This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS97.86 897.25 2099.68 198.25 9399.10 199.76 2097.78 7096.61 1298.15 4199.53 793.62 17100.00 191.79 15799.80 2699.94 18
MSC_two_6792asdad99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
No_MVS99.51 299.61 2498.60 297.69 8599.98 999.55 1299.83 1599.96 10
OPU-MVS99.49 499.64 1798.51 499.77 1799.19 3095.12 899.97 2199.90 199.92 399.99 1
PS-MVSNAJ96.87 3096.40 3898.29 1997.35 12497.29 599.03 11597.11 17295.83 2098.97 1999.14 4282.48 17699.60 10398.60 3399.08 7398.00 180
xiu_mvs_v2_base96.66 3596.17 4798.11 2797.11 13796.96 699.01 11897.04 17995.51 2798.86 2399.11 5082.19 18499.36 13098.59 3598.14 11198.00 180
MM98.86 596.83 799.81 1199.13 997.66 298.29 3998.96 6685.84 12199.90 5099.72 398.80 9199.85 30
MVS93.92 11192.28 14098.83 795.69 19196.82 896.22 29798.17 3784.89 26684.34 24098.61 10379.32 20999.83 7393.88 13099.43 5999.86 29
WTY-MVS95.97 5595.11 7898.54 1397.62 11396.65 999.44 6298.74 1692.25 8995.21 11198.46 11586.56 10699.46 11895.00 11092.69 18699.50 78
MCST-MVS98.18 297.95 998.86 599.85 396.60 1099.70 2697.98 5397.18 395.96 9499.33 1992.62 26100.00 198.99 2599.93 199.98 6
DELS-MVS97.12 2496.60 3498.68 1098.03 10296.57 1199.84 897.84 5996.36 1895.20 11298.24 12188.17 6899.83 7396.11 8699.60 4899.64 62
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
MVS_030497.53 1397.15 2198.67 1197.30 12696.52 1299.60 3898.88 1497.14 497.21 6698.94 7286.89 9699.91 4599.43 1598.91 8699.59 71
HY-MVS88.56 795.29 7794.23 9098.48 1497.72 10996.41 1394.03 32998.74 1692.42 8495.65 10494.76 23086.52 10799.49 11295.29 10392.97 18299.53 74
test_0728_SECOND98.77 899.66 1296.37 1499.72 2397.68 8799.98 999.64 799.82 1999.96 10
CNVR-MVS98.46 198.38 198.72 999.80 496.19 1599.80 1597.99 5297.05 699.41 499.59 292.89 25100.00 198.99 2599.90 799.96 10
CANet97.00 2796.49 3598.55 1298.86 8096.10 1699.83 997.52 12595.90 1997.21 6698.90 7682.66 17399.93 3898.71 2998.80 9199.63 64
canonicalmvs95.02 8493.96 10298.20 2197.53 11995.92 1798.71 14496.19 22991.78 9795.86 9998.49 11079.53 20799.03 14996.12 8591.42 21199.66 60
MG-MVS97.24 1996.83 3098.47 1599.79 595.71 1899.07 10999.06 1094.45 4096.42 8898.70 9588.81 6199.74 8895.35 10199.86 1299.97 7
alignmvs95.77 6595.00 8198.06 2897.35 12495.68 1999.71 2597.50 13091.50 10296.16 9298.61 10386.28 11299.00 15096.19 8491.74 20399.51 77
test_part299.54 3695.42 2098.13 42
DPE-MVScopyleft98.11 698.00 698.44 1699.50 4295.39 2199.29 8197.72 7894.50 3798.64 2899.54 393.32 1999.97 2199.58 1099.90 799.95 15
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
DVP-MVS++98.18 298.09 598.44 1699.61 2495.38 2299.55 4497.68 8793.01 7099.23 1099.45 1495.12 899.98 999.25 1899.92 399.97 7
IU-MVS99.63 1895.38 2297.73 7795.54 2699.54 399.69 699.81 2399.99 1
PAPM96.35 4295.94 5397.58 4094.10 24895.25 2498.93 12598.17 3794.26 4293.94 13198.72 9189.68 5397.88 19796.36 8299.29 6799.62 66
SED-MVS98.18 298.10 498.41 1899.63 1895.24 2599.77 1797.72 7894.17 4399.30 899.54 393.32 1999.98 999.70 499.81 2399.99 1
test_241102_ONE99.63 1895.24 2597.72 7894.16 4599.30 899.49 993.32 1999.98 9
xiu_mvs_v1_base_debu94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
xiu_mvs_v1_base_debi94.73 9193.98 9996.99 6295.19 20995.24 2598.62 15696.50 20992.99 7297.52 5798.83 8272.37 25799.15 14197.03 6596.74 13996.58 218
DVP-MVScopyleft98.07 798.00 698.29 1999.66 1295.20 3099.72 2397.47 13593.95 4899.07 1599.46 1093.18 2299.97 2199.64 799.82 1999.69 55
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.66 1295.20 3099.77 1797.70 8393.95 4899.35 799.54 393.18 22
3Dnovator+87.72 893.43 12891.84 15198.17 2295.73 19095.08 3298.92 12797.04 17991.42 10681.48 28697.60 14474.60 23499.79 8290.84 16698.97 8199.64 62
thres600view793.18 13892.00 14796.75 7697.62 11394.92 3399.07 10999.36 287.96 20390.47 18296.78 18583.29 15798.71 16382.93 26190.47 22096.61 216
test_one_060199.59 2894.89 3497.64 9793.14 6998.93 2199.45 1493.45 18
SF-MVS97.22 2196.92 2498.12 2699.11 6694.88 3599.44 6297.45 13889.60 15098.70 2699.42 1790.42 4599.72 8998.47 3899.65 3899.77 43
MVSFormer94.71 9494.08 9796.61 8595.05 22394.87 3697.77 23496.17 23186.84 22998.04 4898.52 10685.52 12395.99 30089.83 17698.97 8198.96 123
lupinMVS96.32 4495.94 5397.44 4495.05 22394.87 3699.86 496.50 20993.82 5798.04 4898.77 8585.52 12398.09 18596.98 6898.97 8199.37 88
thres100view90093.34 13292.15 14496.90 6997.62 11394.84 3899.06 11199.36 287.96 20390.47 18296.78 18583.29 15798.75 15984.11 24790.69 21697.12 201
tfpn200view993.43 12892.27 14196.90 6997.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21697.12 201
thres40093.39 13092.27 14196.73 7897.68 11194.84 3899.18 8999.36 288.45 18390.79 17496.90 17883.31 15598.75 15984.11 24790.69 21696.61 216
GG-mvs-BLEND96.98 6596.53 15594.81 4187.20 36997.74 7493.91 13296.40 19696.56 296.94 24795.08 10698.95 8499.20 104
HPM-MVS++copyleft97.72 1097.59 1398.14 2399.53 4094.76 4299.19 8797.75 7395.66 2498.21 4099.29 2091.10 3399.99 597.68 5599.87 999.68 56
thres20093.69 11992.59 13696.97 6697.76 10894.74 4399.35 7699.36 289.23 16091.21 17196.97 17483.42 15498.77 15785.08 23190.96 21497.39 195
CANet_DTU94.31 10393.35 11597.20 5597.03 14194.71 4498.62 15695.54 28195.61 2597.21 6698.47 11371.88 26299.84 6988.38 19597.46 12697.04 206
gg-mvs-nofinetune90.00 20287.71 22896.89 7396.15 17594.69 4585.15 37597.74 7468.32 37592.97 14560.16 38896.10 396.84 25093.89 12998.87 8899.14 108
baseline192.61 14991.28 16296.58 8897.05 14094.63 4697.72 23896.20 22789.82 14388.56 20196.85 18186.85 9797.82 20188.42 19480.10 28697.30 197
FMVSNet388.81 22587.08 23893.99 19296.52 15694.59 4798.08 21696.20 22785.85 24782.12 27291.60 28774.05 24295.40 32279.04 28980.24 28391.99 274
NCCC98.12 598.11 398.13 2499.76 694.46 4899.81 1197.88 5696.54 1398.84 2499.46 1092.55 2799.98 998.25 4699.93 199.94 18
test1297.83 3399.33 5394.45 4997.55 11797.56 5688.60 6399.50 11199.71 3499.55 72
DeepC-MVS_fast93.52 297.16 2396.84 2898.13 2499.61 2494.45 4998.85 13197.64 9796.51 1695.88 9799.39 1887.35 8799.99 596.61 7799.69 3699.96 10
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CHOSEN 280x42096.80 3296.85 2796.66 8497.85 10794.42 5194.76 32198.36 2992.50 8195.62 10597.52 14897.92 197.38 23398.31 4498.80 9198.20 176
131493.44 12791.98 14897.84 3295.24 20594.38 5296.22 29797.92 5590.18 13482.28 26997.71 13977.63 22199.80 8191.94 15698.67 9799.34 92
DP-MVS Recon95.85 6195.15 7697.95 3099.87 294.38 5299.60 3897.48 13386.58 23594.42 12399.13 4487.36 8699.98 993.64 13598.33 10799.48 79
jason95.40 7694.86 8297.03 5992.91 28094.23 5499.70 2696.30 22093.56 6496.73 8298.52 10681.46 19397.91 19496.08 8798.47 10598.96 123
jason: jason.
