This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort by
DeepPCF-MVS93.56 196.55 3997.84 1092.68 22098.71 8578.11 34199.70 2697.71 8298.18 197.36 6299.76 190.37 4799.94 3499.27 1699.54 5299.99 1
MM98.86 596.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12199.90 5099.72 398.80 9199.85 30
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
MVS_030497.53 1397.15 2198.67 1197.30 12696.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 9699.91 4599.43 1598.91 8699.59 71
test_fmvsm_n_192097.08 2697.55 1495.67 12697.94 10489.61 15599.93 198.48 2497.08 599.08 1499.13 4488.17 6899.93 3899.11 2399.06 7597.47 193
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
test_fmvsmvis_n_192095.47 7295.40 7095.70 12494.33 24390.22 13499.70 2696.98 18696.80 792.75 14698.89 7882.46 17999.92 4098.36 4098.33 10796.97 209
fmvsm_l_conf0.5_n97.65 1297.72 1297.41 4697.51 12092.78 8499.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10399.55 72
test_vis1_n_192093.08 14193.42 11492.04 23296.31 16679.36 32999.83 996.06 23996.72 998.53 3298.10 12758.57 33799.91 4597.86 5398.79 9496.85 211
fmvsm_l_conf0.5_n_a97.70 1197.80 1197.42 4597.59 11692.91 8299.86 498.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9899.40 85
test_fmvsmconf_n96.78 3396.84 2896.61 8595.99 18290.25 13199.90 298.13 4296.68 1198.42 3498.92 7485.34 13199.88 5499.12 2299.08 7399.70 52
DPM-MVS97.86 897.25 2099.68 198.25 9399.10 199.76 2097.78 7096.61 1298.15 4199.53 793.62 17100.00 191.79 15799.80 2699.94 18
EPNet96.82 3196.68 3397.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8099.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5696.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
test_fmvsmconf0.1_n95.94 5895.79 6196.40 9992.42 28589.92 14799.79 1696.85 19096.53 1597.22 6598.67 9782.71 17299.84 6998.92 2798.98 8099.43 84
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2499.61 2494.45 4998.85 13197.64 9796.51 1695.88 9799.39 1887.35 8799.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
test_cas_vis1_n_192093.86 11593.74 10894.22 18195.39 20386.08 24199.73 2296.07 23896.38 1797.19 6997.78 13465.46 31299.86 6396.71 7298.92 8596.73 213
DELS-MVS97.12 2496.60 3498.68 1098.03 10296.57 1199.84 897.84 5996.36 1895.20 11298.24 12188.17 6899.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CANet97.00 2796.49 3598.55 1298.86 8096.10 1699.83 997.52 12595.90 1997.21 6698.90 7682.66 17399.93 3898.71 2998.80 9199.63 64
PS-MVSNAJ96.87 3096.40 3898.29 1997.35 12497.29 599.03 11597.11 17295.83 2098.97 1999.14 4282.48 17699.60 10398.60 3399.08 7398.00 180
test_fmvsmconf0.01_n94.14 10593.51 11296.04 11186.79 35989.19 15999.28 8395.94 24895.70 2195.50 10698.49 11073.27 24999.79 8298.28 4598.32 10999.15 107
save fliter99.34 5093.85 6299.65 3597.63 10195.69 22
fmvsm_s_conf0.5_n96.19 4896.49 3595.30 13997.37 12389.16 16099.86 498.47 2595.68 2398.87 2299.15 3982.44 18099.92 4099.14 2197.43 12796.83 212
HPM-MVS++copyleft97.72 1097.59 1398.14 2399.53 4094.76 4299.19 8797.75 7395.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
CANet_DTU94.31 10393.35 11597.20 5597.03 14194.71 4498.62 15695.54 28195.61 2597.21 6698.47 11371.88 26299.84 6988.38 19597.46 12697.04 206
IU-MVS99.63 1895.38 2297.73 7795.54 2699.54 399.69 699.81 2399.99 1
xiu_mvs_v2_base96.66 3596.17 4798.11 2797.11 13796.96 699.01 11897.04 17995.51 2798.86 2399.11 5082.19 18499.36 13098.59 3598.14 11198.00 180
fmvsm_s_conf0.5_n_a95.97 5596.19 4295.31 13896.51 15789.01 16699.81 1198.39 2795.46 2899.19 1399.16 3681.44 19499.91 4598.83 2896.97 13697.01 208
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 13699.41 6897.70 8395.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
patch_mono-297.10 2597.97 894.49 16899.21 6183.73 28499.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
test_fmvs192.35 15492.94 12990.57 26697.19 13075.43 35099.55 4494.97 30695.20 3196.82 7997.57 14759.59 33599.84 6997.30 6198.29 11096.46 223
TSAR-MVS + GP.96.95 2896.91 2597.07 5798.88 7991.62 9899.58 4196.54 20795.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
test_fmvs1_n91.07 17991.41 16090.06 28094.10 24874.31 35499.18 8994.84 31094.81 3396.37 8997.46 15150.86 36599.82 7697.14 6497.90 11396.04 230
fmvsm_s_conf0.1_n95.56 7195.68 6495.20 14294.35 24289.10 16299.50 5197.67 9094.76 3498.68 2799.03 5681.13 19799.86 6398.63 3297.36 12996.63 215
MSLP-MVS++97.50 1697.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5199.81 7997.97 5099.91 699.88 26
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 7894.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
fmvsm_s_conf0.1_n_a95.16 8095.15 7695.18 14392.06 29188.94 17099.29 8197.53 12194.46 3898.98 1898.99 6079.99 20299.85 6798.24 4796.86 13896.73 213
TSAR-MVS + MP.97.44 1797.46 1697.39 4899.12 6593.49 6998.52 16797.50 13094.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
MG-MVS97.24 1996.83 3098.47 1599.79 595.71 1899.07 10999.06 1094.45 4096.42 8898.70 9588.81 6199.74 8895.35 10199.86 1299.97 7
test_vis1_n90.40 19190.27 18290.79 26191.55 30176.48 34699.12 10594.44 32294.31 4197.34 6396.95 17543.60 37699.42 12397.57 5797.60 12096.47 222
PAPM96.35 4295.94 5397.58 4094.10 24895.25 2498.93 12598.17 3794.26 4293.94 13198.72 9189.68 5397.88 19796.36 8299.29 6799.62 66
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 7894.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
test_241102_TWO97.72 7894.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
test_241102_ONE99.63 1895.24 2597.72 7894.16 4599.30 899.49 993.32 1999.98 9
CLD-MVS91.06 18090.71 17692.10 23094.05 25286.10 24099.55 4496.29 22394.16 4584.70 23597.17 16669.62 27797.82 20194.74 11586.08 24292.39 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
SteuartSystems-ACMMP97.25 1897.34 1997.01 6097.38 12291.46 10299.75 2197.66 9194.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 13593.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3099.77 1797.70 8393.95 4899.35 799.54 393.18 22
HQP-NCC93.95 25399.16 9393.92 5087.57 207
ACMP_Plane93.95 25399.16 9393.92 5087.57 207
HQP-MVS91.50 16991.23 16392.29 22493.95 25386.39 22899.16 9396.37 21693.92 5087.57 20796.67 19073.34 24697.77 20593.82 13386.29 23792.72 248
DeepC-MVS91.02 494.56 10093.92 10496.46 9497.16 13290.76 12198.39 18997.11 17293.92 5088.66 20098.33 11778.14 21899.85 6795.02 10898.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
MVS_111021_HR96.69 3496.69 3296.72 8098.58 8891.00 11699.14 10199.45 193.86 5495.15 11398.73 8988.48 6499.76 8697.23 6399.56 5099.40 85
h-mvs3392.47 15391.95 14994.05 18997.13 13585.01 26798.36 19198.08 4493.85 5596.27 9096.73 18783.19 16099.43 12295.81 9068.09 35497.70 186
hse-mvs291.67 16891.51 15892.15 22996.22 17082.61 30197.74 23797.53 12193.85 5596.27 9096.15 20283.19 16097.44 23095.81 9066.86 36196.40 225
lupinMVS96.32 4495.94 5397.44 4495.05 22394.87 3699.86 496.50 20993.82 5798.04 4898.77 8585.52 12398.09 18596.98 6898.97 8199.37 88
plane_prior86.07 24399.14 10193.81 5886.26 239
SD-MVS97.51 1597.40 1897.81 3499.01 7293.79 6399.33 7897.38 14893.73 5998.83 2599.02 5890.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CS-MVS-test95.98 5496.34 4094.90 15398.06 10187.66 19899.69 3396.10 23593.66 6098.35 3899.05 5486.28 11297.66 21596.96 6998.90 8799.37 88
plane_prior385.91 24693.65 6186.99 214
PVSNet_Blended95.94 5895.66 6596.75 7698.77 8391.61 9999.88 398.04 4893.64 6294.21 12697.76 13583.50 15199.87 5897.41 5997.75 11998.79 143
APDe-MVScopyleft97.53 1397.47 1597.70 3699.58 3093.63 6499.56 4397.52 12593.59 6398.01 5099.12 4690.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
jason95.40 7694.86 8297.03 5992.91 28094.23 5499.70 2696.30 22093.56 6496.73 8298.52 10681.46 19397.91 19496.08 8798.47 10598.96 123
jason: jason.
