| DPM-MVS | | | 96.21 2 | 95.53 13 | 98.26 1 | 96.26 105 | 95.09 1 | 99.15 8 | 96.98 38 | 93.39 14 | 96.45 25 | 98.79 8 | 90.17 9 | 99.99 1 | 89.33 138 | 99.25 6 | 99.70 3 |
|
| PS-MVSNAJ | | | 94.17 30 | 93.52 41 | 96.10 9 | 95.65 126 | 92.35 2 | 98.21 44 | 95.79 164 | 92.42 21 | 96.24 27 | 98.18 41 | 71.04 222 | 99.17 98 | 96.77 34 | 97.39 77 | 96.79 172 |
|
| OPU-MVS | | | | | 97.30 2 | 99.19 7 | 92.31 3 | 99.12 12 | | | | 98.54 20 | 92.06 3 | 99.84 13 | 99.11 3 | 99.37 1 | 99.74 1 |
|
| MSC_two_6792asdad | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 53 | | | | | 99.81 22 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| No_MVS | | | | | 97.14 3 | 99.05 9 | 92.19 4 | | 96.83 53 | | | | | 99.81 22 | 98.08 14 | 98.81 24 | 99.43 11 |
|
| xiu_mvs_v2_base | | | 93.92 35 | 93.26 46 | 95.91 11 | 95.07 146 | 92.02 6 | 98.19 45 | 95.68 170 | 92.06 25 | 96.01 31 | 98.14 45 | 70.83 226 | 98.96 112 | 96.74 36 | 96.57 100 | 96.76 175 |
|
| DELS-MVS | | | 94.98 14 | 94.49 24 | 96.44 6 | 96.42 101 | 90.59 7 | 99.21 5 | 97.02 36 | 94.40 8 | 91.46 95 | 97.08 110 | 83.32 54 | 99.69 49 | 92.83 88 | 98.70 31 | 99.04 29 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| MVS | | | 90.60 117 | 88.64 143 | 96.50 5 | 94.25 174 | 90.53 8 | 93.33 298 | 97.21 22 | 77.59 305 | 78.88 252 | 97.31 95 | 71.52 217 | 99.69 49 | 89.60 133 | 98.03 56 | 99.27 22 |
|
| MM | | | 95.85 6 | 95.74 10 | 96.15 8 | 96.34 102 | 89.50 9 | 99.18 6 | 98.10 8 | 95.68 1 | 96.64 21 | 97.92 61 | 80.72 70 | 99.80 25 | 99.16 1 | 97.96 58 | 99.15 27 |
|
| MCST-MVS | | | 96.17 3 | 96.12 6 | 96.32 7 | 99.42 2 | 89.36 10 | 98.94 24 | 97.10 31 | 95.17 3 | 92.11 86 | 98.46 26 | 87.33 25 | 99.97 2 | 97.21 29 | 99.31 4 | 99.63 7 |
|
| MG-MVS | | | 94.25 29 | 93.72 35 | 95.85 12 | 99.38 3 | 89.35 11 | 97.98 59 | 98.09 9 | 89.99 53 | 92.34 82 | 96.97 115 | 81.30 68 | 98.99 110 | 88.54 145 | 98.88 20 | 99.20 25 |
|
| MVS_0304 | | | 95.58 9 | 95.44 15 | 96.01 10 | 97.63 70 | 89.26 12 | 99.27 3 | 96.59 89 | 94.71 4 | 97.08 15 | 97.99 55 | 78.69 101 | 99.86 10 | 99.15 2 | 97.85 62 | 98.91 35 |
|
| WTY-MVS | | | 92.65 65 | 91.68 82 | 95.56 14 | 96.00 112 | 88.90 13 | 98.23 43 | 97.65 13 | 88.57 70 | 89.82 119 | 97.22 103 | 79.29 89 | 99.06 107 | 89.57 134 | 88.73 191 | 98.73 46 |
|
| balanced_conf03 | | | 94.60 23 | 94.30 29 | 95.48 16 | 96.45 100 | 88.82 14 | 96.33 190 | 95.58 174 | 91.12 36 | 95.84 32 | 93.87 202 | 83.47 53 | 98.37 144 | 97.26 27 | 98.81 24 | 99.24 23 |
|
| sasdasda | | | 92.27 75 | 91.22 91 | 95.41 17 | 95.80 121 | 88.31 15 | 97.09 134 | 94.64 231 | 88.49 72 | 92.99 72 | 97.31 95 | 72.68 200 | 98.57 130 | 93.38 77 | 88.58 193 | 99.36 16 |
|
| canonicalmvs | | | 92.27 75 | 91.22 91 | 95.41 17 | 95.80 121 | 88.31 15 | 97.09 134 | 94.64 231 | 88.49 72 | 92.99 72 | 97.31 95 | 72.68 200 | 98.57 130 | 93.38 77 | 88.58 193 | 99.36 16 |
|
| HY-MVS | | 84.06 6 | 91.63 91 | 90.37 111 | 95.39 19 | 96.12 109 | 88.25 17 | 90.22 338 | 97.58 15 | 88.33 78 | 90.50 112 | 91.96 235 | 79.26 90 | 99.06 107 | 90.29 126 | 89.07 185 | 98.88 37 |
|
| CANet | | | 94.89 16 | 94.64 22 | 95.63 13 | 97.55 76 | 88.12 18 | 99.06 17 | 96.39 114 | 94.07 10 | 95.34 36 | 97.80 70 | 76.83 132 | 99.87 8 | 97.08 31 | 97.64 68 | 98.89 36 |
|
| MVSFormer | | | 91.36 98 | 90.57 104 | 93.73 60 | 93.00 214 | 88.08 19 | 94.80 263 | 94.48 240 | 80.74 249 | 94.90 44 | 97.13 106 | 78.84 97 | 95.10 314 | 83.77 187 | 97.46 72 | 98.02 88 |
|
| lupinMVS | | | 93.87 36 | 93.58 40 | 94.75 30 | 93.00 214 | 88.08 19 | 99.15 8 | 95.50 181 | 91.03 39 | 94.90 44 | 97.66 75 | 78.84 97 | 97.56 183 | 94.64 62 | 97.46 72 | 98.62 52 |
|
| PAPM | | | 92.87 52 | 92.40 65 | 94.30 39 | 92.25 241 | 87.85 21 | 96.40 185 | 96.38 115 | 91.07 38 | 88.72 141 | 96.90 116 | 82.11 63 | 97.37 200 | 90.05 129 | 97.70 66 | 97.67 119 |
|
| alignmvs | | | 92.97 49 | 92.26 70 | 95.12 21 | 95.54 130 | 87.77 22 | 98.67 29 | 96.38 115 | 88.04 85 | 93.01 71 | 97.45 88 | 79.20 92 | 98.60 128 | 93.25 81 | 88.76 190 | 98.99 33 |
|
| FMVSNet3 | | | 84.71 229 | 82.71 246 | 90.70 187 | 94.55 161 | 87.71 23 | 95.92 213 | 94.67 227 | 81.73 236 | 75.82 291 | 88.08 291 | 66.99 246 | 94.47 331 | 71.23 302 | 75.38 294 | 89.91 282 |
|
| MVSMamba_PlusPlus | | | 92.37 74 | 91.55 85 | 94.83 27 | 95.37 135 | 87.69 24 | 95.60 231 | 95.42 190 | 74.65 332 | 93.95 58 | 92.81 219 | 83.11 56 | 97.70 175 | 94.49 63 | 98.53 35 | 99.11 28 |
|
| CNVR-MVS | | | 96.30 1 | 96.54 1 | 95.55 15 | 99.31 5 | 87.69 24 | 99.06 17 | 97.12 29 | 94.66 5 | 96.79 17 | 98.78 9 | 86.42 30 | 99.95 3 | 97.59 23 | 99.18 7 | 99.00 31 |
|
| xiu_mvs_v1_base_debu | | | 90.54 118 | 89.54 129 | 93.55 72 | 92.31 234 | 87.58 26 | 96.99 139 | 94.87 214 | 87.23 108 | 93.27 64 | 97.56 84 | 57.43 313 | 98.32 146 | 92.72 89 | 93.46 147 | 94.74 227 |
|
| xiu_mvs_v1_base | | | 90.54 118 | 89.54 129 | 93.55 72 | 92.31 234 | 87.58 26 | 96.99 139 | 94.87 214 | 87.23 108 | 93.27 64 | 97.56 84 | 57.43 313 | 98.32 146 | 92.72 89 | 93.46 147 | 94.74 227 |
|
| xiu_mvs_v1_base_debi | | | 90.54 118 | 89.54 129 | 93.55 72 | 92.31 234 | 87.58 26 | 96.99 139 | 94.87 214 | 87.23 108 | 93.27 64 | 97.56 84 | 57.43 313 | 98.32 146 | 92.72 89 | 93.46 147 | 94.74 227 |
|
| jason | | | 92.73 56 | 92.23 71 | 94.21 44 | 90.50 286 | 87.30 29 | 98.65 30 | 95.09 203 | 90.61 44 | 92.76 76 | 97.13 106 | 75.28 167 | 97.30 203 | 93.32 79 | 96.75 97 | 98.02 88 |
| jason: jason. |
| VNet | | | 92.11 79 | 91.22 91 | 94.79 28 | 96.91 95 | 86.98 30 | 97.91 63 | 97.96 10 | 86.38 123 | 93.65 61 | 95.74 143 | 70.16 231 | 98.95 114 | 93.39 75 | 88.87 189 | 98.43 61 |
|
| baseline1 | | | 88.85 151 | 87.49 168 | 92.93 97 | 95.21 141 | 86.85 31 | 95.47 236 | 94.61 234 | 87.29 105 | 83.11 205 | 94.99 176 | 80.70 71 | 96.89 227 | 82.28 206 | 73.72 301 | 95.05 219 |
|
| ET-MVSNet_ETH3D | | | 90.01 128 | 89.03 134 | 92.95 95 | 94.38 171 | 86.77 32 | 98.14 46 | 96.31 123 | 89.30 61 | 63.33 370 | 96.72 127 | 90.09 10 | 93.63 348 | 90.70 117 | 82.29 255 | 98.46 59 |
|
| 3Dnovator+ | | 82.88 8 | 89.63 136 | 87.85 156 | 94.99 23 | 94.49 168 | 86.76 33 | 97.84 67 | 95.74 167 | 86.10 127 | 75.47 296 | 96.02 138 | 65.00 261 | 99.51 71 | 82.91 202 | 97.07 86 | 98.72 47 |
|
| OpenMVS |  | 79.58 14 | 86.09 206 | 83.62 231 | 93.50 75 | 90.95 275 | 86.71 34 | 97.44 101 | 95.83 162 | 75.35 324 | 72.64 321 | 95.72 144 | 57.42 316 | 99.64 55 | 71.41 300 | 95.85 115 | 94.13 237 |
|
| MGCFI-Net | | | 91.95 81 | 91.03 97 | 94.72 31 | 95.68 125 | 86.38 35 | 96.93 149 | 94.48 240 | 88.25 80 | 92.78 75 | 97.24 101 | 72.34 205 | 98.46 138 | 93.13 85 | 88.43 197 | 99.32 19 |
|
| GG-mvs-BLEND | | | | | 93.49 76 | 94.94 150 | 86.26 36 | 81.62 390 | 97.00 37 | | 88.32 147 | 94.30 190 | 91.23 5 | 96.21 256 | 88.49 147 | 97.43 75 | 98.00 93 |
|
| CANet_DTU | | | 90.98 109 | 90.04 120 | 93.83 53 | 94.76 156 | 86.23 37 | 96.32 191 | 93.12 318 | 93.11 16 | 93.71 60 | 96.82 122 | 63.08 271 | 99.48 73 | 84.29 180 | 95.12 122 | 95.77 201 |
|
| test_0728_SECOND | | | | | 95.14 20 | 99.04 14 | 86.14 38 | 99.06 17 | 96.77 62 | | | | | 99.84 13 | 97.90 17 | 98.85 21 | 99.45 10 |
|
| HPM-MVS++ |  | | 95.32 11 | 95.48 14 | 94.85 26 | 98.62 34 | 86.04 39 | 97.81 70 | 96.93 44 | 92.45 20 | 95.69 33 | 98.50 24 | 85.38 34 | 99.85 11 | 94.75 59 | 99.18 7 | 98.65 50 |
|
| testing11 | | | 92.48 70 | 92.04 77 | 93.78 55 | 95.94 116 | 86.00 40 | 97.56 90 | 97.08 32 | 87.52 99 | 89.32 128 | 95.40 155 | 84.60 39 | 98.02 158 | 91.93 101 | 89.04 186 | 97.32 147 |
|
| SF-MVS | | | 94.17 30 | 94.05 34 | 94.55 35 | 97.56 75 | 85.95 41 | 97.73 77 | 96.43 108 | 84.02 184 | 95.07 42 | 98.74 14 | 82.93 58 | 99.38 78 | 95.42 50 | 98.51 36 | 98.32 66 |
|
| cascas | | | 86.50 199 | 84.48 216 | 92.55 114 | 92.64 228 | 85.95 41 | 97.04 138 | 95.07 205 | 75.32 325 | 80.50 233 | 91.02 248 | 54.33 337 | 97.98 161 | 86.79 165 | 87.62 206 | 93.71 245 |
|
| SMA-MVS |  | | 94.70 21 | 94.68 21 | 94.76 29 | 98.02 59 | 85.94 43 | 97.47 98 | 96.77 62 | 85.32 144 | 97.92 3 | 98.70 15 | 83.09 57 | 99.84 13 | 95.79 43 | 99.08 10 | 98.49 57 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| QAPM | | | 86.88 193 | 84.51 214 | 93.98 48 | 94.04 184 | 85.89 44 | 97.19 119 | 96.05 144 | 73.62 339 | 75.12 299 | 95.62 149 | 62.02 278 | 99.74 38 | 70.88 306 | 96.06 109 | 96.30 191 |
|
| gg-mvs-nofinetune | | | 85.48 220 | 82.90 242 | 93.24 83 | 94.51 166 | 85.82 45 | 79.22 395 | 96.97 40 | 61.19 392 | 87.33 156 | 53.01 411 | 90.58 6 | 96.07 259 | 86.07 167 | 97.23 81 | 97.81 109 |
|
| GDP-MVS | | | 92.85 53 | 92.55 63 | 93.75 57 | 92.82 221 | 85.76 46 | 97.63 82 | 95.05 206 | 88.34 77 | 93.15 68 | 97.10 109 | 86.92 26 | 98.01 159 | 87.95 153 | 94.00 136 | 97.47 137 |
|
| 1314 | | | 88.94 147 | 87.20 175 | 94.17 45 | 93.21 206 | 85.73 47 | 93.33 298 | 96.64 82 | 82.89 213 | 75.98 288 | 96.36 131 | 66.83 248 | 99.39 77 | 83.52 196 | 96.02 111 | 97.39 144 |
|
| testing99 | | | 91.91 83 | 91.35 88 | 93.60 69 | 95.98 114 | 85.70 48 | 97.31 112 | 96.92 46 | 86.82 117 | 88.91 135 | 95.25 158 | 84.26 46 | 97.89 169 | 88.80 143 | 87.94 203 | 97.21 155 |
|
| 3Dnovator | | 82.32 10 | 89.33 140 | 87.64 161 | 94.42 37 | 93.73 191 | 85.70 48 | 97.73 77 | 96.75 66 | 86.73 122 | 76.21 285 | 95.93 139 | 62.17 275 | 99.68 51 | 81.67 210 | 97.81 63 | 97.88 100 |
|
| WBMVS | | | 87.73 181 | 86.79 184 | 90.56 190 | 95.61 127 | 85.68 50 | 97.63 82 | 95.52 179 | 83.77 194 | 78.30 257 | 88.44 284 | 86.14 32 | 95.78 276 | 82.54 204 | 73.15 307 | 90.21 273 |
|
| testing91 | | | 91.90 84 | 91.31 90 | 93.66 65 | 95.99 113 | 85.68 50 | 97.39 108 | 96.89 47 | 86.75 121 | 88.85 137 | 95.23 161 | 83.93 49 | 97.90 168 | 88.91 140 | 87.89 204 | 97.41 141 |
|
| DeepC-MVS_fast | | 89.06 2 | 94.48 25 | 94.30 29 | 95.02 22 | 98.86 21 | 85.68 50 | 98.06 55 | 96.64 82 | 93.64 12 | 91.74 93 | 98.54 20 | 80.17 79 | 99.90 5 | 92.28 93 | 98.75 29 | 99.49 8 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| UBG | | | 92.68 64 | 92.35 66 | 93.70 63 | 95.61 127 | 85.65 53 | 97.25 114 | 97.06 34 | 87.92 88 | 89.28 129 | 95.03 173 | 86.06 33 | 98.07 155 | 92.24 94 | 90.69 175 | 97.37 145 |
|
| ETVMVS | | | 90.99 108 | 90.26 112 | 93.19 86 | 95.81 120 | 85.64 54 | 96.97 144 | 97.18 25 | 85.43 141 | 88.77 140 | 94.86 179 | 82.00 64 | 96.37 248 | 82.70 203 | 88.60 192 | 97.57 127 |
|
| thres200 | | | 88.92 148 | 87.65 160 | 92.73 105 | 96.30 103 | 85.62 55 | 97.85 66 | 98.86 1 | 84.38 172 | 84.82 182 | 93.99 199 | 75.12 170 | 98.01 159 | 70.86 307 | 86.67 213 | 94.56 232 |
|
| test12 | | | | | 94.25 41 | 98.34 46 | 85.55 56 | | 96.35 119 | | 92.36 81 | | 80.84 69 | 99.22 89 | | 98.31 49 | 97.98 95 |
|
| LFMVS | | | 89.27 142 | 87.64 161 | 94.16 47 | 97.16 92 | 85.52 57 | 97.18 120 | 94.66 228 | 79.17 286 | 89.63 123 | 96.57 129 | 55.35 330 | 98.22 150 | 89.52 136 | 89.54 180 | 98.74 42 |
|
| FMVSNet2 | | | 82.79 263 | 80.44 278 | 89.83 214 | 92.66 225 | 85.43 58 | 95.42 238 | 94.35 252 | 79.06 289 | 74.46 303 | 87.28 300 | 56.38 325 | 94.31 334 | 69.72 314 | 74.68 298 | 89.76 283 |
|
| BP-MVS1 | | | 93.55 40 | 93.50 42 | 93.71 62 | 92.64 228 | 85.39 59 | 97.78 72 | 96.84 52 | 89.52 58 | 92.00 87 | 97.06 112 | 88.21 20 | 98.03 157 | 91.45 104 | 96.00 112 | 97.70 117 |
