This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
MSC_two_6792asdad100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
No_MVS100.00 1100.00 1100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
OPU-MVS100.00 1100.00 1100.00 1100.00 1100.00 199.54 30100.00 1100.00 1100.00 1100.00 1
DPM-MVS99.63 5499.51 66100.00 199.90 112100.00 1100.00 199.43 12499.00 27100.00 1100.00 199.58 26100.00 197.64 279100.00 1100.00 1
DVP-MVS++99.81 1199.75 14100.00 1100.00 199.99 5100.00 199.42 14198.79 63100.00 1100.00 199.54 30100.00 1100.00 1100.00 1100.00 1
test_one_0601100.00 199.99 599.42 14198.72 67100.00 1100.00 199.60 21
SED-MVS99.83 799.77 9100.00 1100.00 199.99 5100.00 199.42 14199.03 21100.00 1100.00 199.50 41100.00 1100.00 1100.00 1100.00 1
IU-MVS100.00 199.99 599.42 14199.12 7100.00 1100.00 1100.00 1100.00 1
test_241102_ONE100.00 199.99 599.42 14199.03 21100.00 1100.00 199.50 41100.00 1
DVP-MVScopyleft99.83 799.78 7100.00 1100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 33100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_SECOND100.00 199.99 4999.99 5100.00 199.42 141100.00 1100.00 1100.00 1100.00 1
test0726100.00 199.99 5100.00 199.42 14199.04 16100.00 1100.00 199.53 33
test_part2100.00 199.99 5100.00 1
MCST-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.73 5699.19 5100.00 1100.00 199.31 68100.00 1100.00 1100.00 1100.00 1
CNVR-MVS99.85 399.80 4100.00 1100.00 199.99 5100.00 199.77 4899.07 11100.00 1100.00 199.39 61100.00 1100.00 1100.00 1100.00 1
NCCC99.86 299.82 3100.00 1100.00 199.99 5100.00 199.71 6199.07 11100.00 1100.00 199.59 24100.00 1100.00 1100.00 1100.00 1
ZD-MVS100.00 199.98 1799.80 4397.31 188100.00 1100.00 199.32 6699.99 98100.00 1100.00 1
DPE-MVScopyleft99.79 1499.73 1799.99 1299.99 4999.98 17100.00 199.42 14198.91 41100.00 1100.00 199.22 80100.00 1100.00 1100.00 1100.00 1
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
HPM-MVS++copyleft99.82 999.76 1299.99 1299.99 4999.98 17100.00 199.83 3998.88 4499.96 126100.00 199.21 81100.00 1100.00 1100.00 199.99 110
APDe-MVScopyleft99.84 699.78 799.99 12100.00 199.98 17100.00 199.44 11699.06 13100.00 1100.00 199.56 2799.99 98100.00 1100.00 1100.00 1
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
FOURS1100.00 199.97 21100.00 199.42 14198.52 77100.00 1
CHOSEN 280x42099.85 399.87 199.80 10799.99 4999.97 2199.97 25199.98 1698.96 32100.00 1100.00 199.96 499.42 270100.00 1100.00 1100.00 1
CDPH-MVS99.73 2899.64 3799.99 12100.00 199.97 21100.00 199.42 14198.02 112100.00 1100.00 199.32 6699.99 98100.00 1100.00 1100.00 1
TSAR-MVS + MP.99.82 999.77 999.99 12100.00 199.96 24100.00 199.43 12499.05 15100.00 1100.00 199.45 4999.99 98100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
新几何199.99 12100.00 199.96 2499.81 4297.89 125100.00 1100.00 199.20 82100.00 197.91 271100.00 1100.00 1
SD-MVS99.81 1199.75 1499.99 1299.99 4999.96 24100.00 199.42 14199.01 26100.00 1100.00 199.33 63100.00 1100.00 1100.00 1100.00 1
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
MSLP-MVS++99.89 199.85 299.99 12100.00 199.96 24100.00 199.95 1999.11 8100.00 1100.00 199.60 21100.00 1100.00 1100.00 1100.00 1
APD-MVScopyleft99.68 4399.58 4999.97 3499.99 4999.96 24100.00 199.42 14197.53 164100.00 1100.00 199.27 7799.97 130100.00 1100.00 1100.00 1
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
PAPM_NR99.74 2599.66 3399.99 12100.00 199.96 24100.00 199.47 7997.87 127100.00 1100.00 199.60 21100.00 1100.00 1100.00 1100.00 1
PAPR99.76 1899.68 2899.99 12100.00 199.96 24100.00 199.47 7998.16 100100.00 1100.00 199.51 37100.00 1100.00 1100.00 1100.00 1
DeepC-MVS_fast98.92 199.75 2399.67 3099.99 1299.99 4999.96 2499.73 31499.52 7299.06 13100.00 1100.00 198.80 126100.00 199.95 94100.00 1100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
sasdasda99.03 13698.73 15899.94 6699.75 15499.95 32100.00 199.30 25197.64 147100.00 1100.00 195.22 23299.97 13099.76 13296.90 26199.91 151
SR-MVS99.68 4399.58 4999.98 23100.00 199.95 32100.00 199.64 6497.59 158100.00 1100.00 198.99 10199.99 98100.00 1100.00 1100.00 1
TEST9100.00 199.95 32100.00 199.42 14197.65 145100.00 1100.00 199.53 3399.97 130
train_agg99.71 3399.63 4199.97 34100.00 199.95 32100.00 199.42 14197.70 140100.00 1100.00 199.51 3799.97 130100.00 1100.00 1100.00 1
canonicalmvs99.03 13698.73 15899.94 6699.75 15499.95 32100.00 199.30 25197.64 147100.00 1100.00 195.22 23299.97 13099.76 13296.90 26199.91 151
MVS99.22 11798.96 13399.98 2399.00 30099.95 3299.24 36899.94 2298.14 10398.88 255100.00 195.63 227100.00 199.85 112100.00 1100.00 1
SteuartSystems-ACMMP99.78 1699.71 2099.98 2399.76 15299.95 32100.00 199.42 14198.69 68100.00 1100.00 199.52 3699.99 98100.00 1100.00 1100.00 1
Skip Steuart: Steuart Systems R&D Blog.
DP-MVS Recon99.76 1899.69 2299.98 23100.00 199.95 32100.00 199.52 7297.99 11499.99 111100.00 199.72 14100.00 199.96 88100.00 1100.00 1
PAPM99.78 1699.76 1299.85 9099.01 29699.95 32100.00 199.75 5299.37 399.99 111100.00 199.76 1299.60 228100.00 1100.00 1100.00 1
reproduce-ours99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 101100.00 1100.00 1100.00 1100.00 1
our_new_method99.76 1899.69 2299.98 2399.96 9699.94 41100.00 199.42 14198.82 55100.00 1100.00 198.99 101100.00 1100.00 1100.00 1100.00 1
MGCFI-Net99.01 14398.70 16499.93 7099.74 15699.94 41100.00 199.29 25797.60 157100.00 1100.00 195.10 23699.96 14399.74 13796.85 26399.91 151
XVS99.79 1499.73 1799.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 1100.00 199.16 85100.00 1100.00 1100.00 1100.00 1
X-MVStestdata97.04 26396.06 29299.98 23100.00 199.94 41100.00 199.75 5298.67 70100.00 166.97 42499.16 85100.00 1100.00 1100.00 1100.00 1
MP-MVScopyleft99.61 6199.49 6999.98 2399.99 4999.94 41100.00 199.42 14197.82 13099.99 111100.00 198.20 146100.00 199.99 64100.00 1100.00 1
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
reproduce_model99.76 1899.69 2299.98 2399.96 9699.93 47100.00 199.42 14198.81 59100.00 1100.00 198.98 104100.00 1100.00 1100.00 1100.00 1
save fliter99.99 4999.93 47100.00 199.42 14198.93 38
SMA-MVScopyleft99.69 3999.59 4799.98 2399.99 4999.93 47100.00 199.43 12497.50 169100.00 1100.00 199.43 54100.00 1100.00 1100.00 1100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
test_prior499.93 47100.00 1
WTY-MVS99.54 7099.40 7699.95 5499.81 13199.93 47100.00 1100.00 197.98 11699.84 177100.00 198.94 11299.98 12399.86 11098.21 21499.94 136
HY-MVS96.53 999.50 7499.35 8699.96 4599.81 13199.93 4799.64 326100.00 197.97 11899.84 17799.85 25298.94 11299.99 9899.86 11098.23 21399.95 131
MP-MVS-pluss99.61 6199.50 6799.97 3499.98 8699.92 53100.00 199.42 14197.53 16499.77 195100.00 198.77 127100.00 199.99 64100.00 199.99 110
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
ACMMP_NAP99.67 4699.57 5299.97 3499.98 8699.92 53100.00 199.42 14197.83 129100.00 1100.00 198.89 118100.00 199.98 76100.00 1100.00 1
alignmvs99.38 8999.21 10499.91 7499.73 15799.92 53100.00 199.51 7697.61 154100.00 1100.00 199.06 9399.93 17299.83 11697.12 25599.90 162
SR-MVS-dyc-post99.63 5499.52 6499.97 3499.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.65 13299.99 9899.99 64100.00 1100.00 1
RE-MVS-def99.55 5999.99 4999.91 56100.00 199.42 14197.62 150100.00 1100.00 198.94 11299.99 64100.00 1100.00 1
MTAPA99.68 4399.59 4799.97 3499.99 4999.91 56100.00 199.42 14198.32 9299.94 156100.00 198.65 132100.00 199.96 88100.00 1100.00 1
test_8100.00 199.91 56100.00 199.42 14197.70 140100.00 1100.00 199.51 3799.98 123
APD-MVS_3200maxsize99.65 4999.55 5999.97 3499.99 4999.91 56100.00 199.48 7897.54 162100.00 1100.00 198.97 10699.99 9899.98 76100.00 1100.00 1
mPP-MVS99.69 3999.60 4699.97 34100.00 199.91 56100.00 199.42 14197.91 124100.00 1100.00 199.04 98100.00 1100.00 1100.00 1100.00 1
MG-MVS99.75 2399.68 2899.97 34100.00 199.91 5699.98 24599.47 7999.09 10100.00 1100.00 198.59 136100.00 199.95 94100.00 1100.00 1
ZNCC-MVS99.71 3399.62 4499.97 3499.99 4999.90 63100.00 199.79 4597.97 11899.97 122100.00 198.97 106100.00 199.94 96100.00 1100.00 1
