This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort by
DPM-MVS98.83 2298.46 3199.97 199.33 11199.92 199.96 2598.44 11197.96 799.55 4899.94 497.18 20100.00 193.81 19899.94 6199.98 55
MSC_two_6792asdad99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
No_MVS99.93 299.91 4499.80 298.41 135100.00 199.96 9100.00 1100.00 1
OPU-MVS99.93 299.89 5099.80 299.96 2599.80 6097.44 13100.00 1100.00 199.98 35100.00 1
MCST-MVS99.32 399.14 499.86 599.97 399.59 599.97 1898.64 6498.47 299.13 8299.92 1396.38 29100.00 199.74 28100.00 1100.00 1
CNVR-MVS99.40 199.26 199.84 699.98 299.51 699.98 1098.69 5698.20 399.93 199.98 296.82 22100.00 199.75 26100.00 199.99 24
test_0728_SECOND99.82 799.94 1499.47 799.95 4398.43 119100.00 199.99 5100.00 1100.00 1
HY-MVS92.50 797.79 8197.17 9699.63 1598.98 12399.32 897.49 31799.52 1495.69 6998.32 11997.41 21993.32 11099.77 11998.08 10795.75 19799.81 102
DVP-MVS++99.26 699.09 899.77 899.91 4499.31 999.95 4398.43 11996.48 4299.80 1699.93 1197.44 13100.00 199.92 1299.98 35100.00 1
IU-MVS99.93 2799.31 998.41 13597.71 899.84 8100.00 1100.00 1100.00 1
test_one_060199.94 1499.30 1198.41 13596.63 3999.75 2799.93 1197.49 9
SED-MVS99.28 599.11 699.77 899.93 2799.30 1199.96 2598.43 11997.27 2099.80 1699.94 496.71 23100.00 1100.00 1100.00 1100.00 1
test_241102_ONE99.93 2799.30 1198.43 11997.26 2299.80 1699.88 2496.71 23100.00 1
DVP-MVScopyleft99.30 499.16 399.73 1199.93 2799.29 1499.95 4398.32 15997.28 1899.83 1099.91 1597.22 18100.00 199.99 5100.00 199.89 94
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test072699.93 2799.29 1499.96 2598.42 13197.28 1899.86 499.94 497.22 18
WTY-MVS98.10 6897.60 7899.60 2098.92 13099.28 1699.89 8699.52 1495.58 7298.24 12499.39 12393.33 10999.74 12997.98 11395.58 20099.78 107
test_part299.89 5099.25 1799.49 55
DPE-MVScopyleft99.26 699.10 799.74 1099.89 5099.24 1899.87 9298.44 11197.48 1599.64 3999.94 496.68 2599.99 4099.99 5100.00 199.99 24
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MVS96.60 12795.56 14699.72 1296.85 24199.22 1998.31 29698.94 3791.57 21590.90 23099.61 10486.66 21099.96 5797.36 13099.88 8099.99 24
NCCC99.37 299.25 299.71 1399.96 899.15 2099.97 1898.62 6898.02 699.90 299.95 397.33 16100.00 199.54 37100.00 1100.00 1
CANet98.27 6097.82 7199.63 1599.72 8899.10 2199.98 1098.51 9897.00 2898.52 10999.71 8987.80 19899.95 6499.75 2699.38 11799.83 100
MG-MVS98.91 1898.65 2199.68 1499.94 1499.07 2299.64 16599.44 1997.33 1799.00 8999.72 8794.03 9399.98 4698.73 79100.00 1100.00 1
HPM-MVS++copyleft99.07 1098.88 1499.63 1599.90 4799.02 2399.95 4398.56 7897.56 1399.44 5899.85 3595.38 48100.00 199.31 4799.99 2299.87 97
PAPM98.60 3498.42 3299.14 6696.05 25898.96 2499.90 7899.35 2496.68 3898.35 11899.66 10096.45 2898.51 19299.45 4199.89 7899.96 74
canonicalmvs97.09 10896.32 12099.39 4698.93 12898.95 2599.72 15097.35 26094.45 10797.88 13399.42 11886.71 20999.52 14698.48 9193.97 21799.72 114
ETH3 D test640098.81 2398.54 2799.59 2199.93 2798.93 2699.93 6698.46 10694.56 10499.84 899.92 1394.32 8399.86 9499.96 999.98 35100.00 1
TEST999.92 3698.92 2799.96 2598.43 11993.90 13799.71 3599.86 3195.88 3799.85 98
train_agg98.88 2098.65 2199.59 2199.92 3698.92 2799.96 2598.43 11994.35 11499.71 3599.86 3195.94 3499.85 9899.69 3599.98 3599.99 24
PS-MVSNAJ98.44 4898.20 5199.16 6298.80 14098.92 2799.54 18098.17 18297.34 1699.85 699.85 3591.20 15699.89 8399.41 4499.67 9998.69 210
test_899.92 3698.88 3099.96 2598.43 11994.35 11499.69 3799.85 3595.94 3499.85 98
SMA-MVScopyleft98.76 2798.48 3099.62 1899.87 5798.87 3199.86 10398.38 14693.19 15899.77 2599.94 495.54 43100.00 199.74 2899.99 22100.00 1
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
CHOSEN 280x42099.01 1399.03 998.95 8699.38 10998.87 3198.46 28999.42 2197.03 2799.02 8699.09 14399.35 198.21 22499.73 3199.78 9299.77 108
DeepC-MVS_fast96.59 198.81 2398.54 2799.62 1899.90 4798.85 3399.24 22198.47 10498.14 499.08 8399.91 1593.09 119100.00 199.04 5899.99 22100.00 1
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
thres20096.96 11096.21 12299.22 5398.97 12498.84 3499.85 10699.71 693.17 15996.26 17198.88 16989.87 17699.51 14794.26 18994.91 20799.31 179
tfpn200view996.79 11795.99 12799.19 5698.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.27 182
thres40096.78 11895.99 12799.16 6298.94 12698.82 3599.78 12899.71 692.86 16496.02 17498.87 17189.33 18299.50 14993.84 19594.57 20899.16 189
xxxxxxxxxxxxxcwj98.98 1598.79 1699.54 2699.82 7098.79 3799.96 2597.52 24297.66 1099.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
save fliter99.82 7098.79 3799.96 2598.40 13997.66 10
thres600view796.69 12495.87 14099.14 6698.90 13398.78 3999.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.44 20894.50 21199.16 189
thres100view90096.74 12195.92 13799.18 5798.90 13398.77 4099.74 14299.71 692.59 18295.84 17798.86 17389.25 18499.50 14993.84 19594.57 20899.27 182
agg_prior198.88 2098.66 2099.54 2699.93 2798.77 4099.96 2598.43 11994.63 10299.63 4099.85 3595.79 4099.85 9899.72 3299.99 2299.99 24
agg_prior99.93 2798.77 4098.43 11999.63 4099.85 98
PAPR98.52 4298.16 5499.58 2399.97 398.77 4099.95 4398.43 11995.35 7798.03 12899.75 8094.03 9399.98 4698.11 10499.83 8599.99 24
APDe-MVS99.06 1198.91 1399.51 3199.94 1498.76 4499.91 7498.39 14297.20 2499.46 5699.85 3595.53 4599.79 11399.86 16100.00 199.99 24
SD-MVS98.92 1798.70 1899.56 2499.70 9098.73 4599.94 6098.34 15696.38 4799.81 1299.76 7594.59 7099.98 4699.84 1799.96 5299.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