MVS_111021_LR95.78 6495.94 5395.28 14098.19 9787.69 19598.80 13699.26 793.39 6595.04 11598.69 9684.09 14599.76 8696.96 6999.06 7598.38 165
HQP_MVS91.26 17490.95 16992.16 22893.84 26086.07 24399.02 11696.30 22093.38 6686.99 21496.52 19272.92 25297.75 21193.46 13886.17 24092.67 250
plane_prior299.02 11693.38 66
ETV-MVS96.00 5296.00 5296.00 11496.56 15491.05 11499.63 3696.61 19993.26 6897.39 6198.30 11986.62 10398.13 18298.07 4997.57 12198.82 140
test_one_060199.59 2894.89 3497.64 9793.14 6998.93 2199.45 1493.45 18
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 8793.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
EPNet_dtu92.28 15792.15 14492.70 21997.29 12784.84 26998.64 15497.82 6292.91 7593.02 14497.02 17285.48 12895.70 31472.25 33794.89 16797.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
OPM-MVS89.76 20689.15 20091.57 24490.53 31585.58 25598.11 21295.93 25192.88 7686.05 22396.47 19567.06 29897.87 19889.29 18986.08 24291.26 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
mvsany_test194.57 9995.09 7992.98 21195.84 18682.07 30598.76 14295.24 29992.87 7796.45 8798.71 9484.81 13899.15 14197.68 5595.49 16297.73 185
CS-MVS95.75 6796.19 4294.40 17297.88 10686.22 23599.66 3496.12 23492.69 7898.07 4698.89 7887.09 9097.59 22196.71 7298.62 9999.39 87
MTAPA96.09 5095.80 6096.96 6799.29 5591.19 10697.23 26097.45 13892.58 7994.39 12499.24 2586.43 11099.99 596.22 8399.40 6299.71 51
EIA-MVS95.11 8195.27 7394.64 16596.34 16586.51 22399.59 4096.62 19892.51 8094.08 12998.64 9986.05 11798.24 17995.07 10798.50 10399.18 105
CHOSEN 280x42096.80 3296.85 2796.66 8497.85 10794.42 5194.76 32198.36 2992.50 8195.62 10597.52 14897.92 197.38 23398.31 4498.80 9198.20 176
testdata197.89 22592.43 82
PAPR96.35 4295.82 5797.94 3199.63 1894.19 5699.42 6797.55 11792.43 8293.82 13599.12 4687.30 8899.91 4594.02 12699.06 7599.74 47
HY-MVS88.56 795.29 7794.23 9098.48 1497.72 10996.41 1394.03 32998.74 1692.42 8495.65 10494.76 23086.52 10799.49 11295.29 10392.97 18299.53 74
XVS96.47 4096.37 3996.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7498.96 6687.37 8399.87 5895.65 9299.43 5999.78 38
X-MVStestdata90.69 18888.66 21196.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7429.59 40087.37 8399.87 5895.65 9299.43 5999.78 38
UGNet91.91 16590.85 17195.10 14597.06 13988.69 17998.01 22098.24 3492.41 8592.39 15193.61 25260.52 33299.68 9288.14 19897.25 13096.92 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
iter_conf0593.48 12593.18 12194.39 17597.15 13394.17 5799.30 8092.97 34692.38 8886.70 22195.42 21795.67 596.59 25994.67 11884.32 25692.39 254
WTY-MVS95.97 5595.11 7898.54 1397.62 11396.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 10699.46 11895.00 11092.69 18699.50 78
OMC-MVS93.90 11393.62 11094.73 16198.63 8787.00 21798.04 21996.56 20592.19 9092.46 14998.73 8979.49 20899.14 14592.16 15594.34 17298.03 179
ET-MVSNet_ETH3D92.56 15191.45 15995.88 11896.39 16394.13 5899.46 5996.97 18792.18 9166.94 36998.29 12094.65 1594.28 34294.34 12383.82 26399.24 100
CHOSEN 1792x268894.35 10293.82 10695.95 11797.40 12188.74 17898.41 18298.27 3192.18 9191.43 16596.40 19678.88 21199.81 7993.59 13697.81 11599.30 95
iter_conf_final93.22 13793.04 12593.76 19897.03 14192.22 9299.05 11293.31 34392.11 9386.93 21695.42 21795.01 1096.59 25993.98 12784.48 25392.46 253
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10297.14 13491.10 11199.32 7997.43 14392.10 9491.53 16496.38 19983.29 15799.68 9293.42 14096.37 14598.25 172
Effi-MVS+-dtu89.97 20490.68 17787.81 31795.15 21371.98 36497.87 22895.40 29091.92 9587.57 20791.44 29074.27 24096.84 25089.45 18393.10 18194.60 239
EI-MVSNet-Vis-set95.76 6695.63 6996.17 10799.14 6490.33 12998.49 17397.82 6291.92 9594.75 11898.88 8087.06 9299.48 11695.40 10097.17 13498.70 150
canonicalmvs95.02 8493.96 10298.20 2197.53 11995.92 1798.71 14496.19 22991.78 9795.86 9998.49 11079.53 20799.03 14996.12 8591.42 21199.66 60
EI-MVSNet-UG-set95.43 7395.29 7295.86 11999.07 7089.87 14898.43 17997.80 6791.78 9794.11 12898.77 8586.25 11499.48 11694.95 11296.45 14398.22 174
diffmvspermissive94.59 9894.19 9295.81 12095.54 19690.69 12398.70 14695.68 27391.61 9995.96 9497.81 13180.11 20198.06 18796.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18598.48 17596.81 19191.61 9992.16 15497.22 16271.58 26798.00 19385.85 22697.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
3Dnovator87.35 1193.17 13991.77 15397.37 4995.41 20193.07 7698.82 13497.85 5891.53 10182.56 26197.58 14671.97 26199.82 7691.01 16399.23 6999.22 103
alignmvs95.77 6595.00 8198.06 2897.35 12495.68 1999.71 2597.50 13091.50 10296.16 9298.61 10386.28 11299.00 15096.19 8491.74 20399.51 77
EC-MVSNet95.09 8295.17 7594.84 15695.42 20088.17 18699.48 5395.92 25291.47 10397.34 6398.36 11682.77 16897.41 23297.24 6298.58 10098.94 128
PVSNet_BlendedMVS93.36 13193.20 12093.84 19698.77 8391.61 9999.47 5598.04 4891.44 10494.21 12692.63 27183.50 15199.87 5897.41 5983.37 26790.05 331
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
PVSNet87.13 1293.69 11992.83 13196.28 10397.99 10390.22 13499.38 7198.93 1291.42 10693.66 13697.68 14071.29 26999.64 10087.94 20297.20 13198.98 121
3Dnovator+87.72 893.43 12891.84 15198.17 2295.73 19095.08 3298.92 12797.04 17991.42 10681.48 28697.60 14474.60 23499.79 8290.84 16698.97 8199.64 62
FOURS199.50 4288.94 17099.55 4497.47 13591.32 10898.12 44
PMMVS93.62 12493.90 10592.79 21596.79 14981.40 31298.85 13196.81 19191.25 10996.82 7998.15 12677.02 22498.13 18293.15 14496.30 14898.83 139
IB-MVS89.43 692.12 16190.83 17495.98 11695.40 20290.78 12099.81 1198.06 4591.23 11085.63 22893.66 25190.63 4198.78 15691.22 16071.85 34498.36 168
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
baseline93.91 11293.30 11795.72 12395.10 22090.07 14097.48 24895.91 25791.03 11193.54 13797.68 14079.58 20598.02 19194.27 12495.14 16599.08 115
mvsmamba89.99 20389.42 19491.69 24290.64 31486.34 23198.40 18592.27 35591.01 11284.80 23494.93 22576.12 22696.51 26792.81 14983.84 26092.21 264
casdiffmvspermissive93.98 11093.43 11395.61 12995.07 22289.86 14998.80 13695.84 26590.98 11392.74 14797.66 14279.71 20498.10 18494.72 11695.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UA-Net93.30 13392.62 13595.34 13696.27 16888.53 18395.88 30796.97 18790.90 11495.37 10997.07 17082.38 18199.10 14783.91 25194.86 16898.38 165
test111192.12 16191.19 16494.94 15296.15 17587.36 20898.12 21094.84 31090.85 11590.97 17297.26 15965.60 31098.37 17189.74 18197.14 13599.07 117
test250694.80 8894.21 9196.58 8896.41 16192.18 9398.01 22098.96 1190.82 11693.46 13897.28 15785.92 11898.45 16989.82 17897.19 13299.12 111
ECVR-MVScopyleft92.29 15691.33 16195.15 14496.41 16187.84 19398.10 21394.84 31090.82 11691.42 16797.28 15765.61 30998.49 16890.33 17297.19 13299.12 111
dcpmvs_295.67 6996.18 4494.12 18598.82 8184.22 27797.37 25295.45 28690.70 11895.77 10198.63 10190.47 4398.68 16499.20 2099.22 7099.45 81
ACMMP_NAP96.59 3796.18 4497.81 3498.82 8193.55 6698.88 13097.59 11090.66 11997.98 5199.14 4286.59 104100.00 196.47 8199.46 5599.89 25