test_yl99.51 7199.37 8199.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 6100.00 199.98 7697.75 24399.94 136
DCV-MVSNet99.51 7199.37 8199.95 5499.82 12599.90 63100.00 199.47 7997.48 171100.00 1100.00 199.80 6100.00 199.98 7697.75 24399.94 136
region2R99.72 2999.64 3799.97 34100.00 199.90 63100.00 199.74 5597.86 128100.00 1100.00 199.19 83100.00 199.99 64100.00 1100.00 1
test22299.99 4999.90 63100.00 199.69 6297.66 144100.00 1100.00 199.30 73100.00 1100.00 1
thres20099.27 10799.04 12299.96 4599.81 13199.90 63100.00 199.94 2297.31 18899.83 18099.96 21897.04 191100.00 199.62 17097.88 23299.98 112
3Dnovator95.63 1499.06 13198.76 15599.96 4598.86 31799.90 6399.98 24599.93 3098.95 3598.49 284100.00 192.91 268100.00 199.71 146100.00 1100.00 1
tfpn200view999.26 10999.03 12399.96 4599.81 13199.89 70100.00 199.94 2297.23 19399.83 18099.96 21897.04 191100.00 199.59 17697.85 23499.98 112
HFP-MVS99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.31 68100.00 199.99 64100.00 1100.00 1
131499.38 8999.19 10899.96 4598.88 31399.89 7099.24 36899.93 3098.88 4498.79 265100.00 197.02 194100.00 1100.00 1100.00 1100.00 1
ACMMPR99.74 2599.67 3099.96 45100.00 199.89 70100.00 199.76 4997.95 122100.00 1100.00 199.29 74100.00 199.99 64100.00 1100.00 1
thres40099.26 10999.03 12399.95 5499.81 13199.89 70100.00 199.94 2297.23 19399.83 18099.96 21897.04 191100.00 199.59 17697.85 23499.97 119
test1299.95 5499.99 4999.89 7099.42 141100.00 199.24 7999.97 130100.00 1100.00 1
3Dnovator+95.58 1599.03 13698.71 16299.96 4598.99 30399.89 70100.00 199.51 7698.96 3298.32 293100.00 192.78 270100.00 199.87 109100.00 1100.00 1
agg_prior100.00 199.88 7799.42 141100.00 199.97 130
旧先验199.99 4999.88 7799.82 40100.00 199.27 77100.00 1100.00 1
thres100view90099.25 11399.01 12599.95 5499.81 13199.87 79100.00 199.94 2297.13 19999.83 18099.96 21897.01 195100.00 199.59 17697.85 23499.98 112
thres600view799.24 11699.00 12799.95 5499.81 13199.87 79100.00 199.94 2297.13 19999.83 18099.96 21897.01 195100.00 199.54 18497.77 24299.97 119
QAPM98.99 14798.66 16599.96 4599.01 29699.87 7999.88 28399.93 3097.99 11498.68 269100.00 193.17 264100.00 199.32 198100.00 1100.00 1
GST-MVS99.64 5199.53 6299.95 54100.00 199.86 82100.00 199.79 4597.72 13899.95 154100.00 198.39 143100.00 199.96 8899.99 103100.00 1
MSP-MVS99.81 1199.77 999.94 66100.00 199.86 82100.00 199.42 14198.87 47100.00 1100.00 199.65 1999.96 143100.00 1100.00 1100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
AdaColmapbinary99.44 8299.26 9599.95 54100.00 199.86 8299.70 31999.99 1398.53 7699.90 168100.00 195.34 229100.00 199.92 99100.00 1100.00 1
SF-MVS99.66 4899.57 5299.95 5499.99 4999.85 85100.00 199.42 14197.67 143100.00 1100.00 199.05 9599.99 98100.00 1100.00 1100.00 1
PGM-MVS99.69 3999.61 4599.95 5499.99 4999.85 85100.00 199.58 6797.69 142100.00 1100.00 199.44 50100.00 199.79 123100.00 1100.00 1
CP-MVS99.67 4699.58 4999.95 54100.00 199.84 87100.00 199.42 14197.77 135100.00 1100.00 199.07 92100.00 1100.00 1100.00 1100.00 1
MVS_111021_HR99.71 3399.63 4199.93 7099.95 10099.83 88100.00 1100.00 198.89 43100.00 1100.00 197.85 15999.95 156100.00 1100.00 1100.00 1
MM99.63 5499.52 6499.94 6699.99 4999.82 89100.00 199.97 1799.11 8100.00 1100.00 196.65 211100.00 1100.00 199.97 116100.00 1
PS-MVSNAJ99.64 5199.57 5299.85 9099.78 14999.81 9099.95 26399.42 14198.38 84100.00 1100.00 198.75 128100.00 199.88 10699.99 10399.74 243
OpenMVScopyleft95.20 1798.76 16798.41 18899.78 11598.89 31299.81 9099.99 21999.76 4998.02 11298.02 311100.00 191.44 286100.00 199.63 16999.97 11699.55 256
原ACMM199.93 70100.00 199.80 9299.66 6398.18 99100.00 1100.00 199.43 54100.00 199.50 188100.00 1100.00 1
MVS_030499.72 2999.65 3499.93 7099.99 4999.79 93100.00 199.91 3599.17 6100.00 1100.00 197.84 161100.00 1100.00 199.95 121100.00 1
HPM-MVS_fast99.60 6499.49 6999.91 7499.99 4999.78 94100.00 199.42 14197.09 201100.00 1100.00 198.95 11099.96 14399.98 76100.00 1100.00 1
baseline198.91 15798.61 17199.81 10299.71 15899.77 9599.78 29999.44 11697.51 16898.81 26399.99 18998.25 14599.76 21598.60 24195.41 27699.89 168
CANet99.40 8599.24 10099.89 7999.99 4999.76 96100.00 199.73 5698.40 8399.78 194100.00 195.28 23099.96 143100.00 199.99 10399.96 125
ET-MVSNet_ETH3D96.41 29295.48 32399.20 20199.81 13199.75 97100.00 199.02 36597.30 19078.33 413100.00 197.73 16697.94 37599.70 14987.41 37899.92 149
test_prior99.90 77100.00 199.75 9799.73 5699.97 130100.00 1
VNet99.04 13498.75 15699.90 7799.81 13199.75 9799.50 34399.47 7998.36 88100.00 199.99 18994.66 244100.00 199.90 10297.09 25699.96 125
xiu_mvs_v2_base99.51 7199.41 7599.82 9799.70 16099.73 10099.92 27399.40 19498.15 102100.00 1100.00 198.50 140100.00 199.85 11299.13 17299.74 243
CNLPA99.72 2999.65 3499.91 7499.97 9099.72 101100.00 199.47 7998.43 8299.88 173100.00 199.14 88100.00 199.97 86100.00 1100.00 1
xiu_mvs_v1_base_debu99.35 9399.21 10499.79 11099.67 17399.71 10299.78 29999.36 21898.13 104100.00 1100.00 197.00 198100.00 199.83 11699.07 17499.66 252
xiu_mvs_v1_base99.35 9399.21 10499.79 11099.67 17399.71 10299.78 29999.36 21898.13 104100.00 1100.00 197.00 198100.00 199.83 11699.07 17499.66 252
xiu_mvs_v1_base_debi99.35 9399.21 10499.79 11099.67 17399.71 10299.78 29999.36 21898.13 104100.00 1100.00 197.00 198100.00 199.83 11699.07 17499.66 252
LS3D99.31 10299.13 11499.87 8499.99 4999.71 10299.55 33799.46 9497.32 18699.82 188100.00 196.85 20599.97 13099.14 208100.00 199.92 149
HPM-MVScopyleft99.59 6599.50 6799.89 79100.00 199.70 106100.00 199.42 14197.46 173100.00 1100.00 198.60 13599.96 14399.99 64100.00 1100.00 1
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
MVS_111021_LR99.70 3699.65 3499.88 8399.96 9699.70 106100.00 199.97 1798.96 32100.00 1100.00 197.93 15499.95 15699.99 64100.00 1100.00 1
balanced_conf0399.43 8399.28 9099.85 9099.68 16599.68 10899.97 25199.28 26397.03 20699.96 12699.97 20397.90 15699.93 17299.77 130100.00 199.94 136
MVSTER98.58 18498.52 18098.77 22799.65 18299.68 108100.00 199.29 25795.63 28998.65 27099.80 26499.78 998.88 30898.59 24295.31 28097.73 317
ACMMPcopyleft99.65 4999.57 5299.89 7999.99 4999.66 11099.75 30899.73 5698.16 10099.75 198100.00 198.90 117100.00 199.96 8899.88 134100.00 1
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MAR-MVS99.49 7699.36 8499.89 7999.97 9099.66 11099.74 30999.95 1997.89 125100.00 1100.00 196.71 210100.00 1100.00 1100.00 1100.00 1
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
EI-MVSNet-UG-set99.69 3999.63 4199.87 8499.99 4999.64 11299.95 26399.44 11698.35 90100.00 1100.00 198.98 10499.97 13099.98 76100.00 1100.00 1
EI-MVSNet-Vis-set99.70 3699.64 3799.87 84100.00 199.64 11299.98 24599.44 11698.35 9099.99 111100.00 199.04 9899.96 14399.98 76100.00 1100.00 1
BP-MVS199.56 6799.48 7299.79 11099.48 24599.61 114100.00 199.32 24097.34 18399.94 156100.00 199.74 1399.89 18099.75 13699.72 15199.87 191
PVSNet_BlendedMVS98.71 17198.62 17098.98 21499.98 8699.60 115100.00 1100.00 197.23 193100.00 199.03 34896.57 21399.99 98100.00 194.75 30097.35 369
PVSNet_Blended99.48 7899.36 8499.83 9599.98 8699.60 115100.00 1100.00 197.79 133100.00 1100.00 196.57 21399.99 98100.00 199.88 13499.90 162
MVSMamba_PlusPlus99.39 8699.25 9799.80 10799.68 16599.59 11799.99 21999.30 25196.66 24199.96 12699.97 20397.89 15799.92 17599.76 132100.00 199.90 162
fmvsm_l_conf0.5_n99.63 5499.56 5799.86 8799.81 13199.59 117100.00 199.36 21898.98 30100.00 1100.00 197.92 15599.99 98100.00 199.95 121100.00 1
fmvsm_l_conf0.5_n_a99.63 5499.55 5999.86 8799.83 12499.58 119100.00 199.36 21898.98 30100.00 1100.00 197.85 15999.99 98100.00 199.94 124100.00 1
test_fmvsmconf_n99.56 6799.46 7499.86 8799.68 16599.58 119100.00 199.31 24798.92 3999.88 173100.00 197.35 18799.99 9899.98 7699.99 103100.00 1
ETVMVS99.16 12398.98 13099.69 13199.67 17399.56 121100.00 199.45 10296.36 26299.98 11799.95 22598.65 13299.64 22699.11 21297.63 25099.88 181
