92 34774.27 33886.15 35863.69 32089.24 37769.07 34774.79 31489.29 343
our_test_384.47 29582.80 29589.50 29789.01 33683.90 28297.03 26794.56 32081.33 32175.36 33590.52 31771.69 26594.54 34068.81 34876.84 30390.07 329
UnsupCasMVSNet_bld73.85 34270.14 34684.99 33779.44 38075.73 34888.53 36795.24 29970.12 36961.94 37774.81 38341.41 37993.62 34668.65 34951.13 38785.62 367
Patchmtry83.61 30581.64 30589.50 29793.36 27382.84 29784.10 38094.20 33069.47 37279.57 30686.88 35484.43 14194.78 33568.48 35074.30 32090.88 309
KD-MVS_self_test77.47 33475.88 33482.24 34981.59 37468.93 37392.83 34294.02 33377.03 34673.14 34683.39 36455.44 34990.42 36967.95 35157.53 37887.38 356
WAC-MVS79.74 32767.75 352
TransMVSNet (Re)81.97 31179.61 32089.08 30589.70 32684.01 28097.26 25791.85 36378.84 33673.07 34991.62 28667.17 29795.21 32667.50 35359.46 37588.02 352
COLMAP_ROBcopyleft82.69 1884.54 29382.82 29489.70 29296.72 15178.85 33295.89 30592.83 34971.55 36377.54 32495.89 20959.40 33699.14 14567.26 35488.26 22791.11 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
EG-PatchMatch MVS79.92 32077.59 32586.90 32587.06 35877.90 34396.20 29994.06 33274.61 35566.53 37188.76 33940.40 38196.20 29067.02 35583.66 26486.61 362
DSMNet-mixed81.60 31481.43 30882.10 35184.36 36760.79 38093.63 33386.74 38479.00 33479.32 30987.15 35263.87 31889.78 37466.89 35691.92 19995.73 232
testgi82.29 30981.00 31286.17 33087.24 35674.84 35397.39 24991.62 36588.63 17675.85 33295.42 21746.07 37391.55 36766.87 35779.94 28792.12 269
MDA-MVSNet_test_wron79.65 32377.05 32887.45 32187.79 35280.13 32496.25 29594.44 32273.87 35851.80 38487.47 34968.04 28892.12 36466.02 35867.79 35790.09 327
YYNet179.64 32477.04 32987.43 32287.80 35179.98 32596.23 29694.44 32273.83 35951.83 38387.53 34567.96 29092.07 36566.00 35967.75 35890.23 326
DeepMVS_CXcopyleft76.08 35990.74 31351.65 39290.84 37086.47 24157.89 38087.98 34135.88 38492.60 35665.77 36065.06 36583.97 375
Anonymous2024052178.63 32976.90 33083.82 34482.82 37272.86 36095.72 31493.57 34073.55 36072.17 35384.79 36149.69 36892.51 35965.29 36174.50 31686.09 366
TinyColmap80.42 31977.94 32487.85 31692.09 29078.58 33693.74 33089.94 37474.99 35369.77 35791.78 28446.09 37297.58 22265.17 36277.89 29587.38 356
MVS-HIRNet79.01 32575.13 33790.66 26493.82 26381.69 30885.16 37493.75 33654.54 38474.17 33959.15 39057.46 34196.58 26263.74 36394.38 17093.72 242
ppachtmachnet_test83.63 30481.57 30789.80 28989.01 33685.09 26697.13 26494.50 32178.84 33676.14 32791.00 29869.78 27494.61 33963.40 36474.36 31989.71 338
CL-MVSNet_self_test79.89 32278.34 32384.54 34181.56 37575.01 35196.88 27395.62 27681.10 32375.86 33185.81 35968.49 28390.26 37063.21 36556.51 37988.35 350
Patchmatch-test86.25 26984.06 28692.82 21494.42 24082.88 29682.88 38494.23 32971.58 36279.39 30890.62 31189.00 5996.42 27463.03 36691.37 21299.16 106
pmmvs372.86 34369.76 34882.17 35073.86 38674.19 35594.20 32689.01 38064.23 38367.72 36580.91 37541.48 37888.65 37962.40 36754.02 38383.68 376
new_pmnet76.02 33673.71 34182.95 34783.88 36972.85 36191.26 35792.26 35670.44 36762.60 37681.37 37147.64 37192.32 36161.85 36872.10 34383.68 376
tfpnnormal83.65 30381.35 30990.56 26891.37 30588.06 18997.29 25597.87 5778.51 33976.20 32690.91 29964.78 31496.47 27161.71 36973.50 32987.13 361
testing387.75 24388.22 22186.36 32894.66 23777.41 34499.52 5097.95 5486.05 24581.12 28896.69 18986.18 11589.31 37661.65 37090.12 22292.35 259