SMA-MVScopyleft97.24 1996.99 2398.00 2999.30 5494.20 5599.16 9397.65 9689.55 15499.22 1299.52 890.34 4899.99 598.32 4399.83 1599.82 32
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
PAPR96.35 4295.82 5797.94 3199.63 1894.19 5699.42 6797.55 11792.43 8293.82 13599.12 4687.30 8899.91 4594.02 12699.06 7599.74 47
iter_conf0593.48 12593.18 12194.39 17597.15 13394.17 5799.30 8092.97 34692.38 8886.70 22195.42 21795.67 596.59 25994.67 11884.32 25692.39 254
ET-MVSNet_ETH3D92.56 15191.45 15995.88 11896.39 16394.13 5899.46 5996.97 18792.18 9166.94 36998.29 12094.65 1594.28 34294.34 12383.82 26399.24 100
sss94.85 8793.94 10397.58 4096.43 16094.09 5998.93 12599.16 889.50 15595.27 11097.85 12981.50 19199.65 9892.79 15094.02 17498.99 120
CDPH-MVS96.56 3896.18 4497.70 3699.59 2893.92 6099.13 10497.44 14189.02 16697.90 5399.22 2788.90 6099.49 11294.63 11999.79 2799.68 56
VNet95.08 8394.26 8997.55 4398.07 10093.88 6198.68 14898.73 1890.33 13197.16 7097.43 15379.19 21099.53 10996.91 7191.85 20199.24 100
save fliter99.34 5093.85 6299.65 3597.63 10195.69 22
SD-MVS97.51 1597.40 1897.81 3499.01 7293.79 6399.33 7897.38 14893.73 5998.83 2599.02 5890.87 3999.88 5498.69 3099.74 2999.77 43
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft97.53 1397.47 1597.70 3699.58 3093.63 6499.56 4397.52 12593.59 6398.01 5099.12 4690.80 4099.55 10699.26 1799.79 2799.93 20
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
APD-MVScopyleft96.95 2896.72 3197.63 3899.51 4193.58 6599.16 9397.44 14190.08 13998.59 3099.07 5189.06 5799.42 12397.92 5199.66 3799.88 26
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ACMMP_NAP96.59 3796.18 4497.81 3498.82 8193.55 6698.88 13097.59 11090.66 11997.98 5199.14 4286.59 104100.00 196.47 8199.46 5599.89 25
nrg03090.23 19588.87 20594.32 17791.53 30293.54 6798.79 14095.89 26088.12 19884.55 23794.61 23278.80 21496.88 24992.35 15475.21 30992.53 252
OpenMVScopyleft85.28 1490.75 18688.84 20696.48 9393.58 26793.51 6898.80 13697.41 14582.59 30378.62 31597.49 15068.00 28999.82 7684.52 24198.55 10296.11 229
TSAR-MVS + MP.97.44 1797.46 1697.39 4899.12 6593.49 6998.52 16797.50 13094.46 3898.99 1798.64 9991.58 3099.08 14898.49 3799.83 1599.60 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
QAPM91.41 17289.49 19297.17 5695.66 19393.42 7098.60 16097.51 12780.92 32781.39 28797.41 15472.89 25499.87 5882.33 26698.68 9698.21 175
ZD-MVS99.67 1093.28 7197.61 10487.78 20897.41 6099.16 3690.15 4999.56 10598.35 4199.70 35
MSLP-MVS++97.50 1697.45 1797.63 3899.65 1693.21 7299.70 2698.13 4294.61 3597.78 5599.46 1089.85 5199.81 7997.97 5099.91 699.88 26
TEST999.57 3393.17 7399.38 7197.66 9189.57 15298.39 3599.18 3390.88 3899.66 94
train_agg97.20 2297.08 2297.57 4299.57 3393.17 7399.38 7197.66 9190.18 13498.39 3599.18 3390.94 3599.66 9498.58 3699.85 1399.88 26
EPNet96.82 3196.68 3397.25 5398.65 8693.10 7599.48 5398.76 1596.54 1397.84 5498.22 12287.49 8099.66 9495.35 10197.78 11899.00 119
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
test_899.55 3593.07 7699.37 7497.64 9790.18 13498.36 3799.19 3090.94 3599.64 100
3Dnovator87.35 1193.17 13991.77 15397.37 4995.41 20193.07 7698.82 13497.85 5891.53 10182.56 26197.58 14671.97 26199.82 7691.01 16399.23 6999.22 103
cascas90.93 18389.33 19795.76 12295.69 19193.03 7898.99 12096.59 20180.49 32986.79 22094.45 23465.23 31398.60 16793.52 13792.18 19695.66 233
test_yl95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
DCV-MVSNet95.27 7894.60 8597.28 5198.53 8992.98 7999.05 11298.70 1986.76 23294.65 12197.74 13787.78 7599.44 11995.57 9792.61 18799.44 82
MVSTER92.71 14592.32 13993.86 19597.29 12792.95 8199.01 11896.59 20190.09 13885.51 22994.00 24194.61 1696.56 26390.77 16983.03 27092.08 271
fmvsm_l_conf0.5_n_a97.70 1197.80 1197.42 4597.59 11692.91 8299.86 498.04 4896.70 1099.58 299.26 2190.90 3799.94 3499.57 1198.66 9899.40 85
旧先验198.97 7392.90 8397.74 7499.15 3991.05 3499.33 6399.60 67
fmvsm_l_conf0.5_n97.65 1297.72 1297.41 4697.51 12092.78 8499.85 798.05 4696.78 899.60 199.23 2690.42 4599.92 4099.55 1298.50 10399.55 72
MP-MVS-pluss95.80 6395.30 7197.29 5098.95 7692.66 8598.59 16297.14 16888.95 16993.12 14299.25 2385.62 12299.94 3496.56 7999.48 5499.28 97
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
agg_prior99.54 3692.66 8597.64 9797.98 5199.61 102
MVS_Test93.67 12292.67 13496.69 8296.72 15192.66 8597.22 26196.03 24087.69 21495.12 11494.03 23981.55 19098.28 17689.17 19096.46 14299.14 108
thisisatest051594.75 9094.19 9296.43 9696.13 18092.64 8899.47 5597.60 10687.55 21793.17 14197.59 14594.71 1398.42 17088.28 19693.20 17998.24 173
FMVSNet286.90 25584.79 27493.24 20695.11 21792.54 8997.67 24395.86 26482.94 29780.55 29391.17 29662.89 32295.29 32477.23 30179.71 28991.90 275
新几何197.40 4798.92 7792.51 9097.77 7285.52 25396.69 8399.06 5388.08 7299.89 5384.88 23599.62 4499.79 36
114514_t94.06 10693.05 12497.06 5899.08 6992.26 9198.97 12397.01 18482.58 30492.57 14898.22 12280.68 19999.30 13689.34 18699.02 7899.63 64
iter_conf_final93.22 13793.04 12593.76 19897.03 14192.22 9299.05 11293.31 34392.11 9386.93 21695.42 21795.01 1096.59 25993.98 12784.48 25392.46 253
test250694.80 8894.21 9196.58 8896.41 16192.18 9398.01 22098.96 1190.82 11693.46 13897.28 15785.92 11898.45 16989.82 17897.19 13299.12 111
test_prior492.00 9499.41 68
test_prior97.01 6099.58 3091.77 9597.57 11599.49 11299.79 36
PHI-MVS96.65 3696.46 3797.21 5499.34 5091.77 9599.70 2698.05 4686.48 24098.05 4799.20 2989.33 5599.96 2898.38 3999.62 4499.90 22
ab-mvs91.05 18189.17 19996.69 8295.96 18391.72 9792.62 34397.23 15885.61 25289.74 19293.89 24568.55 28299.42 12391.09 16187.84 22998.92 131
TSAR-MVS + GP.96.95 2896.91 2597.07 5798.88 7991.62 9899.58 4196.54 20795.09 3296.84 7698.63 10191.16 3199.77 8599.04 2496.42 14499.81 33
PVSNet_BlendedMVS93.36 13193.20 12093.84 19698.77 8391.61 9999.47 5598.04 4891.44 10494.21 12692.63 27183.50 15199.87 5897.41 5983.37 26790.05 331
PVSNet_Blended95.94 5895.66 6596.75 7698.77 8391.61 9999.88 398.04 4893.64 6294.21 12697.76 13583.50 15199.87 5897.41 5997.75 11998.79 143
PCF-MVS89.78 591.26 17489.63 18996.16 10895.44 19991.58 10195.29 31796.10 23585.07 26182.75 25597.45 15278.28 21799.78 8480.60 28195.65 16097.12 201
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SteuartSystems-ACMMP97.25 1897.34 1997.01 6097.38 12291.46 10299.75 2197.66 9194.14 4798.13 4299.26 2192.16 2999.66 9497.91 5299.64 4099.90 22
Skip Steuart: Steuart Systems R&D Blog.
