This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 2299.68 198.25 9899.10 199.76 2197.78 7596.61 1298.15 4399.53 793.62 17100.00 191.79 17399.80 2699.94 18
MSC_two_6792asdad99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 9099.98 999.55 1399.83 1599.96 10
OPU-MVS99.49 499.64 1798.51 499.77 1899.19 3395.12 899.97 2199.90 199.92 399.99 1
PS-MVSNAJ96.87 3196.40 4398.29 1997.35 13497.29 599.03 12197.11 18595.83 2098.97 1999.14 4582.48 19199.60 10698.60 3399.08 7898.00 199
xiu_mvs_v2_base96.66 3796.17 5398.11 2897.11 15096.96 699.01 12497.04 19295.51 2798.86 2399.11 5382.19 19999.36 13398.59 3598.14 11898.00 199
MM97.76 1197.39 2098.86 598.30 9796.83 799.81 1299.13 997.66 298.29 4198.96 7085.84 13699.90 5099.72 398.80 9699.85 30
MVS93.92 12892.28 15898.83 795.69 21096.82 896.22 31498.17 3684.89 28284.34 25998.61 10679.32 22799.83 7393.88 14499.43 6199.86 29
WTY-MVS95.97 6295.11 8798.54 1397.62 11996.65 999.44 6298.74 1592.25 9495.21 12098.46 12186.56 12199.46 12195.00 12592.69 19899.50 84
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2797.98 5397.18 495.96 10199.33 2292.62 27100.00 198.99 2599.93 199.98 6
MVS_030497.81 997.51 1598.74 998.97 7396.57 1199.91 298.17 3697.45 398.76 2698.97 6586.69 11699.96 2899.72 398.92 9099.69 58
DELS-MVS97.12 2596.60 3898.68 1198.03 10896.57 1199.84 997.84 6296.36 1895.20 12198.24 12888.17 8299.83 7396.11 9799.60 5099.64 68
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
HY-MVS88.56 795.29 8794.23 10298.48 1497.72 11596.41 1394.03 35198.74 1592.42 9095.65 11394.76 24686.52 12299.49 11595.29 11792.97 19499.53 79
test_0728_SECOND98.77 899.66 1296.37 1499.72 2497.68 9299.98 999.64 899.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 1099.80 496.19 1599.80 1697.99 5297.05 699.41 499.59 292.89 26100.00 198.99 2599.90 799.96 10
CANet97.00 2896.49 4098.55 1298.86 8496.10 1699.83 1097.52 13395.90 1997.21 6998.90 7982.66 18899.93 3998.71 2998.80 9699.63 70
sasdasda95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
canonicalmvs95.02 9493.96 11598.20 2197.53 12695.92 1798.71 15196.19 24891.78 10295.86 10698.49 11579.53 22499.03 15296.12 9591.42 22999.66 64
MG-MVS97.24 2096.83 3198.47 1599.79 595.71 1999.07 11599.06 1094.45 4196.42 9498.70 9888.81 7399.74 9195.35 11499.86 1299.97 7
alignmvs95.77 7295.00 9098.06 2997.35 13495.68 2099.71 2697.50 13891.50 10996.16 9998.61 10686.28 12799.00 15496.19 9391.74 21799.51 82
MGCFI-Net94.89 9693.84 12298.06 2997.49 12995.55 2198.64 16296.10 25591.60 10795.75 11098.46 12179.31 22898.98 15695.95 10191.24 23399.65 67
test_part299.54 3695.42 2298.13 44
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2399.29 8297.72 8394.50 3898.64 3099.54 393.32 2099.97 2199.58 1199.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2499.55 4497.68 9293.01 7499.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
IU-MVS99.63 1895.38 2497.73 8295.54 2699.54 399.69 799.81 2399.99 1
PAPM96.35 4895.94 5997.58 4394.10 27195.25 2698.93 13198.17 3694.26 4393.94 14598.72 9489.68 6297.88 21496.36 9099.29 6999.62 72
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2799.77 1897.72 8394.17 4499.30 899.54 393.32 2099.98 999.70 599.81 2399.99 1
test_241102_ONE99.63 1895.24 2797.72 8394.16 4699.30 899.49 993.32 2099.98 9
xiu_mvs_v1_base_debu94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
xiu_mvs_v1_base_debi94.73 10593.98 11296.99 6895.19 22995.24 2798.62 16596.50 22792.99 7797.52 6098.83 8572.37 27799.15 14497.03 7296.74 14896.58 238
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3299.72 2497.47 14393.95 4999.07 1599.46 1093.18 2399.97 2199.64 899.82 1999.69 58
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3299.77 1897.70 8893.95 4999.35 799.54 393.18 23
balanced_conf0396.83 3296.51 3997.81 3697.60 12295.15 3498.40 19796.77 20993.00 7698.69 2896.19 21689.75 6198.76 16598.45 4299.72 3299.51 82
3Dnovator+87.72 893.43 14491.84 16998.17 2395.73 20995.08 3598.92 13397.04 19291.42 11381.48 30497.60 15174.60 25499.79 8590.84 18398.97 8699.64 68
thres600view793.18 15492.00 16596.75 8297.62 11994.92 3699.07 11599.36 287.96 21790.47 20196.78 19783.29 17298.71 17082.93 27990.47 24096.61 236
test_one_060199.59 2894.89 3797.64 10593.14 7398.93 2199.45 1493.45 18
SF-MVS97.22 2296.92 2598.12 2799.11 6694.88 3899.44 6297.45 14689.60 16298.70 2799.42 1790.42 5099.72 9298.47 4199.65 4099.77 46
MVSFormer94.71 10894.08 10996.61 9295.05 24394.87 3997.77 24996.17 25186.84 24598.04 5098.52 11085.52 13895.99 31889.83 19398.97 8698.96 133
lupinMVS96.32 5095.94 5997.44 4795.05 24394.87 3999.86 596.50 22793.82 5898.04 5098.77 8885.52 13898.09 20196.98 7598.97 8699.37 96
thres100view90093.34 14992.15 16296.90 7597.62 11994.84 4199.06 11899.36 287.96 21790.47 20196.78 19783.29 17298.75 16684.11 26590.69 23697.12 221
tfpn200view993.43 14492.27 15996.90 7597.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23697.12 221
thres40093.39 14692.27 15996.73 8497.68 11794.84 4199.18 9499.36 288.45 19690.79 19396.90 18983.31 17098.75 16684.11 26590.69 23696.61 236
GG-mvs-BLEND96.98 7196.53 17194.81 4487.20 39297.74 7993.91 14696.40 20996.56 296.94 26795.08 12198.95 8999.20 113
HPM-MVS++copyleft97.72 1297.59 1398.14 2499.53 4094.76 4599.19 9297.75 7895.66 2498.21 4299.29 2391.10 3699.99 597.68 6099.87 999.68 60
thres20093.69 13692.59 15496.97 7297.76 11494.74 4699.35 7899.36 289.23 17291.21 19096.97 18583.42 16998.77 16385.08 24990.96 23497.39 214
BP-MVS196.59 4196.36 4597.29 5595.05 24394.72 4799.44 6297.45 14692.71 8396.41 9598.50 11294.11 1698.50 17795.61 10997.97 12098.66 166
CANet_DTU94.31 11993.35 13497.20 6197.03 15594.71 4898.62 16595.54 30495.61 2597.21 6998.47 11971.88 28299.84 6988.38 21397.46 13497.04 226
gg-mvs-nofinetune90.00 22387.71 24896.89 7996.15 19294.69 4985.15 39997.74 7968.32 39892.97 16160.16 41296.10 496.84 27093.89 14398.87 9399.14 117
GDP-MVS96.05 5895.63 7597.31 5495.37 22394.65 5099.36 7696.42 23292.14 9897.07 7398.53 10893.33 1998.50 17791.76 17496.66 15198.78 155
baseline192.61 16691.28 18196.58 9597.05 15494.63 5197.72 25496.20 24689.82 15588.56 22196.85 19386.85 11197.82 21888.42 21280.10 30297.30 216
FMVSNet388.81 24487.08 25893.99 20896.52 17294.59 5298.08 23296.20 24685.85 26382.12 29091.60 30774.05 26295.40 34279.04 30780.24 29991.99 292
NCCC98.12 598.11 398.13 2599.76 694.46 5399.81 1297.88 5896.54 1398.84 2499.46 1092.55 2899.98 998.25 5099.93 199.94 18
test1297.83 3599.33 5394.45 5497.55 12597.56 5988.60 7699.50 11499.71 3699.55 77
DeepC-MVS_fast93.52 297.16 2496.84 2998.13 2599.61 2494.45 5498.85 13797.64 10596.51 1695.88 10499.39 1887.35 10199.99 596.61 8599.69 3899.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42096.80 3496.85 2896.66 9197.85 11394.42 5694.76 34298.36 2892.50 8795.62 11497.52 15597.92 197.38 25098.31 4898.80 9698.20 193
131493.44 14391.98 16697.84 3495.24 22594.38 5796.22 31497.92 5690.18 14482.28 28797.71 14677.63 24299.80 8191.94 17298.67 10299.34 101
DP-MVS Recon95.85 6895.15 8497.95 3299.87 294.38 5799.60 3997.48 14186.58 25194.42 13499.13 4787.36 10099.98 993.64 14998.33 11499.48 86
MVSMamba_PlusPlus95.73 7695.15 8497.44 4797.28 13994.35 5998.26 21296.75 21083.09 31097.84 5695.97 22489.59 6398.48 18297.86 5799.73 3199.49 85
jason95.40 8594.86 9297.03 6592.91 30394.23 6099.70 2796.30 23993.56 6596.73 8898.52 11081.46 20997.91 21196.08 9898.47 11198.96 133
jason: jason.