GDP-MVS99.39 8699.26 9599.77 11899.53 22299.55 122100.00 199.11 33597.14 19799.96 126100.00 199.83 599.89 18098.47 24699.26 16999.87 191
test_fmvsmconf0.1_n99.25 11399.05 12199.82 9798.92 30999.55 122100.00 199.23 29198.91 4199.75 19899.97 20394.79 24299.94 16899.94 9699.99 10399.97 119
thisisatest051599.42 8499.31 8999.74 12299.59 20599.55 122100.00 199.46 9496.65 24299.92 163100.00 199.44 5099.85 19599.09 21399.63 16199.81 215
mvsany_test199.57 6699.48 7299.85 9099.86 11999.54 125100.00 199.36 21898.94 37100.00 1100.00 197.97 152100.00 199.88 10699.28 168100.00 1
CPTT-MVS99.49 7699.38 7899.85 90100.00 199.54 125100.00 199.42 14197.58 15999.98 117100.00 197.43 185100.00 199.99 64100.00 1100.00 1
fmvsm_s_conf0.5_n99.21 11899.01 12599.83 9599.84 12199.53 127100.00 199.38 20998.29 94100.00 1100.00 193.62 25799.99 9899.99 6499.93 12799.98 112
SDMVSNet98.49 19598.08 21399.73 12599.82 12599.53 12799.99 21999.45 10297.62 15099.38 22599.86 24790.06 30799.88 18799.92 9996.61 26699.79 235
nrg03097.64 23397.27 24898.75 22898.34 33699.53 127100.00 199.22 29496.21 27298.27 29899.95 22594.40 24798.98 29599.23 20589.78 35897.75 288
fmvsm_s_conf0.1_n98.77 16698.42 18799.82 9799.47 24999.52 130100.00 199.27 27397.53 164100.00 1100.00 189.73 31299.96 14399.84 11599.93 12799.97 119
testing22299.14 12598.94 13899.73 12599.67 17399.51 131100.00 199.43 12496.90 21899.99 11199.90 24198.55 13899.86 18998.85 22397.18 25499.81 215
test250699.48 7899.38 7899.75 12199.89 11499.51 13199.45 347100.00 198.38 8499.83 180100.00 198.86 11999.81 20599.25 20298.78 18199.94 136
LFMVS97.42 24696.62 26799.81 10299.80 14299.50 13399.16 38299.56 7094.48 324100.00 1100.00 179.35 387100.00 199.89 10497.37 25299.94 136
MVS_Test98.93 15698.65 16699.77 11899.62 19799.50 13399.99 21999.19 30495.52 29599.96 12699.86 24796.54 21599.98 12398.65 23598.48 19199.82 206
sss99.45 8199.34 8899.80 10799.76 15299.50 133100.00 199.91 3597.72 13899.98 11799.94 23198.45 141100.00 199.53 18698.75 18499.89 168
GG-mvs-BLEND99.59 14799.54 21999.49 13699.17 38199.52 7299.96 12699.68 283100.00 199.33 27799.71 14699.99 10399.96 125
MVSFormer98.94 15598.82 14999.28 19499.45 25399.49 136100.00 199.13 32895.46 30099.97 122100.00 196.76 20698.59 33198.63 238100.00 199.74 243
lupinMVS99.29 10599.16 11299.69 13199.45 25399.49 136100.00 199.15 31997.45 17499.97 122100.00 196.76 20699.76 21599.67 160100.00 199.81 215
PVSNet_Blended_VisFu99.33 9899.18 11199.78 11599.82 12599.49 136100.00 199.95 1997.36 18099.63 206100.00 196.45 21799.95 15699.79 12399.65 15899.89 168
114514_t99.39 8699.25 9799.81 10299.97 9099.48 140100.00 199.42 14195.53 293100.00 1100.00 198.37 14499.95 15699.97 86100.00 1100.00 1
fmvsm_s_conf0.5_n_a99.32 10099.15 11399.81 10299.80 14299.47 141100.00 199.35 22998.22 95100.00 1100.00 195.21 23499.99 9899.96 8899.86 13899.98 112
DELS-MVS99.62 5999.56 5799.82 9799.92 10899.45 142100.00 199.78 4798.92 3999.73 200100.00 197.70 168100.00 199.93 98100.00 1100.00 1
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
DP-MVS98.86 16198.54 17799.81 10299.97 9099.45 14299.52 34199.40 19494.35 32898.36 289100.00 196.13 21999.97 13099.12 211100.00 1100.00 1
PHI-MVS99.50 7499.39 7799.82 97100.00 199.45 142100.00 199.94 2296.38 260100.00 1100.00 198.18 147100.00 1100.00 1100.00 1100.00 1
FA-MVS(test-final)99.00 14498.75 15699.73 12599.63 19099.43 14599.83 28999.43 12495.84 28599.52 21099.37 32597.84 16199.96 14397.63 28099.68 15499.79 235
fmvsm_s_conf0.1_n_a98.71 17198.36 19599.78 11599.09 28699.42 146100.00 199.26 28097.42 177100.00 1100.00 189.78 31099.96 14399.82 12199.85 14199.97 119
thisisatest053099.37 9199.27 9199.69 13199.59 20599.41 147100.00 199.46 9496.46 25399.90 168100.00 199.44 5099.85 19598.97 21799.58 16399.80 232
UA-Net99.06 13198.83 14899.74 12299.52 23099.40 14899.08 39399.45 10297.64 14799.83 180100.00 195.80 22399.94 16898.35 25199.80 14899.88 181
tttt051799.34 9699.23 10399.67 13499.57 21499.38 149100.00 199.46 9496.33 26599.89 171100.00 199.44 5099.84 19898.93 21999.46 16699.78 238
TESTMET0.1,199.08 12998.96 13399.44 16699.63 19099.38 149100.00 199.45 10295.53 29399.48 213100.00 199.71 1599.02 29096.84 30599.99 10399.91 151
IS-MVSNet99.08 12998.91 14299.59 14799.65 18299.38 14999.78 29999.24 28796.70 23699.51 211100.00 198.44 14299.52 25398.47 24698.39 19899.88 181
API-MVS99.72 2999.70 2199.79 11099.97 9099.37 15299.96 25799.94 2298.48 79100.00 1100.00 198.92 115100.00 1100.00 1100.00 1100.00 1
gg-mvs-nofinetune96.95 26896.10 29099.50 15999.41 25999.36 15399.07 39599.52 7283.69 40599.96 12683.60 421100.00 199.20 28399.68 15799.99 10399.96 125
ETV-MVS99.34 9699.24 10099.64 13999.58 21099.33 154100.00 199.25 28297.57 16099.96 126100.00 197.44 18499.79 20899.70 14999.65 15899.81 215
test_cas_vis1_n_192098.63 18098.25 19999.77 11899.69 16199.32 155100.00 199.31 24798.84 5199.96 126100.00 187.42 34099.99 9899.14 20899.86 138100.00 1
VPA-MVSNet97.03 26496.43 27698.82 22298.64 32699.32 15599.38 35599.47 7996.73 23398.91 25498.94 35787.00 34599.40 27199.23 20589.59 35997.76 277
jason99.11 12798.96 13399.59 14799.17 28099.31 157100.00 199.13 32897.38 17999.83 180100.00 195.54 22899.72 22199.57 18099.97 11699.74 243
jason: jason.
PatchMatch-RL99.02 14198.78 15399.74 12299.99 4999.29 158100.00 1100.00 198.38 8499.89 17199.81 26193.14 26699.99 9897.85 27399.98 11399.95 131
reproduce_monomvs98.61 18198.54 17798.82 22299.97 9099.28 159100.00 199.33 23798.51 7897.87 31999.24 33299.98 399.45 26699.02 21692.93 31797.74 310
test-LLR99.03 13698.91 14299.40 17699.40 26499.28 159100.00 199.45 10296.70 23699.42 21899.12 33899.31 6899.01 29196.82 30699.99 10399.91 151
test-mter98.96 15198.82 14999.40 17699.40 26499.28 159100.00 199.45 10295.44 30399.42 21899.12 33899.70 1699.01 29196.82 30699.99 10399.91 151
Effi-MVS+98.58 18498.24 20299.61 14399.60 20199.26 16297.85 40999.10 33896.22 27199.97 12299.89 24293.75 25499.77 21399.43 19098.34 20399.81 215
HyFIR lowres test99.32 10099.24 10099.58 15199.95 10099.26 162100.00 199.99 1396.72 23499.29 23099.91 23999.49 4399.47 26199.74 13798.08 221100.00 1
FMVSNet397.30 25196.95 25598.37 25099.65 18299.25 16499.71 31799.28 26394.23 32998.53 27998.91 35993.30 26298.11 36295.31 33293.60 30897.73 317
MSDG98.90 15998.63 16999.70 13099.92 10899.25 164100.00 199.37 21295.71 28799.40 224100.00 196.58 21299.95 15696.80 30899.94 12499.91 151
FIs97.95 22397.73 23098.62 23398.53 33199.24 166100.00 199.43 12496.74 23197.87 31999.82 25895.27 23198.89 30598.78 22793.07 31497.74 310
mvs_anonymous98.80 16598.60 17399.38 18099.57 21499.24 166100.00 199.21 30095.87 28098.92 25299.82 25896.39 21899.03 28999.13 21098.50 18999.88 181
MDTV_nov1_ep13_2view99.24 16699.56 33696.31 26699.96 12698.86 11998.92 22099.89 168
test_fmvsmconf0.01_n98.60 18298.24 20299.67 13496.90 38599.21 16999.99 21999.04 36298.80 6099.57 20899.96 21890.12 30499.91 17799.89 10499.89 13299.90 162
EPMVS99.25 11399.13 11499.60 14599.60 20199.20 17099.60 332100.00 196.93 21399.92 16399.36 32699.05 9599.71 22298.77 22898.94 17899.90 162
test_fmvsm_n_192099.55 6999.49 6999.73 12599.85 12099.19 171100.00 199.41 19098.87 47100.00 1100.00 197.34 188100.00 199.98 7699.90 131100.00 1
BH-RMVSNet98.46 19698.08 21399.59 14799.61 19999.19 171100.00 199.28 26397.06 20598.95 251100.00 188.99 32299.82 20298.83 226100.00 199.77 239
test_fmvsmvis_n_192099.46 8099.37 8199.73 12598.88 31399.18 173100.00 199.26 28098.85 4999.79 192100.00 197.70 168100.00 199.98 7699.86 138100.00 1
FE-MVS99.16 12398.99 12999.66 13799.65 18299.18 17399.58 33499.43 12495.24 30499.91 16699.59 30499.37 6299.97 13098.31 25399.81 14699.83 201
diffmvspermissive98.96 15198.73 15899.63 14099.54 21999.16 175100.00 199.18 31197.33 18599.96 126100.00 194.60 24599.91 17799.66 16498.33 20699.82 206
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline298.99 14798.93 14099.18 20299.26 27799.15 176100.00 199.46 9496.71 23596.79 352100.00 199.42 5799.25 28198.75 23099.94 12499.15 264