VPNet88.30 23486.57 24593.49 20291.95 29491.35 10398.18 20597.20 16488.61 17784.52 23894.89 22662.21 32596.76 25589.34 18672.26 34192.36 256
GST-MVS95.97 5595.66 6596.90 6999.49 4591.22 10499.45 6197.48 13389.69 14695.89 9698.72 9186.37 11199.95 3194.62 12099.22 7099.52 75
test22298.32 9291.21 10598.08 21697.58 11283.74 28295.87 9899.02 5886.74 10099.64 4099.81 33
ZNCC-MVS96.09 5095.81 5996.95 6899.42 4791.19 10699.55 4497.53 12189.72 14595.86 9998.94 7286.59 10499.97 2195.13 10599.56 5099.68 56
MTAPA96.09 5095.80 6096.96 6799.29 5591.19 10697.23 26097.45 13892.58 7994.39 12499.24 2586.43 11099.99 596.22 8399.40 6299.71 51
MDTV_nov1_ep13_2view91.17 10891.38 35587.45 21993.08 14386.67 10287.02 20898.95 127
FIs90.70 18789.87 18793.18 20792.29 28691.12 10998.17 20798.25 3289.11 16483.44 24694.82 22982.26 18296.17 29387.76 20382.76 27292.25 260
1112_ss92.71 14591.55 15796.20 10495.56 19591.12 10998.48 17594.69 31788.29 19386.89 21898.50 10887.02 9398.66 16584.75 23689.77 22498.81 141
PVSNet_Blended_VisFu94.67 9594.11 9596.34 10297.14 13491.10 11199.32 7997.43 14392.10 9491.53 16496.38 19983.29 15799.68 9293.42 14096.37 14598.25 172
Test_1112_low_res92.27 15890.97 16896.18 10595.53 19791.10 11198.47 17794.66 31888.28 19486.83 21993.50 25687.00 9498.65 16684.69 23789.74 22598.80 142
LFMVS92.23 15990.84 17296.42 9798.24 9491.08 11398.24 20096.22 22683.39 28994.74 11998.31 11861.12 33098.85 15494.45 12292.82 18399.32 93
ETV-MVS96.00 5296.00 5296.00 11496.56 15491.05 11499.63 3696.61 19993.26 6897.39 6198.30 11986.62 10398.13 18298.07 4997.57 12198.82 140
VPA-MVSNet89.10 21487.66 22993.45 20392.56 28291.02 11597.97 22398.32 3086.92 22886.03 22492.01 27868.84 28197.10 24190.92 16475.34 30892.23 262
MVS_111021_HR96.69 3496.69 3296.72 8098.58 8891.00 11699.14 10199.45 193.86 5495.15 11398.73 8988.48 6499.76 8697.23 6399.56 5099.40 85
HFP-MVS96.42 4196.26 4196.90 6999.69 890.96 11799.47 5597.81 6590.54 12596.88 7399.05 5487.57 7899.96 2895.65 9299.72 3199.78 38
UniMVSNet (Re)89.50 21188.32 21993.03 20992.21 28890.96 11798.90 12998.39 2789.13 16383.22 24892.03 27681.69 18996.34 28386.79 21472.53 33791.81 276
casdiffmvs_mvgpermissive94.00 10893.33 11696.03 11295.22 20790.90 11999.09 10795.99 24190.58 12391.55 16397.37 15579.91 20398.06 18795.01 10995.22 16499.13 110
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
IB-MVS89.43 692.12 16190.83 17495.98 11695.40 20290.78 12099.81 1198.06 4591.23 11085.63 22893.66 25190.63 4198.78 15691.22 16071.85 34498.36 168
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
Effi-MVS+93.87 11493.15 12296.02 11395.79 18790.76 12196.70 28295.78 26686.98 22695.71 10297.17 16679.58 20598.01 19294.57 12196.09 15299.31 94
DeepC-MVS91.02 494.56 10093.92 10496.46 9497.16 13290.76 12198.39 18997.11 17293.92 5088.66 20098.33 11778.14 21899.85 6795.02 10898.57 10198.78 145
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
diffmvspermissive94.59 9894.19 9295.81 12095.54 19690.69 12398.70 14695.68 27391.61 9995.96 9497.81 13180.11 20198.06 18796.52 8095.76 15798.67 152
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
NR-MVSNet87.74 24686.00 25492.96 21291.46 30390.68 12496.65 28397.42 14488.02 20173.42 34393.68 24977.31 22295.83 31084.26 24371.82 34592.36 256
XVS96.47 4096.37 3996.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7498.96 6687.37 8399.87 5895.65 9299.43 5999.78 38
X-MVStestdata90.69 18888.66 21196.77 7499.62 2290.66 12599.43 6597.58 11292.41 8596.86 7429.59 40087.37 8399.87 5895.65 9299.43 5999.78 38
SDMVSNet91.09 17889.91 18694.65 16396.80 14790.54 12797.78 23297.81 6588.34 19085.73 22595.26 22166.44 30398.26 17794.25 12586.75 23495.14 234
ACMMPR96.28 4696.14 5196.73 7899.68 990.47 12899.47 5597.80 6790.54 12596.83 7899.03 5686.51 10899.95 3195.65 9299.72 3199.75 46
EI-MVSNet-Vis-set95.76 6695.63 6996.17 10799.14 6490.33 12998.49 17397.82 6291.92 9594.75 11898.88 8087.06 9299.48 11695.40 10097.17 13498.70 150
region2R96.30 4596.17 4796.70 8199.70 790.31 13099.46 5997.66 9190.55 12497.07 7199.07 5186.85 9799.97 2195.43 9999.74 2999.81 33
test_fmvsmconf_n96.78 3396.84 2896.61 8595.99 18290.25 13199.90 298.13 4296.68 1198.42 3498.92 7485.34 13199.88 5499.12 2299.08 7399.70 52
TESTMET0.1,193.82 11693.26 11995.49 13195.21 20890.25 13199.15 9897.54 12089.18 16291.79 15694.87 22789.13 5697.63 21886.21 21996.29 14998.60 155
baseline294.04 10793.80 10794.74 16093.07 27990.25 13198.12 21098.16 3989.86 14286.53 22296.95 17595.56 698.05 18991.44 15994.53 16995.93 231
test_fmvsmvis_n_192095.47 7295.40 7095.70 12494.33 24390.22 13499.70 2696.98 18696.80 792.75 14698.89 7882.46 17999.92 4098.36 4098.33 10796.97 209
PVSNet87.13 1293.69 11992.83 13196.28 10397.99 10390.22 13499.38 7198.93 1291.42 10693.66 13697.68 14071.29 26999.64 10087.94 20297.20 13198.98 121
MSP-MVS97.77 998.18 296.53 9299.54 3690.14 13699.41 6897.70 8395.46 2898.60 2999.19 3095.71 499.49 11298.15 4899.85 1399.95 15
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
PAPM_NR95.43 7395.05 8096.57 9099.42 4790.14 13698.58 16497.51 12790.65 12192.44 15098.90 7687.77 7799.90 5090.88 16599.32 6499.68 56
MP-MVScopyleft96.00 5295.82 5796.54 9199.47 4690.13 13899.36 7597.41 14590.64 12295.49 10798.95 6985.51 12599.98 996.00 8999.59 4999.52 75
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
原ACMM196.18 10599.03 7190.08 13997.63 10188.98 16797.00 7298.97 6288.14 7199.71 9088.23 19799.62 4498.76 147
UniMVSNet_NR-MVSNet89.60 20888.55 21692.75 21792.17 28990.07 14098.74 14398.15 4088.37 18883.21 24993.98 24282.86 16695.93 30486.95 21072.47 33892.25 260
DU-MVS88.83 22387.51 23092.79 21591.46 30390.07 14098.71 14497.62 10388.87 17383.21 24993.68 24974.63 23295.93 30486.95 21072.47 33892.36 256
baseline93.91 11293.30 11795.72 12395.10 22090.07 14097.48 24895.91 25791.03 11193.54 13797.68 14079.58 20598.02 19194.27 12495.14 16599.08 115
API-MVS94.78 8994.18 9496.59 8799.21 6190.06 14398.80 13697.78 7083.59 28693.85 13399.21 2883.79 14899.97 2192.37 15399.00 7999.74 47
EPMVS92.59 15091.59 15695.59 13097.22 12990.03 14491.78 34998.04 4890.42 12991.66 15990.65 30986.49 10997.46 22881.78 27296.31 14799.28 97
thisisatest053094.00 10893.52 11195.43 13395.76 18990.02 14598.99 12097.60 10686.58 23591.74 15797.36 15694.78 1298.34 17286.37 21892.48 19097.94 182
CNLPA93.64 12392.74 13296.36 10198.96 7590.01 14699.19 8795.89 26086.22 24389.40 19598.85 8180.66 20099.84 6988.57 19396.92 13799.24 100
test_fmvsmconf0.1_n95.94 5895.79 6196.40 9992.42 28589.92 14799.79 1696.85 19096.53 1597.22 6598.67 9782.71 17299.84 6998.92 2798.98 8099.43 84
EI-MVSNet-UG-set95.43 7395.29 7295.86 11999.07 7089.87 14898.43 17997.80 6791.78 9794.11 12898.77 8586.25 11499.48 11694.95 11296.45 14398.22 174
FC-MVSNet-test90.22 19689.40 19592.67 22191.78 29889.86 14997.89 22598.22 3588.81 17482.96 25494.66 23181.90 18895.96 30285.89 22582.52 27592.20 266
casdiffmvspermissive93.98 11093.43 11395.61 12995.07 22289.86 14998.80 13695.84 26590.98 11392.74 14797.66 14279.71 20498.10 18494.72 11695.37 16398.87 135
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PGM-MVS95.85 6195.65 6796.45 9599.50 4289.77 15198.22 20198.90 1389.19 16196.74 8198.95 6985.91 12099.92 4093.94 12899.46 5599.66 60
XXY-MVS87.75 24386.02 25392.95 21390.46 31689.70 15297.71 24095.90 25884.02 27680.95 28994.05 23667.51 29497.10 24185.16 23078.41 29292.04 273
mvs_anonymous92.50 15291.65 15595.06 14796.60 15389.64 15397.06 26696.44 21386.64 23484.14 24193.93 24382.49 17596.17 29391.47 15896.08 15399.35 90
CP-MVS96.22 4796.15 5096.42 9799.67 1089.62 15499.70 2697.61 10490.07 14096.00 9399.16 3687.43 8199.92 4096.03 8899.72 3199.70 52
test_fmvsm_n_192097.08 2697.55 1495.67 12697.94 10489.61 15599.93 198.48 2497.08 599.08 1499.13 4488.17 6899.93 3899.11 2399.06 7597.47 193