|
| DVP-MVS++ | | | 96.05 4 | 96.41 3 | 94.96 24 | 99.05 9 | 85.34 60 | 98.13 49 | 96.77 62 | 88.38 75 | 97.70 8 | 98.77 10 | 92.06 3 | 99.84 13 | 97.47 24 | 99.37 1 | 99.70 3 |
|
| IU-MVS | | | | | | 99.03 15 | 85.34 60 | | 96.86 51 | 92.05 27 | 98.74 1 | | | | 98.15 11 | 98.97 17 | 99.42 13 |
|
| nrg030 | | | 86.79 196 | 85.43 199 | 90.87 182 | 88.76 313 | 85.34 60 | 97.06 137 | 94.33 254 | 84.31 173 | 80.45 235 | 91.98 234 | 72.36 204 | 96.36 249 | 88.48 148 | 71.13 315 | 90.93 265 |
|
| tfpn200view9 | | | 88.48 162 | 87.15 176 | 92.47 115 | 96.21 106 | 85.30 63 | 97.44 101 | 98.85 2 | 83.37 202 | 83.99 192 | 93.82 203 | 75.36 163 | 97.93 162 | 69.04 315 | 86.24 220 | 94.17 234 |
|
| thres400 | | | 88.42 165 | 87.15 176 | 92.23 129 | 96.21 106 | 85.30 63 | 97.44 101 | 98.85 2 | 83.37 202 | 83.99 192 | 93.82 203 | 75.36 163 | 97.93 162 | 69.04 315 | 86.24 220 | 93.45 250 |
|
| DVP-MVS |  | | 95.58 9 | 95.91 9 | 94.57 34 | 99.05 9 | 85.18 65 | 99.06 17 | 96.46 104 | 88.75 65 | 96.69 18 | 98.76 12 | 87.69 23 | 99.76 31 | 97.90 17 | 98.85 21 | 98.77 40 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test0726 | | | | | | 99.05 9 | 85.18 65 | 99.11 15 | 96.78 56 | 88.75 65 | 97.65 11 | 98.91 2 | 87.69 23 | | | | |
|
| test_yl | | | 91.46 95 | 90.53 105 | 94.24 42 | 97.41 83 | 85.18 65 | 98.08 52 | 97.72 11 | 80.94 244 | 89.85 117 | 96.14 135 | 75.61 152 | 98.81 122 | 90.42 124 | 88.56 195 | 98.74 42 |
|
| DCV-MVSNet | | | 91.46 95 | 90.53 105 | 94.24 42 | 97.41 83 | 85.18 65 | 98.08 52 | 97.72 11 | 80.94 244 | 89.85 117 | 96.14 135 | 75.61 152 | 98.81 122 | 90.42 124 | 88.56 195 | 98.74 42 |
|
| thres600view7 | | | 88.06 173 | 86.70 188 | 92.15 135 | 96.10 110 | 85.17 69 | 97.14 127 | 98.85 2 | 82.70 218 | 83.41 200 | 93.66 207 | 75.43 160 | 97.82 171 | 67.13 324 | 85.88 224 | 93.45 250 |
|
| NCCC | | | 95.63 7 | 95.94 8 | 94.69 32 | 99.21 6 | 85.15 70 | 99.16 7 | 96.96 41 | 94.11 9 | 95.59 34 | 98.64 17 | 85.07 36 | 99.91 4 | 95.61 46 | 99.10 9 | 99.00 31 |
|
| test_part2 | | | | | | 98.90 19 | 85.14 71 | | | | 96.07 29 | | | | | | |
|
| testing222 | | | 91.09 105 | 90.49 107 | 92.87 98 | 95.82 119 | 85.04 72 | 96.51 176 | 97.28 19 | 86.05 129 | 89.13 131 | 95.34 157 | 80.16 80 | 96.62 241 | 85.82 168 | 88.31 199 | 96.96 164 |
|
| SED-MVS | | | 95.88 5 | 96.22 4 | 94.87 25 | 99.03 15 | 85.03 73 | 99.12 12 | 96.78 56 | 88.72 67 | 97.79 6 | 98.91 2 | 88.48 17 | 99.82 19 | 98.15 11 | 98.97 17 | 99.74 1 |
|
| test_241102_ONE | | | | | | 99.03 15 | 85.03 73 | | 96.78 56 | 88.72 67 | 97.79 6 | 98.90 5 | 88.48 17 | 99.82 19 | | | |
|
| DP-MVS Recon | | | 91.72 89 | 90.85 98 | 94.34 38 | 99.50 1 | 85.00 75 | 98.51 35 | 95.96 151 | 80.57 253 | 88.08 150 | 97.63 81 | 76.84 130 | 99.89 7 | 85.67 170 | 94.88 123 | 98.13 83 |
|
| MVS_Test | | | 90.29 125 | 89.18 133 | 93.62 68 | 95.23 139 | 84.93 76 | 94.41 268 | 94.66 228 | 84.31 173 | 90.37 115 | 91.02 248 | 75.13 169 | 97.82 171 | 83.11 200 | 94.42 130 | 98.12 84 |
|
| thres100view900 | | | 88.30 168 | 86.95 182 | 92.33 123 | 96.10 110 | 84.90 77 | 97.14 127 | 98.85 2 | 82.69 219 | 83.41 200 | 93.66 207 | 75.43 160 | 97.93 162 | 69.04 315 | 86.24 220 | 94.17 234 |
|
| DPE-MVS |  | | 95.32 11 | 95.55 12 | 94.64 33 | 98.79 23 | 84.87 78 | 97.77 73 | 96.74 67 | 86.11 126 | 96.54 24 | 98.89 6 | 88.39 19 | 99.74 38 | 97.67 22 | 99.05 12 | 99.31 20 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| PAPR | | | 92.74 55 | 92.17 73 | 94.45 36 | 98.89 20 | 84.87 78 | 97.20 118 | 96.20 132 | 87.73 94 | 88.40 145 | 98.12 46 | 78.71 100 | 99.76 31 | 87.99 152 | 96.28 103 | 98.74 42 |
|
| MVSTER | | | 89.25 143 | 88.92 139 | 90.24 199 | 95.98 114 | 84.66 80 | 96.79 159 | 95.36 192 | 87.19 111 | 80.33 237 | 90.61 255 | 90.02 11 | 95.97 263 | 85.38 173 | 78.64 277 | 90.09 278 |
|
| fmvsm_l_conf0.5_n | | | 94.89 16 | 95.24 17 | 93.86 52 | 94.42 170 | 84.61 81 | 99.13 11 | 96.15 136 | 92.06 25 | 97.92 3 | 98.52 23 | 84.52 40 | 99.74 38 | 98.76 6 | 95.67 117 | 97.22 153 |
|
| SD-MVS | | | 94.84 18 | 95.02 19 | 94.29 40 | 97.87 64 | 84.61 81 | 97.76 75 | 96.19 134 | 89.59 57 | 96.66 20 | 98.17 44 | 84.33 42 | 99.60 59 | 96.09 38 | 98.50 38 | 98.66 49 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| test_one_0601 | | | | | | 98.91 18 | 84.56 83 | | 96.70 72 | 88.06 84 | 96.57 23 | 98.77 10 | 88.04 21 | | | | |
|
| EPNet | | | 94.06 33 | 94.15 32 | 93.76 56 | 97.27 91 | 84.35 84 | 98.29 41 | 97.64 14 | 94.57 6 | 95.36 35 | 96.88 118 | 79.96 84 | 99.12 103 | 91.30 105 | 96.11 107 | 97.82 108 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| IB-MVS | | 85.34 4 | 88.67 156 | 87.14 178 | 93.26 82 | 93.12 212 | 84.32 85 | 98.76 26 | 97.27 20 | 87.19 111 | 79.36 248 | 90.45 257 | 83.92 50 | 98.53 133 | 84.41 179 | 69.79 328 | 96.93 166 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| fmvsm_l_conf0.5_n_a | | | 94.91 15 | 95.30 16 | 93.72 61 | 94.50 167 | 84.30 86 | 99.14 10 | 96.00 147 | 91.94 28 | 97.91 5 | 98.60 18 | 84.78 38 | 99.77 29 | 98.84 5 | 96.03 110 | 97.08 161 |
|
| ACMMP_NAP | | | 93.46 41 | 93.23 47 | 94.17 45 | 97.16 92 | 84.28 87 | 96.82 157 | 96.65 79 | 86.24 124 | 94.27 53 | 97.99 55 | 77.94 111 | 99.83 17 | 93.39 75 | 98.57 34 | 98.39 63 |
|
| thisisatest0515 | | | 90.95 111 | 90.26 112 | 93.01 93 | 94.03 186 | 84.27 88 | 97.91 63 | 96.67 76 | 83.18 205 | 86.87 163 | 95.51 153 | 88.66 15 | 97.85 170 | 80.46 216 | 89.01 187 | 96.92 168 |
|
| TSAR-MVS + MP. | | | 94.79 20 | 95.17 18 | 93.64 66 | 97.66 69 | 84.10 89 | 95.85 219 | 96.42 109 | 91.26 34 | 97.49 12 | 96.80 123 | 86.50 29 | 98.49 135 | 95.54 48 | 99.03 13 | 98.33 65 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| MSLP-MVS++ | | | 94.28 27 | 94.39 27 | 93.97 49 | 98.30 49 | 84.06 90 | 98.64 31 | 96.93 44 | 90.71 42 | 93.08 70 | 98.70 15 | 79.98 83 | 99.21 90 | 94.12 68 | 99.07 11 | 98.63 51 |
|
| CDPH-MVS | | | 93.12 45 | 92.91 53 | 93.74 58 | 98.65 30 | 83.88 91 | 97.67 81 | 96.26 126 | 83.00 211 | 93.22 67 | 98.24 38 | 81.31 67 | 99.21 90 | 89.12 139 | 98.74 30 | 98.14 81 |
|
| PVSNet_BlendedMVS | | | 90.05 127 | 89.96 123 | 90.33 197 | 97.47 77 | 83.86 92 | 98.02 58 | 96.73 68 | 87.98 86 | 89.53 125 | 89.61 269 | 76.42 139 | 99.57 64 | 94.29 65 | 79.59 268 | 87.57 336 |
|
| PVSNet_Blended | | | 93.13 44 | 92.98 52 | 93.57 71 | 97.47 77 | 83.86 92 | 99.32 1 | 96.73 68 | 91.02 40 | 89.53 125 | 96.21 134 | 76.42 139 | 99.57 64 | 94.29 65 | 95.81 116 | 97.29 151 |
|
| sss | | | 90.87 113 | 89.96 123 | 93.60 69 | 94.15 178 | 83.84 94 | 97.14 127 | 98.13 7 | 85.93 133 | 89.68 121 | 96.09 137 | 71.67 214 | 99.30 83 | 87.69 156 | 89.16 184 | 97.66 120 |
|
| TEST9 | | | | | | 98.64 31 | 83.71 95 | 97.82 68 | 96.65 79 | 84.29 177 | 95.16 37 | 98.09 48 | 84.39 41 | 99.36 81 | | | |
|
| train_agg | | | 94.28 27 | 94.45 25 | 93.74 58 | 98.64 31 | 83.71 95 | 97.82 68 | 96.65 79 | 84.50 168 | 95.16 37 | 98.09 48 | 84.33 42 | 99.36 81 | 95.91 42 | 98.96 19 | 98.16 79 |
|
| ab-mvs | | | 87.08 189 | 84.94 210 | 93.48 77 | 93.34 204 | 83.67 97 | 88.82 347 | 95.70 169 | 81.18 241 | 84.55 188 | 90.14 264 | 62.72 272 | 98.94 116 | 85.49 172 | 82.54 252 | 97.85 104 |
|
| test_8 | | | | | | 98.63 33 | 83.64 98 | 97.81 70 | 96.63 84 | 84.50 168 | 95.10 40 | 98.11 47 | 84.33 42 | 99.23 88 | | | |
|
| casdiffmvs_mvg |  | | 91.13 104 | 90.45 108 | 93.17 87 | 92.99 217 | 83.58 99 | 97.46 100 | 94.56 237 | 87.69 95 | 87.19 159 | 94.98 177 | 74.50 180 | 97.60 180 | 91.88 102 | 92.79 154 | 98.34 64 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| CHOSEN 1792x2688 | | | 91.07 107 | 90.21 115 | 93.64 66 | 95.18 142 | 83.53 100 | 96.26 194 | 96.13 137 | 88.92 64 | 84.90 181 | 93.10 217 | 72.86 198 | 99.62 58 | 88.86 141 | 95.67 117 | 97.79 110 |
|
| Effi-MVS+ | | | 90.70 115 | 89.90 126 | 93.09 90 | 93.61 192 | 83.48 101 | 95.20 247 | 92.79 324 | 83.22 204 | 91.82 91 | 95.70 145 | 71.82 213 | 97.48 193 | 91.25 106 | 93.67 143 | 98.32 66 |
|
| VPNet | | | 84.69 230 | 82.92 241 | 90.01 205 | 89.01 312 | 83.45 102 | 96.71 165 | 95.46 184 | 85.71 136 | 79.65 244 | 92.18 230 | 56.66 322 | 96.01 262 | 83.05 201 | 67.84 348 | 90.56 267 |
|
| APDe-MVS |  | | 94.56 24 | 94.75 20 | 93.96 50 | 98.84 22 | 83.40 103 | 98.04 57 | 96.41 110 | 85.79 135 | 95.00 43 | 98.28 37 | 84.32 45 | 99.18 97 | 97.35 26 | 98.77 28 | 99.28 21 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| save fliter | | | | | | 98.24 51 | 83.34 104 | 98.61 33 | 96.57 92 | 91.32 33 | | | | | | | |
|
| SDMVSNet | | | 87.02 190 | 85.61 196 | 91.24 170 | 94.14 179 | 83.30 105 | 93.88 286 | 95.98 149 | 84.30 175 | 79.63 245 | 92.01 231 | 58.23 303 | 97.68 176 | 90.28 128 | 82.02 256 | 92.75 253 |
|
| APD-MVS |  | | 93.61 38 | 93.59 39 | 93.69 64 | 98.76 24 | 83.26 106 | 97.21 116 | 96.09 140 | 82.41 225 | 94.65 49 | 98.21 39 | 81.96 65 | 98.81 122 | 94.65 61 | 98.36 47 | 99.01 30 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| ZD-MVS | | | | | | 99.09 8 | 83.22 107 | | 96.60 88 | 82.88 214 | 93.61 63 | 98.06 53 | 82.93 58 | 99.14 100 | 95.51 49 | 98.49 39 | |
|
| agg_prior | | | | | | 98.59 35 | 83.13 108 | | 96.56 94 | | 94.19 54 | | | 99.16 99 | | | |
|
| PCF-MVS | | 84.09 5 | 86.77 197 | 85.00 209 | 92.08 136 | 92.06 253 | 83.07 109 | 92.14 319 | 94.47 243 | 79.63 276 | 76.90 272 | 94.78 181 | 71.15 220 | 99.20 95 | 72.87 291 | 91.05 171 | 93.98 240 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| TSAR-MVS + GP. | | | 94.35 26 | 94.50 23 | 93.89 51 | 97.38 88 | 83.04 110 | 98.10 51 | 95.29 197 | 91.57 30 | 93.81 59 | 97.45 88 | 86.64 28 | 99.43 76 | 96.28 37 | 94.01 135 | 99.20 25 |
|
| API-MVS | | | 90.18 126 | 88.97 136 | 93.80 54 | 98.66 28 | 82.95 111 | 97.50 97 | 95.63 173 | 75.16 327 | 86.31 166 | 97.69 73 | 72.49 203 | 99.90 5 | 81.26 212 | 96.07 108 | 98.56 54 |
|
| MVS_111021_HR | | | 93.41 42 | 93.39 45 | 93.47 79 | 97.34 89 | 82.83 112 | 97.56 90 | 98.27 6 | 89.16 63 | 89.71 120 | 97.14 105 | 79.77 85 | 99.56 66 | 93.65 73 | 97.94 59 | 98.02 88 |
|
| CHOSEN 280x420 | | | 91.71 90 | 91.85 78 | 91.29 168 | 94.94 150 | 82.69 113 | 87.89 358 | 96.17 135 | 85.94 132 | 87.27 157 | 94.31 189 | 90.27 8 | 95.65 286 | 94.04 69 | 95.86 114 | 95.53 208 |
|
| VPA-MVSNet | | | 85.32 221 | 83.83 226 | 89.77 217 | 90.25 289 | 82.63 114 | 96.36 187 | 97.07 33 | 83.03 210 | 81.21 227 | 89.02 274 | 61.58 282 | 96.31 251 | 85.02 176 | 70.95 317 | 90.36 269 |
|
| baseline | | | 90.76 114 | 90.10 118 | 92.74 104 | 92.90 220 | 82.56 115 | 94.60 265 | 94.56 237 | 87.69 95 | 89.06 134 | 95.67 147 | 73.76 189 | 97.51 190 | 90.43 123 | 92.23 163 | 98.16 79 |
|
| MP-MVS-pluss | | | 92.58 67 | 92.35 66 | 93.29 81 | 97.30 90 | 82.53 116 | 96.44 181 | 96.04 145 | 84.68 163 | 89.12 132 | 98.37 32 | 77.48 120 | 99.74 38 | 93.31 80 | 98.38 45 | 97.59 126 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| casdiffmvs |  | | 90.95 111 | 90.39 109 | 92.63 111 | 92.82 221 | 82.53 116 | 96.83 155 | 94.47 243 | 87.69 95 | 88.47 143 | 95.56 152 | 74.04 186 | 97.54 187 | 90.90 111 | 92.74 155 | 97.83 106 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| diffmvs |  | | 91.17 103 | 90.74 101 | 92.44 118 | 93.11 213 | 82.50 118 | 96.25 195 | 93.62 294 | 87.79 92 | 90.40 114 | 95.93 139 | 73.44 194 | 97.42 195 | 93.62 74 | 92.55 157 | 97.41 141 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| test2506 | | | 90.96 110 | 90.39 109 | 92.65 109 | 93.54 195 | 82.46 119 | 96.37 186 | 97.35 17 | 86.78 119 | 87.55 153 | 95.25 158 | 77.83 115 | 97.50 191 | 84.07 182 | 94.80 124 | 97.98 95 |