CDPH-MVS98.65 3298.36 4399.49 3499.94 1498.73 4599.87 9298.33 15793.97 13299.76 2699.87 2894.99 6199.75 12598.55 89100.00 199.98 55
DP-MVS Recon98.41 5098.02 6299.56 2499.97 398.70 4799.92 7098.44 11192.06 20298.40 11699.84 4895.68 41100.00 198.19 9999.71 9799.97 67
SF-MVS98.67 3198.40 3699.50 3299.77 7898.67 4899.90 7898.21 17693.53 14999.81 1299.89 2194.70 6899.86 9499.84 1799.93 6799.96 74
TSAR-MVS + MP.98.93 1698.77 1799.41 4299.74 8298.67 4899.77 13198.38 14696.73 3699.88 399.74 8494.89 6599.59 14499.80 2299.98 3599.97 67
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
xiu_mvs_v2_base98.23 6497.97 6599.02 8098.69 14498.66 5099.52 18298.08 19397.05 2699.86 499.86 3190.65 16799.71 13399.39 4598.63 13498.69 210
alignmvs97.81 7997.33 8999.25 5298.77 14298.66 5099.99 598.44 11194.40 11398.41 11499.47 11493.65 10399.42 15598.57 8894.26 21399.67 120
DELS-MVS98.54 4098.22 4999.50 3299.15 11698.65 52100.00 198.58 7497.70 998.21 12599.24 13792.58 13199.94 7298.63 8799.94 6199.92 91
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
3Dnovator+91.53 1196.31 13795.24 15399.52 2996.88 24098.64 5399.72 15098.24 17295.27 8088.42 27998.98 15482.76 24099.94 7297.10 13799.83 8599.96 74
ACMMP_NAP98.49 4498.14 5599.54 2699.66 9298.62 5499.85 10698.37 14994.68 9999.53 5099.83 5192.87 123100.00 198.66 8599.84 8499.99 24
ZD-MVS99.92 3698.57 5598.52 9192.34 19399.31 7099.83 5195.06 5599.80 11099.70 3499.97 48
ETH3D-3000-0.198.68 3098.42 3299.47 3799.83 6898.57 5599.90 7898.37 14993.81 14099.81 1299.90 1994.34 7999.86 9499.84 1799.98 3599.97 67
testtj98.89 1998.69 1999.52 2999.94 1498.56 5799.90 7898.55 8495.14 8299.72 3399.84 4895.46 46100.00 199.65 3699.99 2299.99 24
test1299.43 3899.74 8298.56 5798.40 13999.65 3894.76 6699.75 12599.98 3599.99 24
131496.84 11595.96 13499.48 3696.74 24898.52 5998.31 29698.86 4695.82 6189.91 24298.98 15487.49 20199.96 5797.80 11799.73 9599.96 74
APD-MVScopyleft98.62 3398.35 4499.41 4299.90 4798.51 6099.87 9298.36 15194.08 12599.74 2899.73 8694.08 9199.74 12999.42 4399.99 2299.99 24
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
test_prior398.99 1498.84 1599.43 3899.94 1498.49 6199.95 4398.65 6195.78 6399.73 2999.76 7596.00 3299.80 11099.78 24100.00 199.99 24
test_prior99.43 3899.94 1498.49 6198.65 6199.80 11099.99 24
MSLP-MVS++99.13 899.01 1099.49 3499.94 1498.46 6399.98 1098.86 4697.10 2599.80 1699.94 495.92 36100.00 199.51 38100.00 1100.00 1
ETH3D cwj APD-0.1698.40 5298.07 6099.40 4499.59 9598.41 6499.86 10398.24 17292.18 19799.73 2999.87 2893.47 10699.85 9899.74 2899.95 5599.93 85
MP-MVS-pluss98.07 6997.64 7599.38 4799.74 8298.41 6499.74 14298.18 18193.35 15396.45 16599.85 3592.64 13099.97 5598.91 6699.89 7899.77 108
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
Regformer-198.79 2598.60 2499.36 4899.85 6098.34 6699.87 9298.52 9196.05 5699.41 6199.79 6494.93 6399.76 12299.07 5399.90 7699.99 24
RRT_MVS95.23 16294.77 16696.61 19098.28 16298.32 6799.81 11997.41 25592.59 18291.28 22797.76 21395.02 5797.23 26893.65 20587.14 26194.28 260
Regformer-298.78 2698.59 2599.36 4899.85 6098.32 6799.87 9298.52 9196.04 5799.41 6199.79 6494.92 6499.76 12299.05 5499.90 7699.98 55
新几何199.42 4199.75 8198.27 6998.63 6792.69 17599.55 4899.82 5594.40 74100.00 191.21 23299.94 6199.99 24
112198.03 7097.57 8099.40 4499.74 8298.21 7098.31 29698.62 6892.78 17099.53 5099.83 5195.08 53100.00 194.36 18599.92 7199.99 24
xiu_mvs_v1_base_debu97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
xiu_mvs_v1_base_debi97.43 9297.06 9798.55 11097.74 19698.14 7199.31 21297.86 21396.43 4499.62 4399.69 9485.56 21999.68 13799.05 5498.31 14197.83 219
baseline195.78 14994.86 16398.54 11398.47 15598.07 7499.06 23797.99 19892.68 17694.13 20198.62 18593.28 11398.69 18493.79 20085.76 26898.84 204
test_prior498.05 7599.94 60
sss97.57 8897.03 10199.18 5798.37 15798.04 7699.73 14799.38 2293.46 15198.76 9999.06 14591.21 15599.89 8396.33 14897.01 17399.62 132
GG-mvs-BLEND98.54 11398.21 16898.01 7793.87 34998.52 9197.92 13197.92 21199.02 297.94 24098.17 10099.58 10799.67 120
ET-MVSNet_ETH3D94.37 18793.28 20297.64 15498.30 15997.99 7899.99 597.61 23094.35 11471.57 35899.45 11796.23 3095.34 33396.91 14485.14 27599.59 138
test_yl97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
DCV-MVSNet97.83 7797.37 8699.21 5499.18 11397.98 7999.64 16599.27 2691.43 22197.88 13398.99 15295.84 3899.84 10798.82 7295.32 20499.79 104
gg-mvs-nofinetune93.51 20591.86 22998.47 11897.72 20097.96 8192.62 35398.51 9874.70 35697.33 14369.59 36798.91 397.79 24397.77 12299.56 10899.67 120
zzz-MVS98.33 5698.00 6399.30 5099.85 6097.93 8299.80 12498.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
MTAPA98.29 5997.96 6899.30 5099.85 6097.93 8299.39 20298.28 16695.76 6597.18 14699.88 2492.74 127100.00 198.67 8299.88 8099.99 24
114514_t97.41 9696.83 10599.14 6699.51 10397.83 8499.89 8698.27 16988.48 27399.06 8499.66 10090.30 17199.64 14396.32 14999.97 4899.96 74
VNet97.21 10496.57 11499.13 7198.97 12497.82 8599.03 24399.21 2894.31 11799.18 8198.88 16986.26 21499.89 8398.93 6394.32 21299.69 117
MVSTER95.53 15795.22 15496.45 19498.56 14897.72 8699.91 7497.67 22392.38 19291.39 22597.14 22697.24 1797.30 26294.80 17287.85 25494.34 257
SteuartSystems-ACMMP99.02 1298.97 1299.18 5798.72 14397.71 8799.98 1098.44 11196.85 3099.80 1699.91 1597.57 699.85 9899.44 4299.99 2299.99 24
Skip Steuart: Steuart Systems R&D Blog.