MDA-MVSNet-bldmvs77.82 33374.75 33987.03 32488.33 34478.52 33796.34 29092.85 34875.57 35148.87 38687.89 34257.32 34292.49 36060.79 37164.80 36690.08 328
Anonymous2023120680.76 31779.42 32184.79 33984.78 36672.98 35996.53 28492.97 34679.56 33374.33 33788.83 33861.27 32992.15 36360.59 37275.92 30689.24 344
new-patchmatchnet74.80 34172.40 34481.99 35278.36 38272.20 36394.44 32392.36 35477.06 34563.47 37579.98 37751.04 36388.85 37860.53 37354.35 38284.92 373
LCM-MVSNet60.07 35356.37 35571.18 36554.81 39948.67 39382.17 38589.48 37837.95 39049.13 38569.12 38413.75 39881.76 38559.28 37451.63 38683.10 378
TAPA-MVS87.50 990.35 19289.05 20294.25 18098.48 9185.17 26498.42 18096.58 20482.44 30987.24 21298.53 10582.77 16898.84 15559.09 37597.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
test20.0378.51 33077.48 32681.62 35383.07 37171.03 36696.11 30092.83 34981.66 31869.31 35989.68 33257.53 34087.29 38258.65 37668.47 35386.53 363
PatchT85.44 28283.19 29192.22 22593.13 27883.00 29183.80 38396.37 21670.62 36590.55 17979.63 37884.81 13894.87 33258.18 37791.59 20698.79 143
APD_test168.93 34766.98 35074.77 36280.62 37853.15 38987.97 36885.01 38753.76 38559.26 37987.52 34625.19 38889.95 37156.20 37867.33 35981.19 380
MIMVSNet175.92 33773.30 34283.81 34581.29 37675.57 34992.26 34592.05 36073.09 36167.48 36886.18 35740.87 38087.64 38155.78 37970.68 35088.21 351
OpenMVS_ROBcopyleft73.86 2077.99 33275.06 33886.77 32683.81 37077.94 34296.38 28991.53 36767.54 37768.38 36287.13 35343.94 37496.08 29755.03 38081.83 27886.29 365
RPMNet85.07 28681.88 30394.64 16593.47 26986.24 23384.97 37797.21 16064.85 38290.76 17678.80 37980.95 19899.27 13753.76 38192.17 19798.41 162
N_pmnet70.19 34569.87 34771.12 36688.24 34530.63 40595.85 31028.70 40470.18 36868.73 36186.55 35664.04 31793.81 34453.12 38273.46 33088.94 346
dmvs_testset77.17 33578.99 32271.71 36487.25 35538.55 40191.44 35481.76 39285.77 24969.49 35895.94 20869.71 27684.37 38452.71 38376.82 30492.21 264
PMMVS258.97 35455.07 35770.69 36762.72 39455.37 38685.97 37280.52 39349.48 38645.94 38768.31 38515.73 39680.78 38949.79 38437.12 39275.91 381
test_040278.81 32776.33 33286.26 32991.18 30778.44 33895.88 30791.34 36868.55 37370.51 35689.91 32952.65 35994.99 32847.14 38579.78 28885.34 370
Syy-MVS84.10 30184.53 28082.83 34895.14 21465.71 37697.68 24196.66 19686.52 23882.63 25896.84 18268.15 28689.89 37245.62 38691.54 20892.87 246
FPMVS61.57 35060.32 35365.34 37160.14 39742.44 39991.02 36089.72 37644.15 38742.63 39080.93 37319.02 39280.59 39042.50 38772.76 33573.00 384
testf156.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
APD_test256.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
EGC-MVSNET60.70 35255.37 35676.72 35886.35 36271.08 36589.96 36584.44 3890.38 4011.50 40284.09 36337.30 38288.10 38040.85 39073.44 33170.97 386
ANet_high50.71 35946.17 36264.33 37244.27 40152.30 39176.13 38978.73 39464.95 38127.37 39555.23 39214.61 39767.74 39536.01 39118.23 39572.95 385
Gipumacopyleft54.77 35752.22 36162.40 37586.50 36059.37 38350.20 39390.35 37336.52 39141.20 39249.49 39318.33 39481.29 38632.10 39265.34 36446.54 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft41.42 2345.67 36042.50 36355.17 37734.28 40232.37 40366.24 39178.71 39530.72 39322.04 39859.59 3894.59 40277.85 39427.49 39358.84 37655.29 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