|
| PVSNet_Blended_VisFu | | | 91.24 101 | 90.77 100 | 92.66 108 | 95.09 144 | 82.40 120 | 97.77 73 | 95.87 161 | 88.26 79 | 86.39 165 | 93.94 200 | 76.77 133 | 99.27 84 | 88.80 143 | 94.00 136 | 96.31 190 |
|
| test_prior4 | | | | | | | 82.34 121 | 97.75 76 | | | | | | | | | |
|
| PatchmatchNet |  | | 86.83 195 | 85.12 207 | 91.95 143 | 94.12 181 | 82.27 122 | 86.55 369 | 95.64 172 | 84.59 166 | 82.98 207 | 84.99 344 | 77.26 122 | 95.96 266 | 68.61 318 | 91.34 170 | 97.64 122 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| EPMVS | | | 87.47 187 | 85.90 194 | 92.18 132 | 95.41 133 | 82.26 123 | 87.00 365 | 96.28 124 | 85.88 134 | 84.23 189 | 85.57 332 | 75.07 171 | 96.26 252 | 71.14 305 | 92.50 158 | 98.03 87 |
|
| fmvsm_s_conf0.5_n | | | 93.69 37 | 94.13 33 | 92.34 121 | 94.56 160 | 82.01 124 | 99.07 16 | 97.13 27 | 92.09 23 | 96.25 26 | 98.53 22 | 76.47 137 | 99.80 25 | 98.39 8 | 94.71 126 | 95.22 217 |
|
| GBi-Net | | | 82.42 269 | 80.43 279 | 88.39 240 | 92.66 225 | 81.95 125 | 94.30 274 | 93.38 304 | 79.06 289 | 75.82 291 | 85.66 328 | 56.38 325 | 93.84 343 | 71.23 302 | 75.38 294 | 89.38 288 |
|
| test1 | | | 82.42 269 | 80.43 279 | 88.39 240 | 92.66 225 | 81.95 125 | 94.30 274 | 93.38 304 | 79.06 289 | 75.82 291 | 85.66 328 | 56.38 325 | 93.84 343 | 71.23 302 | 75.38 294 | 89.38 288 |
|
| FMVSNet1 | | | 79.50 303 | 76.54 314 | 88.39 240 | 88.47 318 | 81.95 125 | 94.30 274 | 93.38 304 | 73.14 344 | 72.04 326 | 85.66 328 | 43.86 370 | 93.84 343 | 65.48 334 | 72.53 308 | 89.38 288 |
|
| fmvsm_s_conf0.1_n | | | 92.93 50 | 93.16 49 | 92.24 128 | 90.52 285 | 81.92 128 | 98.42 37 | 96.24 128 | 91.17 35 | 96.02 30 | 98.35 34 | 75.34 166 | 99.74 38 | 97.84 20 | 94.58 128 | 95.05 219 |
|
| test_prior | | | | | 93.09 90 | 98.68 26 | 81.91 129 | | 96.40 112 | | | | | 99.06 107 | | | 98.29 70 |
|
| ETV-MVS | | | 92.72 58 | 92.87 54 | 92.28 127 | 94.54 162 | 81.89 130 | 97.98 59 | 95.21 200 | 89.77 56 | 93.11 69 | 96.83 120 | 77.23 126 | 97.50 191 | 95.74 44 | 95.38 120 | 97.44 139 |
|
| DeepC-MVS | | 86.58 3 | 91.53 94 | 91.06 96 | 92.94 96 | 94.52 163 | 81.89 130 | 95.95 211 | 95.98 149 | 90.76 41 | 83.76 198 | 96.76 124 | 73.24 196 | 99.71 45 | 91.67 103 | 96.96 89 | 97.22 153 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| SCA | | | 85.63 215 | 83.64 230 | 91.60 160 | 92.30 237 | 81.86 132 | 92.88 310 | 95.56 176 | 84.85 157 | 82.52 208 | 85.12 342 | 58.04 306 | 95.39 297 | 73.89 285 | 87.58 208 | 97.54 128 |
|
| VDDNet | | | 86.44 200 | 84.51 214 | 92.22 130 | 91.56 262 | 81.83 133 | 97.10 133 | 94.64 231 | 69.50 366 | 87.84 151 | 95.19 165 | 48.01 357 | 97.92 167 | 89.82 131 | 86.92 211 | 96.89 169 |
|
| ZNCC-MVS | | | 92.75 54 | 92.60 61 | 93.23 84 | 98.24 51 | 81.82 134 | 97.63 82 | 96.50 100 | 85.00 155 | 91.05 104 | 97.74 72 | 78.38 104 | 99.80 25 | 90.48 119 | 98.34 48 | 98.07 86 |
|
| PAPM_NR | | | 91.46 95 | 90.82 99 | 93.37 80 | 98.50 40 | 81.81 135 | 95.03 257 | 96.13 137 | 84.65 164 | 86.10 169 | 97.65 79 | 79.24 91 | 99.75 36 | 83.20 198 | 96.88 92 | 98.56 54 |
|
| PHI-MVS | | | 93.59 39 | 93.63 38 | 93.48 77 | 98.05 58 | 81.76 136 | 98.64 31 | 97.13 27 | 82.60 221 | 94.09 56 | 98.49 25 | 80.35 74 | 99.85 11 | 94.74 60 | 98.62 33 | 98.83 38 |
|
| 114514_t | | | 88.79 154 | 87.57 166 | 92.45 116 | 98.21 53 | 81.74 137 | 96.99 139 | 95.45 185 | 75.16 327 | 82.48 209 | 95.69 146 | 68.59 236 | 98.50 134 | 80.33 217 | 95.18 121 | 97.10 160 |
|
| MDTV_nov1_ep13_2view | | | | | | | 81.74 137 | 86.80 366 | | 80.65 251 | 85.65 172 | | 74.26 182 | | 76.52 259 | | 96.98 163 |
|
| fmvsm_s_conf0.5_n_a | | | 93.34 43 | 93.71 36 | 92.22 130 | 93.38 203 | 81.71 139 | 98.86 25 | 96.98 38 | 91.64 29 | 96.85 16 | 98.55 19 | 75.58 155 | 99.77 29 | 97.88 19 | 93.68 142 | 95.18 218 |
|
| mvs_anonymous | | | 88.68 155 | 87.62 163 | 91.86 147 | 94.80 155 | 81.69 140 | 93.53 294 | 94.92 211 | 82.03 232 | 78.87 253 | 90.43 258 | 75.77 150 | 95.34 300 | 85.04 175 | 93.16 151 | 98.55 56 |
|
| GST-MVS | | | 92.43 72 | 92.22 72 | 93.04 92 | 98.17 54 | 81.64 141 | 97.40 107 | 96.38 115 | 84.71 162 | 90.90 107 | 97.40 93 | 77.55 119 | 99.76 31 | 89.75 132 | 97.74 65 | 97.72 114 |
|
| fmvsm_s_conf0.1_n_a | | | 92.38 73 | 92.49 64 | 92.06 138 | 88.08 324 | 81.62 142 | 97.97 61 | 96.01 146 | 90.62 43 | 96.58 22 | 98.33 35 | 74.09 185 | 99.71 45 | 97.23 28 | 93.46 147 | 94.86 223 |
|
| 新几何1 | | | | | 93.12 88 | 97.44 81 | 81.60 143 | | 96.71 71 | 74.54 333 | 91.22 102 | 97.57 83 | 79.13 93 | 99.51 71 | 77.40 251 | 98.46 40 | 98.26 73 |
|
| PVSNet | | 82.34 9 | 89.02 145 | 87.79 158 | 92.71 106 | 95.49 131 | 81.50 144 | 97.70 79 | 97.29 18 | 87.76 93 | 85.47 175 | 95.12 170 | 56.90 319 | 98.90 118 | 80.33 217 | 94.02 134 | 97.71 116 |
|
| XXY-MVS | | | 83.84 244 | 82.00 256 | 89.35 221 | 87.13 333 | 81.38 145 | 95.72 224 | 94.26 256 | 80.15 266 | 75.92 290 | 90.63 254 | 61.96 280 | 96.52 243 | 78.98 234 | 73.28 306 | 90.14 275 |
|
| SteuartSystems-ACMMP | | | 94.13 32 | 94.44 26 | 93.20 85 | 95.41 133 | 81.35 146 | 99.02 21 | 96.59 89 | 89.50 59 | 94.18 55 | 98.36 33 | 83.68 52 | 99.45 75 | 94.77 58 | 98.45 41 | 98.81 39 |
| Skip Steuart: Steuart Systems R&D Blog. |
| NR-MVSNet | | | 83.35 251 | 81.52 264 | 88.84 230 | 88.76 313 | 81.31 147 | 94.45 267 | 95.16 201 | 84.65 164 | 67.81 347 | 90.82 251 | 70.36 229 | 94.87 319 | 74.75 276 | 66.89 358 | 90.33 271 |
|
| EI-MVSNet-Vis-set | | | 91.84 86 | 91.77 81 | 92.04 140 | 97.60 72 | 81.17 148 | 96.61 169 | 96.87 49 | 88.20 82 | 89.19 130 | 97.55 87 | 78.69 101 | 99.14 100 | 90.29 126 | 90.94 172 | 95.80 200 |
|
| test_fmvsmconf_n | | | 93.99 34 | 94.36 28 | 92.86 99 | 92.82 221 | 81.12 149 | 99.26 4 | 96.37 118 | 93.47 13 | 95.16 37 | 98.21 39 | 79.00 94 | 99.64 55 | 98.21 10 | 96.73 98 | 97.83 106 |
|
| HFP-MVS | | | 92.89 51 | 92.86 56 | 92.98 94 | 98.71 25 | 81.12 149 | 97.58 88 | 96.70 72 | 85.20 149 | 91.75 92 | 97.97 60 | 78.47 103 | 99.71 45 | 90.95 108 | 98.41 43 | 98.12 84 |
|
| RRT-MVS | | | 89.67 134 | 88.67 142 | 92.67 107 | 94.44 169 | 81.08 151 | 94.34 271 | 94.45 245 | 86.05 129 | 85.79 171 | 92.39 225 | 63.39 269 | 98.16 154 | 93.22 82 | 93.95 138 | 98.76 41 |
|
| test_fmvsmvis_n_1920 | | | 92.12 78 | 92.10 75 | 92.17 133 | 90.87 278 | 81.04 152 | 98.34 40 | 93.90 276 | 92.71 18 | 87.24 158 | 97.90 64 | 74.83 173 | 99.72 43 | 96.96 32 | 96.20 104 | 95.76 202 |
|
| MDTV_nov1_ep13 | | | | 83.69 227 | | 94.09 182 | 81.01 153 | 86.78 367 | 96.09 140 | 83.81 193 | 84.75 184 | 84.32 349 | 74.44 181 | 96.54 242 | 63.88 341 | 85.07 232 | |
|
| baseline2 | | | 90.39 122 | 90.21 115 | 90.93 178 | 90.86 279 | 80.99 154 | 95.20 247 | 97.41 16 | 86.03 131 | 80.07 242 | 94.61 184 | 90.58 6 | 97.47 194 | 87.29 160 | 89.86 179 | 94.35 233 |
|
| 1112_ss | | | 88.60 159 | 87.47 170 | 92.00 142 | 93.21 206 | 80.97 155 | 96.47 178 | 92.46 327 | 83.64 199 | 80.86 230 | 97.30 98 | 80.24 77 | 97.62 179 | 77.60 246 | 85.49 228 | 97.40 143 |
|
| test_fmvsm_n_1920 | | | 94.81 19 | 95.60 11 | 92.45 116 | 95.29 138 | 80.96 156 | 99.29 2 | 97.21 22 | 94.50 7 | 97.29 13 | 98.44 27 | 82.15 62 | 99.78 28 | 98.56 7 | 97.68 67 | 96.61 179 |
|
| mvsmamba | | | 90.53 121 | 90.08 119 | 91.88 146 | 94.81 154 | 80.93 157 | 93.94 284 | 94.45 245 | 88.24 81 | 87.02 162 | 92.35 226 | 68.04 237 | 95.80 274 | 94.86 57 | 97.03 87 | 98.92 34 |
|
| CDS-MVSNet | | | 89.50 137 | 88.96 137 | 91.14 174 | 91.94 258 | 80.93 157 | 97.09 134 | 95.81 163 | 84.26 178 | 84.72 185 | 94.20 194 | 80.31 75 | 95.64 287 | 83.37 197 | 88.96 188 | 96.85 171 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| Test_1112_low_res | | | 88.03 174 | 86.73 186 | 91.94 144 | 93.15 209 | 80.88 159 | 96.44 181 | 92.41 329 | 83.59 201 | 80.74 232 | 91.16 246 | 80.18 78 | 97.59 181 | 77.48 249 | 85.40 229 | 97.36 146 |
|
| MTAPA | | | 92.45 71 | 92.31 68 | 92.86 99 | 97.90 61 | 80.85 160 | 92.88 310 | 96.33 120 | 87.92 88 | 90.20 116 | 98.18 41 | 76.71 135 | 99.76 31 | 92.57 92 | 98.09 53 | 97.96 98 |
|
| test_fmvsmconf0.1_n | | | 93.08 47 | 93.22 48 | 92.65 109 | 88.45 319 | 80.81 161 | 99.00 22 | 95.11 202 | 93.21 15 | 94.00 57 | 97.91 63 | 76.84 130 | 99.59 60 | 97.91 16 | 96.55 101 | 97.54 128 |
|
| thisisatest0530 | | | 89.65 135 | 89.02 135 | 91.53 161 | 93.46 201 | 80.78 162 | 96.52 174 | 96.67 76 | 81.69 237 | 83.79 197 | 94.90 178 | 88.85 14 | 97.68 176 | 77.80 240 | 87.49 209 | 96.14 193 |
|
| HyFIR lowres test | | | 89.36 139 | 88.60 144 | 91.63 159 | 94.91 152 | 80.76 163 | 95.60 231 | 95.53 177 | 82.56 222 | 84.03 191 | 91.24 245 | 78.03 110 | 96.81 233 | 87.07 163 | 88.41 198 | 97.32 147 |
|
| EI-MVSNet-UG-set | | | 91.35 99 | 91.22 91 | 91.73 154 | 97.39 86 | 80.68 164 | 96.47 178 | 96.83 53 | 87.92 88 | 88.30 148 | 97.36 94 | 77.84 114 | 99.13 102 | 89.43 137 | 89.45 181 | 95.37 212 |
|
| MIMVSNet | | | 79.18 307 | 75.99 317 | 88.72 234 | 87.37 332 | 80.66 165 | 79.96 391 | 91.82 336 | 77.38 308 | 74.33 304 | 81.87 365 | 41.78 379 | 90.74 377 | 66.36 332 | 83.10 243 | 94.76 226 |
|
| CSCG | | | 92.02 80 | 91.65 83 | 93.12 88 | 98.53 36 | 80.59 166 | 97.47 98 | 97.18 25 | 77.06 314 | 84.64 187 | 97.98 58 | 83.98 48 | 99.52 69 | 90.72 115 | 97.33 78 | 99.23 24 |
|
| ACMMPR | | | 92.69 62 | 92.67 59 | 92.75 103 | 98.66 28 | 80.57 167 | 97.58 88 | 96.69 74 | 85.20 149 | 91.57 94 | 97.92 61 | 77.01 127 | 99.67 53 | 90.95 108 | 98.41 43 | 98.00 93 |
|
| FA-MVS(test-final) | | | 87.71 183 | 86.23 191 | 92.17 133 | 94.19 176 | 80.55 168 | 87.16 364 | 96.07 143 | 82.12 230 | 85.98 170 | 88.35 286 | 72.04 211 | 98.49 135 | 80.26 219 | 89.87 178 | 97.48 136 |
|
| UniMVSNet (Re) | | | 85.31 222 | 84.23 220 | 88.55 236 | 89.75 299 | 80.55 168 | 96.72 163 | 96.89 47 | 85.42 142 | 78.40 255 | 88.93 275 | 75.38 162 | 95.52 294 | 78.58 237 | 68.02 345 | 89.57 285 |
|
| CLD-MVS | | | 87.97 176 | 87.48 169 | 89.44 220 | 92.16 246 | 80.54 170 | 98.14 46 | 94.92 211 | 91.41 32 | 79.43 247 | 95.40 155 | 62.34 274 | 97.27 206 | 90.60 118 | 82.90 247 | 90.50 268 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| region2R | | | 92.72 58 | 92.70 58 | 92.79 102 | 98.68 26 | 80.53 171 | 97.53 93 | 96.51 98 | 85.22 147 | 91.94 90 | 97.98 58 | 77.26 122 | 99.67 53 | 90.83 113 | 98.37 46 | 98.18 77 |
|
| pmmvs4 | | | 82.54 267 | 80.79 271 | 87.79 254 | 86.11 346 | 80.49 172 | 93.55 293 | 93.18 314 | 77.29 309 | 73.35 313 | 89.40 271 | 65.26 260 | 95.05 317 | 75.32 272 | 73.61 302 | 87.83 330 |
|
| WR-MVS | | | 84.32 237 | 82.96 240 | 88.41 238 | 89.38 310 | 80.32 173 | 96.59 170 | 96.25 127 | 83.97 186 | 76.63 275 | 90.36 259 | 67.53 241 | 94.86 320 | 75.82 268 | 70.09 326 | 90.06 280 |
|
| XVS | | | 92.69 62 | 92.71 57 | 92.63 111 | 98.52 37 | 80.29 174 | 97.37 109 | 96.44 106 | 87.04 113 | 91.38 96 | 97.83 69 | 77.24 124 | 99.59 60 | 90.46 121 | 98.07 54 | 98.02 88 |
|
