This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
DPM-MVS99.63 5199.51 62100.00 199.90 107100.00 1100.00 199.43 12199.00 27100.00 1100.00 199.58 22100.00 197.64 260100.00 1100.00 1
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 13198.79 60100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 13198.72 64100.00 1100.00 199.60 17
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 13199.03 20100.00 1100.00 199.50 37100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 13199.12 6100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 13199.03 20100.00 1100.00 199.50 37100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 131100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 13199.04 15100.00 1100.00 199.53 29
test_part2100.00 199.99 5100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 63100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 10100.00 1100.00 199.39 56100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 10100.00 1100.00 199.59 20100.00 1100.00 1100.00 1100.00 1
ZD-MVS100.00 199.98 1799.80 4397.31 180100.00 1100.00 199.32 6199.99 94100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 13198.91 41100.00 1100.00 199.22 75100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 117100.00 199.21 76100.00 1100.00 1100.00 199.99 107
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11599.06 12100.00 1100.00 199.56 2399.99 94100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
FOURS1100.00 199.97 21100.00 199.42 13198.52 74100.00 1
CHOSEN 280x42099.85 399.87 199.80 10199.99 4999.97 2199.97 23399.98 1698.96 32100.00 1100.00 199.96 599.42 247100.00 1100.00 1100.00 1
CDPH-MVS99.73 2599.64 3399.99 12100.00 199.97 21100.00 199.42 13198.02 108100.00 1100.00 199.32 6199.99 94100.00 1100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12199.05 14100.00 1100.00 199.45 4599.99 94100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
新几何199.99 12100.00 199.96 2499.81 4297.89 121100.00 1100.00 199.20 77100.00 197.91 253100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 13199.01 26100.00 1100.00 199.33 58100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 7100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
APD-MVScopyleft99.68 4099.58 4699.97 3199.99 4999.96 24100.00 199.42 13197.53 157100.00 1100.00 199.27 7299.97 123100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM_NR99.74 2299.66 3099.99 12100.00 199.96 24100.00 199.47 7997.87 123100.00 1100.00 199.60 17100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2599.99 12100.00 199.96 24100.00 199.47 7998.16 96100.00 1100.00 199.51 33100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2099.67 2799.99 1299.99 4999.96 2499.73 29299.52 7299.06 12100.00 1100.00 198.80 116100.00 199.95 91100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SR-MVS99.68 4099.58 4699.98 23100.00 199.95 32100.00 199.64 6497.59 151100.00 1100.00 198.99 9499.99 94100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 13197.65 140100.00 1100.00 199.53 2999.97 123
train_agg99.71 2999.63 3799.97 31100.00 199.95 32100.00 199.42 13197.70 135100.00 1100.00 199.51 3399.97 123100.00 1100.00 1100.00 1
canonicalmvs99.03 12098.73 14399.94 6399.75 14999.95 32100.00 199.30 23597.64 142100.00 1100.00 195.22 21599.97 12399.76 12696.90 24099.91 147
MVS99.22 10798.96 11799.98 2399.00 27799.95 3299.24 34699.94 2298.14 9998.88 234100.00 195.63 210100.00 199.85 109100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 14799.95 32100.00 199.42 13198.69 65100.00 1100.00 199.52 3299.99 94100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11099.99 103100.00 199.72 12100.00 199.96 85100.00 1100.00 1
PAPM99.78 1699.76 1299.85 8599.01 27399.95 32100.00 199.75 5299.37 399.99 103100.00 199.76 1199.60 207100.00 1100.00 1100.00 1
XVS99.79 1499.73 1799.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 1100.00 199.16 80100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 24396.06 27199.98 23100.00 199.94 40100.00 199.75 5298.67 67100.00 166.97 40099.16 80100.00 1100.00 1100.00 1100.00 1
MP-MVScopyleft99.61 5799.49 6599.98 2399.99 4999.94 40100.00 199.42 13197.82 12699.99 103100.00 198.20 134100.00 199.99 61100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
save fliter99.99 4999.93 43100.00 199.42 13198.93 38
SMA-MVScopyleft99.69 3599.59 4499.98 2399.99 4999.93 43100.00 199.43 12197.50 162100.00 1100.00 199.43 50100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior499.93 43100.00 1
WTY-MVS99.54 6599.40 7199.95 5199.81 12699.93 43100.00 1100.00 197.98 11299.84 159100.00 198.94 10299.98 11899.86 10798.21 19999.94 133
HY-MVS96.53 999.50 6999.35 8199.96 4299.81 12699.93 4399.64 304100.00 197.97 11499.84 15999.85 23598.94 10299.99 9499.86 10798.23 19899.95 128
MP-MVS-pluss99.61 5799.50 6399.97 3199.98 8499.92 48100.00 199.42 13197.53 15799.77 174100.00 198.77 117100.00 199.99 61100.00 199.99 107
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.67 4399.57 4999.97 3199.98 8499.92 48100.00 199.42 13197.83 125100.00 1100.00 198.89 108100.00 199.98 73100.00 1100.00 1
alignmvs99.38 8199.21 9599.91 6899.73 15099.92 48100.00 199.51 7697.61 148100.00 1100.00 199.06 8899.93 16199.83 11397.12 23499.90 156
SR-MVS-dyc-post99.63 5199.52 6199.97 3199.99 4999.91 51100.00 199.42 13197.62 144100.00 1100.00 198.65 12299.99 9499.99 61100.00 1100.00 1
RE-MVS-def99.55 5699.99 4999.91 51100.00 199.42 13197.62 144100.00 1100.00 198.94 10299.99 61100.00 1100.00 1
MTAPA99.68 4099.59 4499.97 3199.99 4999.91 51100.00 199.42 13198.32 8899.94 142100.00 198.65 122100.00 199.96 85100.00 1100.00 1
test_8100.00 199.91 51100.00 199.42 13197.70 135100.00 1100.00 199.51 3399.98 118
APD-MVS_3200maxsize99.65 4699.55 5699.97 3199.99 4999.91 51100.00 199.48 7897.54 155100.00 1100.00 198.97 9699.99 9499.98 73100.00 1100.00 1
mPP-MVS99.69 3599.60 4399.97 31100.00 199.91 51100.00 199.42 13197.91 120100.00 1100.00 199.04 91100.00 1100.00 1100.00 1100.00 1
MG-MVS99.75 2099.68 2599.97 31100.00 199.91 5199.98 22799.47 7999.09 9100.00 1100.00 198.59 125100.00 199.95 91100.00 1100.00 1
ZNCC-MVS99.71 2999.62 4199.97 3199.99 4999.90 58100.00 199.79 4597.97 11499.97 112100.00 198.97 96100.00 199.94 93100.00 1100.00 1
test_yl99.51 6699.37 7699.95 5199.82 12099.90 58100.00 199.47 7997.48 164100.00 1100.00 199.80 6100.00 199.98 7397.75 22699.94 133
DCV-MVSNet99.51 6699.37 7699.95 5199.82 12099.90 58100.00 199.47 7997.48 164100.00 1100.00 199.80 6100.00 199.98 7397.75 22699.94 133
region2R99.72 2699.64 3399.97 31100.00 199.90 58100.00 199.74 5597.86 124100.00 1100.00 199.19 78100.00 199.99 61100.00 1100.00 1
test22299.99 4999.90 58100.00 199.69 6297.66 139100.00 1100.00 199.30 68100.00 1100.00 1
thres20099.27 9899.04 10899.96 4299.81 12699.90 58100.00 199.94 2297.31 18099.83 16199.96 20997.04 174100.00 199.62 15797.88 21699.98 109
3Dnovator95.63 1499.06 11698.76 13999.96 4298.86 29499.90 5899.98 22799.93 3098.95 3598.49 264100.00 192.91 248100.00 199.71 134100.00 1100.00 1
tfpn200view999.26 10099.03 10999.96 4299.81 12699.89 65100.00 199.94 2297.23 18599.83 16199.96 20997.04 174100.00 199.59 15997.85 21899.98 109
HFP-MVS99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.31 63100.00 199.99 61100.00 1100.00 1
131499.38 8199.19 9999.96 4298.88 29099.89 6599.24 34699.93 3098.88 4498.79 244100.00 197.02 177100.00 1100.00 1100.00 1100.00 1