UniMVSNet (Re)97.29 25296.85 25998.59 23698.49 33299.13 177100.00 199.42 14196.52 25098.24 30298.90 36094.93 23998.89 30597.54 28487.61 37797.75 288
WR-MVS97.09 25996.64 26598.46 24298.43 33399.09 17899.97 25199.33 23795.62 29097.76 32299.67 28491.17 29098.56 33698.49 24589.28 36497.74 310
EC-MVSNet99.19 11999.09 11999.48 16299.42 25799.07 179100.00 199.21 30096.95 21199.96 126100.00 196.88 20499.48 25999.64 16699.79 14999.88 181
F-COLMAP99.64 5199.64 3799.67 13499.99 4999.07 179100.00 199.44 11698.30 9399.90 168100.00 199.18 8499.99 9899.91 101100.00 199.94 136
Fast-Effi-MVS+98.40 20398.02 21999.55 15599.63 19099.06 181100.00 199.15 31995.07 30699.42 21899.95 22593.26 26399.73 22097.44 28798.24 21299.87 191
FC-MVSNet-test97.84 22597.63 23498.45 24498.30 34199.05 182100.00 199.43 12496.63 24597.61 33199.82 25895.19 23598.57 33498.64 23693.05 31597.73 317
miper_enhance_ethall98.33 20698.27 19898.51 23999.66 18099.04 183100.00 199.22 29497.53 16498.51 28299.38 32499.49 4398.75 31898.02 26692.61 32097.76 277
WBMVS98.19 21598.10 21298.47 24199.63 19099.03 184100.00 199.32 24095.46 30098.39 28899.40 32399.69 1798.61 32698.64 23692.39 32597.76 277
DeepC-MVS97.84 599.00 14498.80 15299.60 14599.93 10599.03 184100.00 199.40 19498.61 7499.33 228100.00 192.23 28099.95 15699.74 13799.96 11999.83 201
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
cascas98.43 19898.07 21599.50 15999.65 18299.02 186100.00 199.22 29494.21 33199.72 20199.98 19492.03 28399.93 17299.68 15798.12 21999.54 257
PCF-MVS98.23 398.69 17498.37 19399.62 14299.78 14999.02 18699.23 37399.06 35796.43 25498.08 305100.00 194.72 24399.95 15698.16 26099.91 13099.90 162
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UBG99.36 9299.27 9199.63 14099.63 19099.01 188100.00 199.43 12496.99 209100.00 199.92 23699.69 1799.99 9899.74 13798.06 22299.88 181
cl2298.23 21498.11 21098.58 23799.82 12599.01 188100.00 199.28 26396.92 21598.33 29299.21 33598.09 15198.97 29798.72 23192.61 32097.76 277
EPNet_dtu98.53 19198.23 20599.43 16999.92 10899.01 18899.96 25799.47 7998.80 6099.96 12699.96 21898.56 13799.30 27887.78 39399.68 154100.00 1
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CS-MVS99.33 9899.27 9199.50 15999.99 4999.00 191100.00 199.13 32897.26 19199.96 126100.00 197.79 16499.64 22699.64 16699.67 15699.87 191
ab-mvs98.42 20098.02 21999.61 14399.71 15899.00 19199.10 39099.64 6496.70 23699.04 24899.81 26190.64 29799.98 12399.64 16697.93 22999.84 197
NR-MVSNet96.63 28196.04 29398.38 24998.31 33998.98 19399.22 37599.35 22995.87 28094.43 38099.65 28892.73 27398.40 34696.78 30988.05 37497.75 288
PMMVS99.12 12698.97 13299.58 15199.57 21498.98 193100.00 199.30 25197.14 19799.96 126100.00 196.53 21699.82 20299.70 14998.49 19099.94 136
testdata99.66 13799.99 4998.97 19599.73 5697.96 121100.00 1100.00 199.42 57100.00 199.28 201100.00 1100.00 1
XXY-MVS97.14 25896.63 26698.67 23098.65 32598.92 19699.54 33999.29 25795.57 29297.63 32899.83 25587.79 33799.35 27598.39 24992.95 31697.75 288
Vis-MVSNet (Re-imp)98.99 14798.89 14699.29 19199.64 18898.89 19799.98 24599.31 24796.74 23199.48 213100.00 198.11 14999.10 28698.39 24998.34 20399.89 168
CR-MVSNet98.02 22197.71 23198.93 21699.31 27198.86 19899.13 38799.00 36896.53 24999.96 12698.98 35296.94 20198.10 36591.18 37198.40 19699.84 197
RPMNet95.26 33193.82 34099.56 15499.31 27198.86 19899.13 38799.42 14179.82 41099.96 12695.13 40395.69 22699.98 12377.54 41398.40 19699.84 197
UWE-MVS99.18 12099.06 12099.51 15699.67 17398.80 200100.00 199.43 12496.80 22499.93 16299.86 24799.79 899.94 16897.78 27598.33 20699.80 232
PLCcopyleft98.56 299.70 3699.74 1699.58 151100.00 198.79 201100.00 199.54 7198.58 7599.96 126100.00 199.59 24100.00 1100.00 1100.00 199.94 136
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
SPE-MVS-test99.31 10299.27 9199.43 16999.99 4998.77 202100.00 199.19 30497.24 19299.96 126100.00 197.56 17699.70 22399.68 15799.81 14699.82 206
EIA-MVS99.26 10999.19 10899.45 16599.63 19098.75 203100.00 199.27 27396.93 21399.95 154100.00 197.47 18199.79 20899.74 13799.72 15199.82 206
Test_1112_low_res98.83 16398.60 17399.51 15699.69 16198.75 20399.99 21999.14 32496.81 22398.84 26099.06 34297.45 18299.89 18098.66 23397.75 24399.89 168
1112_ss98.91 15798.71 16299.51 15699.69 16198.75 20399.99 21999.15 31996.82 22298.84 260100.00 197.45 18299.89 18098.66 23397.75 24399.89 168
casdiffmvspermissive98.65 17698.38 19199.46 16399.52 23098.74 206100.00 199.15 31996.91 21699.05 247100.00 192.75 27199.83 19999.70 14998.38 20099.81 215
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
tfpnnormal96.36 29795.69 31498.37 25098.55 32998.71 20799.69 32199.45 10293.16 36096.69 35699.71 27388.44 33298.99 29494.17 34691.38 34497.41 366
CANet_DTU99.02 14198.90 14599.41 17299.88 11698.71 207100.00 199.29 25798.84 51100.00 1100.00 194.02 252100.00 198.08 26299.96 11999.52 258
EPP-MVSNet99.10 12899.00 12799.40 17699.51 23598.68 20999.92 27399.43 12495.47 29999.65 205100.00 199.51 3799.76 21599.53 18698.00 22399.75 242
CP-MVSNet96.73 27596.25 28498.18 26498.21 34698.67 21099.77 30499.32 24095.06 30797.20 34299.65 28890.10 30598.19 35598.06 26588.90 36897.66 342
baseline98.69 17498.45 18699.41 17299.52 23098.67 210100.00 199.17 31697.03 20699.13 239100.00 193.17 26499.74 21899.70 14998.34 20399.81 215
pmmvs497.17 25596.80 26098.27 25697.68 36598.64 212100.00 199.18 31194.22 33098.55 27799.71 27393.67 25598.47 34295.66 32692.57 32397.71 330
testing1199.26 10999.19 10899.46 16399.64 18898.61 213100.00 199.43 12496.94 21299.92 16399.94 23199.43 5499.97 13099.67 16097.79 24199.82 206
casdiffmvs_mvgpermissive98.64 17798.39 19099.40 17699.50 23998.60 214100.00 199.22 29496.85 22099.10 241100.00 192.75 27199.78 21299.71 14698.35 20299.81 215
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
JIA-IIPM97.09 25996.34 28199.36 18198.88 31398.59 21599.81 29399.43 12484.81 40399.96 12690.34 41398.55 13899.52 25397.00 30098.28 20999.98 112
RRT-MVS98.75 16998.52 18099.44 16699.65 18298.57 21699.90 27799.08 34496.51 25199.96 12699.95 22592.59 27699.96 14399.60 17499.45 16799.81 215
Patchmtry96.81 27196.37 27998.14 26899.31 27198.55 21798.91 39899.00 36890.45 38297.92 31698.98 35296.94 20198.12 36094.27 34591.53 34097.75 288
UGNet98.41 20298.11 21099.31 19099.54 21998.55 21799.18 376100.00 198.64 7399.79 19299.04 34587.61 338100.00 199.30 20099.89 13299.40 261
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
Vis-MVSNetpermissive98.52 19298.25 19999.34 18399.68 16598.55 21799.68 32399.41 19097.34 18399.94 156100.00 190.38 30399.70 22399.03 21598.84 17999.76 241
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
testing9199.18 12099.10 11799.41 17299.60 20198.43 220100.00 199.43 12496.76 22799.82 18899.92 23699.05 9599.98 12399.62 17097.67 24799.81 215
testing9999.18 12099.10 11799.41 17299.60 20198.43 220100.00 199.43 12496.76 22799.84 17799.92 23699.06 9399.98 12399.62 17097.67 24799.81 215
GeoE98.06 21897.65 23399.29 19199.47 24998.41 222100.00 199.19 30494.85 31198.88 255100.00 191.21 28899.59 23097.02 29998.19 21699.88 181
UniMVSNet_NR-MVSNet97.16 25696.80 26098.22 26198.38 33598.41 222100.00 199.45 10296.14 27497.76 32299.64 29295.05 23798.50 33997.98 26786.84 38197.75 288
DU-MVS96.93 26996.49 27398.22 26198.31 33998.41 222100.00 199.37 21296.41 25897.76 32299.65 28892.14 28198.50 33997.98 26786.84 38197.75 288
v2v48296.70 27896.18 28798.27 25698.04 35398.39 225100.00 199.13 32894.19 33398.58 27599.08 34190.48 30198.67 32295.69 32590.44 35497.75 288
ADS-MVSNet98.70 17398.51 18299.28 19499.51 23598.39 22599.24 36899.44 11695.52 29599.96 12699.70 27697.57 17499.58 23497.11 29798.54 18799.88 181
PatchT95.90 32194.95 33598.75 22899.03 29498.39 22599.08 39399.32 24085.52 40199.96 12694.99 40597.94 15398.05 37180.20 40998.47 19299.81 215
miper_ehance_all_eth97.81 22797.66 23298.23 26099.49 24398.37 22899.99 21999.11 33594.78 31298.25 30099.21 33598.18 14798.57 33497.35 29392.61 32097.76 277