QAPM95.40 16094.17 17699.10 7296.92 23597.71 8799.40 19898.68 5789.31 25488.94 26898.89 16782.48 24199.96 5793.12 21599.83 8599.62 132
MVSFormer96.94 11196.60 11297.95 14197.28 22497.70 8999.55 17897.27 26891.17 22599.43 5999.54 11090.92 16396.89 28994.67 17999.62 10299.25 184
lupinMVS97.85 7697.60 7898.62 10397.28 22497.70 8999.99 597.55 23695.50 7599.43 5999.67 9890.92 16398.71 18298.40 9399.62 10299.45 163
FOURS199.92 3697.66 9199.95 4398.36 15195.58 7299.52 53
ZNCC-MVS98.31 5798.03 6199.17 6099.88 5497.59 9299.94 6098.44 11194.31 11798.50 11199.82 5593.06 12099.99 4098.30 9899.99 2299.93 85
GST-MVS98.27 6097.97 6599.17 6099.92 3697.57 9399.93 6698.39 14294.04 13098.80 9599.74 8492.98 121100.00 198.16 10199.76 9399.93 85
Regformer-398.58 3798.41 3499.10 7299.84 6597.57 9399.66 15898.52 9195.79 6299.01 8799.77 7194.40 7499.75 12598.82 7299.83 8599.98 55
CANet_DTU96.76 11996.15 12398.60 10598.78 14197.53 9599.84 11097.63 22597.25 2399.20 7799.64 10281.36 25299.98 4692.77 21898.89 12898.28 213
thisisatest051597.41 9697.02 10298.59 10797.71 20297.52 9699.97 1898.54 8891.83 20797.45 14199.04 14697.50 899.10 16494.75 17596.37 18499.16 189
Regformer-498.56 3898.39 3899.08 7499.84 6597.52 9699.66 15898.52 9195.76 6599.01 8799.77 7194.33 8299.75 12598.80 7599.83 8599.98 55
旧先验199.76 7997.52 9698.64 6499.85 3595.63 4299.94 6199.99 24
XVS98.70 2998.55 2699.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6199.78 6994.34 7999.96 5798.92 6499.95 5599.99 24
X-MVStestdata93.83 19592.06 22499.15 6499.94 1497.50 9999.94 6098.42 13196.22 5299.41 6141.37 37594.34 7999.96 5798.92 6499.95 5599.99 24
OpenMVScopyleft90.15 1594.77 17393.59 19098.33 12796.07 25797.48 10199.56 17698.57 7690.46 23986.51 30398.95 16278.57 27899.94 7293.86 19499.74 9497.57 226
3Dnovator91.47 1296.28 14095.34 15199.08 7496.82 24397.47 10299.45 19498.81 4995.52 7489.39 25699.00 15181.97 24499.95 6497.27 13299.83 8599.84 99
test_part192.15 23590.72 24596.44 19698.87 13697.46 10398.99 24698.26 17085.89 30586.34 30896.34 25681.71 24697.48 25391.06 23678.99 32094.37 252
HFP-MVS98.56 3898.37 4199.14 6699.96 897.43 10499.95 4398.61 7094.77 9499.31 7099.85 3594.22 86100.00 198.70 8099.98 3599.98 55
#test#98.59 3698.41 3499.14 6699.96 897.43 10499.95 4398.61 7095.00 8499.31 7099.85 3594.22 86100.00 198.78 7699.98 3599.98 55
FMVSNet392.69 22391.58 23295.99 20698.29 16097.42 10699.26 22097.62 22789.80 25189.68 24895.32 29281.62 25096.27 31587.01 28985.65 26994.29 259
test22299.55 9997.41 10799.34 20898.55 8491.86 20699.27 7599.83 5193.84 9999.95 5599.99 24
jason97.24 10296.86 10498.38 12695.73 27097.32 10899.97 1897.40 25795.34 7898.60 10899.54 11087.70 19998.56 18997.94 11499.47 11399.25 184
jason: jason.
MSP-MVS99.09 999.12 598.98 8399.93 2797.24 10999.95 4398.42 13197.50 1499.52 5399.88 2497.43 1599.71 13399.50 3999.98 35100.00 1
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MVS_Test96.46 13195.74 14298.61 10498.18 17097.23 11099.31 21297.15 27891.07 22998.84 9397.05 23288.17 19798.97 16894.39 18497.50 16099.61 135
nrg03093.51 20592.53 21596.45 19494.36 29497.20 11199.81 11997.16 27791.60 21489.86 24497.46 21786.37 21397.68 24695.88 15580.31 31494.46 243
region2R98.54 4098.37 4199.05 7699.96 897.18 11299.96 2598.55 8494.87 9299.45 5799.85 3594.07 92100.00 198.67 82100.00 199.98 55
ACMMPR98.50 4398.32 4599.05 7699.96 897.18 11299.95 4398.60 7294.77 9499.31 7099.84 4893.73 101100.00 198.70 8099.98 3599.98 55
MVS_111021_HR98.72 2898.62 2399.01 8199.36 11097.18 11299.93 6699.90 196.81 3498.67 10399.77 7193.92 9599.89 8399.27 4999.94 6199.96 74
MP-MVScopyleft98.23 6497.97 6599.03 7899.94 1497.17 11599.95 4398.39 14294.70 9798.26 12399.81 5991.84 148100.00 198.85 7099.97 4899.93 85
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PHI-MVS98.41 5098.21 5099.03 7899.86 5997.10 11699.98 1098.80 5190.78 23699.62 4399.78 6995.30 49100.00 199.80 2299.93 6799.99 24
SR-MVS98.46 4698.30 4798.93 8799.88 5497.04 11799.84 11098.35 15494.92 8999.32 6999.80 6093.35 10899.78 11599.30 4899.95 5599.96 74
PGM-MVS98.34 5598.13 5698.99 8299.92 3697.00 11899.75 13999.50 1793.90 13799.37 6799.76 7593.24 116100.00 197.75 12499.96 5299.98 55
原ACMM198.96 8599.73 8696.99 11998.51 9894.06 12899.62 4399.85 3594.97 6299.96 5795.11 16299.95 5599.92 91
PVSNet_BlendedMVS96.05 14395.82 14196.72 18699.59 9596.99 11999.95 4399.10 2994.06 12898.27 12195.80 26789.00 18999.95 6499.12 5187.53 25993.24 322
PVSNet_Blended97.94 7297.64 7598.83 9199.59 9596.99 119100.00 199.10 2995.38 7698.27 12199.08 14489.00 18999.95 6499.12 5199.25 12099.57 145
mPP-MVS98.39 5398.20 5198.97 8499.97 396.92 12299.95 4398.38 14695.04 8398.61 10799.80 6093.39 107100.00 198.64 86100.00 199.98 55
test250697.53 8997.19 9398.58 10898.66 14696.90 12398.81 26899.77 594.93 8697.95 13098.96 15892.51 13399.20 15994.93 16698.15 14599.64 126
CNLPA97.76 8297.38 8598.92 8899.53 10096.84 12499.87 9298.14 18893.78 14296.55 16399.69 9492.28 13999.98 4697.13 13599.44 11599.93 85
FIs94.10 19293.43 19596.11 20494.70 29096.82 12599.58 17298.93 4192.54 18689.34 25897.31 22287.62 20097.10 27694.22 19186.58 26494.40 250
EPNet98.49 4498.40 3698.77 9399.62 9496.80 12699.90 7899.51 1697.60 1299.20 7799.36 12693.71 10299.91 7897.99 11198.71 13399.61 135
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
thisisatest053097.10 10696.72 10998.22 13197.60 20596.70 12799.92 7098.54 8891.11 22897.07 14998.97 15697.47 1199.03 16593.73 20396.09 18798.92 199
CS-MVS97.74 8397.61 7798.15 13597.52 21196.69 128100.00 197.11 28294.93 8699.73 2999.41 12091.68 15098.25 22298.84 7199.24 12199.52 154
PVSNet_Blended_VisFu97.27 10196.81 10698.66 10098.81 13996.67 12999.92 7098.64 6494.51 10696.38 16998.49 19289.05 18899.88 8997.10 13798.34 13999.43 166
TSAR-MVS + GP.98.60 3498.51 2998.86 9099.73 8696.63 13099.97 1897.92 20798.07 598.76 9999.55 10895.00 6099.94 7299.91 1597.68 15799.99 24
CP-MVS98.45 4798.32 4598.87 8999.96 896.62 13199.97 1898.39 14294.43 10998.90 9299.87 2894.30 84100.00 199.04 5899.99 2299.99 24
APD-MVS_3200maxsize98.25 6398.08 5998.78 9299.81 7396.60 13299.82 11798.30 16493.95 13499.37 6799.77 7192.84 12499.76 12298.95 6199.92 7199.97 67