MVEpermissive44.00 2241.70 36137.64 36653.90 37849.46 40043.37 39865.09 39266.66 40026.19 39625.77 39748.53 3943.58 40463.35 39726.15 39427.28 39354.97 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
WB-MVS66.44 34866.29 35166.89 36974.84 38444.93 39693.00 33784.09 39071.15 36455.82 38181.63 37063.79 31980.31 39121.85 39550.47 38875.43 382
SSC-MVS65.42 34965.20 35266.06 37073.96 38543.83 39792.08 34683.54 39169.77 37054.73 38280.92 37463.30 32179.92 39220.48 39648.02 38974.44 383
E-PMN41.02 36240.93 36441.29 37961.97 39533.83 40284.00 38265.17 40127.17 39427.56 39446.72 39517.63 39560.41 39819.32 39718.82 39429.61 394
EMVS39.96 36339.88 36540.18 38059.57 39832.12 40484.79 37964.57 40226.27 39526.14 39644.18 39818.73 39359.29 39917.03 39817.67 39629.12 395
wuyk23d16.71 36616.73 37016.65 38160.15 39625.22 40641.24 3945.17 4056.56 3985.48 4013.61 4013.64 40322.72 40015.20 3999.52 3981.99 398
testmvs18.81 36523.05 3686.10 3834.48 4042.29 40897.78 2323.00 4063.27 39918.60 39962.71 3871.53 4062.49 40214.26 4001.80 39913.50 397
test12316.58 36719.47 3697.91 3823.59 4055.37 40794.32 3241.39 4072.49 40013.98 40044.60 3972.91 4052.65 40111.35 4010.57 40015.70 396
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k22.52 36430.03 3670.00 3840.00 4060.00 4090.00 39597.17 1660.00 4020.00 40398.77 8574.35 2390.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.87 3699.16 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40282.48 1760.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.21 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.50 1080.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
FOURS199.50 4288.94 17099.55 4497.47 13591.32 10898.12 44
test_one_060199.59 2894.89 3497.64 9793.14 6998.93 2199.45 1493.45 18
eth-test20.00 406
eth-test0.00 406
test_241102_ONE99.63 1895.24 2597.72 7894.16 4599.30 899.49 993.32 1999.98 9
save fliter99.34 5093.85 6299.65 3597.63 10195.69 22
test072699.66 1295.20 3099.77 1797.70 8393.95 4899.35 799.54 393.18 22
GSMVS98.84 136
test_part299.54 3695.42 2098.13 42
sam_mvs188.39 6598.84 136
sam_mvs87.08 91
MTGPAbinary97.45 138
test_post46.00 39687.37 8397.11 239
patchmatchnet-post84.86 36088.73 6296.81 252
MTMP99.21 8691.09 369
TEST999.57 3393.17 7399.38 7197.66 9189.57 15298.39 3599.18 3390.88 3899.66 94
test_899.55 3593.07 7699.37 7497.64 9790.18 13498.36 3799.19 3090.94 3599.64 100
agg_prior99.54 3692.66 8597.64 9797.98 5199.61 102
test_prior492.00 9499.41 68
test_prior97.01 6099.58 3091.77 9597.57 11599.49 11299.79 36
新几何298.26 199
旧先验198.97 7392.90 8397.74 7499.15 3991.05 3499.33 6399.60 67
原ACMM298.69 147
test22298.32 9291.21 10598.08 21697.58 11283.74 28295.87 9899.02 5886.74 10099.64 4099.81 33
segment_acmp90.56 42
testdata197.89 22592.43 82
test1297.83 3399.33 5394.45 4997.55 11797.56 5688.60 6399.50 11199.71 3499.55 72
plane_prior793.84 26085.73 251
plane_prior693.92 25786.02 24572.92 252
plane_prior496.52 192
plane_prior385.91 24693.65 6186.99 214
plane_prior299.02 11693.38 66
plane_prior193.90 259
plane_prior86.07 24399.14 10193.81 5886.26 239
n20.00 408
nn0.00 408
door-mid84.90 388
test1197.68 87
door85.30 386
HQP5-MVS86.39 228
HQP-NCC93.95 25399.16 9393.92 5087.57 207
ACMP_Plane93.95 25399.16 9393.92 5087.57 207
HQP4-MVS87.57 20797.77 20592.72 248
HQP3-MVS96.37 21686.29 237
HQP2-MVS73.34 246
NP-MVS93.94 25686.22 23596.67 190
ACMMP++_ref82.64 274
ACMMP++83.83 261
Test By Simon83.62 150