EPNet99.62 5999.69 2299.42 17199.99 4998.37 228100.00 199.89 3798.83 53100.00 1100.00 198.97 106100.00 199.90 10299.61 16299.89 168
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MDTV_nov1_ep1398.94 13899.53 22298.36 23099.39 35499.46 9496.54 24899.99 11199.63 29698.92 11599.86 18998.30 25698.71 185
CDS-MVSNet98.96 15198.95 13799.01 21199.48 24598.36 23099.93 27199.37 21296.79 22599.31 22999.83 25599.77 1198.91 30298.07 26497.98 22499.77 239
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
FMVSNet296.22 30595.60 31798.06 27899.53 22298.33 23299.45 34799.27 27393.71 34098.03 30998.84 36284.23 36698.10 36593.97 35093.40 31197.73 317
PatchmatchNetpermissive99.03 13698.96 13399.26 19799.49 24398.33 23299.38 35599.45 10296.64 24399.96 12699.58 30699.49 4399.50 25797.63 28099.00 17799.93 147
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
testing398.44 19798.37 19398.65 23199.51 23598.32 234100.00 199.62 6696.43 25497.93 31599.99 18999.11 8997.81 37894.88 33997.80 23999.82 206
PVSNet94.91 1899.30 10499.25 9799.44 166100.00 198.32 234100.00 199.86 3898.04 111100.00 1100.00 196.10 220100.00 199.55 18199.73 150100.00 1
VPNet96.41 29295.76 30898.33 25398.61 32798.30 23699.48 34499.45 10296.98 21098.87 25799.88 24481.57 37998.93 30099.22 20787.82 37697.76 277
TR-MVS98.14 21697.74 22899.33 18699.59 20598.28 23799.27 36599.21 30096.42 25799.15 23899.94 23188.87 32599.79 20898.88 22298.29 20899.93 147
PS-CasMVS96.34 29995.78 30798.03 28598.18 34998.27 23899.71 31799.32 24094.75 31396.82 35199.65 28886.98 34698.15 35797.74 27688.85 36997.66 342
SCA98.30 20797.98 22199.23 19999.41 25998.25 23999.99 21999.45 10296.91 21699.76 19799.58 30689.65 31499.54 24798.31 25398.79 18099.91 151
v896.35 29895.73 31098.21 26398.11 35198.23 24099.94 26899.07 34992.66 36898.29 29599.00 35191.46 28598.77 31694.17 34688.83 37097.62 352
V4296.65 28096.16 28998.11 27398.17 35098.23 24099.99 21999.09 34393.97 33698.74 26799.05 34491.09 29198.82 31195.46 33089.90 35697.27 371
ECVR-MVScopyleft98.43 19898.14 20899.32 18899.89 11498.21 24299.46 345100.00 198.38 8499.47 216100.00 187.91 33399.80 20799.35 19598.78 18199.94 136
c3_l97.58 23797.42 23898.06 27899.48 24598.16 24399.96 25799.10 33894.54 32198.13 30499.20 33797.87 15898.25 35397.28 29491.20 34697.75 288
test111198.42 20098.12 20999.29 19199.88 11698.15 24499.46 345100.00 198.36 8899.42 218100.00 187.91 33399.79 20899.31 19998.78 18199.94 136
v119296.18 30795.49 32198.26 25898.01 35498.15 24499.99 21999.08 34493.36 35498.54 27898.97 35589.47 31798.89 30591.15 37290.82 34997.75 288
cl____97.54 24097.32 24498.18 26499.47 24998.14 246100.00 199.10 33894.16 33497.60 33299.63 29697.52 17898.65 32496.47 31391.97 33397.76 277
DIV-MVS_self_test97.52 24397.35 24398.05 28299.46 25298.11 247100.00 199.10 33894.21 33197.62 33099.63 29697.65 17098.29 35096.47 31391.98 33297.76 277
v14419296.40 29595.81 30398.17 26697.89 35998.11 24799.99 21999.06 35793.39 35398.75 26699.09 34090.43 30298.66 32393.10 35890.55 35397.75 288
mvsmamba99.05 13398.98 13099.27 19699.57 21498.10 249100.00 199.28 26395.92 27999.96 12699.97 20396.73 20999.89 18099.72 14299.65 15899.81 215
IB-MVS96.24 1297.54 24096.95 25599.33 18699.67 17398.10 249100.00 199.47 7997.42 17799.26 23199.69 27998.83 12399.89 18099.43 19078.77 405100.00 1
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvs198.37 20598.04 21799.34 18399.84 12198.07 251100.00 199.00 36898.85 49100.00 1100.00 185.11 36199.96 14399.69 15699.88 134100.00 1
test0.0.03 198.12 21798.03 21898.39 24899.11 28398.07 251100.00 199.93 3096.70 23696.91 34899.95 22599.31 6898.19 35591.93 36698.44 19398.91 268
anonymousdsp97.16 25696.88 25798.00 28697.08 38498.06 25399.81 29399.15 31994.58 31997.84 32199.62 30090.49 30098.60 32997.98 26795.32 27997.33 370
TSAR-MVS + GP.99.61 6199.69 2299.35 18299.99 4998.06 253100.00 199.36 21899.83 2100.00 1100.00 198.95 11099.99 98100.00 199.11 173100.00 1
test_vis1_n_192097.77 22997.24 25099.34 18399.79 14698.04 255100.00 199.25 28298.88 44100.00 1100.00 177.52 392100.00 199.88 10699.85 141100.00 1
v114496.51 28795.97 29798.13 27197.98 35698.04 25599.99 21999.08 34493.51 34998.62 27398.98 35290.98 29598.62 32593.79 35290.79 35097.74 310
test_djsdf97.55 23997.38 24198.07 27497.50 37497.99 257100.00 199.13 32895.46 30098.47 28599.85 25292.01 28498.59 33198.63 23895.36 27897.62 352
WAC-MVS97.98 25895.74 323
myMVS_eth3d98.52 19298.51 18298.53 23899.50 23997.98 258100.00 199.57 6896.23 26898.07 306100.00 199.09 9197.81 37896.17 31997.96 22699.82 206
test_vis1_n96.69 27995.81 30399.32 18899.14 28197.98 25899.97 25198.98 37198.45 81100.00 1100.00 166.44 41099.99 9899.78 12999.57 164100.00 1
v192192096.16 31195.50 31998.14 26897.88 36097.96 26199.99 21999.07 34993.33 35598.60 27499.24 33289.37 31898.71 32091.28 37090.74 35197.75 288
v1096.14 31395.50 31998.07 27498.19 34897.96 26199.83 28999.07 34992.10 37198.07 30698.94 35791.07 29298.61 32692.41 36589.82 35797.63 350
eth_miper_zixun_eth97.47 24497.28 24698.06 27899.41 25997.94 26399.62 33099.08 34494.46 32598.19 30399.56 31196.91 20398.50 33996.78 30991.49 34197.74 310
GA-MVS97.72 23197.27 24899.06 20599.24 27897.93 264100.00 199.24 28795.80 28698.99 25099.64 29289.77 31199.36 27395.12 33697.62 25199.89 168
tpmvs98.59 18398.38 19199.23 19999.69 16197.90 26599.31 36399.47 7994.52 32299.68 20499.28 33097.64 17199.89 18097.71 27798.17 21899.89 168
IterMVS-LS97.56 23897.44 23797.92 29399.38 26897.90 26599.89 28199.10 33894.41 32698.32 29399.54 31497.21 18998.11 36297.50 28591.62 33897.75 288
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TransMVSNet (Re)94.78 33493.72 34197.93 29298.34 33697.88 26799.23 37397.98 40191.60 37394.55 37799.71 27387.89 33598.36 34789.30 38884.92 38897.56 358
WR-MVS_H96.73 27596.32 28397.95 28998.26 34397.88 26799.72 31699.43 12495.06 30796.99 34598.68 36993.02 26798.53 33797.43 28888.33 37397.43 365
v124095.96 31995.25 32898.07 27497.91 35897.87 26999.96 25799.07 34993.24 35898.64 27298.96 35688.98 32398.61 32689.58 38690.92 34897.75 288
EI-MVSNet97.98 22297.93 22298.16 26799.11 28397.84 27099.74 30999.29 25794.39 32798.65 270100.00 197.21 18998.88 30897.62 28395.31 28097.75 288
KD-MVS_2432*160094.15 34093.08 34997.35 31099.53 22297.83 27199.63 32899.19 30492.88 36496.29 36097.68 39098.84 12196.70 39089.73 38363.92 41497.53 360
miper_refine_blended94.15 34093.08 34997.35 31099.53 22297.83 27199.63 32899.19 30492.88 36496.29 36097.68 39098.84 12196.70 39089.73 38363.92 41497.53 360
CHOSEN 1792x268899.00 14498.91 14299.25 19899.90 11297.79 273100.00 199.99 1398.79 6398.28 296100.00 193.63 25699.95 15699.66 16499.95 121100.00 1
tpmrst98.98 15098.93 14099.14 20499.61 19997.74 27499.52 34199.36 21896.05 27699.98 11799.64 29299.04 9899.86 18998.94 21898.19 21699.82 206
TAMVS98.76 16798.73 15898.86 22199.44 25597.69 27599.57 33599.34 23596.57 24699.12 24099.81 26198.83 12399.16 28497.97 27097.91 23099.73 247
CVMVSNet98.56 18698.47 18598.82 22299.11 28397.67 27699.74 30999.47 7997.57 16099.06 246100.00 195.72 22598.97 29798.21 25997.33 25399.83 201
Patchmatch-test97.83 22697.42 23899.06 20599.08 28797.66 27798.66 40399.21 30093.65 34498.25 30099.58 30699.47 4799.57 23590.25 38198.59 18699.95 131
TranMVSNet+NR-MVSNet96.45 29196.01 29497.79 29798.00 35597.62 278100.00 199.35 22995.98 27797.31 33999.64 29290.09 30698.00 37296.89 30486.80 38497.75 288
CostFormer98.84 16298.77 15499.04 20999.41 25997.58 27999.67 32499.35 22994.66 31799.96 12699.36 32699.28 7699.74 21899.41 19297.81 23899.81 215
miper_lstm_enhance97.40 24797.28 24697.75 29899.48 24597.52 280100.00 199.07 34994.08 33598.01 31299.61 30297.38 18697.98 37396.44 31691.47 34397.76 277
Anonymous2023121196.29 30195.70 31198.07 27499.80 14297.49 28199.15 38499.40 19489.11 38997.75 32599.45 32088.93 32498.98 29598.26 25889.47 36197.73 317
test_fmvs1_n97.43 24596.86 25899.15 20399.68 16597.48 28299.99 21998.98 37198.82 55100.00 1100.00 174.85 39999.96 14399.67 16099.70 153100.00 1