| X-MVStestdata | | | 86.26 204 | 84.14 224 | 92.63 111 | 98.52 37 | 80.29 174 | 97.37 109 | 96.44 106 | 87.04 113 | 91.38 96 | 20.73 422 | 77.24 124 | 99.59 60 | 90.46 121 | 98.07 54 | 98.02 88 |
|
| GA-MVS | | | 85.79 212 | 84.04 225 | 91.02 177 | 89.47 308 | 80.27 176 | 96.90 152 | 94.84 217 | 85.57 138 | 80.88 229 | 89.08 272 | 56.56 323 | 96.47 245 | 77.72 243 | 85.35 230 | 96.34 187 |
|
| reproduce_monomvs | | | 87.80 179 | 87.60 165 | 88.40 239 | 96.56 98 | 80.26 177 | 95.80 222 | 96.32 122 | 91.56 31 | 73.60 307 | 88.36 285 | 88.53 16 | 96.25 254 | 90.47 120 | 67.23 354 | 88.67 311 |
|
| BH-RMVSNet | | | 86.84 194 | 85.28 202 | 91.49 163 | 95.35 136 | 80.26 177 | 96.95 147 | 92.21 331 | 82.86 215 | 81.77 224 | 95.46 154 | 59.34 295 | 97.64 178 | 69.79 313 | 93.81 141 | 96.57 181 |
|
| FIs | | | 86.73 198 | 86.10 192 | 88.61 235 | 90.05 295 | 80.21 179 | 96.14 203 | 96.95 42 | 85.56 140 | 78.37 256 | 92.30 227 | 76.73 134 | 95.28 304 | 79.51 226 | 79.27 271 | 90.35 270 |
|
| TESTMET0.1,1 | | | 89.83 131 | 89.34 132 | 91.31 166 | 92.54 231 | 80.19 180 | 97.11 130 | 96.57 92 | 86.15 125 | 86.85 164 | 91.83 239 | 79.32 88 | 96.95 223 | 81.30 211 | 92.35 161 | 96.77 174 |
|
| VDD-MVS | | | 88.28 169 | 87.02 181 | 92.06 138 | 95.09 144 | 80.18 181 | 97.55 92 | 94.45 245 | 83.09 207 | 89.10 133 | 95.92 141 | 47.97 358 | 98.49 135 | 93.08 87 | 86.91 212 | 97.52 133 |
|
| test_fmvsmconf0.01_n | | | 91.08 106 | 90.68 102 | 92.29 126 | 82.43 378 | 80.12 182 | 97.94 62 | 93.93 272 | 92.07 24 | 91.97 88 | 97.60 82 | 67.56 240 | 99.53 68 | 97.09 30 | 95.56 119 | 97.21 155 |
|
| MSP-MVS | | | 95.62 8 | 96.54 1 | 92.86 99 | 98.31 48 | 80.10 183 | 97.42 105 | 96.78 56 | 92.20 22 | 97.11 14 | 98.29 36 | 93.46 1 | 99.10 104 | 96.01 39 | 99.30 5 | 99.38 14 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| AdaColmap |  | | 88.81 152 | 87.61 164 | 92.39 120 | 99.33 4 | 79.95 184 | 96.70 167 | 95.58 174 | 77.51 306 | 83.05 206 | 96.69 128 | 61.90 281 | 99.72 43 | 84.29 180 | 93.47 146 | 97.50 134 |
|
| tpmrst | | | 88.36 166 | 87.38 172 | 91.31 166 | 94.36 172 | 79.92 185 | 87.32 362 | 95.26 199 | 85.32 144 | 88.34 146 | 86.13 325 | 80.60 73 | 96.70 237 | 83.78 186 | 85.34 231 | 97.30 150 |
|
| CP-MVS | | | 92.54 68 | 92.60 61 | 92.34 121 | 98.50 40 | 79.90 186 | 98.40 38 | 96.40 112 | 84.75 159 | 90.48 113 | 98.09 48 | 77.40 121 | 99.21 90 | 91.15 107 | 98.23 52 | 97.92 99 |
|
| FE-MVS | | | 86.06 207 | 84.15 223 | 91.78 151 | 94.33 173 | 79.81 187 | 84.58 382 | 96.61 85 | 76.69 317 | 85.00 179 | 87.38 299 | 70.71 227 | 98.37 144 | 70.39 310 | 91.70 168 | 97.17 158 |
|
| ADS-MVSNet | | | 81.26 285 | 78.36 298 | 89.96 209 | 93.78 188 | 79.78 188 | 79.48 393 | 93.60 295 | 73.09 345 | 80.14 239 | 79.99 377 | 62.15 276 | 95.24 306 | 59.49 358 | 83.52 238 | 94.85 224 |
|
| miper_enhance_ethall | | | 85.95 209 | 85.20 203 | 88.19 248 | 94.85 153 | 79.76 189 | 96.00 208 | 94.06 269 | 82.98 212 | 77.74 263 | 88.76 277 | 79.42 87 | 95.46 296 | 80.58 215 | 72.42 309 | 89.36 291 |
|
| CR-MVSNet | | | 83.53 249 | 81.36 266 | 90.06 203 | 90.16 292 | 79.75 190 | 79.02 397 | 91.12 348 | 84.24 179 | 82.27 216 | 80.35 374 | 75.45 158 | 93.67 347 | 63.37 345 | 86.25 218 | 96.75 176 |
|
| RPMNet | | | 79.85 298 | 75.92 318 | 91.64 157 | 90.16 292 | 79.75 190 | 79.02 397 | 95.44 186 | 58.43 402 | 82.27 216 | 72.55 400 | 73.03 197 | 98.41 143 | 46.10 398 | 86.25 218 | 96.75 176 |
|
| PGM-MVS | | | 91.93 82 | 91.80 80 | 92.32 125 | 98.27 50 | 79.74 192 | 95.28 241 | 97.27 20 | 83.83 192 | 90.89 108 | 97.78 71 | 76.12 145 | 99.56 66 | 88.82 142 | 97.93 61 | 97.66 120 |
|
| dcpmvs_2 | | | 93.10 46 | 93.46 44 | 92.02 141 | 97.77 65 | 79.73 193 | 94.82 261 | 93.86 279 | 86.91 115 | 91.33 99 | 96.76 124 | 85.20 35 | 98.06 156 | 96.90 33 | 97.60 69 | 98.27 72 |
|
| MP-MVS |  | | 92.61 66 | 92.67 59 | 92.42 119 | 98.13 56 | 79.73 193 | 97.33 111 | 96.20 132 | 85.63 137 | 90.53 111 | 97.66 75 | 78.14 109 | 99.70 48 | 92.12 96 | 98.30 50 | 97.85 104 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| v2v482 | | | 83.46 250 | 81.86 258 | 88.25 245 | 86.19 344 | 79.65 195 | 96.34 189 | 94.02 270 | 81.56 238 | 77.32 266 | 88.23 288 | 65.62 254 | 96.03 260 | 77.77 241 | 69.72 330 | 89.09 298 |
|
| gm-plane-assit | | | | | | 92.27 238 | 79.64 196 | | | 84.47 170 | | 95.15 168 | | 97.93 162 | 85.81 169 | | |
|
| 旧先验1 | | | | | | 97.39 86 | 79.58 197 | | 96.54 95 | | | 98.08 51 | 84.00 47 | | | 97.42 76 | 97.62 124 |
|
| KD-MVS_2432*1600 | | | 77.63 319 | 74.92 324 | 85.77 295 | 90.86 279 | 79.44 198 | 88.08 355 | 93.92 274 | 76.26 319 | 67.05 351 | 82.78 361 | 72.15 209 | 91.92 364 | 61.53 349 | 41.62 410 | 85.94 361 |
|
| miper_refine_blended | | | 77.63 319 | 74.92 324 | 85.77 295 | 90.86 279 | 79.44 198 | 88.08 355 | 93.92 274 | 76.26 319 | 67.05 351 | 82.78 361 | 72.15 209 | 91.92 364 | 61.53 349 | 41.62 410 | 85.94 361 |
|
| ECVR-MVS |  | | 88.35 167 | 87.25 174 | 91.65 156 | 93.54 195 | 79.40 200 | 96.56 173 | 90.78 356 | 86.78 119 | 85.57 173 | 95.25 158 | 57.25 317 | 97.56 183 | 84.73 178 | 94.80 124 | 97.98 95 |
|
| UniMVSNet_NR-MVSNet | | | 85.49 219 | 84.59 213 | 88.21 247 | 89.44 309 | 79.36 201 | 96.71 165 | 96.41 110 | 85.22 147 | 78.11 259 | 90.98 250 | 76.97 129 | 95.14 311 | 79.14 232 | 68.30 342 | 90.12 276 |
|
| DU-MVS | | | 84.57 233 | 83.33 237 | 88.28 243 | 88.76 313 | 79.36 201 | 96.43 183 | 95.41 191 | 85.42 142 | 78.11 259 | 90.82 251 | 67.61 238 | 95.14 311 | 79.14 232 | 68.30 342 | 90.33 271 |
|
| CNLPA | | | 86.96 191 | 85.37 201 | 91.72 155 | 97.59 73 | 79.34 203 | 97.21 116 | 91.05 351 | 74.22 334 | 78.90 251 | 96.75 126 | 67.21 245 | 98.95 114 | 74.68 277 | 90.77 173 | 96.88 170 |
|
| tfpnnormal | | | 78.14 312 | 75.42 320 | 86.31 288 | 88.33 322 | 79.24 204 | 94.41 268 | 96.22 130 | 73.51 340 | 69.81 341 | 85.52 334 | 55.43 329 | 95.75 279 | 47.65 396 | 67.86 347 | 83.95 376 |
|
| HPM-MVS |  | | 91.62 92 | 91.53 86 | 91.89 145 | 97.88 63 | 79.22 205 | 96.99 139 | 95.73 168 | 82.07 231 | 89.50 127 | 97.19 104 | 75.59 154 | 98.93 117 | 90.91 110 | 97.94 59 | 97.54 128 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| TAMVS | | | 88.48 162 | 87.79 158 | 90.56 190 | 91.09 273 | 79.18 206 | 96.45 180 | 95.88 159 | 83.64 199 | 83.12 204 | 93.33 212 | 75.94 148 | 95.74 282 | 82.40 205 | 88.27 200 | 96.75 176 |
|
| Fast-Effi-MVS+ | | | 87.93 177 | 86.94 183 | 90.92 179 | 94.04 184 | 79.16 207 | 98.26 42 | 93.72 290 | 81.29 240 | 83.94 195 | 92.90 218 | 69.83 232 | 96.68 238 | 76.70 257 | 91.74 167 | 96.93 166 |
|
| CostFormer | | | 89.08 144 | 88.39 148 | 91.15 173 | 93.13 211 | 79.15 208 | 88.61 350 | 96.11 139 | 83.14 206 | 89.58 124 | 86.93 308 | 83.83 51 | 96.87 229 | 88.22 151 | 85.92 223 | 97.42 140 |
|
| UGNet | | | 87.73 181 | 86.55 189 | 91.27 169 | 95.16 143 | 79.11 209 | 96.35 188 | 96.23 129 | 88.14 83 | 87.83 152 | 90.48 256 | 50.65 347 | 99.09 105 | 80.13 222 | 94.03 133 | 95.60 205 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| MS-PatchMatch | | | 83.05 258 | 81.82 259 | 86.72 283 | 89.64 303 | 79.10 210 | 94.88 260 | 94.59 236 | 79.70 275 | 70.67 335 | 89.65 268 | 50.43 349 | 96.82 232 | 70.82 309 | 95.99 113 | 84.25 373 |
|
| V42 | | | 83.04 259 | 81.53 263 | 87.57 263 | 86.27 343 | 79.09 211 | 95.87 217 | 94.11 266 | 80.35 261 | 77.22 268 | 86.79 311 | 65.32 259 | 96.02 261 | 77.74 242 | 70.14 322 | 87.61 335 |
|
| v1144 | | | 82.90 262 | 81.27 267 | 87.78 255 | 86.29 342 | 79.07 212 | 96.14 203 | 93.93 272 | 80.05 268 | 77.38 264 | 86.80 310 | 65.50 255 | 95.93 268 | 75.21 273 | 70.13 323 | 88.33 322 |
|
| v8 | | | 81.88 277 | 80.06 285 | 87.32 270 | 86.63 337 | 79.04 213 | 94.41 268 | 93.65 293 | 78.77 293 | 73.19 316 | 85.57 332 | 66.87 247 | 95.81 273 | 73.84 287 | 67.61 350 | 87.11 344 |
|
| v10 | | | 81.43 283 | 79.53 291 | 87.11 275 | 86.38 339 | 78.87 214 | 94.31 273 | 93.43 302 | 77.88 301 | 73.24 315 | 85.26 336 | 65.44 256 | 95.75 279 | 72.14 296 | 67.71 349 | 86.72 348 |
|
| cl22 | | | 85.11 224 | 84.17 222 | 87.92 252 | 95.06 148 | 78.82 215 | 95.51 234 | 94.22 259 | 79.74 274 | 76.77 273 | 87.92 293 | 75.96 147 | 95.68 283 | 79.93 224 | 72.42 309 | 89.27 293 |
|
| Vis-MVSNet |  | | 88.67 156 | 87.82 157 | 91.24 170 | 92.68 224 | 78.82 215 | 96.95 147 | 93.85 280 | 87.55 98 | 87.07 161 | 95.13 169 | 63.43 268 | 97.21 208 | 77.58 247 | 96.15 106 | 97.70 117 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| TranMVSNet+NR-MVSNet | | | 83.24 255 | 81.71 260 | 87.83 253 | 87.71 328 | 78.81 217 | 96.13 205 | 94.82 218 | 84.52 167 | 76.18 286 | 90.78 253 | 64.07 265 | 94.60 328 | 74.60 280 | 66.59 360 | 90.09 278 |
|
| test1111 | | | 88.11 172 | 87.04 180 | 91.35 165 | 93.15 209 | 78.79 218 | 96.57 171 | 90.78 356 | 86.88 116 | 85.04 178 | 95.20 164 | 57.23 318 | 97.39 198 | 83.88 184 | 94.59 127 | 97.87 102 |
|
| MVS_111021_LR | | | 91.60 93 | 91.64 84 | 91.47 164 | 95.74 123 | 78.79 218 | 96.15 202 | 96.77 62 | 88.49 72 | 88.64 142 | 97.07 111 | 72.33 206 | 99.19 96 | 93.13 85 | 96.48 102 | 96.43 184 |
|
| tpm2 | | | 87.35 188 | 86.26 190 | 90.62 188 | 92.93 219 | 78.67 220 | 88.06 357 | 95.99 148 | 79.33 281 | 87.40 154 | 86.43 319 | 80.28 76 | 96.40 246 | 80.23 220 | 85.73 227 | 96.79 172 |
|
| mPP-MVS | | | 91.88 85 | 91.82 79 | 92.07 137 | 98.38 44 | 78.63 221 | 97.29 113 | 96.09 140 | 85.12 151 | 88.45 144 | 97.66 75 | 75.53 156 | 99.68 51 | 89.83 130 | 98.02 57 | 97.88 100 |
|
| BH-w/o | | | 88.24 170 | 87.47 170 | 90.54 192 | 95.03 149 | 78.54 222 | 97.41 106 | 93.82 281 | 84.08 182 | 78.23 258 | 94.51 187 | 69.34 234 | 97.21 208 | 80.21 221 | 94.58 128 | 95.87 199 |
|
| HQP5-MVS | | | | | | | 78.48 223 | | | | | | | | | | |
|
| DP-MVS | | | 81.47 282 | 78.28 299 | 91.04 175 | 98.14 55 | 78.48 223 | 95.09 256 | 86.97 381 | 61.14 393 | 71.12 332 | 92.78 222 | 59.59 291 | 99.38 78 | 53.11 382 | 86.61 214 | 95.27 216 |
|
| HQP-MVS | | | 87.91 178 | 87.55 167 | 88.98 228 | 92.08 250 | 78.48 223 | 97.63 82 | 94.80 219 | 90.52 45 | 82.30 212 | 94.56 185 | 65.40 257 | 97.32 201 | 87.67 157 | 83.01 244 | 91.13 261 |
|
| v1192 | | | 82.31 272 | 80.55 277 | 87.60 260 | 85.94 348 | 78.47 226 | 95.85 219 | 93.80 284 | 79.33 281 | 76.97 271 | 86.51 314 | 63.33 270 | 95.87 270 | 73.11 290 | 70.13 323 | 88.46 318 |
|
| SR-MVS | | | 92.16 77 | 92.27 69 | 91.83 150 | 98.37 45 | 78.41 227 | 96.67 168 | 95.76 165 | 82.19 229 | 91.97 88 | 98.07 52 | 76.44 138 | 98.64 126 | 93.71 72 | 97.27 80 | 98.45 60 |
|
| Anonymous202405211 | | | 84.41 236 | 81.93 257 | 91.85 149 | 96.78 97 | 78.41 227 | 97.44 101 | 91.34 346 | 70.29 361 | 84.06 190 | 94.26 191 | 41.09 383 | 98.96 112 | 79.46 227 | 82.65 251 | 98.17 78 |
|
| test222 | | | | | | 96.15 108 | 78.41 227 | 95.87 217 | 96.46 104 | 71.97 353 | 89.66 122 | 97.45 88 | 76.33 142 | | | 98.24 51 | 98.30 69 |
|
| MVP-Stereo | | | 82.65 266 | 81.67 261 | 85.59 301 | 86.10 347 | 78.29 230 | 93.33 298 | 92.82 323 | 77.75 303 | 69.17 345 | 87.98 292 | 59.28 296 | 95.76 278 | 71.77 297 | 96.88 92 | 82.73 381 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| Anonymous20240529 | | | 83.15 256 | 80.60 276 | 90.80 183 | 95.74 123 | 78.27 231 | 96.81 158 | 94.92 211 | 60.10 397 | 81.89 221 | 92.54 223 | 45.82 367 | 98.82 121 | 79.25 231 | 78.32 283 | 95.31 214 |
