This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DELS-MVS82.32 482.50 381.79 1186.80 4256.89 2592.77 286.30 7777.83 177.88 3392.13 4160.24 694.78 1978.97 4389.61 793.69 8
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
patch_mono-280.84 1181.59 978.62 5790.34 953.77 9588.08 5288.36 4376.17 279.40 2791.09 6255.43 1990.09 10385.01 1280.40 8091.99 43
MCST-MVS83.01 183.30 282.15 1092.84 257.58 1493.77 191.10 675.95 377.10 3693.09 2754.15 2895.57 1285.80 1085.87 3693.31 11
MM80.89 2055.40 5492.16 989.85 1575.28 482.41 1093.86 854.30 2593.98 2390.29 187.13 2093.30 12
MVS_030481.58 882.05 680.20 2782.36 12854.70 7691.13 1988.95 2374.49 580.04 2493.64 1152.40 3693.27 3088.85 486.56 3092.61 26
CLD-MVS75.60 6375.39 5576.24 11280.69 17152.40 13290.69 2386.20 7974.40 665.01 13788.93 11042.05 14690.58 8976.57 6173.96 13885.73 187
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
EPNet78.36 2578.49 2177.97 7385.49 5752.04 13889.36 3884.07 13573.22 777.03 3791.72 5249.32 6290.17 10273.46 8582.77 5891.69 48
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CANet80.90 1081.17 1180.09 3287.62 3754.21 8891.60 1386.47 7373.13 879.89 2593.10 2549.88 5892.98 3284.09 1684.75 4893.08 17
VPNet72.07 11571.42 11074.04 17278.64 20847.17 25789.91 3187.97 4872.56 964.66 14085.04 16741.83 15188.33 15961.17 15860.97 24786.62 169
casdiffmvspermissive77.36 3676.85 3878.88 4880.40 17854.66 8087.06 7685.88 8372.11 1071.57 8288.63 11950.89 4990.35 9476.00 6379.11 9691.63 50
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
casdiffmvs_mvgpermissive77.75 3277.28 3379.16 4280.42 17754.44 8487.76 5885.46 9071.67 1171.38 8588.35 12151.58 4091.22 6879.02 4279.89 9091.83 47
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline172.51 10872.12 9973.69 18585.05 6544.46 28983.51 17386.13 8071.61 1264.64 14187.97 13055.00 2389.48 11759.07 17556.05 29487.13 158
WTY-MVS77.47 3577.52 3177.30 8788.33 3046.25 27088.46 4990.32 1171.40 1372.32 7591.72 5253.44 3092.37 4566.28 12175.42 12693.28 13
baseline76.86 4476.24 4678.71 5380.47 17654.20 9083.90 16284.88 11471.38 1471.51 8389.15 10850.51 5090.55 9075.71 6578.65 9991.39 59
gm-plane-assit83.24 10154.21 8870.91 1588.23 12595.25 1466.37 119
PS-MVSNAJ80.06 1579.52 1681.68 1385.58 5560.97 391.69 1187.02 6370.62 1680.75 2093.22 2437.77 18992.50 4282.75 2286.25 3391.57 53
DeepPCF-MVS69.37 180.65 1281.56 1077.94 7585.46 5849.56 19390.99 2186.66 7170.58 1780.07 2395.30 156.18 1790.97 7882.57 2486.22 3493.28 13
diffmvspermissive75.11 7174.65 6776.46 10978.52 21053.35 10983.28 18479.94 20870.51 1871.64 8188.72 11446.02 9086.08 23377.52 5675.75 12489.96 96
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
CNVR-MVS81.76 781.90 781.33 1790.04 1057.70 1291.71 1088.87 2870.31 1977.64 3593.87 752.58 3593.91 2684.17 1487.92 1592.39 30
xiu_mvs_v2_base79.86 1679.31 1781.53 1485.03 6760.73 491.65 1286.86 6670.30 2080.77 1993.07 2937.63 19492.28 4782.73 2385.71 3791.57 53
baseline275.15 7074.54 6876.98 9981.67 14351.74 14683.84 16491.94 169.97 2158.98 21386.02 15659.73 891.73 5868.37 10770.40 17187.48 151
CHOSEN 1792x268876.24 5174.03 7482.88 183.09 10662.84 285.73 10485.39 9369.79 2264.87 13983.49 18841.52 15593.69 2870.55 9781.82 6792.12 37
CANet_DTU73.71 8873.14 8175.40 13782.61 12450.05 18284.67 14279.36 22469.72 2375.39 4190.03 9129.41 28285.93 23967.99 11079.11 9690.22 86
TSAR-MVS + MP.78.31 2678.26 2278.48 6181.33 15656.31 3781.59 22786.41 7469.61 2481.72 1588.16 12655.09 2288.04 17074.12 8086.31 3291.09 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
dmvs_re67.61 19566.00 19972.42 21081.86 13543.45 30164.67 34180.00 20669.56 2560.07 19485.00 16834.71 23887.63 18751.48 24166.68 19686.17 177
DPM-MVS82.39 382.36 582.49 580.12 18159.50 592.24 890.72 969.37 2683.22 894.47 263.81 593.18 3174.02 8193.25 294.80 1
lupinMVS78.38 2478.11 2579.19 4083.02 10955.24 5891.57 1484.82 11569.12 2776.67 3892.02 4544.82 11090.23 10080.83 3580.09 8492.08 38
iter_conf0573.51 9372.24 9577.33 8587.93 3655.97 4387.90 5770.81 32568.72 2864.04 15284.36 17447.54 7290.87 8071.11 9567.75 19085.13 197
PAPM76.76 4676.07 4878.81 4980.20 17959.11 686.86 8286.23 7868.60 2970.18 9688.84 11351.57 4187.16 19965.48 12786.68 2890.15 90
DeepC-MVS_fast67.50 378.00 2977.63 2979.13 4388.52 2755.12 6389.95 2885.98 8268.31 3071.33 8692.75 3245.52 9790.37 9371.15 9485.14 4491.91 44
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
jason77.01 4076.45 4278.69 5479.69 18654.74 7390.56 2483.99 13868.26 3174.10 5290.91 6842.14 14489.99 10579.30 4079.12 9591.36 61
jason: jason.
ETV-MVS77.17 3876.74 3978.48 6181.80 13654.55 8286.13 9385.33 9668.20 3273.10 6290.52 7645.23 10190.66 8679.37 3980.95 7290.22 86
h-mvs3373.95 8272.89 8477.15 9280.17 18050.37 17484.68 14083.33 14868.08 3371.97 7788.65 11842.50 13891.15 7178.82 4457.78 28189.91 98
hse-mvs271.44 12770.68 11873.73 18476.34 24147.44 25179.45 26279.47 22068.08 3371.97 7786.01 15842.50 13886.93 20778.82 4453.46 31886.83 166
MVS_Test75.85 5974.93 6378.62 5784.08 8155.20 6183.99 16085.17 10568.07 3573.38 5982.76 19850.44 5189.00 13165.90 12380.61 7691.64 49
ET-MVSNet_ETH3D75.23 6874.08 7278.67 5584.52 7455.59 4788.92 4389.21 1968.06 3653.13 28690.22 8449.71 5987.62 18972.12 9170.82 16692.82 21
tpmrst71.04 13369.77 13574.86 15483.19 10355.86 4675.64 28378.73 23867.88 3764.99 13873.73 30249.96 5779.56 30565.92 12267.85 18989.14 115
dcpmvs_279.33 1978.94 1980.49 2289.75 1256.54 3184.83 13583.68 14267.85 3869.36 9790.24 8260.20 792.10 5284.14 1580.40 8092.82 21
PVSNet_Blended76.53 4876.54 4176.50 10885.91 4851.83 14488.89 4484.24 13267.82 3969.09 9989.33 10546.70 8288.13 16675.43 6881.48 7189.55 104
tpm68.36 18067.48 17270.97 24379.93 18451.34 15676.58 28178.75 23767.73 4063.54 16374.86 29348.33 6472.36 35053.93 22363.71 22289.21 112
NCCC79.57 1879.23 1880.59 2189.50 1556.99 2391.38 1588.17 4567.71 4173.81 5492.75 3246.88 7993.28 2978.79 4684.07 5391.50 57
canonicalmvs78.17 2777.86 2879.12 4484.30 7754.22 8787.71 5984.57 12467.70 4277.70 3492.11 4450.90 4789.95 10678.18 5377.54 10793.20 15
3Dnovator64.70 674.46 7572.48 8880.41 2482.84 11755.40 5483.08 18988.61 3867.61 4359.85 19688.66 11534.57 24093.97 2458.42 18388.70 1191.85 46
VNet77.99 3077.92 2778.19 6987.43 3850.12 18190.93 2291.41 467.48 4475.12 4290.15 8846.77 8191.00 7573.52 8478.46 10193.44 9
dmvs_testset57.65 29258.21 27355.97 34474.62 2699.82 40063.75 34363.34 35267.23 4548.89 31183.68 18739.12 17876.14 33123.43 36659.80 25381.96 248
IB-MVS68.87 274.01 8172.03 10379.94 3383.04 10855.50 4990.24 2588.65 3467.14 4661.38 18481.74 22053.21 3194.28 2160.45 16862.41 24090.03 94
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
MVSTER73.25 9672.33 9176.01 12285.54 5653.76 9683.52 16987.16 6167.06 4763.88 15781.66 22152.77 3390.44 9164.66 13664.69 21483.84 222
test_fmvsmconf_n74.41 7674.05 7375.49 13574.16 27648.38 22682.66 19772.57 31067.05 4875.11 4392.88 3146.35 8587.81 17583.93 1771.71 15790.28 84
DeepC-MVS67.15 476.90 4376.27 4578.80 5080.70 17055.02 6786.39 8786.71 6966.96 4967.91 10689.97 9248.03 6791.41 6475.60 6784.14 5289.96 96
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
FIs70.00 15170.24 13069.30 26577.93 22038.55 33583.99 16087.72 5566.86 5057.66 23984.17 17752.28 3785.31 24652.72 23668.80 18184.02 213
test_fmvsmconf0.1_n73.69 8973.15 7975.34 13970.71 31348.26 23182.15 20971.83 31466.75 5174.47 5092.59 3644.89 10787.78 18083.59 1871.35 16189.97 95
SDMVSNet71.89 11870.62 12075.70 12781.70 14051.61 14873.89 29688.72 3366.58 5261.64 18282.38 21137.63 19489.48 11777.44 5765.60 20886.01 179
sd_testset67.79 19265.95 20173.32 19181.70 14046.33 26868.99 32880.30 20266.58 5261.64 18282.38 21130.45 27687.63 18755.86 21165.60 20886.01 179
PC_three_145266.58 5287.27 293.70 966.82 494.95 1789.74 391.98 493.98 5
test_fmvsm_n_192075.56 6475.54 5375.61 12974.60 27049.51 19681.82 21974.08 29766.52 5580.40 2193.46 1746.95 7889.72 11286.69 775.30 12787.61 149