ACMMPR99.74 2299.67 2799.96 42100.00 199.89 65100.00 199.76 4997.95 118100.00 1100.00 199.29 69100.00 199.99 61100.00 1100.00 1
thres40099.26 10099.03 10999.95 5199.81 12699.89 65100.00 199.94 2297.23 18599.83 16199.96 20997.04 174100.00 199.59 15997.85 21899.97 116
test1299.95 5199.99 4999.89 6599.42 131100.00 199.24 7499.97 123100.00 1100.00 1
3Dnovator+95.58 1599.03 12098.71 14699.96 4298.99 28099.89 65100.00 199.51 7698.96 3298.32 272100.00 192.78 250100.00 199.87 106100.00 1100.00 1
agg_prior100.00 199.88 7299.42 131100.00 199.97 123
旧先验199.99 4999.88 7299.82 40100.00 199.27 72100.00 1100.00 1
thres100view90099.25 10399.01 11199.95 5199.81 12699.87 74100.00 199.94 2297.13 19099.83 16199.96 20997.01 178100.00 199.59 15997.85 21899.98 109
thres600view799.24 10699.00 11399.95 5199.81 12699.87 74100.00 199.94 2297.13 19099.83 16199.96 20997.01 178100.00 199.54 16797.77 22599.97 116
QAPM98.99 12998.66 14899.96 4299.01 27399.87 7499.88 26199.93 3097.99 11098.68 249100.00 193.17 244100.00 199.32 181100.00 1100.00 1
GST-MVS99.64 4899.53 5999.95 51100.00 199.86 77100.00 199.79 4597.72 13399.95 140100.00 198.39 131100.00 199.96 8599.99 97100.00 1
MSP-MVS99.81 1199.77 999.94 63100.00 199.86 77100.00 199.42 13198.87 47100.00 1100.00 199.65 1599.96 134100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.44 7799.26 8899.95 51100.00 199.86 7799.70 29799.99 1398.53 7399.90 150100.00 195.34 212100.00 199.92 96100.00 1100.00 1
SF-MVS99.66 4599.57 4999.95 5199.99 4999.85 80100.00 199.42 13197.67 138100.00 1100.00 199.05 8999.99 94100.00 1100.00 1100.00 1
PGM-MVS99.69 3599.61 4299.95 5199.99 4999.85 80100.00 199.58 6797.69 137100.00 1100.00 199.44 46100.00 199.79 119100.00 1100.00 1
CP-MVS99.67 4399.58 4699.95 51100.00 199.84 82100.00 199.42 13197.77 130100.00 1100.00 199.07 87100.00 1100.00 1100.00 1100.00 1
MVS_111021_HR99.71 2999.63 3799.93 6699.95 9599.83 83100.00 1100.00 198.89 43100.00 1100.00 197.85 14699.95 146100.00 1100.00 1100.00 1
MM99.94 6399.82 84100.00 199.97 1799.11 7100.00 1100.00 196.65 192100.00 1100.00 199.97 110100.00 1
PS-MVSNAJ99.64 4899.57 4999.85 8599.78 14499.81 8599.95 24499.42 13198.38 80100.00 1100.00 198.75 118100.00 199.88 10399.99 9799.74 221
OpenMVScopyleft95.20 1798.76 14898.41 16799.78 10798.89 28999.81 8599.99 20399.76 4998.02 10898.02 290100.00 191.44 265100.00 199.63 15699.97 11099.55 234
原ACMM199.93 66100.00 199.80 8799.66 6398.18 95100.00 1100.00 199.43 50100.00 199.50 171100.00 1100.00 1
HPM-MVS_fast99.60 6099.49 6599.91 6899.99 4999.78 88100.00 199.42 13197.09 192100.00 1100.00 198.95 10099.96 13499.98 73100.00 1100.00 1
baseline198.91 13898.61 15399.81 9699.71 15199.77 8999.78 27799.44 11597.51 16198.81 24299.99 18298.25 13399.76 19598.60 22595.41 25399.89 161
CANet99.40 7999.24 9199.89 7399.99 4999.76 90100.00 199.73 5698.40 7999.78 173100.00 195.28 21399.96 134100.00 199.99 9799.96 122
ET-MVSNet_ETH3D96.41 27195.48 30199.20 18399.81 12699.75 91100.00 199.02 34597.30 18278.33 389100.00 197.73 15197.94 35199.70 13787.41 35699.92 145
test_prior99.90 71100.00 199.75 9199.73 5699.97 123100.00 1
VNet99.04 11898.75 14199.90 7199.81 12699.75 9199.50 32199.47 7998.36 84100.00 199.99 18294.66 225100.00 199.90 9997.09 23599.96 122
xiu_mvs_v2_base99.51 6699.41 7099.82 9199.70 15399.73 9499.92 25299.40 18198.15 98100.00 1100.00 198.50 128100.00 199.85 10999.13 16199.74 221
CNLPA99.72 2699.65 3199.91 6899.97 8899.72 95100.00 199.47 7998.43 7899.88 155100.00 199.14 83100.00 199.97 83100.00 1100.00 1
xiu_mvs_v1_base_debu99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
xiu_mvs_v1_base99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
xiu_mvs_v1_base_debi99.35 8499.21 9599.79 10399.67 16399.71 9699.78 27799.36 20598.13 100100.00 1100.00 197.00 181100.00 199.83 11399.07 16399.66 230
LS3D99.31 9399.13 10499.87 7899.99 4999.71 9699.55 31599.46 9497.32 17899.82 169100.00 196.85 18899.97 12399.14 194100.00 199.92 145
HPM-MVScopyleft99.59 6199.50 6399.89 73100.00 199.70 100100.00 199.42 13197.46 166100.00 1100.00 198.60 12499.96 13499.99 61100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR99.70 3299.65 3199.88 7799.96 9399.70 100100.00 199.97 1798.96 32100.00 1100.00 197.93 14299.95 14699.99 61100.00 1100.00 1
MVSTER98.58 16598.52 16098.77 20899.65 16899.68 102100.00 199.29 23995.63 27098.65 25099.80 24799.78 898.88 28298.59 22695.31 25797.73 295
ACMMPcopyleft99.65 4699.57 4999.89 7399.99 4999.66 10399.75 28699.73 5698.16 9699.75 177100.00 198.90 107100.00 199.96 8599.88 128100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS99.49 7199.36 7999.89 7399.97 8899.66 10399.74 28799.95 1997.89 121100.00 1100.00 196.71 191100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-UG-set99.69 3599.63 3799.87 7899.99 4999.64 10599.95 24499.44 11598.35 86100.00 1100.00 198.98 9599.97 12399.98 73100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3299.64 3399.87 78100.00 199.64 10599.98 22799.44 11598.35 8699.99 103100.00 199.04 9199.96 13499.98 73100.00 1100.00 1
MVS_030499.69 3599.63 3799.86 8199.96 9399.63 107100.00 199.92 3499.03 2099.97 112100.00 197.87 14499.96 134100.00 199.96 113100.00 1
PVSNet_BlendedMVS98.71 15398.62 15298.98 19699.98 8499.60 108100.00 1100.00 197.23 185100.00 199.03 32596.57 19499.99 94100.00 194.75 28097.35 350
PVSNet_Blended99.48 7399.36 7999.83 8999.98 8499.60 108100.00 1100.00 197.79 128100.00 1100.00 196.57 19499.99 94100.00 199.88 12899.90 156
fmvsm_l_conf0.5_n99.63 5199.56 5499.86 8199.81 12699.59 110100.00 199.36 20598.98 30100.00 1100.00 197.92 14399.99 94100.00 199.95 116100.00 1
fmvsm_l_conf0.5_n_a99.63 5199.55 5699.86 8199.83 11999.58 111100.00 199.36 20598.98 30100.00 1100.00 197.85 14699.99 94100.00 199.94 118100.00 1
test_fmvsmconf_n99.56 6399.46 6999.86 8199.68 15899.58 111100.00 199.31 23198.92 3999.88 155100.00 197.35 17099.99 9499.98 7399.99 97100.00 1
test_fmvsmconf0.1_n99.25 10399.05 10799.82 9198.92 28699.55 113100.00 199.23 27098.91 4199.75 17799.97 19594.79 22399.94 15899.94 9399.99 9799.97 116
thisisatest051599.42 7899.31 8499.74 11399.59 18799.55 113100.00 199.46 9496.65 22699.92 146100.00 199.44 4699.85 17799.09 19899.63 15399.81 200
mvsany_test199.57 6299.48 6899.85 8599.86 11499.54 115100.00 199.36 20598.94 37100.00 1100.00 197.97 140100.00 199.88 10399.28 159100.00 1
CPTT-MVS99.49 7199.38 7399.85 85100.00 199.54 115100.00 199.42 13197.58 15299.98 108100.00 197.43 168100.00 199.99 61100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 10899.01 11199.83 8999.84 11699.53 117100.00 199.38 19698.29 90100.00 1100.00 193.62 23799.99 9499.99 6199.93 12199.98 109
SDMVSNet98.49 17498.08 19099.73 11699.82 12099.53 11799.99 20399.45 10297.62 14499.38 20299.86 23190.06 28699.88 17199.92 9696.61 24399.79 213
nrg03097.64 21397.27 22898.75 20998.34 31199.53 117100.00 199.22 27396.21 25398.27 27799.95 21794.40 22898.98 27099.23 18989.78 33797.75 266
fmvsm_s_conf0.1_n98.77 14798.42 16699.82 9199.47 22799.52 120100.00 199.27 25397.53 157100.00 1100.00 189.73 29199.96 13499.84 11299.93 12199.97 116
test250699.48 7399.38 7399.75 11299.89 10999.51 12199.45 325100.00 198.38 8099.83 161100.00 198.86 10999.81 18699.25 18698.78 17099.94 133
LFMVS97.42 22696.62 24699.81 9699.80 13799.50 12299.16 36099.56 7094.48 304100.00 1100.00 179.35 365100.00 199.89 10197.37 23299.94 133