pm-mvs195.76 32395.01 33398.00 28698.23 34597.45 28399.24 36899.04 36293.13 36195.93 36799.72 27186.28 35198.84 31095.62 32887.92 37597.72 323
VDDNet96.39 29695.55 31898.90 21899.27 27597.45 28399.15 38499.92 3491.28 37599.98 117100.00 173.55 400100.00 199.85 11296.98 25999.24 262
dp98.72 17098.61 17199.03 21099.53 22297.39 28599.45 34799.39 20795.62 29099.94 15699.52 31598.83 12399.82 20296.77 31198.42 19599.89 168
COLMAP_ROBcopyleft97.10 798.29 20998.17 20798.65 23199.94 10397.39 28599.30 36499.40 19495.64 28897.75 325100.00 192.69 27599.95 15698.89 22199.92 12998.62 272
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
WB-MVSnew97.02 26697.24 25096.37 34699.44 25597.36 287100.00 199.43 12496.12 27599.35 22799.89 24293.60 25898.42 34588.91 39298.39 19893.33 407
AllTest98.55 18798.40 18998.99 21299.93 10597.35 288100.00 199.40 19497.08 20399.09 24299.98 19493.37 26099.95 15696.94 30199.84 14399.68 250
TestCases98.99 21299.93 10597.35 28899.40 19497.08 20399.09 24299.98 19493.37 26099.95 15696.94 30199.84 14399.68 250
v7n96.06 31795.42 32797.99 28897.58 37197.35 28899.86 28599.11 33592.81 36797.91 31799.49 31790.99 29498.92 30192.51 36288.49 37297.70 331
PS-MVSNAJss98.03 22098.06 21697.94 29097.63 36697.33 29199.89 28199.23 29196.27 26798.03 30999.59 30498.75 12898.78 31398.52 24494.61 30397.70 331
Anonymous2024052996.93 26996.22 28699.05 20799.79 14697.30 29299.16 38299.47 7988.51 39298.69 268100.00 183.50 372100.00 199.83 11697.02 25899.83 201
mvs_tets97.00 26796.69 26497.94 29097.41 38197.27 29399.60 33299.18 31196.51 25197.35 33899.69 27986.53 34998.91 30298.84 22495.09 29497.65 346
gm-plane-assit99.52 23097.26 29495.86 282100.00 199.43 26898.76 229
MDA-MVSNet_test_wron92.61 35491.09 36297.19 31996.71 38797.26 294100.00 199.14 32488.61 39167.90 41998.32 38289.03 32196.57 39390.47 37989.59 35997.74 310
PEN-MVS96.01 31895.48 32397.58 30397.74 36397.26 29499.90 27799.29 25794.55 32096.79 35299.55 31287.38 34197.84 37796.92 30387.24 37997.65 346
MVStest194.27 33893.30 34797.19 31998.83 32097.18 29799.93 27198.79 38386.80 39884.88 41099.04 34594.32 24998.25 35390.55 37786.57 38596.12 393
CSCG99.28 10699.35 8699.05 20799.99 4997.15 298100.00 199.47 7997.44 17599.42 218100.00 197.83 163100.00 199.99 64100.00 1100.00 1
jajsoiax97.07 26196.79 26297.89 29497.28 38297.12 29999.95 26399.19 30496.55 24797.31 33999.69 27987.35 34398.91 30298.70 23295.12 29397.66 342
tpm298.64 17798.58 17598.81 22599.42 25797.12 29999.69 32199.37 21293.63 34599.94 15699.67 28498.96 10999.47 26198.62 24097.95 22899.83 201
tpm cat198.05 21997.76 22798.92 21799.50 23997.10 30199.77 30499.30 25190.20 38699.72 20198.71 36797.71 16799.86 18996.75 31298.20 21599.81 215
YYNet192.44 35590.92 36397.03 32396.20 38997.06 30299.99 21999.14 32488.21 39467.93 41898.43 37988.63 32796.28 39790.64 37489.08 36697.74 310
OMC-MVS99.27 10799.38 7898.96 21599.95 10097.06 302100.00 199.40 19498.83 5399.88 173100.00 197.01 19599.86 18999.47 18999.84 14399.97 119
IterMVS96.76 27496.46 27597.63 29999.41 25996.89 30499.99 21999.13 32894.74 31597.59 33399.66 28689.63 31698.28 35195.71 32492.31 32797.72 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
EU-MVSNet96.63 28196.53 27096.94 32997.59 37096.87 30599.76 30699.47 7996.35 26396.85 35099.78 26792.57 27796.27 39895.33 33191.08 34797.68 337
IterMVS-SCA-FT96.72 27796.42 27797.62 30199.40 26496.83 30699.99 21999.14 32494.65 31897.55 33499.72 27189.65 31498.31 34995.62 32892.05 33097.73 317
sd_testset97.81 22797.48 23698.79 22699.82 12596.80 30799.32 36099.45 10297.62 15099.38 22599.86 24785.56 35999.77 21399.72 14296.61 26699.79 235
Baseline_NR-MVSNet96.16 31195.70 31197.56 30498.28 34296.79 308100.00 197.86 40491.93 37297.63 32899.47 31992.14 28198.35 34897.13 29686.83 38397.54 359
BH-w/o98.82 16498.81 15198.88 22099.62 19796.71 309100.00 199.28 26397.09 20198.81 263100.00 194.91 24099.96 14399.54 184100.00 199.96 125
Anonymous20240521197.87 22497.53 23598.90 21899.81 13196.70 31099.35 35899.46 9492.98 36298.83 26299.99 18990.63 298100.00 199.70 14997.03 257100.00 1
MDA-MVSNet-bldmvs91.65 36189.94 36996.79 33896.72 38696.70 31099.42 35298.94 37388.89 39066.97 42198.37 38081.43 38095.91 40189.24 38989.46 36297.75 288
MIMVSNet97.06 26296.73 26398.05 28299.38 26896.64 31298.47 40599.35 22993.41 35299.48 21398.53 37489.66 31397.70 38494.16 34898.11 22099.80 232
ttmdpeth96.24 30495.88 30097.32 31297.80 36196.61 31399.95 26398.77 38497.80 13293.42 38599.28 33086.42 35099.01 29197.63 28091.84 33596.33 390
v14896.29 30195.84 30297.63 29997.74 36396.53 314100.00 199.07 34993.52 34898.01 31299.42 32291.22 28798.60 32996.37 31787.22 38097.75 288
DTE-MVSNet95.52 32694.99 33497.08 32197.49 37696.45 315100.00 199.25 28293.82 33996.17 36399.57 31087.81 33697.18 38694.57 34186.26 38797.62 352
BH-untuned98.64 17798.65 16698.60 23599.59 20596.17 316100.00 199.28 26396.67 24098.41 287100.00 194.52 24699.83 19999.41 192100.00 199.81 215
kuosan98.55 18798.53 17998.62 23399.66 18096.16 317100.00 199.44 11693.93 33899.81 19199.98 19497.58 17299.81 20598.08 26298.28 20999.89 168
MVS-HIRNet94.12 34292.73 35698.29 25599.33 27095.95 31899.38 35599.19 30474.54 41398.26 29986.34 41786.07 35399.06 28891.60 36999.87 13799.85 196
XVG-OURS-SEG-HR98.27 21298.31 19798.14 26899.59 20595.92 319100.00 199.36 21898.48 7999.21 233100.00 189.27 31999.94 16899.76 13299.17 17098.56 273
XVG-OURS98.30 20798.36 19598.13 27199.58 21095.91 320100.00 199.36 21898.69 6899.23 232100.00 191.20 28999.92 17599.34 19697.82 23798.56 273
h-mvs3397.03 26496.53 27098.51 23999.79 14695.90 32199.45 34799.45 10298.21 96100.00 199.78 26797.49 17999.99 9899.72 14274.92 40799.65 255
dongtai98.29 20998.25 19998.42 24699.58 21095.86 322100.00 199.44 11693.46 35199.69 20399.97 20397.53 17799.51 25596.28 31898.27 21199.89 168
tpm98.24 21398.22 20698.32 25499.13 28295.79 32399.53 34099.12 33495.20 30599.96 12699.36 32697.58 17299.28 28097.41 28996.67 26499.88 181
MonoMVSNet98.55 18798.64 16898.26 25898.21 34695.76 32499.94 26899.16 31796.23 26899.47 21699.24 33296.75 20899.22 28299.61 17399.17 17099.81 215
TAPA-MVS96.40 1097.64 23397.37 24298.45 24499.94 10395.70 325100.00 199.40 19497.65 14599.53 209100.00 199.31 6899.66 22580.48 408100.00 1100.00 1
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
mamv498.95 15499.11 11698.46 24299.68 16595.67 32699.14 38699.27 27396.43 25499.94 15699.97 20397.79 16499.88 18799.77 130100.00 199.84 197
AUN-MVS96.26 30395.67 31598.06 27899.68 16595.60 32799.82 29299.42 14196.78 22699.88 17399.80 26494.84 24199.47 26197.48 28673.29 40999.12 265
hse-mvs296.79 27296.38 27898.04 28499.68 16595.54 32899.81 29399.42 14198.21 96100.00 199.80 26497.49 17999.46 26599.72 14273.27 41099.12 265
VDD-MVS96.58 28495.99 29598.34 25299.52 23095.33 32999.18 37699.38 20996.64 24399.77 195100.00 172.51 404100.00 1100.00 196.94 26099.70 248
ppachtmachnet_test96.17 30995.89 29997.02 32497.61 36895.24 33099.99 21999.24 28793.31 35696.71 35599.62 30094.34 24898.07 36789.87 38292.30 32897.75 288
PVSNet_093.57 1996.41 29295.74 30998.41 24799.84 12195.22 331100.00 1100.00 198.08 10997.55 33499.78 26784.40 364100.00 1100.00 181.99 397100.00 1
UniMVSNet_ETH3D95.28 33094.41 33697.89 29498.91 31095.14 33299.13 38799.35 22992.11 37097.17 34399.66 28670.28 40799.36 27397.88 27295.18 28999.16 263
our_test_396.51 28796.35 28096.98 32797.61 36895.05 33399.98 24599.01 36794.68 31696.77 35499.06 34295.87 22298.14 35891.81 36792.37 32697.75 288
ADS-MVSNet298.28 21198.51 18297.62 30199.51 23595.03 33499.24 36899.41 19095.52 29599.96 12699.70 27697.57 17497.94 37597.11 29798.54 18799.88 181
GBi-Net96.07 31595.80 30596.89 33299.53 22294.87 33599.18 37699.27 27393.71 34098.53 27998.81 36384.23 36698.07 36795.31 33293.60 30897.72 323
test196.07 31595.80 30596.89 33299.53 22294.87 33599.18 37699.27 27393.71 34098.53 27998.81 36384.23 36698.07 36795.31 33293.60 30897.72 323