PVSNet62.49 869.27 16467.81 16573.64 18684.41 7651.85 14384.63 14377.80 25366.42 5659.80 19784.95 16922.14 33480.44 29455.03 21575.11 13188.62 128
CS-MVS76.77 4576.70 4076.99 9883.55 9148.75 21488.60 4785.18 10466.38 5772.47 7391.62 5645.53 9690.99 7774.48 7682.51 6091.23 64
UniMVSNet_NR-MVSNet68.82 17168.29 15570.40 25175.71 25542.59 31184.23 15286.78 6766.31 5858.51 22382.45 20851.57 4184.64 25953.11 22755.96 29583.96 219
HY-MVS67.03 573.90 8373.14 8176.18 11784.70 7147.36 25275.56 28486.36 7666.27 5970.66 9383.91 18051.05 4589.31 12067.10 11572.61 15091.88 45
IU-MVS89.48 1757.49 1591.38 566.22 6088.26 182.83 2187.60 1792.44 29
EI-MVSNet-Vis-set73.19 9772.60 8674.99 15382.56 12549.80 18982.55 20289.00 2266.17 6165.89 12788.98 10943.83 11992.29 4665.38 13469.01 18082.87 240
alignmvs78.08 2877.98 2678.39 6583.53 9253.22 11489.77 3285.45 9166.11 6276.59 4091.99 4754.07 2989.05 12877.34 5877.00 11092.89 20
TESTMET0.1,172.86 10172.33 9174.46 15981.98 13250.77 16285.13 12085.47 8966.09 6367.30 10983.69 18537.27 20483.57 26865.06 13578.97 9889.05 117
MSP-MVS82.30 583.47 178.80 5082.99 11152.71 12685.04 12588.63 3666.08 6486.77 392.75 3272.05 191.46 6383.35 1993.53 192.23 34
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
CostFormer73.89 8472.30 9378.66 5682.36 12856.58 2875.56 28485.30 9866.06 6570.50 9576.88 27357.02 1489.06 12768.27 10968.74 18290.33 82
NR-MVSNet67.25 20665.99 20071.04 24273.27 28643.91 29685.32 11484.75 11966.05 6653.65 28482.11 21645.05 10385.97 23747.55 26656.18 29283.24 231
HPM-MVS++copyleft80.50 1380.71 1379.88 3487.34 3955.20 6189.93 2987.55 5866.04 6779.46 2693.00 3053.10 3291.76 5780.40 3689.56 892.68 25
CS-MVS-test77.20 3777.25 3477.05 9384.60 7249.04 20589.42 3685.83 8565.90 6872.85 6691.98 4945.10 10291.27 6675.02 7384.56 4990.84 72
test_fmvsmconf0.01_n71.97 11770.95 11675.04 15066.21 33947.87 24480.35 25070.08 33065.85 6972.69 6891.68 5439.99 17187.67 18482.03 2769.66 17689.58 103
HQP-NCC79.02 19788.00 5365.45 7064.48 145
ACMP_Plane79.02 19788.00 5365.45 7064.48 145
HQP-MVS72.34 11071.44 10975.03 15179.02 19751.56 15088.00 5383.68 14265.45 7064.48 14585.13 16537.35 20188.62 14566.70 11673.12 14484.91 201
PVSNet_BlendedMVS73.42 9473.30 7773.76 18285.91 4851.83 14486.18 9284.24 13265.40 7369.09 9980.86 22946.70 8288.13 16675.43 6865.92 20781.33 264
MS-PatchMatch72.34 11071.26 11175.61 12982.38 12755.55 4888.00 5389.95 1465.38 7456.51 25880.74 23132.28 26192.89 3357.95 19288.10 1478.39 299
v2v48269.55 16267.64 16775.26 14772.32 29853.83 9384.93 13281.94 17265.37 7560.80 18979.25 24341.62 15288.98 13463.03 14459.51 25682.98 238
VDD-MVS76.08 5474.97 6279.44 3684.27 7953.33 11191.13 1985.88 8365.33 7672.37 7489.34 10332.52 25892.76 3877.90 5575.96 12092.22 36
TranMVSNet+NR-MVSNet66.94 21665.61 21070.93 24473.45 28243.38 30383.02 19284.25 13065.31 7758.33 23081.90 21939.92 17385.52 24249.43 25354.89 30583.89 221
EI-MVSNet-UG-set72.37 10971.73 10474.29 16681.60 14649.29 20081.85 21788.64 3565.29 7865.05 13588.29 12443.18 13191.83 5663.74 13967.97 18781.75 251
MVS_111021_HR76.39 5075.38 5679.42 3785.33 6156.47 3388.15 5184.97 11165.15 7966.06 12489.88 9343.79 12192.16 4975.03 7280.03 8789.64 102
miper_enhance_ethall69.77 15668.90 14872.38 21178.93 20049.91 18583.29 18378.85 23264.90 8059.37 20679.46 23952.77 3385.16 25163.78 13858.72 26382.08 246
MG-MVS78.42 2376.99 3782.73 293.17 164.46 189.93 2988.51 4164.83 8173.52 5788.09 12748.07 6692.19 4862.24 14984.53 5091.53 55
EIA-MVS75.92 5775.18 5978.13 7085.14 6451.60 14987.17 7485.32 9764.69 8268.56 10290.53 7545.79 9391.58 6067.21 11482.18 6491.20 65
plane_prior49.57 19187.43 6564.57 8372.84 148
FC-MVSNet-test67.49 19967.91 15966.21 29776.06 24833.06 35480.82 24487.18 6064.44 8454.81 27082.87 19550.40 5282.60 27448.05 26466.55 20082.98 238
WR-MVS67.58 19666.76 18270.04 25875.92 25345.06 28786.23 9185.28 10064.31 8558.50 22581.00 22644.80 11282.00 27949.21 25655.57 30083.06 236
v114468.81 17266.82 18074.80 15572.34 29753.46 10284.68 14081.77 17964.25 8660.28 19377.91 25440.23 16688.95 13560.37 16959.52 25581.97 247
test111171.06 13270.42 12372.97 19879.48 18841.49 32184.82 13682.74 16264.20 8762.98 16787.43 13935.20 23187.92 17258.54 18078.42 10289.49 106
fmvsm_s_conf0.5_n74.48 7474.12 7175.56 13176.96 23647.85 24585.32 11469.80 33364.16 8878.74 2893.48 1645.51 9889.29 12186.48 866.62 19889.55 104
testdata177.55 27664.14 89
test250672.91 10072.43 9074.32 16580.12 18144.18 29583.19 18684.77 11864.02 9065.97 12587.43 13947.67 7188.72 14259.08 17479.66 9290.08 92
ECVR-MVScopyleft71.81 12071.00 11574.26 16780.12 18143.49 30084.69 13982.16 16764.02 9064.64 14187.43 13935.04 23589.21 12461.24 15779.66 9290.08 92
plane_prior348.95 20764.01 9262.15 177
VPA-MVSNet71.12 13070.66 11972.49 20878.75 20344.43 29187.64 6090.02 1263.97 9365.02 13681.58 22342.14 14487.42 19363.42 14163.38 22985.63 191
PVSNet_057.04 1361.19 26557.24 27873.02 19677.45 22750.31 17879.43 26377.36 26363.96 9447.51 32172.45 31825.03 31283.78 26552.76 23519.22 38884.96 200
V4267.66 19465.60 21173.86 17870.69 31553.63 9881.50 23078.61 24163.85 9559.49 20577.49 26037.98 18687.65 18562.33 14758.43 26680.29 278
mvs_anonymous72.29 11270.74 11776.94 10182.85 11654.72 7578.43 27081.54 18163.77 9661.69 18179.32 24151.11 4485.31 24662.15 15175.79 12290.79 73
PAPR75.20 6974.13 7078.41 6488.31 3155.10 6584.31 15085.66 8763.76 9767.55 10890.73 7243.48 12989.40 11966.36 12077.03 10990.73 74
PVSNet_Blended_VisFu73.40 9572.44 8976.30 11081.32 15754.70 7685.81 9878.82 23463.70 9864.53 14485.38 16447.11 7787.38 19567.75 11177.55 10686.81 167
v14868.24 18566.35 19073.88 17771.76 30151.47 15384.23 15281.90 17663.69 9958.94 21476.44 27843.72 12487.78 18060.63 16255.86 29782.39 244
UniMVSNet (Re)67.71 19366.80 18170.45 24974.44 27142.93 30782.42 20684.90 11363.69 9959.63 20080.99 22747.18 7585.23 24951.17 24456.75 28683.19 233
HQP_MVS70.96 13569.91 13474.12 17077.95 21849.57 19185.76 10082.59 16363.60 10162.15 17783.28 19236.04 22488.30 16165.46 12872.34 15284.49 205
plane_prior285.76 10063.60 101
DU-MVS66.84 21965.74 20770.16 25473.27 28642.59 31181.50 23082.92 16063.53 10358.51 22382.11 21640.75 16084.64 25953.11 22755.96 29583.24 231
fmvsm_l_conf0.5_n75.95 5676.16 4775.31 14176.01 25148.44 22584.98 12871.08 32263.50 10481.70 1693.52 1550.00 5487.18 19887.80 576.87 11290.32 83
EC-MVSNet75.30 6675.20 5775.62 12880.98 16049.00 20687.43 6584.68 12163.49 10570.97 9090.15 8842.86 13791.14 7274.33 7881.90 6686.71 168
fmvsm_s_conf0.5_n_a73.68 9073.15 7975.29 14475.45 25848.05 23883.88 16368.84 33863.43 10678.60 2993.37 2045.32 9988.92 13885.39 1164.04 21888.89 120
fmvsm_s_conf0.1_n73.80 8573.26 7875.43 13673.28 28547.80 24684.57 14569.43 33563.34 10778.40 3193.29 2244.73 11389.22 12385.99 966.28 20589.26 109
GA-MVS69.04 16666.70 18476.06 12075.11 26052.36 13383.12 18880.23 20363.32 10860.65 19179.22 24430.98 27388.37 15561.25 15666.41 20187.46 152
CDS-MVSNet70.48 14369.43 13973.64 18677.56 22548.83 21283.51 17377.45 26063.27 10962.33 17485.54 16343.85 11883.29 27257.38 20174.00 13788.79 124
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
LFMVS78.52 2177.14 3582.67 389.58 1358.90 791.27 1888.05 4763.22 11074.63 4690.83 7141.38 15694.40 2075.42 7079.90 8994.72 2
v119267.96 18865.74 20774.63 15671.79 30053.43 10784.06 15880.99 19263.19 11159.56 20277.46 26137.50 20088.65 14458.20 18758.93 26281.79 250
fmvsm_l_conf0.5_n_a75.88 5876.07 4875.31 14176.08 24748.34 22885.24 11670.62 32663.13 11281.45 1793.62 1449.98 5687.40 19487.76 676.77 11390.20 88
Fast-Effi-MVS+72.73 10371.15 11477.48 8282.75 11954.76 7286.77 8380.64 19663.05 11365.93 12684.01 17844.42 11589.03 12956.45 20976.36 11988.64 127
MAR-MVS76.76 4675.60 5280.21 2690.87 754.68 7889.14 4189.11 2062.95 11470.54 9492.33 3941.05 15794.95 1757.90 19386.55 3191.00 69
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SteuartSystems-ACMMP77.08 3976.33 4479.34 3880.98 16055.31 5689.76 3386.91 6562.94 11571.65 8091.56 5842.33 14092.56 4177.14 5983.69 5590.15 90
Skip Steuart: Steuart Systems R&D Blog.