MVS_Test98.93 13798.65 14999.77 11099.62 18199.50 12299.99 20399.19 28695.52 27699.96 11799.86 23196.54 19699.98 11898.65 21998.48 18099.82 192
sss99.45 7699.34 8399.80 10199.76 14799.50 122100.00 199.91 3697.72 13399.98 10899.94 22198.45 129100.00 199.53 16998.75 17399.89 161
GG-mvs-BLEND99.59 13599.54 19999.49 12599.17 35999.52 7299.96 11799.68 266100.00 199.33 25499.71 13499.99 9799.96 122
MVSFormer98.94 13698.82 13299.28 17799.45 23199.49 125100.00 199.13 30995.46 28199.97 112100.00 196.76 18998.59 30898.63 222100.00 199.74 221
lupinMVS99.29 9699.16 10299.69 12199.45 23199.49 125100.00 199.15 30097.45 16799.97 112100.00 196.76 18999.76 19599.67 148100.00 199.81 200
PVSNet_Blended_VisFu99.33 8999.18 10199.78 10799.82 12099.49 125100.00 199.95 1997.36 17399.63 184100.00 196.45 19899.95 14699.79 11999.65 15199.89 161
114514_t99.39 8099.25 8999.81 9699.97 8899.48 129100.00 199.42 13195.53 274100.00 1100.00 198.37 13299.95 14699.97 83100.00 1100.00 1
fmvsm_s_conf0.5_n_a99.32 9199.15 10399.81 9699.80 13799.47 130100.00 199.35 21698.22 91100.00 1100.00 195.21 21699.99 9499.96 8599.86 13299.98 109
DELS-MVS99.62 5599.56 5499.82 9199.92 10399.45 131100.00 199.78 4798.92 3999.73 179100.00 197.70 153100.00 199.93 95100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS98.86 14298.54 15999.81 9699.97 8899.45 13199.52 31999.40 18194.35 30898.36 268100.00 196.13 20099.97 12399.12 197100.00 1100.00 1
PHI-MVS99.50 6999.39 7299.82 91100.00 199.45 131100.00 199.94 2296.38 244100.00 1100.00 198.18 135100.00 1100.00 1100.00 1100.00 1
FA-MVS(test-final)99.00 12698.75 14199.73 11699.63 17699.43 13499.83 26799.43 12195.84 26599.52 18899.37 30697.84 14899.96 13497.63 26199.68 14799.79 213
fmvsm_s_conf0.1_n_a98.71 15398.36 17499.78 10799.09 26399.42 135100.00 199.26 25997.42 170100.00 1100.00 189.78 28999.96 13499.82 11899.85 13599.97 116
thisisatest053099.37 8399.27 8599.69 12199.59 18799.41 136100.00 199.46 9496.46 23799.90 150100.00 199.44 4699.85 17798.97 20199.58 15599.80 211
UA-Net99.06 11698.83 13199.74 11399.52 20999.40 13799.08 37099.45 10297.64 14299.83 161100.00 195.80 20599.94 15898.35 23499.80 14299.88 172
tttt051799.34 8799.23 9499.67 12399.57 19599.38 138100.00 199.46 9496.33 24799.89 153100.00 199.44 4699.84 17998.93 20399.46 15899.78 216
TESTMET0.1,199.08 11498.96 11799.44 15299.63 17699.38 138100.00 199.45 10295.53 27499.48 191100.00 199.71 1399.02 26696.84 28599.99 9799.91 147
IS-MVSNet99.08 11498.91 12599.59 13599.65 16899.38 13899.78 27799.24 26696.70 22099.51 189100.00 198.44 13099.52 23298.47 23098.39 18799.88 172
API-MVS99.72 2699.70 2199.79 10399.97 8899.37 14199.96 23899.94 2298.48 75100.00 1100.00 198.92 105100.00 1100.00 1100.00 1100.00 1
gg-mvs-nofinetune96.95 24796.10 26999.50 14699.41 23699.36 14299.07 37299.52 7283.69 38199.96 11783.60 397100.00 199.20 25999.68 14599.99 9799.96 122
ETV-MVS99.34 8799.24 9199.64 12899.58 19299.33 143100.00 199.25 26197.57 15399.96 117100.00 197.44 16799.79 18899.70 13799.65 15199.81 200
test_cas_vis1_n_192098.63 16298.25 17899.77 11099.69 15499.32 144100.00 199.31 23198.84 5199.96 117100.00 187.42 31999.99 9499.14 19499.86 132100.00 1
VPA-MVSNet97.03 24496.43 25598.82 20498.64 30199.32 14499.38 33399.47 7996.73 21798.91 23298.94 33487.00 32499.40 24899.23 18989.59 33897.76 255
jason99.11 11298.96 11799.59 13599.17 25799.31 146100.00 199.13 30997.38 17299.83 161100.00 195.54 21199.72 20199.57 16399.97 11099.74 221
jason: jason.
PatchMatch-RL99.02 12498.78 13699.74 11399.99 4999.29 147100.00 1100.00 198.38 8099.89 15399.81 24493.14 24699.99 9497.85 25599.98 10799.95 128
test-LLR99.03 12098.91 12599.40 15999.40 24199.28 148100.00 199.45 10296.70 22099.42 19599.12 31699.31 6399.01 26796.82 28699.99 9799.91 147
test-mter98.96 13398.82 13299.40 15999.40 24199.28 148100.00 199.45 10295.44 28399.42 19599.12 31699.70 1499.01 26796.82 28699.99 9799.91 147
Effi-MVS+98.58 16598.24 18099.61 13199.60 18599.26 15097.85 38699.10 31996.22 25299.97 11299.89 22793.75 23499.77 19399.43 17398.34 19199.81 200
HyFIR lowres test99.32 9199.24 9199.58 13999.95 9599.26 150100.00 199.99 1396.72 21899.29 20699.91 22599.49 3999.47 23999.74 12898.08 206100.00 1
FMVSNet397.30 23196.95 23498.37 22999.65 16899.25 15299.71 29599.28 24594.23 30998.53 25998.91 33693.30 24198.11 33895.31 31193.60 29097.73 295
MSDG98.90 14098.63 15199.70 12099.92 10399.25 152100.00 199.37 19995.71 26899.40 201100.00 196.58 19399.95 14696.80 28899.94 11899.91 147
FIs97.95 20197.73 20998.62 21498.53 30699.24 154100.00 199.43 12196.74 21597.87 29999.82 24195.27 21498.89 27998.78 21193.07 29697.74 289
mvs_anonymous98.80 14698.60 15599.38 16399.57 19599.24 154100.00 199.21 28295.87 26098.92 23099.82 24196.39 19999.03 26599.13 19698.50 17899.88 172
MDTV_nov1_ep13_2view99.24 15499.56 31496.31 24899.96 11798.86 10998.92 20499.89 161
iter_conf0598.73 15098.77 13798.60 21599.65 16899.22 157100.00 199.22 27396.68 22498.98 22899.97 19599.99 398.84 28499.29 18495.11 27297.75 266
test_fmvsmconf0.01_n98.60 16398.24 18099.67 12396.90 36199.21 15899.99 20399.04 34298.80 5799.57 18699.96 20990.12 28399.91 16499.89 10199.89 12699.90 156
EPMVS99.25 10399.13 10499.60 13399.60 18599.20 15999.60 310100.00 196.93 20199.92 14699.36 30799.05 8999.71 20298.77 21298.94 16799.90 156
test_fmvsm_n_192099.55 6499.49 6599.73 11699.85 11599.19 160100.00 199.41 17798.87 47100.00 1100.00 197.34 171100.00 199.98 7399.90 125100.00 1
BH-RMVSNet98.46 17598.08 19099.59 13599.61 18399.19 160100.00 199.28 24597.06 19698.95 229100.00 188.99 30199.82 18398.83 210100.00 199.77 217
test_fmvsmvis_n_192099.46 7599.37 7699.73 11698.88 29099.18 162100.00 199.26 25998.85 4999.79 171100.00 197.70 153100.00 199.98 7399.86 132100.00 1
FE-MVS99.16 11098.99 11599.66 12699.65 16899.18 16299.58 31299.43 12195.24 28499.91 14899.59 28799.37 5799.97 12398.31 23699.81 14099.83 187
iter_conf_final98.72 15198.76 13998.59 21799.64 17499.17 164100.00 199.22 27396.63 22999.02 22599.97 19599.98 498.84 28499.22 19195.18 26697.76 255
diffmvspermissive98.96 13398.73 14399.63 12999.54 19999.16 165100.00 199.18 29397.33 17799.96 117100.00 194.60 22699.91 16499.66 15198.33 19499.82 192
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline298.99 12998.93 12399.18 18499.26 25499.15 166100.00 199.46 9496.71 21996.79 331100.00 199.42 5299.25 25898.75 21499.94 11899.15 242
UniMVSNet (Re)97.29 23296.85 23898.59 21798.49 30799.13 167100.00 199.42 13196.52 23598.24 28198.90 33794.93 22098.89 27997.54 26487.61 35597.75 266
WR-MVS97.09 23996.64 24498.46 22398.43 30899.09 16899.97 23399.33 22495.62 27197.76 30199.67 26791.17 26998.56 31398.49 22989.28 34397.74 289
EC-MVSNet99.19 10999.09 10699.48 14999.42 23499.07 169100.00 199.21 28296.95 20099.96 117100.00 196.88 18799.48 23799.64 15399.79 14399.88 172
F-COLMAP99.64 4899.64 3399.67 12399.99 4999.07 169100.00 199.44 11598.30 8999.90 150100.00 199.18 7999.99 9499.91 98100.00 199.94 133
Fast-Effi-MVS+98.40 18298.02 19799.55 14399.63 17699.06 171100.00 199.15 30095.07 28699.42 19599.95 21793.26 24299.73 20097.44 26798.24 19799.87 180
FC-MVSNet-test97.84 20397.63 21398.45 22498.30 31699.05 172100.00 199.43 12196.63 22997.61 31099.82 24195.19 21798.57 31198.64 22093.05 29797.73 295