FMVSNet194.45 33693.63 34396.89 33298.87 31694.87 33599.18 37699.27 27390.95 37997.31 33998.81 36372.89 40398.07 36792.61 36092.81 31897.72 323
HQP5-MVS94.82 338
HQP-MVS97.73 23097.85 22497.39 30799.07 28894.82 338100.00 199.40 19499.04 1699.17 23499.97 20388.61 32899.57 23599.79 12395.58 27097.77 275
NP-MVS99.07 28894.81 34099.97 203
HQP_MVS97.71 23297.82 22697.37 30899.00 30094.80 341100.00 199.40 19499.00 2799.08 24499.97 20388.58 33099.55 24499.79 12395.57 27497.76 277
plane_prior699.06 29294.80 34188.58 330
plane_prior94.80 341100.00 199.03 2195.58 270
plane_prior394.79 34499.03 2199.08 244
plane_prior799.00 30094.78 345
CLD-MVS97.64 23397.74 22897.36 30999.01 29694.76 346100.00 199.34 23599.30 499.00 24999.97 20387.49 33999.57 23599.96 8895.58 27097.75 288
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
OPM-MVS97.21 25397.18 25397.32 31298.08 35294.66 347100.00 199.28 26398.65 7298.92 25299.98 19486.03 35599.56 23998.28 25795.41 27697.72 323
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs595.94 32095.61 31696.95 32897.42 37994.66 347100.00 198.08 39693.60 34697.05 34499.43 32187.02 34498.46 34395.76 32292.12 32997.72 323
ACMM97.17 697.37 24897.40 24097.29 31499.01 29694.64 349100.00 199.25 28298.07 11098.44 28699.98 19487.38 34199.55 24499.25 20295.19 28897.69 335
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
D2MVS97.63 23697.83 22597.05 32298.83 32094.60 350100.00 199.82 4096.89 21998.28 29699.03 34894.05 25099.47 26198.58 24394.97 29897.09 375
LPG-MVS_test97.31 25097.32 24497.28 31598.85 31894.60 350100.00 199.37 21297.35 18198.85 25899.98 19486.66 34799.56 23999.55 18195.26 28297.70 331
LGP-MVS_train97.28 31598.85 31894.60 35099.37 21297.35 18198.85 25899.98 19486.66 34799.56 23999.55 18195.26 28297.70 331
ACMP97.00 897.19 25497.16 25497.27 31798.97 30594.58 353100.00 199.32 24097.97 11897.45 33699.98 19485.79 35799.56 23999.70 14995.24 28597.67 341
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
Fast-Effi-MVS+-dtu98.38 20498.56 17697.82 29699.58 21094.44 354100.00 199.16 31796.75 22999.51 21199.63 29695.03 23899.60 22897.71 27799.67 15699.42 260
ACMH96.25 1196.77 27396.62 26797.21 31898.96 30694.43 35599.64 32699.33 23797.43 17696.55 35799.97 20383.52 37199.54 24799.07 21495.13 29297.66 342
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo96.51 28796.48 27496.60 34195.65 39694.25 35698.84 40098.16 39295.85 28495.23 37199.04 34592.54 27899.13 28592.98 35999.98 11396.43 388
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
Effi-MVS+-dtu98.51 19498.86 14797.47 30599.77 15194.21 357100.00 198.94 37397.61 15499.91 16698.75 36695.89 22199.51 25599.36 19499.48 16598.68 270
testgi96.18 30795.93 29896.93 33098.98 30494.20 358100.00 199.07 34997.16 19696.06 36599.86 24784.08 36997.79 38190.38 38097.80 23998.81 269
LTVRE_ROB95.29 1696.32 30096.10 29096.99 32698.55 32993.88 35999.45 34799.28 26394.50 32396.46 35899.52 31584.86 36299.48 25997.26 29595.03 29597.59 356
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
ACMH+96.20 1396.49 29096.33 28297.00 32599.06 29293.80 36099.81 29399.31 24797.32 18695.89 36899.97 20382.62 37699.54 24798.34 25294.63 30297.65 346
test_040294.35 33793.70 34296.32 34797.92 35793.60 36199.61 33198.85 38088.19 39594.68 37699.48 31880.01 38498.58 33389.39 38795.15 29196.77 381
tt080596.52 28596.23 28597.40 30699.30 27493.55 36299.32 36099.45 10296.75 22997.88 31899.99 18979.99 38599.59 23097.39 29195.98 26999.06 267
ITE_SJBPF96.84 33598.96 30693.49 36398.12 39498.12 10798.35 29099.97 20384.45 36399.56 23995.63 32795.25 28497.49 362
OurMVSNet-221017-096.14 31395.98 29696.62 34097.49 37693.44 36499.92 27398.16 39295.86 28297.65 32799.95 22585.71 35898.78 31394.93 33894.18 30697.64 349
K. test v395.46 32895.14 33196.40 34497.53 37393.40 36599.99 21999.23 29195.49 29892.70 39099.73 27084.26 36598.12 36093.94 35193.38 31297.68 337
mvs5depth93.81 34493.00 35196.23 34994.25 40493.33 36697.43 41198.07 39793.47 35094.15 38299.58 30677.52 39298.97 29793.64 35388.92 36796.39 389
XVG-ACMP-BASELINE96.60 28396.52 27296.84 33598.41 33493.29 36799.99 21999.32 24097.76 13798.51 28299.29 32981.95 37899.54 24798.40 24895.03 29597.68 337
SixPastTwentyTwo95.71 32495.49 32196.38 34597.42 37993.01 36899.84 28898.23 39194.75 31395.98 36699.97 20385.35 36098.43 34494.71 34093.17 31397.69 335
TinyColmap95.50 32795.12 33296.64 33998.69 32493.00 36999.40 35397.75 40696.40 25996.14 36499.87 24579.47 38699.50 25793.62 35494.72 30197.40 367
FMVSNet595.32 32995.43 32694.99 36199.39 26792.99 37099.25 36799.24 28790.45 38297.44 33798.45 37795.78 22494.39 40787.02 39491.88 33497.59 356
new_pmnet94.11 34393.47 34596.04 35296.60 38892.82 37199.97 25198.91 37690.21 38595.26 37098.05 38885.89 35698.14 35884.28 40092.01 33197.16 373
EGC-MVSNET79.46 38074.04 38895.72 35596.00 39292.73 37299.09 39299.04 3625.08 42516.72 42598.71 36773.03 40298.74 31982.05 40596.64 26595.69 398
pmmvs-eth3d91.73 36090.67 36494.92 36391.63 41092.71 37399.90 27798.54 38891.19 37688.08 40195.50 40179.31 38896.13 39990.55 37781.32 40095.91 396
TDRefinement91.93 35790.48 36596.27 34881.60 42192.65 37499.10 39097.61 40993.96 33793.77 38399.85 25280.03 38399.53 25297.82 27470.59 41196.63 385
USDC95.90 32195.70 31196.50 34398.60 32892.56 375100.00 198.30 39097.77 13596.92 34699.94 23181.25 38299.45 26693.54 35594.96 29997.49 362
UnsupCasMVSNet_eth94.25 33993.89 33995.34 35697.63 36692.13 37699.73 31499.36 21894.88 31092.78 38798.63 37182.72 37496.53 39494.57 34184.73 38997.36 368
LF4IMVS96.19 30696.18 28796.23 34998.26 34392.09 377100.00 197.89 40397.82 13097.94 31499.87 24582.71 37599.38 27297.41 28993.71 30797.20 372
test20.0393.11 35092.85 35493.88 37495.19 40091.83 378100.00 198.87 37993.68 34392.76 38898.88 36189.20 32092.71 41277.88 41289.19 36597.09 375
lessismore_v096.05 35197.55 37291.80 37999.22 29491.87 39199.91 23983.50 37298.68 32192.48 36390.42 35597.68 337
MIMVSNet191.96 35691.20 35994.23 37194.94 40291.69 38099.34 35999.22 29488.23 39394.18 38198.45 37775.52 39893.41 41179.37 41091.49 34197.60 355
pmmvs390.62 36689.36 37294.40 36790.53 41591.49 381100.00 196.73 41484.21 40493.65 38496.65 39882.56 37794.83 40582.28 40477.62 40696.89 380
pmmvs693.64 34592.87 35395.94 35397.47 37891.41 38298.92 39799.02 36587.84 39695.01 37399.61 30277.24 39498.77 31694.33 34486.41 38697.63 350
Anonymous2024052193.29 34892.76 35594.90 36495.64 39791.27 38399.97 25198.82 38187.04 39794.71 37598.19 38383.86 37096.80 38984.04 40192.56 32496.64 384
KD-MVS_self_test91.16 36290.09 36794.35 36894.44 40391.27 38399.74 30999.08 34490.82 38094.53 37894.91 40686.11 35294.78 40682.67 40368.52 41296.99 377
mmtdpeth94.58 33594.18 33795.81 35498.82 32291.09 38599.99 21998.61 38796.38 260100.00 197.23 39476.52 39599.85 19599.82 12180.22 40196.48 386
dcpmvs_298.87 16099.53 6296.90 33199.87 11890.88 38699.94 26899.07 34998.20 98100.00 1100.00 198.69 13199.86 189100.00 1100.00 199.95 131
patch_mono-299.04 13499.79 696.81 33799.92 10890.47 387100.00 199.41 19098.95 35100.00 1100.00 199.78 9100.00 1100.00 1100.00 199.95 131
dmvs_re97.54 24097.88 22396.54 34299.55 21890.35 38899.86 28599.46 9497.00 20899.41 223100.00 190.78 29699.30 27899.60 17495.24 28599.96 125
DSMNet-mixed95.18 33295.21 33095.08 35796.03 39190.21 38999.65 32593.64 42292.91 36398.34 29197.40 39390.05 30895.51 40491.02 37397.86 23399.51 259
Anonymous2023120693.45 34793.17 34894.30 36995.00 40189.69 39099.98 24598.43 38993.30 35794.50 37998.59 37290.52 29995.73 40377.46 41490.73 35297.48 364
MS-PatchMatch95.66 32595.87 30195.05 35897.80 36189.25 39198.88 39999.30 25196.35 26396.86 34999.01 35081.35 38199.43 26893.30 35799.98 11396.46 387
CL-MVSNet_self_test91.07 36390.35 36693.24 37693.27 40589.16 39299.55 33799.25 28292.34 36995.23 37197.05 39688.86 32693.59 41080.67 40766.95 41396.96 378
test_fmvs295.17 33395.23 32995.01 35998.95 30888.99 39399.99 21997.77 40597.79 13398.58 27599.70 27673.36 40199.34 27695.88 32195.03 29596.70 383
