This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.56 196.55 4097.84 1092.68 22898.71 8578.11 35099.70 2797.71 8598.18 197.36 6399.76 190.37 4899.94 3499.27 1699.54 5399.99 1
MM97.76 1097.39 1998.86 598.30 9396.83 799.81 1299.13 997.66 298.29 4098.96 6885.84 12699.90 5099.72 398.80 9299.85 30
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 395.96 9599.33 1992.62 25100.00 198.99 2599.93 199.98 6
MVS_030497.53 1497.15 2298.67 1197.30 13296.52 1299.60 3998.88 1497.14 497.21 6798.94 7486.89 10199.91 4599.43 1598.91 8799.59 73
test_fmvsm_n_192097.08 2797.55 1495.67 13597.94 10589.61 16399.93 298.48 2497.08 599.08 1599.13 4688.17 7299.93 3899.11 2399.06 7697.47 202
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 24100.00 198.99 2599.90 799.96 10
test_fmvsmvis_n_192095.47 7395.40 7195.70 13394.33 25390.22 14299.70 2796.98 19396.80 792.75 15498.89 8082.46 18499.92 4098.36 4098.33 10896.97 219
fmvsm_l_conf0.5_n97.65 1397.72 1297.41 4897.51 12292.78 8799.85 898.05 4696.78 899.60 199.23 2690.42 4699.92 4099.55 1298.50 10499.55 74
test_vis1_n_192093.08 15093.42 12392.04 24196.31 17679.36 33899.83 1096.06 24896.72 998.53 3398.10 13158.57 34499.91 4597.86 5598.79 9596.85 221
fmvsm_l_conf0.5_n_a97.70 1297.80 1197.42 4797.59 11792.91 8599.86 598.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9999.40 89
test_fmvsmconf_n96.78 3496.84 2996.61 8795.99 19290.25 13999.90 398.13 4296.68 1198.42 3598.92 7685.34 13699.88 5499.12 2299.08 7499.70 52
DPM-MVS97.86 897.25 2199.68 198.25 9499.10 199.76 2197.78 7396.61 1298.15 4299.53 793.62 16100.00 191.79 16499.80 2699.94 18
EPNet96.82 3296.68 3497.25 5598.65 8693.10 7799.48 5498.76 1596.54 1397.84 5598.22 12687.49 8499.66 9495.35 10597.78 11999.00 123
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC98.12 598.11 398.13 2599.76 694.46 5099.81 1297.88 5796.54 1398.84 2599.46 1092.55 2699.98 998.25 4699.93 199.94 18
test_fmvsmconf0.1_n95.94 5995.79 6296.40 10292.42 29689.92 15599.79 1796.85 19796.53 1597.22 6698.67 9982.71 17799.84 6998.92 2798.98 8199.43 88
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5198.85 13697.64 10396.51 1695.88 9899.39 1887.35 9199.99 596.61 7999.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192093.86 12493.74 11694.22 19095.39 21386.08 24999.73 2396.07 24796.38 1797.19 7097.78 13865.46 31999.86 6396.71 7498.92 8696.73 223
DELS-MVS97.12 2596.60 3598.68 1098.03 10396.57 1199.84 997.84 6196.36 1895.20 11598.24 12588.17 7299.83 7396.11 8999.60 4999.64 64
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2896.49 3698.55 1298.86 8096.10 1699.83 1097.52 13195.90 1997.21 6798.90 7882.66 17899.93 3898.71 2998.80 9299.63 66
PS-MVSNAJ96.87 3196.40 3998.29 1997.35 13097.29 599.03 12097.11 17995.83 2098.97 2099.14 4482.48 18199.60 10398.60 3399.08 7498.00 189
test_fmvsmconf0.01_n94.14 11493.51 12096.04 11986.79 36989.19 16799.28 8595.94 25795.70 2195.50 10998.49 11273.27 25699.79 8298.28 4598.32 11099.15 111
save fliter99.34 5093.85 6499.65 3697.63 10795.69 22
fmvsm_s_conf0.5_n96.19 4996.49 3695.30 14897.37 12989.16 16899.86 598.47 2595.68 2398.87 2399.15 4182.44 18599.92 4099.14 2197.43 12896.83 222
HPM-MVS++copyleft97.72 1197.59 1398.14 2499.53 4094.76 4499.19 9197.75 7695.66 2498.21 4199.29 2091.10 3299.99 597.68 5799.87 999.68 56
bld_raw_dy_0_6491.37 18389.75 19796.23 10997.51 12290.58 13499.16 9788.98 38995.64 2587.18 22499.20 3057.19 35198.66 16798.00 5084.86 26099.46 83
iter_conf05_1194.23 11293.49 12196.46 9697.51 12291.32 11099.96 194.31 33795.62 2699.32 899.22 2757.79 34798.59 17298.00 5099.64 4099.46 83
CANet_DTU94.31 11193.35 12597.20 5797.03 15194.71 4698.62 16495.54 29095.61 2797.21 6798.47 11671.88 26999.84 6988.38 20397.46 12797.04 216
IU-MVS99.63 1895.38 2497.73 8095.54 2899.54 399.69 699.81 2399.99 1
xiu_mvs_v2_base96.66 3696.17 4898.11 2897.11 14796.96 699.01 12397.04 18695.51 2998.86 2499.11 5282.19 18999.36 13098.59 3598.14 11298.00 189
fmvsm_s_conf0.5_n_a95.97 5696.19 4395.31 14796.51 16789.01 17499.81 1298.39 2795.46 3099.19 1499.16 3881.44 19999.91 4598.83 2896.97 13797.01 218
MSP-MVS97.77 998.18 296.53 9499.54 3690.14 14499.41 6997.70 8695.46 3098.60 3099.19 3295.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
patch_mono-297.10 2697.97 894.49 17799.21 6183.73 29299.62 3898.25 3295.28 3299.38 698.91 7792.28 2799.94 3499.61 999.22 7199.78 38
test_fmvs192.35 16392.94 13890.57 27497.19 13975.43 35999.55 4594.97 31595.20 3396.82 8097.57 15159.59 34299.84 6997.30 6398.29 11196.46 233
TSAR-MVS + GP.96.95 2996.91 2697.07 5998.88 7991.62 10499.58 4296.54 21495.09 3496.84 7798.63 10391.16 3099.77 8599.04 2496.42 14599.81 33
test_fmvs1_n91.07 18991.41 16990.06 28894.10 25974.31 36399.18 9394.84 31994.81 3596.37 9097.46 15550.86 37499.82 7697.14 6697.90 11496.04 240
fmvsm_s_conf0.1_n95.56 7295.68 6595.20 15194.35 25289.10 17099.50 5297.67 9494.76 3698.68 2899.03 5881.13 20299.86 6398.63 3297.36 13096.63 225
MSLP-MVS++97.50 1797.45 1797.63 4099.65 1693.21 7499.70 2798.13 4294.61 3797.78 5699.46 1089.85 5499.81 7997.97 5299.91 699.88 26
PC_three_145294.60 3899.41 499.12 4895.50 799.96 2899.84 299.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8194.50 3998.64 2999.54 393.32 1899.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a95.16 8295.15 7795.18 15292.06 30288.94 17899.29 8297.53 12794.46 4098.98 1998.99 6279.99 20799.85 6798.24 4796.86 13996.73 223
TSAR-MVS + MP.97.44 1897.46 1697.39 5099.12 6593.49 7198.52 17597.50 13694.46 4098.99 1898.64 10191.58 2999.08 14898.49 3799.83 1599.60 69
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11499.06 1094.45 4296.42 8998.70 9788.81 6499.74 8895.35 10599.86 1299.97 7
test_vis1_n90.40 20190.27 19190.79 26991.55 31276.48 35599.12 11094.44 33194.31 4397.34 6496.95 18343.60 38599.42 12397.57 5997.60 12196.47 232
PAPM96.35 4395.94 5497.58 4294.10 25995.25 2698.93 13098.17 3794.26 4493.94 13798.72 9389.68 5697.88 20496.36 8499.29 6899.62 68
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8194.17 4599.30 999.54 393.32 1899.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 8194.17 4599.23 1199.54 393.14 2399.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2797.72 8194.16 4799.30 999.49 993.32 1899.98 9
CLD-MVS91.06 19090.71 18592.10 23994.05 26386.10 24899.55 4596.29 23094.16 4784.70 24597.17 17269.62 28597.82 20894.74 12086.08 25292.39 263
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SteuartSystems-ACMMP97.25 1997.34 2097.01 6297.38 12891.46 10899.75 2297.66 9594.14 4998.13 4399.26 2192.16 2899.66 9497.91 5499.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14193.95 5099.07 1699.46 1093.18 2199.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3299.77 1897.70 8693.95 5099.35 799.54 393.18 21
HQP-NCC93.95 26499.16 9793.92 5287.57 217
ACMP_Plane93.95 26499.16 9793.92 5287.57 217
HQP-MVS91.50 17891.23 17292.29 23393.95 26486.39 23699.16 9796.37 22393.92 5287.57 21796.67 19973.34 25397.77 21293.82 13786.29 24792.72 258
DeepC-MVS91.02 494.56 10693.92 11096.46 9697.16 14290.76 12898.39 19797.11 17993.92 5288.66 20998.33 12178.14 22599.85 6795.02 11398.57 10298.78 149
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.69 3596.69 3396.72 8298.58 8891.00 12399.14 10699.45 193.86 5695.15 11698.73 9188.48 6799.76 8697.23 6599.56 5199.40 89
h-mvs3392.47 16291.95 15894.05 19897.13 14585.01 27598.36 19998.08 4493.85 5796.27 9196.73 19683.19 16599.43 12295.81 9468.09 36397.70 195
hse-mvs291.67 17791.51 16792.15 23896.22 18082.61 31097.74 24797.53 12793.85 5796.27 9196.15 21283.19 16597.44 23795.81 9466.86 37096.40 235
lupinMVS96.32 4595.94 5497.44 4695.05 23394.87 3899.86 596.50 21693.82 5998.04 4998.77 8785.52 12898.09 19296.98 7098.97 8299.37 92
plane_prior86.07 25199.14 10693.81 6086.26 249
SD-MVS97.51 1697.40 1897.81 3699.01 7293.79 6599.33 7997.38 15493.73 6198.83 2699.02 6090.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS-test95.98 5596.34 4194.90 16298.06 10287.66 20699.69 3496.10 24393.66 6298.35 3999.05 5686.28 11797.66 22296.96 7198.90 8899.37 92
plane_prior385.91 25593.65 6386.99 225
PVSNet_Blended95.94 5995.66 6696.75 7898.77 8391.61 10599.88 498.04 4893.64 6494.21 13297.76 13983.50 15699.87 5897.41 6197.75 12098.79 147
APDe-MVScopyleft97.53 1497.47 1597.70 3899.58 3093.63 6699.56 4497.52 13193.59 6598.01 5199.12 4890.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
jason95.40 7794.86 8497.03 6192.91 29194.23 5699.70 2796.30 22793.56 6696.73 8398.52 10881.46 19897.91 20196.08 9098.47 10698.96 127
jason: jason.