SMA-MVScopyleft97.24 2096.99 2498.00 3199.30 5494.20 6199.16 9897.65 10489.55 16699.22 1299.52 890.34 5399.99 598.32 4799.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PAPR96.35 4895.82 6397.94 3399.63 1894.19 6299.42 6897.55 12592.43 8893.82 14999.12 4987.30 10299.91 4694.02 14199.06 8099.74 50
ET-MVSNet_ETH3D92.56 16891.45 17895.88 13396.39 18094.13 6399.46 5996.97 20092.18 9666.94 39298.29 12794.65 1494.28 36294.34 13783.82 28099.24 109
sss94.85 10193.94 11797.58 4396.43 17694.09 6498.93 13199.16 889.50 16795.27 11997.85 13681.50 20799.65 10192.79 16594.02 18498.99 130
CDPH-MVS96.56 4496.18 5097.70 3999.59 2893.92 6599.13 10997.44 15089.02 17997.90 5599.22 3088.90 7299.49 11594.63 13399.79 2799.68 60
VNet95.08 9394.26 10197.55 4698.07 10693.88 6698.68 15698.73 1790.33 14197.16 7297.43 16079.19 22999.53 11296.91 7891.85 21599.24 109
save fliter99.34 5093.85 6799.65 3697.63 10995.69 22
SD-MVS97.51 1697.40 1997.81 3699.01 7293.79 6899.33 8097.38 15793.73 6098.83 2599.02 6190.87 4399.88 5498.69 3099.74 2999.77 46
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1597.47 1697.70 3999.58 3093.63 6999.56 4397.52 13393.59 6498.01 5299.12 4990.80 4499.55 10999.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVScopyleft96.95 2996.72 3597.63 4199.51 4193.58 7099.16 9897.44 15090.08 14998.59 3299.07 5489.06 6799.42 12697.92 5599.66 3999.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP96.59 4196.18 5097.81 3698.82 8593.55 7198.88 13697.59 11890.66 12797.98 5399.14 4586.59 119100.00 196.47 8999.46 5799.89 25
nrg03090.23 21688.87 22594.32 19391.53 32793.54 7298.79 14795.89 28288.12 21184.55 25694.61 24878.80 23396.88 26992.35 16975.21 32792.53 273
OpenMVScopyleft85.28 1490.75 20688.84 22696.48 10093.58 29093.51 7398.80 14397.41 15482.59 32178.62 33497.49 15768.00 31199.82 7684.52 25998.55 10796.11 249
TSAR-MVS + MP.97.44 1897.46 1797.39 5299.12 6593.49 7498.52 17997.50 13894.46 3998.99 1798.64 10291.58 3399.08 15198.49 4099.83 1599.60 73
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM91.41 19089.49 21397.17 6295.66 21293.42 7598.60 17197.51 13580.92 34681.39 30597.41 16172.89 27499.87 5882.33 28498.68 10198.21 192
WBMVS91.35 19390.49 19993.94 20996.97 15693.40 7699.27 8696.71 21187.40 23483.10 27291.76 30492.38 2996.23 30988.95 21077.89 31192.17 285
ZD-MVS99.67 1093.28 7797.61 11287.78 22297.41 6399.16 3990.15 5699.56 10898.35 4599.70 37
UBG95.73 7695.41 7796.69 8896.97 15693.23 7899.13 10997.79 7391.28 11694.38 13796.78 19792.37 3098.56 17696.17 9493.84 18698.26 186
MSLP-MVS++97.50 1797.45 1897.63 4199.65 1693.21 7999.70 2798.13 4294.61 3697.78 5899.46 1089.85 5999.81 7997.97 5499.91 699.88 26
TEST999.57 3393.17 8099.38 7297.66 9789.57 16498.39 3799.18 3690.88 4299.66 97
train_agg97.20 2397.08 2397.57 4599.57 3393.17 8099.38 7297.66 9790.18 14498.39 3799.18 3690.94 3999.66 9798.58 3699.85 1399.88 26
EPNet96.82 3396.68 3797.25 5998.65 9093.10 8299.48 5398.76 1496.54 1397.84 5698.22 12987.49 9499.66 9795.35 11497.78 12699.00 129
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_899.55 3593.07 8399.37 7597.64 10590.18 14498.36 3999.19 3390.94 3999.64 103
3Dnovator87.35 1193.17 15691.77 17297.37 5395.41 22093.07 8398.82 14097.85 6191.53 10882.56 28097.58 15371.97 28199.82 7691.01 18099.23 7399.22 112
cascas90.93 20389.33 21795.76 13795.69 21093.03 8598.99 12696.59 21980.49 34886.79 24094.45 24965.23 33498.60 17493.52 15192.18 21095.66 253
ETVMVS94.50 11593.90 12096.31 11197.48 13092.98 8699.07 11597.86 6088.09 21294.40 13596.90 18988.35 7997.28 25490.72 18792.25 20998.66 166
test_yl95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
DCV-MVSNet95.27 8894.60 9597.28 5798.53 9392.98 8699.05 11998.70 1886.76 24894.65 13197.74 14487.78 8999.44 12295.57 11092.61 19999.44 90
MVSTER92.71 16292.32 15793.86 21297.29 13792.95 8999.01 12496.59 21990.09 14885.51 24994.00 25694.61 1596.56 28290.77 18683.03 28792.08 289
fmvsm_l_conf0.5_n_a97.70 1397.80 1197.42 4997.59 12392.91 9099.86 598.04 4896.70 1099.58 299.26 2490.90 4199.94 3599.57 1298.66 10399.40 93
旧先验198.97 7392.90 9197.74 7999.15 4291.05 3899.33 6599.60 73
fmvsm_l_conf0.5_n97.65 1497.72 1297.41 5097.51 12892.78 9299.85 898.05 4696.78 899.60 199.23 2990.42 5099.92 4199.55 1398.50 10899.55 77
MP-MVS-pluss95.80 7095.30 7997.29 5598.95 7792.66 9398.59 17397.14 18188.95 18293.12 15899.25 2685.62 13799.94 3596.56 8799.48 5699.28 106
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
agg_prior99.54 3692.66 9397.64 10597.98 5399.61 105
MVS_Test93.67 13992.67 15196.69 8896.72 16692.66 9397.22 27796.03 26187.69 22895.12 12394.03 25481.55 20598.28 19089.17 20796.46 15299.14 117
thisisatest051594.75 10494.19 10496.43 10396.13 19792.64 9699.47 5597.60 11487.55 23193.17 15797.59 15294.71 1298.42 18488.28 21493.20 19198.24 190
FMVSNet286.90 27484.79 29393.24 22395.11 23792.54 9797.67 25995.86 28682.94 31480.55 31191.17 31662.89 34395.29 34477.23 31979.71 30591.90 293
新几何197.40 5198.92 8192.51 9897.77 7785.52 26996.69 8999.06 5688.08 8699.89 5384.88 25399.62 4699.79 38
testing1195.33 8694.98 9196.37 10897.20 14192.31 9999.29 8297.68 9290.59 13194.43 13397.20 17190.79 4598.60 17495.25 11892.38 20398.18 194
testing22294.48 11694.00 11195.95 13197.30 13692.27 10098.82 14097.92 5689.20 17394.82 12697.26 16687.13 10497.32 25391.95 17191.56 22198.25 187
114514_t94.06 12393.05 14297.06 6499.08 6992.26 10198.97 12997.01 19782.58 32292.57 16598.22 12980.68 21699.30 13989.34 20399.02 8399.63 70
test250694.80 10294.21 10396.58 9596.41 17892.18 10298.01 23598.96 1190.82 12493.46 15497.28 16485.92 13398.45 18389.82 19597.19 14099.12 120
test_prior492.00 10399.41 69
testing9994.88 9894.45 9796.17 11997.20 14191.91 10499.20 9197.66 9789.95 15293.68 15097.06 18090.28 5498.50 17793.52 15191.54 22398.12 196
testing9194.88 9894.44 9896.21 11597.19 14391.90 10599.23 8997.66 9789.91 15393.66 15197.05 18290.21 5598.50 17793.52 15191.53 22698.25 187
test_prior97.01 6699.58 3091.77 10697.57 12399.49 11599.79 38
PHI-MVS96.65 4096.46 4297.21 6099.34 5091.77 10699.70 2798.05 4686.48 25698.05 4999.20 3289.33 6599.96 2898.38 4399.62 4699.90 22
ab-mvs91.05 20189.17 21996.69 8895.96 20191.72 10892.62 36597.23 17185.61 26889.74 21293.89 26168.55 30499.42 12691.09 17887.84 24998.92 141
TSAR-MVS + GP.96.95 2996.91 2697.07 6398.88 8391.62 10999.58 4196.54 22595.09 3296.84 8098.63 10491.16 3499.77 8899.04 2496.42 15499.81 35
PVSNet_BlendedMVS93.36 14893.20 13993.84 21398.77 8791.61 11099.47 5598.04 4891.44 11194.21 13992.63 28883.50 16699.87 5897.41 6483.37 28590.05 350
PVSNet_Blended95.94 6595.66 7196.75 8298.77 8791.61 11099.88 498.04 4893.64 6394.21 13997.76 14283.50 16699.87 5897.41 6497.75 12798.79 153
PCF-MVS89.78 591.26 19489.63 21096.16 12195.44 21891.58 11295.29 33796.10 25585.07 27782.75 27497.45 15978.28 23899.78 8780.60 29995.65 17097.12 221
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SteuartSystems-ACMMP97.25 1997.34 2197.01 6697.38 13291.46 11399.75 2297.66 9794.14 4898.13 4499.26 2492.16 3299.66 9797.91 5699.64 4299.90 22
Skip Steuart: Steuart Systems R&D Blog.