UnsupCasMVSNet_bld89.50 36888.00 37493.99 37395.30 39988.86 39498.52 40499.28 26385.50 40287.80 40394.11 40761.63 41196.96 38890.63 37579.26 40296.15 391
new-patchmatchnet90.30 36789.46 37192.84 37890.77 41388.55 39599.83 28998.80 38290.07 38787.86 40295.00 40478.77 38994.30 40884.86 39979.15 40395.68 399
OpenMVS_ROBcopyleft88.34 2091.89 35891.12 36094.19 37295.55 39887.63 39699.26 36698.03 39886.61 40090.65 39796.82 39770.14 40898.78 31386.54 39696.50 26896.15 391
Syy-MVS96.17 30996.57 26995.00 36099.50 23987.37 397100.00 199.57 6896.23 26898.07 306100.00 192.41 27997.81 37885.34 39897.96 22699.82 206
EG-PatchMatch MVS92.94 35392.49 35794.29 37095.87 39387.07 39899.07 39598.11 39593.19 35988.98 39998.66 37070.89 40599.08 28792.43 36495.21 28796.72 382
LCM-MVSNet-Re96.52 28597.21 25294.44 36699.27 27585.80 39999.85 28796.61 41695.98 27792.75 38998.48 37693.97 25397.55 38599.58 17998.43 19499.98 112
test_vis1_rt93.10 35192.93 35293.58 37599.63 19085.07 40099.99 21993.71 42197.49 17090.96 39397.10 39560.40 41299.95 15699.24 20497.90 23195.72 397
DeepPCF-MVS98.03 498.54 19099.72 1994.98 36299.99 4984.94 401100.00 199.42 14199.98 1100.00 1100.00 198.11 149100.00 1100.00 1100.00 1100.00 1
RPSCF97.37 24898.24 20294.76 36599.80 14284.57 40299.99 21999.05 35994.95 30999.82 188100.00 194.03 251100.00 198.15 26198.38 20099.70 248
Patchmatch-RL test93.49 34693.63 34393.05 37791.78 40883.41 40398.21 40796.95 41391.58 37491.05 39297.64 39299.40 6095.83 40294.11 34981.95 39899.91 151
Gipumacopyleft84.73 37583.50 38088.40 38697.50 37482.21 40488.87 41599.05 35965.81 41585.71 40690.49 41253.70 41396.31 39678.64 41191.74 33686.67 414
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PM-MVS88.39 37087.41 37591.31 37991.73 40982.02 40599.79 29896.62 41591.06 37890.71 39695.73 40048.60 41695.96 40090.56 37681.91 39995.97 395
mvsany_test389.36 36988.96 37390.56 38191.95 40778.97 40699.74 30996.59 41796.84 22189.25 39896.07 39952.59 41497.11 38795.17 33582.44 39695.58 400
test_method91.04 36491.10 36190.85 38098.34 33677.63 407100.00 198.93 37576.69 41196.25 36298.52 37570.44 40697.98 37389.02 39191.74 33696.92 379
test_fmvs387.19 37387.02 37687.71 38792.69 40676.64 40899.96 25797.27 41093.55 34790.82 39594.03 40838.00 42292.19 41393.49 35683.35 39594.32 402
test_f86.87 37486.06 37789.28 38491.45 41276.37 40999.87 28497.11 41191.10 37788.46 40093.05 41038.31 42196.66 39291.77 36883.46 39494.82 401
PMMVS279.15 38277.28 38584.76 39282.34 42072.66 41099.70 31995.11 42071.68 41484.78 41190.87 41132.05 42489.99 41575.53 41763.45 41691.64 411
APD_test193.07 35294.14 33889.85 38399.18 27972.49 41199.76 30698.90 37892.86 36696.35 35999.94 23175.56 39799.91 17786.73 39597.98 22497.15 374
test12379.44 38179.23 38380.05 39980.03 42271.72 412100.00 177.93 43062.52 41694.81 37499.69 27978.21 39074.53 42392.57 36127.33 42393.90 403
DeepMVS_CXcopyleft89.98 38298.90 31171.46 41399.18 31197.61 15496.92 34699.83 25586.07 35399.83 19996.02 32097.65 24998.65 271
ambc88.45 38586.84 41770.76 41497.79 41098.02 40090.91 39495.14 40238.69 42098.51 33894.97 33784.23 39096.09 394
test_vis3_rt79.61 37978.19 38483.86 39388.68 41669.56 41599.81 29382.19 42986.78 39968.57 41784.51 42025.06 42698.26 35289.18 39078.94 40483.75 417
WB-MVS88.24 37190.09 36782.68 39691.56 41169.51 416100.00 198.73 38590.72 38187.29 40498.12 38492.87 26985.01 41862.19 41989.34 36393.54 406
SSC-MVS87.61 37289.47 37082.04 39790.63 41468.77 41799.99 21998.66 38690.34 38486.70 40598.08 38592.72 27484.12 41959.41 42288.71 37193.22 410
dmvs_testset93.27 34995.48 32386.65 38998.74 32368.42 41899.92 27398.91 37696.19 27393.28 386100.00 191.06 29391.67 41489.64 38591.54 33999.86 195
LCM-MVSNet79.01 38376.93 38685.27 39178.28 42368.01 41996.57 41298.03 39855.10 41982.03 41293.27 40931.99 42593.95 40982.72 40274.37 40893.84 404
CMPMVSbinary66.12 2290.65 36592.04 35886.46 39096.18 39066.87 42098.03 40899.38 20983.38 40685.49 40799.55 31277.59 39198.80 31294.44 34394.31 30593.72 405
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
N_pmnet91.88 35993.37 34687.40 38897.24 38366.33 42199.90 27791.05 42489.77 38895.65 36998.58 37390.05 30898.11 36285.39 39792.72 31997.75 288
EMVS69.88 38769.09 39072.24 40584.70 41865.82 42299.96 25787.08 42849.82 42271.51 41684.74 41949.30 41575.32 42250.97 42443.71 42075.59 420
E-PMN70.72 38670.06 38972.69 40483.92 41965.48 42399.95 26392.72 42349.88 42172.30 41586.26 41847.17 41777.43 42153.83 42344.49 41975.17 421
ANet_high66.05 38963.44 39373.88 40261.14 42763.45 42495.68 41487.18 42679.93 40947.35 42380.68 42322.35 42772.33 42561.24 42035.42 42185.88 416
MVEpermissive68.59 2167.22 38864.68 39274.84 40074.67 42662.32 42595.84 41390.87 42550.98 42058.72 42281.05 42212.20 43078.95 42061.06 42156.75 41783.24 418
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testmvs80.17 37881.95 38174.80 40158.54 42859.58 426100.00 187.14 42776.09 41299.61 207100.00 167.06 40974.19 42498.84 22450.30 41890.64 413
testf184.40 37684.79 37883.23 39495.71 39458.71 42798.79 40197.75 40681.58 40784.94 40898.07 38645.33 41897.73 38277.09 41583.85 39193.24 408
APD_test284.40 37684.79 37883.23 39495.71 39458.71 42798.79 40197.75 40681.58 40784.94 40898.07 38645.33 41897.73 38277.09 41583.85 39193.24 408
tmp_tt75.80 38574.26 38780.43 39852.91 43053.67 42987.42 41797.98 40161.80 41767.04 420100.00 176.43 39696.40 39596.47 31328.26 42291.23 412
FPMVS77.92 38479.45 38273.34 40376.87 42446.81 43098.24 40699.05 35959.89 41873.55 41498.34 38136.81 42386.55 41680.96 40691.35 34586.65 415
PMVScopyleft60.66 2365.98 39065.05 39168.75 40655.06 42938.40 43188.19 41696.98 41248.30 42344.82 42488.52 41512.22 42986.49 41767.58 41883.79 39381.35 419
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d28.28 39129.73 39523.92 40775.89 42532.61 43266.50 41812.88 43116.09 42414.59 42616.59 42512.35 42832.36 42639.36 42513.36 4246.79 422
mmdepth0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.07 3950.09 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.79 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.41 39232.55 3940.00 4080.00 4310.00 4330.00 41999.39 2070.00 4260.00 427100.00 193.55 2590.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas8.24 39410.99 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 42798.75 1280.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.33 39311.11 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.01 3960.02 3990.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.14 4270.00 4310.00 4270.00 4260.00 4250.00 423
PC_three_145298.80 60100.00 1100.00 199.54 30100.00 1100.00 1100.00 1100.00 1
eth-test20.00 431
eth-test0.00 431
test_241102_TWO99.42 14199.03 21100.00 1100.00 199.56 27100.00 1100.00 1100.00 1100.00 1
9.1499.57 5299.99 49100.00 199.42 14197.54 162100.00 1100.00 199.15 8799.99 98100.00 1100.00 1
test_0728_THIRD98.79 63100.00 1100.00 199.61 20100.00 1100.00 1100.00 1100.00 1
GSMVS99.91 151
sam_mvs199.29 7499.91 151
sam_mvs99.33 63
MTGPAbinary99.42 141
test_post199.32 36088.24 41699.33 6399.59 23098.31 253
test_post89.05 41499.49 4399.59 230
patchmatchnet-post97.79 38999.41 5999.54 247
MTMP100.00 199.18 311
test9_res100.00 1100.00 1100.00 1
agg_prior2100.00 1100.00 1100.00 1
test_prior2100.00 198.82 55100.00 1100.00 199.47 47100.00 1100.00 1
旧先验2100.00 198.11 108100.00 1100.00 199.67 160
新几何2100.00 1
无先验100.00 199.80 4397.98 116100.00 199.33 197100.00 1
原ACMM2100.00 1
testdata2100.00 197.36 292
segment_acmp99.55 29
testdata1100.00 198.77 66
plane_prior599.40 19499.55 24499.79 12395.57 27497.76 277
plane_prior499.97 203
plane_prior2100.00 199.00 27
plane_prior199.02 295
n20.00 432
nn0.00 432
door-mid96.32 418
test1199.42 141
door96.13 419
HQP-NCC99.07 288100.00 199.04 1699.17 234
ACMP_Plane99.07 288100.00 199.04 1699.17 234
BP-MVS99.79 123
HQP4-MVS99.17 23499.57 23597.77 275
HQP3-MVS99.40 19495.58 270
HQP2-MVS88.61 328
ACMMP++_ref94.58 304
ACMMP++95.17 290
Test By Simon99.10 90