WR-MVS88.54 23287.22 23792.52 22291.93 29689.50 15698.56 16597.84 5986.99 22381.87 28093.81 24674.25 24195.92 30685.29 22974.43 31892.12 269
CDS-MVSNet93.47 12693.04 12594.76 15894.75 23489.45 15798.82 13497.03 18187.91 20590.97 17296.48 19489.06 5796.36 27789.50 18292.81 18598.49 159
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
mPP-MVS95.90 6095.75 6296.38 10099.58 3089.41 15899.26 8497.41 14590.66 11994.82 11798.95 6986.15 11699.98 995.24 10499.64 4099.74 47
test_fmvsmconf0.01_n94.14 10593.51 11296.04 11186.79 35989.19 15999.28 8395.94 24895.70 2195.50 10698.49 11073.27 24999.79 8298.28 4598.32 10999.15 107
fmvsm_s_conf0.5_n96.19 4896.49 3595.30 13997.37 12389.16 16099.86 498.47 2595.68 2398.87 2299.15 3982.44 18099.92 4099.14 2197.43 12796.83 212
HPM-MVScopyleft95.41 7595.22 7495.99 11599.29 5589.14 16199.17 9297.09 17687.28 22195.40 10898.48 11284.93 13599.38 12895.64 9699.65 3899.47 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
fmvsm_s_conf0.1_n95.56 7195.68 6495.20 14294.35 24289.10 16299.50 5197.67 9094.76 3498.68 2799.03 5681.13 19799.86 6398.63 3297.36 12996.63 215
AdaColmapbinary93.82 11693.06 12396.10 10999.88 189.07 16398.33 19397.55 11786.81 23190.39 18498.65 9875.09 23199.98 993.32 14197.53 12499.26 99
SR-MVS96.13 4996.16 4996.07 11099.42 4789.04 16498.59 16297.33 15290.44 12896.84 7699.12 4686.75 9999.41 12697.47 5899.44 5899.76 45
PatchmatchNetpermissive92.05 16491.04 16795.06 14796.17 17489.04 16491.26 35797.26 15389.56 15390.64 17890.56 31588.35 6697.11 23979.53 28596.07 15499.03 118
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
fmvsm_s_conf0.5_n_a95.97 5596.19 4295.31 13896.51 15789.01 16699.81 1198.39 2795.46 2899.19 1399.16 3681.44 19499.91 4598.83 2896.97 13697.01 208
FA-MVS(test-final)92.22 16091.08 16695.64 12796.05 18188.98 16791.60 35297.25 15486.99 22391.84 15592.12 27483.03 16399.00 15086.91 21293.91 17598.93 129
KD-MVS_2432*160082.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
miper_refine_blended82.98 30680.52 31490.38 27394.32 24488.98 16792.87 34095.87 26280.46 33073.79 34187.49 34782.76 17093.29 34970.56 34246.53 39088.87 348
fmvsm_s_conf0.1_n_a95.16 8095.15 7695.18 14392.06 29188.94 17099.29 8197.53 12194.46 3898.98 1898.99 6079.99 20299.85 6798.24 4796.86 13896.73 213
FOURS199.50 4288.94 17099.55 4497.47 13591.32 10898.12 44
miper_enhance_ethall90.33 19389.70 18892.22 22597.12 13688.93 17298.35 19295.96 24588.60 17883.14 25392.33 27387.38 8296.18 29186.49 21777.89 29591.55 287
pmmvs487.58 24986.17 25291.80 23789.58 32888.92 17397.25 25895.28 29582.54 30580.49 29493.17 26375.62 22996.05 29882.75 26278.90 29090.42 322
SCA90.64 18989.25 19894.83 15794.95 22788.83 17496.26 29497.21 16090.06 14190.03 18890.62 31166.61 30096.81 25283.16 25794.36 17198.84 136
GBi-Net86.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
test186.67 26084.96 26891.80 23795.11 21788.81 17596.77 27695.25 29682.94 29782.12 27290.25 32262.89 32294.97 32979.04 28980.24 28391.62 281
FMVSNet183.94 30281.32 31091.80 23791.94 29588.81 17596.77 27695.25 29677.98 34078.25 32090.25 32250.37 36694.97 32973.27 33277.81 29991.62 281
CHOSEN 1792x268894.35 10293.82 10695.95 11797.40 12188.74 17898.41 18298.27 3192.18 9191.43 16596.40 19678.88 21199.81 7993.59 13697.81 11599.30 95
UGNet91.91 16590.85 17195.10 14597.06 13988.69 17998.01 22098.24 3492.41 8592.39 15193.61 25260.52 33299.68 9288.14 19897.25 13096.92 210
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
TranMVSNet+NR-MVSNet87.75 24386.31 24992.07 23190.81 31188.56 18098.33 19397.18 16587.76 20981.87 28093.90 24472.45 25695.43 32083.13 25971.30 34892.23 262
BH-RMVSNet91.25 17689.99 18595.03 15096.75 15088.55 18198.65 15294.95 30787.74 21187.74 20697.80 13268.27 28598.14 18180.53 28297.49 12598.41 162
MDTV_nov1_ep1390.47 18196.14 17788.55 18191.34 35697.51 12789.58 15192.24 15290.50 31986.99 9597.61 22077.64 30092.34 192
UA-Net93.30 13392.62 13595.34 13696.27 16888.53 18395.88 30796.97 18790.90 11495.37 10997.07 17082.38 18199.10 14783.91 25194.86 16898.38 165
HPM-MVS_fast94.89 8594.62 8495.70 12499.11 6688.44 18499.14 10197.11 17285.82 24895.69 10398.47 11383.46 15399.32 13593.16 14399.63 4399.35 90
Vis-MVSNetpermissive92.64 14791.85 15095.03 15095.12 21688.23 18598.48 17596.81 19191.61 9992.16 15497.22 16271.58 26798.00 19385.85 22697.81 11598.88 133
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
EC-MVSNet95.09 8295.17 7594.84 15695.42 20088.17 18699.48 5395.92 25291.47 10397.34 6398.36 11682.77 16897.41 23297.24 6298.58 10098.94 128
gm-plane-assit94.69 23588.14 18788.22 19597.20 16398.29 17590.79 168
ACMMPcopyleft94.67 9594.30 8895.79 12199.25 5788.13 18898.41 18298.67 2290.38 13091.43 16598.72 9182.22 18399.95 3193.83 13295.76 15799.29 96
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
tfpnnormal83.65 30381.35 30990.56 26891.37 30588.06 18997.29 25597.87 5778.51 33976.20 32690.91 29964.78 31496.47 27161.71 36973.50 32987.13 361
HyFIR lowres test93.68 12193.29 11894.87 15497.57 11888.04 19098.18 20598.47 2587.57 21691.24 17095.05 22485.49 12697.46 22893.22 14292.82 18399.10 113
TR-MVS90.77 18589.44 19394.76 15896.31 16688.02 19197.92 22495.96 24585.52 25388.22 20497.23 16166.80 29998.09 18584.58 23992.38 19198.17 177
GA-MVS90.10 20088.69 21094.33 17692.44 28487.97 19299.08 10896.26 22489.65 14786.92 21793.11 26468.09 28796.96 24582.54 26590.15 22198.05 178
ECVR-MVScopyleft92.29 15691.33 16195.15 14496.41 16187.84 19398.10 21394.84 31090.82 11691.42 16797.28 15765.61 30998.49 16890.33 17297.19 13299.12 111
APD-MVS_3200maxsize95.64 7095.65 6795.62 12899.24 5887.80 19498.42 18097.22 15988.93 17196.64 8698.98 6185.49 12699.36 13096.68 7499.27 6899.70 52
MVS_111021_LR95.78 6495.94 5395.28 14098.19 9787.69 19598.80 13699.26 793.39 6595.04 11598.69 9684.09 14599.76 8696.96 6999.06 7598.38 165
VDDNet90.08 20188.54 21794.69 16294.41 24187.68 19698.21 20396.40 21476.21 34993.33 14097.75 13654.93 35298.77 15794.71 11790.96 21497.61 191
TAMVS92.62 14892.09 14694.20 18294.10 24887.68 19698.41 18296.97 18787.53 21889.74 19296.04 20684.77 14096.49 27088.97 19292.31 19398.42 161
CS-MVS-test95.98 5496.34 4094.90 15398.06 10187.66 19899.69 3396.10 23593.66 6098.35 3899.05 5486.28 11297.66 21596.96 6998.90 8799.37 88
cl2289.57 20988.79 20891.91 23397.94 10487.62 19997.98 22296.51 20885.03 26282.37 26891.79 28383.65 14996.50 26885.96 22277.89 29591.61 284
v2v48287.27 25285.76 25791.78 24189.59 32787.58 20098.56 16595.54 28184.53 27082.51 26291.78 28473.11 25196.47 27182.07 26874.14 32491.30 298
ADS-MVSNet88.99 21587.30 23494.07 18796.21 17187.56 20187.15 37096.78 19383.01 29489.91 19087.27 35078.87 21297.01 24474.20 32592.27 19497.64 187
FE-MVS91.38 17390.16 18495.05 14996.46 15987.53 20289.69 36697.84 5982.97 29692.18 15392.00 28084.07 14698.93 15380.71 27995.52 16198.68 151
PLCcopyleft91.07 394.23 10494.01 9894.87 15499.17 6387.49 20399.25 8596.55 20688.43 18691.26 16998.21 12485.92 11899.86 6389.77 18097.57 12197.24 199
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
MAR-MVS94.43 10194.09 9695.45 13299.10 6887.47 20498.39 18997.79 6988.37 18894.02 13099.17 3578.64 21699.91 4592.48 15298.85 8998.96 123
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmrst92.78 14492.16 14394.65 16396.27 16887.45 20591.83 34897.10 17589.10 16594.68 12090.69 30688.22 6797.73 21389.78 17991.80 20298.77 146
DP-MVS88.75 22786.56 24695.34 13698.92 7787.45 20597.64 24493.52 34170.55 36681.49 28597.25 16074.43 23799.88 5471.14 34094.09 17398.67 152
Fast-Effi-MVS+91.72 16790.79 17594.49 16895.89 18487.40 20799.54 4995.70 27185.01 26489.28 19795.68 21277.75 22097.57 22583.22 25695.06 16698.51 158