MVS_111021_LR95.78 6595.94 5495.28 14998.19 9887.69 20398.80 14299.26 793.39 6795.04 11898.69 9884.09 15099.76 8696.96 7199.06 7698.38 170
HQP_MVS91.26 18490.95 17892.16 23793.84 27186.07 25199.02 12196.30 22793.38 6886.99 22596.52 20172.92 25997.75 21893.46 14486.17 25092.67 260
plane_prior299.02 12193.38 68
ETV-MVS96.00 5396.00 5396.00 12296.56 16391.05 12199.63 3796.61 20693.26 7097.39 6298.30 12386.62 10898.13 18998.07 4997.57 12298.82 144
test_one_060199.59 2894.89 3697.64 10393.14 7198.93 2299.45 1493.45 17
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4597.68 9093.01 7299.23 1199.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_THIRD93.01 7299.07 1699.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
xiu_mvs_v1_base_debu94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
xiu_mvs_v1_base_debi94.73 9793.98 10496.99 6495.19 21995.24 2798.62 16496.50 21692.99 7497.52 5898.83 8472.37 26499.15 14197.03 6796.74 14096.58 228
EPNet_dtu92.28 16692.15 15392.70 22797.29 13484.84 27798.64 16197.82 6592.91 7793.02 15297.02 18085.48 13395.70 32272.25 34694.89 16897.55 201
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.76 21689.15 21091.57 25390.53 32685.58 26398.11 22195.93 26092.88 7886.05 23396.47 20467.06 30697.87 20589.29 19786.08 25291.26 308
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsany_test194.57 10595.09 8092.98 21995.84 19682.07 31498.76 14895.24 30892.87 7996.45 8898.71 9684.81 14399.15 14197.68 5795.49 16397.73 194
CS-MVS95.75 6896.19 4394.40 18197.88 10786.22 24399.66 3596.12 24292.69 8098.07 4798.89 8087.09 9597.59 22896.71 7498.62 10099.39 91
MTAPA96.09 5195.80 6196.96 6999.29 5591.19 11397.23 26997.45 14492.58 8194.39 13099.24 2586.43 11599.99 596.22 8599.40 6399.71 51
EIA-MVS95.11 8395.27 7494.64 17496.34 17586.51 23199.59 4196.62 20592.51 8294.08 13598.64 10186.05 12298.24 18695.07 11298.50 10499.18 109
CHOSEN 280x42096.80 3396.85 2896.66 8697.85 10894.42 5394.76 33098.36 2992.50 8395.62 10897.52 15297.92 197.38 24098.31 4498.80 9298.20 183
testdata197.89 23592.43 84
PAPR96.35 4395.82 5897.94 3399.63 1894.19 5899.42 6897.55 12392.43 8493.82 14199.12 4887.30 9299.91 4594.02 13199.06 7699.74 47
HY-MVS88.56 795.29 7994.23 9498.48 1497.72 11096.41 1394.03 33898.74 1692.42 8695.65 10794.76 24086.52 11299.49 11295.29 10792.97 18499.53 76
XVS96.47 4196.37 4096.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7598.96 6887.37 8799.87 5895.65 9699.43 6099.78 38
X-MVStestdata90.69 19888.66 22196.77 7699.62 2290.66 13299.43 6697.58 11892.41 8796.86 7529.59 40987.37 8799.87 5895.65 9699.43 6099.78 38
UGNet91.91 17490.85 18095.10 15497.06 14988.69 18798.01 23098.24 3492.41 8792.39 15993.61 26160.52 33999.68 9288.14 20697.25 13196.92 220
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
iter_conf0593.48 13493.18 13194.39 18497.15 14394.17 5999.30 8192.97 35592.38 9086.70 23195.42 22895.67 596.59 26994.67 12384.32 26692.39 263
WTY-MVS95.97 5695.11 7998.54 1397.62 11496.65 999.44 6398.74 1692.25 9195.21 11498.46 11886.56 11199.46 11895.00 11592.69 18899.50 80
OMC-MVS93.90 12293.62 11894.73 17098.63 8787.00 22598.04 22996.56 21292.19 9292.46 15798.73 9179.49 21499.14 14592.16 16194.34 17398.03 188
ET-MVSNet_ETH3D92.56 16091.45 16895.88 12796.39 17394.13 6099.46 6096.97 19492.18 9366.94 37898.29 12494.65 1494.28 35194.34 12883.82 27399.24 104
CHOSEN 1792x268894.35 11093.82 11495.95 12597.40 12788.74 18698.41 19098.27 3192.18 9391.43 17496.40 20578.88 21899.81 7993.59 14097.81 11699.30 99
PVSNet_Blended_VisFu94.67 10194.11 9996.34 10697.14 14491.10 11899.32 8097.43 14992.10 9591.53 17396.38 20883.29 16299.68 9293.42 14696.37 14698.25 177
Effi-MVS+-dtu89.97 21490.68 18687.81 32695.15 22371.98 37397.87 23895.40 29991.92 9687.57 21791.44 29974.27 24796.84 25989.45 19193.10 18394.60 249
EI-MVSNet-Vis-set95.76 6795.63 7096.17 11499.14 6490.33 13798.49 18197.82 6591.92 9694.75 12298.88 8287.06 9799.48 11695.40 10497.17 13598.70 154
sasdasda95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
canonicalmvs95.02 8693.96 10798.20 2197.53 12095.92 1798.71 15096.19 23691.78 9895.86 10098.49 11279.53 21299.03 14996.12 8791.42 21999.66 60
EI-MVSNet-UG-set95.43 7495.29 7395.86 12899.07 7089.87 15698.43 18797.80 7091.78 9894.11 13498.77 8786.25 11999.48 11694.95 11796.45 14498.22 181
diffmvspermissive94.59 10494.19 9695.81 12995.54 20690.69 13098.70 15395.68 28291.61 10195.96 9597.81 13580.11 20698.06 19496.52 8295.76 15898.67 156
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive92.64 15691.85 15995.03 15995.12 22688.23 19398.48 18396.81 19891.61 10192.16 16297.22 16771.58 27498.00 20085.85 23497.81 11698.88 137
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MGCFI-Net94.89 8893.84 11398.06 2997.49 12595.55 2198.64 16196.10 24391.60 10395.75 10498.46 11879.31 21698.98 15395.95 9391.24 22399.65 63
3Dnovator87.35 1193.17 14891.77 16297.37 5195.41 21193.07 7898.82 13997.85 6091.53 10482.56 27097.58 15071.97 26899.82 7691.01 17099.23 7099.22 107
alignmvs95.77 6695.00 8298.06 2997.35 13095.68 2099.71 2697.50 13691.50 10596.16 9398.61 10586.28 11799.00 15196.19 8691.74 20799.51 79
EC-MVSNet95.09 8495.17 7694.84 16595.42 21088.17 19499.48 5495.92 26191.47 10697.34 6498.36 12082.77 17397.41 23997.24 6498.58 10198.94 132
PVSNet_BlendedMVS93.36 14093.20 13093.84 20598.77 8391.61 10599.47 5698.04 4891.44 10794.21 13292.63 28083.50 15699.87 5897.41 6183.37 27790.05 339
test_prior299.57 4391.43 10898.12 4598.97 6490.43 4598.33 4299.81 23
PVSNet87.13 1293.69 12892.83 14096.28 10897.99 10490.22 14299.38 7298.93 1291.42 10993.66 14397.68 14471.29 27699.64 10087.94 20997.20 13298.98 125
3Dnovator+87.72 893.43 13791.84 16098.17 2395.73 20095.08 3498.92 13297.04 18691.42 10981.48 29597.60 14874.60 24199.79 8290.84 17398.97 8299.64 64
FOURS199.50 4288.94 17899.55 4597.47 14191.32 11198.12 45
PMMVS93.62 13393.90 11192.79 22396.79 15881.40 32198.85 13696.81 19891.25 11296.82 8098.15 13077.02 23198.13 18993.15 15096.30 14998.83 143
IB-MVS89.43 692.12 17090.83 18395.98 12495.40 21290.78 12799.81 1298.06 4591.23 11385.63 23893.66 26090.63 4298.78 15891.22 16771.85 35398.36 173
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline93.91 12193.30 12795.72 13295.10 23090.07 14897.48 25895.91 26691.03 11493.54 14597.68 14479.58 21098.02 19894.27 12995.14 16699.08 119
mvsmamba89.99 21389.42 20491.69 25190.64 32586.34 23998.40 19392.27 36491.01 11584.80 24494.93 23576.12 23396.51 27692.81 15583.84 27092.21 273
casdiffmvspermissive93.98 11993.43 12295.61 13895.07 23289.86 15798.80 14295.84 27490.98 11692.74 15597.66 14679.71 20998.10 19194.72 12195.37 16498.87 139
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net93.30 14292.62 14495.34 14596.27 17888.53 19195.88 31696.97 19490.90 11795.37 11297.07 17682.38 18699.10 14783.91 25994.86 16998.38 170
test111192.12 17091.19 17394.94 16196.15 18587.36 21698.12 21994.84 31990.85 11890.97 18197.26 16365.60 31798.37 17889.74 18997.14 13699.07 121
test250694.80 9494.21 9596.58 9096.41 17192.18 9798.01 23098.96 1190.82 11993.46 14697.28 16185.92 12398.45 17689.82 18697.19 13399.12 115
ECVR-MVScopyleft92.29 16591.33 17095.15 15396.41 17187.84 20198.10 22294.84 31990.82 11991.42 17697.28 16165.61 31698.49 17590.33 18097.19 13399.12 115
dcpmvs_295.67 7096.18 4594.12 19498.82 8184.22 28597.37 26295.45 29590.70 12195.77 10398.63 10390.47 4498.68 16699.20 2099.22 7199.45 85
