This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 1898.46 2599.97 199.33 9799.92 199.96 2698.44 10597.96 799.55 4699.94 497.18 21100.00 193.81 19299.94 5499.98 48
MSC_two_6792asdad99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 3999.80 298.41 128100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 4599.80 299.96 2699.80 5197.44 14100.00 1100.00 199.98 32100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1998.64 6698.47 299.13 7599.92 1396.38 30100.00 199.74 26100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 998.69 5898.20 399.93 199.98 296.82 23100.00 199.75 24100.00 199.99 23
test_0728_SECOND99.82 799.94 1399.47 799.95 4398.43 113100.00 199.99 5100.00 1100.00 1
HY-MVS92.50 797.79 6997.17 8299.63 1598.98 11299.32 897.49 31299.52 1495.69 6898.32 11197.41 21493.32 9899.77 11498.08 10095.75 18999.81 88
DVP-MVS++99.26 699.09 999.77 899.91 3999.31 999.95 4398.43 11396.48 4799.80 1599.93 1197.44 14100.00 199.92 1299.98 32100.00 1
IU-MVS99.93 2499.31 998.41 12897.71 999.84 10100.00 1100.00 1100.00 1
test_one_060199.94 1399.30 1198.41 12896.63 4499.75 2699.93 1197.49 10
SED-MVS99.28 599.11 799.77 899.93 2499.30 1199.96 2698.43 11397.27 2399.80 1599.94 496.71 24100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2499.30 1198.43 11397.26 2599.80 1599.88 2196.71 24100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2499.29 1499.95 4398.32 15097.28 2199.83 1199.91 1497.22 19100.00 199.99 5100.00 199.89 79
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2499.29 1499.96 2698.42 12497.28 2199.86 599.94 497.22 19
WTY-MVS98.10 5597.60 6899.60 2098.92 11999.28 1699.89 8399.52 1495.58 7198.24 11699.39 11193.33 9799.74 12097.98 10695.58 19299.78 94
test_part299.89 4599.25 1799.49 53
DPE-MVScopyleft99.26 699.10 899.74 1099.89 4599.24 1899.87 8898.44 10597.48 1799.64 3699.94 496.68 2699.99 3699.99 5100.00 199.99 23
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS96.60 11395.56 13599.72 1296.85 23199.22 1998.31 29298.94 3791.57 20990.90 22599.61 9386.66 19899.96 5497.36 12399.88 6899.99 23
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1998.62 7098.02 699.90 299.95 397.33 17100.00 199.54 32100.00 1100.00 1
CANet98.27 4697.82 6299.63 1599.72 7499.10 2199.98 998.51 9397.00 3198.52 10199.71 7887.80 18699.95 6199.75 2499.38 10499.83 86
MG-MVS98.91 1698.65 1899.68 1499.94 1399.07 2299.64 16099.44 1997.33 2099.00 8099.72 7694.03 8299.98 4298.73 70100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1599.63 1599.90 4299.02 2399.95 4398.56 7897.56 1599.44 5699.85 3095.38 46100.00 199.31 4199.99 2199.87 82
PAPM98.60 2698.42 2699.14 5596.05 25098.96 2499.90 7699.35 2496.68 4398.35 11099.66 8996.45 2998.51 18699.45 3699.89 6699.96 61
canonicalmvs97.09 9496.32 10699.39 3898.93 11798.95 2599.72 14697.35 24694.45 10197.88 12499.42 10786.71 19799.52 13798.48 8293.97 20999.72 101
TEST999.92 3198.92 2699.96 2698.43 11393.90 13499.71 3099.86 2695.88 3799.85 95
train_agg98.88 1798.65 1899.59 2199.92 3198.92 2699.96 2698.43 11394.35 10899.71 3099.86 2695.94 3499.85 9599.69 3199.98 3299.99 23
PS-MVSNAJ98.44 3798.20 4099.16 5198.80 12898.92 2699.54 17598.17 16997.34 1999.85 799.85 3091.20 14399.89 8399.41 3999.67 8598.69 201
test_899.92 3198.88 2999.96 2698.43 11394.35 10899.69 3299.85 3095.94 3499.85 95
SMA-MVScopyleft98.76 2098.48 2499.62 1899.87 5198.87 3099.86 10098.38 13993.19 15499.77 2499.94 495.54 42100.00 199.74 2699.99 21100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42099.01 1399.03 1098.95 7299.38 9598.87 3098.46 28499.42 2197.03 3099.02 7999.09 13299.35 198.21 21899.73 2899.78 7999.77 95
DeepC-MVS_fast96.59 198.81 1998.54 2299.62 1899.90 4298.85 3299.24 21598.47 9998.14 499.08 7699.91 1493.09 106100.00 199.04 5199.99 21100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20096.96 9696.21 10899.22 4298.97 11398.84 3399.85 10399.71 693.17 15596.26 16198.88 15889.87 16599.51 13894.26 18394.91 19999.31 167
tfpn200view996.79 10395.99 11399.19 4598.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.27 172
thres40096.78 10495.99 11399.16 5198.94 11598.82 3499.78 12499.71 692.86 16096.02 16698.87 16189.33 17199.50 14093.84 18994.57 20099.16 179
save fliter99.82 5898.79 3699.96 2698.40 13297.66 11
thres600view796.69 11095.87 12899.14 5598.90 12298.78 3799.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.44 20194.50 20399.16 179
thres100view90096.74 10795.92 12599.18 4698.90 12298.77 3899.74 13899.71 692.59 17895.84 16998.86 16389.25 17399.50 14093.84 18994.57 20099.27 172
agg_prior99.93 2498.77 3898.43 11399.63 3799.85 95
PAPR98.52 3198.16 4399.58 2299.97 398.77 3899.95 4398.43 11395.35 7798.03 11999.75 6794.03 8299.98 4298.11 9799.83 7299.99 23
APDe-MVS99.06 1198.91 1499.51 2799.94 1398.76 4199.91 7198.39 13597.20 2799.46 5499.85 3095.53 4499.79 10999.86 17100.00 199.99 23
SD-MVS98.92 1598.70 1799.56 2399.70 7698.73 4299.94 5898.34 14796.38 5299.81 1399.76 6294.59 6399.98 4299.84 1899.96 4699.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.65 2498.36 3399.49 3099.94 1398.73 4299.87 8898.33 14893.97 12999.76 2599.87 2494.99 5799.75 11898.55 80100.00 199.98 48
DP-MVS Recon98.41 3998.02 5199.56 2399.97 398.70 4499.92 6798.44 10592.06 19698.40 10899.84 4195.68 40100.00 198.19 9299.71 8399.97 55
SF-MVS98.67 2398.40 2799.50 2899.77 6598.67 4599.90 7698.21 16493.53 14499.81 1399.89 1994.70 6299.86 9499.84 1899.93 6099.96 61
TSAR-MVS + MP.98.93 1498.77 1699.41 3699.74 6998.67 4599.77 12798.38 13996.73 4199.88 499.74 7294.89 5999.59 13599.80 2199.98 3299.97 55
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v2_base98.23 5197.97 5399.02 6698.69 13398.66 4799.52 17798.08 18097.05 2999.86 599.86 2690.65 15599.71 12499.39 4098.63 12498.69 201
alignmvs97.81 6797.33 7699.25 4198.77 13098.66 4799.99 398.44 10594.40 10798.41 10699.47 10393.65 9299.42 14898.57 7994.26 20599.67 107
DELS-MVS98.54 2998.22 3899.50 2899.15 10398.65 49100.00 198.58 7497.70 1098.21 11799.24 12492.58 11999.94 6998.63 7899.94 5499.92 76
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+91.53 1196.31 12495.24 14399.52 2696.88 23098.64 5099.72 14698.24 16195.27 8088.42 27698.98 14382.76 22999.94 6997.10 13199.83 7299.96 61
ACMMP_NAP98.49 3398.14 4499.54 2599.66 7898.62 5199.85 10398.37 14294.68 9699.53 4999.83 4392.87 111100.00 198.66 7599.84 7199.99 23
ZD-MVS99.92 3198.57 5298.52 9092.34 18899.31 6699.83 4395.06 5299.80 10799.70 3099.97 42
test1299.43 3399.74 6998.56 5398.40 13299.65 3594.76 6099.75 11899.98 3299.99 23
131496.84 10195.96 11999.48 3296.74 23898.52 5498.31 29298.86 4795.82 6489.91 23798.98 14387.49 18999.96 5497.80 11199.73 8299.96 61
APD-MVScopyleft98.62 2598.35 3499.41 3699.90 4298.51 5599.87 8898.36 14394.08 12199.74 2799.73 7494.08 8099.74 12099.42 3899.99 2199.99 23
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior99.43 3399.94 1398.49 5698.65 6499.80 10799.99 23
MSLP-MVS++99.13 899.01 1199.49 3099.94 1398.46 5799.98 998.86 4797.10 2899.80 1599.94 495.92 36100.00 199.51 33100.00 1100.00 1
MP-MVS-pluss98.07 5697.64 6699.38 3999.74 6998.41 5899.74 13898.18 16893.35 14896.45 15599.85 3092.64 11799.97 5198.91 5999.89 6699.77 95
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
新几何199.42 3599.75 6898.27 5998.63 6992.69 17199.55 4699.82 4694.40 67100.00 191.21 22799.94 5499.99 23
xiu_mvs_v1_base_debu97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
xiu_mvs_v1_base97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
xiu_mvs_v1_base_debi97.43 7897.06 8398.55 9497.74 18598.14 6099.31 20697.86 20196.43 4999.62 3999.69 8285.56 20799.68 12899.05 4898.31 13197.83 211
baseline195.78 13994.86 15598.54 9798.47 14598.07 6399.06 23397.99 18592.68 17294.13 19398.62 17593.28 10198.69 17893.79 19485.76 26798.84 194
test_prior498.05 6499.94 58
sss97.57 7597.03 8799.18 4698.37 14998.04 6599.73 14399.38 2293.46 14698.76 9199.06 13491.21 14299.89 8396.33 14497.01 16599.62 118
GG-mvs-BLEND98.54 9798.21 15898.01 6693.87 35098.52 9097.92 12297.92 20499.02 297.94 23498.17 9399.58 9399.67 107
ET-MVSNet_ETH3D94.37 17793.28 19497.64 14098.30 15197.99 6799.99 397.61 21994.35 10871.57 35899.45 10696.23 3195.34 33296.91 13985.14 27499.59 124
test_yl97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
DCV-MVSNet97.83 6497.37 7499.21 4399.18 10097.98 6899.64 16099.27 2691.43 21597.88 12498.99 14195.84 3899.84 10298.82 6495.32 19699.79 91
gg-mvs-nofinetune93.51 19891.86 22398.47 10297.72 19097.96 7092.62 35498.51 9374.70 35697.33 13569.59 36998.91 397.79 23797.77 11699.56 9499.67 107
MTAPA98.29 4597.96 5699.30 4099.85 5497.93 7199.39 19698.28 15795.76 6697.18 13899.88 2192.74 115100.00 198.67 7399.88 6899.99 23
114514_t97.41 8396.83 9199.14 5599.51 8997.83 7299.89 8398.27 15988.48 27199.06 7799.66 8990.30 16099.64 13496.32 14599.97 4299.96 61
VNet97.21 9096.57 10099.13 5998.97 11397.82 7399.03 24099.21 2894.31 11199.18 7498.88 15886.26 20399.89 8398.93 5694.32 20499.69 104
MVSTER95.53 14895.22 14496.45 18098.56 13797.72 7499.91 7197.67 21292.38 18791.39 21997.14 22197.24 1897.30 25794.80 17087.85 25294.34 252
SteuartSystems-ACMMP99.02 1298.97 1399.18 4698.72 13297.71 7599.98 998.44 10596.85 3499.80 1599.91 1497.57 899.85 9599.44 3799.99 2199.99 23
Skip Steuart: Steuart Systems R&D Blog.