VPNet88.30 25486.57 26493.49 21891.95 31891.35 11498.18 21997.20 17788.61 19084.52 25794.89 24362.21 34696.76 27589.34 20372.26 36092.36 275
GST-MVS95.97 6295.66 7196.90 7599.49 4591.22 11599.45 6197.48 14189.69 15895.89 10398.72 9486.37 12699.95 3294.62 13499.22 7499.52 80
test22298.32 9691.21 11698.08 23297.58 12083.74 29895.87 10599.02 6186.74 11499.64 4299.81 35
ZNCC-MVS96.09 5695.81 6596.95 7499.42 4791.19 11799.55 4497.53 12989.72 15795.86 10698.94 7686.59 11999.97 2195.13 12099.56 5299.68 60
MTAPA96.09 5695.80 6696.96 7399.29 5591.19 11797.23 27697.45 14692.58 8594.39 13699.24 2886.43 12599.99 596.22 9299.40 6499.71 54
MDTV_nov1_ep13_2view91.17 11991.38 37887.45 23393.08 15986.67 11787.02 22598.95 137
FIs90.70 20789.87 20793.18 22492.29 31091.12 12098.17 22198.25 3189.11 17783.44 26594.82 24582.26 19796.17 31287.76 22082.76 28992.25 279
1112_ss92.71 16291.55 17696.20 11695.56 21491.12 12098.48 18794.69 34088.29 20686.89 23898.50 11287.02 10898.66 17284.75 25489.77 24498.81 151
PVSNet_Blended_VisFu94.67 10994.11 10796.34 11097.14 14791.10 12299.32 8197.43 15292.10 9991.53 18396.38 21283.29 17299.68 9593.42 15696.37 15598.25 187
Test_1112_low_res92.27 17590.97 18796.18 11795.53 21691.10 12298.47 18994.66 34188.28 20786.83 23993.50 27287.00 10998.65 17384.69 25589.74 24598.80 152
LFMVS92.23 17690.84 19196.42 10498.24 10091.08 12498.24 21496.22 24583.39 30594.74 12998.31 12561.12 35198.85 15994.45 13692.82 19599.32 102
ETV-MVS96.00 5996.00 5896.00 12896.56 16991.05 12599.63 3796.61 21793.26 7197.39 6498.30 12686.62 11898.13 19898.07 5397.57 12998.82 150
VPA-MVSNet89.10 23487.66 24993.45 21992.56 30691.02 12697.97 23898.32 2986.92 24486.03 24392.01 29668.84 30397.10 26190.92 18175.34 32692.23 281
MVS_111021_HR96.69 3696.69 3696.72 8698.58 9291.00 12799.14 10699.45 193.86 5595.15 12298.73 9288.48 7799.76 8997.23 7099.56 5299.40 93
HFP-MVS96.42 4796.26 4796.90 7599.69 890.96 12899.47 5597.81 6990.54 13596.88 7799.05 5787.57 9299.96 2895.65 10499.72 3299.78 41
UniMVSNet (Re)89.50 23188.32 23993.03 22692.21 31290.96 12898.90 13598.39 2689.13 17683.22 26692.03 29481.69 20496.34 30186.79 23172.53 35691.81 294
casdiffmvs_mvgpermissive94.00 12593.33 13596.03 12595.22 22790.90 13099.09 11395.99 26290.58 13291.55 18297.37 16279.91 22098.06 20395.01 12495.22 17499.13 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IB-MVS89.43 692.12 17890.83 19395.98 13095.40 22190.78 13199.81 1298.06 4591.23 11885.63 24893.66 26790.63 4698.78 16291.22 17771.85 36398.36 182
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Effi-MVS+93.87 13193.15 14096.02 12695.79 20690.76 13296.70 29895.78 28886.98 24295.71 11197.17 17579.58 22298.01 20894.57 13596.09 16299.31 103
DeepC-MVS91.02 494.56 11493.92 11896.46 10197.16 14690.76 13298.39 20197.11 18593.92 5188.66 22098.33 12478.14 23999.85 6795.02 12398.57 10698.78 155
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
diffmvspermissive94.59 11294.19 10495.81 13595.54 21590.69 13498.70 15495.68 29691.61 10595.96 10197.81 13880.11 21898.06 20396.52 8895.76 16798.67 163
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet87.74 26586.00 27392.96 23091.46 32890.68 13596.65 29997.42 15388.02 21573.42 36593.68 26577.31 24395.83 32884.26 26171.82 36492.36 275
XVS96.47 4696.37 4496.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7898.96 7087.37 9799.87 5895.65 10499.43 6199.78 41
X-MVStestdata90.69 20888.66 23196.77 8099.62 2290.66 13699.43 6697.58 12092.41 9196.86 7829.59 42487.37 9799.87 5895.65 10499.43 6199.78 41
reproduce_monomvs92.11 18091.82 17092.98 22898.25 9890.55 13898.38 20397.93 5594.81 3380.46 31392.37 29096.46 397.17 25694.06 14073.61 34591.23 318
SDMVSNet91.09 19889.91 20694.65 18096.80 16290.54 13997.78 24797.81 6988.34 20385.73 24595.26 23966.44 32598.26 19194.25 13986.75 25495.14 254
ACMMPR96.28 5296.14 5796.73 8499.68 990.47 14099.47 5597.80 7190.54 13596.83 8299.03 5986.51 12399.95 3295.65 10499.72 3299.75 49
EI-MVSNet-Vis-set95.76 7395.63 7596.17 11999.14 6490.33 14198.49 18597.82 6691.92 10094.75 12898.88 8387.06 10799.48 11995.40 11397.17 14298.70 161
region2R96.30 5196.17 5396.70 8799.70 790.31 14299.46 5997.66 9790.55 13497.07 7399.07 5486.85 11199.97 2195.43 11299.74 2999.81 35
test_fmvsmconf_n96.78 3596.84 2996.61 9295.99 20090.25 14399.90 398.13 4296.68 1198.42 3698.92 7785.34 14699.88 5499.12 2299.08 7899.70 55
TESTMET0.1,193.82 13393.26 13895.49 14795.21 22890.25 14399.15 10397.54 12889.18 17591.79 17494.87 24489.13 6697.63 23586.21 23796.29 15998.60 168
baseline294.04 12493.80 12494.74 17793.07 30290.25 14398.12 22598.16 3989.86 15486.53 24196.95 18695.56 698.05 20591.44 17694.53 17995.93 251
test_fmvsmvis_n_192095.47 8195.40 7895.70 13994.33 26490.22 14699.70 2796.98 19996.80 792.75 16298.89 8182.46 19499.92 4198.36 4498.33 11496.97 229
PVSNet87.13 1293.69 13692.83 14896.28 11297.99 10990.22 14699.38 7298.93 1291.42 11393.66 15197.68 14771.29 28999.64 10387.94 21997.20 13998.98 131
MSP-MVS97.77 1098.18 296.53 9999.54 3690.14 14899.41 6997.70 8895.46 2898.60 3199.19 3395.71 599.49 11598.15 5299.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM_NR95.43 8295.05 8996.57 9799.42 4790.14 14898.58 17597.51 13590.65 12992.44 16798.90 7987.77 9199.90 5090.88 18299.32 6699.68 60
MP-MVScopyleft96.00 5995.82 6396.54 9899.47 4690.13 15099.36 7697.41 15490.64 13095.49 11698.95 7385.51 14099.98 996.00 10099.59 5199.52 80
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM196.18 11799.03 7190.08 15197.63 10988.98 18097.00 7598.97 6588.14 8599.71 9388.23 21599.62 4698.76 158
UniMVSNet_NR-MVSNet89.60 22888.55 23592.75 23592.17 31390.07 15298.74 15098.15 4088.37 20183.21 26793.98 25782.86 18195.93 32286.95 22772.47 35792.25 279
DU-MVS88.83 24287.51 25092.79 23391.46 32890.07 15298.71 15197.62 11188.87 18683.21 26793.68 26574.63 25295.93 32286.95 22772.47 35792.36 275
baseline93.91 12993.30 13695.72 13895.10 24090.07 15297.48 26495.91 27991.03 12093.54 15397.68 14779.58 22298.02 20794.27 13895.14 17599.08 125
API-MVS94.78 10394.18 10696.59 9499.21 6190.06 15598.80 14397.78 7583.59 30293.85 14799.21 3183.79 16399.97 2192.37 16899.00 8499.74 50
EPMVS92.59 16791.59 17595.59 14697.22 14090.03 15691.78 37298.04 4890.42 13991.66 17890.65 33086.49 12497.46 24581.78 29096.31 15799.28 106
thisisatest053094.00 12593.52 12995.43 14995.76 20890.02 15798.99 12697.60 11486.58 25191.74 17597.36 16394.78 1198.34 18686.37 23592.48 20297.94 201
CNLPA93.64 14092.74 14996.36 10998.96 7690.01 15899.19 9295.89 28286.22 25989.40 21598.85 8480.66 21799.84 6988.57 21196.92 14699.24 109
test_fmvsmconf0.1_n95.94 6595.79 6796.40 10692.42 30989.92 15999.79 1796.85 20496.53 1597.22 6898.67 10082.71 18799.84 6998.92 2798.98 8599.43 92
EI-MVSNet-UG-set95.43 8295.29 8095.86 13499.07 7089.87 16098.43 19197.80 7191.78 10294.11 14198.77 8886.25 12999.48 11994.95 12796.45 15398.22 191
FC-MVSNet-test90.22 21789.40 21592.67 23991.78 32289.86 16197.89 24098.22 3488.81 18782.96 27394.66 24781.90 20395.96 32085.89 24382.52 29292.20 284
casdiffmvspermissive93.98 12793.43 13195.61 14595.07 24289.86 16198.80 14395.84 28790.98 12192.74 16397.66 14979.71 22198.10 20094.72 13195.37 17398.87 145
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS95.85 6895.65 7396.45 10299.50 4289.77 16398.22 21598.90 1389.19 17496.74 8798.95 7385.91 13599.92 4193.94 14299.46 5799.66 64
XXY-MVS87.75 26286.02 27292.95 23190.46 34089.70 16497.71 25695.90 28084.02 29280.95 30794.05 25167.51 31697.10 26185.16 24878.41 30892.04 291
mvs_anonymous92.50 16991.65 17495.06 16496.60 16889.64 16597.06 28296.44 23186.64 25084.14 26093.93 25982.49 19096.17 31291.47 17596.08 16399.35 99
CP-MVS96.22 5396.15 5696.42 10499.67 1089.62 16699.70 2797.61 11290.07 15096.00 10099.16 3987.43 9599.92 4196.03 9999.72 3299.70 55
test_fmvsm_n_192097.08 2797.55 1495.67 14197.94 11089.61 16799.93 198.48 2397.08 599.08 1499.13 4788.17 8299.93 3999.11 2399.06 8097.47 212
WR-MVS88.54 25287.22 25792.52 24091.93 32089.50 16898.56 17697.84 6286.99 23981.87 29893.81 26274.25 26195.92 32485.29 24774.43 33692.12 287