ACMMP_NAP96.59 3896.18 4597.81 3698.82 8193.55 6898.88 13597.59 11690.66 12297.98 5299.14 4486.59 109100.00 196.47 8399.46 5699.89 25
mPP-MVS95.90 6195.75 6396.38 10399.58 3089.41 16699.26 8697.41 15190.66 12294.82 12098.95 7186.15 12199.98 995.24 10999.64 4099.74 47
PAPM_NR95.43 7495.05 8196.57 9299.42 4790.14 14498.58 17297.51 13390.65 12492.44 15898.90 7887.77 8199.90 5090.88 17299.32 6599.68 56
MP-MVScopyleft96.00 5395.82 5896.54 9399.47 4690.13 14699.36 7697.41 15190.64 12595.49 11098.95 7185.51 13099.98 996.00 9299.59 5099.52 77
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
testing1195.33 7894.98 8396.37 10497.20 13792.31 9499.29 8297.68 9090.59 12694.43 12797.20 16890.79 4198.60 17095.25 10892.38 19398.18 184
casdiffmvs_mvgpermissive94.00 11793.33 12696.03 12095.22 21790.90 12699.09 11295.99 25090.58 12791.55 17297.37 15979.91 20898.06 19495.01 11495.22 16599.13 114
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
region2R96.30 4696.17 4896.70 8399.70 790.31 13899.46 6097.66 9590.55 12897.07 7299.07 5386.85 10299.97 2195.43 10399.74 2999.81 33
HFP-MVS96.42 4296.26 4296.90 7199.69 890.96 12499.47 5697.81 6890.54 12996.88 7499.05 5687.57 8299.96 2895.65 9699.72 3199.78 38
ACMMPR96.28 4796.14 5296.73 8099.68 990.47 13699.47 5697.80 7090.54 12996.83 7999.03 5886.51 11399.95 3195.65 9699.72 3199.75 46
test_fmvs285.10 29585.45 27384.02 35289.85 33565.63 38698.49 18192.59 36090.45 13185.43 24193.32 26643.94 38396.59 26990.81 17484.19 26789.85 343
SR-MVS96.13 5096.16 5096.07 11899.42 4789.04 17298.59 17097.33 15890.44 13296.84 7799.12 4886.75 10499.41 12697.47 6099.44 5999.76 45
EPMVS92.59 15991.59 16595.59 13997.22 13690.03 15291.78 35898.04 4890.42 13391.66 16890.65 31886.49 11497.46 23581.78 28096.31 14899.28 101
ACMMPcopyleft94.67 10194.30 9295.79 13099.25 5788.13 19698.41 19098.67 2290.38 13491.43 17498.72 9382.22 18899.95 3193.83 13695.76 15899.29 100
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 8594.26 9397.55 4598.07 10193.88 6398.68 15598.73 1890.33 13597.16 7197.43 15779.19 21799.53 10996.91 7391.85 20599.24 104
test-LLR93.11 14992.68 14294.40 18194.94 23887.27 22099.15 10397.25 16190.21 13691.57 16994.04 24684.89 14197.58 22985.94 23196.13 15198.36 173
test0.0.03 188.96 22688.61 22290.03 29291.09 31984.43 28298.97 12897.02 19090.21 13680.29 30596.31 21084.89 14191.93 37572.98 34285.70 25593.73 251
train_agg97.20 2397.08 2397.57 4499.57 3393.17 7599.38 7297.66 9590.18 13898.39 3699.18 3590.94 3599.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7899.37 7597.64 10390.18 13898.36 3899.19 3290.94 3599.64 100
131493.44 13691.98 15797.84 3495.24 21594.38 5496.22 30697.92 5590.18 13882.28 27897.71 14377.63 22899.80 8191.94 16398.67 9899.34 96
CVMVSNet90.30 20490.91 17988.46 32294.32 25473.58 36797.61 25597.59 11690.16 14188.43 21297.10 17476.83 23292.86 36182.64 27193.54 17998.93 133
MVSTER92.71 15492.32 14893.86 20497.29 13492.95 8499.01 12396.59 20890.09 14285.51 23994.00 25094.61 1596.56 27290.77 17683.03 27992.08 280
APD-MVScopyleft96.95 2996.72 3297.63 4099.51 4193.58 6799.16 9797.44 14790.08 14398.59 3199.07 5389.06 6099.42 12397.92 5399.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS96.22 4896.15 5196.42 10099.67 1089.62 16299.70 2797.61 11090.07 14496.00 9499.16 3887.43 8599.92 4096.03 9199.72 3199.70 52
SCA90.64 19989.25 20894.83 16694.95 23788.83 18296.26 30397.21 16790.06 14590.03 19790.62 32066.61 30896.81 26183.16 26594.36 17298.84 140
testing9994.88 9094.45 8996.17 11497.20 13791.91 9999.20 9097.66 9589.95 14693.68 14297.06 17790.28 5098.50 17393.52 14191.54 21398.12 186
testing9194.88 9094.44 9096.21 11097.19 13991.90 10099.23 8897.66 9589.91 14793.66 14397.05 17990.21 5198.50 17393.52 14191.53 21698.25 177
baseline294.04 11693.80 11594.74 16993.07 29090.25 13998.12 21998.16 3989.86 14886.53 23296.95 18395.56 698.05 19691.44 16694.53 17095.93 241
baseline192.61 15891.28 17196.58 9097.05 15094.63 4897.72 24896.20 23489.82 14988.56 21096.85 19086.85 10297.82 20888.42 20280.10 29597.30 206
PVSNet_083.28 1687.31 26185.16 27693.74 20894.78 24384.59 28098.91 13398.69 2189.81 15078.59 32693.23 27061.95 33399.34 13494.75 11955.72 39097.30 206
ZNCC-MVS96.09 5195.81 6096.95 7099.42 4791.19 11399.55 4597.53 12789.72 15195.86 10098.94 7486.59 10999.97 2195.13 11099.56 5199.68 56
GST-MVS95.97 5695.66 6696.90 7199.49 4591.22 11199.45 6297.48 13989.69 15295.89 9798.72 9386.37 11699.95 3194.62 12599.22 7199.52 77
GA-MVS90.10 21088.69 22094.33 18592.44 29587.97 20099.08 11396.26 23189.65 15386.92 22793.11 27368.09 29596.96 25482.54 27390.15 23198.05 187
SR-MVS-dyc-post95.75 6895.86 5795.41 14399.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6486.73 10699.36 13096.62 7799.31 6699.60 69
RE-MVS-def95.70 6499.22 5987.26 22298.40 19397.21 16789.63 15496.67 8598.97 6485.24 13796.62 7799.31 6699.60 69
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3799.44 6397.45 14489.60 15698.70 2799.42 1790.42 4699.72 8998.47 3899.65 3899.77 43
MDTV_nov1_ep1390.47 19096.14 18788.55 18991.34 36597.51 13389.58 15792.24 16090.50 32886.99 10097.61 22777.64 30892.34 195
TEST999.57 3393.17 7599.38 7297.66 9589.57 15898.39 3699.18 3590.88 3899.66 94
PatchmatchNetpermissive92.05 17391.04 17695.06 15696.17 18489.04 17291.26 36697.26 16089.56 15990.64 18790.56 32488.35 6997.11 24879.53 29396.07 15599.03 122
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 5799.16 9797.65 10289.55 16099.22 1399.52 890.34 4999.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
UWE-MVS93.18 14693.40 12492.50 23196.56 16383.55 29498.09 22597.84 6189.50 16191.72 16696.23 21191.08 3396.70 26586.28 22693.33 18097.26 208
sss94.85 9393.94 10997.58 4296.43 17094.09 6198.93 13099.16 889.50 16195.27 11397.85 13381.50 19699.65 9892.79 15694.02 17598.99 124
ACMP87.39 1088.71 23888.24 23190.12 28793.91 26981.06 32998.50 17995.67 28389.43 16380.37 30495.55 22465.67 31497.83 20790.55 17884.51 26291.47 297
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1496.87 2799.34 5099.50 5297.49 13889.41 16498.59 3199.43 1689.78 5599.69 9198.69 3099.62 45
RRT_MVS88.91 22888.56 22589.93 29390.31 32981.61 31898.08 22696.38 22289.30 16582.41 27594.84 23873.15 25796.04 30790.38 17982.23 28692.15 276
thres20093.69 12892.59 14596.97 6897.76 10994.74 4599.35 7799.36 289.23 16691.21 18096.97 18283.42 15998.77 15985.08 23990.96 22497.39 204
testing22294.48 10894.00 10395.95 12597.30 13292.27 9598.82 13997.92 5589.20 16794.82 12097.26 16387.13 9497.32 24391.95 16291.56 21198.25 177
PGM-MVS95.85 6295.65 6896.45 9899.50 4289.77 15998.22 20998.90 1389.19 16896.74 8298.95 7185.91 12599.92 4093.94 13299.46 5699.66 60
TESTMET0.1,193.82 12593.26 12995.49 14095.21 21890.25 13999.15 10397.54 12689.18 16991.79 16494.87 23789.13 5997.63 22586.21 22796.29 15098.60 160
UniMVSNet (Re)89.50 22188.32 23093.03 21792.21 29990.96 12498.90 13498.39 2789.13 17083.22 25792.03 28581.69 19496.34 29286.79 22172.53 34691.81 285
FIs90.70 19789.87 19693.18 21592.29 29791.12 11698.17 21598.25 3289.11 17183.44 25694.82 23982.26 18796.17 30187.76 21082.76 28192.25 269
tpmrst92.78 15392.16 15294.65 17296.27 17887.45 21391.83 35797.10 18289.10 17294.68 12490.69 31588.22 7197.73 22089.78 18791.80 20698.77 150
CDPH-MVS96.56 3996.18 4597.70 3899.59 2893.92 6299.13 10997.44 14789.02 17397.90 5499.22 2788.90 6399.49 11294.63 12499.79 2799.68 56