test111192.12 16191.19 16494.94 15296.15 17587.36 20898.12 21094.84 31090.85 11590.97 17297.26 15965.60 31098.37 17189.74 18197.14 13599.07 117
MIMVSNet84.48 29481.83 30492.42 22391.73 29987.36 20885.52 37394.42 32581.40 32081.91 27887.58 34451.92 36092.81 35473.84 32888.15 22897.08 205
IS-MVSNet93.00 14292.51 13794.49 16896.14 17787.36 20898.31 19695.70 27188.58 17990.17 18697.50 14983.02 16497.22 23687.06 20796.07 15498.90 132
testdata95.26 14198.20 9587.28 21197.60 10685.21 25798.48 3399.15 3988.15 7098.72 16290.29 17399.45 5799.78 38
test-LLR93.11 14092.68 13394.40 17294.94 22887.27 21299.15 9897.25 15490.21 13291.57 16094.04 23784.89 13697.58 22285.94 22396.13 15098.36 168
test-mter93.27 13592.89 13094.40 17294.94 22887.27 21299.15 9897.25 15488.95 16991.57 16094.04 23788.03 7397.58 22285.94 22396.13 15098.36 168
SR-MVS-dyc-post95.75 6795.86 5695.41 13499.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6286.73 10199.36 13096.62 7599.31 6599.60 67
RE-MVS-def95.70 6399.22 5987.26 21498.40 18597.21 16089.63 14896.67 8498.97 6285.24 13296.62 7599.31 6599.60 67
v114486.83 25785.31 26591.40 24589.75 32587.21 21698.31 19695.45 28683.22 29182.70 25790.78 30273.36 24596.36 27779.49 28674.69 31590.63 319
OMC-MVS93.90 11393.62 11094.73 16198.63 8787.00 21798.04 21996.56 20592.19 9092.46 14998.73 8979.49 20899.14 14592.16 15594.34 17298.03 179
miper_ehance_all_eth88.94 21788.12 22391.40 24595.32 20486.93 21897.85 22995.55 28084.19 27481.97 27791.50 28984.16 14495.91 30784.69 23777.89 29591.36 295
v886.11 27084.45 28191.10 25189.99 32086.85 21997.24 25995.36 29381.99 31479.89 30289.86 33074.53 23696.39 27578.83 29372.32 34090.05 331
CPTT-MVS94.60 9794.43 8795.09 14699.66 1286.85 21999.44 6297.47 13583.22 29194.34 12598.96 6682.50 17499.55 10694.81 11399.50 5398.88 133
v1085.73 27984.01 28790.87 25990.03 31986.73 22197.20 26295.22 30481.25 32279.85 30389.75 33173.30 24896.28 28976.87 30572.64 33689.61 339
Vis-MVSNet (Re-imp)93.26 13693.00 12894.06 18896.14 17786.71 22298.68 14896.70 19488.30 19289.71 19497.64 14385.43 12996.39 27588.06 20096.32 14699.08 115
EIA-MVS95.11 8195.27 7394.64 16596.34 16586.51 22399.59 4096.62 19892.51 8094.08 12998.64 9986.05 11798.24 17995.07 10798.50 10399.18 105
CSCG94.87 8694.71 8395.36 13599.54 3686.49 22499.34 7798.15 4082.71 30290.15 18799.25 2389.48 5499.86 6394.97 11198.82 9099.72 50
tttt051793.30 13393.01 12794.17 18395.57 19486.47 22598.51 17097.60 10685.99 24690.55 17997.19 16494.80 1198.31 17385.06 23291.86 20097.74 184
dp90.16 19988.83 20794.14 18496.38 16486.42 22691.57 35397.06 17884.76 26888.81 19990.19 32784.29 14397.43 23175.05 31791.35 21398.56 156
v119286.32 26884.71 27691.17 24989.53 33186.40 22798.13 20895.44 28882.52 30682.42 26590.62 31171.58 26796.33 28477.23 30174.88 31290.79 312
HQP5-MVS86.39 228
HQP-MVS91.50 16991.23 16392.29 22493.95 25386.39 22899.16 9396.37 21693.92 5087.57 20796.67 19073.34 24697.77 20593.82 13386.29 23792.72 248
PatchMatch-RL91.47 17090.54 17994.26 17998.20 9586.36 23096.94 27097.14 16887.75 21088.98 19895.75 21171.80 26499.40 12780.92 27797.39 12897.02 207
mvsmamba89.99 20389.42 19491.69 24290.64 31486.34 23198.40 18592.27 35591.01 11284.80 23494.93 22576.12 22696.51 26792.81 14983.84 26092.21 264
LS3D90.19 19788.72 20994.59 16798.97 7386.33 23296.90 27296.60 20074.96 35484.06 24398.74 8875.78 22899.83 7374.93 31897.57 12197.62 190
CR-MVSNet88.83 22387.38 23393.16 20893.47 26986.24 23384.97 37794.20 33088.92 17290.76 17686.88 35484.43 14194.82 33470.64 34192.17 19798.41 162
RPMNet85.07 28681.88 30394.64 16593.47 26986.24 23384.97 37797.21 16064.85 38290.76 17678.80 37980.95 19899.27 13753.76 38192.17 19798.41 162
CS-MVS95.75 6796.19 4294.40 17297.88 10686.22 23599.66 3496.12 23492.69 7898.07 4698.89 7887.09 9097.59 22196.71 7298.62 9999.39 87
NP-MVS93.94 25686.22 23596.67 190
BH-w/o92.32 15591.79 15293.91 19496.85 14486.18 23799.11 10695.74 26988.13 19784.81 23397.00 17377.26 22397.91 19489.16 19198.03 11297.64 187
c3_l88.19 23787.23 23691.06 25294.97 22686.17 23897.72 23895.38 29183.43 28881.68 28491.37 29182.81 16795.72 31384.04 25073.70 32691.29 299
MSDG88.29 23586.37 24894.04 19096.90 14386.15 23996.52 28594.36 32777.89 34479.22 31096.95 17569.72 27599.59 10473.20 33392.58 18996.37 226
CLD-MVS91.06 18090.71 17692.10 23094.05 25286.10 24099.55 4496.29 22394.16 4584.70 23597.17 16669.62 27797.82 20194.74 11586.08 24292.39 254
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
test_cas_vis1_n_192093.86 11593.74 10894.22 18195.39 20386.08 24199.73 2296.07 23896.38 1797.19 6997.78 13465.46 31299.86 6396.71 7298.92 8596.73 213
V4287.00 25485.68 25990.98 25589.91 32186.08 24198.32 19595.61 27783.67 28582.72 25690.67 30774.00 24396.53 26581.94 27174.28 32190.32 324
HQP_MVS91.26 17490.95 16992.16 22893.84 26086.07 24399.02 11696.30 22093.38 6686.99 21496.52 19272.92 25297.75 21193.46 13886.17 24092.67 250
plane_prior86.07 24399.14 10193.81 5886.26 239
plane_prior693.92 25786.02 24572.92 252
plane_prior385.91 24693.65 6186.99 214
CostFormer92.89 14392.48 13894.12 18594.99 22585.89 24792.89 33997.00 18586.98 22695.00 11690.78 30290.05 5097.51 22692.92 14791.73 20498.96 123
EI-MVSNet89.87 20589.38 19691.36 24794.32 24485.87 24897.61 24596.59 20185.10 25985.51 22997.10 16881.30 19696.56 26383.85 25383.03 27091.64 279
IterMVS-LS88.34 23387.44 23191.04 25394.10 24885.85 24998.10 21395.48 28485.12 25882.03 27691.21 29581.35 19595.63 31683.86 25275.73 30791.63 280
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
VDD-MVS91.24 17790.18 18394.45 17197.08 13885.84 25098.40 18596.10 23586.99 22393.36 13998.16 12554.27 35499.20 13896.59 7890.63 21998.31 171
plane_prior793.84 26085.73 251
EPP-MVSNet93.75 11893.67 10994.01 19195.86 18585.70 25298.67 15097.66 9184.46 27191.36 16897.18 16591.16 3197.79 20392.93 14693.75 17698.53 157
bld_raw_dy_0_6487.82 23986.71 24491.15 25089.54 33085.61 25397.37 25289.16 37989.26 15983.42 24794.50 23365.79 30696.18 29188.00 20183.37 26791.67 278
v14419286.40 26684.89 27190.91 25689.48 33285.59 25498.21 20395.43 28982.45 30882.62 26090.58 31472.79 25596.36 27778.45 29674.04 32590.79 312
OPM-MVS89.76 20689.15 20091.57 24490.53 31585.58 25598.11 21295.93 25192.88 7686.05 22396.47 19567.06 29897.87 19889.29 18986.08 24291.26 300
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
tpm291.77 16691.09 16593.82 19794.83 23285.56 25692.51 34497.16 16784.00 27793.83 13490.66 30887.54 7997.17 23787.73 20491.55 20798.72 148
GeoE90.60 19089.56 19093.72 20195.10 22085.43 25799.41 6894.94 30883.96 27987.21 21396.83 18474.37 23897.05 24380.50 28393.73 17798.67 152
cl____87.82 23986.79 24390.89 25894.88 23085.43 25797.81 23095.24 29982.91 30180.71 29291.22 29481.97 18795.84 30981.34 27475.06 31091.40 294
DIV-MVS_self_test87.82 23986.81 24290.87 25994.87 23185.39 25997.81 23095.22 30482.92 30080.76 29191.31 29381.99 18595.81 31181.36 27375.04 31191.42 293
sd_testset89.23 21288.05 22592.74 21896.80 14785.33 26095.85 31097.03 18188.34 19085.73 22595.26 22161.12 33097.76 21085.61 22786.75 23495.14 234
tpm cat188.89 21987.27 23593.76 19895.79 18785.32 26190.76 36297.09 17676.14 35085.72 22788.59 34082.92 16598.04 19076.96 30491.43 21097.90 183
v192192086.02 27184.44 28290.77 26289.32 33485.20 26298.10 21395.35 29482.19 31282.25 27090.71 30470.73 27096.30 28876.85 30674.49 31790.80 311
pm-mvs184.68 29082.78 29790.40 27289.58 32885.18 26397.31 25494.73 31581.93 31676.05 32892.01 27865.48 31196.11 29678.75 29469.14 35189.91 334
TAPA-MVS87.50 990.35 19289.05 20294.25 18098.48 9185.17 26498.42 18096.58 20482.44 30987.24 21298.53 10582.77 16898.84 15559.09 37597.88 11498.72 148
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