CDS-MVSNet93.47 14293.04 14394.76 17594.75 25589.45 16998.82 14097.03 19487.91 21990.97 19196.48 20789.06 6796.36 29589.50 19992.81 19798.49 172
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mPP-MVS95.90 6795.75 6896.38 10799.58 3089.41 17099.26 8797.41 15490.66 12794.82 12698.95 7386.15 13199.98 995.24 11999.64 4299.74 50
test_fmvsmconf0.01_n94.14 12293.51 13096.04 12486.79 38189.19 17199.28 8595.94 26995.70 2195.50 11598.49 11573.27 26999.79 8598.28 4998.32 11699.15 116
fmvsm_s_conf0.5_n96.19 5496.49 4095.30 15697.37 13389.16 17299.86 598.47 2495.68 2398.87 2299.15 4282.44 19599.92 4199.14 2197.43 13596.83 232
HPM-MVScopyleft95.41 8495.22 8295.99 12999.29 5589.14 17399.17 9797.09 18987.28 23695.40 11798.48 11884.93 15099.38 13195.64 10899.65 4099.47 88
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
fmvsm_s_conf0.1_n95.56 8095.68 7095.20 15994.35 26389.10 17499.50 5197.67 9694.76 3598.68 2999.03 5981.13 21399.86 6398.63 3297.36 13796.63 235
AdaColmapbinary93.82 13393.06 14196.10 12299.88 189.07 17598.33 20697.55 12586.81 24790.39 20398.65 10175.09 25199.98 993.32 15797.53 13299.26 108
SR-MVS96.13 5596.16 5596.07 12399.42 4789.04 17698.59 17397.33 16490.44 13896.84 8099.12 4986.75 11399.41 12997.47 6399.44 6099.76 48
PatchmatchNetpermissive92.05 18291.04 18695.06 16496.17 19189.04 17691.26 38097.26 16689.56 16590.64 19790.56 33688.35 7997.11 25979.53 30396.07 16499.03 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
reproduce-ours96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
our_new_method96.66 3796.80 3296.22 11398.95 7789.03 17898.62 16597.38 15793.42 6696.80 8599.36 1988.92 7099.80 8198.51 3899.26 7199.82 32
fmvsm_s_conf0.5_n_a95.97 6296.19 4895.31 15596.51 17389.01 18099.81 1298.39 2695.46 2899.19 1399.16 3981.44 21099.91 4698.83 2896.97 14497.01 228
FA-MVS(test-final)92.22 17791.08 18595.64 14296.05 19988.98 18191.60 37597.25 16786.99 23991.84 17392.12 29283.03 17899.00 15486.91 22993.91 18598.93 139
KD-MVS_2432*160082.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
miper_refine_blended82.98 32780.52 33690.38 29094.32 26588.98 18192.87 36295.87 28480.46 34973.79 36287.49 37082.76 18593.29 37070.56 36246.53 41488.87 367
fmvsm_s_conf0.1_n_a95.16 9095.15 8495.18 16092.06 31588.94 18499.29 8297.53 12994.46 3998.98 1898.99 6379.99 21999.85 6798.24 5196.86 14796.73 233
FOURS199.50 4288.94 18499.55 4497.47 14391.32 11598.12 46
miper_enhance_ethall90.33 21489.70 20992.22 24497.12 14988.93 18698.35 20595.96 26688.60 19183.14 27192.33 29187.38 9696.18 31186.49 23477.89 31191.55 304
pmmvs487.58 26886.17 27191.80 25689.58 35188.92 18797.25 27495.28 31882.54 32380.49 31293.17 27975.62 24996.05 31782.75 28078.90 30690.42 341
SCA90.64 21089.25 21894.83 17494.95 24888.83 18896.26 31197.21 17390.06 15190.03 20790.62 33266.61 32296.81 27283.16 27594.36 18198.84 146
GBi-Net86.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
test186.67 27984.96 28791.80 25695.11 23788.81 18996.77 29295.25 31982.94 31482.12 29090.25 34362.89 34394.97 34979.04 30780.24 29991.62 298
FMVSNet183.94 32281.32 33191.80 25691.94 31988.81 18996.77 29295.25 31977.98 35978.25 33990.25 34350.37 39094.97 34973.27 35077.81 31691.62 298
RRT-MVS93.39 14692.64 15295.64 14296.11 19888.75 19297.40 26595.77 29089.46 16992.70 16495.42 23572.98 27198.81 16196.91 7896.97 14499.37 96
CHOSEN 1792x268894.35 11893.82 12395.95 13197.40 13188.74 19398.41 19498.27 3092.18 9691.43 18496.40 20978.88 23099.81 7993.59 15097.81 12399.30 104
UGNet91.91 18390.85 19095.10 16297.06 15388.69 19498.01 23598.24 3392.41 9192.39 16993.61 26860.52 35399.68 9588.14 21697.25 13896.92 230
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
mvsmamba94.27 12093.91 11995.35 15296.42 17788.61 19597.77 24996.38 23491.17 11994.05 14395.27 23878.41 23797.96 21097.36 6698.40 11299.48 86
TranMVSNet+NR-MVSNet87.75 26286.31 26892.07 25090.81 33688.56 19698.33 20697.18 17887.76 22381.87 29893.90 26072.45 27695.43 34083.13 27771.30 36792.23 281
BH-RMVSNet91.25 19689.99 20595.03 16796.75 16588.55 19798.65 16094.95 33087.74 22587.74 22797.80 13968.27 30798.14 19780.53 30097.49 13398.41 175
MDTV_nov1_ep1390.47 20196.14 19488.55 19791.34 37997.51 13589.58 16392.24 17090.50 34086.99 11097.61 23777.64 31892.34 205
UA-Net93.30 15092.62 15395.34 15396.27 18588.53 19995.88 32596.97 20090.90 12295.37 11897.07 17982.38 19699.10 15083.91 26994.86 17898.38 178
reproduce_model96.57 4396.75 3496.02 12698.93 8088.46 20098.56 17697.34 16393.18 7296.96 7699.35 2188.69 7599.80 8198.53 3799.21 7799.79 38
HPM-MVS_fast94.89 9694.62 9495.70 13999.11 6688.44 20199.14 10697.11 18585.82 26495.69 11298.47 11983.46 16899.32 13893.16 15999.63 4599.35 99
Vis-MVSNetpermissive92.64 16491.85 16895.03 16795.12 23688.23 20298.48 18796.81 20591.61 10592.16 17297.22 17071.58 28798.00 20985.85 24497.81 12398.88 143
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet95.09 9295.17 8394.84 17395.42 21988.17 20399.48 5395.92 27491.47 11097.34 6698.36 12382.77 18397.41 24997.24 6998.58 10598.94 138
gm-plane-assit94.69 25688.14 20488.22 20897.20 17198.29 18990.79 185
ACMMPcopyleft94.67 10994.30 10095.79 13699.25 5788.13 20598.41 19498.67 2190.38 14091.43 18498.72 9482.22 19899.95 3293.83 14695.76 16799.29 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tfpnnormal83.65 32481.35 33090.56 28591.37 33088.06 20697.29 27197.87 5978.51 35876.20 34690.91 32064.78 33596.47 28961.71 39173.50 34887.13 381
HyFIR lowres test93.68 13893.29 13794.87 17197.57 12588.04 20798.18 21998.47 2487.57 23091.24 18995.05 24285.49 14197.46 24593.22 15892.82 19599.10 123
TR-MVS90.77 20589.44 21494.76 17596.31 18388.02 20897.92 23995.96 26685.52 26988.22 22497.23 16966.80 32198.09 20184.58 25792.38 20398.17 195
GA-MVS90.10 22188.69 23094.33 19292.44 30887.97 20999.08 11496.26 24389.65 15986.92 23793.11 28068.09 30996.96 26582.54 28390.15 24198.05 197
ECVR-MVScopyleft92.29 17391.33 18095.15 16196.41 17887.84 21098.10 22894.84 33390.82 12491.42 18697.28 16465.61 33098.49 18190.33 18997.19 14099.12 120
APD-MVS_3200maxsize95.64 7995.65 7395.62 14499.24 5887.80 21198.42 19297.22 17288.93 18496.64 9298.98 6485.49 14199.36 13396.68 8299.27 7099.70 55
MVS_111021_LR95.78 7195.94 5995.28 15798.19 10387.69 21298.80 14399.26 793.39 6895.04 12498.69 9984.09 16099.76 8996.96 7699.06 8098.38 178
VDDNet90.08 22288.54 23694.69 17994.41 26287.68 21398.21 21796.40 23376.21 37093.33 15697.75 14354.93 37498.77 16394.71 13290.96 23497.61 210
TAMVS92.62 16592.09 16494.20 19894.10 27187.68 21398.41 19496.97 20087.53 23289.74 21296.04 22284.77 15596.49 28888.97 20992.31 20698.42 174
SPE-MVS-test95.98 6196.34 4694.90 17098.06 10787.66 21599.69 3496.10 25593.66 6198.35 4099.05 5786.28 12797.66 23296.96 7698.90 9299.37 96
cl2289.57 22988.79 22891.91 25297.94 11087.62 21697.98 23796.51 22685.03 27882.37 28691.79 30183.65 16496.50 28685.96 24077.89 31191.61 301
v2v48287.27 27185.76 27691.78 26089.59 35087.58 21798.56 17695.54 30484.53 28682.51 28191.78 30273.11 27096.47 28982.07 28674.14 34291.30 315
ADS-MVSNet88.99 23587.30 25494.07 20396.21 18887.56 21887.15 39396.78 20883.01 31189.91 20987.27 37378.87 23197.01 26474.20 34392.27 20797.64 206
FE-MVS91.38 19290.16 20495.05 16696.46 17587.53 21989.69 38997.84 6282.97 31392.18 17192.00 29884.07 16198.93 15880.71 29795.52 17198.68 162
PLCcopyleft91.07 394.23 12194.01 11094.87 17199.17 6387.49 22099.25 8896.55 22488.43 19991.26 18898.21 13185.92 13399.86 6389.77 19797.57 12997.24 219
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS94.43 11794.09 10895.45 14899.10 6887.47 22198.39 20197.79 7388.37 20194.02 14499.17 3878.64 23599.91 4692.48 16798.85 9498.96 133
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst92.78 16192.16 16194.65 18096.27 18587.45 22291.83 37197.10 18889.10 17894.68 13090.69 32788.22 8197.73 23089.78 19691.80 21698.77 157
DP-MVS88.75 24686.56 26595.34 15398.92 8187.45 22297.64 26093.52 36570.55 38981.49 30397.25 16874.43 25799.88 5471.14 36094.09 18398.67 163