QAPM95.40 15194.17 16899.10 6096.92 22597.71 7599.40 19298.68 6089.31 25088.94 26498.89 15782.48 23099.96 5493.12 20899.83 7299.62 118
MVSFormer96.94 9796.60 9897.95 12597.28 21497.70 7799.55 17397.27 25591.17 22199.43 5799.54 9990.92 15096.89 28694.67 17599.62 8899.25 174
lupinMVS97.85 6397.60 6898.62 8797.28 21497.70 7799.99 397.55 22595.50 7599.43 5799.67 8790.92 15098.71 17698.40 8499.62 8899.45 150
FOURS199.92 3197.66 7999.95 4398.36 14395.58 7199.52 51
ZNCC-MVS98.31 4398.03 5099.17 4999.88 4997.59 8099.94 5898.44 10594.31 11198.50 10399.82 4693.06 10799.99 3698.30 9099.99 2199.93 71
GST-MVS98.27 4697.97 5399.17 4999.92 3197.57 8199.93 6498.39 13594.04 12798.80 8799.74 7292.98 108100.00 198.16 9499.76 8099.93 71
CANet_DTU96.76 10596.15 10998.60 8998.78 12997.53 8299.84 10797.63 21497.25 2699.20 7199.64 9181.36 24099.98 4292.77 21298.89 11898.28 204
thisisatest051597.41 8397.02 8898.59 9197.71 19297.52 8399.97 1998.54 8791.83 20297.45 13399.04 13597.50 999.10 15894.75 17296.37 17699.16 179
iter_conf0596.07 13095.95 12196.44 18298.43 14697.52 8399.91 7196.85 29894.16 11792.49 21397.98 20198.20 497.34 25297.26 12688.29 24594.45 242
旧先验199.76 6697.52 8398.64 6699.85 3095.63 4199.94 5499.99 23
XVS98.70 2298.55 2199.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5999.78 5894.34 7299.96 5498.92 5799.95 4999.99 23
X-MVStestdata93.83 18792.06 21799.15 5399.94 1397.50 8699.94 5898.42 12496.22 5799.41 5941.37 37894.34 7299.96 5498.92 5799.95 4999.99 23
OpenMVScopyleft90.15 1594.77 16493.59 18298.33 11196.07 24997.48 8899.56 17198.57 7690.46 23586.51 29998.95 15278.57 26699.94 6993.86 18899.74 8197.57 218
3Dnovator91.47 1296.28 12795.34 14099.08 6196.82 23397.47 8999.45 18998.81 5095.52 7489.39 25199.00 14081.97 23399.95 6197.27 12599.83 7299.84 85
HFP-MVS98.56 2898.37 3199.14 5599.96 897.43 9099.95 4398.61 7194.77 9199.31 6699.85 3094.22 76100.00 198.70 7199.98 3299.98 48
FMVSNet392.69 21791.58 22695.99 19398.29 15297.42 9199.26 21497.62 21689.80 24789.68 24395.32 28881.62 23896.27 31287.01 28785.65 26894.29 254
test22299.55 8597.41 9299.34 20298.55 8491.86 20199.27 7099.83 4393.84 8899.95 4999.99 23
jason97.24 8896.86 9098.38 11095.73 26397.32 9399.97 1997.40 24395.34 7898.60 10099.54 9987.70 18798.56 18397.94 10799.47 9999.25 174
jason: jason.
MSP-MVS99.09 999.12 598.98 6999.93 2497.24 9499.95 4398.42 12497.50 1699.52 5199.88 2197.43 1699.71 12499.50 3499.98 32100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test96.46 11795.74 13098.61 8898.18 16197.23 9599.31 20697.15 26591.07 22598.84 8597.05 22788.17 18598.97 16194.39 17997.50 15199.61 121
nrg03093.51 19892.53 20996.45 18094.36 28897.20 9699.81 11797.16 26491.60 20889.86 23997.46 21286.37 20197.68 24195.88 15280.31 31294.46 237
region2R98.54 2998.37 3199.05 6299.96 897.18 9799.96 2698.55 8494.87 8999.45 5599.85 3094.07 81100.00 198.67 73100.00 199.98 48
ACMMPR98.50 3298.32 3599.05 6299.96 897.18 9799.95 4398.60 7294.77 9199.31 6699.84 4193.73 90100.00 198.70 7199.98 3299.98 48
MVS_111021_HR98.72 2198.62 2099.01 6799.36 9697.18 9799.93 6499.90 196.81 3998.67 9599.77 6093.92 8499.89 8399.27 4399.94 5499.96 61
MP-MVScopyleft98.23 5197.97 5399.03 6499.94 1397.17 10099.95 4398.39 13594.70 9598.26 11599.81 5091.84 137100.00 198.85 6399.97 4299.93 71
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 3998.21 3999.03 6499.86 5397.10 10199.98 998.80 5290.78 23299.62 3999.78 5895.30 47100.00 199.80 2199.93 6099.99 23
SR-MVS98.46 3598.30 3798.93 7399.88 4997.04 10299.84 10798.35 14594.92 8799.32 6599.80 5193.35 9699.78 11199.30 4299.95 4999.96 61
iter_conf_final96.01 13395.93 12396.28 18798.38 14897.03 10399.87 8897.03 27894.05 12692.61 21197.98 20198.01 597.34 25297.02 13388.39 24494.47 236
PGM-MVS98.34 4298.13 4598.99 6899.92 3197.00 10499.75 13599.50 1793.90 13499.37 6399.76 6293.24 103100.00 197.75 11899.96 4699.98 48
原ACMM198.96 7199.73 7296.99 10598.51 9394.06 12499.62 3999.85 3094.97 5899.96 5495.11 15999.95 4999.92 76
PVSNet_BlendedMVS96.05 13195.82 12996.72 17399.59 8196.99 10599.95 4399.10 2994.06 12498.27 11395.80 26389.00 17899.95 6199.12 4687.53 25893.24 316
PVSNet_Blended97.94 5897.64 6698.83 7799.59 8196.99 105100.00 199.10 2995.38 7698.27 11399.08 13389.00 17899.95 6199.12 4699.25 10999.57 131
mPP-MVS98.39 4198.20 4098.97 7099.97 396.92 10899.95 4398.38 13995.04 8398.61 9999.80 5193.39 95100.00 198.64 76100.00 199.98 48
test250697.53 7697.19 8098.58 9298.66 13596.90 10998.81 26399.77 594.93 8597.95 12198.96 14792.51 12199.20 15294.93 16498.15 13699.64 113
CNLPA97.76 7197.38 7398.92 7499.53 8696.84 11099.87 8898.14 17693.78 13796.55 15399.69 8292.28 12799.98 4297.13 12999.44 10299.93 71
FIs94.10 18393.43 18796.11 19194.70 28396.82 11199.58 16798.93 4192.54 18189.34 25397.31 21787.62 18897.10 27194.22 18586.58 26394.40 244
EPNet98.49 3398.40 2798.77 7999.62 8096.80 11299.90 7699.51 1697.60 1299.20 7199.36 11493.71 9199.91 7797.99 10498.71 12399.61 121
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053097.10 9296.72 9598.22 11597.60 19696.70 11399.92 6798.54 8791.11 22497.07 14098.97 14597.47 1299.03 15993.73 19796.09 17998.92 189
PVSNet_Blended_VisFu97.27 8796.81 9298.66 8598.81 12796.67 11499.92 6798.64 6694.51 10096.38 15998.49 18289.05 17799.88 8997.10 13198.34 12999.43 153
TSAR-MVS + GP.98.60 2698.51 2398.86 7699.73 7296.63 11599.97 1997.92 19598.07 598.76 9199.55 9795.00 5699.94 6999.91 1597.68 14899.99 23
CP-MVS98.45 3698.32 3598.87 7599.96 896.62 11699.97 1998.39 13594.43 10398.90 8499.87 2494.30 74100.00 199.04 5199.99 2199.99 23
APD-MVS_3200maxsize98.25 4998.08 4998.78 7899.81 6096.60 11799.82 11598.30 15593.95 13199.37 6399.77 6092.84 11299.76 11798.95 5499.92 6399.97 55
EI-MVSNet-Vis-set98.27 4698.11 4798.75 8099.83 5796.59 11899.40 19298.51 9395.29 7998.51 10299.76 6293.60 9499.71 12498.53 8199.52 9699.95 68
ETV-MVS97.92 6097.80 6398.25 11498.14 16496.48 11999.98 997.63 21495.61 7099.29 6999.46 10592.55 12098.82 16699.02 5398.54 12599.46 148
TESTMET0.1,196.74 10796.26 10798.16 11697.36 20796.48 11999.96 2698.29 15691.93 19995.77 17298.07 19695.54 4298.29 21090.55 24398.89 11899.70 102
HPM-MVS_fast97.80 6897.50 7098.68 8399.79 6296.42 12199.88 8598.16 17391.75 20698.94 8299.54 9991.82 13899.65 13397.62 12099.99 2199.99 23
Test_1112_low_res95.72 14094.83 15698.42 10797.79 18296.41 12299.65 15696.65 31192.70 17092.86 20996.13 25792.15 13099.30 14991.88 22193.64 21199.55 133
1112_ss96.01 13395.20 14598.42 10797.80 18196.41 12299.65 15696.66 31092.71 16992.88 20899.40 10992.16 12999.30 14991.92 22093.66 21099.55 133
HPM-MVScopyleft97.96 5797.72 6498.68 8399.84 5696.39 12499.90 7698.17 16992.61 17698.62 9899.57 9691.87 13699.67 13198.87 6299.99 2199.99 23