原ACMM196.18 11299.03 7190.08 14797.63 10788.98 17497.00 7398.97 6488.14 7599.71 9088.23 20599.62 4598.76 151
XVG-OURS90.83 19490.49 18991.86 24395.23 21681.25 32595.79 32195.92 26188.96 17590.02 19898.03 13271.60 27399.35 13391.06 16987.78 24094.98 247
MP-MVS-pluss95.80 6495.30 7297.29 5298.95 7692.66 8898.59 17097.14 17588.95 17693.12 15099.25 2385.62 12799.94 3496.56 8199.48 5599.28 101
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test-mter93.27 14492.89 13994.40 18194.94 23887.27 22099.15 10397.25 16188.95 17691.57 16994.04 24688.03 7797.58 22985.94 23196.13 15198.36 173
APD-MVS_3200maxsize95.64 7195.65 6895.62 13799.24 5887.80 20298.42 18897.22 16688.93 17896.64 8798.98 6385.49 13199.36 13096.68 7699.27 6999.70 52
CR-MVSNet88.83 23387.38 24493.16 21693.47 28086.24 24184.97 38694.20 34088.92 17990.76 18586.88 36384.43 14694.82 34370.64 35092.17 20198.41 167
DU-MVS88.83 23387.51 24192.79 22391.46 31490.07 14898.71 15097.62 10988.87 18083.21 25893.68 25874.63 23995.93 31286.95 21772.47 34792.36 265
FC-MVSNet-test90.22 20689.40 20592.67 22991.78 30989.86 15797.89 23598.22 3588.81 18182.96 26394.66 24181.90 19395.96 31085.89 23382.52 28492.20 275
USDC84.74 29882.93 30390.16 28691.73 31083.54 29595.00 32893.30 35388.77 18273.19 35493.30 26853.62 36597.65 22475.88 32181.54 28989.30 350
testgi82.29 31981.00 32286.17 33987.24 36674.84 36297.39 25991.62 37488.63 18375.85 34195.42 22846.07 38291.55 37666.87 36679.94 29692.12 278
VPNet88.30 24586.57 25593.49 21091.95 30591.35 10998.18 21397.20 17188.61 18484.52 24894.89 23662.21 33296.76 26489.34 19472.26 35092.36 265
miper_enhance_ethall90.33 20389.70 19892.22 23497.12 14688.93 18098.35 20095.96 25488.60 18583.14 26292.33 28287.38 8696.18 30086.49 22477.89 30491.55 295
IS-MVSNet93.00 15192.51 14694.49 17796.14 18787.36 21698.31 20495.70 28088.58 18690.17 19597.50 15383.02 16997.22 24587.06 21496.07 15598.90 136
PS-MVSNAJss89.54 22089.05 21291.00 26288.77 34984.36 28397.39 25995.97 25288.47 18781.88 28893.80 25682.48 18196.50 27789.34 19483.34 27892.15 276
jajsoiax87.35 26086.51 25789.87 29487.75 36381.74 31697.03 27695.98 25188.47 18780.15 30793.80 25661.47 33496.36 28689.44 19284.47 26491.50 296
Fast-Effi-MVS+-dtu88.84 23188.59 22489.58 30493.44 28378.18 34898.65 15994.62 32888.46 18984.12 25295.37 23068.91 28796.52 27582.06 27791.70 20994.06 250
tfpn200view993.43 13792.27 15096.90 7197.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22697.12 211
thres40093.39 13992.27 15096.73 8097.68 11294.84 4099.18 9399.36 288.45 19090.79 18396.90 18683.31 16098.75 16184.11 25590.69 22696.61 226
LCM-MVSNet-Re88.59 24288.61 22288.51 32195.53 20772.68 37196.85 28388.43 39088.45 19073.14 35590.63 31975.82 23494.38 35092.95 15195.71 16098.48 165
PLCcopyleft91.07 394.23 11294.01 10294.87 16399.17 6387.49 21199.25 8796.55 21388.43 19391.26 17898.21 12885.92 12399.86 6389.77 18897.57 12297.24 209
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-OURS-SEG-HR90.95 19290.66 18791.83 24495.18 22281.14 32895.92 31395.92 26188.40 19490.33 19497.85 13370.66 27999.38 12892.83 15488.83 23694.98 247
UniMVSNet_NR-MVSNet89.60 21888.55 22692.75 22592.17 30090.07 14898.74 14998.15 4088.37 19583.21 25893.98 25182.86 17195.93 31286.95 21772.47 34792.25 269
MAR-MVS94.43 10994.09 10095.45 14199.10 6887.47 21298.39 19797.79 7288.37 19594.02 13699.17 3778.64 22399.91 4592.48 15898.85 9098.96 127
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SDMVSNet91.09 18889.91 19594.65 17296.80 15690.54 13597.78 24297.81 6888.34 19785.73 23595.26 23166.44 31198.26 18494.25 13086.75 24495.14 244
sd_testset89.23 22288.05 23692.74 22696.80 15685.33 26895.85 31997.03 18888.34 19785.73 23595.26 23161.12 33797.76 21785.61 23586.75 24495.14 244
Vis-MVSNet (Re-imp)93.26 14593.00 13794.06 19796.14 18786.71 23098.68 15596.70 20188.30 19989.71 20397.64 14785.43 13496.39 28488.06 20896.32 14799.08 119
1112_ss92.71 15491.55 16696.20 11195.56 20591.12 11698.48 18394.69 32688.29 20086.89 22898.50 11087.02 9898.66 16784.75 24489.77 23498.81 145
Test_1112_low_res92.27 16790.97 17796.18 11295.53 20791.10 11898.47 18594.66 32788.28 20186.83 22993.50 26587.00 9998.65 16984.69 24589.74 23598.80 146
gm-plane-assit94.69 24588.14 19588.22 20297.20 16898.29 18290.79 175
mvs_tets87.09 26386.22 26089.71 30087.87 35981.39 32296.73 29095.90 26788.19 20379.99 30993.61 26159.96 34196.31 29489.40 19384.34 26591.43 300
BH-w/o92.32 16491.79 16193.91 20396.85 15386.18 24599.11 11195.74 27888.13 20484.81 24397.00 18177.26 23097.91 20189.16 19998.03 11397.64 196
nrg03090.23 20588.87 21594.32 18691.53 31393.54 6998.79 14695.89 26988.12 20584.55 24794.61 24278.80 22196.88 25892.35 16075.21 31892.53 262
ETVMVS94.50 10793.90 11196.31 10797.48 12692.98 8199.07 11497.86 5988.09 20694.40 12996.90 18688.35 6997.28 24490.72 17792.25 19998.66 159
AUN-MVS90.17 20889.50 20192.19 23696.21 18182.67 30897.76 24697.53 12788.05 20791.67 16796.15 21283.10 16797.47 23488.11 20766.91 36996.43 234
D2MVS87.96 24987.39 24389.70 30191.84 30883.40 29698.31 20498.49 2388.04 20878.23 33090.26 33073.57 25196.79 26384.21 25283.53 27588.90 355
NR-MVSNet87.74 25686.00 26492.96 22091.46 31490.68 13196.65 29297.42 15088.02 20973.42 35293.68 25877.31 22995.83 31884.26 25171.82 35492.36 265
dmvs_re88.69 23988.06 23590.59 27393.83 27378.68 34495.75 32296.18 23887.99 21084.48 24996.32 20967.52 30196.94 25684.98 24285.49 25696.14 238
thres100view90093.34 14192.15 15396.90 7197.62 11494.84 4099.06 11799.36 287.96 21190.47 19196.78 19483.29 16298.75 16184.11 25590.69 22697.12 211
thres600view793.18 14692.00 15696.75 7897.62 11494.92 3599.07 11499.36 287.96 21190.47 19196.78 19483.29 16298.71 16582.93 26990.47 23096.61 226
CDS-MVSNet93.47 13593.04 13594.76 16794.75 24489.45 16598.82 13997.03 18887.91 21390.97 18196.48 20389.06 6096.36 28689.50 19092.81 18798.49 164
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM86.95 1388.77 23688.22 23290.43 27993.61 27781.34 32398.50 17995.92 26187.88 21483.85 25495.20 23367.20 30497.89 20386.90 22084.90 25992.06 281
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm89.67 21788.95 21491.82 24592.54 29481.43 32092.95 34795.92 26187.81 21590.50 19089.44 34384.99 13995.65 32383.67 26282.71 28298.38 170
ZD-MVS99.67 1093.28 7397.61 11087.78 21697.41 6199.16 3890.15 5299.56 10598.35 4199.70 35
TranMVSNet+NR-MVSNet87.75 25386.31 25992.07 24090.81 32288.56 18898.33 20197.18 17287.76 21781.87 28993.90 25372.45 26395.43 32983.13 26771.30 35792.23 271
PatchMatch-RL91.47 17990.54 18894.26 18898.20 9686.36 23896.94 27997.14 17587.75 21888.98 20795.75 22271.80 27199.40 12780.92 28597.39 12997.02 217
BH-RMVSNet91.25 18689.99 19495.03 15996.75 15988.55 18998.65 15994.95 31687.74 21987.74 21697.80 13668.27 29398.14 18880.53 29097.49 12698.41 167
LPG-MVS_test88.86 23088.47 22890.06 28893.35 28580.95 33098.22 20995.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
LGP-MVS_train90.06 28893.35 28580.95 33095.94 25787.73 22083.17 26096.11 21466.28 31297.77 21290.19 18285.19 25791.46 298
MVS_Test93.67 13192.67 14396.69 8496.72 16092.66 8897.22 27096.03 24987.69 22295.12 11794.03 24881.55 19598.28 18389.17 19896.46 14399.14 112
ITE_SJBPF87.93 32492.26 29876.44 35693.47 35287.67 22379.95 31095.49 22756.50 35397.38 24075.24 32482.33 28589.98 341