EI-MVSNet-Vis-set98.27 6098.11 5898.75 9599.83 6896.59 13399.40 19898.51 9895.29 7998.51 11099.76 7593.60 10599.71 13398.53 9099.52 11099.95 82
test117298.38 5498.25 4898.77 9399.88 5496.56 13499.80 12498.36 15194.68 9999.20 7799.80 6093.28 11399.78 11599.34 4699.92 7199.98 55
ETV-MVS97.92 7497.80 7298.25 13098.14 17396.48 13599.98 1097.63 22595.61 7199.29 7499.46 11692.55 13298.82 17299.02 6098.54 13599.46 161
TESTMET0.1,196.74 12196.26 12198.16 13297.36 21796.48 13599.96 2598.29 16591.93 20495.77 18098.07 20595.54 4398.29 21490.55 24798.89 12899.70 115
HPM-MVS_fast97.80 8097.50 8198.68 9899.79 7596.42 13799.88 8998.16 18591.75 21198.94 9199.54 11091.82 14999.65 14297.62 12699.99 2299.99 24
Test_1112_low_res95.72 15094.83 16498.42 12397.79 19296.41 13899.65 16196.65 32292.70 17492.86 21796.13 26292.15 14299.30 15691.88 22693.64 21999.55 147
1112_ss96.01 14595.20 15598.42 12397.80 19196.41 13899.65 16196.66 32192.71 17392.88 21699.40 12192.16 14199.30 15691.92 22593.66 21899.55 147
HPM-MVScopyleft97.96 7197.72 7398.68 9899.84 6596.39 14099.90 7898.17 18292.61 18098.62 10699.57 10791.87 14799.67 14098.87 6999.99 2299.99 24
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
SR-MVS-dyc-post98.31 5798.17 5398.71 9699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8093.28 11399.78 11598.90 6799.92 7199.97 67
RE-MVS-def98.13 5699.79 7596.37 14199.76 13698.31 16194.43 10999.40 6599.75 8092.95 12298.90 6799.92 7199.97 67
EI-MVSNet-UG-set98.14 6697.99 6498.60 10599.80 7496.27 14399.36 20798.50 10295.21 8198.30 12099.75 8093.29 11299.73 13298.37 9499.30 11999.81 102
Effi-MVS+96.30 13895.69 14398.16 13297.85 18896.26 14497.41 31897.21 27190.37 24198.65 10598.58 18886.61 21198.70 18397.11 13697.37 16599.52 154
cascas94.64 17893.61 18797.74 15297.82 19096.26 14499.96 2597.78 21985.76 30894.00 20297.54 21676.95 28699.21 15897.23 13395.43 20297.76 223
ab-mvs94.69 17593.42 19698.51 11698.07 17596.26 14496.49 33298.68 5790.31 24394.54 19397.00 23476.30 29399.71 13395.98 15393.38 22299.56 146
MDTV_nov1_ep13_2view96.26 14496.11 33891.89 20598.06 12794.40 7494.30 18899.67 120
UniMVSNet (Re)93.07 21492.13 22195.88 20994.84 28796.24 14899.88 8998.98 3592.49 19089.25 26095.40 28687.09 20697.14 27293.13 21478.16 32694.26 261
FC-MVSNet-test93.81 19793.15 20495.80 21294.30 29696.20 14999.42 19798.89 4392.33 19489.03 26797.27 22487.39 20396.83 29393.20 21086.48 26594.36 253
VPA-MVSNet92.70 22291.55 23496.16 20395.09 28396.20 14998.88 25899.00 3491.02 23191.82 22295.29 29676.05 29797.96 23795.62 15881.19 30294.30 258
diffmvs97.00 10996.64 11198.09 13797.64 20396.17 15199.81 11997.19 27294.67 10198.95 9099.28 12886.43 21298.76 17898.37 9497.42 16399.33 177
PAPM_NR98.12 6797.93 6998.70 9799.94 1496.13 15299.82 11798.43 11994.56 10497.52 13999.70 9194.40 7499.98 4697.00 13999.98 3599.99 24
ACMMPcopyleft97.74 8397.44 8398.66 10099.92 3696.13 15299.18 22599.45 1894.84 9396.41 16899.71 8991.40 15299.99 4097.99 11198.03 15399.87 97
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
EPMVS96.53 12996.01 12698.09 13798.43 15696.12 15496.36 33399.43 2093.53 14997.64 13795.04 30294.41 7398.38 20891.13 23498.11 14899.75 110
abl_697.67 8697.34 8898.66 10099.68 9196.11 15599.68 15598.14 18893.80 14199.27 7599.70 9188.65 19499.98 4697.46 12899.72 9699.89 94
RRT_test8_iter0594.58 18094.11 17795.98 20797.88 18496.11 15599.89 8697.45 24891.66 21388.28 28096.71 24496.53 2797.40 25594.73 17783.85 28894.45 248
PCF-MVS94.20 595.18 16394.10 17898.43 12298.55 15095.99 15797.91 31297.31 26590.35 24289.48 25599.22 13885.19 22499.89 8390.40 25298.47 13799.41 168
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
baseline296.71 12396.49 11697.37 16795.63 27795.96 15899.74 14298.88 4492.94 16391.61 22398.97 15697.72 598.62 18794.83 17198.08 15297.53 227
DeepC-MVS94.51 496.92 11396.40 11998.45 12099.16 11595.90 15999.66 15898.06 19496.37 5094.37 19799.49 11383.29 23899.90 7997.63 12599.61 10599.55 147
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
tttt051796.85 11496.49 11697.92 14397.48 21295.89 16099.85 10698.54 8890.72 23796.63 15998.93 16697.47 1199.02 16693.03 21695.76 19698.85 203
PVSNet91.05 1397.13 10596.69 11098.45 12099.52 10195.81 16199.95 4399.65 1194.73 9699.04 8599.21 13984.48 22999.95 6494.92 16798.74 13299.58 144
MVS_111021_LR98.42 4998.38 3998.53 11599.39 10895.79 16299.87 9299.86 296.70 3798.78 9699.79 6492.03 14499.90 7999.17 5099.86 8399.88 96
CPTT-MVS97.64 8797.32 9098.58 10899.97 395.77 16399.96 2598.35 15489.90 24998.36 11799.79 6491.18 15999.99 4098.37 9499.99 2299.99 24
NR-MVSNet91.56 24890.22 25695.60 21394.05 29995.76 16498.25 29998.70 5591.16 22780.78 33896.64 24883.23 23996.57 30491.41 23077.73 33094.46 243
mvs_anonymous95.65 15595.03 16097.53 15798.19 16995.74 16599.33 20997.49 24690.87 23390.47 23597.10 22888.23 19697.16 27095.92 15497.66 15899.68 118
FMVSNet291.02 25589.56 26795.41 21897.53 20795.74 16598.98 24797.41 25587.05 29088.43 27795.00 30571.34 32096.24 31785.12 30185.21 27494.25 263
UA-Net96.54 12895.96 13498.27 12998.23 16795.71 16798.00 31098.45 10893.72 14598.41 11499.27 13188.71 19399.66 14191.19 23397.69 15699.44 165
LFMVS94.75 17493.56 19298.30 12899.03 11995.70 16898.74 27397.98 20087.81 28298.47 11299.39 12367.43 33699.53 14598.01 10995.20 20699.67 120
IB-MVS92.85 694.99 16893.94 18298.16 13297.72 20095.69 16999.99 598.81 4994.28 11992.70 21896.90 23695.08 5399.17 16296.07 15173.88 34599.60 137
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
DROMVSNet97.38 9897.24 9197.80 14597.41 21495.64 17099.99 597.06 28794.59 10399.63 4099.32 12789.20 18798.14 22698.76 7899.23 12299.62 132
AdaColmapbinary97.23 10396.80 10798.51 11699.99 195.60 17199.09 23098.84 4893.32 15496.74 15799.72 8786.04 215100.00 198.01 10999.43 11699.94 84
VPNet91.81 24090.46 24995.85 21194.74 28995.54 17298.98 24798.59 7392.14 19890.77 23297.44 21868.73 33097.54 25194.89 17077.89 32894.46 243
test-LLR96.47 13096.04 12597.78 14797.02 23295.44 17399.96 2598.21 17694.07 12695.55 18296.38 25393.90 9798.27 21990.42 25098.83 13099.64 126