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.31 4398.17 4298.71 8199.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6793.28 10199.78 11198.90 6099.92 6399.97 55
RE-MVS-def98.13 4599.79 6296.37 12599.76 13298.31 15294.43 10399.40 6199.75 6792.95 10998.90 6099.92 6399.97 55
EI-MVSNet-UG-set98.14 5397.99 5298.60 8999.80 6196.27 12799.36 20198.50 9795.21 8198.30 11299.75 6793.29 10099.73 12398.37 8699.30 10799.81 88
Effi-MVS+96.30 12595.69 13198.16 11697.85 17896.26 12897.41 31397.21 25890.37 23798.65 9798.58 17886.61 19998.70 17797.11 13097.37 15699.52 140
cascas94.64 16993.61 17997.74 13897.82 18096.26 12899.96 2697.78 20785.76 30694.00 19497.54 21076.95 27599.21 15197.23 12795.43 19497.76 215
ab-mvs94.69 16693.42 18898.51 10098.07 16696.26 12896.49 32998.68 6090.31 23994.54 18597.00 22976.30 28299.71 12495.98 15093.38 21499.56 132
MDTV_nov1_ep13_2view96.26 12896.11 33791.89 20098.06 11894.40 6794.30 18299.67 107
UniMVSNet (Re)93.07 20892.13 21495.88 19594.84 28096.24 13299.88 8598.98 3592.49 18589.25 25595.40 28287.09 19497.14 26793.13 20778.16 32394.26 255
FC-MVSNet-test93.81 18993.15 19695.80 19994.30 29096.20 13399.42 19198.89 4392.33 18989.03 26397.27 21987.39 19196.83 29093.20 20386.48 26494.36 248
VPA-MVSNet92.70 21691.55 22896.16 19095.09 27696.20 13398.88 25499.00 3491.02 22791.82 21695.29 29276.05 28697.96 23195.62 15581.19 30094.30 253
diffmvspermissive97.00 9596.64 9798.09 12197.64 19496.17 13599.81 11797.19 25994.67 9798.95 8199.28 11686.43 20098.76 17198.37 8697.42 15499.33 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PAPM_NR98.12 5497.93 5898.70 8299.94 1396.13 13699.82 11598.43 11394.56 9997.52 13099.70 8094.40 6799.98 4297.00 13499.98 3299.99 23
ACMMPcopyleft97.74 7297.44 7298.66 8599.92 3196.13 13699.18 22099.45 1894.84 9096.41 15899.71 7891.40 14099.99 3697.99 10498.03 14399.87 82
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPMVS96.53 11596.01 11298.09 12198.43 14696.12 13896.36 33199.43 2093.53 14497.64 12895.04 29894.41 6698.38 20291.13 22998.11 13999.75 97
PCF-MVS94.20 595.18 15494.10 16998.43 10698.55 13995.99 13997.91 30797.31 25190.35 23889.48 25099.22 12585.19 21299.89 8390.40 24898.47 12799.41 155
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline296.71 10996.49 10297.37 15495.63 27095.96 14099.74 13898.88 4592.94 15991.61 21798.97 14597.72 798.62 18194.83 16998.08 14297.53 219
DeepC-MVS94.51 496.92 9996.40 10598.45 10499.16 10295.90 14199.66 15498.06 18196.37 5594.37 18999.49 10283.29 22799.90 7997.63 11999.61 9199.55 133
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 10096.49 10297.92 12797.48 20295.89 14299.85 10398.54 8790.72 23396.63 15098.93 15697.47 1299.02 16093.03 20995.76 18898.85 193
PVSNet91.05 1397.13 9196.69 9698.45 10499.52 8795.81 14399.95 4399.65 1194.73 9399.04 7899.21 12684.48 21799.95 6194.92 16598.74 12299.58 130
MVS_111021_LR98.42 3898.38 2998.53 9999.39 9495.79 14499.87 8899.86 296.70 4298.78 8899.79 5492.03 13399.90 7999.17 4599.86 7099.88 80
CPTT-MVS97.64 7497.32 7798.58 9299.97 395.77 14599.96 2698.35 14589.90 24598.36 10999.79 5491.18 14699.99 3698.37 8699.99 2199.99 23
NR-MVSNet91.56 24190.22 24995.60 20094.05 29395.76 14698.25 29498.70 5791.16 22380.78 33396.64 24283.23 22896.57 30091.41 22577.73 32794.46 237
mvs_anonymous95.65 14695.03 15197.53 14498.19 16095.74 14799.33 20397.49 23490.87 22990.47 22997.10 22388.23 18497.16 26595.92 15197.66 14999.68 105
FMVSNet291.02 24989.56 26295.41 20797.53 19895.74 14798.98 24397.41 24287.05 28988.43 27495.00 30171.34 31096.24 31485.12 29985.21 27394.25 257
UA-Net96.54 11495.96 11998.27 11398.23 15795.71 14998.00 30598.45 10293.72 14098.41 10699.27 11988.71 18299.66 13291.19 22897.69 14799.44 152
LFMVS94.75 16593.56 18498.30 11299.03 10795.70 15098.74 26897.98 18787.81 28198.47 10499.39 11167.43 32699.53 13698.01 10295.20 19899.67 107
IB-MVS92.85 694.99 15993.94 17398.16 11697.72 19095.69 15199.99 398.81 5094.28 11392.70 21096.90 23195.08 5199.17 15596.07 14873.88 34299.60 123
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DROMVSNet97.38 8597.24 7897.80 13097.41 20495.64 15299.99 397.06 27594.59 9899.63 3799.32 11589.20 17698.14 22098.76 6899.23 11099.62 118
FA-MVS(test-final)95.86 13695.09 14998.15 11997.74 18595.62 15396.31 33398.17 16991.42 21796.26 16196.13 25790.56 15799.47 14692.18 21797.07 16199.35 162
AdaColmapbinary97.23 8996.80 9398.51 10099.99 195.60 15499.09 22698.84 4993.32 15096.74 14899.72 7686.04 204100.00 198.01 10299.43 10399.94 70
VPNet91.81 23390.46 24295.85 19794.74 28295.54 15598.98 24398.59 7392.14 19290.77 22797.44 21368.73 32097.54 24694.89 16877.89 32594.46 237
casdiffmvs_mvgpermissive96.43 11895.94 12297.89 12997.44 20395.47 15699.86 10097.29 25393.35 14896.03 16599.19 12785.39 21098.72 17597.89 11097.04 16399.49 146
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
test-LLR96.47 11696.04 11197.78 13397.02 22295.44 15799.96 2698.21 16494.07 12295.55 17496.38 24893.90 8698.27 21490.42 24698.83 12099.64 113
test-mter96.39 12195.93 12397.78 13397.02 22295.44 15799.96 2698.21 16491.81 20495.55 17496.38 24895.17 4898.27 21490.42 24698.83 12099.64 113
API-MVS97.86 6297.66 6598.47 10299.52 8795.41 15999.47 18698.87 4691.68 20798.84 8599.85 3092.34 12699.99 3698.44 8399.96 46100.00 1
XXY-MVS91.82 23290.46 24295.88 19593.91 29695.40 16098.87 25797.69 21088.63 26987.87 28197.08 22474.38 29997.89 23591.66 22384.07 28394.35 251
testdata98.42 10799.47 9195.33 16198.56 7893.78 13799.79 2299.85 3093.64 9399.94 6994.97 16399.94 54100.00 1
WR-MVS92.31 22591.25 23395.48 20594.45 28795.29 16299.60 16598.68 6090.10 24188.07 27996.89 23280.68 24896.80 29293.14 20679.67 31694.36 248
UniMVSNet_NR-MVSNet92.95 21092.11 21595.49 20294.61 28595.28 16399.83 11399.08 3191.49 21189.21 25896.86 23487.14 19396.73 29493.20 20377.52 32894.46 237
DU-MVS92.46 22291.45 23195.49 20294.05 29395.28 16399.81 11798.74 5492.25 19189.21 25896.64 24281.66 23696.73 29493.20 20377.52 32894.46 237
miper_enhance_ethall94.36 17993.98 17295.49 20298.68 13495.24 16599.73 14397.29 25393.28 15289.86 23995.97 26194.37 7197.05 27492.20 21684.45 27994.19 261
BH-RMVSNet95.18 15494.31 16697.80 13098.17 16295.23 16699.76 13297.53 22992.52 18394.27 19199.25 12376.84 27698.80 16790.89 23799.54 9599.35 162
PatchMatch-RL96.04 13295.40 13797.95 12599.59 8195.22 16799.52 17799.07 3293.96 13096.49 15498.35 19082.28 23199.82 10690.15 25199.22 11198.81 196
CS-MVS-test97.88 6197.94 5797.70 13999.28 9995.20 16899.98 997.15 26595.53 7399.62 3999.79 5492.08 13298.38 20298.75 6999.28 10899.52 140
baseline96.43 11895.98 11597.76 13697.34 20895.17 16999.51 17997.17 26293.92 13396.90 14399.28 11685.37 21198.64 18097.50 12196.86 16999.46 148
LS3D95.84 13895.11 14898.02 12499.85 5495.10 17098.74 26898.50 9787.22 28893.66 19899.86 2687.45 19099.95 6190.94 23599.81 7899.02 187