mPP-MVS95.90 6095.75 6296.38 10099.58 3089.41 15899.26 8497.41 14590.66 11994.82 11798.95 6986.15 11699.98 995.24 10499.64 4099.74 47
PAPM_NR95.43 7395.05 8096.57 9099.42 4790.14 13698.58 16497.51 12790.65 12192.44 15098.90 7687.77 7799.90 5090.88 16599.32 6499.68 56
MP-MVScopyleft96.00 5295.82 5796.54 9199.47 4690.13 13899.36 7597.41 14590.64 12295.49 10798.95 6985.51 12599.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
casdiffmvs_mvgpermissive94.00 10893.33 11696.03 11295.22 20790.90 11999.09 10795.99 24190.58 12391.55 16397.37 15579.91 20398.06 18795.01 10995.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
region2R96.30 4596.17 4796.70 8199.70 790.31 13099.46 5997.66 9190.55 12497.07 7199.07 5186.85 9799.97 2195.43 9999.74 2999.81 33
HFP-MVS96.42 4196.26 4196.90 6999.69 890.96 11799.47 5597.81 6590.54 12596.88 7399.05 5487.57 7899.96 2895.65 9299.72 3199.78 38
ACMMPR96.28 4696.14 5196.73 7899.68 990.47 12899.47 5597.80 6790.54 12596.83 7899.03 5686.51 10899.95 3195.65 9299.72 3199.75 46
test_fmvs285.10 28585.45 26384.02 34389.85 32465.63 37798.49 17392.59 35190.45 12785.43 23193.32 25743.94 37496.59 25990.81 16784.19 25789.85 335
SR-MVS96.13 4996.16 4996.07 11099.42 4789.04 16498.59 16297.33 15290.44 12896.84 7699.12 4686.75 9999.41 12697.47 5899.44 5899.76 45
EPMVS92.59 15091.59 15695.59 13097.22 12990.03 14491.78 34998.04 4890.42 12991.66 15990.65 30986.49 10997.46 22881.78 27296.31 14799.28 97
ACMMPcopyleft94.67 9594.30 8895.79 12199.25 5788.13 18898.41 18298.67 2290.38 13091.43 16598.72 9182.22 18399.95 3193.83 13295.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
VNet95.08 8394.26 8997.55 4398.07 10093.88 6198.68 14898.73 1890.33 13197.16 7097.43 15379.19 21099.53 10996.91 7191.85 20199.24 100
test-LLR93.11 14092.68 13394.40 17294.94 22887.27 21299.15 9897.25 15490.21 13291.57 16094.04 23784.89 13697.58 22285.94 22396.13 15098.36 168
test0.0.03 188.96 21688.61 21290.03 28491.09 30884.43 27498.97 12397.02 18390.21 13280.29 29696.31 20184.89 13691.93 36672.98 33485.70 24593.73 241
train_agg97.20 2297.08 2297.57 4299.57 3393.17 7399.38 7197.66 9190.18 13498.39 3599.18 3390.94 3599.66 9498.58 3699.85 1399.88 26
test_899.55 3593.07 7699.37 7497.64 9790.18 13498.36 3799.19 3090.94 3599.64 100
131493.44 12791.98 14897.84 3295.24 20594.38 5296.22 29797.92 5590.18 13482.28 26997.71 13977.63 22199.80 8191.94 15698.67 9799.34 92
CVMVSNet90.30 19490.91 17088.46 31394.32 24473.58 35897.61 24597.59 11090.16 13788.43 20397.10 16876.83 22592.86 35282.64 26393.54 17898.93 129
MVSTER92.71 14592.32 13993.86 19597.29 12792.95 8199.01 11896.59 20190.09 13885.51 22994.00 24194.61 1696.56 26390.77 16983.03 27092.08 271
APD-MVScopyleft96.95 2896.72 3197.63 3899.51 4193.58 6599.16 9397.44 14190.08 13998.59 3099.07 5189.06 5799.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CP-MVS96.22 4796.15 5096.42 9799.67 1089.62 15499.70 2697.61 10490.07 14096.00 9399.16 3687.43 8199.92 4096.03 8899.72 3199.70 52
SCA90.64 18989.25 19894.83 15794.95 22788.83 17496.26 29497.21 16090.06 14190.03 18890.62 31166.61 30096.81 25283.16 25794.36 17198.84 136
baseline294.04 10793.80 10794.74 16093.07 27990.25 13198.12 21098.16 3989.86 14286.53 22296.95 17595.56 698.05 18991.44 15994.53 16995.93 231
baseline192.61 14991.28 16296.58 8897.05 14094.63 4697.72 23896.20 22789.82 14388.56 20196.85 18186.85 9797.82 20188.42 19480.10 28697.30 197
PVSNet_083.28 1687.31 25185.16 26693.74 20094.78 23384.59 27298.91 12898.69 2189.81 14478.59 31793.23 26161.95 32699.34 13494.75 11455.72 38197.30 197
ZNCC-MVS96.09 5095.81 5996.95 6899.42 4791.19 10699.55 4497.53 12189.72 14595.86 9998.94 7286.59 10499.97 2195.13 10599.56 5099.68 56
GST-MVS95.97 5595.66 6596.90 6999.49 4591.22 10499.45 6197.48 13389.69 14695.89 9698.72 9186.37 11199.95 3194.62 12099.22 7099.52 75
GA-MVS90.10 20088.69 21094.33 17692.44 28487.97 19299.08 10896.26 22489.65 14786.92 21793.11 26468.09 28796.96 24582.54 26590.15 22198.05 178
SR-MVS-dyc-post95.75 6795.86 5695.41 13499.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6286.73 10199.36 13096.62 7599.31 6599.60 67
RE-MVS-def95.70 6399.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6285.24 13296.62 7599.31 6599.60 67
SF-MVS97.22 2196.92 2498.12 2699.11 6694.88 3599.44 6297.45 13889.60 15098.70 2699.42 1790.42 4599.72 8998.47 3899.65 3899.77 43
MDTV_nov1_ep1390.47 18196.14 17788.55 18191.34 35697.51 12789.58 15192.24 15290.50 31986.99 9597.61 22077.64 30092.34 192
TEST999.57 3393.17 7399.38 7197.66 9189.57 15298.39 3599.18 3390.88 3899.66 94
PatchmatchNetpermissive92.05 16491.04 16795.06 14796.17 17489.04 16491.26 35797.26 15389.56 15390.64 17890.56 31588.35 6697.11 23979.53 28596.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
SMA-MVScopyleft97.24 1996.99 2398.00 2999.30 5494.20 5599.16 9397.65 9689.55 15499.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
sss94.85 8793.94 10397.58 4096.43 16094.09 5998.93 12599.16 889.50 15595.27 11097.85 12981.50 19199.65 9892.79 15094.02 17498.99 120
ACMP87.39 1088.71 22888.24 22090.12 27993.91 25881.06 32098.50 17195.67 27489.43 15680.37 29595.55 21365.67 30797.83 20090.55 17084.51 25191.47 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
9.1496.87 2699.34 5099.50 5197.49 13289.41 15798.59 3099.43 1689.78 5299.69 9198.69 3099.62 44
RRT_MVS88.91 21888.56 21589.93 28590.31 31881.61 30998.08 21696.38 21589.30 15882.41 26694.84 22873.15 25096.04 29990.38 17182.23 27792.15 267
bld_raw_dy_0_6487.82 23986.71 24491.15 25089.54 33085.61 25397.37 25289.16 37989.26 15983.42 24794.50 23365.79 30696.18 29188.00 20183.37 26791.67 278
thres20093.69 11992.59 13696.97 6697.76 10894.74 4399.35 7699.36 289.23 16091.21 17196.97 17483.42 15498.77 15785.08 23190.96 21497.39 195
PGM-MVS95.85 6195.65 6796.45 9599.50 4289.77 15198.22 20198.90 1389.19 16196.74 8198.95 6985.91 12099.92 4093.94 12899.46 5599.66 60
TESTMET0.1,193.82 11693.26 11995.49 13195.21 20890.25 13199.15 9897.54 12089.18 16291.79 15694.87 22789.13 5697.63 21886.21 21996.29 14998.60 155
UniMVSNet (Re)89.50 21188.32 21993.03 20992.21 28890.96 11798.90 12998.39 2789.13 16383.22 24892.03 27681.69 18996.34 28386.79 21472.53 33791.81 276
FIs90.70 18789.87 18793.18 20792.29 28691.12 10998.17 20798.25 3289.11 16483.44 24694.82 22982.26 18296.17 29387.76 20382.76 27292.25 260
tpmrst92.78 14492.16 14394.65 16396.27 16887.45 20591.83 34897.10 17589.10 16594.68 12090.69 30688.22 6797.73 21389.78 17991.80 20298.77 146
CDPH-MVS96.56 3896.18 4497.70 3699.59 2893.92 6099.13 10497.44 14189.02 16697.90 5399.22 2788.90 6099.49 11294.63 11999.79 2799.68 56
原ACMM196.18 10599.03 7190.08 13997.63 10188.98 16797.00 7298.97 6288.14 7199.71 9088.23 19799.62 4498.76 147
XVG-OURS90.83 18490.49 18091.86 23495.23 20681.25 31695.79 31295.92 25288.96 16890.02 18998.03 12871.60 26699.35 13391.06 16287.78 23094.98 237
MP-MVS-pluss95.80 6395.30 7197.29 5098.95 7692.66 8598.59 16297.14 16888.95 16993.12 14299.25 2385.62 12299.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test-mter93.27 13592.89 13094.40 17294.94 22887.27 21299.15 9897.25 15488.95 16991.57 16094.04 23788.03 7397.58 22285.94 22396.13 15098.36 168