Fast-Effi-MVS+91.72 18590.79 19494.49 18595.89 20287.40 22499.54 4995.70 29485.01 28089.28 21795.68 23077.75 24197.57 24283.22 27495.06 17698.51 171
test111192.12 17891.19 18394.94 16996.15 19287.36 22598.12 22594.84 33390.85 12390.97 19197.26 16665.60 33198.37 18589.74 19897.14 14399.07 127
MIMVSNet84.48 31381.83 32592.42 24291.73 32487.36 22585.52 39694.42 34981.40 33981.91 29687.58 36751.92 38392.81 37573.84 34688.15 24897.08 225
IS-MVSNet93.00 15992.51 15594.49 18596.14 19487.36 22598.31 20995.70 29488.58 19290.17 20597.50 15683.02 17997.22 25587.06 22496.07 16498.90 142
testdata95.26 15898.20 10187.28 22897.60 11485.21 27398.48 3599.15 4288.15 8498.72 16990.29 19099.45 5999.78 41
test-LLR93.11 15792.68 15094.40 18994.94 24987.27 22999.15 10397.25 16790.21 14291.57 17994.04 25284.89 15197.58 23985.94 24196.13 16098.36 182
test-mter93.27 15292.89 14794.40 18994.94 24987.27 22999.15 10397.25 16788.95 18291.57 17994.04 25288.03 8797.58 23985.94 24196.13 16098.36 182
SR-MVS-dyc-post95.75 7495.86 6295.41 15099.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6586.73 11599.36 13396.62 8399.31 6799.60 73
RE-MVS-def95.70 6999.22 5987.26 23198.40 19797.21 17389.63 16096.67 9098.97 6585.24 14796.62 8399.31 6799.60 73
v114486.83 27685.31 28491.40 26389.75 34887.21 23398.31 20995.45 30983.22 30782.70 27690.78 32373.36 26596.36 29579.49 30474.69 33390.63 338
OMC-MVS93.90 13093.62 12794.73 17898.63 9187.00 23498.04 23496.56 22392.19 9592.46 16698.73 9279.49 22699.14 14892.16 17094.34 18298.03 198
miper_ehance_all_eth88.94 23788.12 24391.40 26395.32 22486.93 23597.85 24495.55 30384.19 29081.97 29591.50 30984.16 15995.91 32584.69 25577.89 31191.36 312
v886.11 28984.45 30091.10 26889.99 34386.85 23697.24 27595.36 31681.99 33379.89 32189.86 35274.53 25696.39 29378.83 31172.32 35990.05 350
CPTT-MVS94.60 11194.43 9995.09 16399.66 1286.85 23699.44 6297.47 14383.22 30794.34 13898.96 7082.50 18999.55 10994.81 12899.50 5598.88 143
v1085.73 29884.01 30690.87 27690.03 34286.73 23897.20 27895.22 32781.25 34179.85 32289.75 35373.30 26896.28 30776.87 32372.64 35589.61 358
Vis-MVSNet (Re-imp)93.26 15393.00 14594.06 20496.14 19486.71 23998.68 15696.70 21288.30 20589.71 21497.64 15085.43 14496.39 29388.06 21896.32 15699.08 125
EIA-MVS95.11 9195.27 8194.64 18296.34 18286.51 24099.59 4096.62 21692.51 8694.08 14298.64 10286.05 13298.24 19395.07 12298.50 10899.18 114
CSCG94.87 10094.71 9395.36 15199.54 3686.49 24199.34 7998.15 4082.71 32090.15 20699.25 2689.48 6499.86 6394.97 12698.82 9599.72 53
tttt051793.30 15093.01 14494.17 19995.57 21386.47 24298.51 18297.60 11485.99 26290.55 19897.19 17394.80 1098.31 18785.06 25091.86 21497.74 203
dp90.16 22088.83 22794.14 20096.38 18186.42 24391.57 37697.06 19184.76 28488.81 21990.19 34884.29 15897.43 24875.05 33591.35 23298.56 169
v119286.32 28784.71 29591.17 26789.53 35386.40 24498.13 22395.44 31182.52 32482.42 28490.62 33271.58 28796.33 30277.23 31974.88 33090.79 330
HQP5-MVS86.39 245
HQP-MVS91.50 18791.23 18292.29 24393.95 27686.39 24599.16 9896.37 23593.92 5187.57 22896.67 20373.34 26697.77 22293.82 14786.29 25792.72 269
PatchMatch-RL91.47 18890.54 19894.26 19598.20 10186.36 24796.94 28697.14 18187.75 22488.98 21895.75 22871.80 28499.40 13080.92 29597.39 13697.02 227
LS3D90.19 21888.72 22994.59 18498.97 7386.33 24896.90 28896.60 21874.96 37684.06 26298.74 9175.78 24899.83 7374.93 33697.57 12997.62 209
CR-MVSNet88.83 24287.38 25393.16 22593.47 29286.24 24984.97 40194.20 35488.92 18590.76 19586.88 37784.43 15694.82 35470.64 36192.17 21198.41 175
RPMNet85.07 30581.88 32494.64 18293.47 29286.24 24984.97 40197.21 17364.85 40590.76 19578.80 40380.95 21599.27 14053.76 40492.17 21198.41 175
CS-MVS95.75 7496.19 4894.40 18997.88 11286.22 25199.66 3596.12 25492.69 8498.07 4898.89 8187.09 10597.59 23896.71 8098.62 10499.39 95
NP-MVS93.94 27986.22 25196.67 203
BH-w/o92.32 17291.79 17193.91 21196.85 15986.18 25399.11 11295.74 29288.13 21084.81 25397.00 18477.26 24497.91 21189.16 20898.03 11997.64 206
c3_l88.19 25787.23 25691.06 26994.97 24786.17 25497.72 25495.38 31483.43 30481.68 30291.37 31182.81 18295.72 33284.04 26873.70 34491.29 316
MSDG88.29 25586.37 26794.04 20696.90 15886.15 25596.52 30194.36 35177.89 36379.22 32996.95 18669.72 29699.59 10773.20 35192.58 20196.37 246
CLD-MVS91.06 20090.71 19592.10 24994.05 27586.10 25699.55 4496.29 24294.16 4684.70 25497.17 17569.62 29897.82 21894.74 13086.08 26292.39 274
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192093.86 13293.74 12594.22 19795.39 22286.08 25799.73 2396.07 25996.38 1797.19 7197.78 14165.46 33399.86 6396.71 8098.92 9096.73 233
V4287.00 27385.68 27890.98 27289.91 34486.08 25798.32 20895.61 30083.67 30182.72 27590.67 32874.00 26396.53 28481.94 28974.28 33990.32 343
HQP_MVS91.26 19490.95 18892.16 24793.84 28386.07 25999.02 12296.30 23993.38 6986.99 23596.52 20572.92 27297.75 22893.46 15486.17 26092.67 271
plane_prior86.07 25999.14 10693.81 5986.26 259
plane_prior693.92 28086.02 26172.92 272
WB-MVSnew88.69 24888.34 23889.77 30794.30 26985.99 26298.14 22297.31 16587.15 23887.85 22696.07 22169.91 29395.52 33772.83 35491.47 22787.80 374
plane_prior385.91 26393.65 6286.99 235
CostFormer92.89 16092.48 15694.12 20194.99 24685.89 26492.89 36197.00 19886.98 24295.00 12590.78 32390.05 5897.51 24392.92 16391.73 21898.96 133
EI-MVSNet89.87 22589.38 21691.36 26594.32 26585.87 26597.61 26196.59 21985.10 27585.51 24997.10 17781.30 21296.56 28283.85 27183.03 28791.64 296
IterMVS-LS88.34 25387.44 25191.04 27094.10 27185.85 26698.10 22895.48 30785.12 27482.03 29491.21 31581.35 21195.63 33583.86 27075.73 32491.63 297
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS91.24 19790.18 20394.45 18897.08 15285.84 26798.40 19796.10 25586.99 23993.36 15598.16 13254.27 37699.20 14196.59 8690.63 23998.31 185
plane_prior793.84 28385.73 268
EPP-MVSNet93.75 13593.67 12694.01 20795.86 20485.70 26998.67 15897.66 9784.46 28791.36 18797.18 17491.16 3497.79 22092.93 16293.75 18798.53 170
v14419286.40 28584.89 29090.91 27389.48 35485.59 27098.21 21795.43 31282.45 32682.62 27990.58 33572.79 27596.36 29578.45 31474.04 34390.79 330
OPM-MVS89.76 22689.15 22091.57 26290.53 33985.58 27198.11 22795.93 27292.88 8186.05 24296.47 20867.06 32097.87 21589.29 20686.08 26291.26 317
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm291.77 18491.09 18493.82 21494.83 25385.56 27292.51 36697.16 18084.00 29393.83 14890.66 32987.54 9397.17 25687.73 22191.55 22298.72 159
GeoE90.60 21189.56 21193.72 21795.10 24085.43 27399.41 6994.94 33183.96 29587.21 23496.83 19674.37 25897.05 26380.50 30193.73 18898.67 163
cl____87.82 25986.79 26390.89 27594.88 25185.43 27397.81 24595.24 32282.91 31880.71 31091.22 31481.97 20295.84 32781.34 29275.06 32891.40 311
DIV-MVS_self_test87.82 25986.81 26290.87 27694.87 25285.39 27597.81 24595.22 32782.92 31780.76 30991.31 31381.99 20095.81 32981.36 29175.04 32991.42 310
sd_testset89.23 23288.05 24592.74 23696.80 16285.33 27695.85 32897.03 19488.34 20385.73 24595.26 23961.12 35197.76 22785.61 24586.75 25495.14 254
tpm cat188.89 23887.27 25593.76 21595.79 20685.32 27790.76 38597.09 18976.14 37185.72 24788.59 36282.92 18098.04 20676.96 32291.43 22897.90 202
v192192086.02 29084.44 30190.77 27989.32 35685.20 27898.10 22895.35 31782.19 33082.25 28890.71 32570.73 29096.30 30676.85 32474.49 33590.80 329
pm-mvs184.68 30982.78 31790.40 28989.58 35185.18 27997.31 27094.73 33881.93 33576.05 34892.01 29665.48 33296.11 31578.75 31269.14 37189.91 353
TAPA-MVS87.50 990.35 21389.05 22294.25 19698.48 9585.17 28098.42 19296.58 22282.44 32787.24 23398.53 10882.77 18398.84 16059.09 39897.88 12298.72 159
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124085.77 29784.11 30490.73 28089.26 35785.15 28197.88 24295.23 32681.89 33682.16 28990.55 33769.60 29996.31 30375.59 33374.87 33190.72 335
ppachtmachnet_test83.63 32581.57 32889.80 30589.01 35885.09 28297.13 28094.50 34478.84 35576.14 34791.00 31869.78 29594.61 35963.40 38674.36 33789.71 357