HyFIR lowres test93.68 13093.29 12894.87 16397.57 11988.04 19898.18 21398.47 2587.57 22491.24 17995.05 23485.49 13197.46 23593.22 14892.82 18599.10 117
thisisatest051594.75 9694.19 9696.43 9996.13 19092.64 9199.47 5697.60 11287.55 22593.17 14997.59 14994.71 1298.42 17788.28 20493.20 18198.24 180
TAMVS92.62 15792.09 15594.20 19194.10 25987.68 20498.41 19096.97 19487.53 22689.74 20196.04 21784.77 14596.49 27988.97 20092.31 19698.42 166
MDTV_nov1_ep13_2view91.17 11591.38 36487.45 22793.08 15186.67 10787.02 21598.95 131
XVG-ACMP-BASELINE85.86 28484.95 28088.57 32089.90 33377.12 35494.30 33495.60 28787.40 22882.12 28192.99 27653.42 36697.66 22285.02 24183.83 27190.92 316
HPM-MVScopyleft95.41 7695.22 7595.99 12399.29 5589.14 16999.17 9697.09 18387.28 22995.40 11198.48 11584.93 14099.38 12895.64 10099.65 3899.47 82
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
无先验98.52 17597.82 6587.20 23099.90 5087.64 21299.85 30
WB-MVSnew88.69 23988.34 22989.77 29994.30 25885.99 25498.14 21697.31 15987.15 23187.85 21596.07 21669.91 28095.52 32672.83 34491.47 21787.80 363
FA-MVS(test-final)92.22 16991.08 17595.64 13696.05 19188.98 17591.60 36197.25 16186.99 23291.84 16392.12 28383.03 16899.00 15186.91 21993.91 17698.93 133
VDD-MVS91.24 18790.18 19294.45 18097.08 14885.84 25998.40 19396.10 24386.99 23293.36 14798.16 12954.27 36399.20 13896.59 8090.63 22998.31 176
WR-MVS88.54 24387.22 24892.52 23091.93 30789.50 16498.56 17397.84 6186.99 23281.87 28993.81 25574.25 24895.92 31485.29 23774.43 32792.12 278
Effi-MVS+93.87 12393.15 13296.02 12195.79 19790.76 12896.70 29195.78 27586.98 23595.71 10597.17 17279.58 21098.01 19994.57 12696.09 15399.31 98
CostFormer92.89 15292.48 14794.12 19494.99 23585.89 25692.89 34897.00 19286.98 23595.00 11990.78 31190.05 5397.51 23392.92 15391.73 20898.96 127
VPA-MVSNet89.10 22487.66 24093.45 21192.56 29391.02 12297.97 23398.32 3086.92 23786.03 23492.01 28768.84 28997.10 25090.92 17175.34 31792.23 271
MVSFormer94.71 10094.08 10196.61 8795.05 23394.87 3897.77 24496.17 23986.84 23898.04 4998.52 10885.52 12895.99 30889.83 18498.97 8298.96 127
test_djsdf88.26 24787.73 23889.84 29688.05 35882.21 31297.77 24496.17 23986.84 23882.41 27591.95 29172.07 26795.99 30889.83 18484.50 26391.32 305
AdaColmapbinary93.82 12593.06 13396.10 11799.88 189.07 17198.33 20197.55 12386.81 24090.39 19398.65 10075.09 23899.98 993.32 14797.53 12599.26 103
test_yl95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
DCV-MVSNet95.27 8094.60 8797.28 5398.53 8992.98 8199.05 11898.70 1986.76 24194.65 12597.74 14187.78 7999.44 11995.57 10192.61 18999.44 86
mvs_anonymous92.50 16191.65 16495.06 15696.60 16289.64 16197.06 27596.44 22086.64 24384.14 25193.93 25282.49 18096.17 30191.47 16596.08 15499.35 94
thisisatest053094.00 11793.52 11995.43 14295.76 19990.02 15398.99 12597.60 11286.58 24491.74 16597.36 16094.78 1198.34 17986.37 22592.48 19297.94 191
DP-MVS Recon95.85 6295.15 7797.95 3299.87 294.38 5499.60 3997.48 13986.58 24494.42 12899.13 4687.36 9099.98 993.64 13998.33 10899.48 81
F-COLMAP92.07 17291.75 16393.02 21898.16 9982.89 30498.79 14695.97 25286.54 24687.92 21497.80 13678.69 22299.65 9885.97 22995.93 15796.53 231
Syy-MVS84.10 31184.53 29082.83 35795.14 22465.71 38597.68 25196.66 20386.52 24782.63 26796.84 19168.15 29489.89 38145.62 39591.54 21392.87 256
myMVS_eth3d88.68 24189.07 21187.50 32995.14 22479.74 33697.68 25196.66 20386.52 24782.63 26796.84 19185.22 13889.89 38169.43 35591.54 21392.87 256
PHI-MVS96.65 3796.46 3897.21 5699.34 5091.77 10199.70 2798.05 4686.48 24998.05 4899.20 3089.33 5899.96 2898.38 3999.62 4599.90 22
DeepMVS_CXcopyleft76.08 36890.74 32451.65 40190.84 37986.47 25057.89 38987.98 35035.88 39392.60 36565.77 36965.06 37483.97 384
BH-untuned91.46 18090.84 18193.33 21396.51 16784.83 27898.84 13895.50 29286.44 25183.50 25596.70 19775.49 23797.77 21286.78 22297.81 11697.40 203
CNLPA93.64 13292.74 14196.36 10598.96 7590.01 15499.19 9195.89 26986.22 25289.40 20498.85 8380.66 20599.84 6988.57 20196.92 13899.24 104
OurMVSNet-221017-084.13 31083.59 30085.77 34287.81 36070.24 37894.89 32993.65 34986.08 25376.53 33493.28 26961.41 33596.14 30380.95 28477.69 30990.93 315
testing387.75 25388.22 23286.36 33794.66 24777.41 35399.52 5197.95 5486.05 25481.12 29796.69 19886.18 12089.31 38561.65 37990.12 23292.35 268
tttt051793.30 14293.01 13694.17 19295.57 20486.47 23398.51 17897.60 11285.99 25590.55 18897.19 17094.80 1098.31 18085.06 24091.86 20497.74 193
FMVSNet388.81 23587.08 24993.99 20196.52 16694.59 4998.08 22696.20 23485.85 25682.12 28191.60 29674.05 24995.40 33179.04 29780.24 29291.99 283
HPM-MVS_fast94.89 8894.62 8695.70 13399.11 6688.44 19299.14 10697.11 17985.82 25795.69 10698.47 11683.46 15899.32 13593.16 14999.63 4499.35 94
dmvs_testset77.17 34578.99 33271.71 37387.25 36538.55 41091.44 36381.76 40185.77 25869.49 36795.94 21969.71 28484.37 39352.71 39276.82 31392.21 273
test_vis1_rt81.31 32580.05 32885.11 34491.29 31770.66 37798.98 12777.39 40585.76 25968.80 36982.40 37636.56 39299.44 11992.67 15786.55 24685.24 380
旧先验298.67 15785.75 26098.96 2198.97 15493.84 135
ab-mvs91.05 19189.17 20996.69 8495.96 19391.72 10392.62 35297.23 16585.61 26189.74 20193.89 25468.55 29099.42 12391.09 16887.84 23998.92 135
新几何197.40 4998.92 7792.51 9397.77 7585.52 26296.69 8499.06 5588.08 7699.89 5384.88 24399.62 4599.79 36
TR-MVS90.77 19589.44 20394.76 16796.31 17688.02 19997.92 23495.96 25485.52 26288.22 21397.23 16666.80 30798.09 19284.58 24792.38 19398.17 185
CP-MVSNet86.54 27385.45 27389.79 29891.02 32182.78 30797.38 26197.56 12285.37 26479.53 31693.03 27471.86 27095.25 33479.92 29273.43 34191.34 304
EU-MVSNet84.19 30884.42 29383.52 35588.64 35267.37 38496.04 31195.76 27785.29 26578.44 32793.18 27170.67 27891.48 37775.79 32275.98 31491.70 286
testdata95.26 15098.20 9687.28 21997.60 11285.21 26698.48 3499.15 4188.15 7498.72 16490.29 18199.45 5899.78 38
IterMVS-LS88.34 24487.44 24291.04 26194.10 25985.85 25898.10 22295.48 29385.12 26782.03 28591.21 30481.35 20095.63 32483.86 26075.73 31691.63 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 21589.38 20691.36 25694.32 25485.87 25797.61 25596.59 20885.10 26885.51 23997.10 17481.30 20196.56 27283.85 26183.03 27991.64 287
IterMVS85.81 28684.67 28789.22 31193.51 27983.67 29396.32 30094.80 32285.09 26978.69 32290.17 33766.57 31093.17 36079.48 29577.42 31090.81 318
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.78 591.26 18489.63 19996.16 11695.44 20991.58 10795.29 32696.10 24385.07 27082.75 26497.45 15678.28 22499.78 8480.60 28995.65 16197.12 211
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2289.57 21988.79 21891.91 24297.94 10587.62 20797.98 23296.51 21585.03 27182.37 27791.79 29283.65 15496.50 27785.96 23077.89 30491.61 292
IterMVS-SCA-FT85.73 28984.64 28889.00 31693.46 28282.90 30396.27 30194.70 32585.02 27278.62 32490.35 32966.61 30893.33 35779.38 29677.36 31190.76 322
Fast-Effi-MVS+91.72 17690.79 18494.49 17795.89 19487.40 21599.54 5095.70 28085.01 27389.28 20695.68 22377.75 22797.57 23283.22 26495.06 16798.51 163
WR-MVS_H86.53 27485.49 27289.66 30391.04 32083.31 29897.53 25798.20 3684.95 27479.64 31390.90 30978.01 22695.33 33276.29 31872.81 34390.35 331
MVS93.92 12092.28 14998.83 795.69 20196.82 896.22 30698.17 3784.89 27584.34 25098.61 10579.32 21599.83 7393.88 13499.43 6099.86 29
PS-CasMVS85.81 28684.58 28989.49 30890.77 32382.11 31397.20 27197.36 15684.83 27679.12 32192.84 27767.42 30395.16 33678.39 30573.25 34291.21 309