casdiffmvspermissive96.42 12095.97 11897.77 13597.30 21294.98 17199.84 10797.09 27293.75 13996.58 15299.26 12285.07 21398.78 16997.77 11697.04 16399.54 136
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
pmmvs492.10 22991.07 23695.18 21592.82 32194.96 17299.48 18596.83 30087.45 28488.66 27096.56 24683.78 22396.83 29089.29 25884.77 27793.75 301
CDS-MVSNet96.34 12296.07 11097.13 16197.37 20694.96 17299.53 17697.91 19691.55 21095.37 17898.32 19195.05 5397.13 26893.80 19395.75 18999.30 169
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet95.33 15394.57 16097.62 14298.55 13994.85 17498.67 27599.32 2595.75 6796.80 14796.27 25272.18 30699.96 5494.58 17799.05 11698.04 209
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS97.53 7697.46 7197.76 13698.04 16894.84 17599.98 997.61 21994.41 10697.90 12399.59 9492.40 12498.87 16498.04 10199.13 11499.59 124
Vis-MVSNet (Re-imp)96.32 12395.98 11597.35 15797.93 17394.82 17699.47 18698.15 17591.83 20295.09 18199.11 13191.37 14197.47 24893.47 20097.43 15299.74 98
IS-MVSNet96.29 12695.90 12697.45 14898.13 16594.80 17799.08 22897.61 21992.02 19895.54 17698.96 14790.64 15698.08 22393.73 19797.41 15599.47 147
MAR-MVS97.43 7897.19 8098.15 11999.47 9194.79 17899.05 23798.76 5392.65 17498.66 9699.82 4688.52 18399.98 4298.12 9699.63 8799.67 107
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft95.54 397.93 5997.89 6198.05 12399.82 5894.77 17999.92 6798.46 10193.93 13297.20 13799.27 11995.44 4599.97 5197.41 12299.51 9899.41 155
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
FE-MVS95.70 14495.01 15297.79 13298.21 15894.57 18095.03 34598.69 5888.90 26297.50 13296.19 25492.60 11899.49 14489.99 25397.94 14599.31 167
Fast-Effi-MVS+95.02 15894.19 16797.52 14597.88 17594.55 18199.97 1997.08 27388.85 26494.47 18897.96 20384.59 21698.41 19489.84 25597.10 16099.59 124
SCA94.69 16693.81 17797.33 15897.10 21794.44 18298.86 25898.32 15093.30 15196.17 16495.59 27276.48 28097.95 23291.06 23197.43 15299.59 124
cl2293.77 19193.25 19595.33 21099.49 9094.43 18399.61 16498.09 17890.38 23689.16 26195.61 27090.56 15797.34 25291.93 21984.45 27994.21 260
CS-MVS97.79 6997.91 5997.43 15099.10 10494.42 18499.99 397.10 27095.07 8299.68 3399.75 6792.95 10998.34 20698.38 8599.14 11399.54 136
PatchmatchNetpermissive95.94 13595.45 13697.39 15397.83 17994.41 18596.05 33898.40 13292.86 16097.09 13995.28 29394.21 7898.07 22589.26 25998.11 13999.70 102
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS94.54 17193.56 18497.49 14797.96 17194.34 18698.71 27197.51 23290.30 24094.51 18798.69 17075.56 28798.77 17092.82 21195.99 18199.35 162
Vis-MVSNetpermissive95.72 14095.15 14797.45 14897.62 19594.28 18799.28 21298.24 16194.27 11596.84 14598.94 15479.39 25998.76 17193.25 20298.49 12699.30 169
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MDTV_nov1_ep1395.69 13197.90 17494.15 18895.98 34098.44 10593.12 15697.98 12095.74 26595.10 5098.58 18290.02 25296.92 167
tfpnnormal89.29 28587.61 29294.34 25194.35 28994.13 18998.95 24798.94 3783.94 32384.47 31595.51 27774.84 29597.39 24977.05 34280.41 31091.48 339
mvsmamba94.10 18393.72 17895.25 21393.57 30194.13 18999.67 15396.45 31993.63 14391.34 22197.77 20686.29 20297.22 26396.65 14288.10 24994.40 244
KD-MVS_2432*160088.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
miper_refine_blended88.00 29486.10 29893.70 27596.91 22694.04 19197.17 31897.12 26884.93 31781.96 32592.41 33692.48 12294.51 34279.23 33052.68 36892.56 326
DP-MVS94.54 17193.42 18897.91 12899.46 9394.04 19198.93 24997.48 23581.15 33890.04 23499.55 9787.02 19599.95 6188.97 26198.11 13999.73 99
TranMVSNet+NR-MVSNet91.68 24090.61 24194.87 22493.69 30093.98 19499.69 14998.65 6491.03 22688.44 27296.83 23880.05 25696.18 31590.26 25076.89 33694.45 242
MSDG94.37 17793.36 19297.40 15298.88 12493.95 19599.37 19997.38 24485.75 30890.80 22699.17 12984.11 22299.88 8986.35 29198.43 12898.36 203
HyFIR lowres test96.66 11296.43 10497.36 15699.05 10693.91 19699.70 14899.80 390.54 23496.26 16198.08 19592.15 13098.23 21796.84 14095.46 19399.93 71
v2v48291.30 24290.07 25595.01 21993.13 31093.79 19799.77 12797.02 27988.05 27789.25 25595.37 28680.73 24797.15 26687.28 28280.04 31594.09 275
ADS-MVSNet94.79 16294.02 17197.11 16397.87 17693.79 19794.24 34698.16 17390.07 24296.43 15694.48 31690.29 16198.19 21987.44 27897.23 15799.36 160
gm-plane-assit96.97 22493.76 19991.47 21398.96 14798.79 16894.92 165
ECVR-MVScopyleft95.66 14595.05 15097.51 14698.66 13593.71 20098.85 26098.45 10294.93 8596.86 14498.96 14775.22 29299.20 15295.34 15698.15 13699.64 113
v114491.09 24889.83 25694.87 22493.25 30993.69 20199.62 16396.98 28486.83 29589.64 24794.99 30280.94 24497.05 27485.08 30081.16 30193.87 294
GA-MVS93.83 18792.84 20096.80 16995.73 26393.57 20299.88 8597.24 25792.57 18092.92 20696.66 24078.73 26597.67 24287.75 27694.06 20899.17 178
miper_ehance_all_eth93.16 20492.60 20594.82 22897.57 19793.56 20399.50 18197.07 27488.75 26588.85 26695.52 27690.97 14996.74 29390.77 23984.45 27994.17 262
GeoE94.36 17993.48 18696.99 16497.29 21393.54 20499.96 2696.72 30888.35 27493.43 19998.94 15482.05 23298.05 22688.12 27396.48 17499.37 159
TAMVS95.85 13795.58 13496.65 17697.07 21893.50 20599.17 22197.82 20591.39 21995.02 18298.01 19792.20 12897.30 25793.75 19695.83 18699.14 182
bld_raw_dy_0_6492.74 21492.03 21894.87 22493.09 31493.46 20699.12 22395.41 34092.84 16390.44 23097.54 21078.08 27097.04 27693.94 18787.77 25494.11 273
V4291.28 24490.12 25494.74 22993.42 30693.46 20699.68 15197.02 27987.36 28589.85 24195.05 29781.31 24197.34 25287.34 28180.07 31493.40 311
v1090.25 26988.82 27794.57 23893.53 30393.43 20899.08 22896.87 29785.00 31687.34 29194.51 31480.93 24597.02 28182.85 31479.23 31793.26 315
EPNet_dtu95.71 14295.39 13896.66 17598.92 11993.41 20999.57 16998.90 4296.19 5997.52 13098.56 18092.65 11697.36 25077.89 33798.33 13099.20 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v890.54 26189.17 27094.66 23293.43 30593.40 21099.20 21896.94 29185.76 30687.56 28594.51 31481.96 23497.19 26484.94 30178.25 32293.38 313
test111195.57 14794.98 15397.37 15498.56 13793.37 21198.86 25898.45 10294.95 8496.63 15098.95 15275.21 29399.11 15795.02 16298.14 13899.64 113
OMC-MVS97.28 8697.23 7997.41 15199.76 6693.36 21299.65 15697.95 19096.03 6197.41 13499.70 8089.61 16799.51 13896.73 14198.25 13599.38 157
tpmrst96.27 12895.98 11597.13 16197.96 17193.15 21396.34 33298.17 16992.07 19498.71 9495.12 29693.91 8598.73 17394.91 16796.62 17099.50 144
v119290.62 26089.25 26994.72 23193.13 31093.07 21499.50 18197.02 27986.33 30089.56 24995.01 29979.22 26097.09 27382.34 31781.16 30194.01 281
CHOSEN 1792x268896.81 10296.53 10197.64 14098.91 12193.07 21499.65 15699.80 395.64 6995.39 17798.86 16384.35 22099.90 7996.98 13599.16 11299.95 68