v14419267.86 18965.76 20674.16 16971.68 30253.09 11884.14 15580.83 19462.85 11659.21 21177.28 26439.30 17688.00 17158.67 17957.88 27981.40 261
test_fmvsmvis_n_192071.29 12870.38 12474.00 17471.04 31148.79 21379.19 26564.62 34862.75 11766.73 11291.99 4740.94 15888.35 15783.00 2073.18 14384.85 203
nrg03072.27 11471.56 10674.42 16175.93 25250.60 16686.97 7883.21 15362.75 11767.15 11184.38 17250.07 5386.66 21471.19 9362.37 24185.99 181
miper_ehance_all_eth68.70 17767.58 16872.08 21676.91 23749.48 19782.47 20478.45 24562.68 11958.28 23177.88 25550.90 4785.01 25461.91 15258.72 26381.75 251
mvsmamba66.93 21764.88 22473.09 19575.06 26247.26 25483.36 18269.21 33662.64 12055.68 26481.43 22429.72 28089.20 12563.35 14263.50 22582.79 241
XXY-MVS70.18 14569.28 14572.89 20177.64 22242.88 30885.06 12487.50 5962.58 12162.66 17282.34 21343.64 12689.83 10858.42 18363.70 22385.96 183
thisisatest051573.64 9172.20 9677.97 7381.63 14453.01 12186.69 8488.81 3062.53 12264.06 15185.65 16052.15 3992.50 4258.43 18169.84 17488.39 134
fmvsm_s_conf0.1_n_a72.82 10272.05 10175.12 14970.95 31247.97 24182.72 19668.43 34062.52 12378.17 3293.08 2844.21 11688.86 13984.82 1363.54 22488.54 131
cl2268.85 16967.69 16672.35 21278.07 21749.98 18482.45 20578.48 24462.50 12458.46 22777.95 25349.99 5585.17 25062.55 14658.72 26381.90 249
v192192067.45 20065.23 21974.10 17171.51 30552.90 12483.75 16780.44 19962.48 12559.12 21277.13 26536.98 20887.90 17357.53 19858.14 27381.49 255
thres20068.71 17567.27 17673.02 19684.73 7046.76 26085.03 12687.73 5462.34 12659.87 19583.45 18943.15 13288.32 16031.25 33867.91 18883.98 217
Effi-MVS+-dtu66.24 22764.96 22370.08 25675.17 25949.64 19082.01 21274.48 29362.15 12757.83 23476.08 28630.59 27583.79 26465.40 13360.93 24876.81 314
TAMVS69.51 16368.16 15773.56 18976.30 24448.71 21682.57 20077.17 26562.10 12861.32 18584.23 17641.90 14983.46 27054.80 21873.09 14688.50 133
eth_miper_zixun_eth66.98 21565.28 21872.06 21775.61 25650.40 17281.00 23976.97 27162.00 12956.99 25176.97 26944.84 10985.58 24158.75 17854.42 30980.21 279
c3_l67.97 18766.66 18571.91 22776.20 24649.31 19982.13 21178.00 25161.99 13057.64 24076.94 27049.41 6084.93 25560.62 16357.01 28581.49 255
v124066.99 21464.68 22573.93 17571.38 30852.66 12783.39 18079.98 20761.97 13158.44 22977.11 26635.25 23087.81 17556.46 20858.15 27181.33 264
OPM-MVS70.75 13969.58 13874.26 16775.55 25751.34 15686.05 9583.29 15261.94 13262.95 16885.77 15934.15 24388.44 15365.44 13171.07 16382.99 237
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
test_prior289.04 4261.88 13373.55 5691.46 6148.01 6874.73 7485.46 40
EPNet_dtu66.25 22666.71 18364.87 30778.66 20734.12 34982.80 19575.51 28561.75 13464.47 14886.90 14637.06 20772.46 34943.65 28869.63 17888.02 141
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EPMVS68.45 17965.44 21577.47 8384.91 6856.17 3871.89 31681.91 17561.72 13560.85 18872.49 31636.21 22087.06 20247.32 26871.62 15889.17 114
PMMVS72.98 9872.05 10175.78 12683.57 9048.60 21784.08 15682.85 16161.62 13668.24 10490.33 8128.35 28687.78 18072.71 8976.69 11490.95 70
save fliter85.35 6056.34 3689.31 3981.46 18261.55 137
UA-Net67.32 20566.23 19470.59 24778.85 20141.23 32473.60 29875.45 28761.54 13866.61 11684.53 17138.73 18286.57 21942.48 29574.24 13683.98 217
v867.25 20664.99 22274.04 17272.89 29153.31 11282.37 20780.11 20561.54 13854.29 27776.02 28742.89 13688.41 15458.43 18156.36 28780.39 277
SMA-MVScopyleft79.10 2078.76 2080.12 3084.42 7555.87 4587.58 6486.76 6861.48 14080.26 2293.10 2546.53 8492.41 4479.97 3788.77 1092.08 38
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
DIV-MVS_self_test67.43 20165.93 20271.94 22576.33 24248.01 24082.57 20079.11 23061.31 14156.73 25276.92 27146.09 8886.43 22257.98 19056.31 28981.39 262
cl____67.43 20165.93 20271.95 22476.33 24248.02 23982.58 19979.12 22961.30 14256.72 25376.92 27146.12 8786.44 22157.98 19056.31 28981.38 263
MP-MVS-pluss75.54 6575.03 6077.04 9481.37 15552.65 12884.34 14984.46 12561.16 14369.14 9891.76 5139.98 17288.99 13378.19 5184.89 4789.48 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v1066.61 22164.20 23073.83 18072.59 29453.37 10881.88 21679.91 21061.11 14454.09 27975.60 28940.06 17088.26 16456.47 20756.10 29379.86 283
ACMMP_NAP76.43 4975.66 5178.73 5281.92 13354.67 7984.06 15885.35 9561.10 14572.99 6391.50 5940.25 16591.00 7576.84 6086.98 2390.51 79
EI-MVSNet69.70 15968.70 14972.68 20375.00 26448.90 21079.54 25987.16 6161.05 14663.88 15783.74 18345.87 9190.44 9157.42 20064.68 21578.70 292
IterMVS-LS66.63 22065.36 21770.42 25075.10 26148.90 21081.45 23376.69 27561.05 14655.71 26377.10 26745.86 9283.65 26757.44 19957.88 27978.70 292
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
CL-MVSNet_self_test62.98 25061.14 25068.50 27965.86 34242.96 30684.37 14782.98 15860.98 14853.95 28072.70 31540.43 16483.71 26641.10 29647.93 33378.83 291
AUN-MVS68.20 18666.35 19073.76 18276.37 24047.45 25079.52 26179.52 21860.98 14862.34 17386.02 15636.59 21886.94 20662.32 14853.47 31786.89 160
Syy-MVS61.51 26361.35 24762.00 32181.73 13830.09 36480.97 24081.02 19060.93 15055.06 26882.64 20335.09 23480.81 28716.40 38258.32 26775.10 331
myMVS_eth3d63.52 24463.56 23463.40 31481.73 13834.28 34780.97 24081.02 19060.93 15055.06 26882.64 20348.00 6980.81 28723.42 36758.32 26775.10 331
FMVSNet368.84 17067.40 17373.19 19485.05 6548.53 22085.71 10585.36 9460.90 15257.58 24179.15 24542.16 14386.77 21047.25 26963.40 22684.27 209
tfpn200view967.57 19766.13 19671.89 22884.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20282.78 242
thres40067.40 20466.13 19671.19 23984.05 8245.07 28483.40 17887.71 5660.79 15357.79 23682.76 19843.53 12787.80 17728.80 34566.36 20280.71 273
LCM-MVSNet-Re58.82 28456.54 28365.68 29979.31 19229.09 37261.39 35445.79 37060.73 15537.65 35872.47 31731.42 27081.08 28449.66 25170.41 17086.87 161
Effi-MVS+75.24 6773.61 7680.16 2981.92 13357.42 1985.21 11776.71 27460.68 15673.32 6089.34 10347.30 7491.63 5968.28 10879.72 9191.42 58
D2MVS63.49 24561.39 24669.77 26069.29 32348.93 20978.89 26777.71 25660.64 15749.70 30772.10 32427.08 29783.48 26954.48 21962.65 23876.90 313
IterMVS63.77 24261.67 24270.08 25672.68 29351.24 15980.44 24875.51 28560.51 15851.41 29773.70 30532.08 26378.91 30754.30 22054.35 31080.08 281
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp64.41 23561.58 24372.90 19982.40 12654.09 9172.53 30676.59 27760.39 15955.68 26470.39 33335.18 23276.90 32839.34 30161.71 24487.73 146
MVP-Stereo70.97 13470.44 12272.59 20576.03 25051.36 15585.02 12786.99 6460.31 16056.53 25778.92 24740.11 16990.00 10460.00 17290.01 676.41 321
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
iter_conf_final71.46 12669.68 13776.81 10286.03 4653.49 10084.73 13774.37 29460.27 16166.28 12184.36 17435.14 23390.87 8065.41 13270.51 16986.05 178
tpm270.82 13768.44 15277.98 7280.78 16856.11 3974.21 29581.28 18760.24 16268.04 10575.27 29152.26 3888.50 15255.82 21368.03 18689.33 108
CR-MVSNet62.47 25759.04 26972.77 20273.97 27956.57 2960.52 35571.72 31660.04 16357.49 24465.86 34638.94 17980.31 29542.86 29259.93 25181.42 259
ab-mvs70.65 14069.11 14675.29 14480.87 16646.23 27173.48 30085.24 10359.99 16466.65 11480.94 22843.13 13488.69 14363.58 14068.07 18590.95 70
9.1478.19 2485.67 5388.32 5088.84 2959.89 16574.58 4892.62 3546.80 8092.66 3981.40 3485.62 39