dp90.16 20988.83 21794.14 19396.38 17486.42 23491.57 36297.06 18584.76 27788.81 20890.19 33684.29 14897.43 23875.05 32591.35 22298.56 161
UnsupCasMVSNet_eth78.90 33676.67 34185.58 34382.81 38374.94 36191.98 35696.31 22684.64 27865.84 38287.71 35251.33 37092.23 37172.89 34356.50 38989.56 348
v2v48287.27 26285.76 26791.78 25089.59 33887.58 20898.56 17395.54 29084.53 27982.51 27191.78 29373.11 25896.47 28082.07 27674.14 33391.30 306
EPP-MVSNet93.75 12793.67 11794.01 20095.86 19585.70 26198.67 15797.66 9584.46 28091.36 17797.18 17191.16 3097.79 21092.93 15293.75 17798.53 162
PEN-MVS85.21 29483.93 29889.07 31589.89 33481.31 32497.09 27497.24 16484.45 28178.66 32392.68 27968.44 29294.87 34175.98 32070.92 35891.04 313
SixPastTwentyTwo82.63 31881.58 31685.79 34188.12 35771.01 37695.17 32792.54 36184.33 28272.93 35992.08 28460.41 34095.61 32574.47 33074.15 33290.75 323
miper_ehance_all_eth88.94 22788.12 23491.40 25495.32 21486.93 22697.85 23995.55 28984.19 28381.97 28691.50 29884.16 14995.91 31584.69 24577.89 30491.36 303
eth_miper_zixun_eth87.76 25287.00 25190.06 28894.67 24682.65 30997.02 27895.37 30184.19 28381.86 29191.58 29781.47 19795.90 31683.24 26373.61 33691.61 292
XXY-MVS87.75 25386.02 26392.95 22190.46 32789.70 16097.71 25095.90 26784.02 28580.95 29894.05 24567.51 30297.10 25085.16 23878.41 30192.04 282
tpm291.77 17591.09 17493.82 20694.83 24285.56 26492.51 35397.16 17484.00 28693.83 14090.66 31787.54 8397.17 24687.73 21191.55 21298.72 152
anonymousdsp86.69 26985.75 26889.53 30586.46 37182.94 30196.39 29795.71 27983.97 28779.63 31490.70 31468.85 28895.94 31186.01 22884.02 26989.72 345
GeoE90.60 20089.56 20093.72 20995.10 23085.43 26599.41 6994.94 31783.96 28887.21 22396.83 19374.37 24597.05 25280.50 29193.73 17898.67 156
mvsany_test375.85 34874.52 35079.83 36573.53 39760.64 39091.73 35987.87 39283.91 28970.55 36482.52 37531.12 39493.66 35486.66 22362.83 37685.19 381
v14886.38 27785.06 27790.37 28389.47 34384.10 28798.52 17595.48 29383.80 29080.93 29990.22 33474.60 24196.31 29480.92 28571.55 35590.69 325
MS-PatchMatch86.75 26885.92 26589.22 31191.97 30382.47 31196.91 28096.14 24183.74 29177.73 33193.53 26458.19 34697.37 24276.75 31598.35 10787.84 361
test22298.32 9291.21 11298.08 22697.58 11883.74 29195.87 9999.02 6086.74 10599.64 4099.81 33
K. test v381.04 32679.77 32984.83 34787.41 36470.23 37995.60 32493.93 34483.70 29367.51 37689.35 34555.76 35493.58 35676.67 31668.03 36490.67 326
V4287.00 26485.68 26990.98 26389.91 33286.08 24998.32 20395.61 28683.67 29482.72 26590.67 31674.00 25096.53 27481.94 27974.28 33090.32 332
API-MVS94.78 9594.18 9896.59 8999.21 6190.06 15198.80 14297.78 7383.59 29593.85 13999.21 2983.79 15399.97 2192.37 15999.00 8099.74 47
DTE-MVSNet84.14 30982.80 30588.14 32388.95 34879.87 33596.81 28496.24 23283.50 29677.60 33292.52 28167.89 29994.24 35272.64 34569.05 36190.32 332
c3_l88.19 24887.23 24791.06 26094.97 23686.17 24697.72 24895.38 30083.43 29781.68 29391.37 30082.81 17295.72 32184.04 25873.70 33591.29 307
LFMVS92.23 16890.84 18196.42 10098.24 9591.08 12098.24 20896.22 23383.39 29894.74 12398.31 12261.12 33798.85 15694.45 12792.82 18599.32 97
LF4IMVS81.94 32281.17 32184.25 35187.23 36768.87 38393.35 34491.93 37183.35 29975.40 34393.00 27549.25 37996.65 26778.88 30078.11 30387.22 369
v114486.83 26785.31 27591.40 25489.75 33687.21 22498.31 20495.45 29583.22 30082.70 26690.78 31173.36 25296.36 28679.49 29474.69 32490.63 327
CPTT-MVS94.60 10394.43 9195.09 15599.66 1286.85 22799.44 6397.47 14183.22 30094.34 13198.96 6882.50 17999.55 10694.81 11899.50 5498.88 137
Patchmatch-RL test81.90 32380.13 32687.23 33280.71 38770.12 38084.07 39088.19 39183.16 30270.57 36382.18 37887.18 9392.59 36682.28 27562.78 37798.98 125
ADS-MVSNet287.62 25886.88 25289.86 29596.21 18179.14 34087.15 37992.99 35483.01 30389.91 19987.27 35978.87 21992.80 36474.20 33392.27 19797.64 196
ADS-MVSNet88.99 22587.30 24594.07 19696.21 18187.56 20987.15 37996.78 20083.01 30389.91 19987.27 35978.87 21997.01 25374.20 33392.27 19797.64 196
FE-MVS91.38 18290.16 19395.05 15896.46 16987.53 21089.69 37597.84 6182.97 30592.18 16192.00 28984.07 15198.93 15580.71 28795.52 16298.68 155
GBi-Net86.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
test186.67 27084.96 27891.80 24695.11 22788.81 18396.77 28595.25 30582.94 30682.12 28190.25 33162.89 32994.97 33879.04 29780.24 29291.62 289
FMVSNet286.90 26584.79 28493.24 21495.11 22792.54 9297.67 25395.86 27382.94 30680.55 30291.17 30562.89 32995.29 33377.23 30979.71 29891.90 284
DIV-MVS_self_test87.82 25086.81 25390.87 26794.87 24185.39 26797.81 24095.22 31382.92 30980.76 30091.31 30281.99 19095.81 31981.36 28175.04 32091.42 301
cl____87.82 25086.79 25490.89 26694.88 24085.43 26597.81 24095.24 30882.91 31080.71 30191.22 30381.97 19295.84 31781.34 28275.06 31991.40 302
CSCG94.87 9294.71 8595.36 14499.54 3686.49 23299.34 7898.15 4082.71 31190.15 19699.25 2389.48 5799.86 6394.97 11698.82 9199.72 50
OpenMVScopyleft85.28 1490.75 19688.84 21696.48 9593.58 27893.51 7098.80 14297.41 15182.59 31278.62 32497.49 15468.00 29799.82 7684.52 24998.55 10396.11 239
114514_t94.06 11593.05 13497.06 6099.08 6992.26 9698.97 12897.01 19182.58 31392.57 15698.22 12680.68 20499.30 13689.34 19499.02 7999.63 66
pmmvs487.58 25986.17 26291.80 24689.58 33988.92 18197.25 26795.28 30482.54 31480.49 30393.17 27275.62 23696.05 30682.75 27078.90 29990.42 330
v119286.32 27884.71 28691.17 25889.53 34186.40 23598.13 21795.44 29782.52 31582.42 27490.62 32071.58 27496.33 29377.23 30974.88 32190.79 320
test_fmvs375.09 34975.19 34674.81 37077.45 39354.08 39695.93 31290.64 38082.51 31673.29 35381.19 38122.29 39986.29 39285.50 23667.89 36584.06 383
v14419286.40 27684.89 28190.91 26489.48 34285.59 26298.21 21195.43 29882.45 31782.62 26990.58 32372.79 26296.36 28678.45 30474.04 33490.79 320
TAPA-MVS87.50 990.35 20289.05 21294.25 18998.48 9185.17 27298.42 18896.58 21182.44 31887.24 22298.53 10782.77 17398.84 15759.09 38497.88 11598.72 152
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_lstm_enhance86.90 26586.20 26189.00 31694.53 24981.19 32696.74 28995.24 30882.33 31980.15 30790.51 32781.99 19094.68 34780.71 28773.58 33791.12 311
tt080586.50 27584.79 28491.63 25291.97 30381.49 31996.49 29597.38 15482.24 32082.44 27295.82 22151.22 37198.25 18584.55 24880.96 29195.13 246
v192192086.02 28184.44 29290.77 27089.32 34485.20 27098.10 22295.35 30382.19 32182.25 27990.71 31370.73 27796.30 29776.85 31474.49 32690.80 319
MVP-Stereo86.61 27285.83 26688.93 31888.70 35183.85 29196.07 31094.41 33582.15 32275.64 34291.96 29067.65 30096.45 28277.20 31198.72 9686.51 373
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v886.11 28084.45 29191.10 25989.99 33186.85 22797.24 26895.36 30281.99 32379.89 31189.86 33974.53 24396.39 28478.83 30172.32 34990.05 339
tpmvs89.16 22387.76 23793.35 21297.19 13984.75 27990.58 37397.36 15681.99 32384.56 24689.31 34683.98 15298.17 18774.85 32890.00 23397.12 211
pm-mvs184.68 30082.78 30790.40 28089.58 33985.18 27197.31 26394.73 32481.93 32576.05 33792.01 28765.48 31896.11 30478.75 30269.14 36089.91 342
v124085.77 28884.11 29590.73 27189.26 34585.15 27397.88 23795.23 31281.89 32682.16 28090.55 32569.60 28696.31 29475.59 32374.87 32290.72 324
test20.0378.51 34077.48 33681.62 36283.07 38171.03 37596.11 30992.83 35881.66 32769.31 36889.68 34157.53 34887.29 39158.65 38568.47 36286.53 372