EPP-MVSNet96.69 11096.60 9896.96 16597.74 18593.05 21699.37 19998.56 7888.75 26595.83 17199.01 13896.01 3298.56 18396.92 13897.20 15999.25 174
mvsany_test197.82 6697.90 6097.55 14398.77 13093.04 21799.80 12197.93 19296.95 3399.61 4599.68 8690.92 15099.83 10499.18 4498.29 13499.80 90
c3_l92.53 22091.87 22294.52 24097.40 20592.99 21899.40 19296.93 29287.86 27988.69 26995.44 28089.95 16496.44 30490.45 24580.69 30994.14 271
anonymousdsp91.79 23890.92 23794.41 24990.76 34392.93 21998.93 24997.17 26289.08 25287.46 28895.30 28978.43 26996.92 28592.38 21488.73 23693.39 312
cl____92.31 22591.58 22694.52 24097.33 21092.77 22099.57 16996.78 30586.97 29387.56 28595.51 27789.43 16996.62 29888.60 26482.44 29194.16 267
v14419290.79 25589.52 26494.59 23693.11 31392.77 22099.56 17196.99 28286.38 29989.82 24294.95 30480.50 25297.10 27183.98 30780.41 31093.90 291
DIV-MVS_self_test92.32 22491.60 22594.47 24497.31 21192.74 22299.58 16796.75 30686.99 29287.64 28395.54 27489.55 16896.50 30288.58 26582.44 29194.17 262
IterMVS-LS92.69 21792.11 21594.43 24896.80 23492.74 22299.45 18996.89 29588.98 25789.65 24695.38 28588.77 18096.34 30890.98 23482.04 29494.22 258
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp95.05 15794.43 16296.91 16697.99 17092.73 22496.29 33497.98 18789.70 24895.93 16894.67 31193.83 8998.45 19186.91 29096.53 17299.54 136
EI-MVSNet93.73 19393.40 19194.74 22996.80 23492.69 22599.06 23397.67 21288.96 25991.39 21999.02 13688.75 18197.30 25791.07 23087.85 25294.22 258
CR-MVSNet93.45 20192.62 20495.94 19496.29 24392.66 22692.01 35796.23 32392.62 17596.94 14193.31 32991.04 14796.03 32279.23 33095.96 18299.13 183
RPMNet89.76 27887.28 29497.19 16096.29 24392.66 22692.01 35798.31 15270.19 36296.94 14185.87 36187.25 19299.78 11162.69 36495.96 18299.13 183
VDDNet93.12 20691.91 22196.76 17196.67 24192.65 22898.69 27398.21 16482.81 33297.75 12799.28 11661.57 34599.48 14598.09 9994.09 20798.15 206
WR-MVS_H91.30 24290.35 24594.15 25494.17 29292.62 22999.17 22198.94 3788.87 26386.48 30194.46 31884.36 21896.61 29988.19 27078.51 32193.21 317
CostFormer96.10 12995.88 12796.78 17097.03 22192.55 23097.08 32197.83 20490.04 24498.72 9394.89 30595.01 5598.29 21096.54 14395.77 18799.50 144
v192192090.46 26289.12 27194.50 24292.96 31892.46 23199.49 18396.98 28486.10 30289.61 24895.30 28978.55 26797.03 27982.17 31880.89 30894.01 281
test_djsdf92.83 21292.29 21394.47 24491.90 33292.46 23199.55 17397.27 25591.17 22189.96 23596.07 26081.10 24296.89 28694.67 17588.91 23194.05 278
CP-MVSNet91.23 24690.22 24994.26 25293.96 29592.39 23399.09 22698.57 7688.95 26086.42 30296.57 24579.19 26196.37 30690.29 24978.95 31894.02 279
BH-w/o95.71 14295.38 13996.68 17498.49 14492.28 23499.84 10797.50 23392.12 19392.06 21598.79 16784.69 21598.67 17995.29 15899.66 8699.09 185
v124090.20 27088.79 27894.44 24693.05 31692.27 23599.38 19796.92 29385.89 30489.36 25294.87 30677.89 27197.03 27980.66 32581.08 30494.01 281
PS-MVSNAJss93.64 19693.31 19394.61 23492.11 32992.19 23699.12 22397.38 24492.51 18488.45 27196.99 23091.20 14397.29 26094.36 18087.71 25594.36 248
test0.0.03 193.86 18693.61 17994.64 23395.02 27992.18 23799.93 6498.58 7494.07 12287.96 28098.50 18193.90 8694.96 33781.33 32293.17 21596.78 222
PMMVS96.76 10596.76 9496.76 17198.28 15492.10 23899.91 7197.98 18794.12 11999.53 4999.39 11186.93 19698.73 17396.95 13797.73 14699.45 150
GBi-Net90.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
test190.88 25289.82 25794.08 25797.53 19891.97 23998.43 28696.95 28787.05 28989.68 24394.72 30771.34 31096.11 31787.01 28785.65 26894.17 262
FMVSNet188.50 29086.64 29694.08 25795.62 27191.97 23998.43 28696.95 28783.00 33086.08 30794.72 30759.09 34996.11 31781.82 32184.07 28394.17 262
pm-mvs189.36 28487.81 29194.01 26193.40 30791.93 24298.62 27896.48 31886.25 30183.86 31896.14 25673.68 30297.04 27686.16 29375.73 34093.04 320
CSCG97.10 9297.04 8697.27 15999.89 4591.92 24399.90 7699.07 3288.67 26795.26 18099.82 4693.17 10599.98 4298.15 9599.47 9999.90 78
HQP5-MVS91.85 244
HQP-MVS94.61 17094.50 16194.92 22395.78 25791.85 24499.87 8897.89 19796.82 3693.37 20098.65 17280.65 24998.39 19897.92 10889.60 22294.53 231
NP-MVS95.77 26091.79 24698.65 172
TAPA-MVS92.12 894.42 17593.60 18196.90 16799.33 9791.78 24799.78 12498.00 18489.89 24694.52 18699.47 10391.97 13499.18 15469.90 35499.52 9699.73 99
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS94.49 17494.36 16394.87 22495.71 26691.74 24899.84 10797.87 19996.38 5293.01 20498.59 17680.47 25398.37 20497.79 11489.55 22594.52 233
plane_prior91.74 24899.86 10096.76 4089.59 224
F-COLMAP96.93 9896.95 8996.87 16899.71 7591.74 24899.85 10397.95 19093.11 15795.72 17399.16 13092.35 12599.94 6995.32 15799.35 10698.92 189
plane_prior695.76 26191.72 25180.47 253
PS-CasMVS90.63 25989.51 26593.99 26393.83 29791.70 25298.98 24398.52 9088.48 27186.15 30696.53 24775.46 28896.31 31088.83 26278.86 32093.95 287
tpm295.47 14995.18 14696.35 18696.91 22691.70 25296.96 32497.93 19288.04 27898.44 10595.40 28293.32 9897.97 22994.00 18695.61 19199.38 157
plane_prior391.64 25496.63 4493.01 204
MIMVSNet90.30 26788.67 28095.17 21696.45 24291.64 25492.39 35597.15 26585.99 30390.50 22893.19 33166.95 32794.86 33982.01 31993.43 21299.01 188
plane_prior795.71 26691.59 256
tpmvs94.28 18193.57 18396.40 18398.55 13991.50 25795.70 34498.55 8487.47 28392.15 21494.26 32091.42 13998.95 16388.15 27195.85 18598.76 198
tpm cat193.51 19892.52 21096.47 17897.77 18391.47 25896.13 33698.06 18180.98 33992.91 20793.78 32489.66 16698.87 16487.03 28696.39 17599.09 185
h-mvs3394.92 16094.36 16396.59 17798.85 12591.29 25998.93 24998.94 3795.90 6298.77 8998.42 18990.89 15399.77 11497.80 11170.76 34798.72 200
BH-untuned95.18 15494.83 15696.22 18998.36 15091.22 26099.80 12197.32 25090.91 22891.08 22298.67 17183.51 22498.54 18594.23 18499.61 9198.92 189
TransMVSNet (Re)87.25 29785.28 30393.16 28593.56 30291.03 26198.54 28194.05 35683.69 32781.09 33196.16 25575.32 28996.40 30576.69 34368.41 35492.06 333
v14890.70 25689.63 26093.92 26592.97 31790.97 26299.75 13596.89 29587.51 28288.27 27795.01 29981.67 23597.04 27687.40 28077.17 33393.75 301
jajsoiax91.92 23191.18 23494.15 25491.35 33890.95 26399.00 24297.42 24092.61 17687.38 28997.08 22472.46 30597.36 25094.53 17888.77 23594.13 272
PEN-MVS90.19 27189.06 27393.57 27893.06 31590.90 26499.06 23398.47 9988.11 27685.91 30896.30 25176.67 27795.94 32587.07 28476.91 33593.89 292
OPM-MVS93.21 20392.80 20194.44 24693.12 31290.85 26599.77 12797.61 21996.19 5991.56 21898.65 17275.16 29498.47 18793.78 19589.39 22893.99 284
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS94.06 18593.90 17494.55 23996.02 25190.69 26699.98 997.72 20896.62 4691.05 22498.85 16677.21 27298.47 18798.11 9789.51 22794.48 235