APD-MVS_3200maxsize95.64 7095.65 6795.62 12899.24 5887.80 19498.42 18097.22 15988.93 17196.64 8698.98 6185.49 12699.36 13096.68 7499.27 6899.70 52
CR-MVSNet88.83 22387.38 23393.16 20893.47 26986.24 23384.97 37794.20 33088.92 17290.76 17686.88 35484.43 14194.82 33470.64 34192.17 19798.41 162
DU-MVS88.83 22387.51 23092.79 21591.46 30390.07 14098.71 14497.62 10388.87 17383.21 24993.68 24974.63 23295.93 30486.95 21072.47 33892.36 256
FC-MVSNet-test90.22 19689.40 19592.67 22191.78 29889.86 14997.89 22598.22 3588.81 17482.96 25494.66 23181.90 18895.96 30285.89 22582.52 27592.20 266
USDC84.74 28882.93 29390.16 27891.73 29983.54 28695.00 31993.30 34488.77 17573.19 34593.30 25953.62 35697.65 21775.88 31381.54 28089.30 342
testgi82.29 30981.00 31286.17 33087.24 35674.84 35397.39 24991.62 36588.63 17675.85 33295.42 21746.07 37391.55 36766.87 35779.94 28792.12 269
VPNet88.30 23486.57 24593.49 20291.95 29491.35 10398.18 20597.20 16488.61 17784.52 23894.89 22662.21 32596.76 25589.34 18672.26 34192.36 256
miper_enhance_ethall90.33 19389.70 18892.22 22597.12 13688.93 17298.35 19295.96 24588.60 17883.14 25392.33 27387.38 8296.18 29186.49 21777.89 29591.55 287
IS-MVSNet93.00 14292.51 13794.49 16896.14 17787.36 20898.31 19695.70 27188.58 17990.17 18697.50 14983.02 16497.22 23687.06 20796.07 15498.90 132
PS-MVSNAJss89.54 21089.05 20291.00 25488.77 33984.36 27597.39 24995.97 24388.47 18081.88 27993.80 24782.48 17696.50 26889.34 18683.34 26992.15 267
jajsoiax87.35 25086.51 24789.87 28687.75 35381.74 30797.03 26795.98 24288.47 18080.15 29893.80 24761.47 32796.36 27789.44 18484.47 25491.50 288
Fast-Effi-MVS+-dtu88.84 22188.59 21489.58 29593.44 27278.18 33998.65 15294.62 31988.46 18284.12 24295.37 22068.91 27996.52 26682.06 26991.70 20594.06 240
tfpn200view993.43 12892.27 14196.90 6997.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21697.12 201
thres40093.39 13092.27 14196.73 7897.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21696.61 216
LCM-MVSNet-Re88.59 23188.61 21288.51 31295.53 19772.68 36296.85 27488.43 38188.45 18373.14 34690.63 31075.82 22794.38 34192.95 14595.71 15998.48 160
PLCcopyleft91.07 394.23 10494.01 9894.87 15499.17 6387.49 20399.25 8596.55 20688.43 18691.26 16998.21 12485.92 11899.86 6389.77 18097.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
XVG-OURS-SEG-HR90.95 18290.66 17891.83 23595.18 21281.14 31995.92 30495.92 25288.40 18790.33 18597.85 12970.66 27299.38 12892.83 14888.83 22694.98 237
UniMVSNet_NR-MVSNet89.60 20888.55 21692.75 21792.17 28990.07 14098.74 14398.15 4088.37 18883.21 24993.98 24282.86 16695.93 30486.95 21072.47 33892.25 260
MAR-MVS94.43 10194.09 9695.45 13299.10 6887.47 20498.39 18997.79 6988.37 18894.02 13099.17 3578.64 21699.91 4592.48 15298.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
SDMVSNet91.09 17889.91 18694.65 16396.80 14790.54 12797.78 23297.81 6588.34 19085.73 22595.26 22166.44 30398.26 17794.25 12586.75 23495.14 234
sd_testset89.23 21288.05 22592.74 21896.80 14785.33 26095.85 31097.03 18188.34 19085.73 22595.26 22161.12 33097.76 21085.61 22786.75 23495.14 234
Vis-MVSNet (Re-imp)93.26 13693.00 12894.06 18896.14 17786.71 22298.68 14896.70 19488.30 19289.71 19497.64 14385.43 12996.39 27588.06 20096.32 14699.08 115
1112_ss92.71 14591.55 15796.20 10495.56 19591.12 10998.48 17594.69 31788.29 19386.89 21898.50 10887.02 9398.66 16584.75 23689.77 22498.81 141
Test_1112_low_res92.27 15890.97 16896.18 10595.53 19791.10 11198.47 17794.66 31888.28 19486.83 21993.50 25687.00 9498.65 16684.69 23789.74 22598.80 142
gm-plane-assit94.69 23588.14 18788.22 19597.20 16398.29 17590.79 168
mvs_tets87.09 25386.22 25089.71 29187.87 34981.39 31396.73 28195.90 25888.19 19679.99 30093.61 25259.96 33496.31 28589.40 18584.34 25591.43 292
BH-w/o92.32 15591.79 15293.91 19496.85 14486.18 23799.11 10695.74 26988.13 19784.81 23397.00 17377.26 22397.91 19489.16 19198.03 11297.64 187
nrg03090.23 19588.87 20594.32 17791.53 30293.54 6798.79 14095.89 26088.12 19884.55 23794.61 23278.80 21496.88 24992.35 15475.21 30992.53 252
AUN-MVS90.17 19889.50 19192.19 22796.21 17182.67 29997.76 23697.53 12188.05 19991.67 15896.15 20283.10 16297.47 22788.11 19966.91 36096.43 224
D2MVS87.96 23887.39 23289.70 29291.84 29783.40 28798.31 19698.49 2388.04 20078.23 32190.26 32173.57 24496.79 25484.21 24483.53 26588.90 347
NR-MVSNet87.74 24686.00 25492.96 21291.46 30390.68 12496.65 28397.42 14488.02 20173.42 34393.68 24977.31 22295.83 31084.26 24371.82 34592.36 256
dmvs_re88.69 22988.06 22490.59 26593.83 26278.68 33595.75 31396.18 23087.99 20284.48 23996.32 20067.52 29396.94 24784.98 23485.49 24696.14 228
thres100view90093.34 13292.15 14496.90 6997.62 11394.84 3899.06 11199.36 287.96 20390.47 18296.78 18583.29 15798.75 15984.11 24790.69 21697.12 201
thres600view793.18 13892.00 14796.75 7697.62 11394.92 3399.07 10999.36 287.96 20390.47 18296.78 18583.29 15798.71 16382.93 26190.47 22096.61 216
CDS-MVSNet93.47 12693.04 12594.76 15894.75 23489.45 15798.82 13497.03 18187.91 20590.97 17296.48 19489.06 5796.36 27789.50 18292.81 18598.49 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
ACMM86.95 1388.77 22688.22 22190.43 27193.61 26681.34 31498.50 17195.92 25287.88 20683.85 24495.20 22367.20 29697.89 19686.90 21384.90 24992.06 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
tpm89.67 20788.95 20491.82 23692.54 28381.43 31192.95 33895.92 25287.81 20790.50 18189.44 33484.99 13495.65 31583.67 25482.71 27398.38 165
ZD-MVS99.67 1093.28 7197.61 10487.78 20897.41 6099.16 3690.15 4999.56 10598.35 4199.70 35
TranMVSNet+NR-MVSNet87.75 24386.31 24992.07 23190.81 31188.56 18098.33 19397.18 16587.76 20981.87 28093.90 24472.45 25695.43 32083.13 25971.30 34892.23 262
PatchMatch-RL91.47 17090.54 17994.26 17998.20 9586.36 23096.94 27097.14 16887.75 21088.98 19895.75 21171.80 26499.40 12780.92 27797.39 12897.02 207
BH-RMVSNet91.25 17689.99 18595.03 15096.75 15088.55 18198.65 15294.95 30787.74 21187.74 20697.80 13268.27 28598.14 18180.53 28297.49 12598.41 162
LPG-MVS_test88.86 22088.47 21890.06 28093.35 27480.95 32198.22 20195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
LGP-MVS_train90.06 28093.35 27480.95 32195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
MVS_Test93.67 12292.67 13496.69 8296.72 15192.66 8597.22 26196.03 24087.69 21495.12 11494.03 23981.55 19098.28 17689.17 19096.46 14299.14 108
ITE_SJBPF87.93 31592.26 28776.44 34793.47 34287.67 21579.95 30195.49 21656.50 34497.38 23375.24 31682.33 27689.98 333
HyFIR lowres test93.68 12193.29 11894.87 15497.57 11888.04 19098.18 20598.47 2587.57 21691.24 17095.05 22485.49 12697.46 22893.22 14292.82 18399.10 113
thisisatest051594.75 9094.19 9296.43 9696.13 18092.64 8899.47 5597.60 10687.55 21793.17 14197.59 14594.71 1398.42 17088.28 19693.20 17998.24 173
TAMVS92.62 14892.09 14694.20 18294.10 24887.68 19698.41 18296.97 18787.53 21889.74 19296.04 20684.77 14096.49 27088.97 19292.31 19398.42 161
MDTV_nov1_ep13_2view91.17 10891.38 35587.45 21993.08 14386.67 10287.02 20898.95 127