|
| miper_ehance_all_eth | | | 84.57 233 | 83.60 232 | 87.50 265 | 92.64 228 | 78.25 232 | 95.40 240 | 93.47 299 | 79.28 284 | 76.41 279 | 87.64 296 | 76.53 136 | 95.24 306 | 78.58 237 | 72.42 309 | 89.01 303 |
|
| ppachtmachnet_test | | | 77.19 323 | 74.22 331 | 86.13 291 | 85.39 355 | 78.22 233 | 93.98 281 | 91.36 345 | 71.74 355 | 67.11 350 | 84.87 345 | 56.67 321 | 93.37 353 | 52.21 383 | 64.59 364 | 86.80 347 |
|
| v144192 | | | 82.43 268 | 80.73 273 | 87.54 264 | 85.81 351 | 78.22 233 | 95.98 209 | 93.78 286 | 79.09 288 | 77.11 269 | 86.49 315 | 64.66 264 | 95.91 269 | 74.20 283 | 69.42 331 | 88.49 316 |
|
| NP-MVS | | | | | | 92.04 254 | 78.22 233 | | | | | 94.56 185 | | | | | |
|
| ACMMP |  | | 90.39 122 | 89.97 122 | 91.64 157 | 97.58 74 | 78.21 236 | 96.78 160 | 96.72 70 | 84.73 161 | 84.72 185 | 97.23 102 | 71.22 219 | 99.63 57 | 88.37 150 | 92.41 160 | 97.08 161 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| MAR-MVS | | | 90.63 116 | 90.22 114 | 91.86 147 | 98.47 42 | 78.20 237 | 97.18 120 | 96.61 85 | 83.87 191 | 88.18 149 | 98.18 41 | 68.71 235 | 99.75 36 | 83.66 192 | 97.15 84 | 97.63 123 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| tpm cat1 | | | 83.63 248 | 81.38 265 | 90.39 195 | 93.53 200 | 78.19 238 | 85.56 376 | 95.09 203 | 70.78 359 | 78.51 254 | 83.28 359 | 74.80 174 | 97.03 217 | 66.77 325 | 84.05 236 | 95.95 196 |
|
| 原ACMM1 | | | | | 91.22 172 | 97.77 65 | 78.10 239 | | 96.61 85 | 81.05 243 | 91.28 101 | 97.42 92 | 77.92 113 | 98.98 111 | 79.85 225 | 98.51 36 | 96.59 180 |
|
| FC-MVSNet-test | | | 85.96 208 | 85.39 200 | 87.66 258 | 89.38 310 | 78.02 240 | 95.65 228 | 96.87 49 | 85.12 151 | 77.34 265 | 91.94 237 | 76.28 143 | 94.74 324 | 77.09 252 | 78.82 275 | 90.21 273 |
|
| FOURS1 | | | | | | 98.51 39 | 78.01 241 | 98.13 49 | 96.21 131 | 83.04 209 | 94.39 52 | | | | | | |
|
| dp | | | 84.30 238 | 82.31 251 | 90.28 198 | 94.24 175 | 77.97 242 | 86.57 368 | 95.53 177 | 79.94 271 | 80.75 231 | 85.16 340 | 71.49 218 | 96.39 247 | 63.73 342 | 83.36 241 | 96.48 183 |
|
| tpmvs | | | 83.04 259 | 80.77 272 | 89.84 213 | 95.43 132 | 77.96 243 | 85.59 375 | 95.32 196 | 75.31 326 | 76.27 283 | 83.70 355 | 73.89 187 | 97.41 196 | 59.53 357 | 81.93 258 | 94.14 236 |
|
| HQP_MVS | | | 87.50 186 | 87.09 179 | 88.74 233 | 91.86 259 | 77.96 243 | 97.18 120 | 94.69 224 | 89.89 54 | 81.33 225 | 94.15 195 | 64.77 262 | 97.30 203 | 87.08 161 | 82.82 248 | 90.96 263 |
|
| plane_prior | | | | | | | 77.96 243 | 97.52 96 | | 90.36 50 | | | | | | 82.96 246 | |
|
| v1921920 | | | 82.02 275 | 80.23 281 | 87.41 268 | 85.62 352 | 77.92 246 | 95.79 223 | 93.69 291 | 78.86 292 | 76.67 274 | 86.44 317 | 62.50 273 | 95.83 272 | 72.69 292 | 69.77 329 | 88.47 317 |
|
| plane_prior6 | | | | | | 91.98 255 | 77.92 246 | | | | | | 64.77 262 | | | | |
|
| OMC-MVS | | | 88.80 153 | 88.16 152 | 90.72 186 | 95.30 137 | 77.92 246 | 94.81 262 | 94.51 239 | 86.80 118 | 84.97 180 | 96.85 119 | 67.53 241 | 98.60 128 | 85.08 174 | 87.62 206 | 95.63 204 |
|
| patch_mono-2 | | | 95.14 13 | 96.08 7 | 92.33 123 | 98.44 43 | 77.84 249 | 98.43 36 | 97.21 22 | 92.58 19 | 97.68 10 | 97.65 79 | 86.88 27 | 99.83 17 | 98.25 9 | 97.60 69 | 99.33 18 |
|
| MonoMVSNet | | | 85.68 214 | 84.22 221 | 90.03 204 | 88.43 320 | 77.83 250 | 92.95 309 | 91.46 342 | 87.28 106 | 78.11 259 | 85.96 327 | 66.31 252 | 94.81 322 | 90.71 116 | 76.81 288 | 97.46 138 |
|
| OPM-MVS | | | 85.84 210 | 85.10 208 | 88.06 249 | 88.34 321 | 77.83 250 | 95.72 224 | 94.20 260 | 87.89 91 | 80.45 235 | 94.05 197 | 58.57 300 | 97.26 207 | 83.88 184 | 82.76 250 | 89.09 298 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| sd_testset | | | 84.62 231 | 83.11 239 | 89.17 223 | 94.14 179 | 77.78 252 | 91.54 329 | 94.38 251 | 84.30 175 | 79.63 245 | 92.01 231 | 52.28 342 | 96.98 221 | 77.67 245 | 82.02 256 | 92.75 253 |
|
| reproduce-ours | | | 92.70 60 | 93.02 50 | 91.75 152 | 97.45 79 | 77.77 253 | 96.16 200 | 95.94 154 | 84.12 180 | 92.45 77 | 98.43 28 | 80.06 81 | 99.24 86 | 95.35 51 | 97.18 82 | 98.24 74 |
|
| our_new_method | | | 92.70 60 | 93.02 50 | 91.75 152 | 97.45 79 | 77.77 253 | 96.16 200 | 95.94 154 | 84.12 180 | 92.45 77 | 98.43 28 | 80.06 81 | 99.24 86 | 95.35 51 | 97.18 82 | 98.24 74 |
|
| EC-MVSNet | | | 91.73 87 | 92.11 74 | 90.58 189 | 93.54 195 | 77.77 253 | 98.07 54 | 94.40 250 | 87.44 101 | 92.99 72 | 97.11 108 | 74.59 179 | 96.87 229 | 93.75 71 | 97.08 85 | 97.11 159 |
|
| plane_prior3 | | | | | | | 77.75 256 | | | 90.17 52 | 81.33 225 | | | | | | |
|
| c3_l | | | 83.80 245 | 82.65 247 | 87.25 273 | 92.10 249 | 77.74 257 | 95.25 244 | 93.04 320 | 78.58 295 | 76.01 287 | 87.21 304 | 75.25 168 | 95.11 313 | 77.54 248 | 68.89 336 | 88.91 309 |
|
| v1240 | | | 81.70 279 | 79.83 289 | 87.30 272 | 85.50 353 | 77.70 258 | 95.48 235 | 93.44 300 | 78.46 297 | 76.53 277 | 86.44 317 | 60.85 286 | 95.84 271 | 71.59 299 | 70.17 321 | 88.35 321 |
|
| TR-MVS | | | 86.30 203 | 84.93 211 | 90.42 194 | 94.63 158 | 77.58 259 | 96.57 171 | 93.82 281 | 80.30 262 | 82.42 211 | 95.16 167 | 58.74 299 | 97.55 185 | 74.88 275 | 87.82 205 | 96.13 194 |
|
| plane_prior7 | | | | | | 91.86 259 | 77.55 260 | | | | | | | | | | |
|
| BH-untuned | | | 86.95 192 | 85.94 193 | 89.99 206 | 94.52 163 | 77.46 261 | 96.78 160 | 93.37 307 | 81.80 234 | 76.62 276 | 93.81 205 | 66.64 249 | 97.02 218 | 76.06 264 | 93.88 140 | 95.48 210 |
|
| EI-MVSNet | | | 85.80 211 | 85.20 203 | 87.59 261 | 91.55 263 | 77.41 262 | 95.13 251 | 95.36 192 | 80.43 259 | 80.33 237 | 94.71 182 | 73.72 190 | 95.97 263 | 76.96 255 | 78.64 277 | 89.39 286 |
|
| IterMVS-LS | | | 83.93 243 | 82.80 245 | 87.31 271 | 91.46 266 | 77.39 263 | 95.66 227 | 93.43 302 | 80.44 257 | 75.51 295 | 87.26 302 | 73.72 190 | 95.16 310 | 76.99 253 | 70.72 319 | 89.39 286 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| HPM-MVS_fast | | | 90.38 124 | 90.17 117 | 91.03 176 | 97.61 71 | 77.35 264 | 97.15 126 | 95.48 182 | 79.51 278 | 88.79 138 | 96.90 116 | 71.64 216 | 98.81 122 | 87.01 164 | 97.44 74 | 96.94 165 |
|
| MSDG | | | 80.62 294 | 77.77 304 | 89.14 224 | 93.43 202 | 77.24 265 | 91.89 322 | 90.18 360 | 69.86 365 | 68.02 346 | 91.94 237 | 52.21 343 | 98.84 120 | 59.32 360 | 83.12 242 | 91.35 260 |
|
| test-LLR | | | 88.48 162 | 87.98 154 | 89.98 207 | 92.26 239 | 77.23 266 | 97.11 130 | 95.96 151 | 83.76 195 | 86.30 167 | 91.38 242 | 72.30 207 | 96.78 235 | 80.82 213 | 91.92 165 | 95.94 197 |
|
| test-mter | | | 88.95 146 | 88.60 144 | 89.98 207 | 92.26 239 | 77.23 266 | 97.11 130 | 95.96 151 | 85.32 144 | 86.30 167 | 91.38 242 | 76.37 141 | 96.78 235 | 80.82 213 | 91.92 165 | 95.94 197 |
|
| UA-Net | | | 88.92 148 | 88.48 147 | 90.24 199 | 94.06 183 | 77.18 268 | 93.04 306 | 94.66 228 | 87.39 103 | 91.09 103 | 93.89 201 | 74.92 172 | 98.18 153 | 75.83 267 | 91.43 169 | 95.35 213 |
|
| Anonymous20231211 | | | 79.72 300 | 77.19 308 | 87.33 269 | 95.59 129 | 77.16 269 | 95.18 250 | 94.18 262 | 59.31 400 | 72.57 322 | 86.20 324 | 47.89 360 | 95.66 284 | 74.53 281 | 69.24 334 | 89.18 295 |
|
| reproduce_model | | | 92.53 69 | 92.87 54 | 91.50 162 | 97.41 83 | 77.14 270 | 96.02 207 | 95.91 157 | 83.65 198 | 92.45 77 | 98.39 31 | 79.75 86 | 99.21 90 | 95.27 54 | 96.98 88 | 98.14 81 |
|
| pmmvs5 | | | 81.34 284 | 79.54 290 | 86.73 282 | 85.02 360 | 76.91 271 | 96.22 196 | 91.65 339 | 77.65 304 | 73.55 308 | 88.61 279 | 55.70 328 | 94.43 332 | 74.12 284 | 73.35 305 | 88.86 310 |
|
| SPE-MVS-test | | | 92.98 48 | 93.67 37 | 90.90 180 | 96.52 99 | 76.87 272 | 98.68 28 | 94.73 223 | 90.36 50 | 94.84 46 | 97.89 65 | 77.94 111 | 97.15 214 | 94.28 67 | 97.80 64 | 98.70 48 |
|
| IS-MVSNet | | | 88.67 156 | 88.16 152 | 90.20 201 | 93.61 192 | 76.86 273 | 96.77 162 | 93.07 319 | 84.02 184 | 83.62 199 | 95.60 150 | 74.69 178 | 96.24 255 | 78.43 239 | 93.66 144 | 97.49 135 |
|
| v148 | | | 82.41 271 | 80.89 270 | 86.99 277 | 86.18 345 | 76.81 274 | 96.27 193 | 93.82 281 | 80.49 256 | 75.28 298 | 86.11 326 | 67.32 244 | 95.75 279 | 75.48 271 | 67.03 357 | 88.42 320 |
|
| our_test_3 | | | 77.90 317 | 75.37 321 | 85.48 303 | 85.39 355 | 76.74 275 | 93.63 290 | 91.67 338 | 73.39 343 | 65.72 360 | 84.65 347 | 58.20 305 | 93.13 354 | 57.82 364 | 67.87 346 | 86.57 351 |
|
| PVSNet_0 | | 77.72 15 | 81.70 279 | 78.95 296 | 89.94 210 | 90.77 282 | 76.72 276 | 95.96 210 | 96.95 42 | 85.01 154 | 70.24 339 | 88.53 282 | 52.32 341 | 98.20 151 | 86.68 166 | 44.08 407 | 94.89 222 |
|
| WB-MVSnew | | | 84.08 241 | 83.51 234 | 85.80 294 | 91.34 268 | 76.69 277 | 95.62 230 | 96.27 125 | 81.77 235 | 81.81 223 | 92.81 219 | 58.23 303 | 94.70 325 | 66.66 326 | 87.06 210 | 85.99 360 |
|
| D2MVS | | | 82.67 265 | 81.55 262 | 86.04 292 | 87.77 327 | 76.47 278 | 95.21 246 | 96.58 91 | 82.66 220 | 70.26 338 | 85.46 335 | 60.39 287 | 95.80 274 | 76.40 261 | 79.18 272 | 85.83 363 |
|
| PLC |  | 83.97 7 | 88.00 175 | 87.38 172 | 89.83 214 | 98.02 59 | 76.46 279 | 97.16 124 | 94.43 248 | 79.26 285 | 81.98 219 | 96.28 133 | 69.36 233 | 99.27 84 | 77.71 244 | 92.25 162 | 93.77 244 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| ACMH | | 75.40 17 | 77.99 314 | 74.96 322 | 87.10 276 | 90.67 283 | 76.41 280 | 93.19 305 | 91.64 340 | 72.47 351 | 63.44 369 | 87.61 297 | 43.34 373 | 97.16 211 | 58.34 362 | 73.94 300 | 87.72 331 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| EIA-MVS | | | 91.73 87 | 92.05 76 | 90.78 185 | 94.52 163 | 76.40 281 | 98.06 55 | 95.34 195 | 89.19 62 | 88.90 136 | 97.28 100 | 77.56 118 | 97.73 174 | 90.77 114 | 96.86 94 | 98.20 76 |
|
| APD-MVS_3200maxsize | | | 91.23 102 | 91.35 88 | 90.89 181 | 97.89 62 | 76.35 282 | 96.30 192 | 95.52 179 | 79.82 272 | 91.03 105 | 97.88 66 | 74.70 175 | 98.54 132 | 92.11 97 | 96.89 91 | 97.77 111 |
|
| FMVSNet5 | | | 76.46 328 | 74.16 332 | 83.35 334 | 90.05 295 | 76.17 283 | 89.58 342 | 89.85 362 | 71.39 357 | 65.29 363 | 80.42 373 | 50.61 348 | 87.70 392 | 61.05 354 | 69.24 334 | 86.18 356 |
|
| GeoE | | | 86.36 201 | 85.20 203 | 89.83 214 | 93.17 208 | 76.13 284 | 97.53 93 | 92.11 332 | 79.58 277 | 80.99 228 | 94.01 198 | 66.60 250 | 96.17 258 | 73.48 289 | 89.30 182 | 97.20 157 |
|
| IterMVS | | | 80.67 293 | 79.16 293 | 85.20 306 | 89.79 297 | 76.08 285 | 92.97 308 | 91.86 335 | 80.28 263 | 71.20 331 | 85.14 341 | 57.93 310 | 91.34 371 | 72.52 294 | 70.74 318 | 88.18 325 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| h-mvs33 | | | 89.30 141 | 88.95 138 | 90.36 196 | 95.07 146 | 76.04 286 | 96.96 146 | 97.11 30 | 90.39 48 | 92.22 84 | 95.10 171 | 74.70 175 | 98.86 119 | 93.14 83 | 65.89 361 | 96.16 192 |
|
| SR-MVS-dyc-post | | | 91.29 100 | 91.45 87 | 90.80 183 | 97.76 67 | 76.03 287 | 96.20 198 | 95.44 186 | 80.56 254 | 90.72 109 | 97.84 67 | 75.76 151 | 98.61 127 | 91.99 99 | 96.79 95 | 97.75 112 |
|
| RE-MVS-def | | | | 91.18 95 | | 97.76 67 | 76.03 287 | 96.20 198 | 95.44 186 | 80.56 254 | 90.72 109 | 97.84 67 | 73.36 195 | | 91.99 99 | 96.79 95 | 97.75 112 |
|
| EPP-MVSNet | | | 89.76 132 | 89.72 128 | 89.87 212 | 93.78 188 | 76.02 289 | 97.22 115 | 96.51 98 | 79.35 280 | 85.11 177 | 95.01 175 | 84.82 37 | 97.10 216 | 87.46 159 | 88.21 201 | 96.50 182 |