h-mvs3392.47 17091.95 16794.05 20597.13 14885.01 28398.36 20498.08 4493.85 5696.27 9796.73 20083.19 17599.43 12595.81 10268.09 37497.70 205
Anonymous2024052987.66 26685.58 27993.92 21097.59 12385.01 28398.13 22397.13 18366.69 40388.47 22296.01 22355.09 37299.51 11387.00 22684.12 27697.23 220
MonoMVSNet90.69 20889.78 20893.45 21991.78 32284.97 28596.51 30294.44 34590.56 13385.96 24490.97 31978.61 23696.27 30895.35 11483.79 28199.11 122
EPNet_dtu92.28 17492.15 16292.70 23797.29 13784.84 28698.64 16297.82 6692.91 8093.02 16097.02 18385.48 14395.70 33372.25 35794.89 17797.55 211
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned91.46 18990.84 19193.33 22296.51 17384.83 28798.84 13995.50 30686.44 25883.50 26496.70 20175.49 25097.77 22286.78 23297.81 12397.40 213
tpmvs89.16 23387.76 24693.35 22197.19 14384.75 28890.58 38797.36 16181.99 33384.56 25589.31 35983.98 16298.17 19674.85 33890.00 24397.12 221
PVSNet_083.28 1687.31 27085.16 28593.74 21694.78 25484.59 28998.91 13498.69 2089.81 15678.59 33693.23 27761.95 34799.34 13794.75 12955.72 40397.30 216
Anonymous2023121184.72 30882.65 32090.91 27397.71 11684.55 29097.28 27296.67 21366.88 40279.18 33090.87 32258.47 35996.60 27982.61 28274.20 34091.59 303
test0.0.03 188.96 23688.61 23290.03 30191.09 33384.43 29198.97 12997.02 19690.21 14280.29 31596.31 21484.89 15191.93 38772.98 35285.70 26593.73 261
PS-MVSNAJss89.54 23089.05 22291.00 27188.77 36184.36 29297.39 26695.97 26488.47 19381.88 29793.80 26382.48 19196.50 28689.34 20383.34 28692.15 286
pmmvs585.87 29284.40 30390.30 29388.53 36584.23 29398.60 17193.71 36181.53 33880.29 31592.02 29564.51 33695.52 33782.04 28878.34 30991.15 320
dcpmvs_295.67 7896.18 5094.12 20198.82 8584.22 29497.37 26995.45 30990.70 12695.77 10998.63 10490.47 4898.68 17199.20 2099.22 7499.45 89
Anonymous20240521188.84 24087.03 25994.27 19498.14 10584.18 29598.44 19095.58 30276.79 36889.34 21696.88 19253.42 38099.54 11187.53 22387.12 25399.09 124
v14886.38 28685.06 28690.37 29289.47 35584.10 29698.52 17995.48 30783.80 29780.93 30890.22 34674.60 25496.31 30380.92 29571.55 36590.69 336
TransMVSNet (Re)81.97 33279.61 34289.08 32289.70 34984.01 29797.26 27391.85 38478.84 35573.07 37191.62 30667.17 31995.21 34667.50 37459.46 39788.02 371
FMVSNet582.29 33080.54 33587.52 33793.79 28784.01 29793.73 35392.47 37576.92 36674.27 35986.15 38163.69 34189.24 40069.07 36874.79 33289.29 362
our_test_384.47 31482.80 31589.50 31489.01 35883.90 29997.03 28394.56 34381.33 34075.36 35590.52 33871.69 28594.54 36068.81 36976.84 32090.07 348
MVP-Stereo86.61 28185.83 27588.93 32688.70 36383.85 30096.07 31994.41 35082.15 33175.64 35391.96 29967.65 31496.45 29177.20 32198.72 10086.51 384
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
patch_mono-297.10 2697.97 894.49 18599.21 6183.73 30199.62 3898.25 3195.28 3099.38 698.91 7892.28 3199.94 3599.61 1099.22 7499.78 41
IterMVS85.81 29584.67 29689.22 31993.51 29183.67 30296.32 30894.80 33685.09 27678.69 33290.17 34966.57 32493.17 37279.48 30577.42 31890.81 328
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
UWE-MVS93.18 15493.40 13392.50 24196.56 16983.55 30398.09 23197.84 6289.50 16791.72 17696.23 21591.08 3796.70 27686.28 23693.33 19097.26 218
USDC84.74 30782.93 31390.16 29591.73 32483.54 30495.00 34093.30 36788.77 18873.19 36793.30 27553.62 37997.65 23475.88 33181.54 29689.30 361
D2MVS87.96 25887.39 25289.70 30991.84 32183.40 30598.31 20998.49 2288.04 21478.23 34090.26 34273.57 26496.79 27484.21 26283.53 28388.90 366
Baseline_NR-MVSNet85.83 29484.82 29288.87 32788.73 36283.34 30698.63 16491.66 38680.41 35182.44 28291.35 31274.63 25295.42 34184.13 26471.39 36687.84 372
WR-MVS_H86.53 28385.49 28189.66 31191.04 33483.31 30797.53 26398.20 3584.95 28179.64 32390.90 32178.01 24095.33 34376.29 32872.81 35390.35 342
LTVRE_ROB81.71 1984.59 31182.72 31990.18 29492.89 30483.18 30893.15 35894.74 33778.99 35475.14 35692.69 28665.64 32997.63 23569.46 36581.82 29589.74 355
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PatchT85.44 30183.19 31192.22 24493.13 30183.00 30983.80 40796.37 23570.62 38890.55 19879.63 40284.81 15394.87 35258.18 40091.59 22098.79 153
anonymousdsp86.69 27885.75 27789.53 31386.46 38382.94 31096.39 30595.71 29383.97 29479.63 32490.70 32668.85 30295.94 32186.01 23884.02 27789.72 356
ACMH83.09 1784.60 31082.61 32190.57 28393.18 30082.94 31096.27 30994.92 33281.01 34472.61 37493.61 26856.54 36497.79 22074.31 34181.07 29790.99 324
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT85.73 29884.64 29789.00 32493.46 29482.90 31296.27 30994.70 33985.02 27978.62 33490.35 34166.61 32293.33 36979.38 30677.36 31990.76 332
F-COLMAP92.07 18191.75 17393.02 22798.16 10482.89 31398.79 14795.97 26486.54 25387.92 22597.80 13978.69 23499.65 10185.97 23995.93 16696.53 241
Patchmatch-test86.25 28884.06 30592.82 23294.42 26182.88 31482.88 40894.23 35371.58 38579.39 32790.62 33289.00 6996.42 29263.03 38891.37 23199.16 115
Patchmtry83.61 32681.64 32689.50 31493.36 29682.84 31584.10 40494.20 35469.47 39579.57 32586.88 37784.43 15694.78 35568.48 37174.30 33890.88 327
CP-MVSNet86.54 28285.45 28289.79 30691.02 33582.78 31697.38 26897.56 12485.37 27179.53 32693.03 28171.86 28395.25 34579.92 30273.43 35191.34 313
AUN-MVS90.17 21989.50 21292.19 24696.21 18882.67 31797.76 25297.53 12988.05 21391.67 17796.15 21783.10 17797.47 24488.11 21766.91 38096.43 244
eth_miper_zixun_eth87.76 26187.00 26090.06 29794.67 25782.65 31897.02 28595.37 31584.19 29081.86 30091.58 30881.47 20895.90 32683.24 27373.61 34591.61 301
hse-mvs291.67 18691.51 17792.15 24896.22 18782.61 31997.74 25397.53 12993.85 5696.27 9796.15 21783.19 17597.44 24795.81 10266.86 38196.40 245
MS-PatchMatch86.75 27785.92 27489.22 31991.97 31682.47 32096.91 28796.14 25383.74 29877.73 34293.53 27158.19 36097.37 25276.75 32598.35 11387.84 372
test_djsdf88.26 25687.73 24789.84 30488.05 37082.21 32197.77 24996.17 25186.84 24582.41 28591.95 30072.07 28095.99 31889.83 19384.50 27291.32 314
PS-CasMVS85.81 29584.58 29889.49 31690.77 33782.11 32297.20 27897.36 16184.83 28379.12 33192.84 28467.42 31795.16 34778.39 31573.25 35291.21 319
mvsany_test194.57 11395.09 8892.98 22895.84 20582.07 32398.76 14995.24 32292.87 8296.45 9398.71 9784.81 15399.15 14497.68 6095.49 17297.73 204
v7n84.42 31582.75 31889.43 31788.15 36881.86 32496.75 29595.67 29780.53 34778.38 33889.43 35769.89 29496.35 30073.83 34772.13 36190.07 348
jajsoiax87.35 26986.51 26689.87 30287.75 37581.74 32597.03 28395.98 26388.47 19380.15 31793.80 26361.47 34896.36 29589.44 20184.47 27391.50 305
MVS-HIRNet79.01 34875.13 36190.66 28193.82 28681.69 32685.16 39893.75 36054.54 40874.17 36059.15 41457.46 36296.58 28163.74 38594.38 18093.72 262
tt080586.50 28484.79 29391.63 26191.97 31681.49 32796.49 30397.38 15782.24 32982.44 28295.82 22751.22 38698.25 19284.55 25880.96 29895.13 256
tpm89.67 22788.95 22491.82 25592.54 30781.43 32892.95 36095.92 27487.81 22190.50 20089.44 35684.99 14995.65 33483.67 27282.71 29098.38 178
PMMVS93.62 14193.90 12092.79 23396.79 16481.40 32998.85 13796.81 20591.25 11796.82 8398.15 13377.02 24598.13 19893.15 16096.30 15898.83 149
mvs_tets87.09 27286.22 26989.71 30887.87 37181.39 33096.73 29795.90 28088.19 20979.99 31993.61 26859.96 35596.31 30389.40 20284.34 27491.43 309
ACMM86.95 1388.77 24588.22 24190.43 28893.61 28981.34 33198.50 18395.92 27487.88 22083.85 26395.20 24167.20 31897.89 21386.90 23084.90 26992.06 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS85.21 30383.93 30789.07 32389.89 34681.31 33297.09 28197.24 17084.45 28878.66 33392.68 28768.44 30694.87 35275.98 33070.92 36891.04 323
XVG-OURS90.83 20490.49 19991.86 25395.23 22681.25 33395.79 33095.92 27488.96 18190.02 20898.03 13571.60 28699.35 13691.06 17987.78 25094.98 257
miper_lstm_enhance86.90 27486.20 27089.00 32494.53 26081.19 33496.74 29695.24 32282.33 32880.15 31790.51 33981.99 20094.68 35880.71 29773.58 34791.12 321
pmmvs-eth3d78.71 35176.16 35686.38 34680.25 40481.19 33494.17 34992.13 38077.97 36066.90 39382.31 39255.76 36692.56 37973.63 34962.31 39185.38 392