test-mter96.39 13495.93 13697.78 14797.02 23295.44 17399.96 2598.21 17691.81 20995.55 18296.38 25395.17 5098.27 21990.42 25098.83 13099.64 126
API-MVS97.86 7597.66 7498.47 11899.52 10195.41 17599.47 19198.87 4591.68 21298.84 9399.85 3592.34 13899.99 4098.44 9299.96 52100.00 1
XXY-MVS91.82 23990.46 24995.88 20993.91 30295.40 17698.87 26197.69 22288.63 27187.87 28597.08 22974.38 31097.89 24191.66 22884.07 28594.35 256
testdata98.42 12399.47 10595.33 17798.56 7893.78 14299.79 2399.85 3593.64 10499.94 7294.97 16599.94 61100.00 1
WR-MVS92.31 23191.25 23995.48 21794.45 29395.29 17899.60 17098.68 5790.10 24588.07 28396.89 23780.68 26096.80 29593.14 21379.67 31894.36 253
UniMVSNet_NR-MVSNet92.95 21792.11 22295.49 21494.61 29295.28 17999.83 11699.08 3191.49 21789.21 26296.86 23987.14 20596.73 29793.20 21077.52 33194.46 243
DU-MVS92.46 22891.45 23795.49 21494.05 29995.28 17999.81 11998.74 5392.25 19689.21 26296.64 24881.66 24896.73 29793.20 21077.52 33194.46 243
miper_enhance_ethall94.36 18993.98 18195.49 21498.68 14595.24 18199.73 14797.29 26693.28 15689.86 24495.97 26594.37 7897.05 27992.20 22284.45 28094.19 267
BH-RMVSNet95.18 16394.31 17497.80 14598.17 17195.23 18299.76 13697.53 24092.52 18794.27 19999.25 13576.84 28798.80 17390.89 24399.54 10999.35 175
PatchMatch-RL96.04 14495.40 14897.95 14199.59 9595.22 18399.52 18299.07 3293.96 13396.49 16498.35 19982.28 24299.82 10990.15 25599.22 12398.81 206
baseline96.43 13295.98 12997.76 15097.34 21895.17 18499.51 18497.17 27593.92 13696.90 15299.28 12885.37 22298.64 18697.50 12796.86 17799.46 161
LS3D95.84 14895.11 15898.02 14099.85 6095.10 18598.74 27398.50 10287.22 28993.66 20699.86 3187.45 20299.95 6490.94 24199.81 9199.02 197
bset_n11_16_dypcd93.05 21592.30 21995.31 22190.23 35095.05 18699.44 19697.28 26792.51 18890.65 23396.68 24585.30 22396.71 29994.49 18384.14 28394.16 273
casdiffmvs96.42 13395.97 13297.77 14997.30 22294.98 18799.84 11097.09 28493.75 14496.58 16199.26 13485.07 22598.78 17597.77 12297.04 17299.54 151
pmmvs492.10 23691.07 24295.18 22592.82 32494.96 18899.48 19096.83 31187.45 28588.66 27396.56 25183.78 23496.83 29389.29 26184.77 27893.75 307
CDS-MVSNet96.34 13596.07 12497.13 17497.37 21694.96 18899.53 18197.91 20891.55 21695.37 18698.32 20095.05 5697.13 27393.80 19995.75 19799.30 180
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
UGNet95.33 16194.57 16997.62 15698.55 15094.85 19098.67 28099.32 2595.75 6896.80 15696.27 25872.18 31799.96 5794.58 18199.05 12698.04 217
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EIA-MVS97.53 8997.46 8297.76 15098.04 17794.84 19199.98 1097.61 23094.41 11297.90 13299.59 10592.40 13698.87 17098.04 10899.13 12599.59 138
Vis-MVSNet (Re-imp)96.32 13695.98 12997.35 17097.93 18294.82 19299.47 19198.15 18791.83 20795.09 18999.11 14291.37 15397.47 25493.47 20797.43 16199.74 111
IS-MVSNet96.29 13995.90 13897.45 16298.13 17494.80 19399.08 23297.61 23092.02 20395.54 18498.96 15890.64 16898.08 22993.73 20397.41 16499.47 160
MAR-MVS97.43 9297.19 9398.15 13599.47 10594.79 19499.05 24198.76 5292.65 17898.66 10499.82 5588.52 19599.98 4698.12 10399.63 10199.67 120
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PLCcopyleft95.54 397.93 7397.89 7098.05 13999.82 7094.77 19599.92 7098.46 10693.93 13597.20 14599.27 13195.44 4799.97 5597.41 12999.51 11299.41 168
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
DWT-MVSNet_test97.31 9997.19 9397.66 15398.24 16694.67 19698.86 26298.20 18093.60 14898.09 12698.89 16797.51 798.78 17594.04 19297.28 16699.55 147
CS-MVS-test97.44 9197.41 8497.53 15797.46 21394.66 197100.00 197.04 29194.69 9899.72 3399.25 13591.22 15498.29 21498.33 9798.95 12799.64 126
Fast-Effi-MVS+95.02 16794.19 17597.52 15997.88 18494.55 19899.97 1897.08 28588.85 26694.47 19697.96 21084.59 22898.41 20089.84 25897.10 17099.59 138
SCA94.69 17593.81 18697.33 17197.10 22794.44 19998.86 26298.32 15993.30 15596.17 17395.59 27676.48 29197.95 23891.06 23697.43 16199.59 138
cl2293.77 19993.25 20395.33 22099.49 10494.43 20099.61 16998.09 19190.38 24089.16 26595.61 27490.56 16997.34 25991.93 22484.45 28094.21 266
PatchmatchNetpermissive95.94 14695.45 14797.39 16697.83 18994.41 20196.05 33998.40 13992.86 16497.09 14895.28 29794.21 8998.07 23189.26 26298.11 14899.70 115
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
TR-MVS94.54 18193.56 19297.49 16197.96 18094.34 20298.71 27697.51 24490.30 24494.51 19598.69 18075.56 29898.77 17792.82 21795.99 18999.35 175
Vis-MVSNetpermissive95.72 15095.15 15797.45 16297.62 20494.28 20399.28 21898.24 17294.27 12096.84 15498.94 16479.39 27198.76 17893.25 20998.49 13699.30 180
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
MDTV_nov1_ep1395.69 14397.90 18394.15 20495.98 34098.44 11193.12 16097.98 12995.74 26995.10 5298.58 18890.02 25696.92 175
tfpnnormal89.29 29087.61 29794.34 25894.35 29594.13 20598.95 25198.94 3783.94 32584.47 32095.51 28174.84 30697.39 25677.05 34280.41 31291.48 344
KD-MVS_2432*160088.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
miper_refine_blended88.00 29986.10 30393.70 28196.91 23694.04 20697.17 32397.12 28084.93 31981.96 33092.41 34092.48 13494.51 34379.23 33052.68 36592.56 331
DP-MVS94.54 18193.42 19697.91 14499.46 10794.04 20698.93 25397.48 24781.15 33990.04 23999.55 10887.02 20799.95 6488.97 26498.11 14899.73 112
TranMVSNet+NR-MVSNet91.68 24790.61 24894.87 23493.69 30693.98 20999.69 15398.65 6191.03 23088.44 27596.83 24380.05 26896.18 31890.26 25476.89 33994.45 248
MSDG94.37 18793.36 20097.40 16598.88 13593.95 21099.37 20597.38 25885.75 31090.80 23199.17 14084.11 23399.88 8986.35 29398.43 13898.36 212
HyFIR lowres test96.66 12696.43 11897.36 16999.05 11893.91 21199.70 15299.80 390.54 23896.26 17198.08 20492.15 14298.23 22396.84 14595.46 20199.93 85
v2v48291.30 24990.07 26195.01 22993.13 31493.79 21299.77 13197.02 29288.05 27889.25 26095.37 29080.73 25997.15 27187.28 28480.04 31794.09 281
ADS-MVSNet94.79 17194.02 18097.11 17697.87 18693.79 21294.24 34598.16 18590.07 24696.43 16694.48 32090.29 17298.19 22587.44 28097.23 16799.36 173
gm-plane-assit96.97 23493.76 21491.47 21998.96 15898.79 17494.92 167