XVG-ACMP-BASELINE85.86 27484.95 27088.57 31189.90 32277.12 34594.30 32595.60 27887.40 22082.12 27292.99 26753.42 35797.66 21585.02 23383.83 26190.92 308
HPM-MVScopyleft95.41 7595.22 7495.99 11599.29 5589.14 16199.17 9297.09 17687.28 22195.40 10898.48 11284.93 13599.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
无先验98.52 16797.82 6287.20 22299.90 5087.64 20599.85 30
FA-MVS(test-final)92.22 16091.08 16695.64 12796.05 18188.98 16791.60 35297.25 15486.99 22391.84 15592.12 27483.03 16399.00 15086.91 21293.91 17598.93 129
VDD-MVS91.24 17790.18 18394.45 17197.08 13885.84 25098.40 18596.10 23586.99 22393.36 13998.16 12554.27 35499.20 13896.59 7890.63 21998.31 171
WR-MVS88.54 23287.22 23792.52 22291.93 29689.50 15698.56 16597.84 5986.99 22381.87 28093.81 24674.25 24195.92 30685.29 22974.43 31892.12 269
Effi-MVS+93.87 11493.15 12296.02 11395.79 18790.76 12196.70 28295.78 26686.98 22695.71 10297.17 16679.58 20598.01 19294.57 12196.09 15299.31 94
CostFormer92.89 14392.48 13894.12 18594.99 22585.89 24792.89 33997.00 18586.98 22695.00 11690.78 30290.05 5097.51 22692.92 14791.73 20498.96 123
VPA-MVSNet89.10 21487.66 22993.45 20392.56 28291.02 11597.97 22398.32 3086.92 22886.03 22492.01 27868.84 28197.10 24190.92 16475.34 30892.23 262
MVSFormer94.71 9494.08 9796.61 8595.05 22394.87 3697.77 23496.17 23186.84 22998.04 4898.52 10685.52 12395.99 30089.83 17698.97 8198.96 123
test_djsdf88.26 23687.73 22789.84 28888.05 34882.21 30397.77 23496.17 23186.84 22982.41 26691.95 28272.07 26095.99 30089.83 17684.50 25291.32 297
AdaColmapbinary93.82 11693.06 12396.10 10999.88 189.07 16398.33 19397.55 11786.81 23190.39 18498.65 9875.09 23199.98 993.32 14197.53 12499.26 99
test_yl95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
DCV-MVSNet95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
mvs_anonymous92.50 15291.65 15595.06 14796.60 15389.64 15397.06 26696.44 21386.64 23484.14 24193.93 24382.49 17596.17 29391.47 15896.08 15399.35 90
thisisatest053094.00 10893.52 11195.43 13395.76 18990.02 14598.99 12097.60 10686.58 23591.74 15797.36 15694.78 1298.34 17286.37 21892.48 19097.94 182
DP-MVS Recon95.85 6195.15 7697.95 3099.87 294.38 5299.60 3897.48 13386.58 23594.42 12399.13 4487.36 8699.98 993.64 13598.33 10799.48 79
F-COLMAP92.07 16391.75 15493.02 21098.16 9882.89 29598.79 14095.97 24386.54 23787.92 20597.80 13278.69 21599.65 9885.97 22195.93 15696.53 221
Syy-MVS84.10 30184.53 28082.83 34895.14 21465.71 37697.68 24196.66 19686.52 23882.63 25896.84 18268.15 28689.89 37245.62 38691.54 20892.87 246
myMVS_eth3d88.68 23089.07 20187.50 32095.14 21479.74 32797.68 24196.66 19686.52 23882.63 25896.84 18285.22 13389.89 37269.43 34691.54 20892.87 246
PHI-MVS96.65 3696.46 3797.21 5499.34 5091.77 9599.70 2698.05 4686.48 24098.05 4799.20 2989.33 5599.96 2898.38 3999.62 4499.90 22
DeepMVS_CXcopyleft76.08 35990.74 31351.65 39290.84 37086.47 24157.89 38087.98 34135.88 38492.60 35665.77 36065.06 36583.97 375
BH-untuned91.46 17190.84 17293.33 20596.51 15784.83 27098.84 13395.50 28386.44 24283.50 24596.70 18875.49 23097.77 20586.78 21597.81 11597.40 194
CNLPA93.64 12392.74 13296.36 10198.96 7590.01 14699.19 8795.89 26086.22 24389.40 19598.85 8180.66 20099.84 6988.57 19396.92 13799.24 100
OurMVSNet-221017-084.13 30083.59 29085.77 33387.81 35070.24 36994.89 32093.65 33986.08 24476.53 32593.28 26061.41 32896.14 29580.95 27677.69 30090.93 307
testing387.75 24388.22 22186.36 32894.66 23777.41 34499.52 5097.95 5486.05 24581.12 28896.69 18986.18 11589.31 37661.65 37090.12 22292.35 259
tttt051793.30 13393.01 12794.17 18395.57 19486.47 22598.51 17097.60 10685.99 24690.55 17997.19 16494.80 1198.31 17385.06 23291.86 20097.74 184
FMVSNet388.81 22587.08 23893.99 19296.52 15694.59 4798.08 21696.20 22785.85 24782.12 27291.60 28774.05 24295.40 32279.04 28980.24 28391.99 274
HPM-MVS_fast94.89 8594.62 8495.70 12499.11 6688.44 18499.14 10197.11 17285.82 24895.69 10398.47 11383.46 15399.32 13593.16 14399.63 4399.35 90
dmvs_testset77.17 33578.99 32271.71 36487.25 35538.55 40191.44 35481.76 39285.77 24969.49 35895.94 20869.71 27684.37 38452.71 38376.82 30492.21 264
test_vis1_rt81.31 31580.05 31885.11 33591.29 30670.66 36898.98 12277.39 39685.76 25068.80 36082.40 36736.56 38399.44 11992.67 15186.55 23685.24 371
旧先验298.67 15085.75 25198.96 2098.97 15293.84 131
ab-mvs91.05 18189.17 19996.69 8295.96 18391.72 9792.62 34397.23 15885.61 25289.74 19293.89 24568.55 28299.42 12391.09 16187.84 22998.92 131
新几何197.40 4798.92 7792.51 9097.77 7285.52 25396.69 8399.06 5388.08 7299.89 5384.88 23599.62 4499.79 36
TR-MVS90.77 18589.44 19394.76 15896.31 16688.02 19197.92 22495.96 24585.52 25388.22 20497.23 16166.80 29998.09 18584.58 23992.38 19198.17 177
CP-MVSNet86.54 26385.45 26389.79 29091.02 31082.78 29897.38 25197.56 11685.37 25579.53 30793.03 26571.86 26395.25 32579.92 28473.43 33291.34 296
EU-MVSNet84.19 29884.42 28383.52 34688.64 34267.37 37596.04 30295.76 26885.29 25678.44 31893.18 26270.67 27191.48 36875.79 31475.98 30591.70 277
testdata95.26 14198.20 9587.28 21197.60 10685.21 25798.48 3399.15 3988.15 7098.72 16290.29 17399.45 5799.78 38
IterMVS-LS88.34 23387.44 23191.04 25394.10 24885.85 24998.10 21395.48 28485.12 25882.03 27691.21 29581.35 19595.63 31683.86 25275.73 30791.63 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EI-MVSNet89.87 20589.38 19691.36 24794.32 24485.87 24897.61 24596.59 20185.10 25985.51 22997.10 16881.30 19696.56 26383.85 25383.03 27091.64 279
IterMVS85.81 27684.67 27789.22 30293.51 26883.67 28596.32 29194.80 31385.09 26078.69 31390.17 32866.57 30293.17 35179.48 28777.42 30190.81 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
PCF-MVS89.78 591.26 17489.63 18996.16 10895.44 19991.58 10195.29 31796.10 23585.07 26182.75 25597.45 15278.28 21799.78 8480.60 28195.65 16097.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2289.57 20988.79 20891.91 23397.94 10487.62 19997.98 22296.51 20885.03 26282.37 26891.79 28383.65 14996.50 26885.96 22277.89 29591.61 284
IterMVS-SCA-FT85.73 27984.64 27889.00 30793.46 27182.90 29496.27 29294.70 31685.02 26378.62 31590.35 32066.61 30093.33 34879.38 28877.36 30290.76 314
Fast-Effi-MVS+91.72 16790.79 17594.49 16895.89 18487.40 20799.54 4995.70 27185.01 26489.28 19795.68 21277.75 22097.57 22583.22 25695.06 16698.51 158
WR-MVS_H86.53 26485.49 26289.66 29491.04 30983.31 28997.53 24798.20 3684.95 26579.64 30490.90 30078.01 21995.33 32376.29 31072.81 33490.35 323
MVS93.92 11192.28 14098.83 795.69 19196.82 896.22 29798.17 3784.89 26684.34 24098.61 10379.32 20999.83 7393.88 13099.43 5999.86 29
PS-CasMVS85.81 27684.58 27989.49 29990.77 31282.11 30497.20 26297.36 15084.83 26779.12 31292.84 26867.42 29595.16 32778.39 29773.25 33391.21 301
dp90.16 19988.83 20794.14 18496.38 16486.42 22691.57 35397.06 17884.76 26888.81 19990.19 32784.29 14397.43 23175.05 31791.35 21398.56 156
UnsupCasMVSNet_eth78.90 32676.67 33185.58 33482.81 37374.94 35291.98 34796.31 21984.64 26965.84 37387.71 34351.33 36192.23 36272.89 33556.50 38089.56 340
v2v48287.27 25285.76 25791.78 24189.59 32787.58 20098.56 16595.54 28184.53 27082.51 26291.78 28473.11 25196.47 27182.07 26874.14 32491.30 298