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth92.41 22391.93 22093.84 26997.28 21490.68 26798.83 26196.97 28688.57 27089.19 26095.73 26789.24 17596.69 29689.97 25481.55 29794.15 268
Anonymous2023121189.86 27688.44 28394.13 25698.93 11790.68 26798.54 28198.26 16076.28 34986.73 29595.54 27470.60 31497.56 24590.82 23880.27 31394.15 268
Anonymous2024052992.10 22990.65 24096.47 17898.82 12690.61 26998.72 27098.67 6375.54 35393.90 19698.58 17866.23 33099.90 7994.70 17490.67 22198.90 192
mvs_tets91.81 23391.08 23594.00 26291.63 33690.58 27098.67 27597.43 23892.43 18687.37 29097.05 22771.76 30797.32 25694.75 17288.68 23794.11 273
v7n89.65 28088.29 28693.72 27292.22 32890.56 27199.07 23297.10 27085.42 31486.73 29594.72 30780.06 25597.13 26881.14 32378.12 32493.49 309
Patchmatch-test92.65 21991.50 22996.10 19296.85 23190.49 27291.50 35997.19 25982.76 33390.23 23195.59 27295.02 5498.00 22877.41 33996.98 16699.82 87
PVSNet_088.03 1991.80 23690.27 24896.38 18598.27 15590.46 27399.94 5899.61 1293.99 12886.26 30597.39 21671.13 31399.89 8398.77 6767.05 35798.79 197
ppachtmachnet_test89.58 28188.35 28493.25 28492.40 32690.44 27499.33 20396.73 30785.49 31285.90 30995.77 26481.09 24396.00 32476.00 34582.49 29093.30 314
IterMVS90.91 25190.17 25293.12 28696.78 23790.42 27598.89 25297.05 27789.03 25486.49 30095.42 28176.59 27995.02 33587.22 28384.09 28293.93 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet86.22 30183.19 31395.31 21196.71 24090.29 27692.12 35697.33 24962.85 36386.82 29470.37 36869.37 31797.49 24775.12 34697.99 14498.15 206
VDD-MVS93.77 19192.94 19896.27 18898.55 13990.22 27798.77 26797.79 20690.85 23096.82 14699.42 10761.18 34799.77 11498.95 5494.13 20698.82 195
PatchT90.38 26488.75 27995.25 21395.99 25290.16 27891.22 36197.54 22776.80 34897.26 13686.01 36091.88 13596.07 32166.16 36195.91 18499.51 142
LTVRE_ROB88.28 1890.29 26889.05 27494.02 26095.08 27790.15 27997.19 31797.43 23884.91 31983.99 31797.06 22674.00 30198.28 21284.08 30587.71 25593.62 307
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS93.28 20292.60 20595.34 20998.29 15290.09 28099.31 20698.56 7891.80 20596.35 16098.00 19889.38 17098.28 21292.46 21369.22 35297.64 216
RRT_MVS93.14 20592.92 19993.78 27093.31 30890.04 28199.66 15497.69 21092.53 18288.91 26597.76 20784.36 21896.93 28495.10 16086.99 26194.37 247
hse-mvs294.38 17694.08 17095.31 21198.27 15590.02 28299.29 21198.56 7895.90 6298.77 8998.00 19890.89 15398.26 21697.80 11169.20 35397.64 216
IterMVS-SCA-FT90.85 25490.16 25392.93 29096.72 23989.96 28398.89 25296.99 28288.95 26086.63 29795.67 26876.48 28095.00 33687.04 28584.04 28593.84 296
DTE-MVSNet89.40 28388.24 28792.88 29192.66 32389.95 28499.10 22598.22 16387.29 28685.12 31396.22 25376.27 28395.30 33483.56 31175.74 33993.41 310
Baseline_NR-MVSNet90.33 26689.51 26592.81 29292.84 31989.95 28499.77 12793.94 35784.69 32189.04 26295.66 26981.66 23696.52 30190.99 23376.98 33491.97 335
Patchmtry89.70 27988.49 28293.33 28196.24 24689.94 28691.37 36096.23 32378.22 34687.69 28293.31 32991.04 14796.03 32280.18 32982.10 29394.02 279
pmmvs590.17 27289.09 27293.40 28092.10 33089.77 28799.74 13895.58 33785.88 30587.24 29295.74 26573.41 30396.48 30388.54 26683.56 28693.95 287
Anonymous20240521193.10 20791.99 21996.40 18399.10 10489.65 28898.88 25497.93 19283.71 32694.00 19498.75 16968.79 31899.88 8995.08 16191.71 22099.68 105
our_test_390.39 26389.48 26793.12 28692.40 32689.57 28999.33 20396.35 32287.84 28085.30 31194.99 30284.14 22196.09 32080.38 32684.56 27893.71 306
D2MVS92.76 21392.59 20893.27 28395.13 27589.54 29099.69 14999.38 2292.26 19087.59 28494.61 31385.05 21497.79 23791.59 22488.01 25092.47 329
XVG-OURS-SEG-HR94.79 16294.70 15995.08 21798.05 16789.19 29199.08 22897.54 22793.66 14194.87 18399.58 9578.78 26499.79 10997.31 12493.40 21396.25 225
XVG-OURS94.82 16194.74 15895.06 21898.00 16989.19 29199.08 22897.55 22594.10 12094.71 18499.62 9280.51 25199.74 12096.04 14993.06 21896.25 225
miper_lstm_enhance91.81 23391.39 23293.06 28997.34 20889.18 29399.38 19796.79 30486.70 29687.47 28795.22 29490.00 16395.86 32688.26 26981.37 29994.15 268
ACMM91.95 1092.88 21192.52 21093.98 26495.75 26289.08 29499.77 12797.52 23193.00 15889.95 23697.99 20076.17 28498.46 19093.63 19988.87 23394.39 246
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo90.93 25090.45 24492.37 29691.25 34088.76 29598.05 30496.17 32587.27 28784.04 31695.30 28978.46 26897.27 26283.78 30999.70 8491.09 340
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
test_vis1_n_192095.44 15095.31 14195.82 19898.50 14388.74 29699.98 997.30 25297.84 899.85 799.19 12766.82 32899.97 5198.82 6499.46 10198.76 198
ACMP92.05 992.74 21492.42 21293.73 27195.91 25588.72 29799.81 11797.53 22994.13 11887.00 29398.23 19274.07 30098.47 18796.22 14788.86 23493.99 284
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test92.96 20992.71 20393.71 27395.43 27288.67 29899.75 13597.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
LGP-MVS_train93.71 27395.43 27288.67 29897.62 21692.81 16490.05 23298.49 18275.24 29098.40 19695.84 15389.12 22994.07 276
ACMH89.72 1790.64 25889.63 26093.66 27795.64 26988.64 30098.55 27997.45 23689.03 25481.62 32897.61 20969.75 31698.41 19489.37 25787.62 25793.92 290
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron85.51 30583.32 31292.10 29990.96 34188.58 30199.20 21896.52 31679.70 34357.12 36892.69 33479.11 26293.86 34877.10 34177.46 33093.86 295
AllTest92.48 22191.64 22495.00 22099.01 10888.43 30298.94 24896.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
TestCases95.00 22099.01 10888.43 30296.82 30286.50 29788.71 26798.47 18674.73 29699.88 8985.39 29796.18 17796.71 223
FMVSNet588.32 29187.47 29390.88 30896.90 22988.39 30497.28 31595.68 33482.60 33484.67 31492.40 33879.83 25791.16 36076.39 34481.51 29893.09 318
YYNet185.50 30683.33 31192.00 30090.89 34288.38 30599.22 21796.55 31579.60 34457.26 36792.72 33279.09 26393.78 34977.25 34077.37 33193.84 296
USDC90.00 27588.96 27593.10 28894.81 28188.16 30698.71 27195.54 33893.66 14183.75 31997.20 22065.58 33298.31 20983.96 30887.49 25992.85 323
UniMVSNet_ETH3D90.06 27488.58 28194.49 24394.67 28488.09 30797.81 30997.57 22483.91 32588.44 27297.41 21457.44 35197.62 24491.41 22588.59 24097.77 214
COLMAP_ROBcopyleft90.47 1492.18 22891.49 23094.25 25399.00 11088.04 30898.42 28996.70 30982.30 33588.43 27499.01 13876.97 27499.85 9586.11 29496.50 17394.86 230
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDA-MVSNet-bldmvs84.09 31481.52 32091.81 30391.32 33988.00 30998.67 27595.92 33080.22 34155.60 36993.32 32868.29 32393.60 35173.76 34776.61 33793.82 298
tt080591.28 24490.18 25194.60 23596.26 24587.55 31098.39 29098.72 5589.00 25689.22 25798.47 18662.98 34198.96 16290.57 24288.00 25197.28 220