ECVR-MVScopyleft95.66 15495.05 15997.51 16098.66 14693.71 21598.85 26598.45 10894.93 8696.86 15398.96 15875.22 30399.20 15995.34 15998.15 14599.64 126
v114491.09 25489.83 26294.87 23493.25 31393.69 21699.62 16896.98 29786.83 29689.64 25294.99 30680.94 25697.05 27985.08 30281.16 30393.87 300
GA-MVS93.83 19592.84 20696.80 18295.73 27093.57 21799.88 8997.24 27092.57 18592.92 21496.66 24678.73 27797.67 24787.75 27894.06 21699.17 188
miper_ehance_all_eth93.16 21192.60 21194.82 23797.57 20693.56 21899.50 18697.07 28688.75 26788.85 26995.52 28090.97 16296.74 29690.77 24584.45 28094.17 268
GeoE94.36 18993.48 19496.99 17797.29 22393.54 21999.96 2596.72 31988.35 27693.43 20798.94 16482.05 24398.05 23288.12 27596.48 18299.37 172
TAMVS95.85 14795.58 14596.65 18997.07 22893.50 22099.17 22697.82 21791.39 22495.02 19098.01 20692.20 14097.30 26293.75 20295.83 19499.14 192
V4291.28 25190.12 26094.74 23893.42 31193.46 22199.68 15597.02 29287.36 28689.85 24695.05 30181.31 25397.34 25987.34 28380.07 31693.40 317
v1090.25 27588.82 28294.57 24693.53 30893.43 22299.08 23296.87 30985.00 31887.34 29594.51 31880.93 25797.02 28582.85 31579.23 31993.26 321
EPNet_dtu95.71 15295.39 14996.66 18898.92 13093.41 22399.57 17498.90 4296.19 5497.52 13998.56 19092.65 12997.36 25777.89 33798.33 14099.20 187
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
v890.54 26789.17 27594.66 24193.43 31093.40 22499.20 22396.94 30385.76 30887.56 28994.51 31881.96 24597.19 26984.94 30378.25 32593.38 319
test111195.57 15694.98 16197.37 16798.56 14893.37 22598.86 26298.45 10894.95 8596.63 15998.95 16275.21 30499.11 16395.02 16498.14 14799.64 126
OMC-MVS97.28 10097.23 9297.41 16499.76 7993.36 22699.65 16197.95 20396.03 5897.41 14299.70 9189.61 17899.51 14796.73 14698.25 14499.38 170
tpmrst96.27 14195.98 12997.13 17497.96 18093.15 22796.34 33498.17 18292.07 20098.71 10295.12 30093.91 9698.73 18094.91 16996.62 17899.50 158
v119290.62 26689.25 27494.72 24093.13 31493.07 22899.50 18697.02 29286.33 30189.56 25495.01 30379.22 27297.09 27882.34 31881.16 30394.01 287
CHOSEN 1792x268896.81 11696.53 11597.64 15498.91 13293.07 22899.65 16199.80 395.64 7095.39 18598.86 17384.35 23199.90 7996.98 14099.16 12499.95 82
EPP-MVSNet96.69 12496.60 11296.96 17897.74 19693.05 23099.37 20598.56 7888.75 26795.83 17999.01 14996.01 3198.56 18996.92 14397.20 16999.25 184
c3_l92.53 22691.87 22894.52 24897.40 21592.99 23199.40 19896.93 30487.86 28088.69 27295.44 28489.95 17596.44 30890.45 24980.69 31194.14 278
anonymousdsp91.79 24590.92 24394.41 25790.76 34592.93 23298.93 25397.17 27589.08 25687.46 29295.30 29378.43 28196.92 28892.38 22088.73 24393.39 318
cl____92.31 23191.58 23294.52 24897.33 22092.77 23399.57 17496.78 31686.97 29487.56 28995.51 28189.43 18096.62 30288.60 26682.44 29394.16 273
v14419290.79 26189.52 26994.59 24493.11 31792.77 23399.56 17696.99 29586.38 30089.82 24794.95 30880.50 26497.10 27683.98 30880.41 31293.90 297
DIV-MVS_self_test92.32 23091.60 23194.47 25297.31 22192.74 23599.58 17296.75 31786.99 29387.64 28795.54 27889.55 17996.50 30688.58 26782.44 29394.17 268
IterMVS-LS92.69 22392.11 22294.43 25696.80 24492.74 23599.45 19496.89 30788.98 26089.65 25195.38 28988.77 19196.34 31290.98 24082.04 29694.22 264
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
dp95.05 16694.43 17196.91 17997.99 17992.73 23796.29 33597.98 20089.70 25295.93 17694.67 31593.83 10098.45 19786.91 29296.53 18099.54 151
EI-MVSNet93.73 20193.40 19994.74 23896.80 24492.69 23899.06 23797.67 22388.96 26291.39 22599.02 14788.75 19297.30 26291.07 23587.85 25494.22 264
CR-MVSNet93.45 20892.62 21095.94 20896.29 25392.66 23992.01 35696.23 33092.62 17996.94 15093.31 33391.04 16096.03 32479.23 33095.96 19099.13 193
RPMNet89.76 28487.28 29997.19 17396.29 25392.66 23992.01 35698.31 16170.19 36196.94 15085.87 36087.25 20499.78 11562.69 36395.96 19099.13 193
VDDNet93.12 21291.91 22796.76 18496.67 25192.65 24198.69 27898.21 17682.81 33397.75 13699.28 12861.57 35299.48 15398.09 10694.09 21598.15 215
WR-MVS_H91.30 24990.35 25294.15 26294.17 29892.62 24299.17 22698.94 3788.87 26586.48 30594.46 32284.36 23096.61 30388.19 27278.51 32493.21 323
CostFormer96.10 14295.88 13996.78 18397.03 23192.55 24397.08 32597.83 21690.04 24898.72 10194.89 30995.01 5998.29 21496.54 14795.77 19599.50 158
v192192090.46 26889.12 27694.50 25092.96 32192.46 24499.49 18896.98 29786.10 30389.61 25395.30 29378.55 27997.03 28382.17 31980.89 31094.01 287
test_djsdf92.83 21992.29 22094.47 25291.90 33492.46 24499.55 17897.27 26891.17 22589.96 24096.07 26481.10 25496.89 28994.67 17988.91 23894.05 284
CP-MVSNet91.23 25290.22 25694.26 25993.96 30192.39 24699.09 23098.57 7688.95 26386.42 30696.57 25079.19 27396.37 31090.29 25378.95 32194.02 285
BH-w/o95.71 15295.38 15096.68 18798.49 15492.28 24799.84 11097.50 24592.12 19992.06 22198.79 17784.69 22798.67 18595.29 16199.66 10099.09 195
v124090.20 27688.79 28394.44 25493.05 31992.27 24899.38 20396.92 30585.89 30589.36 25794.87 31077.89 28297.03 28380.66 32681.08 30694.01 287
PS-MVSNAJss93.64 20493.31 20194.61 24392.11 33192.19 24999.12 22897.38 25892.51 18888.45 27496.99 23591.20 15697.29 26594.36 18587.71 25694.36 253
test0.0.03 193.86 19493.61 18794.64 24295.02 28692.18 25099.93 6698.58 7494.07 12687.96 28498.50 19193.90 9794.96 33881.33 32393.17 22396.78 229
PMMVS96.76 11996.76 10896.76 18498.28 16292.10 25199.91 7497.98 20094.12 12399.53 5099.39 12386.93 20898.73 18096.95 14297.73 15599.45 163
GBi-Net90.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
test190.88 25889.82 26394.08 26597.53 20791.97 25298.43 29196.95 30087.05 29089.68 24894.72 31171.34 32096.11 31987.01 28985.65 26994.17 268
FMVSNet188.50 29586.64 30194.08 26595.62 27891.97 25298.43 29196.95 30083.00 33186.08 31294.72 31159.09 35696.11 31981.82 32284.07 28594.17 268
pm-mvs189.36 28987.81 29694.01 26993.40 31291.93 25598.62 28396.48 32786.25 30283.86 32396.14 26173.68 31397.04 28186.16 29575.73 34393.04 326
CSCG97.10 10697.04 10097.27 17299.89 5091.92 25699.90 7899.07 3288.67 26995.26 18899.82 5593.17 11899.98 4698.15 10299.47 11399.90 93
HQP5-MVS91.85 257