miper_enhance_ethall98.33 18598.27 17798.51 22199.66 16799.04 173100.00 199.22 27397.53 15798.51 26299.38 30599.49 3998.75 29498.02 24892.61 30197.76 255
DeepC-MVS97.84 599.00 12698.80 13599.60 13399.93 10099.03 174100.00 199.40 18198.61 7199.33 204100.00 192.23 25999.95 14699.74 12899.96 11399.83 187
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
cascas98.43 17798.07 19299.50 14699.65 16899.02 175100.00 199.22 27394.21 31199.72 18099.98 18792.03 26299.93 16199.68 14598.12 20499.54 235
PCF-MVS98.23 398.69 15698.37 17299.62 13099.78 14499.02 17599.23 35199.06 33796.43 23898.08 284100.00 194.72 22499.95 14698.16 24399.91 12499.90 156
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
cl2298.23 19298.11 18898.58 21999.82 12099.01 177100.00 199.28 24596.92 20398.33 27199.21 31398.09 13998.97 27298.72 21592.61 30197.76 255
EPNet_dtu98.53 17098.23 18399.43 15499.92 10399.01 17799.96 23899.47 7998.80 5799.96 11799.96 20998.56 12699.30 25587.78 36999.68 147100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS99.33 8999.27 8599.50 14699.99 4999.00 179100.00 199.13 30997.26 18399.96 117100.00 197.79 15099.64 20699.64 15399.67 14999.87 180
ab-mvs98.42 17998.02 19799.61 13199.71 15199.00 17999.10 36799.64 6496.70 22099.04 22499.81 24490.64 27699.98 11899.64 15397.93 21399.84 184
NR-MVSNet96.63 26096.04 27298.38 22898.31 31498.98 18199.22 35399.35 21695.87 26094.43 35999.65 27192.73 25398.40 32396.78 28988.05 35297.75 266
PMMVS99.12 11198.97 11699.58 13999.57 19598.98 181100.00 199.30 23597.14 18999.96 117100.00 196.53 19799.82 18399.70 13798.49 17999.94 133
testdata99.66 12699.99 4998.97 18399.73 5697.96 117100.00 1100.00 199.42 52100.00 199.28 185100.00 1100.00 1
XXY-MVS97.14 23896.63 24598.67 21198.65 30098.92 18499.54 31799.29 23995.57 27397.63 30799.83 23887.79 31699.35 25298.39 23292.95 29897.75 266
Vis-MVSNet (Re-imp)98.99 12998.89 12999.29 17499.64 17498.89 18599.98 22799.31 23196.74 21599.48 191100.00 198.11 13799.10 26298.39 23298.34 19199.89 161
CR-MVSNet98.02 19997.71 21098.93 19899.31 24898.86 18699.13 36499.00 34896.53 23499.96 11798.98 32996.94 18498.10 34191.18 34998.40 18599.84 184
RPMNet95.26 30993.82 31799.56 14299.31 24898.86 18699.13 36499.42 13179.82 38699.96 11795.13 37995.69 20899.98 11877.54 38998.40 18599.84 184
PLCcopyleft98.56 299.70 3299.74 1699.58 139100.00 198.79 188100.00 199.54 7198.58 7299.96 117100.00 199.59 20100.00 1100.00 1100.00 199.94 133
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
CS-MVS-test99.31 9399.27 8599.43 15499.99 4998.77 189100.00 199.19 28697.24 18499.96 117100.00 197.56 16099.70 20399.68 14599.81 14099.82 192
EIA-MVS99.26 10099.19 9999.45 15199.63 17698.75 190100.00 199.27 25396.93 20199.95 140100.00 197.47 16499.79 18899.74 12899.72 14599.82 192
Test_1112_low_res98.83 14498.60 15599.51 14499.69 15498.75 19099.99 20399.14 30596.81 21098.84 23999.06 32097.45 16599.89 16798.66 21797.75 22699.89 161
1112_ss98.91 13898.71 14699.51 14499.69 15498.75 19099.99 20399.15 30096.82 20998.84 239100.00 197.45 16599.89 16798.66 21797.75 22699.89 161
casdiffmvspermissive98.65 15898.38 17099.46 15099.52 20998.74 193100.00 199.15 30096.91 20499.05 223100.00 192.75 25199.83 18099.70 13798.38 18899.81 200
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpnnormal96.36 27695.69 29298.37 22998.55 30498.71 19499.69 29999.45 10293.16 33796.69 33599.71 25688.44 31198.99 26994.17 32591.38 32397.41 347
CANet_DTU99.02 12498.90 12899.41 15799.88 11198.71 194100.00 199.29 23998.84 51100.00 1100.00 194.02 232100.00 198.08 24599.96 11399.52 236
EPP-MVSNet99.10 11399.00 11399.40 15999.51 21498.68 19699.92 25299.43 12195.47 28099.65 183100.00 199.51 3399.76 19599.53 16998.00 20799.75 220
CP-MVSNet96.73 25496.25 26398.18 24398.21 32298.67 19799.77 28299.32 22695.06 28797.20 32199.65 27190.10 28498.19 33198.06 24788.90 34697.66 322
baseline98.69 15698.45 16599.41 15799.52 20998.67 197100.00 199.17 29897.03 19799.13 215100.00 193.17 24499.74 19899.70 13798.34 19199.81 200
pmmvs497.17 23596.80 23998.27 23697.68 34198.64 199100.00 199.18 29394.22 31098.55 25799.71 25693.67 23598.47 32095.66 30592.57 30497.71 310
casdiffmvs_mvgpermissive98.64 15998.39 16999.40 15999.50 21898.60 200100.00 199.22 27396.85 20799.10 217100.00 192.75 25199.78 19299.71 13498.35 19099.81 200
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM97.09 23996.34 26099.36 16498.88 29098.59 20199.81 27199.43 12184.81 37999.96 11790.34 38998.55 12799.52 23297.00 28098.28 19699.98 109
Patchmtry96.81 25096.37 25898.14 24899.31 24898.55 20298.91 37599.00 34890.45 35997.92 29698.98 32996.94 18498.12 33694.27 32491.53 31997.75 266
UGNet98.41 18198.11 18899.31 17399.54 19998.55 20299.18 354100.00 198.64 7099.79 17199.04 32387.61 317100.00 199.30 18399.89 12699.40 239
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive98.52 17198.25 17899.34 16699.68 15898.55 20299.68 30199.41 17797.34 17699.94 142100.00 190.38 28299.70 20399.03 20098.84 16899.76 219
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
mvsmamba98.13 19498.06 19398.32 23398.22 32198.50 205100.00 199.22 27396.41 24198.91 23299.96 20995.69 20898.73 29699.19 19394.95 27997.73 295
GeoE98.06 19697.65 21299.29 17499.47 22798.41 206100.00 199.19 28694.85 29198.88 234100.00 191.21 26799.59 20997.02 27998.19 20199.88 172
UniMVSNet_NR-MVSNet97.16 23696.80 23998.22 24098.38 31098.41 206100.00 199.45 10296.14 25597.76 30199.64 27595.05 21898.50 31797.98 24986.84 35997.75 266
DU-MVS96.93 24896.49 25298.22 24098.31 31498.41 206100.00 199.37 19996.41 24197.76 30199.65 27192.14 26098.50 31797.98 24986.84 35997.75 266
v2v48296.70 25796.18 26698.27 23698.04 32898.39 209100.00 199.13 30994.19 31398.58 25599.08 31990.48 28098.67 29995.69 30490.44 33397.75 266
ADS-MVSNet98.70 15598.51 16199.28 17799.51 21498.39 20999.24 34699.44 11595.52 27699.96 11799.70 25997.57 15899.58 21397.11 27798.54 17699.88 172
PatchT95.90 29994.95 31398.75 20999.03 27198.39 20999.08 37099.32 22685.52 37799.96 11794.99 38197.94 14198.05 34780.20 38598.47 18199.81 200
miper_ehance_all_eth97.81 20597.66 21198.23 23999.49 22298.37 21299.99 20399.11 31794.78 29298.25 27999.21 31398.18 13598.57 31197.35 27392.61 30197.76 255
EPNet99.62 5599.69 2299.42 15699.99 4998.37 212100.00 199.89 3798.83 53100.00 1100.00 198.97 96100.00 199.90 9999.61 15499.89 161
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1398.94 12299.53 20298.36 21499.39 33299.46 9496.54 23399.99 10399.63 27998.92 10599.86 17298.30 23998.71 174
CDS-MVSNet98.96 13398.95 12199.01 19399.48 22498.36 21499.93 25199.37 19996.79 21199.31 20599.83 23899.77 1098.91 27698.07 24697.98 20899.77 217
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet296.22 28395.60 29598.06 25899.53 20298.33 21699.45 32599.27 25393.71 31998.03 28898.84 33984.23 34498.10 34193.97 32993.40 29397.73 295
PatchmatchNetpermissive99.03 12098.96 11799.26 17999.49 22298.33 21699.38 33399.45 10296.64 22799.96 11799.58 28999.49 3999.50 23597.63 26199.00 16699.93 143
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing398.44 17698.37 17298.65 21299.51 21498.32 218100.00 199.62 6696.43 23897.93 29599.99 18299.11 8497.81 35494.88 31897.80 22399.82 192
PVSNet94.91 1899.30 9599.25 8999.44 152100.00 198.32 218100.00 199.86 3898.04 107100.00 1100.00 196.10 201100.00 199.55 16499.73 144100.00 1