|
| tttt0517 | | | 88.57 160 | 88.19 151 | 89.71 218 | 93.00 214 | 75.99 290 | 95.67 226 | 96.67 76 | 80.78 248 | 81.82 222 | 94.40 188 | 88.97 13 | 97.58 182 | 76.05 265 | 86.31 217 | 95.57 206 |
|
| cl____ | | | 83.27 253 | 82.12 253 | 86.74 279 | 92.20 242 | 75.95 291 | 95.11 253 | 93.27 310 | 78.44 298 | 74.82 301 | 87.02 307 | 74.19 183 | 95.19 308 | 74.67 278 | 69.32 332 | 89.09 298 |
|
| CS-MVS | | | 92.73 56 | 93.48 43 | 90.48 193 | 96.27 104 | 75.93 292 | 98.55 34 | 94.93 210 | 89.32 60 | 94.54 51 | 97.67 74 | 78.91 96 | 97.02 218 | 93.80 70 | 97.32 79 | 98.49 57 |
|
| DIV-MVS_self_test | | | 83.27 253 | 82.12 253 | 86.74 279 | 92.19 243 | 75.92 293 | 95.11 253 | 93.26 311 | 78.44 298 | 74.81 302 | 87.08 306 | 74.19 183 | 95.19 308 | 74.66 279 | 69.30 333 | 89.11 297 |
|
| pm-mvs1 | | | 80.05 297 | 78.02 302 | 86.15 290 | 85.42 354 | 75.81 294 | 95.11 253 | 92.69 326 | 77.13 311 | 70.36 337 | 87.43 298 | 58.44 302 | 95.27 305 | 71.36 301 | 64.25 367 | 87.36 342 |
|
| Patchmtry | | | 77.36 322 | 74.59 327 | 85.67 298 | 89.75 299 | 75.75 295 | 77.85 400 | 91.12 348 | 60.28 395 | 71.23 330 | 80.35 374 | 75.45 158 | 93.56 349 | 57.94 363 | 67.34 353 | 87.68 333 |
|
| PatchT | | | 79.75 299 | 76.85 311 | 88.42 237 | 89.55 306 | 75.49 296 | 77.37 401 | 94.61 234 | 63.07 382 | 82.46 210 | 73.32 397 | 75.52 157 | 93.41 352 | 51.36 385 | 84.43 234 | 96.36 185 |
|
| tpm | | | 85.55 217 | 84.47 217 | 88.80 232 | 90.19 291 | 75.39 297 | 88.79 348 | 94.69 224 | 84.83 158 | 83.96 194 | 85.21 338 | 78.22 107 | 94.68 327 | 76.32 263 | 78.02 285 | 96.34 187 |
|
| TransMVSNet (Re) | | | 76.94 325 | 74.38 329 | 84.62 316 | 85.92 349 | 75.25 298 | 95.28 241 | 89.18 369 | 73.88 338 | 67.22 348 | 86.46 316 | 59.64 290 | 94.10 338 | 59.24 361 | 52.57 392 | 84.50 371 |
|
| Baseline_NR-MVSNet | | | 81.22 286 | 80.07 284 | 84.68 313 | 85.32 358 | 75.12 299 | 96.48 177 | 88.80 372 | 76.24 321 | 77.28 267 | 86.40 320 | 67.61 238 | 94.39 333 | 75.73 269 | 66.73 359 | 84.54 370 |
|
| eth_miper_zixun_eth | | | 83.12 257 | 82.01 255 | 86.47 284 | 91.85 261 | 74.80 300 | 94.33 272 | 93.18 314 | 79.11 287 | 75.74 294 | 87.25 303 | 72.71 199 | 95.32 302 | 76.78 256 | 67.13 355 | 89.27 293 |
|
| IterMVS-SCA-FT | | | 80.51 295 | 79.10 294 | 84.73 312 | 89.63 304 | 74.66 301 | 92.98 307 | 91.81 337 | 80.05 268 | 71.06 333 | 85.18 339 | 58.04 306 | 91.40 370 | 72.48 295 | 70.70 320 | 88.12 326 |
|
| test_cas_vis1_n_1920 | | | 89.90 130 | 90.02 121 | 89.54 219 | 90.14 294 | 74.63 302 | 98.71 27 | 94.43 248 | 93.04 17 | 92.40 80 | 96.35 132 | 53.41 340 | 99.08 106 | 95.59 47 | 96.16 105 | 94.90 221 |
|
| USDC | | | 78.65 309 | 76.25 315 | 85.85 293 | 87.58 329 | 74.60 303 | 89.58 342 | 90.58 359 | 84.05 183 | 63.13 371 | 88.23 288 | 40.69 387 | 96.86 231 | 66.57 329 | 75.81 292 | 86.09 358 |
|
| PatchMatch-RL | | | 85.00 226 | 83.66 229 | 89.02 227 | 95.86 118 | 74.55 304 | 92.49 314 | 93.60 295 | 79.30 283 | 79.29 249 | 91.47 240 | 58.53 301 | 98.45 140 | 70.22 311 | 92.17 164 | 94.07 239 |
|
| Vis-MVSNet (Re-imp) | | | 88.88 150 | 88.87 141 | 88.91 229 | 93.89 187 | 74.43 305 | 96.93 149 | 94.19 261 | 84.39 171 | 83.22 203 | 95.67 147 | 78.24 106 | 94.70 325 | 78.88 235 | 94.40 131 | 97.61 125 |
|
| PS-MVSNAJss | | | 84.91 227 | 84.30 219 | 86.74 279 | 85.89 350 | 74.40 306 | 94.95 258 | 94.16 263 | 83.93 189 | 76.45 278 | 90.11 265 | 71.04 222 | 95.77 277 | 83.16 199 | 79.02 274 | 90.06 280 |
|
| testdata | | | | | 90.13 202 | 95.92 117 | 74.17 307 | | 96.49 103 | 73.49 342 | 94.82 48 | 97.99 55 | 78.80 99 | 97.93 162 | 83.53 195 | 97.52 71 | 98.29 70 |
|
| Patchmatch-test | | | 78.25 311 | 74.72 326 | 88.83 231 | 91.20 269 | 74.10 308 | 73.91 408 | 88.70 375 | 59.89 398 | 66.82 353 | 85.12 342 | 78.38 104 | 94.54 329 | 48.84 394 | 79.58 269 | 97.86 103 |
|
| LS3D | | | 82.22 273 | 79.94 287 | 89.06 225 | 97.43 82 | 74.06 309 | 93.20 304 | 92.05 333 | 61.90 387 | 73.33 314 | 95.21 163 | 59.35 294 | 99.21 90 | 54.54 378 | 92.48 159 | 93.90 242 |
|
| hse-mvs2 | | | 88.22 171 | 88.21 150 | 88.25 245 | 93.54 195 | 73.41 310 | 95.41 239 | 95.89 158 | 90.39 48 | 92.22 84 | 94.22 192 | 74.70 175 | 96.66 240 | 93.14 83 | 64.37 366 | 94.69 231 |
|
| AUN-MVS | | | 86.25 205 | 85.57 197 | 88.26 244 | 93.57 194 | 73.38 311 | 95.45 237 | 95.88 159 | 83.94 188 | 85.47 175 | 94.21 193 | 73.70 192 | 96.67 239 | 83.54 194 | 64.41 365 | 94.73 230 |
|
| pmmvs-eth3d | | | 73.59 340 | 70.66 348 | 82.38 340 | 76.40 399 | 73.38 311 | 89.39 345 | 89.43 366 | 72.69 349 | 60.34 384 | 77.79 383 | 46.43 366 | 91.26 373 | 66.42 331 | 57.06 381 | 82.51 382 |
|
| CPTT-MVS | | | 89.72 133 | 89.87 127 | 89.29 222 | 98.33 47 | 73.30 313 | 97.70 79 | 95.35 194 | 75.68 323 | 87.40 154 | 97.44 91 | 70.43 228 | 98.25 149 | 89.56 135 | 96.90 90 | 96.33 189 |
|
| dmvs_re | | | 84.10 240 | 82.90 242 | 87.70 256 | 91.41 267 | 73.28 314 | 90.59 336 | 93.19 312 | 85.02 153 | 77.96 262 | 93.68 206 | 57.92 311 | 96.18 257 | 75.50 270 | 80.87 260 | 93.63 246 |
|
| EG-PatchMatch MVS | | | 74.92 335 | 72.02 343 | 83.62 330 | 83.76 375 | 73.28 314 | 93.62 291 | 92.04 334 | 68.57 369 | 58.88 388 | 83.80 354 | 31.87 402 | 95.57 293 | 56.97 370 | 78.67 276 | 82.00 389 |
|
| TAPA-MVS | | 81.61 12 | 85.02 225 | 83.67 228 | 89.06 225 | 96.79 96 | 73.27 316 | 95.92 213 | 94.79 221 | 74.81 330 | 80.47 234 | 96.83 120 | 71.07 221 | 98.19 152 | 49.82 391 | 92.57 156 | 95.71 203 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| LPG-MVS_test | | | 84.20 239 | 83.49 235 | 86.33 285 | 90.88 276 | 73.06 317 | 95.28 241 | 94.13 264 | 82.20 227 | 76.31 280 | 93.20 213 | 54.83 335 | 96.95 223 | 83.72 189 | 80.83 261 | 88.98 304 |
|
| LGP-MVS_train | | | | | 86.33 285 | 90.88 276 | 73.06 317 | | 94.13 264 | 82.20 227 | 76.31 280 | 93.20 213 | 54.83 335 | 96.95 223 | 83.72 189 | 80.83 261 | 88.98 304 |
|
| tt0805 | | | 81.20 287 | 79.06 295 | 87.61 259 | 86.50 338 | 72.97 319 | 93.66 289 | 95.48 182 | 74.11 335 | 76.23 284 | 91.99 233 | 41.36 382 | 97.40 197 | 77.44 250 | 74.78 297 | 92.45 256 |
|
| ACMP | | 81.66 11 | 84.00 242 | 83.22 238 | 86.33 285 | 91.53 265 | 72.95 320 | 95.91 215 | 93.79 285 | 83.70 197 | 73.79 306 | 92.22 228 | 54.31 338 | 96.89 227 | 83.98 183 | 79.74 266 | 89.16 296 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| v7n | | | 79.32 306 | 77.34 306 | 85.28 305 | 84.05 371 | 72.89 321 | 93.38 296 | 93.87 278 | 75.02 329 | 70.68 334 | 84.37 348 | 59.58 292 | 95.62 289 | 67.60 320 | 67.50 351 | 87.32 343 |
|
| test0.0.03 1 | | | 82.79 263 | 82.48 249 | 83.74 328 | 86.81 336 | 72.22 322 | 96.52 174 | 95.03 207 | 83.76 195 | 73.00 317 | 93.20 213 | 72.30 207 | 88.88 384 | 64.15 340 | 77.52 286 | 90.12 276 |
|
| F-COLMAP | | | 84.50 235 | 83.44 236 | 87.67 257 | 95.22 140 | 72.22 322 | 95.95 211 | 93.78 286 | 75.74 322 | 76.30 282 | 95.18 166 | 59.50 293 | 98.45 140 | 72.67 293 | 86.59 215 | 92.35 258 |
|
| UWE-MVS | | | 88.56 161 | 88.91 140 | 87.50 265 | 94.17 177 | 72.19 324 | 95.82 221 | 97.05 35 | 84.96 156 | 84.78 183 | 93.51 211 | 81.33 66 | 94.75 323 | 79.43 228 | 89.17 183 | 95.57 206 |
|
| ADS-MVSNet2 | | | 79.57 302 | 77.53 305 | 85.71 297 | 93.78 188 | 72.13 325 | 79.48 393 | 86.11 388 | 73.09 345 | 80.14 239 | 79.99 377 | 62.15 276 | 90.14 382 | 59.49 358 | 83.52 238 | 94.85 224 |
|
| ACMM | | 80.70 13 | 83.72 247 | 82.85 244 | 86.31 288 | 91.19 270 | 72.12 326 | 95.88 216 | 94.29 255 | 80.44 257 | 77.02 270 | 91.96 235 | 55.24 331 | 97.14 215 | 79.30 230 | 80.38 263 | 89.67 284 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| UniMVSNet_ETH3D | | | 80.86 291 | 78.75 297 | 87.22 274 | 86.31 341 | 72.02 327 | 91.95 320 | 93.76 289 | 73.51 340 | 75.06 300 | 90.16 263 | 43.04 376 | 95.66 284 | 76.37 262 | 78.55 280 | 93.98 240 |
|
| LTVRE_ROB | | 73.68 18 | 77.99 314 | 75.74 319 | 84.74 311 | 90.45 287 | 72.02 327 | 86.41 370 | 91.12 348 | 72.57 350 | 66.63 355 | 87.27 301 | 54.95 334 | 96.98 221 | 56.29 372 | 75.98 289 | 85.21 367 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| miper_lstm_enhance | | | 81.66 281 | 80.66 275 | 84.67 314 | 91.19 270 | 71.97 329 | 91.94 321 | 93.19 312 | 77.86 302 | 72.27 324 | 85.26 336 | 73.46 193 | 93.42 351 | 73.71 288 | 67.05 356 | 88.61 312 |
|
| MDA-MVSNet_test_wron | | | 73.54 342 | 70.43 350 | 82.86 336 | 84.55 363 | 71.85 330 | 91.74 325 | 91.32 347 | 67.63 371 | 46.73 404 | 81.09 371 | 55.11 332 | 90.42 380 | 55.91 374 | 59.76 377 | 86.31 354 |
|
| OpenMVS_ROB |  | 68.52 20 | 73.02 346 | 69.57 353 | 83.37 333 | 80.54 384 | 71.82 331 | 93.60 292 | 88.22 376 | 62.37 385 | 61.98 377 | 83.15 360 | 35.31 397 | 95.47 295 | 45.08 400 | 75.88 291 | 82.82 379 |
|
| test_0402 | | | 72.68 347 | 69.54 354 | 82.09 343 | 88.67 316 | 71.81 332 | 92.72 312 | 86.77 385 | 61.52 389 | 62.21 376 | 83.91 353 | 43.22 374 | 93.76 346 | 34.60 408 | 72.23 312 | 80.72 395 |
|
| YYNet1 | | | 73.53 343 | 70.43 350 | 82.85 337 | 84.52 365 | 71.73 333 | 91.69 326 | 91.37 344 | 67.63 371 | 46.79 403 | 81.21 370 | 55.04 333 | 90.43 379 | 55.93 373 | 59.70 378 | 86.38 353 |
|
| XVG-OURS | | | 85.18 223 | 84.38 218 | 87.59 261 | 90.42 288 | 71.73 333 | 91.06 333 | 94.07 268 | 82.00 233 | 83.29 202 | 95.08 172 | 56.42 324 | 97.55 185 | 83.70 191 | 83.42 240 | 93.49 249 |
|
| ACMH+ | | 76.62 16 | 77.47 321 | 74.94 323 | 85.05 308 | 91.07 274 | 71.58 335 | 93.26 302 | 90.01 361 | 71.80 354 | 64.76 364 | 88.55 280 | 41.62 380 | 96.48 244 | 62.35 348 | 71.00 316 | 87.09 345 |
|
| XVG-OURS-SEG-HR | | | 85.74 213 | 85.16 206 | 87.49 267 | 90.22 290 | 71.45 336 | 91.29 330 | 94.09 267 | 81.37 239 | 83.90 196 | 95.22 162 | 60.30 288 | 97.53 189 | 85.58 171 | 84.42 235 | 93.50 248 |
|
| MVStest1 | | | 66.93 366 | 63.01 370 | 78.69 362 | 78.56 389 | 71.43 337 | 85.51 377 | 86.81 383 | 49.79 407 | 48.57 402 | 84.15 351 | 53.46 339 | 83.31 402 | 43.14 403 | 37.15 413 | 81.34 394 |
|
| EPNet_dtu | | | 87.65 184 | 87.89 155 | 86.93 278 | 94.57 159 | 71.37 338 | 96.72 163 | 96.50 100 | 88.56 71 | 87.12 160 | 95.02 174 | 75.91 149 | 94.01 340 | 66.62 327 | 90.00 177 | 95.42 211 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| WR-MVS_H | | | 81.02 288 | 80.09 282 | 83.79 326 | 88.08 324 | 71.26 339 | 94.46 266 | 96.54 95 | 80.08 267 | 72.81 320 | 86.82 309 | 70.36 229 | 92.65 356 | 64.18 339 | 67.50 351 | 87.46 341 |
|
| jajsoiax | | | 82.12 274 | 81.15 269 | 85.03 309 | 84.19 368 | 70.70 340 | 94.22 278 | 93.95 271 | 83.07 208 | 73.48 309 | 89.75 267 | 49.66 353 | 95.37 299 | 82.24 207 | 79.76 264 | 89.02 302 |
|
| CP-MVSNet | | | 81.01 289 | 80.08 283 | 83.79 326 | 87.91 326 | 70.51 341 | 94.29 277 | 95.65 171 | 80.83 246 | 72.54 323 | 88.84 276 | 63.71 266 | 92.32 359 | 68.58 319 | 68.36 341 | 88.55 313 |
|
| anonymousdsp | | | 80.98 290 | 79.97 286 | 84.01 323 | 81.73 380 | 70.44 342 | 92.49 314 | 93.58 297 | 77.10 313 | 72.98 318 | 86.31 321 | 57.58 312 | 94.90 318 | 79.32 229 | 78.63 279 | 86.69 349 |
|
| mvs_tets | | | 81.74 278 | 80.71 274 | 84.84 310 | 84.22 367 | 70.29 343 | 93.91 285 | 93.78 286 | 82.77 217 | 73.37 312 | 89.46 270 | 47.36 363 | 95.31 303 | 81.99 208 | 79.55 270 | 88.92 308 |
|