EPP-MVSNet93.75 11893.67 10994.01 19195.86 18585.70 25298.67 15097.66 9184.46 27191.36 16897.18 16591.16 3197.79 20392.93 14693.75 17698.53 157
PEN-MVS85.21 28483.93 28889.07 30689.89 32381.31 31597.09 26597.24 15784.45 27278.66 31492.68 27068.44 28494.87 33275.98 31270.92 34991.04 305
SixPastTwentyTwo82.63 30881.58 30685.79 33288.12 34771.01 36795.17 31892.54 35284.33 27372.93 35092.08 27560.41 33395.61 31774.47 32274.15 32390.75 315
miper_ehance_all_eth88.94 21788.12 22391.40 24595.32 20486.93 21897.85 22995.55 28084.19 27481.97 27791.50 28984.16 14495.91 30784.69 23777.89 29591.36 295
eth_miper_zixun_eth87.76 24287.00 24090.06 28094.67 23682.65 30097.02 26995.37 29284.19 27481.86 28291.58 28881.47 19295.90 30883.24 25573.61 32791.61 284
XXY-MVS87.75 24386.02 25392.95 21390.46 31689.70 15297.71 24095.90 25884.02 27680.95 28994.05 23667.51 29497.10 24185.16 23078.41 29292.04 273
tpm291.77 16691.09 16593.82 19794.83 23285.56 25692.51 34497.16 16784.00 27793.83 13490.66 30887.54 7997.17 23787.73 20491.55 20798.72 148
anonymousdsp86.69 25985.75 25889.53 29686.46 36182.94 29296.39 28895.71 27083.97 27879.63 30590.70 30568.85 28095.94 30386.01 22084.02 25989.72 337
GeoE90.60 19089.56 19093.72 20195.10 22085.43 25799.41 6894.94 30883.96 27987.21 21396.83 18474.37 23897.05 24380.50 28393.73 17798.67 152
mvsany_test375.85 33874.52 34079.83 35673.53 38760.64 38191.73 35087.87 38383.91 28070.55 35582.52 36631.12 38593.66 34586.66 21662.83 36785.19 372
v14886.38 26785.06 26790.37 27589.47 33384.10 27998.52 16795.48 28483.80 28180.93 29090.22 32574.60 23496.31 28580.92 27771.55 34690.69 317
MS-PatchMatch86.75 25885.92 25589.22 30291.97 29282.47 30296.91 27196.14 23383.74 28277.73 32293.53 25558.19 33997.37 23576.75 30798.35 10687.84 353
test22298.32 9291.21 10598.08 21697.58 11283.74 28295.87 9899.02 5886.74 10099.64 4099.81 33
K. test v381.04 31679.77 31984.83 33887.41 35470.23 37095.60 31593.93 33483.70 28467.51 36789.35 33655.76 34593.58 34776.67 30868.03 35590.67 318
V4287.00 25485.68 25990.98 25589.91 32186.08 24198.32 19595.61 27783.67 28582.72 25690.67 30774.00 24396.53 26581.94 27174.28 32190.32 324
API-MVS94.78 8994.18 9496.59 8799.21 6190.06 14398.80 13697.78 7083.59 28693.85 13399.21 2883.79 14899.97 2192.37 15399.00 7999.74 47
DTE-MVSNet84.14 29982.80 29588.14 31488.95 33879.87 32696.81 27596.24 22583.50 28777.60 32392.52 27267.89 29194.24 34372.64 33669.05 35290.32 324
c3_l88.19 23787.23 23691.06 25294.97 22686.17 23897.72 23895.38 29183.43 28881.68 28491.37 29182.81 16795.72 31384.04 25073.70 32691.29 299
LFMVS92.23 15990.84 17296.42 9798.24 9491.08 11398.24 20096.22 22683.39 28994.74 11998.31 11861.12 33098.85 15494.45 12292.82 18399.32 93
LF4IMVS81.94 31281.17 31184.25 34287.23 35768.87 37493.35 33591.93 36283.35 29075.40 33493.00 26649.25 37096.65 25778.88 29278.11 29487.22 360
v114486.83 25785.31 26591.40 24589.75 32587.21 21698.31 19695.45 28683.22 29182.70 25790.78 30273.36 24596.36 27779.49 28674.69 31590.63 319
CPTT-MVS94.60 9794.43 8795.09 14699.66 1286.85 21999.44 6297.47 13583.22 29194.34 12598.96 6682.50 17499.55 10694.81 11399.50 5398.88 133
Patchmatch-RL test81.90 31380.13 31687.23 32380.71 37770.12 37184.07 38188.19 38283.16 29370.57 35482.18 36987.18 8992.59 35782.28 26762.78 36898.98 121
ADS-MVSNet287.62 24886.88 24189.86 28796.21 17179.14 33187.15 37092.99 34583.01 29489.91 19087.27 35078.87 21292.80 35574.20 32592.27 19497.64 187
ADS-MVSNet88.99 21587.30 23494.07 18796.21 17187.56 20187.15 37096.78 19383.01 29489.91 19087.27 35078.87 21297.01 24474.20 32592.27 19497.64 187
FE-MVS91.38 17390.16 18495.05 14996.46 15987.53 20289.69 36697.84 5982.97 29692.18 15392.00 28084.07 14698.93 15380.71 27995.52 16198.68 151
GBi-Net86.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
test186.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
FMVSNet286.90 25584.79 27493.24 20695.11 21792.54 8997.67 24395.86 26482.94 29780.55 29391.17 29662.89 32295.29 32477.23 30179.71 28991.90 275
DIV-MVS_self_test87.82 23986.81 24290.87 25994.87 23185.39 25997.81 23095.22 30482.92 30080.76 29191.31 29381.99 18595.81 31181.36 27375.04 31191.42 293
cl____87.82 23986.79 24390.89 25894.88 23085.43 25797.81 23095.24 29982.91 30180.71 29291.22 29481.97 18795.84 30981.34 27475.06 31091.40 294
CSCG94.87 8694.71 8395.36 13599.54 3686.49 22499.34 7798.15 4082.71 30290.15 18799.25 2389.48 5499.86 6394.97 11198.82 9099.72 50
OpenMVScopyleft85.28 1490.75 18688.84 20696.48 9393.58 26793.51 6898.80 13697.41 14582.59 30378.62 31597.49 15068.00 28999.82 7684.52 24198.55 10296.11 229
114514_t94.06 10693.05 12497.06 5899.08 6992.26 9198.97 12397.01 18482.58 30492.57 14898.22 12280.68 19999.30 13689.34 18699.02 7899.63 64
pmmvs487.58 24986.17 25291.80 23789.58 32888.92 17397.25 25895.28 29582.54 30580.49 29493.17 26375.62 22996.05 29882.75 26278.90 29090.42 322
v119286.32 26884.71 27691.17 24989.53 33186.40 22798.13 20895.44 28882.52 30682.42 26590.62 31171.58 26796.33 28477.23 30174.88 31290.79 312
test_fmvs375.09 33975.19 33674.81 36177.45 38354.08 38795.93 30390.64 37182.51 30773.29 34481.19 37222.29 39086.29 38385.50 22867.89 35684.06 374
v14419286.40 26684.89 27190.91 25689.48 33285.59 25498.21 20395.43 28982.45 30882.62 26090.58 31472.79 25596.36 27778.45 29674.04 32590.79 312
TAPA-MVS87.50 990.35 19289.05 20294.25 18098.48 9185.17 26498.42 18096.58 20482.44 30987.24 21298.53 10582.77 16898.84 15559.09 37597.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
miper_lstm_enhance86.90 25586.20 25189.00 30794.53 23981.19 31796.74 28095.24 29982.33 31080.15 29890.51 31881.99 18594.68 33880.71 27973.58 32891.12 303
tt080586.50 26584.79 27491.63 24391.97 29281.49 31096.49 28697.38 14882.24 31182.44 26395.82 21051.22 36298.25 17884.55 24080.96 28295.13 236
v192192086.02 27184.44 28290.77 26289.32 33485.20 26298.10 21395.35 29482.19 31282.25 27090.71 30470.73 27096.30 28876.85 30674.49 31790.80 311
MVP-Stereo86.61 26285.83 25688.93 30988.70 34183.85 28396.07 30194.41 32682.15 31375.64 33391.96 28167.65 29296.45 27377.20 30398.72 9586.51 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
v886.11 27084.45 28191.10 25189.99 32086.85 21997.24 25995.36 29381.99 31479.89 30289.86 33074.53 23696.39 27578.83 29372.32 34090.05 331
tpmvs89.16 21387.76 22693.35 20497.19 13084.75 27190.58 36497.36 15081.99 31484.56 23689.31 33783.98 14798.17 18074.85 32090.00 22397.12 201
pm-mvs184.68 29082.78 29790.40 27289.58 32885.18 26397.31 25494.73 31581.93 31676.05 32892.01 27865.48 31196.11 29678.75 29469.14 35189.91 334
v124085.77 27884.11 28590.73 26389.26 33585.15 26597.88 22795.23 30381.89 31782.16 27190.55 31669.60 27896.31 28575.59 31574.87 31390.72 316
test20.0378.51 33077.48 32681.62 35383.07 37171.03 36696.11 30092.83 34981.66 31869.31 35989.68 33257.53 34087.29 38258.65 37668.47 35386.53 363
pmmvs585.87 27384.40 28490.30 27688.53 34384.23 27698.60 16093.71 33781.53 31980.29 29692.02 27764.51 31595.52 31882.04 27078.34 29391.15 302