VPNet96.41 27195.76 28698.33 23298.61 30298.30 22099.48 32299.45 10296.98 19998.87 23699.88 22881.57 35798.93 27499.22 19187.82 35497.76 255
TR-MVS98.14 19397.74 20799.33 16999.59 18798.28 22199.27 34399.21 28296.42 24099.15 21499.94 22188.87 30499.79 18898.88 20698.29 19599.93 143
PS-CasMVS96.34 27895.78 28598.03 26598.18 32498.27 22299.71 29599.32 22694.75 29396.82 33099.65 27186.98 32598.15 33397.74 25788.85 34797.66 322
SCA98.30 18697.98 19999.23 18199.41 23698.25 22399.99 20399.45 10296.91 20499.76 17699.58 28989.65 29399.54 22698.31 23698.79 16999.91 147
v896.35 27795.73 28898.21 24298.11 32698.23 22499.94 24999.07 32992.66 34598.29 27499.00 32891.46 26498.77 29294.17 32588.83 34897.62 333
V4296.65 25996.16 26898.11 25398.17 32598.23 22499.99 20399.09 32493.97 31698.74 24699.05 32291.09 27098.82 28795.46 30989.90 33597.27 352
ECVR-MVScopyleft98.43 17798.14 18699.32 17199.89 10998.21 22699.46 323100.00 198.38 8099.47 194100.00 187.91 31299.80 18799.35 17898.78 17099.94 133
bld_raw_dy_0_6497.71 21197.56 21498.15 24797.83 33798.16 22799.95 24499.12 31595.95 25998.73 24799.97 19593.19 24398.63 30298.64 22094.69 28297.66 322
c3_l97.58 21797.42 21898.06 25899.48 22498.16 22799.96 23899.10 31994.54 30198.13 28399.20 31597.87 14498.25 33097.28 27491.20 32597.75 266
test111198.42 17998.12 18799.29 17499.88 11198.15 22999.46 323100.00 198.36 8499.42 195100.00 187.91 31299.79 18899.31 18298.78 17099.94 133
v119296.18 28595.49 29998.26 23898.01 32998.15 22999.99 20399.08 32593.36 33198.54 25898.97 33289.47 29698.89 27991.15 35090.82 32897.75 266
cl____97.54 22097.32 22498.18 24399.47 22798.14 231100.00 199.10 31994.16 31497.60 31199.63 27997.52 16198.65 30196.47 29391.97 31397.76 255
DIV-MVS_self_test97.52 22397.35 22398.05 26299.46 23098.11 232100.00 199.10 31994.21 31197.62 30999.63 27997.65 15598.29 32796.47 29391.98 31297.76 255
v14419296.40 27495.81 28198.17 24597.89 33498.11 23299.99 20399.06 33793.39 33098.75 24599.09 31890.43 28198.66 30093.10 33690.55 33297.75 266
IB-MVS96.24 1297.54 22096.95 23499.33 16999.67 16398.10 234100.00 199.47 7997.42 17099.26 20799.69 26298.83 11399.89 16799.43 17378.77 381100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvs198.37 18498.04 19599.34 16699.84 11698.07 235100.00 199.00 34898.85 49100.00 1100.00 185.11 33999.96 13499.69 14499.88 128100.00 1
test0.0.03 198.12 19598.03 19698.39 22799.11 26098.07 235100.00 199.93 3096.70 22096.91 32799.95 21799.31 6398.19 33191.93 34498.44 18298.91 246
anonymousdsp97.16 23696.88 23698.00 26697.08 36098.06 23799.81 27199.15 30094.58 29997.84 30099.62 28390.49 27998.60 30697.98 24995.32 25697.33 351
TSAR-MVS + GP.99.61 5799.69 2299.35 16599.99 4998.06 237100.00 199.36 20599.83 2100.00 1100.00 198.95 10099.99 94100.00 199.11 162100.00 1
test_vis1_n_192097.77 20797.24 23099.34 16699.79 14198.04 239100.00 199.25 26198.88 44100.00 1100.00 177.52 370100.00 199.88 10399.85 135100.00 1
v114496.51 26695.97 27698.13 25197.98 33198.04 23999.99 20399.08 32593.51 32898.62 25398.98 32990.98 27498.62 30393.79 33190.79 32997.74 289
test_djsdf97.55 21997.38 22198.07 25497.50 35097.99 241100.00 199.13 30995.46 28198.47 26599.85 23592.01 26398.59 30898.63 22295.36 25597.62 333
WAC-MVS97.98 24295.74 302
myMVS_eth3d98.52 17198.51 16198.53 22099.50 21897.98 242100.00 199.57 6896.23 25098.07 285100.00 199.09 8697.81 35496.17 29897.96 21099.82 192
test_vis1_n96.69 25895.81 28199.32 17199.14 25897.98 24299.97 23398.98 35198.45 77100.00 1100.00 166.44 38699.99 9499.78 12599.57 156100.00 1
v192192096.16 28995.50 29798.14 24897.88 33697.96 24599.99 20399.07 32993.33 33298.60 25499.24 31289.37 29798.71 29791.28 34890.74 33097.75 266
v1096.14 29195.50 29798.07 25498.19 32397.96 24599.83 26799.07 32992.10 34898.07 28598.94 33491.07 27198.61 30492.41 34389.82 33697.63 331
eth_miper_zixun_eth97.47 22497.28 22698.06 25899.41 23697.94 24799.62 30899.08 32594.46 30598.19 28299.56 29396.91 18698.50 31796.78 28991.49 32097.74 289
GA-MVS97.72 21097.27 22899.06 18799.24 25597.93 248100.00 199.24 26695.80 26698.99 22799.64 27589.77 29099.36 25095.12 31597.62 23199.89 161
tpmvs98.59 16498.38 17099.23 18199.69 15497.90 24999.31 34199.47 7994.52 30299.68 18299.28 31197.64 15699.89 16797.71 25898.17 20399.89 161
IterMVS-LS97.56 21897.44 21797.92 27399.38 24597.90 24999.89 25999.10 31994.41 30698.32 27299.54 29697.21 17298.11 33897.50 26591.62 31797.75 266
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)94.78 31293.72 31897.93 27298.34 31197.88 25199.23 35197.98 37791.60 35094.55 35699.71 25687.89 31498.36 32489.30 36584.92 36597.56 339
WR-MVS_H96.73 25496.32 26297.95 26998.26 31897.88 25199.72 29499.43 12195.06 28796.99 32498.68 34693.02 24798.53 31597.43 26888.33 35197.43 346
v124095.96 29795.25 30698.07 25497.91 33397.87 25399.96 23899.07 32993.24 33598.64 25298.96 33388.98 30298.61 30489.58 36390.92 32797.75 266
EI-MVSNet97.98 20097.93 20098.16 24699.11 26097.84 25499.74 28799.29 23994.39 30798.65 250100.00 197.21 17298.88 28297.62 26395.31 25797.75 266
KD-MVS_2432*160094.15 31693.08 32597.35 29199.53 20297.83 25599.63 30699.19 28692.88 34196.29 33997.68 36798.84 11196.70 36689.73 36063.92 39097.53 341
miper_refine_blended94.15 31693.08 32597.35 29199.53 20297.83 25599.63 30699.19 28692.88 34196.29 33997.68 36798.84 11196.70 36689.73 36063.92 39097.53 341
CHOSEN 1792x268899.00 12698.91 12599.25 18099.90 10797.79 257100.00 199.99 1398.79 6098.28 275100.00 193.63 23699.95 14699.66 15199.95 116100.00 1
tpmrst98.98 13298.93 12399.14 18699.61 18397.74 25899.52 31999.36 20596.05 25699.98 10899.64 27599.04 9199.86 17298.94 20298.19 20199.82 192
TAMVS98.76 14898.73 14398.86 20399.44 23397.69 25999.57 31399.34 22296.57 23199.12 21699.81 24498.83 11399.16 26097.97 25297.91 21499.73 225
CVMVSNet98.56 16798.47 16498.82 20499.11 26097.67 26099.74 28799.47 7997.57 15399.06 222100.00 195.72 20798.97 27298.21 24297.33 23399.83 187
Patchmatch-test97.83 20497.42 21899.06 18799.08 26497.66 26198.66 38099.21 28293.65 32398.25 27999.58 28999.47 4399.57 21490.25 35898.59 17599.95 128
TranMVSNet+NR-MVSNet96.45 27096.01 27397.79 27798.00 33097.62 262100.00 199.35 21695.98 25797.31 31899.64 27590.09 28598.00 34896.89 28486.80 36297.75 266
CostFormer98.84 14398.77 13799.04 19199.41 23697.58 26399.67 30299.35 21694.66 29799.96 11799.36 30799.28 7199.74 19899.41 17597.81 22299.81 200
miper_lstm_enhance97.40 22797.28 22697.75 27999.48 22497.52 264100.00 199.07 32994.08 31598.01 29199.61 28597.38 16997.98 34996.44 29691.47 32297.76 255
Anonymous2023121196.29 28095.70 28998.07 25499.80 13797.49 26599.15 36299.40 18189.11 36697.75 30499.45 30288.93 30398.98 27098.26 24189.47 34097.73 295
test_fmvs1_n97.43 22596.86 23799.15 18599.68 15897.48 26699.99 20398.98 35198.82 55100.00 1100.00 174.85 37599.96 13499.67 14899.70 146100.00 1
pm-mvs195.76 30195.01 31198.00 26698.23 32097.45 26799.24 34699.04 34293.13 33895.93 34699.72 25486.28 32998.84 28495.62 30787.92 35397.72 302
VDDNet96.39 27595.55 29698.90 20099.27 25297.45 26799.15 36299.92 3491.28 35299.98 108100.00 173.55 376100.00 199.85 10996.98 23899.24 240
dp98.72 15198.61 15399.03 19299.53 20297.39 26999.45 32599.39 19495.62 27199.94 14299.52 29798.83 11399.82 18396.77 29198.42 18499.89 161
COLMAP_ROBcopyleft97.10 798.29 18898.17 18598.65 21299.94 9897.39 26999.30 34299.40 18195.64 26997.75 304100.00 192.69 25599.95 14698.89 20599.92 12398.62 250