v124085.77 27884.11 28590.73 26389.26 33585.15 26597.88 22795.23 30381.89 31782.16 27190.55 31669.60 27896.31 28575.59 31574.87 31390.72 316
ppachtmachnet_test83.63 30481.57 30789.80 28989.01 33685.09 26697.13 26494.50 32178.84 33676.14 32791.00 29869.78 27494.61 33963.40 36474.36 31989.71 338
h-mvs3392.47 15391.95 14994.05 18997.13 13585.01 26798.36 19198.08 4493.85 5596.27 9096.73 18783.19 16099.43 12295.81 9068.09 35497.70 186
Anonymous2024052987.66 24785.58 26093.92 19397.59 11685.01 26798.13 20897.13 17066.69 38088.47 20296.01 20755.09 35199.51 11087.00 20984.12 25897.23 200
EPNet_dtu92.28 15792.15 14492.70 21997.29 12784.84 26998.64 15497.82 6292.91 7593.02 14497.02 17285.48 12895.70 31472.25 33794.89 16797.55 192
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-untuned91.46 17190.84 17293.33 20596.51 15784.83 27098.84 13395.50 28386.44 24283.50 24596.70 18875.49 23097.77 20586.78 21597.81 11597.40 194
tpmvs89.16 21387.76 22693.35 20497.19 13084.75 27190.58 36497.36 15081.99 31484.56 23689.31 33783.98 14798.17 18074.85 32090.00 22397.12 201
PVSNet_083.28 1687.31 25185.16 26693.74 20094.78 23384.59 27298.91 12898.69 2189.81 14478.59 31793.23 26161.95 32699.34 13494.75 11455.72 38197.30 197
Anonymous2023121184.72 28982.65 30090.91 25697.71 11084.55 27397.28 25696.67 19566.88 37979.18 31190.87 30158.47 33896.60 25882.61 26474.20 32291.59 286
test0.0.03 188.96 21688.61 21290.03 28491.09 30884.43 27498.97 12397.02 18390.21 13280.29 29696.31 20184.89 13691.93 36672.98 33485.70 24593.73 241
PS-MVSNAJss89.54 21089.05 20291.00 25488.77 33984.36 27597.39 24995.97 24388.47 18081.88 27993.80 24782.48 17696.50 26889.34 18683.34 26992.15 267
pmmvs585.87 27384.40 28490.30 27688.53 34384.23 27698.60 16093.71 33781.53 31980.29 29692.02 27764.51 31595.52 31882.04 27078.34 29391.15 302
dcpmvs_295.67 6996.18 4494.12 18598.82 8184.22 27797.37 25295.45 28690.70 11895.77 10198.63 10190.47 4398.68 16499.20 2099.22 7099.45 81
Anonymous20240521188.84 22187.03 23994.27 17898.14 9984.18 27898.44 17895.58 27976.79 34889.34 19696.88 18053.42 35799.54 10887.53 20687.12 23399.09 114
v14886.38 26785.06 26790.37 27589.47 33384.10 27998.52 16795.48 28483.80 28180.93 29090.22 32574.60 23496.31 28580.92 27771.55 34690.69 317
TransMVSNet (Re)81.97 31179.61 32089.08 30589.70 32684.01 28097.26 25791.85 36378.84 33673.07 34991.62 28667.17 29795.21 32667.50 35359.46 37588.02 352
FMVSNet582.29 30980.54 31387.52 31993.79 26484.01 28093.73 33192.47 35376.92 34774.27 33886.15 35863.69 32089.24 37769.07 34774.79 31489.29 343
our_test_384.47 29582.80 29589.50 29789.01 33683.90 28297.03 26794.56 32081.33 32175.36 33590.52 31771.69 26594.54 34068.81 34876.84 30390.07 329
MVP-Stereo86.61 26285.83 25688.93 30988.70 34183.85 28396.07 30194.41 32682.15 31375.64 33391.96 28167.65 29296.45 27377.20 30398.72 9586.51 364
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
patch_mono-297.10 2597.97 894.49 16899.21 6183.73 28499.62 3798.25 3295.28 3099.38 698.91 7592.28 2899.94 3499.61 999.22 7099.78 38
IterMVS85.81 27684.67 27789.22 30293.51 26883.67 28596.32 29194.80 31385.09 26078.69 31390.17 32866.57 30293.17 35179.48 28777.42 30190.81 310
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
USDC84.74 28882.93 29390.16 27891.73 29983.54 28695.00 31993.30 34488.77 17573.19 34593.30 25953.62 35697.65 21775.88 31381.54 28089.30 342
D2MVS87.96 23887.39 23289.70 29291.84 29783.40 28798.31 19698.49 2388.04 20078.23 32190.26 32173.57 24496.79 25484.21 24483.53 26588.90 347
Baseline_NR-MVSNet85.83 27584.82 27388.87 31088.73 34083.34 28898.63 15591.66 36480.41 33282.44 26391.35 29274.63 23295.42 32184.13 24671.39 34787.84 353
WR-MVS_H86.53 26485.49 26289.66 29491.04 30983.31 28997.53 24798.20 3684.95 26579.64 30490.90 30078.01 21995.33 32376.29 31072.81 33490.35 323
LTVRE_ROB81.71 1984.59 29282.72 29990.18 27792.89 28183.18 29093.15 33694.74 31478.99 33575.14 33692.69 26965.64 30897.63 21869.46 34581.82 27989.74 336
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
PatchT85.44 28283.19 29192.22 22593.13 27883.00 29183.80 38396.37 21670.62 36590.55 17979.63 37884.81 13894.87 33258.18 37791.59 20698.79 143
anonymousdsp86.69 25985.75 25889.53 29686.46 36182.94 29296.39 28895.71 27083.97 27879.63 30590.70 30568.85 28095.94 30386.01 22084.02 25989.72 337
ACMH83.09 1784.60 29182.61 30190.57 26693.18 27782.94 29296.27 29294.92 30981.01 32572.61 35293.61 25256.54 34397.79 20374.31 32381.07 28190.99 306
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
IterMVS-SCA-FT85.73 27984.64 27889.00 30793.46 27182.90 29496.27 29294.70 31685.02 26378.62 31590.35 32066.61 30093.33 34879.38 28877.36 30290.76 314
F-COLMAP92.07 16391.75 15493.02 21098.16 9882.89 29598.79 14095.97 24386.54 23787.92 20597.80 13278.69 21599.65 9885.97 22195.93 15696.53 221
Patchmatch-test86.25 26984.06 28692.82 21494.42 24082.88 29682.88 38494.23 32971.58 36279.39 30890.62 31189.00 5996.42 27463.03 36691.37 21299.16 106
Patchmtry83.61 30581.64 30589.50 29793.36 27382.84 29784.10 38094.20 33069.47 37279.57 30686.88 35484.43 14194.78 33568.48 35074.30 32090.88 309
CP-MVSNet86.54 26385.45 26389.79 29091.02 31082.78 29897.38 25197.56 11685.37 25579.53 30793.03 26571.86 26395.25 32579.92 28473.43 33291.34 296
AUN-MVS90.17 19889.50 19192.19 22796.21 17182.67 29997.76 23697.53 12188.05 19991.67 15896.15 20283.10 16297.47 22788.11 19966.91 36096.43 224
eth_miper_zixun_eth87.76 24287.00 24090.06 28094.67 23682.65 30097.02 26995.37 29284.19 27481.86 28291.58 28881.47 19295.90 30883.24 25573.61 32791.61 284
hse-mvs291.67 16891.51 15892.15 22996.22 17082.61 30197.74 23797.53 12193.85 5596.27 9096.15 20283.19 16097.44 23095.81 9066.86 36196.40 225
MS-PatchMatch86.75 25885.92 25589.22 30291.97 29282.47 30296.91 27196.14 23383.74 28277.73 32293.53 25558.19 33997.37 23576.75 30798.35 10687.84 353
test_djsdf88.26 23687.73 22789.84 28888.05 34882.21 30397.77 23496.17 23186.84 22982.41 26691.95 28272.07 26095.99 30089.83 17684.50 25291.32 297
PS-CasMVS85.81 27684.58 27989.49 29990.77 31282.11 30497.20 26297.36 15084.83 26779.12 31292.84 26867.42 29595.16 32778.39 29773.25 33391.21 301
mvsany_test194.57 9995.09 7992.98 21195.84 18682.07 30598.76 14295.24 29992.87 7796.45 8798.71 9484.81 13899.15 14197.68 5595.49 16297.73 185
v7n84.42 29682.75 29889.43 30088.15 34681.86 30696.75 27995.67 27480.53 32878.38 31989.43 33569.89 27396.35 28273.83 32972.13 34290.07 329
jajsoiax87.35 25086.51 24789.87 28687.75 35381.74 30797.03 26795.98 24288.47 18080.15 29893.80 24761.47 32796.36 27789.44 18484.47 25491.50 288
MVS-HIRNet79.01 32575.13 33790.66 26493.82 26381.69 30885.16 37493.75 33654.54 38474.17 33959.15 39057.46 34196.58 26263.74 36394.38 17093.72 242
RRT_MVS88.91 21888.56 21589.93 28590.31 31881.61 30998.08 21696.38 21589.30 15882.41 26694.84 22873.15 25096.04 29990.38 17182.23 27792.15 267
tt080586.50 26584.79 27491.63 24391.97 29281.49 31096.49 28697.38 14882.24 31182.44 26395.82 21051.22 36298.25 17884.55 24080.96 28295.13 236
tpm89.67 20788.95 20491.82 23692.54 28381.43 31192.95 33895.92 25287.81 20790.50 18189.44 33484.99 13495.65 31583.67 25482.71 27398.38 165
PMMVS93.62 12493.90 10592.79 21596.79 14981.40 31298.85 13196.81 19191.25 10996.82 7998.15 12677.02 22498.13 18293.15 14496.30 14898.83 139
mvs_tets87.09 25386.22 25089.71 29187.87 34981.39 31396.73 28195.90 25888.19 19679.99 30093.61 25259.96 33496.31 28589.40 18584.34 25591.43 292
ACMM86.95 1388.77 22688.22 22190.43 27193.61 26681.34 31498.50 17195.92 25287.88 20683.85 24495.20 22367.20 29697.89 19686.90 21384.90 24992.06 272
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
PEN-MVS85.21 28483.93 28889.07 30689.89 32381.31 31597.09 26597.24 15784.45 27278.66 31492.68 27068.44 28494.87 33275.98 31270.92 34991.04 305