GeoE69.96 15367.88 16176.22 11381.11 15951.71 14784.15 15476.74 27359.83 16660.91 18784.38 17241.56 15488.10 16851.67 24070.57 16888.84 122
BH-w/o70.02 15068.51 15174.56 15782.77 11850.39 17386.60 8678.14 24959.77 16759.65 19985.57 16239.27 17787.30 19649.86 25074.94 13485.99 181
ZNCC-MVS75.82 6275.02 6178.23 6883.88 8753.80 9486.91 8186.05 8159.71 16867.85 10790.55 7442.23 14291.02 7472.66 9085.29 4389.87 99
1112_ss70.05 14969.37 14172.10 21580.77 16942.78 30985.12 12376.75 27259.69 16961.19 18692.12 4247.48 7383.84 26353.04 22968.21 18489.66 101
miper_lstm_enhance63.91 23962.30 23868.75 27375.06 26246.78 25969.02 32781.14 18859.68 17052.76 28972.39 31940.71 16277.99 31756.81 20553.09 31981.48 257
Baseline_NR-MVSNet65.49 23364.27 22969.13 26674.37 27441.65 31883.39 18078.85 23259.56 17159.62 20176.88 27340.75 16087.44 19249.99 24855.05 30378.28 301
Fast-Effi-MVS+-dtu66.53 22264.10 23173.84 17972.41 29652.30 13684.73 13775.66 28459.51 17256.34 25979.11 24628.11 28885.85 24057.74 19763.29 23083.35 227
UGNet68.71 17567.11 17873.50 19080.55 17547.61 24884.08 15678.51 24359.45 17365.68 13082.73 20123.78 32085.08 25352.80 23276.40 11587.80 144
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
131471.11 13169.41 14076.22 11379.32 19150.49 16980.23 25385.14 10859.44 17458.93 21588.89 11233.83 24889.60 11661.49 15577.42 10888.57 130
MTAPA72.73 10371.22 11277.27 8981.54 15053.57 9967.06 33681.31 18559.41 17568.39 10390.96 6736.07 22389.01 13073.80 8382.45 6289.23 111
thres600view766.46 22365.12 22070.47 24883.41 9443.80 29882.15 20987.78 5159.37 17656.02 26182.21 21443.73 12286.90 20826.51 35764.94 21180.71 273
sss70.49 14270.13 13171.58 23381.59 14739.02 33280.78 24584.71 12059.34 17766.61 11688.09 12737.17 20685.52 24261.82 15471.02 16490.20 88
Vis-MVSNet (Re-imp)65.52 23265.63 20965.17 30577.49 22630.54 36175.49 28777.73 25559.34 17752.26 29486.69 15049.38 6180.53 29337.07 30975.28 12884.42 207
MVS_111021_LR69.07 16567.91 15972.54 20677.27 22949.56 19379.77 25773.96 30059.33 17960.73 19087.82 13130.19 27881.53 28069.94 10072.19 15486.53 170
PS-MVSNAJss68.78 17467.17 17773.62 18873.01 28848.33 23084.95 13184.81 11659.30 18058.91 21779.84 23737.77 18988.86 13962.83 14563.12 23583.67 225
GST-MVS74.87 7373.90 7577.77 7683.30 9953.45 10485.75 10285.29 9959.22 18166.50 11989.85 9440.94 15890.76 8370.94 9683.35 5689.10 116
MDTV_nov1_ep1361.56 24481.68 14255.12 6372.41 30878.18 24859.19 18258.85 21969.29 33734.69 23986.16 22736.76 31362.96 236
CSCG80.41 1479.72 1482.49 589.12 2557.67 1389.29 4091.54 359.19 18271.82 7990.05 9059.72 996.04 1078.37 4988.40 1393.75 7
test-LLR69.65 16069.01 14771.60 23178.67 20548.17 23385.13 12079.72 21359.18 18463.13 16582.58 20536.91 21080.24 29660.56 16475.17 12986.39 174
test0.0.03 162.54 25462.44 23762.86 31872.28 29929.51 36982.93 19378.78 23559.18 18453.07 28782.41 20936.91 21077.39 32337.45 30558.96 26181.66 253
MIMVSNet63.12 24960.29 25971.61 23075.92 25346.65 26165.15 33881.94 17259.14 18654.65 27369.47 33625.74 30680.63 29041.03 29769.56 17987.55 150
IS-MVSNet68.80 17367.55 17072.54 20678.50 21143.43 30281.03 23879.35 22559.12 18757.27 24986.71 14946.05 8987.70 18344.32 28575.60 12586.49 171
thres100view90066.87 21865.42 21671.24 23783.29 10043.15 30581.67 22387.78 5159.04 18855.92 26282.18 21543.73 12287.80 17728.80 34566.36 20282.78 242
3Dnovator+62.71 772.29 11270.50 12177.65 7983.40 9751.29 15887.32 6886.40 7559.01 18958.49 22688.32 12332.40 25991.27 6657.04 20282.15 6590.38 81
UnsupCasMVSNet_eth57.56 29355.15 29364.79 30864.57 35233.12 35373.17 30383.87 14058.98 19041.75 34470.03 33422.54 32879.92 30046.12 27735.31 36581.32 266
BH-RMVSNet70.08 14868.01 15876.27 11184.21 8051.22 16087.29 7179.33 22758.96 19163.63 16086.77 14833.29 25290.30 9844.63 28373.96 13887.30 156
PatchmatchNetpermissive67.07 21363.63 23377.40 8483.10 10458.03 972.11 31477.77 25458.85 19259.37 20670.83 32937.84 18884.93 25542.96 29169.83 17589.26 109
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_vis1_n_192068.59 17868.31 15469.44 26469.16 32441.51 32084.63 14368.58 33958.80 19373.26 6188.37 12025.30 30980.60 29179.10 4167.55 19186.23 176
SF-MVS77.64 3377.42 3278.32 6783.75 8952.47 13186.63 8587.80 5058.78 19474.63 4692.38 3847.75 7091.35 6578.18 5386.85 2591.15 66
Vis-MVSNetpermissive70.61 14169.34 14274.42 16180.95 16548.49 22286.03 9677.51 25958.74 19565.55 13187.78 13234.37 24185.95 23852.53 23780.61 7688.80 123
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MVS76.91 4175.48 5481.23 1884.56 7355.21 6080.23 25391.64 258.65 19665.37 13291.48 6045.72 9495.05 1672.11 9289.52 993.44 9
CDPH-MVS76.05 5575.19 5878.62 5786.51 4454.98 6987.32 6884.59 12358.62 19770.75 9190.85 7043.10 13590.63 8870.50 9884.51 5190.24 85
GBi-Net67.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
test167.09 21165.47 21371.96 22182.71 12046.36 26583.52 16983.31 14958.55 19857.58 24176.23 28236.72 21586.20 22447.25 26963.40 22683.32 228
FMVSNet267.57 19765.79 20572.90 19982.71 12047.97 24185.15 11984.93 11258.55 19856.71 25478.26 25236.72 21586.67 21346.15 27662.94 23784.07 212
HyFIR lowres test69.94 15467.58 16877.04 9477.11 23557.29 2081.49 23279.11 23058.27 20158.86 21880.41 23242.33 14086.96 20561.91 15268.68 18386.87 161
MSLP-MVS++74.21 7972.25 9480.11 3181.45 15356.47 3386.32 8979.65 21658.19 20266.36 12092.29 4036.11 22190.66 8667.39 11282.49 6193.18 16
PHI-MVS77.49 3477.00 3678.95 4585.33 6150.69 16488.57 4888.59 3958.14 20373.60 5593.31 2143.14 13393.79 2773.81 8288.53 1292.37 31
XVS72.92 9971.62 10576.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 15589.63 9835.50 22889.78 10965.50 12580.50 7888.16 135
X-MVStestdata65.85 23162.20 23976.81 10283.41 9452.48 12984.88 13383.20 15458.03 20463.91 1554.82 39835.50 22889.78 10965.50 12580.50 7888.16 135
DVP-MVS++82.44 282.38 482.62 491.77 457.49 1584.98 12888.88 2658.00 20683.60 693.39 1867.21 296.39 481.64 3091.98 493.98 5
test_0728_THIRD58.00 20681.91 1393.64 1156.54 1596.44 281.64 3086.86 2492.23 34
test_yl75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
DCV-MVSNet75.85 5974.83 6578.91 4688.08 3451.94 14091.30 1689.28 1757.91 20871.19 8889.20 10642.03 14792.77 3669.41 10175.07 13292.01 41
MP-MVScopyleft74.99 7274.33 6976.95 10082.89 11553.05 12085.63 10683.50 14757.86 21067.25 11090.24 8243.38 13088.85 14176.03 6282.23 6388.96 118
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
train_agg76.91 4176.40 4378.45 6385.68 5155.42 5187.59 6284.00 13657.84 21172.99 6390.98 6544.99 10488.58 14778.19 5185.32 4291.34 63
test_885.72 5055.31 5687.60 6183.88 13957.84 21172.84 6790.99 6444.99 10488.34 158
TEST985.68 5155.42 5187.59 6284.00 13657.72 21372.99 6390.98 6544.87 10888.58 147
DVP-MVScopyleft81.30 981.00 1282.20 889.40 2057.45 1792.34 589.99 1357.71 21481.91 1393.64 1155.17 2096.44 281.68 2887.13 2092.72 24
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072689.40 2057.45 1792.32 788.63 3657.71 21483.14 993.96 655.17 20
BH-untuned68.28 18366.40 18973.91 17681.62 14550.01 18385.56 10977.39 26157.63 21657.47 24683.69 18536.36 21987.08 20144.81 28173.08 14784.65 204
thisisatest053070.47 14468.56 15076.20 11579.78 18551.52 15283.49 17588.58 4057.62 21758.60 22282.79 19751.03 4691.48 6252.84 23162.36 24285.59 192