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest98.55 16898.40 16898.99 19499.93 10097.35 271100.00 199.40 18197.08 19499.09 21899.98 18793.37 23999.95 14696.94 28199.84 13799.68 228
TestCases98.99 19499.93 10097.35 27199.40 18197.08 19499.09 21899.98 18793.37 23999.95 14696.94 28199.84 13799.68 228
v7n96.06 29595.42 30597.99 26897.58 34797.35 27199.86 26399.11 31792.81 34497.91 29799.49 29990.99 27398.92 27592.51 34088.49 35097.70 311
PS-MVSNAJss98.03 19898.06 19397.94 27097.63 34297.33 27499.89 25999.23 27096.27 24998.03 28899.59 28798.75 11898.78 28998.52 22894.61 28497.70 311
Anonymous2024052996.93 24896.22 26599.05 18999.79 14197.30 27599.16 36099.47 7988.51 36998.69 248100.00 183.50 350100.00 199.83 11397.02 23799.83 187
mvs_tets97.00 24696.69 24397.94 27097.41 35797.27 27699.60 31099.18 29396.51 23697.35 31799.69 26286.53 32898.91 27698.84 20895.09 27397.65 327
gm-plane-assit99.52 20997.26 27795.86 262100.00 199.43 24598.76 213
MDA-MVSNet_test_wron92.61 32991.09 33797.19 29996.71 36397.26 277100.00 199.14 30588.61 36867.90 39598.32 35989.03 30096.57 36990.47 35689.59 33897.74 289
PEN-MVS96.01 29695.48 30197.58 28497.74 33997.26 27799.90 25699.29 23994.55 30096.79 33199.55 29487.38 32097.84 35396.92 28387.24 35797.65 327
CSCG99.28 9799.35 8199.05 18999.99 4997.15 280100.00 199.47 7997.44 16899.42 195100.00 197.83 149100.00 199.99 61100.00 1100.00 1
jajsoiax97.07 24196.79 24197.89 27497.28 35897.12 28199.95 24499.19 28696.55 23297.31 31899.69 26287.35 32298.91 27698.70 21695.12 27197.66 322
tpm298.64 15998.58 15798.81 20699.42 23497.12 28199.69 29999.37 19993.63 32499.94 14299.67 26798.96 9999.47 23998.62 22497.95 21299.83 187
tpm cat198.05 19797.76 20598.92 19999.50 21897.10 28399.77 28299.30 23590.20 36399.72 18098.71 34497.71 15299.86 17296.75 29298.20 20099.81 200
RRT_MVS97.77 20797.76 20597.78 27897.89 33497.06 284100.00 199.29 23995.74 26798.00 29399.97 19595.94 20298.55 31498.87 20794.18 28797.72 302
YYNet192.44 33090.92 33897.03 30296.20 36597.06 28499.99 20399.14 30588.21 37167.93 39498.43 35688.63 30696.28 37390.64 35289.08 34597.74 289
OMC-MVS99.27 9899.38 7398.96 19799.95 9597.06 284100.00 199.40 18198.83 5399.88 155100.00 197.01 17899.86 17299.47 17299.84 13799.97 116
IterMVS96.76 25396.46 25497.63 28099.41 23696.89 28799.99 20399.13 30994.74 29597.59 31299.66 26989.63 29598.28 32895.71 30392.31 30797.72 302
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet96.63 26096.53 24996.94 30897.59 34696.87 28899.76 28499.47 7996.35 24596.85 32999.78 25092.57 25696.27 37495.33 31091.08 32697.68 317
IterMVS-SCA-FT96.72 25696.42 25697.62 28299.40 24196.83 28999.99 20399.14 30594.65 29897.55 31399.72 25489.65 29398.31 32695.62 30792.05 31097.73 295
sd_testset97.81 20597.48 21698.79 20799.82 12096.80 29099.32 33899.45 10297.62 14499.38 20299.86 23185.56 33799.77 19399.72 13196.61 24399.79 213
Baseline_NR-MVSNet96.16 28995.70 28997.56 28598.28 31796.79 291100.00 197.86 38091.93 34997.63 30799.47 30192.14 26098.35 32597.13 27686.83 36197.54 340
BH-w/o98.82 14598.81 13498.88 20299.62 18196.71 292100.00 199.28 24597.09 19298.81 242100.00 194.91 22199.96 13499.54 167100.00 199.96 122
Anonymous20240521197.87 20297.53 21598.90 20099.81 12696.70 29399.35 33699.46 9492.98 33998.83 24199.99 18290.63 277100.00 199.70 13797.03 236100.00 1
MDA-MVSNet-bldmvs91.65 33689.94 34496.79 31796.72 36296.70 29399.42 33098.94 35388.89 36766.97 39798.37 35781.43 35895.91 37789.24 36689.46 34197.75 266
MIMVSNet97.06 24296.73 24298.05 26299.38 24596.64 29598.47 38299.35 21693.41 32999.48 19198.53 35189.66 29297.70 36094.16 32798.11 20599.80 211
v14896.29 28095.84 28097.63 28097.74 33996.53 296100.00 199.07 32993.52 32798.01 29199.42 30491.22 26698.60 30696.37 29787.22 35897.75 266
DTE-MVSNet95.52 30494.99 31297.08 30097.49 35296.45 297100.00 199.25 26193.82 31896.17 34299.57 29287.81 31597.18 36294.57 32086.26 36497.62 333
BH-untuned98.64 15998.65 14998.60 21599.59 18796.17 298100.00 199.28 24596.67 22598.41 267100.00 194.52 22799.83 18099.41 175100.00 199.81 200
MVS-HIRNet94.12 31892.73 33198.29 23599.33 24795.95 29999.38 33399.19 28674.54 38998.26 27886.34 39386.07 33199.06 26491.60 34799.87 13199.85 183
XVG-OURS-SEG-HR98.27 19098.31 17698.14 24899.59 18795.92 300100.00 199.36 20598.48 7599.21 209100.00 189.27 29899.94 15899.76 12699.17 16098.56 251
XVG-OURS98.30 18698.36 17498.13 25199.58 19295.91 301100.00 199.36 20598.69 6599.23 208100.00 191.20 26899.92 16399.34 17997.82 22198.56 251
h-mvs3397.03 24496.53 24998.51 22199.79 14195.90 30299.45 32599.45 10298.21 92100.00 199.78 25097.49 16299.99 9499.72 13174.92 38399.65 233
tpm98.24 19198.22 18498.32 23399.13 25995.79 30399.53 31899.12 31595.20 28599.96 11799.36 30797.58 15799.28 25797.41 26996.67 24199.88 172
TAPA-MVS96.40 1097.64 21397.37 22298.45 22499.94 9895.70 304100.00 199.40 18197.65 14099.53 187100.00 199.31 6399.66 20580.48 384100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
AUN-MVS96.26 28295.67 29398.06 25899.68 15895.60 30599.82 27099.42 13196.78 21299.88 15599.80 24794.84 22299.47 23997.48 26673.29 38599.12 243
hse-mvs296.79 25196.38 25798.04 26499.68 15895.54 30699.81 27199.42 13198.21 92100.00 199.80 24797.49 16299.46 24399.72 13173.27 38699.12 243
VDD-MVS96.58 26395.99 27498.34 23199.52 20995.33 30799.18 35499.38 19696.64 22799.77 174100.00 172.51 380100.00 1100.00 196.94 23999.70 226
ppachtmachnet_test96.17 28795.89 27897.02 30397.61 34495.24 30899.99 20399.24 26693.31 33396.71 33499.62 28394.34 22998.07 34389.87 35992.30 30897.75 266
PVSNet_093.57 1996.41 27195.74 28798.41 22699.84 11695.22 309100.00 1100.00 198.08 10597.55 31399.78 25084.40 342100.00 1100.00 181.99 374100.00 1
UniMVSNet_ETH3D95.28 30894.41 31497.89 27498.91 28795.14 31099.13 36499.35 21692.11 34797.17 32299.66 26970.28 38399.36 25097.88 25495.18 26699.16 241
our_test_396.51 26696.35 25996.98 30697.61 34495.05 31199.98 22799.01 34794.68 29696.77 33399.06 32095.87 20498.14 33491.81 34592.37 30697.75 266
ADS-MVSNet298.28 18998.51 16197.62 28299.51 21495.03 31299.24 34699.41 17795.52 27699.96 11799.70 25997.57 15897.94 35197.11 27798.54 17699.88 172
GBi-Net96.07 29395.80 28396.89 31199.53 20294.87 31399.18 35499.27 25393.71 31998.53 25998.81 34084.23 34498.07 34395.31 31193.60 29097.72 302
test196.07 29395.80 28396.89 31199.53 20294.87 31399.18 35499.27 25393.71 31998.53 25998.81 34084.23 34498.07 34395.31 31193.60 29097.72 302
FMVSNet194.45 31393.63 32096.89 31198.87 29394.87 31399.18 35499.27 25390.95 35697.31 31898.81 34072.89 37998.07 34392.61 33892.81 29997.72 302
HQP5-MVS94.82 316
HQP-MVS97.73 20997.85 20297.39 28899.07 26594.82 316100.00 199.40 18199.04 1599.17 21099.97 19588.61 30799.57 21499.79 11995.58 24797.77 253
NP-MVS99.07 26594.81 31899.97 195
HQP_MVS97.71 21197.82 20497.37 28999.00 27794.80 319100.00 199.40 18199.00 2799.08 22099.97 19588.58 30999.55 22399.79 11995.57 25197.76 255
plane_prior699.06 26994.80 31988.58 309
plane_prior94.80 319100.00 199.03 2095.58 247
plane_prior394.79 32299.03 2099.08 220
plane_prior799.00 27794.78 323
CLD-MVS97.64 21397.74 20797.36 29099.01 27394.76 324100.00 199.34 22299.30 499.00 22699.97 19587.49 31899.57 21499.96 8595.58 24797.75 266