XVG-OURS90.83 18490.49 18091.86 23495.23 20681.25 31695.79 31295.92 25288.96 16890.02 18998.03 12871.60 26699.35 13391.06 16287.78 23094.98 237
miper_lstm_enhance86.90 25586.20 25189.00 30794.53 23981.19 31796.74 28095.24 29982.33 31080.15 29890.51 31881.99 18594.68 33880.71 27973.58 32891.12 303
pmmvs-eth3d78.71 32876.16 33386.38 32780.25 37981.19 31794.17 32792.13 35977.97 34166.90 37082.31 36855.76 34592.56 35873.63 33162.31 37185.38 368
XVG-OURS-SEG-HR90.95 18290.66 17891.83 23595.18 21281.14 31995.92 30495.92 25288.40 18790.33 18597.85 12970.66 27299.38 12892.83 14888.83 22694.98 237
ACMP87.39 1088.71 22888.24 22090.12 27993.91 25881.06 32098.50 17195.67 27489.43 15680.37 29595.55 21365.67 30797.83 20090.55 17084.51 25191.47 289
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test88.86 22088.47 21890.06 28093.35 27480.95 32198.22 20195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
LGP-MVS_train90.06 28093.35 27480.95 32195.94 24887.73 21283.17 25196.11 20466.28 30497.77 20590.19 17485.19 24791.46 290
UniMVSNet_ETH3D85.65 28183.79 28991.21 24890.41 31780.75 32395.36 31695.78 26678.76 33881.83 28394.33 23549.86 36796.66 25684.30 24283.52 26696.22 227
MDA-MVSNet_test_wron79.65 32377.05 32887.45 32187.79 35280.13 32496.25 29594.44 32273.87 35851.80 38487.47 34968.04 28892.12 36466.02 35867.79 35790.09 327
YYNet179.64 32477.04 32987.43 32287.80 35179.98 32596.23 29694.44 32273.83 35951.83 38387.53 34567.96 29092.07 36566.00 35967.75 35890.23 326
DTE-MVSNet84.14 29982.80 29588.14 31488.95 33879.87 32696.81 27596.24 22583.50 28777.60 32392.52 27267.89 29194.24 34372.64 33669.05 35290.32 324
WAC-MVS79.74 32767.75 352
myMVS_eth3d88.68 23089.07 20187.50 32095.14 21479.74 32797.68 24196.66 19686.52 23882.63 25896.84 18285.22 13389.89 37269.43 34691.54 20892.87 246
test_vis1_n_192093.08 14193.42 11492.04 23296.31 16679.36 32999.83 996.06 23996.72 998.53 3298.10 12758.57 33799.91 4597.86 5398.79 9496.85 211
ACMH+83.78 1584.21 29782.56 30289.15 30493.73 26579.16 33096.43 28794.28 32881.09 32474.00 34094.03 23954.58 35397.67 21476.10 31178.81 29190.63 319
ADS-MVSNet287.62 24886.88 24189.86 28796.21 17179.14 33187.15 37092.99 34583.01 29489.91 19087.27 35078.87 21292.80 35574.20 32592.27 19497.64 187
COLMAP_ROBcopyleft82.69 1884.54 29382.82 29489.70 29296.72 15178.85 33295.89 30592.83 34971.55 36377.54 32495.89 20959.40 33699.14 14567.26 35488.26 22791.11 304
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
AllTest84.97 28783.12 29290.52 26996.82 14578.84 33395.89 30592.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
TestCases90.52 26996.82 14578.84 33392.17 35777.96 34275.94 32995.50 21455.48 34799.18 13971.15 33887.14 23193.55 243
dmvs_re88.69 22988.06 22490.59 26593.83 26278.68 33595.75 31396.18 23087.99 20284.48 23996.32 20067.52 29396.94 24784.98 23485.49 24696.14 228
TinyColmap80.42 31977.94 32487.85 31692.09 29078.58 33693.74 33089.94 37474.99 35369.77 35791.78 28446.09 37297.58 22265.17 36277.89 29587.38 356
MDA-MVSNet-bldmvs77.82 33374.75 33987.03 32488.33 34478.52 33796.34 29092.85 34875.57 35148.87 38687.89 34257.32 34292.49 36060.79 37164.80 36690.08 328
test_040278.81 32776.33 33286.26 32991.18 30778.44 33895.88 30791.34 36868.55 37370.51 35689.91 32952.65 35994.99 32847.14 38579.78 28885.34 370
Fast-Effi-MVS+-dtu88.84 22188.59 21489.58 29593.44 27278.18 33998.65 15294.62 31988.46 18284.12 24295.37 22068.91 27996.52 26682.06 26991.70 20594.06 240
pmmvs679.90 32177.31 32787.67 31884.17 36878.13 34095.86 30993.68 33867.94 37672.67 35189.62 33350.98 36495.75 31274.80 32166.04 36289.14 345
DeepPCF-MVS93.56 196.55 3997.84 1092.68 22098.71 8578.11 34199.70 2697.71 8298.18 197.36 6299.76 190.37 4799.94 3499.27 1699.54 5299.99 1
OpenMVS_ROBcopyleft73.86 2077.99 33275.06 33886.77 32683.81 37077.94 34296.38 28991.53 36767.54 37768.38 36287.13 35343.94 37496.08 29755.03 38081.83 27886.29 365
EG-PatchMatch MVS79.92 32077.59 32586.90 32587.06 35877.90 34396.20 29994.06 33274.61 35566.53 37188.76 33940.40 38196.20 29067.02 35583.66 26486.61 362
testing387.75 24388.22 22186.36 32894.66 23777.41 34499.52 5097.95 5486.05 24581.12 28896.69 18986.18 11589.31 37661.65 37090.12 22292.35 259
XVG-ACMP-BASELINE85.86 27484.95 27088.57 31189.90 32277.12 34594.30 32595.60 27887.40 22082.12 27292.99 26753.42 35797.66 21585.02 23383.83 26190.92 308
test_vis1_n90.40 19190.27 18290.79 26191.55 30176.48 34699.12 10594.44 32294.31 4197.34 6396.95 17543.60 37699.42 12397.57 5797.60 12096.47 222
ITE_SJBPF87.93 31592.26 28776.44 34793.47 34287.67 21579.95 30195.49 21656.50 34497.38 23375.24 31682.33 27689.98 333
UnsupCasMVSNet_bld73.85 34270.14 34684.99 33779.44 38075.73 34888.53 36795.24 29970.12 36961.94 37774.81 38341.41 37993.62 34668.65 34951.13 38785.62 367
MIMVSNet175.92 33773.30 34283.81 34581.29 37675.57 34992.26 34592.05 36073.09 36167.48 36886.18 35740.87 38087.64 38155.78 37970.68 35088.21 351
test_fmvs192.35 15492.94 12990.57 26697.19 13075.43 35099.55 4494.97 30695.20 3196.82 7997.57 14759.59 33599.84 6997.30 6198.29 11096.46 223
CL-MVSNet_self_test79.89 32278.34 32384.54 34181.56 37575.01 35196.88 27395.62 27681.10 32375.86 33185.81 35968.49 28390.26 37063.21 36556.51 37988.35 350
UnsupCasMVSNet_eth78.90 32676.67 33185.58 33482.81 37374.94 35291.98 34796.31 21984.64 26965.84 37387.71 34351.33 36192.23 36272.89 33556.50 38089.56 340
testgi82.29 30981.00 31286.17 33087.24 35674.84 35397.39 24991.62 36588.63 17675.85 33295.42 21746.07 37391.55 36766.87 35779.94 28792.12 269
test_fmvs1_n91.07 17991.41 16090.06 28094.10 24874.31 35499.18 8994.84 31094.81 3396.37 8997.46 15150.86 36599.82 7697.14 6497.90 11396.04 230
pmmvs372.86 34369.76 34882.17 35073.86 38674.19 35594.20 32689.01 38064.23 38367.72 36580.91 37541.48 37888.65 37962.40 36754.02 38383.68 376
TDRefinement78.01 33175.31 33586.10 33170.06 39073.84 35693.59 33491.58 36674.51 35673.08 34891.04 29749.63 36997.12 23874.88 31959.47 37487.33 358
JIA-IIPM85.97 27284.85 27289.33 30193.23 27673.68 35785.05 37697.13 17069.62 37191.56 16268.03 38688.03 7396.96 24577.89 29993.12 18097.34 196
CVMVSNet90.30 19490.91 17088.46 31394.32 24473.58 35897.61 24597.59 11090.16 13788.43 20397.10 16876.83 22592.86 35282.64 26393.54 17898.93 129
Anonymous2023120680.76 31779.42 32184.79 33984.78 36672.98 35996.53 28492.97 34679.56 33374.33 33788.83 33861.27 32992.15 36360.59 37275.92 30689.24 344
Anonymous2024052178.63 32976.90 33083.82 34482.82 37272.86 36095.72 31493.57 34073.55 36072.17 35384.79 36149.69 36892.51 35965.29 36174.50 31686.09 366
new_pmnet76.02 33673.71 34182.95 34783.88 36972.85 36191.26 35792.26 35670.44 36762.60 37681.37 37147.64 37192.32 36161.85 36872.10 34383.68 376
LCM-MVSNet-Re88.59 23188.61 21288.51 31295.53 19772.68 36296.85 27488.43 38188.45 18373.14 34690.63 31075.82 22794.38 34192.95 14595.71 15998.48 160
new-patchmatchnet74.80 34172.40 34481.99 35278.36 38272.20 36394.44 32392.36 35477.06 34563.47 37579.98 37751.04 36388.85 37860.53 37354.35 38284.92 373
Effi-MVS+-dtu89.97 20490.68 17787.81 31795.15 21371.98 36497.87 22895.40 29091.92 9587.57 20791.44 29074.27 24096.84 25089.45 18393.10 18194.60 239
EGC-MVSNET60.70 35255.37 35676.72 35886.35 36271.08 36589.96 36584.44 3890.38 4011.50 40284.09 36337.30 38288.10 38040.85 39073.44 33170.97 386
test20.0378.51 33077.48 32681.62 35383.07 37171.03 36696.11 30092.83 34981.66 31869.31 35989.68 33257.53 34087.29 38258.65 37668.47 35386.53 363
SixPastTwentyTwo82.63 30881.58 30685.79 33288.12 34771.01 36795.17 31892.54 35284.33 27372.93 35092.08 27560.41 33395.61 31774.47 32274.15 32390.75 315
test_vis1_rt81.31 31580.05 31885.11 33591.29 30670.66 36898.98 12277.39 39685.76 25068.80 36082.40 36736.56 38399.44 11992.67 15186.55 23685.24 371