| DeepPCF-MVS | | 89.82 1 | 94.61 22 | 96.17 5 | 89.91 211 | 97.09 94 | 70.21 344 | 98.99 23 | 96.69 74 | 95.57 2 | 95.08 41 | 99.23 1 | 86.40 31 | 99.87 8 | 97.84 20 | 98.66 32 | 99.65 6 |
|
| pmmvs6 | | | 74.65 337 | 71.67 344 | 83.60 331 | 79.13 388 | 69.94 345 | 93.31 301 | 90.88 355 | 61.05 394 | 65.83 359 | 84.15 351 | 43.43 372 | 94.83 321 | 66.62 327 | 60.63 376 | 86.02 359 |
|
| PS-CasMVS | | | 80.27 296 | 79.18 292 | 83.52 332 | 87.56 330 | 69.88 346 | 94.08 280 | 95.29 197 | 80.27 264 | 72.08 325 | 88.51 283 | 59.22 297 | 92.23 361 | 67.49 321 | 68.15 344 | 88.45 319 |
|
| test_djsdf | | | 83.00 261 | 82.45 250 | 84.64 315 | 84.07 370 | 69.78 347 | 94.80 263 | 94.48 240 | 80.74 249 | 75.41 297 | 87.70 295 | 61.32 285 | 95.10 314 | 83.77 187 | 79.76 264 | 89.04 301 |
|
| MVS-HIRNet | | | 71.36 355 | 67.00 361 | 84.46 320 | 90.58 284 | 69.74 348 | 79.15 396 | 87.74 379 | 46.09 408 | 61.96 378 | 50.50 412 | 45.14 368 | 95.64 287 | 53.74 380 | 88.11 202 | 88.00 328 |
|
| TinyColmap | | | 72.41 348 | 68.99 357 | 82.68 338 | 88.11 323 | 69.59 349 | 88.41 351 | 85.20 390 | 65.55 377 | 57.91 391 | 84.82 346 | 30.80 404 | 95.94 267 | 51.38 384 | 68.70 337 | 82.49 384 |
|
| PMMVS | | | 89.46 138 | 89.92 125 | 88.06 249 | 94.64 157 | 69.57 350 | 96.22 196 | 94.95 209 | 87.27 107 | 91.37 98 | 96.54 130 | 65.88 253 | 97.39 198 | 88.54 145 | 93.89 139 | 97.23 152 |
|
| Fast-Effi-MVS+-dtu | | | 83.33 252 | 82.60 248 | 85.50 302 | 89.55 306 | 69.38 351 | 96.09 206 | 91.38 343 | 82.30 226 | 75.96 289 | 91.41 241 | 56.71 320 | 95.58 292 | 75.13 274 | 84.90 233 | 91.54 259 |
|
| COLMAP_ROB |  | 73.24 19 | 75.74 332 | 73.00 339 | 83.94 324 | 92.38 232 | 69.08 352 | 91.85 323 | 86.93 382 | 61.48 390 | 65.32 362 | 90.27 260 | 42.27 378 | 96.93 226 | 50.91 387 | 75.63 293 | 85.80 364 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| test_vis1_n_1920 | | | 89.95 129 | 90.59 103 | 88.03 251 | 92.36 233 | 68.98 353 | 99.12 12 | 94.34 253 | 93.86 11 | 93.64 62 | 97.01 114 | 51.54 344 | 99.59 60 | 96.76 35 | 96.71 99 | 95.53 208 |
|
| PEN-MVS | | | 79.47 304 | 78.26 300 | 83.08 335 | 86.36 340 | 68.58 354 | 93.85 287 | 94.77 222 | 79.76 273 | 71.37 328 | 88.55 280 | 59.79 289 | 92.46 357 | 64.50 338 | 65.40 362 | 88.19 324 |
|
| MDA-MVSNet-bldmvs | | | 71.45 353 | 67.94 360 | 81.98 344 | 85.33 357 | 68.50 355 | 92.35 317 | 88.76 373 | 70.40 360 | 42.99 407 | 81.96 364 | 46.57 365 | 91.31 372 | 48.75 395 | 54.39 386 | 86.11 357 |
|
| UnsupCasMVSNet_bld | | | 68.60 364 | 64.50 368 | 80.92 351 | 74.63 404 | 67.80 356 | 83.97 384 | 92.94 321 | 65.12 379 | 54.63 398 | 68.23 405 | 35.97 394 | 92.17 363 | 60.13 356 | 44.83 405 | 82.78 380 |
|
| CL-MVSNet_self_test | | | 75.81 331 | 74.14 333 | 80.83 352 | 78.33 391 | 67.79 357 | 94.22 278 | 93.52 298 | 77.28 310 | 69.82 340 | 81.54 368 | 61.47 284 | 89.22 383 | 57.59 366 | 53.51 388 | 85.48 365 |
|
| AllTest | | | 75.92 330 | 73.06 338 | 84.47 318 | 92.18 244 | 67.29 358 | 91.07 332 | 84.43 394 | 67.63 371 | 63.48 367 | 90.18 261 | 38.20 389 | 97.16 211 | 57.04 368 | 73.37 303 | 88.97 306 |
|
| TestCases | | | | | 84.47 318 | 92.18 244 | 67.29 358 | | 84.43 394 | 67.63 371 | 63.48 367 | 90.18 261 | 38.20 389 | 97.16 211 | 57.04 368 | 73.37 303 | 88.97 306 |
|
| WAC-MVS | | | | | | | 67.18 360 | | | | | | | | 49.00 393 | | |
|
| myMVS_eth3d | | | 81.93 276 | 82.18 252 | 81.18 349 | 92.13 247 | 67.18 360 | 93.97 282 | 94.23 257 | 82.43 223 | 73.39 310 | 93.57 209 | 76.98 128 | 87.86 389 | 50.53 389 | 82.34 253 | 88.51 314 |
|
| mvsany_test1 | | | 87.58 185 | 88.22 149 | 85.67 298 | 89.78 298 | 67.18 360 | 95.25 244 | 87.93 377 | 83.96 187 | 88.79 138 | 97.06 112 | 72.52 202 | 94.53 330 | 92.21 95 | 86.45 216 | 95.30 215 |
|
| DTE-MVSNet | | | 78.37 310 | 77.06 309 | 82.32 342 | 85.22 359 | 67.17 363 | 93.40 295 | 93.66 292 | 78.71 294 | 70.53 336 | 88.29 287 | 59.06 298 | 92.23 361 | 61.38 352 | 63.28 371 | 87.56 337 |
|
| XVG-ACMP-BASELINE | | | 79.38 305 | 77.90 303 | 83.81 325 | 84.98 361 | 67.14 364 | 89.03 346 | 93.18 314 | 80.26 265 | 72.87 319 | 88.15 290 | 38.55 388 | 96.26 252 | 76.05 265 | 78.05 284 | 88.02 327 |
|
| kuosan | | | 73.55 341 | 72.39 342 | 77.01 370 | 89.68 302 | 66.72 365 | 85.24 379 | 93.44 300 | 67.76 370 | 60.04 386 | 83.40 358 | 71.90 212 | 84.25 401 | 45.34 399 | 54.75 383 | 80.06 396 |
|
| UnsupCasMVSNet_eth | | | 73.25 344 | 70.57 349 | 81.30 347 | 77.53 393 | 66.33 366 | 87.24 363 | 93.89 277 | 80.38 260 | 57.90 392 | 81.59 366 | 42.91 377 | 90.56 378 | 65.18 336 | 48.51 398 | 87.01 346 |
|
| mmtdpeth | | | 78.04 313 | 76.76 312 | 81.86 345 | 89.60 305 | 66.12 367 | 92.34 318 | 87.18 380 | 76.83 316 | 85.55 174 | 76.49 388 | 46.77 364 | 97.02 218 | 90.85 112 | 45.24 404 | 82.43 385 |
|
| ITE_SJBPF | | | | | 82.38 340 | 87.00 334 | 65.59 368 | | 89.55 364 | 79.99 270 | 69.37 343 | 91.30 244 | 41.60 381 | 95.33 301 | 62.86 347 | 74.63 299 | 86.24 355 |
|
| mvs5depth | | | 71.40 354 | 68.36 359 | 80.54 354 | 75.31 403 | 65.56 369 | 79.94 392 | 85.14 391 | 69.11 368 | 71.75 327 | 81.59 366 | 41.02 384 | 93.94 341 | 60.90 355 | 50.46 394 | 82.10 387 |
|
| test_vis1_n | | | 85.60 216 | 85.70 195 | 85.33 304 | 84.79 362 | 64.98 370 | 96.83 155 | 91.61 341 | 87.36 104 | 91.00 106 | 94.84 180 | 36.14 393 | 97.18 210 | 95.66 45 | 93.03 152 | 93.82 243 |
|
| pmmvs3 | | | 65.75 368 | 62.18 371 | 76.45 374 | 67.12 412 | 64.54 371 | 88.68 349 | 85.05 392 | 54.77 406 | 57.54 394 | 73.79 394 | 29.40 405 | 86.21 397 | 55.49 377 | 47.77 401 | 78.62 398 |
|
| test_fmvs1 | | | 87.79 180 | 88.52 146 | 85.62 300 | 92.98 218 | 64.31 372 | 97.88 65 | 92.42 328 | 87.95 87 | 92.24 83 | 95.82 142 | 47.94 359 | 98.44 142 | 95.31 53 | 94.09 132 | 94.09 238 |
|
| Patchmatch-RL test | | | 76.65 327 | 74.01 334 | 84.55 317 | 77.37 395 | 64.23 373 | 78.49 399 | 82.84 401 | 78.48 296 | 64.63 365 | 73.40 396 | 76.05 146 | 91.70 369 | 76.99 253 | 57.84 380 | 97.72 114 |
|
| LCM-MVSNet-Re | | | 83.75 246 | 83.54 233 | 84.39 322 | 93.54 195 | 64.14 374 | 92.51 313 | 84.03 397 | 83.90 190 | 66.14 358 | 86.59 313 | 67.36 243 | 92.68 355 | 84.89 177 | 92.87 153 | 96.35 186 |
|
| JIA-IIPM | | | 79.00 308 | 77.20 307 | 84.40 321 | 89.74 301 | 64.06 375 | 75.30 405 | 95.44 186 | 62.15 386 | 81.90 220 | 59.08 409 | 78.92 95 | 95.59 291 | 66.51 330 | 85.78 226 | 93.54 247 |
|
| new-patchmatchnet | | | 68.85 363 | 65.93 365 | 77.61 368 | 73.57 406 | 63.94 376 | 90.11 339 | 88.73 374 | 71.62 356 | 55.08 397 | 73.60 395 | 40.84 385 | 87.22 395 | 51.35 386 | 48.49 399 | 81.67 393 |
|
| test_fmvs1_n | | | 86.34 202 | 86.72 187 | 85.17 307 | 87.54 331 | 63.64 377 | 96.91 151 | 92.37 330 | 87.49 100 | 91.33 99 | 95.58 151 | 40.81 386 | 98.46 138 | 95.00 56 | 93.49 145 | 93.41 252 |
|
| testing3 | | | 80.74 292 | 81.17 268 | 79.44 359 | 91.15 272 | 63.48 378 | 97.16 124 | 95.76 165 | 80.83 246 | 71.36 329 | 93.15 216 | 78.22 107 | 87.30 394 | 43.19 402 | 79.67 267 | 87.55 339 |
|
| Anonymous20231206 | | | 75.29 334 | 73.64 335 | 80.22 355 | 80.75 381 | 63.38 379 | 93.36 297 | 90.71 358 | 73.09 345 | 67.12 349 | 83.70 355 | 50.33 350 | 90.85 376 | 53.63 381 | 70.10 325 | 86.44 352 |
|
| Effi-MVS+-dtu | | | 84.61 232 | 84.90 212 | 83.72 329 | 91.96 256 | 63.14 380 | 94.95 258 | 93.34 308 | 85.57 138 | 79.79 243 | 87.12 305 | 61.99 279 | 95.61 290 | 83.55 193 | 85.83 225 | 92.41 257 |
|
| MIMVSNet1 | | | 69.44 360 | 66.65 364 | 77.84 366 | 76.48 398 | 62.84 381 | 87.42 361 | 88.97 370 | 66.96 376 | 57.75 393 | 79.72 379 | 32.77 401 | 85.83 398 | 46.32 397 | 63.42 370 | 84.85 369 |
|
| ttmdpeth | | | 69.58 357 | 66.92 363 | 77.54 369 | 75.95 402 | 62.40 382 | 88.09 354 | 84.32 396 | 62.87 384 | 65.70 361 | 86.25 323 | 36.53 391 | 88.53 386 | 55.65 376 | 46.96 403 | 81.70 392 |
|
| TDRefinement | | | 69.20 362 | 65.78 366 | 79.48 358 | 66.04 413 | 62.21 383 | 88.21 352 | 86.12 387 | 62.92 383 | 61.03 382 | 85.61 331 | 33.23 399 | 94.16 337 | 55.82 375 | 53.02 390 | 82.08 388 |
|
| testgi | | | 74.88 336 | 73.40 336 | 79.32 360 | 80.13 385 | 61.75 384 | 93.21 303 | 86.64 386 | 79.49 279 | 66.56 357 | 91.06 247 | 35.51 396 | 88.67 385 | 56.79 371 | 71.25 314 | 87.56 337 |
|
| new_pmnet | | | 66.18 367 | 63.18 369 | 75.18 379 | 76.27 400 | 61.74 385 | 83.79 385 | 84.66 393 | 56.64 404 | 51.57 400 | 71.85 403 | 31.29 403 | 87.93 388 | 49.98 390 | 62.55 372 | 75.86 401 |
|
| Anonymous20240521 | | | 72.06 351 | 69.91 352 | 78.50 365 | 77.11 396 | 61.67 386 | 91.62 328 | 90.97 353 | 65.52 378 | 62.37 375 | 79.05 380 | 36.32 392 | 90.96 375 | 57.75 365 | 68.52 339 | 82.87 378 |
|
| SixPastTwentyTwo | | | 76.04 329 | 74.32 330 | 81.22 348 | 84.54 364 | 61.43 387 | 91.16 331 | 89.30 368 | 77.89 300 | 64.04 366 | 86.31 321 | 48.23 355 | 94.29 335 | 63.54 344 | 63.84 369 | 87.93 329 |
|
| test_vis1_rt | | | 73.96 338 | 72.40 341 | 78.64 364 | 83.91 372 | 61.16 388 | 95.63 229 | 68.18 417 | 76.32 318 | 60.09 385 | 74.77 391 | 29.01 406 | 97.54 187 | 87.74 155 | 75.94 290 | 77.22 400 |
|
| CVMVSNet | | | 84.83 228 | 85.57 197 | 82.63 339 | 91.55 263 | 60.38 389 | 95.13 251 | 95.03 207 | 80.60 252 | 82.10 218 | 94.71 182 | 66.40 251 | 90.19 381 | 74.30 282 | 90.32 176 | 97.31 149 |
|
| EGC-MVSNET | | | 52.46 378 | 47.56 381 | 67.15 385 | 81.98 379 | 60.11 390 | 82.54 389 | 72.44 413 | 0.11 425 | 0.70 426 | 74.59 392 | 25.11 407 | 83.26 403 | 29.04 412 | 61.51 375 | 58.09 410 |
|
| OurMVSNet-221017-0 | | | 77.18 324 | 76.06 316 | 80.55 353 | 83.78 374 | 60.00 391 | 90.35 337 | 91.05 351 | 77.01 315 | 66.62 356 | 87.92 293 | 47.73 361 | 94.03 339 | 71.63 298 | 68.44 340 | 87.62 334 |
|
| K. test v3 | | | 73.62 339 | 71.59 345 | 79.69 357 | 82.98 376 | 59.85 392 | 90.85 335 | 88.83 371 | 77.13 311 | 58.90 387 | 82.11 363 | 43.62 371 | 91.72 368 | 65.83 333 | 54.10 387 | 87.50 340 |
|
| test20.03 | | | 72.36 349 | 71.15 346 | 75.98 376 | 77.79 392 | 59.16 393 | 92.40 316 | 89.35 367 | 74.09 336 | 61.50 379 | 84.32 349 | 48.09 356 | 85.54 399 | 50.63 388 | 62.15 374 | 83.24 377 |
|
| dongtai | | | 69.47 359 | 68.98 358 | 70.93 381 | 86.87 335 | 58.45 394 | 88.19 353 | 93.18 314 | 63.98 381 | 56.04 395 | 80.17 376 | 70.97 225 | 79.24 408 | 33.46 409 | 47.94 400 | 75.09 402 |
|
| lessismore_v0 | | | | | 79.98 356 | 80.59 383 | 58.34 395 | | 80.87 403 | | 58.49 389 | 83.46 357 | 43.10 375 | 93.89 342 | 63.11 346 | 48.68 397 | 87.72 331 |
|
| Syy-MVS | | | 77.97 316 | 78.05 301 | 77.74 367 | 92.13 247 | 56.85 396 | 93.97 282 | 94.23 257 | 82.43 223 | 73.39 310 | 93.57 209 | 57.95 309 | 87.86 389 | 32.40 410 | 82.34 253 | 88.51 314 |
|
| LF4IMVS | | | 72.36 349 | 70.82 347 | 76.95 371 | 79.18 387 | 56.33 397 | 86.12 372 | 86.11 388 | 69.30 367 | 63.06 372 | 86.66 312 | 33.03 400 | 92.25 360 | 65.33 335 | 68.64 338 | 82.28 386 |
|
| CMPMVS |  | 54.94 21 | 75.71 333 | 74.56 328 | 79.17 361 | 79.69 386 | 55.98 398 | 89.59 341 | 93.30 309 | 60.28 395 | 53.85 399 | 89.07 273 | 47.68 362 | 96.33 250 | 76.55 258 | 81.02 259 | 85.22 366 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| PM-MVS | | | 69.32 361 | 66.93 362 | 76.49 373 | 73.60 405 | 55.84 399 | 85.91 373 | 79.32 407 | 74.72 331 | 61.09 381 | 78.18 382 | 21.76 409 | 91.10 374 | 70.86 307 | 56.90 382 | 82.51 382 |