MIMVSNet84.48 29481.83 30492.42 22391.73 29987.36 20885.52 37394.42 32581.40 32081.91 27887.58 34451.92 36092.81 35473.84 32888.15 22897.08 205
our_test_384.47 29582.80 29589.50 29789.01 33683.90 28297.03 26794.56 32081.33 32175.36 33590.52 31771.69 26594.54 34068.81 34876.84 30390.07 329
v1085.73 27984.01 28790.87 25990.03 31986.73 22197.20 26295.22 30481.25 32279.85 30389.75 33173.30 24896.28 28976.87 30572.64 33689.61 339
CL-MVSNet_self_test79.89 32278.34 32384.54 34181.56 37575.01 35196.88 27395.62 27681.10 32375.86 33185.81 35968.49 28390.26 37063.21 36556.51 37988.35 350
ACMH+83.78 1584.21 29782.56 30289.15 30493.73 26579.16 33096.43 28794.28 32881.09 32474.00 34094.03 23954.58 35397.67 21476.10 31178.81 29190.63 319
ACMH83.09 1784.60 29182.61 30190.57 26693.18 27782.94 29296.27 29294.92 30981.01 32572.61 35293.61 25256.54 34397.79 20374.31 32381.07 28190.99 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PM-MVS74.88 34072.85 34380.98 35578.98 38164.75 37890.81 36185.77 38580.95 32668.23 36482.81 36529.08 38792.84 35376.54 30962.46 37085.36 369
QAPM91.41 17289.49 19297.17 5695.66 19393.42 7098.60 16097.51 12780.92 32781.39 28797.41 15472.89 25499.87 5882.33 26698.68 9698.21 175
v7n84.42 29682.75 29889.43 30088.15 34681.86 30696.75 27995.67 27480.53 32878.38 31989.43 33569.89 27396.35 28273.83 32972.13 34290.07 329
cascas90.93 18389.33 19795.76 12295.69 19193.03 7898.99 12096.59 20180.49 32986.79 22094.45 23465.23 31398.60 16793.52 13792.18 19695.66 233
KD-MVS_2432*160082.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
miper_refine_blended82.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
Baseline_NR-MVSNet85.83 27584.82 27388.87 31088.73 34083.34 28898.63 15591.66 36480.41 33282.44 26391.35 29274.63 23295.42 32184.13 24671.39 34787.84 353
Anonymous2023120680.76 31779.42 32184.79 33984.78 36672.98 35996.53 28492.97 34679.56 33374.33 33788.83 33861.27 32992.15 36360.59 37275.92 30689.24 344
DSMNet-mixed81.60 31481.43 30882.10 35184.36 36760.79 38093.63 33386.74 38479.00 33479.32 30987.15 35263.87 31889.78 37466.89 35691.92 19995.73 232
LTVRE_ROB81.71 1984.59 29282.72 29990.18 27792.89 28183.18 29093.15 33694.74 31478.99 33575.14 33692.69 26965.64 30897.63 21869.46 34581.82 27989.74 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ppachtmachnet_test83.63 30481.57 30789.80 28989.01 33685.09 26697.13 26494.50 32178.84 33676.14 32791.00 29869.78 27494.61 33963.40 36474.36 31989.71 338
TransMVSNet (Re)81.97 31179.61 32089.08 30589.70 32684.01 28097.26 25791.85 36378.84 33673.07 34991.62 28667.17 29795.21 32667.50 35359.46 37588.02 352
UniMVSNet_ETH3D85.65 28183.79 28991.21 24890.41 31780.75 32395.36 31695.78 26678.76 33881.83 28394.33 23549.86 36796.66 25684.30 24283.52 26696.22 227
tfpnnormal83.65 30381.35 30990.56 26891.37 30588.06 18997.29 25597.87 5778.51 33976.20 32690.91 29964.78 31496.47 27161.71 36973.50 32987.13 361
FMVSNet183.94 30281.32 31091.80 23791.94 29588.81 17596.77 27695.25 29677.98 34078.25 32090.25 32250.37 36694.97 32973.27 33277.81 29991.62 281
pmmvs-eth3d78.71 32876.16 33386.38 32780.25 37981.19 31794.17 32792.13 35977.97 34166.90 37082.31 36855.76 34592.56 35873.63 33162.31 37185.38 368
AllTest84.97 28783.12 29290.52 26996.82 14578.84 33395.89 30592.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
TestCases90.52 26996.82 14578.84 33392.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
MSDG88.29 23586.37 24894.04 19096.90 14386.15 23996.52 28594.36 32777.89 34479.22 31096.95 17569.72 27599.59 10473.20 33392.58 18996.37 226
new-patchmatchnet74.80 34172.40 34481.99 35278.36 38272.20 36394.44 32392.36 35477.06 34563.47 37579.98 37751.04 36388.85 37860.53 37354.35 38284.92 373
KD-MVS_self_test77.47 33475.88 33482.24 34981.59 37468.93 37392.83 34294.02 33377.03 34673.14 34683.39 36455.44 34990.42 36967.95 35157.53 37887.38 356
FMVSNet582.29 30980.54 31387.52 31993.79 26484.01 28093.73 33192.47 35376.92 34774.27 33886.15 35863.69 32089.24 37769.07 34774.79 31489.29 343
Anonymous20240521188.84 22187.03 23994.27 17898.14 9984.18 27898.44 17895.58 27976.79 34889.34 19696.88 18053.42 35799.54 10887.53 20687.12 23399.09 114
VDDNet90.08 20188.54 21794.69 16294.41 24187.68 19698.21 20396.40 21476.21 34993.33 14097.75 13654.93 35298.77 15794.71 11790.96 21497.61 191
tpm cat188.89 21987.27 23593.76 19895.79 18785.32 26190.76 36297.09 17676.14 35085.72 22788.59 34082.92 16598.04 19076.96 30491.43 21097.90 183
MDA-MVSNet-bldmvs77.82 33374.75 33987.03 32488.33 34478.52 33796.34 29092.85 34875.57 35148.87 38687.89 34257.32 34292.49 36060.79 37164.80 36690.08 328
test_f71.94 34470.82 34575.30 36072.77 38853.28 38891.62 35189.66 37775.44 35264.47 37478.31 38020.48 39189.56 37578.63 29566.02 36383.05 379
TinyColmap80.42 31977.94 32487.85 31692.09 29078.58 33693.74 33089.94 37474.99 35369.77 35791.78 28446.09 37297.58 22265.17 36277.89 29587.38 356
LS3D90.19 19788.72 20994.59 16798.97 7386.33 23296.90 27296.60 20074.96 35484.06 24398.74 8875.78 22899.83 7374.93 31897.57 12197.62 190
EG-PatchMatch MVS79.92 32077.59 32586.90 32587.06 35877.90 34396.20 29994.06 33274.61 35566.53 37188.76 33940.40 38196.20 29067.02 35583.66 26486.61 362
TDRefinement78.01 33175.31 33586.10 33170.06 39073.84 35693.59 33491.58 36674.51 35673.08 34891.04 29749.63 36997.12 23874.88 31959.47 37487.33 358
RPSCF85.33 28385.55 26184.67 34094.63 23862.28 37993.73 33193.76 33574.38 35785.23 23297.06 17164.09 31698.31 17380.98 27586.08 24293.41 245
MDA-MVSNet_test_wron79.65 32377.05 32887.45 32187.79 35280.13 32496.25 29594.44 32273.87 35851.80 38487.47 34968.04 28892.12 36466.02 35867.79 35790.09 327
YYNet179.64 32477.04 32987.43 32287.80 35179.98 32596.23 29694.44 32273.83 35951.83 38387.53 34567.96 29092.07 36566.00 35967.75 35890.23 326
Anonymous2024052178.63 32976.90 33083.82 34482.82 37272.86 36095.72 31493.57 34073.55 36072.17 35384.79 36149.69 36892.51 35965.29 36174.50 31686.09 366
MIMVSNet175.92 33773.30 34283.81 34581.29 37675.57 34992.26 34592.05 36073.09 36167.48 36886.18 35740.87 38087.64 38155.78 37970.68 35088.21 351
Patchmatch-test86.25 26984.06 28692.82 21494.42 24082.88 29682.88 38494.23 32971.58 36279.39 30890.62 31189.00 5996.42 27463.03 36691.37 21299.16 106
COLMAP_ROBcopyleft82.69 1884.54 29382.82 29489.70 29296.72 15178.85 33295.89 30592.83 34971.55 36377.54 32495.89 20959.40 33699.14 14567.26 35488.26 22791.11 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVS66.44 34866.29 35166.89 36974.84 38444.93 39693.00 33784.09 39071.15 36455.82 38181.63 37063.79 31980.31 39121.85 39550.47 38875.43 382
PatchT85.44 28283.19 29192.22 22593.13 27883.00 29183.80 38396.37 21670.62 36590.55 17979.63 37884.81 13894.87 33258.18 37791.59 20698.79 143
DP-MVS88.75 22786.56 24695.34 13698.92 7787.45 20597.64 24493.52 34170.55 36681.49 28597.25 16074.43 23799.88 5471.14 34094.09 17398.67 152
new_pmnet76.02 33673.71 34182.95 34783.88 36972.85 36191.26 35792.26 35670.44 36762.60 37681.37 37147.64 37192.32 36161.85 36872.10 34383.68 376
N_pmnet70.19 34569.87 34771.12 36688.24 34530.63 40595.85 31028.70 40470.18 36868.73 36186.55 35664.04 31793.81 34453.12 38273.46 33088.94 346