XVG-OURS-SEG-HR90.95 20290.66 19791.83 25495.18 23281.14 33695.92 32295.92 27488.40 20090.33 20497.85 13670.66 29299.38 13192.83 16488.83 24694.98 257
ACMP87.39 1088.71 24788.24 24090.12 29693.91 28181.06 33798.50 18395.67 29789.43 17080.37 31495.55 23165.67 32897.83 21790.55 18884.51 27191.47 306
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test88.86 23988.47 23790.06 29793.35 29780.95 33898.22 21595.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
LGP-MVS_train90.06 29793.35 29780.95 33895.94 26987.73 22683.17 26996.11 21966.28 32697.77 22290.19 19185.19 26791.46 307
MVStest176.56 36073.43 36685.96 35286.30 38580.88 34094.26 34791.74 38561.98 40758.53 40389.96 35069.30 30091.47 39059.26 39749.56 41285.52 391
UniMVSNet_ETH3D85.65 30083.79 30891.21 26690.41 34180.75 34195.36 33595.78 28878.76 35781.83 30194.33 25049.86 39196.66 27784.30 26083.52 28496.22 247
MDA-MVSNet_test_wron79.65 34677.05 35187.45 33987.79 37480.13 34296.25 31294.44 34573.87 38051.80 40887.47 37268.04 31092.12 38566.02 37967.79 37790.09 346
YYNet179.64 34777.04 35287.43 34087.80 37379.98 34396.23 31394.44 34573.83 38151.83 40787.53 36867.96 31292.07 38666.00 38067.75 37890.23 345
DTE-MVSNet84.14 31982.80 31588.14 33188.95 36079.87 34496.81 29196.24 24483.50 30377.60 34392.52 28967.89 31394.24 36372.64 35569.05 37290.32 343
WAC-MVS79.74 34567.75 373
myMVS_eth3d88.68 25089.07 22187.50 33895.14 23479.74 34597.68 25796.66 21486.52 25482.63 27796.84 19485.22 14889.89 39569.43 36691.54 22392.87 267
test_vis1_n_192093.08 15893.42 13292.04 25196.31 18379.36 34799.83 1096.06 26096.72 998.53 3498.10 13458.57 35899.91 4697.86 5798.79 9996.85 231
kuosan84.40 31683.34 31087.60 33695.87 20379.21 34892.39 36796.87 20376.12 37273.79 36293.98 25781.51 20690.63 39164.13 38475.42 32592.95 266
ACMH+83.78 1584.21 31782.56 32389.15 32193.73 28879.16 34996.43 30494.28 35281.09 34374.00 36194.03 25454.58 37597.67 23176.10 32978.81 30790.63 338
ADS-MVSNet287.62 26786.88 26189.86 30396.21 18879.14 35087.15 39392.99 36883.01 31189.91 20987.27 37378.87 23192.80 37674.20 34392.27 20797.64 206
COLMAP_ROBcopyleft82.69 1884.54 31282.82 31489.70 30996.72 16678.85 35195.89 32392.83 37171.55 38677.54 34495.89 22659.40 35799.14 14867.26 37588.26 24791.11 322
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest84.97 30683.12 31290.52 28696.82 16078.84 35295.89 32392.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
TestCases90.52 28696.82 16078.84 35292.17 37877.96 36175.94 34995.50 23255.48 36899.18 14271.15 35887.14 25193.55 263
dmvs_re88.69 24888.06 24490.59 28293.83 28578.68 35495.75 33196.18 25087.99 21684.48 25896.32 21367.52 31596.94 26784.98 25285.49 26696.14 248
TinyColmap80.42 34177.94 34687.85 33392.09 31478.58 35593.74 35289.94 39874.99 37569.77 38091.78 30246.09 39697.58 23965.17 38377.89 31187.38 376
MDA-MVSNet-bldmvs77.82 35774.75 36387.03 34288.33 36678.52 35696.34 30792.85 37075.57 37348.87 41087.89 36557.32 36392.49 38160.79 39364.80 38690.08 347
test_040278.81 35076.33 35586.26 34891.18 33278.44 35795.88 32591.34 39268.55 39670.51 37889.91 35152.65 38294.99 34847.14 40979.78 30485.34 394
Fast-Effi-MVS+-dtu88.84 24088.59 23489.58 31293.44 29578.18 35898.65 16094.62 34288.46 19584.12 26195.37 23768.91 30196.52 28582.06 28791.70 21994.06 260
pmmvs679.90 34377.31 35087.67 33584.17 39178.13 35995.86 32793.68 36267.94 39972.67 37389.62 35550.98 38895.75 33074.80 33966.04 38289.14 364
DeepPCF-MVS93.56 196.55 4597.84 1092.68 23898.71 8978.11 36099.70 2797.71 8798.18 197.36 6599.76 190.37 5299.94 3599.27 1699.54 5499.99 1
OpenMVS_ROBcopyleft73.86 2077.99 35675.06 36286.77 34583.81 39377.94 36196.38 30691.53 39067.54 40068.38 38587.13 37643.94 39896.08 31655.03 40381.83 29486.29 386
EG-PatchMatch MVS79.92 34277.59 34886.90 34487.06 38077.90 36296.20 31694.06 35674.61 37766.53 39488.76 36140.40 40596.20 31067.02 37683.66 28286.61 382
testing387.75 26288.22 24186.36 34794.66 25877.41 36399.52 5097.95 5486.05 26181.12 30696.69 20286.18 13089.31 39961.65 39290.12 24292.35 278
XVG-ACMP-BASELINE85.86 29384.95 28988.57 32889.90 34577.12 36494.30 34695.60 30187.40 23482.12 29092.99 28353.42 38097.66 23285.02 25183.83 27890.92 326
mmtdpeth83.69 32382.59 32286.99 34392.82 30576.98 36596.16 31791.63 38782.89 31992.41 16882.90 38854.95 37398.19 19596.27 9153.27 40685.81 388
test_vis1_n90.40 21290.27 20290.79 27891.55 32676.48 36699.12 11194.44 34594.31 4297.34 6696.95 18643.60 40099.42 12697.57 6297.60 12896.47 242
mvs5depth78.17 35475.56 35885.97 35180.43 40376.44 36785.46 39789.24 40376.39 36978.17 34188.26 36351.73 38495.73 33169.31 36761.09 39385.73 389
ITE_SJBPF87.93 33292.26 31176.44 36793.47 36687.67 22979.95 32095.49 23456.50 36597.38 25075.24 33482.33 29389.98 352
ttmdpeth79.80 34577.91 34785.47 35683.34 39475.75 36995.32 33691.45 39176.84 36774.81 35791.71 30553.98 37894.13 36472.42 35661.29 39286.51 384
UnsupCasMVSNet_bld73.85 36770.14 37184.99 35979.44 40575.73 37088.53 39095.24 32270.12 39261.94 40074.81 40741.41 40393.62 36768.65 37051.13 41085.62 390
MIMVSNet175.92 36273.30 36783.81 36881.29 40075.57 37192.26 36892.05 38173.09 38467.48 39186.18 38040.87 40487.64 40455.78 40270.68 36988.21 370
test_fmvs192.35 17192.94 14690.57 28397.19 14375.43 37299.55 4494.97 32995.20 3196.82 8397.57 15459.59 35699.84 6997.30 6798.29 11796.46 243
CL-MVSNet_self_test79.89 34478.34 34584.54 36481.56 39975.01 37396.88 28995.62 29981.10 34275.86 35185.81 38268.49 30590.26 39363.21 38756.51 40188.35 369
UnsupCasMVSNet_eth78.90 34976.67 35485.58 35582.81 39774.94 37491.98 37096.31 23884.64 28565.84 39687.71 36651.33 38592.23 38372.89 35356.50 40289.56 359
testgi82.29 33081.00 33386.17 34987.24 37874.84 37597.39 26691.62 38888.63 18975.85 35295.42 23546.07 39791.55 38866.87 37879.94 30392.12 287
test_fmvs1_n91.07 19991.41 17990.06 29794.10 27174.31 37699.18 9494.84 33394.81 3396.37 9697.46 15850.86 38999.82 7697.14 7197.90 12196.04 250
pmmvs372.86 36869.76 37382.17 37473.86 41174.19 37794.20 34889.01 40464.23 40667.72 38880.91 39941.48 40288.65 40262.40 38954.02 40583.68 400
TDRefinement78.01 35575.31 35986.10 35070.06 41573.84 37893.59 35691.58 38974.51 37873.08 37091.04 31749.63 39397.12 25874.88 33759.47 39687.33 378
JIA-IIPM85.97 29184.85 29189.33 31893.23 29973.68 37985.05 40097.13 18369.62 39491.56 18168.03 41088.03 8796.96 26577.89 31793.12 19297.34 215
CVMVSNet90.30 21590.91 18988.46 33094.32 26573.58 38097.61 26197.59 11890.16 14788.43 22397.10 17776.83 24692.86 37382.64 28193.54 18998.93 139
dongtai81.36 33680.61 33483.62 36994.25 27073.32 38195.15 33996.81 20573.56 38269.79 37992.81 28581.00 21486.80 40652.08 40770.06 37090.75 333
Anonymous2023120680.76 33979.42 34384.79 36284.78 38972.98 38296.53 30092.97 36979.56 35274.33 35888.83 36061.27 35092.15 38460.59 39475.92 32389.24 363
Anonymous2024052178.63 35276.90 35383.82 36782.82 39672.86 38395.72 33293.57 36473.55 38372.17 37584.79 38449.69 39292.51 38065.29 38274.50 33486.09 387
new_pmnet76.02 36173.71 36582.95 37183.88 39272.85 38491.26 38092.26 37770.44 39062.60 39981.37 39547.64 39592.32 38261.85 39072.10 36283.68 400
LCM-MVSNet-Re88.59 25188.61 23288.51 32995.53 21672.68 38596.85 29088.43 40588.45 19673.14 36890.63 33175.82 24794.38 36192.95 16195.71 16998.48 173
new-patchmatchnet74.80 36672.40 36981.99 37678.36 40772.20 38694.44 34492.36 37677.06 36463.47 39879.98 40151.04 38788.85 40160.53 39554.35 40484.92 397
Effi-MVS+-dtu89.97 22490.68 19687.81 33495.15 23371.98 38797.87 24395.40 31391.92 10087.57 22891.44 31074.27 26096.84 27089.45 20093.10 19394.60 259
EGC-MVSNET60.70 37755.37 38176.72 38286.35 38471.08 38889.96 38884.44 4130.38 4251.50 42684.09 38637.30 40688.10 40340.85 41473.44 35070.97 410
test20.0378.51 35377.48 34981.62 37783.07 39571.03 38996.11 31892.83 37181.66 33769.31 38289.68 35457.53 36187.29 40558.65 39968.47 37386.53 383
SixPastTwentyTwo82.63 32981.58 32785.79 35388.12 36971.01 39095.17 33892.54 37484.33 28972.93 37292.08 29360.41 35495.61 33674.47 34074.15 34190.75 333