|
| test_fmvs2 | | | 79.59 301 | 79.90 288 | 78.67 363 | 82.86 377 | 55.82 400 | 95.20 247 | 89.55 364 | 81.09 242 | 80.12 241 | 89.80 266 | 34.31 398 | 93.51 350 | 87.82 154 | 78.36 282 | 86.69 349 |
|
| RPSCF | | | 77.73 318 | 76.63 313 | 81.06 350 | 88.66 317 | 55.76 401 | 87.77 359 | 87.88 378 | 64.82 380 | 74.14 305 | 92.79 221 | 49.22 354 | 96.81 233 | 67.47 322 | 76.88 287 | 90.62 266 |
|
| KD-MVS_self_test | | | 70.97 356 | 69.31 355 | 75.95 377 | 76.24 401 | 55.39 402 | 87.45 360 | 90.94 354 | 70.20 362 | 62.96 374 | 77.48 384 | 44.01 369 | 88.09 387 | 61.25 353 | 53.26 389 | 84.37 372 |
|
| mamv4 | | | 85.50 218 | 86.76 185 | 81.72 346 | 93.23 205 | 54.93 403 | 89.95 340 | 92.94 321 | 69.96 363 | 79.00 250 | 92.20 229 | 80.69 72 | 94.22 336 | 92.06 98 | 90.77 173 | 96.01 195 |
|
| EU-MVSNet | | | 76.92 326 | 76.95 310 | 76.83 372 | 84.10 369 | 54.73 404 | 91.77 324 | 92.71 325 | 72.74 348 | 69.57 342 | 88.69 278 | 58.03 308 | 87.43 393 | 64.91 337 | 70.00 327 | 88.33 322 |
|
| ambc | | | | | 76.02 375 | 68.11 410 | 51.43 405 | 64.97 413 | 89.59 363 | | 60.49 383 | 74.49 393 | 17.17 412 | 92.46 357 | 61.50 351 | 52.85 391 | 84.17 374 |
|
| Gipuma |  | | 45.11 383 | 42.05 385 | 54.30 399 | 80.69 382 | 51.30 406 | 35.80 417 | 83.81 398 | 28.13 413 | 27.94 417 | 34.53 417 | 11.41 420 | 76.70 413 | 21.45 416 | 54.65 384 | 34.90 417 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| mvsany_test3 | | | 67.19 365 | 65.34 367 | 72.72 380 | 63.08 414 | 48.57 407 | 83.12 387 | 78.09 408 | 72.07 352 | 61.21 380 | 77.11 386 | 22.94 408 | 87.78 391 | 78.59 236 | 51.88 393 | 81.80 390 |
|
| test_fmvs3 | | | 69.56 358 | 69.19 356 | 70.67 382 | 69.01 408 | 47.05 408 | 90.87 334 | 86.81 383 | 71.31 358 | 66.79 354 | 77.15 385 | 16.40 413 | 83.17 404 | 81.84 209 | 62.51 373 | 81.79 391 |
|
| DSMNet-mixed | | | 73.13 345 | 72.45 340 | 75.19 378 | 77.51 394 | 46.82 409 | 85.09 380 | 82.01 402 | 67.61 375 | 69.27 344 | 81.33 369 | 50.89 346 | 86.28 396 | 54.54 378 | 83.80 237 | 92.46 255 |
|
| PMMVS2 | | | 50.90 379 | 46.31 382 | 64.67 388 | 55.53 418 | 46.67 410 | 77.30 402 | 71.02 414 | 40.89 409 | 34.16 413 | 59.32 408 | 9.83 421 | 76.14 414 | 40.09 407 | 28.63 416 | 71.21 403 |
|
| APD_test1 | | | 56.56 373 | 53.58 377 | 65.50 386 | 67.93 411 | 46.51 411 | 77.24 403 | 72.95 412 | 38.09 410 | 42.75 408 | 75.17 390 | 13.38 416 | 82.78 405 | 40.19 406 | 54.53 385 | 67.23 407 |
|
| ANet_high | | | 46.22 380 | 41.28 387 | 61.04 394 | 39.91 426 | 46.25 412 | 70.59 410 | 76.18 410 | 58.87 401 | 23.09 418 | 48.00 415 | 12.58 418 | 66.54 418 | 28.65 413 | 13.62 419 | 70.35 404 |
|
| test_vis3_rt | | | 54.10 376 | 51.04 379 | 63.27 392 | 58.16 416 | 46.08 413 | 84.17 383 | 49.32 427 | 56.48 405 | 36.56 411 | 49.48 414 | 8.03 423 | 91.91 366 | 67.29 323 | 49.87 395 | 51.82 413 |
|
| test_f | | | 64.01 369 | 62.13 372 | 69.65 383 | 63.00 415 | 45.30 414 | 83.66 386 | 80.68 404 | 61.30 391 | 55.70 396 | 72.62 399 | 14.23 415 | 84.64 400 | 69.84 312 | 58.11 379 | 79.00 397 |
|
| DeepMVS_CX |  | | | | 64.06 390 | 78.53 390 | 43.26 415 | | 68.11 419 | 69.94 364 | 38.55 409 | 76.14 389 | 18.53 411 | 79.34 407 | 43.72 401 | 41.62 410 | 69.57 405 |
|
| LCM-MVSNet | | | 52.52 377 | 48.24 380 | 65.35 387 | 47.63 424 | 41.45 416 | 72.55 409 | 83.62 399 | 31.75 412 | 37.66 410 | 57.92 410 | 9.19 422 | 76.76 412 | 49.26 392 | 44.60 406 | 77.84 399 |
|
| test_method | | | 56.77 372 | 54.53 376 | 63.49 391 | 76.49 397 | 40.70 417 | 75.68 404 | 74.24 411 | 19.47 419 | 48.73 401 | 71.89 402 | 19.31 410 | 65.80 419 | 57.46 367 | 47.51 402 | 83.97 375 |
|
| FPMVS | | | 55.09 375 | 52.93 378 | 61.57 393 | 55.98 417 | 40.51 418 | 83.11 388 | 83.41 400 | 37.61 411 | 34.95 412 | 71.95 401 | 14.40 414 | 76.95 411 | 29.81 411 | 65.16 363 | 67.25 406 |
|
| testf1 | | | 45.70 381 | 42.41 383 | 55.58 397 | 53.29 421 | 40.02 419 | 68.96 411 | 62.67 421 | 27.45 414 | 29.85 414 | 61.58 406 | 5.98 424 | 73.83 416 | 28.49 414 | 43.46 408 | 52.90 411 |
|
| APD_test2 | | | 45.70 381 | 42.41 383 | 55.58 397 | 53.29 421 | 40.02 419 | 68.96 411 | 62.67 421 | 27.45 414 | 29.85 414 | 61.58 406 | 5.98 424 | 73.83 416 | 28.49 414 | 43.46 408 | 52.90 411 |
|
| MVE |  | 35.65 22 | 33.85 386 | 29.49 391 | 46.92 401 | 41.86 425 | 36.28 421 | 50.45 416 | 56.52 424 | 18.75 420 | 18.28 419 | 37.84 416 | 2.41 427 | 58.41 420 | 18.71 417 | 20.62 417 | 46.06 415 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| WB-MVS | | | 57.26 371 | 56.22 374 | 60.39 395 | 69.29 407 | 35.91 422 | 86.39 371 | 70.06 415 | 59.84 399 | 46.46 405 | 72.71 398 | 51.18 345 | 78.11 409 | 15.19 419 | 34.89 414 | 67.14 408 |
|
| SSC-MVS | | | 56.01 374 | 54.96 375 | 59.17 396 | 68.42 409 | 34.13 423 | 84.98 381 | 69.23 416 | 58.08 403 | 45.36 406 | 71.67 404 | 50.30 351 | 77.46 410 | 14.28 420 | 32.33 415 | 65.91 409 |
|
| dmvs_testset | | | 72.00 352 | 73.36 337 | 67.91 384 | 83.83 373 | 31.90 424 | 85.30 378 | 77.12 409 | 82.80 216 | 63.05 373 | 92.46 224 | 61.54 283 | 82.55 406 | 42.22 405 | 71.89 313 | 89.29 292 |
|
| PMVS |  | 34.80 23 | 39.19 385 | 35.53 388 | 50.18 400 | 29.72 427 | 30.30 425 | 59.60 415 | 66.20 420 | 26.06 416 | 17.91 420 | 49.53 413 | 3.12 426 | 74.09 415 | 18.19 418 | 49.40 396 | 46.14 414 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| tmp_tt | | | 41.54 384 | 41.93 386 | 40.38 402 | 20.10 428 | 26.84 426 | 61.93 414 | 59.09 423 | 14.81 421 | 28.51 416 | 80.58 372 | 35.53 395 | 48.33 423 | 63.70 343 | 13.11 420 | 45.96 416 |
|
| E-PMN | | | 32.70 387 | 32.39 389 | 33.65 403 | 53.35 420 | 25.70 427 | 74.07 407 | 53.33 425 | 21.08 417 | 17.17 421 | 33.63 419 | 11.85 419 | 54.84 421 | 12.98 421 | 14.04 418 | 20.42 418 |
|
| EMVS | | | 31.70 388 | 31.45 390 | 32.48 404 | 50.72 423 | 23.95 428 | 74.78 406 | 52.30 426 | 20.36 418 | 16.08 422 | 31.48 420 | 12.80 417 | 53.60 422 | 11.39 422 | 13.10 421 | 19.88 419 |
|
| wuyk23d | | | 14.10 390 | 13.89 393 | 14.72 405 | 55.23 419 | 22.91 429 | 33.83 418 | 3.56 429 | 4.94 422 | 4.11 423 | 2.28 425 | 2.06 428 | 19.66 424 | 10.23 423 | 8.74 422 | 1.59 422 |
|
| N_pmnet | | | 61.30 370 | 60.20 373 | 64.60 389 | 84.32 366 | 17.00 430 | 91.67 327 | 10.98 428 | 61.77 388 | 58.45 390 | 78.55 381 | 49.89 352 | 91.83 367 | 42.27 404 | 63.94 368 | 84.97 368 |
|
| test123 | | | 9.07 392 | 11.73 395 | 1.11 406 | 0.50 430 | 0.77 431 | 89.44 344 | 0.20 431 | 0.34 424 | 2.15 425 | 10.72 424 | 0.34 429 | 0.32 425 | 1.79 425 | 0.08 424 | 2.23 420 |
|
| testmvs | | | 9.92 391 | 12.94 394 | 0.84 407 | 0.65 429 | 0.29 432 | 93.78 288 | 0.39 430 | 0.42 423 | 2.85 424 | 15.84 423 | 0.17 430 | 0.30 426 | 2.18 424 | 0.21 423 | 1.91 421 |
|
| mmdepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| monomultidepth | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| test_blank | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet_test | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| DCPMVS | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| cdsmvs_eth3d_5k | | | 21.43 389 | 28.57 392 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 95.93 156 | 0.00 426 | 0.00 427 | 97.66 75 | 63.57 267 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| pcd_1.5k_mvsjas | | | 5.92 394 | 7.89 397 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 71.04 222 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet-low-res | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| sosnet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uncertanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| Regformer | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| ab-mvs-re | | | 8.11 393 | 10.81 396 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 97.30 98 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| uanet | | | 0.00 395 | 0.00 398 | 0.00 408 | 0.00 431 | 0.00 433 | 0.00 419 | 0.00 432 | 0.00 426 | 0.00 427 | 0.00 426 | 0.00 431 | 0.00 427 | 0.00 426 | 0.00 425 | 0.00 423 |
|
| PC_three_1452 | | | | | | | | | | 91.12 36 | 98.33 2 | 98.42 30 | 92.51 2 | 99.81 22 | 98.96 4 | 99.37 1 | 99.70 3 |
|
| eth-test2 | | | | | | 0.00 431 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 431 | | | | | | | | | | | |
|
| test_241102_TWO | | | | | | | | | 96.78 56 | 88.72 67 | 97.70 8 | 98.91 2 | 87.86 22 | 99.82 19 | 98.15 11 | 99.00 15 | 99.47 9 |
|
| 9.14 | | | | 94.26 31 | | 98.10 57 | | 98.14 46 | 96.52 97 | 84.74 160 | 94.83 47 | 98.80 7 | 82.80 60 | 99.37 80 | 95.95 41 | 98.42 42 | |
|
| test_0728_THIRD | | | | | | | | | | 88.38 75 | 96.69 18 | 98.76 12 | 89.64 12 | 99.76 31 | 97.47 24 | 98.84 23 | 99.38 14 |
|
| GSMVS | | | | | | | | | | | | | | | | | 97.54 128 |
|
| sam_mvs1 | | | | | | | | | | | | | 77.59 117 | | | | 97.54 128 |
|
| sam_mvs | | | | | | | | | | | | | 75.35 165 | | | | |
|
| MTGPA |  | | | | | | | | 96.33 120 | | | | | | | | |
|
| test_post1 | | | | | | | | 85.88 374 | | | | 30.24 421 | 73.77 188 | 95.07 316 | 73.89 285 | | |
|
| test_post | | | | | | | | | | | | 33.80 418 | 76.17 144 | 95.97 263 | | | |
|
| patchmatchnet-post | | | | | | | | | | | | 77.09 387 | 77.78 116 | 95.39 297 | | | |
|
| MTMP | | | | | | | | 97.53 93 | 68.16 418 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 96.00 40 | 99.03 13 | 98.31 68 |
|
| agg_prior2 | | | | | | | | | | | | | | | 94.30 64 | 99.00 15 | 98.57 53 |
|
| test_prior2 | | | | | | | | 98.37 39 | | 86.08 128 | 94.57 50 | 98.02 54 | 83.14 55 | | 95.05 55 | 98.79 27 | |
|
| 旧先验2 | | | | | | | | 96.97 144 | | 74.06 337 | 96.10 28 | | | 97.76 173 | 88.38 149 | | |
|
| 新几何2 | | | | | | | | 96.42 184 | | | | | | | | | |
|
| 无先验 | | | | | | | | 96.87 153 | 96.78 56 | 77.39 307 | | | | 99.52 69 | 79.95 223 | | 98.43 61 |
|
| 原ACMM2 | | | | | | | | 96.84 154 | | | | | | | | | |
|
| testdata2 | | | | | | | | | | | | | | 99.48 73 | 76.45 260 | | |
|
| segment_acmp | | | | | | | | | | | | | 82.69 61 | | | | |
|
| testdata1 | | | | | | | | 95.57 233 | | 87.44 101 | | | | | | | |
|
| plane_prior5 | | | | | | | | | 94.69 224 | | | | | 97.30 203 | 87.08 161 | 82.82 248 | 90.96 263 |
|
| plane_prior4 | | | | | | | | | | | | 94.15 195 | | | | | |
|
| plane_prior2 | | | | | | | | 97.18 120 | | 89.89 54 | | | | | | | |
|
| plane_prior1 | | | | | | 91.95 257 | | | | | | | | | | | |
|
| n2 | | | | | | | | | 0.00 432 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 432 | | | | | | | | |
|
| door-mid | | | | | | | | | 79.75 406 | | | | | | | | |
|
| test11 | | | | | | | | | 96.50 100 | | | | | | | | |
|
| door | | | | | | | | | 80.13 405 | | | | | | | | |
|
| HQP-NCC | | | | | | 92.08 250 | | 97.63 82 | | 90.52 45 | 82.30 212 | | | | | | |
|
| ACMP_Plane | | | | | | 92.08 250 | | 97.63 82 | | 90.52 45 | 82.30 212 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 87.67 157 | | |
|
| HQP4-MVS | | | | | | | | | | | 82.30 212 | | | 97.32 201 | | | 91.13 261 |
|
| HQP3-MVS | | | | | | | | | 94.80 219 | | | | | | | 83.01 244 | |
|
| HQP2-MVS | | | | | | | | | | | | | 65.40 257 | | | | |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 78.45 281 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 79.05 273 | |
|
| Test By Simon | | | | | | | | | | | | | 71.65 215 | | | | |
|