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS97.21 23397.18 23297.32 29398.08 32794.66 325100.00 199.28 24598.65 6998.92 23099.98 18786.03 33399.56 21898.28 24095.41 25397.72 302
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs595.94 29895.61 29496.95 30797.42 35594.66 325100.00 198.08 37393.60 32597.05 32399.43 30387.02 32398.46 32195.76 30192.12 30997.72 302
ACMM97.17 697.37 22897.40 22097.29 29499.01 27394.64 327100.00 199.25 26198.07 10698.44 26699.98 18787.38 32099.55 22399.25 18695.19 26597.69 315
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS97.63 21697.83 20397.05 30198.83 29794.60 328100.00 199.82 4096.89 20698.28 27599.03 32594.05 23099.47 23998.58 22794.97 27797.09 356
LPG-MVS_test97.31 23097.32 22497.28 29598.85 29594.60 328100.00 199.37 19997.35 17498.85 23799.98 18786.66 32699.56 21899.55 16495.26 25997.70 311
LGP-MVS_train97.28 29598.85 29594.60 32899.37 19997.35 17498.85 23799.98 18786.66 32699.56 21899.55 16495.26 25997.70 311
ACMP97.00 897.19 23497.16 23397.27 29798.97 28294.58 331100.00 199.32 22697.97 11497.45 31599.98 18785.79 33599.56 21899.70 13795.24 26297.67 321
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+-dtu98.38 18398.56 15897.82 27699.58 19294.44 332100.00 199.16 29996.75 21399.51 18999.63 27995.03 21999.60 20797.71 25899.67 14999.42 238
ACMH96.25 1196.77 25296.62 24697.21 29898.96 28394.43 33399.64 30499.33 22497.43 16996.55 33699.97 19583.52 34999.54 22699.07 19995.13 27097.66 322
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo96.51 26696.48 25396.60 32095.65 37294.25 33498.84 37798.16 36995.85 26495.23 35099.04 32392.54 25799.13 26192.98 33799.98 10796.43 368
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+-dtu98.51 17398.86 13097.47 28699.77 14694.21 335100.00 198.94 35397.61 14899.91 14898.75 34395.89 20399.51 23499.36 17799.48 15798.68 248
testgi96.18 28595.93 27796.93 30998.98 28194.20 336100.00 199.07 32997.16 18896.06 34499.86 23184.08 34797.79 35790.38 35797.80 22398.81 247
LTVRE_ROB95.29 1696.32 27996.10 26996.99 30598.55 30493.88 33799.45 32599.28 24594.50 30396.46 33799.52 29784.86 34099.48 23797.26 27595.03 27497.59 337
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+96.20 1396.49 26996.33 26197.00 30499.06 26993.80 33899.81 27199.31 23197.32 17895.89 34799.97 19582.62 35499.54 22698.34 23594.63 28397.65 327
test_040294.35 31493.70 31996.32 32597.92 33293.60 33999.61 30998.85 36088.19 37294.68 35599.48 30080.01 36298.58 31089.39 36495.15 26996.77 362
tt080596.52 26496.23 26497.40 28799.30 25193.55 34099.32 33899.45 10296.75 21397.88 29899.99 18279.99 36399.59 20997.39 27195.98 24699.06 245
ITE_SJBPF96.84 31498.96 28393.49 34198.12 37198.12 10398.35 26999.97 19584.45 34199.56 21895.63 30695.25 26197.49 343
OurMVSNet-221017-096.14 29195.98 27596.62 31997.49 35293.44 34299.92 25298.16 36995.86 26297.65 30699.95 21785.71 33698.78 28994.93 31794.18 28797.64 330
K. test v395.46 30695.14 30996.40 32397.53 34993.40 34399.99 20399.23 27095.49 27992.70 36799.73 25384.26 34398.12 33693.94 33093.38 29497.68 317
XVG-ACMP-BASELINE96.60 26296.52 25196.84 31498.41 30993.29 34499.99 20399.32 22697.76 13298.51 26299.29 31081.95 35699.54 22698.40 23195.03 27497.68 317
SixPastTwentyTwo95.71 30295.49 29996.38 32497.42 35593.01 34599.84 26698.23 36894.75 29395.98 34599.97 19585.35 33898.43 32294.71 31993.17 29597.69 315
TinyColmap95.50 30595.12 31096.64 31898.69 29993.00 34699.40 33197.75 38296.40 24396.14 34399.87 22979.47 36499.50 23593.62 33294.72 28197.40 348
FMVSNet595.32 30795.43 30494.99 33799.39 24492.99 34799.25 34599.24 26690.45 35997.44 31698.45 35495.78 20694.39 38387.02 37091.88 31497.59 337
new_pmnet94.11 31993.47 32296.04 32996.60 36492.82 34899.97 23398.91 35690.21 36295.26 34998.05 36585.89 33498.14 33484.28 37692.01 31197.16 354
EGC-MVSNET79.46 35574.04 36395.72 33196.00 36892.73 34999.09 36999.04 3425.08 40116.72 40198.71 34473.03 37898.74 29582.05 38196.64 24295.69 375
pmmvs-eth3d91.73 33590.67 33994.92 33991.63 38592.71 35099.90 25698.54 36591.19 35388.08 37895.50 37779.31 36696.13 37590.55 35581.32 37795.91 373
TDRefinement91.93 33290.48 34096.27 32681.60 39692.65 35199.10 36797.61 38593.96 31793.77 36199.85 23580.03 36199.53 23197.82 25670.59 38796.63 366
USDC95.90 29995.70 28996.50 32298.60 30392.56 352100.00 198.30 36797.77 13096.92 32599.94 22181.25 36099.45 24493.54 33394.96 27897.49 343
UnsupCasMVSNet_eth94.25 31593.89 31695.34 33297.63 34292.13 35399.73 29299.36 20594.88 29092.78 36498.63 34882.72 35296.53 37094.57 32084.73 36697.36 349
LF4IMVS96.19 28496.18 26696.23 32798.26 31892.09 354100.00 197.89 37997.82 12697.94 29499.87 22982.71 35399.38 24997.41 26993.71 28997.20 353
test20.0393.11 32592.85 32993.88 35095.19 37691.83 355100.00 198.87 35993.68 32292.76 36598.88 33889.20 29992.71 38877.88 38889.19 34497.09 356
lessismore_v096.05 32897.55 34891.80 35699.22 27391.87 36899.91 22583.50 35098.68 29892.48 34190.42 33497.68 317
MIMVSNet191.96 33191.20 33494.23 34794.94 37891.69 35799.34 33799.22 27388.23 37094.18 36098.45 35475.52 37493.41 38779.37 38691.49 32097.60 336
pmmvs390.62 34189.36 34794.40 34390.53 39091.49 358100.00 196.73 39084.21 38093.65 36296.65 37482.56 35594.83 38182.28 38077.62 38296.89 361
pmmvs693.64 32092.87 32895.94 33097.47 35491.41 35998.92 37499.02 34587.84 37395.01 35299.61 28577.24 37198.77 29294.33 32386.41 36397.63 331
Anonymous2024052193.29 32392.76 33094.90 34095.64 37391.27 36099.97 23398.82 36187.04 37494.71 35498.19 36083.86 34896.80 36584.04 37792.56 30596.64 365
KD-MVS_self_test91.16 33790.09 34294.35 34494.44 37991.27 36099.74 28799.08 32590.82 35794.53 35794.91 38286.11 33094.78 38282.67 37968.52 38896.99 358
dcpmvs_298.87 14199.53 5996.90 31099.87 11390.88 36299.94 24999.07 32998.20 94100.00 1100.00 198.69 12199.86 172100.00 1100.00 199.95 128
patch_mono-299.04 11899.79 696.81 31699.92 10390.47 363100.00 199.41 17798.95 35100.00 1100.00 199.78 8100.00 1100.00 1100.00 199.95 128
dmvs_re97.54 22097.88 20196.54 32199.55 19890.35 36499.86 26399.46 9497.00 19899.41 200100.00 190.78 27599.30 25599.60 15895.24 26299.96 122
DSMNet-mixed95.18 31095.21 30895.08 33396.03 36790.21 36599.65 30393.64 39892.91 34098.34 27097.40 37090.05 28795.51 38091.02 35197.86 21799.51 237
Anonymous2023120693.45 32293.17 32494.30 34595.00 37789.69 36699.98 22798.43 36693.30 33494.50 35898.59 34990.52 27895.73 37977.46 39090.73 33197.48 345
MS-PatchMatch95.66 30395.87 27995.05 33497.80 33889.25 36798.88 37699.30 23596.35 24596.86 32899.01 32781.35 35999.43 24593.30 33599.98 10796.46 367
CL-MVSNet_self_test91.07 33890.35 34193.24 35293.27 38089.16 36899.55 31599.25 26192.34 34695.23 35097.05 37288.86 30593.59 38680.67 38366.95 38996.96 359
test_fmvs295.17 31195.23 30795.01 33598.95 28588.99 36999.99 20397.77 38197.79 12898.58 25599.70 25973.36 37799.34 25395.88 30095.03 27496.70 364
UnsupCasMVSNet_bld89.50 34388.00 34993.99 34995.30 37588.86 37098.52 38199.28 24585.50 37887.80 38094.11 38361.63 38796.96 36490.63 35379.26 37896.15 369
new-patchmatchnet90.30 34289.46 34692.84 35490.77 38888.55 37199.83 26798.80 36290.07 36487.86 37995.00 38078.77 36794.30 38484.86 37579.15 37995.68 376
OpenMVS_ROBcopyleft88.34 2091.89 33391.12 33594.19 34895.55 37487.63 37299.26 34498.03 37486.61 37690.65 37496.82 37370.14 38498.78 28986.54 37296.50 24596.15 369