test_vis1_rt81.31 33780.05 34085.11 35791.29 33170.66 39198.98 12877.39 42085.76 26668.80 38382.40 39136.56 40799.44 12292.67 16686.55 25685.24 395
OurMVSNet-221017-084.13 32083.59 30985.77 35487.81 37270.24 39294.89 34193.65 36386.08 26076.53 34593.28 27661.41 34996.14 31480.95 29477.69 31790.93 325
K. test v381.04 33879.77 34184.83 36187.41 37670.23 39395.60 33493.93 35883.70 30067.51 39089.35 35855.76 36693.58 36876.67 32668.03 37590.67 337
Patchmatch-RL test81.90 33480.13 33887.23 34180.71 40170.12 39484.07 40588.19 40683.16 30970.57 37682.18 39387.18 10392.59 37882.28 28562.78 38898.98 131
lessismore_v085.08 35885.59 38769.28 39590.56 39667.68 38990.21 34754.21 37795.46 33973.88 34562.64 38990.50 340
KD-MVS_self_test77.47 35875.88 35782.24 37381.59 39868.93 39692.83 36494.02 35777.03 36573.14 36883.39 38755.44 37090.42 39267.95 37257.53 40087.38 376
LF4IMVS81.94 33381.17 33284.25 36587.23 37968.87 39793.35 35791.93 38383.35 30675.40 35493.00 28249.25 39496.65 27878.88 31078.11 31087.22 380
EU-MVSNet84.19 31884.42 30283.52 37088.64 36467.37 39896.04 32095.76 29185.29 27278.44 33793.18 27870.67 29191.48 38975.79 33275.98 32291.70 295
Syy-MVS84.10 32184.53 29982.83 37295.14 23465.71 39997.68 25796.66 21486.52 25482.63 27796.84 19468.15 30889.89 39545.62 41091.54 22392.87 267
test_fmvs285.10 30485.45 28284.02 36689.85 34765.63 40098.49 18592.59 37390.45 13785.43 25193.32 27343.94 39896.59 28090.81 18484.19 27589.85 354
PM-MVS74.88 36572.85 36880.98 37978.98 40664.75 40190.81 38485.77 40980.95 34568.23 38782.81 38929.08 41192.84 37476.54 32762.46 39085.36 393
RPSCF85.33 30285.55 28084.67 36394.63 25962.28 40293.73 35393.76 35974.38 37985.23 25297.06 18064.09 33798.31 18780.98 29386.08 26293.41 265
DSMNet-mixed81.60 33581.43 32982.10 37584.36 39060.79 40393.63 35586.74 40879.00 35379.32 32887.15 37563.87 33989.78 39766.89 37791.92 21395.73 252
mvsany_test375.85 36374.52 36479.83 38073.53 41260.64 40491.73 37387.87 40783.91 29670.55 37782.52 39031.12 40993.66 36686.66 23362.83 38785.19 396
CMPMVSbinary58.40 2180.48 34080.11 33981.59 37885.10 38859.56 40594.14 35095.95 26868.54 39760.71 40193.31 27455.35 37197.87 21583.06 27884.85 27087.33 378
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Gipumacopyleft54.77 38252.22 38662.40 39986.50 38259.37 40650.20 41790.35 39736.52 41541.20 41649.49 41718.33 41881.29 41032.10 41665.34 38446.54 417
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mamv491.41 19093.57 12884.91 36097.11 15058.11 40795.68 33395.93 27282.09 33289.78 21195.71 22990.09 5798.24 19397.26 6898.50 10898.38 178
ambc79.60 38172.76 41456.61 40876.20 41292.01 38268.25 38680.23 40023.34 41394.73 35673.78 34860.81 39487.48 375
test_method70.10 37168.66 37474.41 38786.30 38555.84 40994.47 34389.82 39935.18 41666.15 39584.75 38530.54 41077.96 41770.40 36460.33 39589.44 360
PMMVS258.97 37955.07 38270.69 39162.72 41955.37 41085.97 39580.52 41749.48 41045.94 41168.31 40915.73 42080.78 41349.79 40837.12 41675.91 405
test_fmvs375.09 36475.19 36074.81 38577.45 40854.08 41195.93 32190.64 39582.51 32573.29 36681.19 39622.29 41486.29 40785.50 24667.89 37684.06 398
test_f71.94 36970.82 37075.30 38472.77 41353.28 41291.62 37489.66 40175.44 37464.47 39778.31 40420.48 41589.56 39878.63 31366.02 38383.05 403
APD_test168.93 37266.98 37574.77 38680.62 40253.15 41387.97 39185.01 41153.76 40959.26 40287.52 36925.19 41289.95 39456.20 40167.33 37981.19 404
test_vis3_rt61.29 37658.75 37968.92 39267.41 41652.84 41491.18 38259.23 42766.96 40141.96 41558.44 41511.37 42394.72 35774.25 34257.97 39959.20 414
ANet_high50.71 38446.17 38764.33 39644.27 42652.30 41576.13 41378.73 41864.95 40427.37 41955.23 41614.61 42167.74 41936.01 41518.23 41972.95 409
DeepMVS_CXcopyleft76.08 38390.74 33851.65 41690.84 39486.47 25757.89 40487.98 36435.88 40892.60 37765.77 38165.06 38583.97 399
LCM-MVSNet60.07 37856.37 38071.18 38954.81 42448.67 41782.17 40989.48 40237.95 41449.13 40969.12 40813.75 42281.76 40959.28 39651.63 40983.10 402
testf156.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
APD_test256.38 38053.73 38364.31 39764.84 41745.11 41880.50 41075.94 42238.87 41242.74 41275.07 40511.26 42481.19 41141.11 41253.27 40666.63 411
WB-MVS66.44 37366.29 37666.89 39374.84 40944.93 42093.00 35984.09 41471.15 38755.82 40581.63 39463.79 34080.31 41521.85 41950.47 41175.43 406
SSC-MVS65.42 37465.20 37766.06 39473.96 41043.83 42192.08 36983.54 41569.77 39354.73 40680.92 39863.30 34279.92 41620.48 42048.02 41374.44 407
MVEpermissive44.00 2241.70 38637.64 39153.90 40249.46 42543.37 42265.09 41666.66 42426.19 42025.77 42148.53 4183.58 42863.35 42126.15 41827.28 41754.97 416
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS61.57 37560.32 37865.34 39560.14 42242.44 42391.02 38389.72 40044.15 41142.63 41480.93 39719.02 41680.59 41442.50 41172.76 35473.00 408
tmp_tt53.66 38352.86 38556.05 40032.75 42841.97 42473.42 41476.12 42121.91 42139.68 41796.39 21142.59 40165.10 42078.00 31614.92 42161.08 413
dmvs_testset77.17 35978.99 34471.71 38887.25 37738.55 42591.44 37781.76 41685.77 26569.49 38195.94 22569.71 29784.37 40852.71 40676.82 32192.21 283
E-PMN41.02 38740.93 38941.29 40361.97 42033.83 42684.00 40665.17 42527.17 41827.56 41846.72 41917.63 41960.41 42219.32 42118.82 41829.61 418
PMVScopyleft41.42 2345.67 38542.50 38855.17 40134.28 42732.37 42766.24 41578.71 41930.72 41722.04 42259.59 4134.59 42677.85 41827.49 41758.84 39855.29 415
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS39.96 38839.88 39040.18 40459.57 42332.12 42884.79 40364.57 42626.27 41926.14 42044.18 42218.73 41759.29 42317.03 42217.67 42029.12 419
N_pmnet70.19 37069.87 37271.12 39088.24 36730.63 42995.85 32828.70 42870.18 39168.73 38486.55 37964.04 33893.81 36553.12 40573.46 34988.94 365
wuyk23d16.71 39116.73 39516.65 40560.15 42125.22 43041.24 4185.17 4296.56 4225.48 4253.61 4253.64 42722.72 42415.20 4239.52 4221.99 422
test12316.58 39219.47 3947.91 4063.59 4305.37 43194.32 3451.39 4312.49 42413.98 42444.60 4212.91 4292.65 42511.35 4250.57 42415.70 420
testmvs18.81 39023.05 3936.10 4074.48 4292.29 43297.78 2473.00 4303.27 42318.60 42362.71 4111.53 4302.49 42614.26 4241.80 42313.50 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k22.52 38930.03 3920.00 4080.00 4310.00 4330.00 41997.17 1790.00 4260.00 42798.77 8874.35 2590.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas6.87 3949.16 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42682.48 1910.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.21 39310.94 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42798.50 1120.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
PC_three_145294.60 3799.41 499.12 4995.50 799.96 2899.84 299.92 399.97 7
eth-test20.00 431
eth-test0.00 431
test_241102_TWO97.72 8394.17 4499.23 1099.54 393.14 2599.98 999.70 599.82 1999.99 1
9.1496.87 2799.34 5099.50 5197.49 14089.41 17198.59 3299.43 1689.78 6099.69 9498.69 3099.62 46
test_0728_THIRD93.01 7499.07 1599.46 1094.66 1399.97 2199.25 1899.82 1999.95 15
GSMVS98.84 146
sam_mvs188.39 7898.84 146
sam_mvs87.08 106
MTGPAbinary97.45 146
test_post190.74 38641.37 42385.38 14596.36 29583.16 275
test_post46.00 42087.37 9797.11 259
patchmatchnet-post84.86 38388.73 7496.81 272
MTMP99.21 9091.09 393
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5999.87 999.91 21
test_prior299.57 4291.43 11298.12 4698.97 6590.43 4998.33 4699.81 23
旧先验298.67 15885.75 26798.96 2098.97 15793.84 145
新几何298.26 212
无先验98.52 17997.82 6687.20 23799.90 5087.64 22299.85 30
原ACMM298.69 155
testdata299.88 5484.16 263
segment_acmp90.56 47
testdata197.89 24092.43 88
plane_prior596.30 23997.75 22893.46 15486.17 26092.67 271
plane_prior496.52 205
plane_prior299.02 12293.38 69
plane_prior193.90 282
n20.00 432
nn0.00 432
door-mid84.90 412
test1197.68 92
door85.30 410
HQP-NCC93.95 27699.16 9893.92 5187.57 228
ACMP_Plane93.95 27699.16 9893.92 5187.57 228
BP-MVS93.82 147
HQP4-MVS87.57 22897.77 22292.72 269
HQP3-MVS96.37 23586.29 257
HQP2-MVS73.34 266
ACMMP++_ref82.64 291
ACMMP++83.83 278
Test By Simon83.62 165