pmmvs585.87 28384.40 29490.30 28488.53 35384.23 28498.60 16893.71 34781.53 32880.29 30592.02 28664.51 32295.52 32682.04 27878.34 30291.15 310
MIMVSNet84.48 30481.83 31492.42 23291.73 31087.36 21685.52 38294.42 33481.40 32981.91 28787.58 35351.92 36992.81 36373.84 33688.15 23897.08 215
our_test_384.47 30582.80 30589.50 30689.01 34683.90 29097.03 27694.56 32981.33 33075.36 34490.52 32671.69 27294.54 34968.81 35776.84 31290.07 337
v1085.73 28984.01 29790.87 26790.03 33086.73 22997.20 27195.22 31381.25 33179.85 31289.75 34073.30 25596.28 29876.87 31372.64 34589.61 347
CL-MVSNet_self_test79.89 33278.34 33384.54 35081.56 38575.01 36096.88 28295.62 28581.10 33275.86 34085.81 36868.49 29190.26 37963.21 37456.51 38888.35 358
ACMH+83.78 1584.21 30782.56 31289.15 31393.73 27679.16 33996.43 29694.28 33881.09 33374.00 34994.03 24854.58 36297.67 22176.10 31978.81 30090.63 327
ACMH83.09 1784.60 30182.61 31190.57 27493.18 28882.94 30196.27 30194.92 31881.01 33472.61 36193.61 26156.54 35297.79 21074.31 33181.07 29090.99 314
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PM-MVS74.88 35072.85 35380.98 36478.98 39164.75 38790.81 37085.77 39480.95 33568.23 37382.81 37429.08 39692.84 36276.54 31762.46 37985.36 378
QAPM91.41 18189.49 20297.17 5895.66 20393.42 7298.60 16897.51 13380.92 33681.39 29697.41 15872.89 26199.87 5882.33 27498.68 9798.21 182
v7n84.42 30682.75 30889.43 30988.15 35681.86 31596.75 28895.67 28380.53 33778.38 32889.43 34469.89 28196.35 29173.83 33772.13 35190.07 337
cascas90.93 19389.33 20795.76 13195.69 20193.03 8098.99 12596.59 20880.49 33886.79 23094.45 24365.23 32098.60 17093.52 14192.18 20095.66 243
KD-MVS_2432*160082.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
miper_refine_blended82.98 31680.52 32490.38 28194.32 25488.98 17592.87 34995.87 27180.46 33973.79 35087.49 35682.76 17593.29 35870.56 35146.53 39988.87 356
Baseline_NR-MVSNet85.83 28584.82 28388.87 31988.73 35083.34 29798.63 16391.66 37380.41 34182.44 27291.35 30174.63 23995.42 33084.13 25471.39 35687.84 361
Anonymous2023120680.76 32779.42 33184.79 34884.78 37672.98 36896.53 29392.97 35579.56 34274.33 34688.83 34761.27 33692.15 37260.59 38175.92 31589.24 352
DSMNet-mixed81.60 32481.43 31882.10 36084.36 37760.79 38993.63 34286.74 39379.00 34379.32 31887.15 36163.87 32589.78 38366.89 36591.92 20395.73 242
LTVRE_ROB81.71 1984.59 30282.72 30990.18 28592.89 29283.18 29993.15 34594.74 32378.99 34475.14 34592.69 27865.64 31597.63 22569.46 35481.82 28889.74 344
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test83.63 31481.57 31789.80 29789.01 34685.09 27497.13 27394.50 33078.84 34576.14 33691.00 30769.78 28294.61 34863.40 37374.36 32889.71 346
TransMVSNet (Re)81.97 32179.61 33089.08 31489.70 33784.01 28897.26 26691.85 37278.84 34573.07 35891.62 29567.17 30595.21 33567.50 36259.46 38488.02 360
UniMVSNet_ETH3D85.65 29183.79 29991.21 25790.41 32880.75 33295.36 32595.78 27578.76 34781.83 29294.33 24449.86 37696.66 26684.30 25083.52 27696.22 237
tfpnnormal83.65 31381.35 31990.56 27691.37 31688.06 19797.29 26497.87 5878.51 34876.20 33590.91 30864.78 32196.47 28061.71 37873.50 33887.13 370
FMVSNet183.94 31281.32 32091.80 24691.94 30688.81 18396.77 28595.25 30577.98 34978.25 32990.25 33150.37 37594.97 33873.27 34077.81 30891.62 289
pmmvs-eth3d78.71 33876.16 34386.38 33680.25 38981.19 32694.17 33692.13 36877.97 35066.90 37982.31 37755.76 35492.56 36773.63 33962.31 38085.38 377
AllTest84.97 29783.12 30290.52 27796.82 15478.84 34295.89 31492.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
TestCases90.52 27796.82 15478.84 34292.17 36677.96 35175.94 33895.50 22555.48 35699.18 13971.15 34787.14 24193.55 253
MSDG88.29 24686.37 25894.04 19996.90 15286.15 24796.52 29494.36 33677.89 35379.22 31996.95 18369.72 28399.59 10473.20 34192.58 19196.37 236
new-patchmatchnet74.80 35172.40 35481.99 36178.36 39272.20 37294.44 33292.36 36377.06 35463.47 38479.98 38651.04 37288.85 38760.53 38254.35 39184.92 382
KD-MVS_self_test77.47 34475.88 34482.24 35881.59 38468.93 38292.83 35194.02 34377.03 35573.14 35583.39 37355.44 35890.42 37867.95 36057.53 38787.38 365
FMVSNet582.29 31980.54 32387.52 32893.79 27584.01 28893.73 34092.47 36276.92 35674.27 34786.15 36763.69 32789.24 38669.07 35674.79 32389.29 351
Anonymous20240521188.84 23187.03 25094.27 18798.14 10084.18 28698.44 18695.58 28876.79 35789.34 20596.88 18953.42 36699.54 10887.53 21387.12 24399.09 118
VDDNet90.08 21188.54 22794.69 17194.41 25187.68 20498.21 21196.40 22176.21 35893.33 14897.75 14054.93 36198.77 15994.71 12290.96 22497.61 200
tpm cat188.89 22987.27 24693.76 20795.79 19785.32 26990.76 37197.09 18376.14 35985.72 23788.59 34982.92 17098.04 19776.96 31291.43 21897.90 192
MDA-MVSNet-bldmvs77.82 34374.75 34987.03 33388.33 35478.52 34696.34 29992.85 35775.57 36048.87 39587.89 35157.32 35092.49 36960.79 38064.80 37590.08 336
test_f71.94 35470.82 35575.30 36972.77 39853.28 39791.62 36089.66 38675.44 36164.47 38378.31 38920.48 40089.56 38478.63 30366.02 37283.05 388
TinyColmap80.42 32977.94 33487.85 32592.09 30178.58 34593.74 33989.94 38374.99 36269.77 36691.78 29346.09 38197.58 22965.17 37177.89 30487.38 365
LS3D90.19 20788.72 21994.59 17698.97 7386.33 24096.90 28196.60 20774.96 36384.06 25398.74 9075.78 23599.83 7374.93 32697.57 12297.62 199
EG-PatchMatch MVS79.92 33077.59 33586.90 33487.06 36877.90 35296.20 30894.06 34274.61 36466.53 38088.76 34840.40 39096.20 29967.02 36483.66 27486.61 371
TDRefinement78.01 34175.31 34586.10 34070.06 40073.84 36593.59 34391.58 37574.51 36573.08 35791.04 30649.63 37897.12 24774.88 32759.47 38387.33 367
RPSCF85.33 29385.55 27184.67 34994.63 24862.28 38893.73 34093.76 34574.38 36685.23 24297.06 17764.09 32398.31 18080.98 28386.08 25293.41 255
MDA-MVSNet_test_wron79.65 33377.05 33887.45 33087.79 36280.13 33396.25 30494.44 33173.87 36751.80 39387.47 35868.04 29692.12 37366.02 36767.79 36690.09 335
YYNet179.64 33477.04 33987.43 33187.80 36179.98 33496.23 30594.44 33173.83 36851.83 39287.53 35467.96 29892.07 37466.00 36867.75 36790.23 334
Anonymous2024052178.63 33976.90 34083.82 35382.82 38272.86 36995.72 32393.57 35073.55 36972.17 36284.79 37049.69 37792.51 36865.29 37074.50 32586.09 375
MIMVSNet175.92 34773.30 35283.81 35481.29 38675.57 35892.26 35492.05 36973.09 37067.48 37786.18 36640.87 38987.64 39055.78 38870.68 35988.21 359
Patchmatch-test86.25 27984.06 29692.82 22294.42 25082.88 30582.88 39394.23 33971.58 37179.39 31790.62 32089.00 6296.42 28363.03 37591.37 22199.16 110
COLMAP_ROBcopyleft82.69 1884.54 30382.82 30489.70 30196.72 16078.85 34195.89 31492.83 35871.55 37277.54 33395.89 22059.40 34399.14 14567.26 36388.26 23791.11 312
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVS66.44 35866.29 36166.89 37874.84 39444.93 40593.00 34684.09 39971.15 37355.82 39081.63 37963.79 32680.31 40021.85 40450.47 39775.43 391
PatchT85.44 29283.19 30192.22 23493.13 28983.00 30083.80 39296.37 22370.62 37490.55 18879.63 38784.81 14394.87 34158.18 38691.59 21098.79 147
DP-MVS88.75 23786.56 25695.34 14598.92 7787.45 21397.64 25493.52 35170.55 37581.49 29497.25 16574.43 24499.88 5471.14 34994.09 17498.67 156
new_pmnet76.02 34673.71 35182.95 35683.88 37972.85 37091.26 36692.26 36570.44 37662.60 38581.37 38047.64 38092.32 37061.85 37772.10 35283.68 385