HQP-MVS94.61 17994.50 17094.92 23395.78 26491.85 25799.87 9297.89 20996.82 3193.37 20898.65 18280.65 26198.39 20497.92 11589.60 22994.53 238
NP-MVS95.77 26791.79 25998.65 182
TAPA-MVS92.12 894.42 18593.60 18996.90 18099.33 11191.78 26099.78 12898.00 19789.89 25094.52 19499.47 11491.97 14599.18 16169.90 35399.52 11099.73 112
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
HQP_MVS94.49 18494.36 17294.87 23495.71 27391.74 26199.84 11097.87 21196.38 4793.01 21298.59 18680.47 26598.37 20997.79 12089.55 23294.52 240
plane_prior91.74 26199.86 10396.76 3589.59 231
F-COLMAP96.93 11296.95 10396.87 18199.71 8991.74 26199.85 10697.95 20393.11 16195.72 18199.16 14192.35 13799.94 7295.32 16099.35 11898.92 199
plane_prior695.76 26891.72 26480.47 265
PS-CasMVS90.63 26589.51 27093.99 27193.83 30391.70 26598.98 24798.52 9188.48 27386.15 31196.53 25275.46 29996.31 31388.83 26578.86 32393.95 293
tpm295.47 15995.18 15696.35 20096.91 23691.70 26596.96 32897.93 20588.04 27998.44 11395.40 28693.32 11097.97 23594.00 19395.61 19999.38 170
plane_prior391.64 26796.63 3993.01 212
MIMVSNet90.30 27388.67 28595.17 22696.45 25291.64 26792.39 35497.15 27885.99 30490.50 23493.19 33566.95 33794.86 34082.01 32093.43 22099.01 198
plane_prior795.71 27391.59 269
tpmvs94.28 19193.57 19196.40 19798.55 15091.50 27095.70 34498.55 8487.47 28492.15 22094.26 32491.42 15198.95 16988.15 27395.85 19398.76 208
tpm cat193.51 20592.52 21696.47 19297.77 19391.47 27196.13 33798.06 19480.98 34092.91 21593.78 32889.66 17798.87 17087.03 28896.39 18399.09 195
h-mvs3394.92 16994.36 17296.59 19198.85 13791.29 27298.93 25398.94 3795.90 5998.77 9798.42 19890.89 16599.77 11997.80 11770.76 34798.72 209
BH-untuned95.18 16394.83 16496.22 20298.36 15891.22 27399.80 12497.32 26490.91 23291.08 22898.67 18183.51 23598.54 19194.23 19099.61 10598.92 199
TransMVSNet (Re)87.25 30285.28 30793.16 29193.56 30791.03 27498.54 28694.05 36183.69 32981.09 33696.16 26075.32 30096.40 30976.69 34368.41 35492.06 338
v14890.70 26289.63 26593.92 27392.97 32090.97 27599.75 13996.89 30787.51 28388.27 28195.01 30381.67 24797.04 28187.40 28277.17 33693.75 307
jajsoiax91.92 23891.18 24094.15 26291.35 34090.95 27699.00 24597.42 25392.61 18087.38 29397.08 22972.46 31697.36 25794.53 18288.77 24294.13 279
PEN-MVS90.19 27789.06 27893.57 28493.06 31890.90 27799.06 23798.47 10488.11 27785.91 31396.30 25776.67 28895.94 32787.07 28676.91 33893.89 298
OPM-MVS93.21 21092.80 20794.44 25493.12 31690.85 27899.77 13197.61 23096.19 5491.56 22498.65 18275.16 30598.47 19393.78 20189.39 23593.99 290
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
CLD-MVS94.06 19393.90 18394.55 24796.02 25990.69 27999.98 1097.72 22096.62 4191.05 22998.85 17677.21 28398.47 19398.11 10489.51 23494.48 242
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
eth_miper_zixun_eth92.41 22991.93 22693.84 27697.28 22490.68 28098.83 26696.97 29988.57 27289.19 26495.73 27189.24 18696.69 30089.97 25781.55 29994.15 275
Anonymous2023121189.86 28288.44 28894.13 26498.93 12890.68 28098.54 28698.26 17076.28 35086.73 29995.54 27870.60 32497.56 25090.82 24480.27 31594.15 275
Anonymous2024052992.10 23690.65 24796.47 19298.82 13890.61 28298.72 27598.67 6075.54 35493.90 20498.58 18866.23 33999.90 7994.70 17890.67 22898.90 202
mvs_tets91.81 24091.08 24194.00 27091.63 33890.58 28398.67 28097.43 25192.43 19187.37 29497.05 23271.76 31897.32 26194.75 17588.68 24494.11 280
v7n89.65 28688.29 29193.72 27892.22 33090.56 28499.07 23697.10 28385.42 31686.73 29994.72 31180.06 26797.13 27381.14 32478.12 32793.49 315
Patchmatch-test92.65 22591.50 23596.10 20596.85 24190.49 28591.50 35897.19 27282.76 33490.23 23695.59 27695.02 5798.00 23477.41 33996.98 17499.82 101
PVSNet_088.03 1991.80 24390.27 25596.38 19998.27 16490.46 28699.94 6099.61 1293.99 13186.26 31097.39 22171.13 32399.89 8398.77 7767.05 35798.79 207
ppachtmachnet_test89.58 28788.35 28993.25 29092.40 32890.44 28799.33 20996.73 31885.49 31485.90 31495.77 26881.09 25596.00 32676.00 34582.49 29293.30 320
IterMVS90.91 25790.17 25893.12 29296.78 24790.42 28898.89 25697.05 29089.03 25886.49 30495.42 28576.59 29095.02 33687.22 28584.09 28493.93 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MVS-HIRNet86.22 30583.19 31795.31 22196.71 25090.29 28992.12 35597.33 26362.85 36286.82 29870.37 36669.37 32797.49 25275.12 34697.99 15498.15 215
VDD-MVS93.77 19992.94 20596.27 20198.55 15090.22 29098.77 27297.79 21890.85 23496.82 15599.42 11861.18 35499.77 11998.95 6194.13 21498.82 205
PatchT90.38 27088.75 28495.25 22495.99 26090.16 29191.22 36097.54 23876.80 34997.26 14486.01 35991.88 14696.07 32366.16 36095.91 19299.51 156
LTVRE_ROB88.28 1890.29 27489.05 27994.02 26895.08 28490.15 29297.19 32297.43 25184.91 32183.99 32297.06 23174.00 31298.28 21784.08 30687.71 25693.62 313
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
AUN-MVS93.28 20992.60 21195.34 21998.29 16090.09 29399.31 21298.56 7891.80 21096.35 17098.00 20789.38 18198.28 21792.46 21969.22 35297.64 224
hse-mvs294.38 18694.08 17995.31 22198.27 16490.02 29499.29 21798.56 7895.90 5998.77 9798.00 20790.89 16598.26 22197.80 11769.20 35397.64 224
IterMVS-SCA-FT90.85 26090.16 25992.93 29696.72 24989.96 29598.89 25696.99 29588.95 26386.63 30195.67 27276.48 29195.00 33787.04 28784.04 28793.84 302
DTE-MVSNet89.40 28888.24 29292.88 29792.66 32689.95 29699.10 22998.22 17587.29 28785.12 31896.22 25976.27 29495.30 33583.56 31275.74 34293.41 316
Baseline_NR-MVSNet90.33 27289.51 27092.81 29892.84 32289.95 29699.77 13193.94 36284.69 32389.04 26695.66 27381.66 24896.52 30590.99 23976.98 33791.97 340
Patchmtry89.70 28588.49 28793.33 28796.24 25589.94 29891.37 35996.23 33078.22 34787.69 28693.31 33391.04 16096.03 32480.18 32982.10 29594.02 285
pmmvs590.17 27889.09 27793.40 28692.10 33289.77 29999.74 14295.58 34485.88 30787.24 29695.74 26973.41 31496.48 30788.54 26883.56 28993.95 293
Anonymous20240521193.10 21391.99 22596.40 19799.10 11789.65 30098.88 25897.93 20583.71 32894.00 20298.75 17868.79 32899.88 8995.08 16391.71 22799.68 118
our_test_390.39 26989.48 27293.12 29292.40 32889.57 30199.33 20996.35 32987.84 28185.30 31694.99 30684.14 23296.09 32280.38 32784.56 27993.71 312