UnsupCasMVSNet_bld73.85 34270.14 34684.99 33779.44 38075.73 34888.53 36795.24 29970.12 36961.94 37774.81 38341.41 37993.62 34668.65 34951.13 38785.62 367
SSC-MVS65.42 34965.20 35266.06 37073.96 38543.83 39792.08 34683.54 39169.77 37054.73 38280.92 37463.30 32179.92 39220.48 39648.02 38974.44 383
JIA-IIPM85.97 27284.85 27289.33 30193.23 27673.68 35785.05 37697.13 17069.62 37191.56 16268.03 38688.03 7396.96 24577.89 29993.12 18097.34 196
Patchmtry83.61 30581.64 30589.50 29793.36 27382.84 29784.10 38094.20 33069.47 37279.57 30686.88 35484.43 14194.78 33568.48 35074.30 32090.88 309
test_040278.81 32776.33 33286.26 32991.18 30778.44 33895.88 30791.34 36868.55 37370.51 35689.91 32952.65 35994.99 32847.14 38579.78 28885.34 370
CMPMVSbinary58.40 2180.48 31880.11 31781.59 35485.10 36559.56 38294.14 32895.95 24768.54 37460.71 37893.31 25855.35 35097.87 19883.06 26084.85 25087.33 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
gg-mvs-nofinetune90.00 20287.71 22896.89 7396.15 17594.69 4585.15 37597.74 7468.32 37592.97 14560.16 38896.10 396.84 25093.89 12998.87 8899.14 108
pmmvs679.90 32177.31 32787.67 31884.17 36878.13 34095.86 30993.68 33867.94 37672.67 35189.62 33350.98 36495.75 31274.80 32166.04 36289.14 345
OpenMVS_ROBcopyleft73.86 2077.99 33275.06 33886.77 32683.81 37077.94 34296.38 28991.53 36767.54 37768.38 36287.13 35343.94 37496.08 29755.03 38081.83 27886.29 365
test_vis3_rt61.29 35158.75 35468.92 36867.41 39152.84 39091.18 35959.23 40366.96 37841.96 39158.44 39111.37 39994.72 33774.25 32457.97 37759.20 390
Anonymous2023121184.72 28982.65 30090.91 25697.71 11084.55 27397.28 25696.67 19566.88 37979.18 31190.87 30158.47 33896.60 25882.61 26474.20 32291.59 286
Anonymous2024052987.66 24785.58 26093.92 19397.59 11685.01 26798.13 20897.13 17066.69 38088.47 20296.01 20755.09 35199.51 11087.00 20984.12 25897.23 200
ANet_high50.71 35946.17 36264.33 37244.27 40152.30 39176.13 38978.73 39464.95 38127.37 39555.23 39214.61 39767.74 39536.01 39118.23 39572.95 385
RPMNet85.07 28681.88 30394.64 16593.47 26986.24 23384.97 37797.21 16064.85 38290.76 17678.80 37980.95 19899.27 13753.76 38192.17 19798.41 162
pmmvs372.86 34369.76 34882.17 35073.86 38674.19 35594.20 32689.01 38064.23 38367.72 36580.91 37541.48 37888.65 37962.40 36754.02 38383.68 376
MVS-HIRNet79.01 32575.13 33790.66 26493.82 26381.69 30885.16 37493.75 33654.54 38474.17 33959.15 39057.46 34196.58 26263.74 36394.38 17093.72 242
APD_test168.93 34766.98 35074.77 36280.62 37853.15 38987.97 36885.01 38753.76 38559.26 37987.52 34625.19 38889.95 37156.20 37867.33 35981.19 380
PMMVS258.97 35455.07 35770.69 36762.72 39455.37 38685.97 37280.52 39349.48 38645.94 38768.31 38515.73 39680.78 38949.79 38437.12 39275.91 381
FPMVS61.57 35060.32 35365.34 37160.14 39742.44 39991.02 36089.72 37644.15 38742.63 39080.93 37319.02 39280.59 39042.50 38772.76 33573.00 384
testf156.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
APD_test256.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
LCM-MVSNet60.07 35356.37 35571.18 36554.81 39948.67 39382.17 38589.48 37837.95 39049.13 38569.12 38413.75 39881.76 38559.28 37451.63 38683.10 378
Gipumacopyleft54.77 35752.22 36162.40 37586.50 36059.37 38350.20 39390.35 37336.52 39141.20 39249.49 39318.33 39481.29 38632.10 39265.34 36446.54 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method70.10 34668.66 34974.41 36386.30 36355.84 38594.47 32289.82 37535.18 39266.15 37284.75 36230.54 38677.96 39370.40 34460.33 37389.44 341
PMVScopyleft41.42 2345.67 36042.50 36355.17 37734.28 40232.37 40366.24 39178.71 39530.72 39322.04 39859.59 3894.59 40277.85 39427.49 39358.84 37655.29 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
E-PMN41.02 36240.93 36441.29 37961.97 39533.83 40284.00 38265.17 40127.17 39427.56 39446.72 39517.63 39560.41 39819.32 39718.82 39429.61 394
EMVS39.96 36339.88 36540.18 38059.57 39832.12 40484.79 37964.57 40226.27 39526.14 39644.18 39818.73 39359.29 39917.03 39817.67 39629.12 395
MVEpermissive44.00 2241.70 36137.64 36653.90 37849.46 40043.37 39865.09 39266.66 40026.19 39625.77 39748.53 3943.58 40463.35 39726.15 39427.28 39354.97 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt53.66 35852.86 36056.05 37632.75 40341.97 40073.42 39076.12 39721.91 39739.68 39396.39 19842.59 37765.10 39678.00 29814.92 39761.08 389
wuyk23d16.71 36616.73 37016.65 38160.15 39625.22 40641.24 3945.17 4056.56 3985.48 4013.61 4013.64 40322.72 40015.20 3999.52 3981.99 398
testmvs18.81 36523.05 3686.10 3834.48 4042.29 40897.78 2323.00 4063.27 39918.60 39962.71 3871.53 4062.49 40214.26 4001.80 39913.50 397
test12316.58 36719.47 3697.91 3823.59 4055.37 40794.32 3241.39 4072.49 40013.98 40044.60 3972.91 4052.65 40111.35 4010.57 40015.70 396
EGC-MVSNET60.70 35255.37 35676.72 35886.35 36271.08 36589.96 36584.44 3890.38 4011.50 40284.09 36337.30 38288.10 38040.85 39073.44 33170.97 386
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k22.52 36430.03 3670.00 3840.00 4060.00 4090.00 39597.17 1660.00 4020.00 40398.77 8574.35 2390.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.87 3699.16 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40282.48 1760.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.21 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.50 1080.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS79.74 32767.75 352
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
eth-test20.00 406
eth-test0.00 406
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 8799.98 999.64 799.82 1999.96 10
GSMVS98.84 136
test_part299.54 3695.42 2098.13 42
sam_mvs188.39 6598.84 136
sam_mvs87.08 91
ambc79.60 35772.76 38956.61 38476.20 38892.01 36168.25 36380.23 37623.34 38994.73 33673.78 33060.81 37287.48 355
MTGPAbinary97.45 138
test_post190.74 36341.37 39985.38 13096.36 27783.16 257
test_post46.00 39687.37 8397.11 239
patchmatchnet-post84.86 36088.73 6296.81 252
GG-mvs-BLEND96.98 6596.53 15594.81 4187.20 36997.74 7493.91 13296.40 19696.56 296.94 24795.08 10698.95 8499.20 104
MTMP99.21 8691.09 369
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5499.87 999.91 21
agg_prior99.54 3692.66 8597.64 9797.98 5199.61 102
test_prior492.00 9499.41 68
test_prior97.01 6099.58 3091.77 9597.57 11599.49 11299.79 36
新几何298.26 199
旧先验198.97 7392.90 8397.74 7499.15 3991.05 3499.33 6399.60 67
原ACMM298.69 147
testdata299.88 5484.16 245
segment_acmp90.56 42
test1297.83 3399.33 5394.45 4997.55 11797.56 5688.60 6399.50 11199.71 3499.55 72
plane_prior793.84 26085.73 251
plane_prior693.92 25786.02 24572.92 252
plane_prior596.30 22097.75 21193.46 13886.17 24092.67 250
plane_prior496.52 192
plane_prior193.90 259
n20.00 408
nn0.00 408
door-mid84.90 388
lessismore_v085.08 33685.59 36469.28 37290.56 37267.68 36690.21 32654.21 35595.46 31973.88 32762.64 36990.50 321
test1197.68 87
door85.30 386
HQP5-MVS86.39 228
BP-MVS93.82 133
HQP4-MVS87.57 20797.77 20592.72 248
HQP3-MVS96.37 21686.29 237
HQP2-MVS73.34 246
NP-MVS93.94 25686.22 23596.67 190
ACMMP++_ref82.64 274
ACMMP++83.83 261
Test By Simon83.62 150