JIA-IIPM91.76 23990.70 23994.94 22296.11 24887.51 31193.16 35398.13 17775.79 35297.58 12977.68 36692.84 11297.97 22988.47 26896.54 17199.33 165
tpm93.70 19593.41 19094.58 23795.36 27487.41 31297.01 32296.90 29490.85 23096.72 14994.14 32190.40 15996.84 28990.75 24088.54 24199.51 142
dcpmvs_297.42 8298.09 4895.42 20699.58 8487.24 31399.23 21696.95 28794.28 11398.93 8399.73 7494.39 7099.16 15699.89 1699.82 7699.86 84
pmmvs-eth3d84.03 31581.97 31890.20 31584.15 36187.09 31498.10 30294.73 35183.05 32974.10 35687.77 35565.56 33394.01 34581.08 32469.24 35189.49 354
test_vis1_n93.61 19793.03 19795.35 20895.86 25686.94 31599.87 8896.36 32196.85 3499.54 4898.79 16752.41 35799.83 10498.64 7698.97 11799.29 171
CVMVSNet94.68 16894.94 15493.89 26896.80 23486.92 31699.06 23398.98 3594.45 10194.23 19299.02 13685.60 20695.31 33390.91 23695.39 19599.43 153
patch_mono-298.24 5099.12 595.59 20199.67 7786.91 31799.95 4398.89 4397.60 1299.90 299.76 6296.54 2899.98 4299.94 1199.82 7699.88 80
MVS_030489.28 28688.31 28592.21 29897.05 22086.53 31897.76 31099.57 1385.58 31193.86 19792.71 33351.04 36096.30 31184.49 30392.72 21993.79 299
Fast-Effi-MVS+-dtu93.72 19493.86 17693.29 28297.06 21986.16 31999.80 12196.83 30092.66 17392.58 21297.83 20581.39 23997.67 24289.75 25696.87 16896.05 229
ACMH+89.98 1690.35 26589.54 26392.78 29395.99 25286.12 32098.81 26397.18 26189.38 24983.14 32197.76 20768.42 32298.43 19289.11 26086.05 26693.78 300
ADS-MVSNet293.80 19093.88 17593.55 27997.87 17685.94 32194.24 34696.84 29990.07 24296.43 15694.48 31690.29 16195.37 33187.44 27897.23 15799.36 160
XVG-ACMP-BASELINE91.22 24790.75 23892.63 29493.73 29985.61 32298.52 28397.44 23792.77 16789.90 23896.85 23566.64 32998.39 19892.29 21588.61 23893.89 292
TinyColmap87.87 29686.51 29791.94 30195.05 27885.57 32397.65 31194.08 35584.40 32281.82 32796.85 23562.14 34398.33 20780.25 32886.37 26591.91 336
MS-PatchMatch90.65 25790.30 24791.71 30494.22 29185.50 32498.24 29597.70 20988.67 26786.42 30296.37 25067.82 32498.03 22783.62 31099.62 8891.60 337
ITE_SJBPF92.38 29595.69 26885.14 32595.71 33392.81 16489.33 25498.11 19470.23 31598.42 19385.91 29588.16 24893.59 308
test_040285.58 30383.94 30790.50 31293.81 29885.04 32698.55 27995.20 34676.01 35079.72 33895.13 29564.15 33896.26 31366.04 36286.88 26290.21 348
test_fmvs195.35 15295.68 13394.36 25098.99 11184.98 32799.96 2696.65 31197.60 1299.73 2898.96 14771.58 30999.93 7598.31 8999.37 10598.17 205
testgi89.01 28888.04 28991.90 30293.49 30484.89 32899.73 14395.66 33593.89 13685.14 31298.17 19359.68 34894.66 34177.73 33888.88 23296.16 228
TDRefinement84.76 30982.56 31691.38 30674.58 37284.80 32997.36 31494.56 35384.73 32080.21 33596.12 25963.56 33998.39 19887.92 27463.97 36190.95 343
pmmvs685.69 30283.84 30891.26 30790.00 34984.41 33097.82 30896.15 32675.86 35181.29 33095.39 28461.21 34696.87 28883.52 31273.29 34392.50 328
MIMVSNet182.58 31880.51 32488.78 32686.68 35784.20 33196.65 32795.41 34078.75 34578.59 34192.44 33551.88 35889.76 36365.26 36378.95 31892.38 331
test_fmvs1_n94.25 18294.36 16393.92 26597.68 19383.70 33299.90 7696.57 31497.40 1899.67 3498.88 15861.82 34499.92 7698.23 9199.13 11498.14 208
UnsupCasMVSNet_eth85.52 30483.99 30590.10 31689.36 35183.51 33396.65 32797.99 18589.14 25175.89 35293.83 32363.25 34093.92 34681.92 32067.90 35692.88 322
OpenMVS_ROBcopyleft79.82 2083.77 31681.68 31990.03 31788.30 35482.82 33498.46 28495.22 34573.92 35876.00 35191.29 34255.00 35396.94 28368.40 35788.51 24290.34 346
Anonymous2024052185.15 30883.81 30989.16 32388.32 35382.69 33598.80 26595.74 33279.72 34281.53 32990.99 34365.38 33494.16 34472.69 34981.11 30390.63 345
new_pmnet84.49 31382.92 31589.21 32290.03 34882.60 33696.89 32695.62 33680.59 34075.77 35389.17 34865.04 33694.79 34072.12 35181.02 30590.23 347
Effi-MVS+-dtu94.53 17395.30 14292.22 29797.77 18382.54 33799.59 16697.06 27594.92 8795.29 17995.37 28685.81 20597.89 23594.80 17097.07 16196.23 227
pmmvs380.27 32477.77 32987.76 33280.32 36782.43 33898.23 29691.97 36572.74 36078.75 34087.97 35457.30 35290.99 36170.31 35362.37 36389.87 350
SixPastTwentyTwo88.73 28988.01 29090.88 30891.85 33382.24 33998.22 29795.18 34788.97 25882.26 32496.89 23271.75 30896.67 29784.00 30682.98 28793.72 305
K. test v388.05 29387.24 29590.47 31391.82 33482.23 34098.96 24697.42 24089.05 25376.93 34895.60 27168.49 32195.42 33085.87 29681.01 30693.75 301
UnsupCasMVSNet_bld79.97 32777.03 33188.78 32685.62 35981.98 34193.66 35197.35 24675.51 35470.79 35983.05 36348.70 36194.91 33878.31 33660.29 36689.46 355
EG-PatchMatch MVS85.35 30783.81 30989.99 31890.39 34581.89 34298.21 29896.09 32781.78 33774.73 35493.72 32551.56 35997.12 27079.16 33388.61 23890.96 342
CL-MVSNet_self_test84.50 31283.15 31488.53 32986.00 35881.79 34398.82 26297.35 24685.12 31583.62 32090.91 34576.66 27891.40 35969.53 35560.36 36592.40 330
DeepPCF-MVS95.94 297.71 7398.98 1293.92 26599.63 7981.76 34499.96 2698.56 7899.47 199.19 7399.99 194.16 79100.00 199.92 1299.93 60100.00 1
EGC-MVSNET69.38 32963.76 33986.26 33590.32 34681.66 34596.24 33593.85 3580.99 3793.22 38092.33 33952.44 35692.92 35459.53 36784.90 27584.21 362
OurMVSNet-221017-089.81 27789.48 26790.83 31091.64 33581.21 34698.17 29995.38 34291.48 21285.65 31097.31 21772.66 30497.29 26088.15 27184.83 27693.97 286
LF4IMVS89.25 28788.85 27690.45 31492.81 32281.19 34798.12 30094.79 34991.44 21486.29 30497.11 22265.30 33598.11 22288.53 26785.25 27292.07 332
EU-MVSNet90.14 27390.34 24689.54 32092.55 32481.06 34898.69 27398.04 18391.41 21886.59 29896.84 23780.83 24693.31 35386.20 29281.91 29594.26 255
lessismore_v090.53 31190.58 34480.90 34995.80 33177.01 34795.84 26266.15 33196.95 28283.03 31375.05 34193.74 304
KD-MVS_self_test83.59 31782.06 31788.20 33186.93 35680.70 35097.21 31696.38 32082.87 33182.49 32388.97 34967.63 32592.32 35673.75 34862.30 36491.58 338
test20.0384.72 31183.99 30586.91 33388.19 35580.62 35198.88 25495.94 32988.36 27378.87 33994.62 31268.75 31989.11 36466.52 36075.82 33891.00 341
Anonymous2023120686.32 30085.42 30289.02 32489.11 35280.53 35299.05 23795.28 34385.43 31382.82 32293.92 32274.40 29893.44 35266.99 35981.83 29693.08 319
new-patchmatchnet81.19 32079.34 32786.76 33482.86 36480.36 35397.92 30695.27 34482.09 33672.02 35786.87 35762.81 34290.74 36271.10 35263.08 36289.19 357
LCM-MVSNet-Re92.31 22592.60 20591.43 30597.53 19879.27 35499.02 24191.83 36692.07 19480.31 33494.38 31983.50 22595.48 32997.22 12897.58 15099.54 136
test_vis1_rt86.87 29986.05 30089.34 32196.12 24778.07 35599.87 8883.54 37692.03 19778.21 34389.51 34745.80 36299.91 7796.25 14693.11 21790.03 349
test_fmvs289.47 28289.70 25988.77 32894.54 28675.74 35699.83 11394.70 35294.71 9491.08 22296.82 23954.46 35497.78 23992.87 21088.27 24692.80 324