test_241102_ONE89.48 1756.89 2588.94 2457.53 21884.61 493.29 2258.81 1196.45 1
API-MVS74.17 8072.07 10080.49 2290.02 1158.55 887.30 7084.27 12957.51 21965.77 12987.77 13341.61 15395.97 1151.71 23982.63 5986.94 159
SED-MVS81.92 681.75 882.44 789.48 1756.89 2592.48 388.94 2457.50 22084.61 494.09 358.81 1196.37 682.28 2587.60 1794.06 3
test_241102_TWO88.76 3257.50 22083.60 694.09 356.14 1896.37 682.28 2587.43 1992.55 27
Patchmatch-RL test58.72 28554.32 29771.92 22663.91 35444.25 29361.73 35155.19 36257.38 22249.31 30954.24 37037.60 19680.89 28562.19 15047.28 33890.63 75
Test_1112_low_res67.18 20866.23 19470.02 25978.75 20341.02 32583.43 17673.69 30257.29 22358.45 22882.39 21045.30 10080.88 28650.50 24666.26 20688.16 135
FA-MVS(test-final)69.00 16866.60 18776.19 11683.48 9347.96 24374.73 29182.07 17057.27 22462.18 17678.47 25136.09 22292.89 3353.76 22571.32 16287.73 146
OpenMVScopyleft61.00 1169.99 15267.55 17077.30 8778.37 21454.07 9284.36 14885.76 8657.22 22556.71 25487.67 13530.79 27492.83 3543.04 29084.06 5485.01 199
test_one_060189.39 2257.29 2088.09 4657.21 22682.06 1293.39 1854.94 24
TR-MVS69.71 15767.85 16475.27 14682.94 11348.48 22387.40 6780.86 19357.15 22764.61 14387.08 14432.67 25789.64 11546.38 27471.55 16087.68 148
ZD-MVS89.55 1453.46 10284.38 12657.02 22873.97 5391.03 6344.57 11491.17 7075.41 7181.78 69
TransMVSNet (Re)62.82 25260.76 25469.02 26773.98 27841.61 31986.36 8879.30 22856.90 22952.53 29076.44 27841.85 15087.60 19038.83 30240.61 35777.86 305
USDC54.36 30951.23 31363.76 31164.29 35337.71 33962.84 34973.48 30756.85 23035.47 36371.94 3259.23 37278.43 30938.43 30348.57 33075.13 330
region2R73.75 8772.55 8777.33 8583.90 8652.98 12285.54 11084.09 13456.83 23165.10 13490.45 7737.34 20390.24 9968.89 10580.83 7588.77 125
HFP-MVS74.37 7773.13 8378.10 7184.30 7753.68 9785.58 10784.36 12756.82 23265.78 12890.56 7340.70 16390.90 7969.18 10380.88 7389.71 100
ACMMPR73.76 8672.61 8577.24 9183.92 8552.96 12385.58 10784.29 12856.82 23265.12 13390.45 7737.24 20590.18 10169.18 10380.84 7488.58 129
SD-MVS76.18 5274.85 6480.18 2885.39 5956.90 2485.75 10282.45 16656.79 23474.48 4991.81 5043.72 12490.75 8474.61 7578.65 9992.91 19
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
SCA63.84 24060.01 26275.32 14078.58 20957.92 1061.61 35277.53 25856.71 23557.75 23870.77 33031.97 26479.91 30248.80 25856.36 28788.13 138
cascas69.01 16766.13 19677.66 7879.36 18955.41 5386.99 7783.75 14156.69 23658.92 21681.35 22524.31 31892.10 5253.23 22670.61 16785.46 193
ACMMPcopyleft70.81 13869.29 14475.39 13881.52 15251.92 14283.43 17683.03 15756.67 23758.80 22088.91 11131.92 26688.58 14765.89 12473.39 14285.67 188
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
QAPM71.88 11969.33 14379.52 3582.20 13054.30 8686.30 9088.77 3156.61 23859.72 19887.48 13733.90 24695.36 1347.48 26781.49 7088.90 119
TSAR-MVS + GP.77.82 3177.59 3078.49 6085.25 6350.27 18090.02 2690.57 1056.58 23974.26 5191.60 5754.26 2692.16 4975.87 6479.91 8893.05 18
PGM-MVS72.60 10571.20 11376.80 10582.95 11252.82 12583.07 19082.14 16856.51 24063.18 16489.81 9535.68 22789.76 11167.30 11380.19 8387.83 143
PCF-MVS61.03 1070.10 14768.40 15375.22 14877.15 23451.99 13979.30 26482.12 16956.47 24161.88 18086.48 15443.98 11787.24 19755.37 21472.79 14986.43 173
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
DP-MVS Recon71.99 11670.31 12677.01 9690.65 853.44 10589.37 3782.97 15956.33 24263.56 16289.47 10034.02 24492.15 5154.05 22272.41 15185.43 194
EPP-MVSNet71.14 12970.07 13274.33 16479.18 19446.52 26383.81 16586.49 7256.32 24357.95 23284.90 17054.23 2789.14 12658.14 18869.65 17787.33 154
HPM-MVScopyleft72.60 10571.50 10775.89 12482.02 13151.42 15480.70 24683.05 15656.12 24464.03 15389.53 9937.55 19788.37 15570.48 9980.04 8687.88 142
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
APDe-MVScopyleft78.44 2278.20 2379.19 4088.56 2654.55 8289.76 3387.77 5355.91 24578.56 3092.49 3748.20 6592.65 4079.49 3883.04 5790.39 80
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
xiu_mvs_v1_base_debu71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
xiu_mvs_v1_base_debi71.60 12370.29 12775.55 13277.26 23053.15 11585.34 11179.37 22155.83 24672.54 6990.19 8522.38 32986.66 21473.28 8676.39 11686.85 163
mPP-MVS71.79 12270.38 12476.04 12182.65 12352.06 13784.45 14681.78 17855.59 24962.05 17989.68 9733.48 25088.28 16365.45 13078.24 10487.77 145
DPE-MVScopyleft79.82 1779.66 1580.29 2589.27 2455.08 6688.70 4687.92 4955.55 25081.21 1893.69 1056.51 1694.27 2278.36 5085.70 3891.51 56
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
pm-mvs164.12 23862.56 23668.78 27271.68 30238.87 33382.89 19481.57 18055.54 25153.89 28177.82 25637.73 19286.74 21148.46 26253.49 31680.72 272
ACMP61.11 966.24 22764.33 22872.00 22074.89 26649.12 20183.18 18779.83 21155.41 25252.29 29282.68 20225.83 30586.10 23060.89 15963.94 22180.78 271
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_cas_vis1_n_192067.10 21066.60 18768.59 27765.17 34743.23 30483.23 18569.84 33255.34 25370.67 9287.71 13424.70 31676.66 33078.57 4864.20 21785.89 185
CP-MVS72.59 10771.46 10876.00 12382.93 11452.32 13586.93 8082.48 16555.15 25463.65 15990.44 8035.03 23688.53 15168.69 10677.83 10587.15 157
pmmvs463.34 24761.07 25170.16 25470.14 31750.53 16879.97 25671.41 32155.08 25554.12 27878.58 24932.79 25682.09 27850.33 24757.22 28477.86 305
KD-MVS_2432*160059.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
miper_refine_blended59.04 28156.44 28566.86 29179.07 19545.87 27572.13 31280.42 20055.03 25648.15 31471.01 32736.73 21378.05 31535.21 31930.18 37676.67 315
MDTV_nov1_ep13_2view43.62 29971.13 31954.95 25859.29 21036.76 21246.33 27587.32 155
Anonymous20240521170.11 14667.88 16176.79 10687.20 4047.24 25689.49 3577.38 26254.88 25966.14 12286.84 14720.93 33991.54 6156.45 20971.62 15891.59 51
OMC-MVS65.97 23065.06 22168.71 27472.97 28942.58 31378.61 26875.35 28854.72 26059.31 20886.25 15533.30 25177.88 31957.99 18967.05 19485.66 189
LPG-MVS_test66.44 22464.58 22672.02 21874.42 27248.60 21783.07 19080.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
LGP-MVS_train72.02 21874.42 27248.60 21780.64 19654.69 26153.75 28283.83 18125.73 30786.98 20360.33 17064.71 21280.48 275
tfpnnormal61.47 26459.09 26868.62 27676.29 24541.69 31781.14 23785.16 10654.48 26351.32 29873.63 30632.32 26086.89 20921.78 37155.71 29977.29 311
tttt051768.33 18266.29 19274.46 15978.08 21649.06 20280.88 24389.08 2154.40 26454.75 27280.77 23051.31 4390.33 9549.35 25458.01 27583.99 215
RRT_MVS63.68 24361.01 25271.70 22973.48 28145.98 27381.19 23576.08 28154.33 26552.84 28879.27 24222.21 33287.65 18554.13 22155.54 30181.46 258
pmmvs562.80 25361.18 24967.66 28469.53 32142.37 31682.65 19875.19 28954.30 26652.03 29578.51 25031.64 26980.67 28948.60 26058.15 27179.95 282
APD-MVScopyleft76.15 5375.68 5077.54 8188.52 2753.44 10587.26 7385.03 11053.79 26774.91 4491.68 5443.80 12090.31 9674.36 7781.82 6788.87 121
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
114514_t69.87 15567.88 16175.85 12588.38 2952.35 13486.94 7983.68 14253.70 26855.68 26485.60 16130.07 27991.20 6955.84 21271.02 16483.99 215
testing359.97 27060.19 26059.32 33377.60 22330.01 36681.75 22181.79 17753.54 26950.34 30579.94 23448.99 6376.91 32617.19 38050.59 32671.03 356