Syy-MVS96.17 28796.57 24895.00 33699.50 21887.37 373100.00 199.57 6896.23 25098.07 285100.00 192.41 25897.81 35485.34 37497.96 21099.82 192
EG-PatchMatch MVS92.94 32892.49 33294.29 34695.87 36987.07 37499.07 37298.11 37293.19 33688.98 37698.66 34770.89 38199.08 26392.43 34295.21 26496.72 363
LCM-MVSNet-Re96.52 26497.21 23194.44 34299.27 25285.80 37599.85 26596.61 39295.98 25792.75 36698.48 35393.97 23397.55 36199.58 16298.43 18399.98 109
test_vis1_rt93.10 32692.93 32793.58 35199.63 17685.07 37699.99 20393.71 39797.49 16390.96 37097.10 37160.40 38899.95 14699.24 18897.90 21595.72 374
DeepPCF-MVS98.03 498.54 16999.72 1994.98 33899.99 4984.94 377100.00 199.42 13199.98 1100.00 1100.00 198.11 137100.00 1100.00 1100.00 1100.00 1
RPSCF97.37 22898.24 18094.76 34199.80 13784.57 37899.99 20399.05 33994.95 28999.82 169100.00 194.03 231100.00 198.15 24498.38 18899.70 226
Patchmatch-RL test93.49 32193.63 32093.05 35391.78 38383.41 37998.21 38496.95 38991.58 35191.05 36997.64 36999.40 5595.83 37894.11 32881.95 37599.91 147
Gipumacopyleft84.73 35083.50 35588.40 36297.50 35082.21 38088.87 39199.05 33965.81 39185.71 38390.49 38853.70 38996.31 37278.64 38791.74 31586.67 390
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS88.39 34587.41 35091.31 35591.73 38482.02 38199.79 27696.62 39191.06 35590.71 37395.73 37648.60 39295.96 37690.56 35481.91 37695.97 372
mvsany_test389.36 34488.96 34890.56 35791.95 38278.97 38299.74 28796.59 39396.84 20889.25 37596.07 37552.59 39097.11 36395.17 31482.44 37395.58 377
test_method91.04 33991.10 33690.85 35698.34 31177.63 383100.00 198.93 35576.69 38796.25 34198.52 35270.44 38297.98 34989.02 36891.74 31596.92 360
test_fmvs387.19 34887.02 35187.71 36392.69 38176.64 38499.96 23897.27 38693.55 32690.82 37294.03 38438.00 39892.19 38993.49 33483.35 37294.32 379
test_f86.87 34986.06 35289.28 36091.45 38776.37 38599.87 26297.11 38791.10 35488.46 37793.05 38638.31 39796.66 36891.77 34683.46 37194.82 378
PMMVS279.15 35777.28 36084.76 36882.34 39572.66 38699.70 29795.11 39671.68 39084.78 38790.87 38732.05 40089.99 39175.53 39363.45 39291.64 387
APD_test193.07 32794.14 31589.85 35999.18 25672.49 38799.76 28498.90 35892.86 34396.35 33899.94 22175.56 37399.91 16486.73 37197.98 20897.15 355
test12379.44 35679.23 35880.05 37580.03 39771.72 388100.00 177.93 40662.52 39294.81 35399.69 26278.21 36874.53 39992.57 33927.33 39993.90 380
DeepMVS_CXcopyleft89.98 35898.90 28871.46 38999.18 29397.61 14896.92 32599.83 23886.07 33199.83 18096.02 29997.65 23098.65 249
ambc88.45 36186.84 39270.76 39097.79 38798.02 37690.91 37195.14 37838.69 39698.51 31694.97 31684.23 36796.09 371
test_vis3_rt79.61 35478.19 35983.86 36988.68 39169.56 39199.81 27182.19 40586.78 37568.57 39384.51 39625.06 40298.26 32989.18 36778.94 38083.75 393
WB-MVS88.24 34690.09 34282.68 37291.56 38669.51 392100.00 198.73 36390.72 35887.29 38198.12 36192.87 24985.01 39462.19 39589.34 34293.54 383
SSC-MVS87.61 34789.47 34582.04 37390.63 38968.77 39399.99 20398.66 36490.34 36186.70 38298.08 36292.72 25484.12 39559.41 39888.71 34993.22 386
dmvs_testset93.27 32495.48 30186.65 36598.74 29868.42 39499.92 25298.91 35696.19 25493.28 363100.00 191.06 27291.67 39089.64 36291.54 31899.86 182
LCM-MVSNet79.01 35876.93 36185.27 36778.28 39868.01 39596.57 38898.03 37455.10 39582.03 38893.27 38531.99 40193.95 38582.72 37874.37 38493.84 381
CMPMVSbinary66.12 2290.65 34092.04 33386.46 36696.18 36666.87 39698.03 38599.38 19683.38 38285.49 38499.55 29477.59 36998.80 28894.44 32294.31 28693.72 382
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet91.88 33493.37 32387.40 36497.24 35966.33 39799.90 25691.05 40089.77 36595.65 34898.58 35090.05 28798.11 33885.39 37392.72 30097.75 266
EMVS69.88 36269.09 36572.24 38184.70 39365.82 39899.96 23887.08 40449.82 39871.51 39284.74 39549.30 39175.32 39850.97 40043.71 39675.59 396
E-PMN70.72 36170.06 36472.69 38083.92 39465.48 39999.95 24492.72 39949.88 39772.30 39186.26 39447.17 39377.43 39753.83 39944.49 39575.17 397
ANet_high66.05 36463.44 36873.88 37861.14 40263.45 40095.68 39087.18 40279.93 38547.35 39980.68 39922.35 40372.33 40161.24 39635.42 39785.88 392
MVEpermissive68.59 2167.22 36364.68 36774.84 37674.67 40162.32 40195.84 38990.87 40150.98 39658.72 39881.05 39812.20 40678.95 39661.06 39756.75 39383.24 394
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs80.17 35381.95 35674.80 37758.54 40359.58 402100.00 187.14 40376.09 38899.61 185100.00 167.06 38574.19 40098.84 20850.30 39490.64 389
testf184.40 35184.79 35383.23 37095.71 37058.71 40398.79 37897.75 38281.58 38384.94 38598.07 36345.33 39497.73 35877.09 39183.85 36893.24 384
APD_test284.40 35184.79 35383.23 37095.71 37058.71 40398.79 37897.75 38281.58 38384.94 38598.07 36345.33 39497.73 35877.09 39183.85 36893.24 384
tmp_tt75.80 36074.26 36280.43 37452.91 40553.67 40587.42 39397.98 37761.80 39367.04 396100.00 176.43 37296.40 37196.47 29328.26 39891.23 388
FPMVS77.92 35979.45 35773.34 37976.87 39946.81 40698.24 38399.05 33959.89 39473.55 39098.34 35836.81 39986.55 39280.96 38291.35 32486.65 391
PMVScopyleft60.66 2365.98 36565.05 36668.75 38255.06 40438.40 40788.19 39296.98 38848.30 39944.82 40088.52 39112.22 40586.49 39367.58 39483.79 37081.35 395
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 36629.73 37023.92 38375.89 40032.61 40866.50 39412.88 40716.09 40014.59 40216.59 40112.35 40432.36 40239.36 40113.36 4006.79 398
test_blank0.07 3700.09 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.79 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.41 36732.55 3690.00 3840.00 4060.00 4090.00 39599.39 1940.00 4020.00 403100.00 193.55 2380.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.24 36910.99 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 40398.75 1180.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.33 36811.11 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.01 3710.02 3740.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.14 4030.00 4070.00 4030.00 4020.00 4010.00 399
PC_three_145298.80 57100.00 1100.00 199.54 26100.00 1100.00 1100.00 1100.00 1
eth-test20.00 406
eth-test0.00 406
test_241102_TWO99.42 13199.03 20100.00 1100.00 199.56 23100.00 1100.00 1100.00 1100.00 1
9.1499.57 4999.99 49100.00 199.42 13197.54 155100.00 1100.00 199.15 8299.99 94100.00 1100.00 1
test_0728_THIRD98.79 60100.00 1100.00 199.61 16100.00 1100.00 1100.00 1100.00 1
GSMVS99.91 147
sam_mvs199.29 6999.91 147
sam_mvs99.33 58
MTGPAbinary99.42 131
test_post199.32 33888.24 39299.33 5899.59 20998.31 236
test_post89.05 39099.49 3999.59 209
patchmatchnet-post97.79 36699.41 5499.54 226
MTMP100.00 199.18 293
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 43100.00 1100.00 1
旧先验2100.00 198.11 104100.00 1100.00 199.67 148
新几何2100.00 1
无先验100.00 199.80 4397.98 112100.00 199.33 180100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 272
segment_acmp99.55 25
testdata1100.00 198.77 63
plane_prior599.40 18199.55 22399.79 11995.57 25197.76 255
plane_prior499.97 195
plane_prior2100.00 199.00 27
plane_prior199.02 272
n20.00 408
nn0.00 408
door-mid96.32 394
test1199.42 131
door96.13 395
HQP-NCC99.07 265100.00 199.04 1599.17 210
ACMP_Plane99.07 265100.00 199.04 1599.17 210
BP-MVS99.79 119
HQP4-MVS99.17 21099.57 21497.77 253
HQP3-MVS99.40 18195.58 247
HQP2-MVS88.61 307
ACMMP++_ref94.58 285
ACMMP++95.17 268
Test By Simon99.10 85