N_pmnet70.19 35569.87 35771.12 37588.24 35530.63 41495.85 31928.70 41370.18 37768.73 37086.55 36564.04 32493.81 35353.12 39173.46 33988.94 354
UnsupCasMVSNet_bld73.85 35270.14 35684.99 34679.44 39075.73 35788.53 37695.24 30870.12 37861.94 38674.81 39241.41 38893.62 35568.65 35851.13 39685.62 376
SSC-MVS65.42 35965.20 36266.06 37973.96 39543.83 40692.08 35583.54 40069.77 37954.73 39180.92 38363.30 32879.92 40120.48 40548.02 39874.44 392
JIA-IIPM85.97 28284.85 28289.33 31093.23 28773.68 36685.05 38597.13 17769.62 38091.56 17168.03 39588.03 7796.96 25477.89 30793.12 18297.34 205
Patchmtry83.61 31581.64 31589.50 30693.36 28482.84 30684.10 38994.20 34069.47 38179.57 31586.88 36384.43 14694.78 34468.48 35974.30 32990.88 317
test_040278.81 33776.33 34286.26 33891.18 31878.44 34795.88 31691.34 37768.55 38270.51 36589.91 33852.65 36894.99 33747.14 39479.78 29785.34 379
CMPMVSbinary58.40 2180.48 32880.11 32781.59 36385.10 37559.56 39194.14 33795.95 25668.54 38360.71 38793.31 26755.35 35997.87 20583.06 26884.85 26187.33 367
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
gg-mvs-nofinetune90.00 21287.71 23996.89 7596.15 18594.69 4785.15 38497.74 7768.32 38492.97 15360.16 39796.10 396.84 25993.89 13398.87 8999.14 112
pmmvs679.90 33177.31 33787.67 32784.17 37878.13 34995.86 31893.68 34867.94 38572.67 36089.62 34250.98 37395.75 32074.80 32966.04 37189.14 353
OpenMVS_ROBcopyleft73.86 2077.99 34275.06 34886.77 33583.81 38077.94 35196.38 29891.53 37667.54 38668.38 37187.13 36243.94 38396.08 30555.03 38981.83 28786.29 374
test_vis3_rt61.29 36158.75 36468.92 37767.41 40152.84 39991.18 36859.23 41266.96 38741.96 40058.44 40011.37 40894.72 34674.25 33257.97 38659.20 399
Anonymous2023121184.72 29982.65 31090.91 26497.71 11184.55 28197.28 26596.67 20266.88 38879.18 32090.87 31058.47 34596.60 26882.61 27274.20 33191.59 294
Anonymous2024052987.66 25785.58 27093.92 20297.59 11785.01 27598.13 21797.13 17766.69 38988.47 21196.01 21855.09 36099.51 11087.00 21684.12 26897.23 210
ANet_high50.71 36946.17 37264.33 38144.27 41152.30 40076.13 39878.73 40364.95 39027.37 40455.23 40114.61 40667.74 40436.01 40018.23 40472.95 394
RPMNet85.07 29681.88 31394.64 17493.47 28086.24 24184.97 38697.21 16764.85 39190.76 18578.80 38880.95 20399.27 13753.76 39092.17 20198.41 167
pmmvs372.86 35369.76 35882.17 35973.86 39674.19 36494.20 33589.01 38864.23 39267.72 37480.91 38441.48 38788.65 38862.40 37654.02 39283.68 385
MVS-HIRNet79.01 33575.13 34790.66 27293.82 27481.69 31785.16 38393.75 34654.54 39374.17 34859.15 39957.46 34996.58 27163.74 37294.38 17193.72 252
APD_test168.93 35766.98 36074.77 37180.62 38853.15 39887.97 37785.01 39653.76 39459.26 38887.52 35525.19 39789.95 38056.20 38767.33 36881.19 389
PMMVS258.97 36455.07 36770.69 37662.72 40455.37 39585.97 38180.52 40249.48 39545.94 39668.31 39415.73 40580.78 39849.79 39337.12 40175.91 390
FPMVS61.57 36060.32 36365.34 38060.14 40742.44 40891.02 36989.72 38544.15 39642.63 39980.93 38219.02 40180.59 39942.50 39672.76 34473.00 393
testf156.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
APD_test256.38 36553.73 36864.31 38264.84 40245.11 40380.50 39575.94 40738.87 39742.74 39775.07 39011.26 40981.19 39641.11 39753.27 39366.63 396
LCM-MVSNet60.07 36356.37 36571.18 37454.81 40948.67 40282.17 39489.48 38737.95 39949.13 39469.12 39313.75 40781.76 39459.28 38351.63 39583.10 387
Gipumacopyleft54.77 36752.22 37162.40 38486.50 37059.37 39250.20 40290.35 38236.52 40041.20 40149.49 40218.33 40381.29 39532.10 40165.34 37346.54 402
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method70.10 35668.66 35974.41 37286.30 37355.84 39494.47 33189.82 38435.18 40166.15 38184.75 37130.54 39577.96 40270.40 35360.33 38289.44 349
PMVScopyleft41.42 2345.67 37042.50 37355.17 38634.28 41232.37 41266.24 40078.71 40430.72 40222.04 40759.59 3984.59 41177.85 40327.49 40258.84 38555.29 400
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 37240.93 37441.29 38861.97 40533.83 41184.00 39165.17 41027.17 40327.56 40346.72 40417.63 40460.41 40719.32 40618.82 40329.61 403
EMVS39.96 37339.88 37540.18 38959.57 40832.12 41384.79 38864.57 41126.27 40426.14 40544.18 40718.73 40259.29 40817.03 40717.67 40529.12 404
MVEpermissive44.00 2241.70 37137.64 37653.90 38749.46 41043.37 40765.09 40166.66 40926.19 40525.77 40648.53 4033.58 41363.35 40626.15 40327.28 40254.97 401
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt53.66 36852.86 37056.05 38532.75 41341.97 40973.42 39976.12 40621.91 40639.68 40296.39 20742.59 38665.10 40578.00 30614.92 40661.08 398
wuyk23d16.71 37616.73 38016.65 39060.15 40625.22 41541.24 4035.17 4146.56 4075.48 4103.61 4103.64 41222.72 40915.20 4089.52 4071.99 407
testmvs18.81 37523.05 3786.10 3924.48 4142.29 41797.78 2423.00 4153.27 40818.60 40862.71 3961.53 4152.49 41114.26 4091.80 40813.50 406
test12316.58 37719.47 3797.91 3913.59 4155.37 41694.32 3331.39 4162.49 40913.98 40944.60 4062.91 4142.65 41011.35 4100.57 40915.70 405
EGC-MVSNET60.70 36255.37 36676.72 36786.35 37271.08 37489.96 37484.44 3980.38 4101.50 41184.09 37237.30 39188.10 38940.85 39973.44 34070.97 395
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k22.52 37430.03 3770.00 3930.00 4160.00 4180.00 40497.17 1730.00 4110.00 41298.77 8774.35 2460.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas6.87 3799.16 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41182.48 1810.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.21 37810.94 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41298.50 1100.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS79.74 33667.75 361
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8899.98 999.55 1299.83 1599.96 10
eth-test20.00 416
eth-test0.00 416
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3295.12 899.97 2199.90 199.92 399.99 1
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9099.98 999.64 799.82 1999.96 10
GSMVS98.84 140
test_part299.54 3695.42 2298.13 43
sam_mvs188.39 6898.84 140
sam_mvs87.08 96
ambc79.60 36672.76 39956.61 39376.20 39792.01 37068.25 37280.23 38523.34 39894.73 34573.78 33860.81 38187.48 364
MTGPAbinary97.45 144
test_post190.74 37241.37 40885.38 13596.36 28683.16 265
test_post46.00 40587.37 8797.11 248
patchmatchnet-post84.86 36988.73 6596.81 261
GG-mvs-BLEND96.98 6796.53 16594.81 4387.20 37897.74 7793.91 13896.40 20596.56 296.94 25695.08 11198.95 8599.20 108
MTMP99.21 8991.09 378
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5699.87 999.91 21
agg_prior99.54 3692.66 8897.64 10397.98 5299.61 102
test_prior492.00 9899.41 69
test_prior97.01 6299.58 3091.77 10197.57 12199.49 11299.79 36
新几何298.26 207
旧先验198.97 7392.90 8697.74 7799.15 4191.05 3499.33 6499.60 69
原ACMM298.69 154
testdata299.88 5484.16 253
segment_acmp90.56 43
test1297.83 3599.33 5394.45 5197.55 12397.56 5788.60 6699.50 11199.71 3499.55 74
plane_prior793.84 27185.73 260
plane_prior693.92 26886.02 25372.92 259
plane_prior596.30 22797.75 21893.46 14486.17 25092.67 260
plane_prior496.52 201
plane_prior193.90 270
n20.00 417
nn0.00 417
door-mid84.90 397
lessismore_v085.08 34585.59 37469.28 38190.56 38167.68 37590.21 33554.21 36495.46 32873.88 33562.64 37890.50 329
test1197.68 90
door85.30 395
HQP5-MVS86.39 236
BP-MVS93.82 137
HQP4-MVS87.57 21797.77 21292.72 258
HQP3-MVS96.37 22386.29 247
HQP2-MVS73.34 253
NP-MVS93.94 26786.22 24396.67 199
ACMMP++_ref82.64 283
ACMMP++83.83 271
Test By Simon83.62 155