Patchmatch-RL test86.90 29885.98 30189.67 31984.45 36075.59 35789.71 36492.43 36386.89 29477.83 34590.94 34494.22 7693.63 35087.75 27669.61 34999.79 91
DSMNet-mixed88.28 29288.24 28788.42 33089.64 35075.38 35898.06 30389.86 36985.59 31088.20 27892.14 34076.15 28591.95 35878.46 33596.05 18097.92 210
PM-MVS80.47 32378.88 32885.26 33683.79 36372.22 35995.89 34291.08 36785.71 30976.56 35088.30 35136.64 36693.90 34782.39 31669.57 35089.66 353
mvsany_test382.12 31981.14 32185.06 33781.87 36570.41 36097.09 32092.14 36491.27 22077.84 34488.73 35039.31 36595.49 32890.75 24071.24 34689.29 356
RPSCF91.80 23692.79 20288.83 32598.15 16369.87 36198.11 30196.60 31383.93 32494.33 19099.27 11979.60 25899.46 14791.99 21893.16 21697.18 221
Gipumacopyleft66.95 33665.00 33672.79 34991.52 33767.96 36266.16 37195.15 34847.89 36958.54 36667.99 37129.74 36887.54 36850.20 37177.83 32662.87 371
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method80.79 32279.70 32684.08 33892.83 32067.06 36399.51 17995.42 33954.34 36781.07 33293.53 32644.48 36392.22 35778.90 33477.23 33292.94 321
test_fmvs379.99 32680.17 32579.45 34484.02 36262.83 36499.05 23793.49 36188.29 27580.06 33786.65 35828.09 37088.00 36588.63 26373.27 34487.54 360
ambc83.23 34077.17 37062.61 36587.38 36694.55 35476.72 34986.65 35830.16 36796.36 30784.85 30269.86 34890.73 344
CMPMVSbinary61.59 2184.75 31085.14 30483.57 33990.32 34662.54 36696.98 32397.59 22374.33 35769.95 36096.66 24064.17 33798.32 20887.88 27588.41 24389.84 351
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test_f78.40 32877.59 33080.81 34380.82 36662.48 36796.96 32493.08 36283.44 32874.57 35584.57 36227.95 37192.63 35584.15 30472.79 34587.32 361
PMMVS267.15 33564.15 33876.14 34770.56 37562.07 36893.89 34987.52 37358.09 36460.02 36378.32 36522.38 37484.54 37059.56 36647.03 37081.80 363
test_vis3_rt68.82 33066.69 33575.21 34876.24 37160.41 36996.44 33068.71 38175.13 35550.54 37269.52 37016.42 38096.32 30980.27 32766.92 35868.89 368
APD_test181.15 32180.92 32281.86 34292.45 32559.76 37096.04 33993.61 36073.29 35977.06 34696.64 24244.28 36496.16 31672.35 35082.52 28989.67 352
DeepMVS_CXcopyleft82.92 34195.98 25458.66 37196.01 32892.72 16878.34 34295.51 27758.29 35098.08 22382.57 31585.29 27192.03 334
ANet_high56.10 33852.24 34167.66 35449.27 38056.82 37283.94 36782.02 37770.47 36133.28 37764.54 37217.23 37969.16 37545.59 37323.85 37477.02 367
LCM-MVSNet67.77 33464.73 33776.87 34662.95 37856.25 37389.37 36593.74 35944.53 37061.99 36280.74 36420.42 37786.53 36969.37 35659.50 36787.84 358
MVEpermissive53.74 2251.54 34147.86 34562.60 35559.56 37950.93 37479.41 36977.69 37835.69 37436.27 37661.76 3755.79 38469.63 37437.97 37536.61 37167.24 369
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
testf168.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
APD_test268.38 33266.92 33372.78 35078.80 36850.36 37590.95 36287.35 37455.47 36558.95 36488.14 35220.64 37587.60 36657.28 36864.69 35980.39 364
tmp_tt65.23 33762.94 34072.13 35244.90 38150.03 37781.05 36889.42 37238.45 37148.51 37399.90 1854.09 35578.70 37391.84 22218.26 37587.64 359
E-PMN52.30 34052.18 34252.67 35771.51 37345.40 37893.62 35276.60 37936.01 37343.50 37464.13 37327.11 37267.31 37631.06 37626.06 37245.30 375
N_pmnet80.06 32580.78 32377.89 34591.94 33145.28 37998.80 26556.82 38278.10 34780.08 33693.33 32777.03 27395.76 32768.14 35882.81 28892.64 325
EMVS51.44 34251.22 34452.11 35870.71 37444.97 38094.04 34875.66 38035.34 37542.40 37561.56 37628.93 36965.87 37727.64 37724.73 37345.49 374
FPMVS68.72 33168.72 33268.71 35365.95 37644.27 38195.97 34194.74 35051.13 36853.26 37090.50 34625.11 37383.00 37160.80 36580.97 30778.87 366
PMVScopyleft49.05 2353.75 33951.34 34360.97 35640.80 38234.68 38274.82 37089.62 37137.55 37228.67 37872.12 3677.09 38281.63 37243.17 37468.21 35566.59 370
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 34620.84 34918.99 36165.34 37727.73 38350.43 3727.67 3859.50 3788.01 3796.34 3796.13 38326.24 37823.40 37810.69 3772.99 376
test12337.68 34439.14 34733.31 35919.94 38324.83 38498.36 2919.75 38415.53 37751.31 37187.14 35619.62 37817.74 37947.10 3723.47 37857.36 372
testmvs40.60 34344.45 34629.05 36019.49 38414.11 38599.68 15118.47 38320.74 37664.59 36198.48 18510.95 38117.09 38056.66 37011.01 37655.94 373
test_blank0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.02 3800.00 3850.00 3810.00 3790.00 3790.00 377
uanet_test0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
DCPMVS0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
cdsmvs_eth3d_5k23.43 34531.24 3480.00 3620.00 3850.00 3860.00 37398.09 1780.00 3800.00 38199.67 8783.37 2260.00 3810.00 3790.00 3790.00 377
pcd_1.5k_mvsjas7.60 34810.13 3510.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 38191.20 1430.00 3810.00 3790.00 3790.00 377
sosnet-low-res0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
sosnet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
uncertanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
Regformer0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
ab-mvs-re8.28 34711.04 3500.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 38199.40 1090.00 3850.00 3810.00 3790.00 3790.00 377
uanet0.00 3490.00 3520.00 3620.00 3850.00 3860.00 3730.00 3860.00 3800.00 3810.00 3810.00 3850.00 3810.00 3790.00 3790.00 377
PC_three_145296.96 3299.80 1599.79 5497.49 10100.00 199.99 599.98 32100.00 1
eth-test20.00 385
eth-test0.00 385
test_241102_TWO98.43 11397.27 2399.80 1599.94 497.18 21100.00 1100.00 1100.00 1100.00 1
9.1498.38 2999.87 5199.91 7198.33 14893.22 15399.78 2399.89 1994.57 6499.85 9599.84 1899.97 42
test_0728_THIRD96.48 4799.83 1199.91 1497.87 6100.00 199.92 12100.00 1100.00 1
GSMVS99.59 124
sam_mvs194.72 6199.59 124
sam_mvs94.25 75
MTGPAbinary98.28 157
test_post195.78 34359.23 37793.20 10497.74 24091.06 231
test_post63.35 37494.43 6598.13 221
patchmatchnet-post91.70 34195.12 4997.95 232
MTMP99.87 8896.49 317
test9_res99.71 2999.99 21100.00 1
agg_prior299.48 35100.00 1100.00 1
test_prior299.95 4395.78 6599.73 2899.76 6296.00 3399.78 23100.00 1
旧先验299.46 18894.21 11699.85 799.95 6196.96 136
新几何299.40 192
无先验99.49 18398.71 5693.46 146100.00 194.36 18099.99 23
原ACMM299.90 76
testdata299.99 3690.54 244
segment_acmp96.68 26
testdata199.28 21296.35 56
plane_prior597.87 19998.37 20497.79 11489.55 22594.52 233
plane_prior498.59 176
plane_prior299.84 10796.38 52
plane_prior195.73 263
n20.00 386
nn0.00 386
door-mid89.69 370
test1198.44 105
door90.31 368
HQP-NCC95.78 25799.87 8896.82 3693.37 200
ACMP_Plane95.78 25799.87 8896.82 3693.37 200
BP-MVS97.92 108
HQP4-MVS93.37 20098.39 19894.53 231
HQP3-MVS97.89 19789.60 222
HQP2-MVS80.65 249
ACMMP++_ref87.04 260
ACMMP++88.23 247
Test By Simon92.82 114