PAPM_NR71.80 12169.98 13377.26 9081.54 15053.34 11078.60 26985.25 10253.46 27060.53 19288.66 11545.69 9589.24 12256.49 20679.62 9489.19 113
test-mter68.36 18067.29 17471.60 23178.67 20548.17 23385.13 12079.72 21353.38 27163.13 16582.58 20527.23 29680.24 29660.56 16475.17 12986.39 174
jajsoiax63.21 24860.84 25370.32 25268.33 33144.45 29081.23 23481.05 18953.37 27250.96 30277.81 25717.49 35385.49 24459.31 17358.05 27481.02 269
testgi54.25 31052.57 30959.29 33462.76 35821.65 38472.21 31170.47 32753.25 27341.94 34277.33 26314.28 36377.95 31829.18 34451.72 32478.28 301
tpm cat166.28 22562.78 23576.77 10781.40 15457.14 2270.03 32377.19 26453.00 27458.76 22170.73 33246.17 8686.73 21243.27 28964.46 21686.44 172
mvs_tets62.96 25160.55 25570.19 25368.22 33444.24 29480.90 24280.74 19552.99 27550.82 30477.56 25816.74 35785.44 24559.04 17657.94 27680.89 270
test20.0355.22 30654.07 29958.68 33663.14 35725.00 37777.69 27474.78 29152.64 27643.43 33672.39 31926.21 30274.76 33729.31 34347.05 34176.28 322
VDDNet74.37 7772.13 9881.09 1979.58 18756.52 3290.02 2686.70 7052.61 27771.23 8787.20 14231.75 26893.96 2574.30 7975.77 12392.79 23
v7n62.50 25659.27 26772.20 21467.25 33749.83 18877.87 27380.12 20452.50 27848.80 31273.07 31032.10 26287.90 17346.83 27254.92 30478.86 290
FMVSNet164.57 23462.11 24071.96 22177.32 22846.36 26583.52 16983.31 14952.43 27954.42 27576.23 28227.80 29286.20 22442.59 29461.34 24683.32 228
K. test v354.04 31149.42 32267.92 28368.55 32842.57 31475.51 28663.07 35352.07 28039.21 35264.59 35019.34 34482.21 27537.11 30825.31 38178.97 289
原ACMM176.13 11884.89 6954.59 8185.26 10151.98 28166.70 11387.07 14540.15 16889.70 11351.23 24385.06 4684.10 211
tpmvs62.45 25859.42 26571.53 23483.93 8454.32 8570.03 32377.61 25751.91 28253.48 28568.29 34037.91 18786.66 21433.36 32858.27 26973.62 341
PEN-MVS58.35 29057.15 27961.94 32267.55 33634.39 34677.01 27778.35 24751.87 28347.72 31776.73 27533.91 24573.75 34234.03 32647.17 33977.68 307
EG-PatchMatch MVS62.40 25959.59 26370.81 24573.29 28449.05 20385.81 9884.78 11751.85 28444.19 33273.48 30815.52 36289.85 10740.16 29967.24 19373.54 342
UniMVSNet_ETH3D62.51 25560.49 25668.57 27868.30 33240.88 32773.89 29679.93 20951.81 28554.77 27179.61 23824.80 31481.10 28349.93 24961.35 24583.73 223
CP-MVSNet58.54 28957.57 27761.46 32668.50 32933.96 35076.90 27978.60 24251.67 28647.83 31676.60 27734.99 23772.79 34735.45 31647.58 33577.64 309
WR-MVS_H58.91 28358.04 27461.54 32569.07 32533.83 35176.91 27881.99 17151.40 28748.17 31374.67 29440.23 16674.15 33831.78 33548.10 33176.64 318
PS-CasMVS58.12 29157.03 28161.37 32768.24 33333.80 35276.73 28078.01 25051.20 28847.54 32076.20 28532.85 25472.76 34835.17 32147.37 33777.55 310
DTE-MVSNet57.03 29555.73 29160.95 33065.94 34132.57 35775.71 28277.09 26751.16 28946.65 32776.34 28032.84 25573.22 34630.94 33944.87 34877.06 312
HPM-MVS_fast67.86 18966.28 19372.61 20480.67 17248.34 22881.18 23675.95 28350.81 29059.55 20388.05 12927.86 29185.98 23558.83 17773.58 14183.51 226
bld_raw_dy_0_6459.75 27257.01 28267.96 28266.73 33845.30 28177.59 27559.97 35850.49 29147.15 32377.03 26817.45 35479.06 30656.92 20459.76 25479.51 285
MVSFormer73.53 9272.19 9777.57 8083.02 10955.24 5881.63 22481.44 18350.28 29276.67 3890.91 6844.82 11086.11 22860.83 16080.09 8491.36 61
test_djsdf63.84 24061.56 24470.70 24668.78 32644.69 28881.63 22481.44 18350.28 29252.27 29376.26 28126.72 29986.11 22860.83 16055.84 29881.29 267
FMVSNet558.61 28656.45 28465.10 30677.20 23339.74 32974.77 29077.12 26650.27 29443.28 33867.71 34126.15 30476.90 32836.78 31254.78 30678.65 294
FE-MVS64.15 23760.43 25875.30 14380.85 16749.86 18768.28 33278.37 24650.26 29559.31 20873.79 30126.19 30391.92 5540.19 29866.67 19784.12 210
Anonymous2023120659.08 28057.59 27663.55 31268.77 32732.14 35980.26 25279.78 21250.00 29649.39 30872.39 31926.64 30078.36 31033.12 33157.94 27680.14 280
ACMH53.70 1659.78 27155.94 29071.28 23676.59 23948.35 22780.15 25576.11 28049.74 29741.91 34373.45 30916.50 35990.31 9631.42 33657.63 28275.17 329
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs-eth3d55.97 30352.78 30765.54 30161.02 36246.44 26475.36 28867.72 34249.61 29843.65 33567.58 34221.63 33677.04 32444.11 28644.33 34973.15 346
AdaColmapbinary67.86 18965.48 21275.00 15288.15 3354.99 6886.10 9476.63 27649.30 29957.80 23586.65 15129.39 28388.94 13745.10 28070.21 17281.06 268
无先验85.19 11878.00 25149.08 30085.13 25252.78 23387.45 153
ppachtmachnet_test58.56 28754.34 29671.24 23771.42 30654.74 7381.84 21872.27 31249.02 30145.86 33168.99 33926.27 30183.30 27130.12 34043.23 35275.69 324
SR-MVS70.92 13669.73 13674.50 15883.38 9850.48 17084.27 15179.35 22548.96 30266.57 11890.45 7733.65 24987.11 20066.42 11874.56 13585.91 184
tt080563.39 24661.31 24869.64 26169.36 32238.87 33378.00 27185.48 8848.82 30355.66 26781.66 22124.38 31786.37 22349.04 25759.36 25983.68 224
our_test_359.11 27955.08 29571.18 24071.42 30653.29 11381.96 21374.52 29248.32 30442.08 34169.28 33828.14 28782.15 27634.35 32545.68 34778.11 304
APD-MVS_3200maxsize69.62 16168.23 15673.80 18181.58 14848.22 23281.91 21579.50 21948.21 30564.24 15089.75 9631.91 26787.55 19163.08 14373.85 14085.64 190
CHOSEN 280x42057.53 29456.38 28760.97 32974.01 27748.10 23746.30 37354.31 36448.18 30650.88 30377.43 26238.37 18559.16 37154.83 21663.14 23475.66 325
FOURS183.24 10149.90 18684.98 12878.76 23647.71 30773.42 58
ACMM58.35 1264.35 23662.01 24171.38 23574.21 27548.51 22182.25 20879.66 21547.61 30854.54 27480.11 23325.26 31086.00 23451.26 24263.16 23379.64 284
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
SixPastTwentyTwo54.37 30850.10 31767.21 28770.70 31441.46 32274.73 29164.69 34747.56 30939.12 35369.49 33518.49 35084.69 25831.87 33434.20 37175.48 326
Anonymous2024052969.71 15767.28 17577.00 9783.78 8850.36 17588.87 4585.10 10947.22 31064.03 15383.37 19027.93 29092.10 5257.78 19667.44 19288.53 132
ACMH+54.58 1558.55 28855.24 29268.50 27974.68 26845.80 27780.27 25170.21 32947.15 31142.77 34075.48 29016.73 35885.98 23535.10 32354.78 30673.72 340
XVG-OURS61.88 26159.34 26669.49 26265.37 34446.27 26964.80 34073.49 30547.04 31257.41 24882.85 19625.15 31178.18 31153.00 23064.98 21084.01 214
TAPA-MVS56.12 1461.82 26260.18 26166.71 29378.48 21237.97 33875.19 28976.41 27946.82 31357.04 25086.52 15327.67 29477.03 32526.50 35867.02 19585.14 196
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
UnsupCasMVSNet_bld53.86 31250.53 31663.84 31063.52 35634.75 34571.38 31781.92 17446.53 31438.95 35457.93 36620.55 34080.20 29839.91 30034.09 37276.57 319
anonymousdsp60.46 26957.65 27568.88 26863.63 35545.09 28372.93 30478.63 24046.52 31551.12 29972.80 31421.46 33783.07 27357.79 19553.97 31178.47 296
XVG-OURS-SEG-HR62.02 26059.54 26469.46 26365.30 34545.88 27465.06 33973.57 30446.45 31657.42 24783.35 19126.95 29878.09 31353.77 22464.03 21984.42 207
SR-MVS-dyc-post68.27 18466.87 17972.48 20980.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10131.17 27286.09 23260.52 16672.06 15583.19 233
RE-MVS-def66.66 18580.96 16248.14 23581.54 22876.98 26846.42 31762.75 17089.42 10129.28 28460.52 16672.06 15583.19 233
OpenMVS_ROBcopyleft53.19 1759.20 27756.00 28968.83 27071.13 31044.30 29283.64 16875.02 29046.42 31746.48 32873.03 31118.69 34788.14 16527.74 35361.80 24374.05 338