OurMVSNet-221017-084.13 30083.59 29085.77 33387.81 35070.24 36994.89 32093.65 33986.08 24476.53 32593.28 26061.41 32896.14 29580.95 27677.69 30090.93 307
K. test v381.04 31679.77 31984.83 33887.41 35470.23 37095.60 31593.93 33483.70 28467.51 36789.35 33655.76 34593.58 34776.67 30868.03 35590.67 318
Patchmatch-RL test81.90 31380.13 31687.23 32380.71 37770.12 37184.07 38188.19 38283.16 29370.57 35482.18 36987.18 8992.59 35782.28 26762.78 36898.98 121
lessismore_v085.08 33685.59 36469.28 37290.56 37267.68 36690.21 32654.21 35595.46 31973.88 32762.64 36990.50 321
KD-MVS_self_test77.47 33475.88 33482.24 34981.59 37468.93 37392.83 34294.02 33377.03 34673.14 34683.39 36455.44 34990.42 36967.95 35157.53 37887.38 356
LF4IMVS81.94 31281.17 31184.25 34287.23 35768.87 37493.35 33591.93 36283.35 29075.40 33493.00 26649.25 37096.65 25778.88 29278.11 29487.22 360
EU-MVSNet84.19 29884.42 28383.52 34688.64 34267.37 37596.04 30295.76 26885.29 25678.44 31893.18 26270.67 27191.48 36875.79 31475.98 30591.70 277
Syy-MVS84.10 30184.53 28082.83 34895.14 21465.71 37697.68 24196.66 19686.52 23882.63 25896.84 18268.15 28689.89 37245.62 38691.54 20892.87 246
test_fmvs285.10 28585.45 26384.02 34389.85 32465.63 37798.49 17392.59 35190.45 12785.43 23193.32 25743.94 37496.59 25990.81 16784.19 25789.85 335
PM-MVS74.88 34072.85 34380.98 35578.98 38164.75 37890.81 36185.77 38580.95 32668.23 36482.81 36529.08 38792.84 35376.54 30962.46 37085.36 369
RPSCF85.33 28385.55 26184.67 34094.63 23862.28 37993.73 33193.76 33574.38 35785.23 23297.06 17164.09 31698.31 17380.98 27586.08 24293.41 245
DSMNet-mixed81.60 31481.43 30882.10 35184.36 36760.79 38093.63 33386.74 38479.00 33479.32 30987.15 35263.87 31889.78 37466.89 35691.92 19995.73 232
mvsany_test375.85 33874.52 34079.83 35673.53 38760.64 38191.73 35087.87 38383.91 28070.55 35582.52 36631.12 38593.66 34586.66 21662.83 36785.19 372
CMPMVSbinary58.40 2180.48 31880.11 31781.59 35485.10 36559.56 38294.14 32895.95 24768.54 37460.71 37893.31 25855.35 35097.87 19883.06 26084.85 25087.33 358
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
Gipumacopyleft54.77 35752.22 36162.40 37586.50 36059.37 38350.20 39390.35 37336.52 39141.20 39249.49 39318.33 39481.29 38632.10 39265.34 36446.54 393
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc79.60 35772.76 38956.61 38476.20 38892.01 36168.25 36380.23 37623.34 38994.73 33673.78 33060.81 37287.48 355
test_method70.10 34668.66 34974.41 36386.30 36355.84 38594.47 32289.82 37535.18 39266.15 37284.75 36230.54 38677.96 39370.40 34460.33 37389.44 341
PMMVS258.97 35455.07 35770.69 36762.72 39455.37 38685.97 37280.52 39349.48 38645.94 38768.31 38515.73 39680.78 38949.79 38437.12 39275.91 381
test_fmvs375.09 33975.19 33674.81 36177.45 38354.08 38795.93 30390.64 37182.51 30773.29 34481.19 37222.29 39086.29 38385.50 22867.89 35684.06 374
test_f71.94 34470.82 34575.30 36072.77 38853.28 38891.62 35189.66 37775.44 35264.47 37478.31 38020.48 39189.56 37578.63 29566.02 36383.05 379
APD_test168.93 34766.98 35074.77 36280.62 37853.15 38987.97 36885.01 38753.76 38559.26 37987.52 34625.19 38889.95 37156.20 37867.33 35981.19 380
test_vis3_rt61.29 35158.75 35468.92 36867.41 39152.84 39091.18 35959.23 40366.96 37841.96 39158.44 39111.37 39994.72 33774.25 32457.97 37759.20 390
ANet_high50.71 35946.17 36264.33 37244.27 40152.30 39176.13 38978.73 39464.95 38127.37 39555.23 39214.61 39767.74 39536.01 39118.23 39572.95 385
DeepMVS_CXcopyleft76.08 35990.74 31351.65 39290.84 37086.47 24157.89 38087.98 34135.88 38492.60 35665.77 36065.06 36583.97 375
LCM-MVSNet60.07 35356.37 35571.18 36554.81 39948.67 39382.17 38589.48 37837.95 39049.13 38569.12 38413.75 39881.76 38559.28 37451.63 38683.10 378
testf156.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
APD_test256.38 35553.73 35864.31 37364.84 39245.11 39480.50 38675.94 39838.87 38842.74 38875.07 38111.26 40081.19 38741.11 38853.27 38466.63 387
WB-MVS66.44 34866.29 35166.89 36974.84 38444.93 39693.00 33784.09 39071.15 36455.82 38181.63 37063.79 31980.31 39121.85 39550.47 38875.43 382
SSC-MVS65.42 34965.20 35266.06 37073.96 38543.83 39792.08 34683.54 39169.77 37054.73 38280.92 37463.30 32179.92 39220.48 39648.02 38974.44 383
MVEpermissive44.00 2241.70 36137.64 36653.90 37849.46 40043.37 39865.09 39266.66 40026.19 39625.77 39748.53 3943.58 40463.35 39726.15 39427.28 39354.97 392
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
FPMVS61.57 35060.32 35365.34 37160.14 39742.44 39991.02 36089.72 37644.15 38742.63 39080.93 37319.02 39280.59 39042.50 38772.76 33573.00 384
tmp_tt53.66 35852.86 36056.05 37632.75 40341.97 40073.42 39076.12 39721.91 39739.68 39396.39 19842.59 37765.10 39678.00 29814.92 39761.08 389
dmvs_testset77.17 33578.99 32271.71 36487.25 35538.55 40191.44 35481.76 39285.77 24969.49 35895.94 20869.71 27684.37 38452.71 38376.82 30492.21 264
E-PMN41.02 36240.93 36441.29 37961.97 39533.83 40284.00 38265.17 40127.17 39427.56 39446.72 39517.63 39560.41 39819.32 39718.82 39429.61 394
PMVScopyleft41.42 2345.67 36042.50 36355.17 37734.28 40232.37 40366.24 39178.71 39530.72 39322.04 39859.59 3894.59 40277.85 39427.49 39358.84 37655.29 391
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
EMVS39.96 36339.88 36540.18 38059.57 39832.12 40484.79 37964.57 40226.27 39526.14 39644.18 39818.73 39359.29 39917.03 39817.67 39629.12 395
N_pmnet70.19 34569.87 34771.12 36688.24 34530.63 40595.85 31028.70 40470.18 36868.73 36186.55 35664.04 31793.81 34453.12 38273.46 33088.94 346
wuyk23d16.71 36616.73 37016.65 38160.15 39625.22 40641.24 3945.17 4056.56 3985.48 4013.61 4013.64 40322.72 40015.20 3999.52 3981.99 398
test12316.58 36719.47 3697.91 3823.59 4055.37 40794.32 3241.39 4072.49 40013.98 40044.60 3972.91 4052.65 40111.35 4010.57 40015.70 396
testmvs18.81 36523.05 3686.10 3834.48 4042.29 40897.78 2323.00 4063.27 39918.60 39962.71 3871.53 4062.49 40214.26 4001.80 39913.50 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k22.52 36430.03 3670.00 3840.00 4060.00 4090.00 39597.17 1660.00 4020.00 40398.77 8574.35 2390.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas6.87 3699.16 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40282.48 1760.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.21 36810.94 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40398.50 1080.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
PC_three_145294.60 3699.41 499.12 4695.50 799.96 2899.84 299.92 399.97 7
eth-test20.00 406
eth-test0.00 406
test_241102_TWO97.72 7894.17 4399.23 1099.54 393.14 2499.98 999.70 499.82 1999.99 1
9.1496.87 2699.34 5099.50 5197.49 13289.41 15798.59 3099.43 1689.78 5299.69 9198.69 3099.62 44
test_0728_THIRD93.01 7099.07 1599.46 1094.66 1499.97 2199.25 1899.82 1999.95 15
GSMVS98.84 136
sam_mvs188.39 6598.84 136
sam_mvs87.08 91
MTGPAbinary97.45 138
test_post190.74 36341.37 39985.38 13096.36 27783.16 257
test_post46.00 39687.37 8397.11 239
patchmatchnet-post84.86 36088.73 6296.81 252
MTMP99.21 8691.09 369
test9_res98.60 3399.87 999.90 22
agg_prior297.84 5499.87 999.91 21
test_prior299.57 4291.43 10598.12 4498.97 6290.43 4498.33 4299.81 23
旧先验298.67 15085.75 25198.96 2098.97 15293.84 131
新几何298.26 199
无先验98.52 16797.82 6287.20 22299.90 5087.64 20599.85 30
原ACMM298.69 147
testdata299.88 5484.16 245
segment_acmp90.56 42
testdata197.89 22592.43 82
plane_prior596.30 22097.75 21193.46 13886.17 24092.67 250
plane_prior496.52 192
plane_prior299.02 11693.38 66
plane_prior193.90 259
n20.00 408
nn0.00 408
door-mid84.90 388
test1197.68 87
door85.30 386
HQP-NCC93.95 25399.16 9393.92 5087.57 207
ACMP_Plane93.95 25399.16 9393.92 5087.57 207
BP-MVS93.82 133
HQP4-MVS87.57 20797.77 20592.72 248
HQP3-MVS96.37 21686.29 237
HQP2-MVS73.34 246
ACMMP++_ref82.64 274
ACMMP++83.83 261
Test By Simon83.62 150