CPTT-MVS67.15 20965.84 20471.07 24180.96 16250.32 17781.94 21474.10 29646.18 32057.91 23387.64 13629.57 28181.31 28264.10 13770.18 17381.56 254
new-patchmatchnet48.21 32946.55 33153.18 34857.73 36718.19 39270.24 32171.02 32445.70 32133.70 36760.23 36018.00 35169.86 35727.97 35234.35 36971.49 354
新几何173.30 19383.10 10453.48 10171.43 32045.55 32266.14 12287.17 14333.88 24780.54 29248.50 26180.33 8285.88 186
旧先验281.73 22245.53 32374.66 4570.48 35658.31 185
Anonymous2023121166.08 22963.67 23273.31 19283.07 10748.75 21486.01 9784.67 12245.27 32456.54 25676.67 27628.06 28988.95 13552.78 23359.95 25082.23 245
XVG-ACMP-BASELINE56.03 30252.85 30665.58 30061.91 36040.95 32663.36 34472.43 31145.20 32546.02 32974.09 2989.20 37378.12 31245.13 27958.27 26977.66 308
pmmvs659.64 27357.15 27967.09 28866.01 34036.86 34280.50 24778.64 23945.05 32649.05 31073.94 30027.28 29586.10 23043.96 28749.94 32878.31 300
ADS-MVSNet255.21 30751.44 31266.51 29680.60 17349.56 19355.03 36665.44 34544.72 32751.00 30061.19 35822.83 32575.41 33528.54 34853.63 31374.57 335
ADS-MVSNet56.17 30151.95 31168.84 26980.60 17353.07 11955.03 36670.02 33144.72 32751.00 30061.19 35822.83 32578.88 30828.54 34853.63 31374.57 335
testdata67.08 28977.59 22445.46 28069.20 33744.47 32971.50 8488.34 12231.21 27170.76 35552.20 23875.88 12185.03 198
MSDG59.44 27455.14 29472.32 21374.69 26750.71 16374.39 29473.58 30344.44 33043.40 33777.52 25919.45 34390.87 8031.31 33757.49 28375.38 327
KD-MVS_self_test49.24 32746.85 33056.44 34254.32 37022.87 38057.39 36273.36 30944.36 33137.98 35759.30 36418.97 34671.17 35333.48 32742.44 35375.26 328
YYNet153.82 31349.96 31865.41 30370.09 31948.95 20772.30 30971.66 31844.25 33231.89 37263.07 35423.73 32173.95 34033.26 32939.40 35973.34 343
MDA-MVSNet_test_wron53.82 31349.95 31965.43 30270.13 31849.05 20372.30 30971.65 31944.23 33331.85 37363.13 35323.68 32274.01 33933.25 33039.35 36073.23 345
MDA-MVSNet-bldmvs51.56 32347.75 32963.00 31671.60 30447.32 25369.70 32672.12 31343.81 33427.65 38063.38 35221.97 33575.96 33227.30 35532.19 37365.70 367
PLCcopyleft52.38 1860.89 26658.97 27066.68 29581.77 13745.70 27878.96 26674.04 29943.66 33547.63 31883.19 19423.52 32377.78 32237.47 30460.46 24976.55 320
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
IterMVS-SCA-FT59.12 27858.81 27160.08 33170.68 31645.07 28480.42 24974.25 29543.54 33650.02 30673.73 30231.97 26456.74 37351.06 24553.60 31578.42 298
MIMVSNet150.35 32647.81 32757.96 33861.53 36127.80 37567.40 33474.06 29843.25 33733.31 37165.38 34916.03 36071.34 35221.80 37047.55 33674.75 333
LTVRE_ROB45.45 1952.73 31749.74 32061.69 32469.78 32034.99 34444.52 37467.60 34343.11 33843.79 33474.03 29918.54 34981.45 28128.39 35057.94 27668.62 359
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
test_040256.45 29953.03 30366.69 29476.78 23850.31 17881.76 22069.61 33442.79 33943.88 33372.13 32222.82 32786.46 22016.57 38150.94 32563.31 370
test22279.36 18950.97 16177.99 27267.84 34142.54 34062.84 16986.53 15230.26 27776.91 11185.23 195
CNLPA60.59 26858.44 27267.05 29079.21 19347.26 25479.75 25864.34 35042.46 34151.90 29683.94 17927.79 29375.41 33537.12 30759.49 25778.47 296
PatchMatch-RL56.66 29653.75 30165.37 30477.91 22145.28 28269.78 32560.38 35641.35 34247.57 31973.73 30216.83 35676.91 32636.99 31059.21 26073.92 339
DP-MVS59.24 27656.12 28868.63 27588.24 3250.35 17682.51 20364.43 34941.10 34346.70 32678.77 24824.75 31588.57 15022.26 36956.29 29166.96 362
F-COLMAP55.96 30453.65 30262.87 31772.76 29242.77 31074.70 29370.37 32840.03 34441.11 34879.36 24017.77 35273.70 34332.80 33253.96 31272.15 348
gg-mvs-nofinetune67.43 20164.53 22776.13 11885.95 4747.79 24764.38 34288.28 4439.34 34566.62 11541.27 37958.69 1389.00 13149.64 25286.62 2991.59 51
TinyColmap48.15 33044.49 33459.13 33565.73 34338.04 33763.34 34562.86 35438.78 34629.48 37567.23 3446.46 38373.30 34524.59 36241.90 35566.04 365
PatchT56.60 29752.97 30467.48 28572.94 29046.16 27257.30 36373.78 30138.77 34754.37 27657.26 36837.52 19878.06 31432.02 33352.79 32078.23 303
OurMVSNet-221017-052.39 32048.73 32363.35 31565.21 34638.42 33668.54 33164.95 34638.19 34839.57 35171.43 32613.23 36579.92 30037.16 30640.32 35871.72 351
ANet_high34.39 34529.59 35148.78 35230.34 39422.28 38155.53 36563.79 35138.11 34915.47 38736.56 3846.94 37959.98 36713.93 3845.64 39864.08 368
PM-MVS46.92 33243.76 33756.41 34352.18 37432.26 35863.21 34738.18 38137.99 35040.78 34966.20 3455.09 38665.42 36148.19 26341.99 35471.54 353
Patchmtry56.56 29852.95 30567.42 28672.53 29550.59 16759.05 35971.72 31637.86 35146.92 32465.86 34638.94 17980.06 29936.94 31146.72 34371.60 352
JIA-IIPM52.33 32147.77 32866.03 29871.20 30946.92 25840.00 38176.48 27837.10 35246.73 32537.02 38132.96 25377.88 31935.97 31452.45 32273.29 344
CVMVSNet60.85 26760.44 25762.07 31975.00 26432.73 35679.54 25973.49 30536.98 35356.28 26083.74 18329.28 28469.53 35846.48 27363.23 23183.94 220
ITE_SJBPF51.84 34958.03 36631.94 36053.57 36736.67 35441.32 34675.23 29211.17 36851.57 37825.81 35948.04 33272.02 350
Anonymous2024052151.65 32248.42 32461.34 32856.43 36939.65 33173.57 29973.47 30836.64 35536.59 35963.98 35110.75 36972.25 35135.35 31749.01 32972.11 349
COLMAP_ROBcopyleft43.60 2050.90 32548.05 32659.47 33267.81 33540.57 32871.25 31862.72 35536.49 35636.19 36173.51 30713.48 36473.92 34120.71 37350.26 32763.92 369
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
RPMNet59.29 27554.25 29874.42 16173.97 27956.57 2960.52 35576.98 26835.72 35757.49 24458.87 36537.73 19285.26 24827.01 35659.93 25181.42 259
N_pmnet41.25 33739.77 34045.66 35668.50 3290.82 40672.51 3070.38 40535.61 35835.26 36461.51 35720.07 34267.74 35923.51 36540.63 35668.42 360
AllTest47.32 33144.66 33355.32 34665.08 34837.50 34062.96 34854.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
TestCases55.32 34665.08 34837.50 34054.25 36535.45 35933.42 36972.82 3129.98 37059.33 36824.13 36343.84 35069.13 357
LS3D56.40 30053.82 30064.12 30981.12 15845.69 27973.42 30166.14 34435.30 36143.24 33979.88 23522.18 33379.62 30419.10 37764.00 22067.05 361
WB-MVS37.41 34236.37 34340.54 36254.23 37110.43 39965.29 33743.75 37334.86 36227.81 37954.63 36924.94 31363.21 3626.81 39415.00 38947.98 381
Patchmatch-test53.33 31648.17 32568.81 27173.31 28342.38 31542.98 37658.23 35932.53 36338.79 35570.77 33039.66 17473.51 34425.18 36052.06 32390.55 76
test_fmvs153.60 31552.54 31056.78 34058.07 36530.26 36268.95 32942.19 37632.46 36463.59 16182.56 20711.55 36660.81 36558.25 18655.27 30279.28 286
test_fmvs1_n52.55 31951.19 31456.65 34151.90 37530.14 36367.66 33342.84 37532.27 36562.30 17582.02 2189.12 37460.84 36457.82 19454.75 30878.99 288
test_vis1_n51.19 32449.66 32155.76 34551.26 37629.85 36767.20 33538.86 38032.12 36659.50 20479.86 2368.78 37558.23 37256.95 20352.46 32179.19 287
SSC-MVS35.20 34434.30 34637.90 36452.58 3738.65 40261.86 35041.64 37731.81 36725.54 38152.94 37423.39 32459.28 3706.10 39512.86 39045.78 383
EU-MVSNet52.63 31850.72 31558.37 33762.69 35928.13 37472.60 30575.97 28230.94 36840.76 35072.11 32320.16 34170.80 35435.11 32246.11 34576.19 323
CMPMVSbinary40.41 2155.34 30552.64 30863.46 31360.88 36343.84 29761.58 35371.06 32330.43 36936.33 36074.63 29524.14 31975.44 33448.05 26466.62 19871.12 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
TDRefinement40.91 33838.37 34248.55 35350.45 37833.03 35558.98 36050.97 36828.50 37029.89 37467.39 3436.21 38554.51 37517.67 37935.25 36658.11 372
pmmvs345.53 33541.55 33957.44 33948.97 38039.68 33070.06 32257.66 36028.32 37134.06 36657.29 3678.50 37666.85 36034.86 32434.26 37065.80 366
mvsany_test143.38 33642.57 33845.82 35550.96 37726.10 37655.80 36427.74 39327.15 37247.41 32274.39 29718.67 34844.95 38544.66 28236.31 36366.40 364
RPSCF45.77 33444.13 33650.68 35057.67 36829.66 36854.92 36845.25 37226.69 37345.92 33075.92 28817.43 35545.70 38427.44 35445.95 34676.67 315
test_fmvs245.89 33344.32 33550.62 35145.85 38424.70 37858.87 36137.84 38325.22 37452.46 29174.56 2967.07 37854.69 37449.28 25547.70 33472.48 347
MVS-HIRNet49.01 32844.71 33261.92 32376.06 24846.61 26263.23 34654.90 36324.77 37533.56 36836.60 38321.28 33875.88 33329.49 34262.54 23963.26 371
test_vis1_rt40.29 33938.64 34145.25 35748.91 38130.09 36459.44 35827.07 39424.52 37638.48 35651.67 3756.71 38149.44 37944.33 28446.59 34456.23 373
new_pmnet33.56 34731.89 34938.59 36349.01 37920.42 38551.01 36937.92 38220.58 37723.45 38246.79 3776.66 38249.28 38120.00 37631.57 37546.09 382
LF4IMVS33.04 34832.55 34834.52 36740.96 38522.03 38244.45 37535.62 38520.42 37828.12 37862.35 3555.03 38731.88 39721.61 37234.42 36849.63 379
FPMVS35.40 34333.67 34740.57 36146.34 38328.74 37341.05 37857.05 36120.37 37922.27 38353.38 3726.87 38044.94 3868.62 38847.11 34048.01 380
DSMNet-mixed38.35 34035.36 34547.33 35448.11 38214.91 39637.87 38236.60 38419.18 38034.37 36559.56 36315.53 36153.01 37720.14 37546.89 34274.07 337
PMMVS226.71 35322.98 35837.87 36536.89 3888.51 40342.51 37729.32 39219.09 38113.01 38937.54 3802.23 39453.11 37614.54 38311.71 39151.99 378
test_fmvs337.95 34135.75 34444.55 35835.50 39018.92 38848.32 37034.00 38818.36 38241.31 34761.58 3562.29 39348.06 38342.72 29337.71 36266.66 363
mvsany_test328.00 35025.98 35234.05 36828.97 39515.31 39434.54 38518.17 39916.24 38329.30 37653.37 3732.79 39133.38 39630.01 34120.41 38753.45 376
PMVScopyleft19.57 2225.07 35522.43 36032.99 37123.12 40122.98 37940.98 37935.19 38615.99 38411.95 39335.87 3851.47 39949.29 3805.41 39731.90 37426.70 390
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
Gipumacopyleft27.47 35124.26 35637.12 36660.55 36429.17 37111.68 39360.00 35714.18 38510.52 39415.12 3952.20 39563.01 3638.39 38935.65 36419.18 391
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_vis3_rt24.79 35622.95 35930.31 37328.59 39618.92 38837.43 38317.27 40112.90 38621.28 38429.92 3901.02 40036.35 39028.28 35129.82 37835.65 384
LCM-MVSNet28.07 34923.85 35740.71 36027.46 39918.93 38730.82 38846.19 36912.76 38716.40 38534.70 3861.90 39648.69 38220.25 37424.22 38254.51 375
test_f27.12 35224.85 35333.93 36926.17 40015.25 39530.24 38922.38 39812.53 38828.23 37749.43 3762.59 39234.34 39525.12 36126.99 37952.20 377
APD_test126.46 35424.41 35532.62 37237.58 38721.74 38340.50 38030.39 39011.45 38916.33 38643.76 3781.63 39841.62 38711.24 38626.82 38034.51 386
E-PMN19.16 36018.40 36421.44 37736.19 38913.63 39747.59 37130.89 38910.73 3905.91 39716.59 3933.66 38939.77 3885.95 3968.14 39310.92 393
DeepMVS_CXcopyleft13.10 37921.34 4028.99 40110.02 40310.59 3917.53 39630.55 3891.82 39714.55 3986.83 3937.52 39415.75 392
EMVS18.42 36117.66 36520.71 37834.13 39112.64 39846.94 37229.94 39110.46 3925.58 39814.93 3964.23 38838.83 3895.24 3987.51 39510.67 394
testf121.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
APD_test221.11 35819.08 36227.18 37530.56 39218.28 39033.43 38624.48 3958.02 39312.02 39133.50 3870.75 40235.09 3937.68 39021.32 38428.17 388
MVEpermissive16.60 2317.34 36313.39 36629.16 37428.43 39719.72 38613.73 39223.63 3977.23 3957.96 39521.41 3910.80 40136.08 3916.97 39210.39 39231.69 387
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method24.09 35721.07 36133.16 37027.67 3988.35 40426.63 39035.11 3873.40 39614.35 38836.98 3823.46 39035.31 39219.08 37822.95 38355.81 374
wuyk23d9.11 3658.77 36910.15 38040.18 38616.76 39320.28 3911.01 4042.58 3972.66 3990.98 3990.23 40412.49 3994.08 3996.90 3961.19 396
tmp_tt9.44 36410.68 3675.73 3812.49 4034.21 40510.48 39418.04 4000.34 39812.59 39020.49 39211.39 3677.03 40013.84 3856.46 3975.95 395
EGC-MVSNET33.75 34630.42 35043.75 35964.94 35036.21 34360.47 35740.70 3790.02 3990.10 40053.79 3717.39 37760.26 36611.09 38735.23 36734.79 385
test_blank0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
cdsmvs_eth3d_5k18.33 36224.44 3540.00 3840.00 4050.00 4080.00 39589.40 160.00 4000.00 40392.02 4538.55 1830.00 4010.00 4020.00 3990.00 399
pcd_1.5k_mvsjas3.15 3694.20 3720.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 40237.77 1890.00 4010.00 4020.00 3990.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
sosnet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
Regformer0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
testmvs6.14 3678.18 3700.01 3820.01 4040.00 40873.40 3020.00 4060.00 4000.02 4010.15 4000.00 4050.00 4010.02 4000.00 3990.02 397
test1236.01 3688.01 3710.01 3820.00 4050.01 40771.93 3150.00 4060.00 4000.02 4010.11 4010.00 4050.00 4010.02 4000.00 3990.02 397
ab-mvs-re7.68 36610.24 3680.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 40392.12 420.00 4050.00 4010.00 4020.00 3990.00 399
uanet0.00 3700.00 3730.00 3840.00 4050.00 4080.00 3950.00 4060.00 4000.00 4030.00 4020.00 4050.00 4010.00 4020.00 3990.00 399
WAC-MVS34.28 34722.56 368
MSC_two_6792asdad81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
No_MVS81.53 1491.77 456.03 4191.10 696.22 881.46 3286.80 2692.34 32
eth-test20.00 405
eth-test0.00 405
OPU-MVS81.71 1292.05 355.97 4392.48 394.01 567.21 295.10 1589.82 292.55 394.06 3
test_0728_SECOND82.20 889.50 1557.73 1192.34 588.88 2696.39 481.68 2887.13 2092.47 28
GSMVS88.13 138
test_part289.33 2355.48 5082.27 11
sam_mvs138.86 18188.13 138
sam_mvs35.99 226
ambc62.06 32053.98 37229.38 37035.08 38479.65 21641.37 34559.96 3616.27 38482.15 27635.34 31838.22 36174.65 334
MTGPAbinary81.31 185
test_post170.84 32014.72 39734.33 24283.86 26248.80 258
test_post16.22 39437.52 19884.72 257
patchmatchnet-post59.74 36238.41 18479.91 302
GG-mvs-BLEND77.77 7686.68 4350.61 16568.67 33088.45 4268.73 10187.45 13859.15 1090.67 8554.83 21687.67 1692.03 40
MTMP87.27 7215.34 402
test9_res78.72 4785.44 4191.39 59
agg_prior275.65 6685.11 4591.01 68
agg_prior85.64 5454.92 7083.61 14672.53 7288.10 168
test_prior456.39 3587.15 75
test_prior78.39 6586.35 4554.91 7185.45 9189.70 11390.55 76
新几何281.61 226
旧先验181.57 14947.48 24971.83 31488.66 11536.94 20978.34 10388.67 126
原ACMM283.77 166
testdata277.81 32145.64 278
segment_acmp44.97 106
test1279.24 3986.89 4156.08 4085.16 10672.27 7647.15 7691.10 7385.93 3590.54 78
plane_prior777.95 21848.46 224
plane_prior678.42 21349.39 19836.04 224
plane_prior582.59 16388.30 16165.46 12872.34 15284.49 205
plane_prior483.28 192
plane_prior178.31 215
n20.00 406
nn0.00 406
door-mid41.31 378
lessismore_v067.98 28164.76 35141.25 32345.75 37136.03 36265.63 34819.29 34584.11 26135.67 31521.24 38678.59 295
test1184.25 130
door43.27 374
HQP5-MVS51.56 150
BP-MVS66.70 116
HQP4-MVS64.47 14888.61 14684.91 201
HQP3-MVS83.68 14273.12 144
HQP2-MVS37.35 201
NP-MVS78.76 20250.43 17185.12 166
ACMMP++_ref63.20 232
ACMMP++59.38 258
Test By Simon39.38 175