D2MVS92.76 22092.59 21493.27 28995.13 28289.54 30299.69 15399.38 2292.26 19587.59 28894.61 31785.05 22697.79 24391.59 22988.01 25392.47 334
XVG-OURS-SEG-HR94.79 17194.70 16895.08 22798.05 17689.19 30399.08 23297.54 23893.66 14694.87 19199.58 10678.78 27699.79 11397.31 13193.40 22196.25 232
XVG-OURS94.82 17094.74 16795.06 22898.00 17889.19 30399.08 23297.55 23694.10 12494.71 19299.62 10380.51 26399.74 12996.04 15293.06 22596.25 232
miper_lstm_enhance91.81 24091.39 23893.06 29597.34 21889.18 30599.38 20396.79 31586.70 29787.47 29195.22 29890.00 17495.86 32888.26 27181.37 30194.15 275
ACMM91.95 1092.88 21892.52 21693.98 27295.75 26989.08 30699.77 13197.52 24293.00 16289.95 24197.99 20976.17 29598.46 19693.63 20688.87 24094.39 251
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MVP-Stereo90.93 25690.45 25192.37 30291.25 34288.76 30798.05 30996.17 33287.27 28884.04 32195.30 29378.46 28097.27 26783.78 31099.70 9891.09 345
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
ACMP92.05 992.74 22192.42 21893.73 27795.91 26388.72 30899.81 11997.53 24094.13 12287.00 29798.23 20174.07 31198.47 19396.22 15088.86 24193.99 290
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
LPG-MVS_test92.96 21692.71 20993.71 27995.43 27988.67 30999.75 13997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
LGP-MVS_train93.71 27995.43 27988.67 30997.62 22792.81 16790.05 23798.49 19275.24 30198.40 20295.84 15689.12 23694.07 282
ACMH89.72 1790.64 26489.63 26593.66 28395.64 27688.64 31198.55 28497.45 24889.03 25881.62 33397.61 21569.75 32698.41 20089.37 26087.62 25893.92 296
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
MDA-MVSNet_test_wron85.51 30983.32 31692.10 30590.96 34388.58 31299.20 22396.52 32579.70 34457.12 36692.69 33879.11 27493.86 34977.10 34177.46 33393.86 301
AllTest92.48 22791.64 23095.00 23099.01 12088.43 31398.94 25296.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
TestCases95.00 23099.01 12088.43 31396.82 31386.50 29888.71 27098.47 19674.73 30799.88 8985.39 29996.18 18596.71 230
FMVSNet588.32 29687.47 29890.88 31496.90 23988.39 31597.28 32095.68 34182.60 33584.67 31992.40 34279.83 26991.16 36076.39 34481.51 30093.09 324
YYNet185.50 31083.33 31592.00 30690.89 34488.38 31699.22 22296.55 32479.60 34557.26 36592.72 33679.09 27593.78 35077.25 34077.37 33493.84 302
USDC90.00 28188.96 28093.10 29494.81 28888.16 31798.71 27695.54 34593.66 14683.75 32497.20 22565.58 34198.31 21383.96 30987.49 26092.85 329
UniMVSNet_ETH3D90.06 28088.58 28694.49 25194.67 29188.09 31897.81 31497.57 23583.91 32788.44 27597.41 21957.44 35897.62 24991.41 23088.59 24797.77 222
COLMAP_ROBcopyleft90.47 1492.18 23491.49 23694.25 26099.00 12288.04 31998.42 29496.70 32082.30 33688.43 27799.01 14976.97 28599.85 9886.11 29696.50 18194.86 237
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
MDA-MVSNet-bldmvs84.09 31881.52 32491.81 30991.32 34188.00 32098.67 28095.92 33780.22 34255.60 36793.32 33268.29 33393.60 35273.76 34776.61 34093.82 304
JIA-IIPM91.76 24690.70 24694.94 23296.11 25687.51 32193.16 35298.13 19075.79 35397.58 13877.68 36492.84 12497.97 23588.47 27096.54 17999.33 177
tpm93.70 20393.41 19894.58 24595.36 28187.41 32297.01 32696.90 30690.85 23496.72 15894.14 32590.40 17096.84 29290.75 24688.54 24899.51 156
pmmvs-eth3d84.03 31981.97 32290.20 32184.15 36487.09 32398.10 30794.73 35783.05 33074.10 35687.77 35565.56 34294.01 34681.08 32569.24 35189.49 357
CVMVSNet94.68 17794.94 16293.89 27596.80 24486.92 32499.06 23798.98 3594.45 10794.23 20099.02 14785.60 21895.31 33490.91 24295.39 20399.43 166
MVS_030489.28 29188.31 29092.21 30497.05 23086.53 32597.76 31599.57 1385.58 31393.86 20592.71 33751.04 36596.30 31484.49 30592.72 22693.79 305
Fast-Effi-MVS+-dtu93.72 20293.86 18593.29 28897.06 22986.16 32699.80 12496.83 31192.66 17792.58 21997.83 21281.39 25197.67 24789.75 25996.87 17696.05 236
ACMH+89.98 1690.35 27189.54 26892.78 29995.99 26086.12 32798.81 26897.18 27489.38 25383.14 32697.76 21368.42 33298.43 19889.11 26386.05 26793.78 306
ADS-MVSNet293.80 19893.88 18493.55 28597.87 18685.94 32894.24 34596.84 31090.07 24696.43 16694.48 32090.29 17295.37 33287.44 28097.23 16799.36 173
XVG-ACMP-BASELINE91.22 25390.75 24492.63 30093.73 30585.61 32998.52 28897.44 25092.77 17189.90 24396.85 24066.64 33898.39 20492.29 22188.61 24593.89 298
TinyColmap87.87 30186.51 30291.94 30795.05 28585.57 33097.65 31694.08 36084.40 32481.82 33296.85 24062.14 35198.33 21180.25 32886.37 26691.91 341
MS-PatchMatch90.65 26390.30 25491.71 31094.22 29785.50 33198.24 30097.70 22188.67 26986.42 30696.37 25567.82 33498.03 23383.62 31199.62 10291.60 342
mvs-test195.53 15795.97 13294.20 26197.77 19385.44 33299.95 4397.06 28794.92 8996.58 16198.72 17985.81 21698.98 16794.80 17298.11 14898.18 214
ITE_SJBPF92.38 30195.69 27585.14 33395.71 34092.81 16789.33 25998.11 20370.23 32598.42 19985.91 29788.16 25293.59 314
test_040285.58 30783.94 31190.50 31893.81 30485.04 33498.55 28495.20 35276.01 35179.72 34295.13 29964.15 34796.26 31666.04 36186.88 26390.21 353
testgi89.01 29388.04 29491.90 30893.49 30984.89 33599.73 14795.66 34293.89 13985.14 31798.17 20259.68 35594.66 34277.73 33888.88 23996.16 235
TDRefinement84.76 31382.56 32091.38 31274.58 36984.80 33697.36 31994.56 35884.73 32280.21 34096.12 26363.56 34898.39 20487.92 27663.97 35890.95 348
pmmvs685.69 30683.84 31291.26 31390.00 35284.41 33797.82 31396.15 33375.86 35281.29 33595.39 28861.21 35396.87 29183.52 31373.29 34692.50 333
MIMVSNet182.58 32280.51 32688.78 33186.68 36084.20 33896.65 33095.41 34778.75 34678.59 34592.44 33951.88 36389.76 36365.26 36278.95 32192.38 336
UnsupCasMVSNet_eth85.52 30883.99 30990.10 32289.36 35483.51 33996.65 33097.99 19889.14 25575.89 35393.83 32763.25 34993.92 34781.92 32167.90 35692.88 328
OpenMVS_ROBcopyleft79.82 2083.77 32081.68 32390.03 32388.30 35782.82 34098.46 28995.22 35173.92 35876.00 35291.29 34655.00 36096.94 28768.40 35688.51 24990.34 351
Anonymous2024052185.15 31283.81 31389.16 32888.32 35682.69 34198.80 27095.74 33979.72 34381.53 33490.99 34765.38 34394.16 34572.69 34981.11 30590.63 350
new_pmnet84.49 31782.92 31989.21 32790.03 35182.60 34296.89 32995.62 34380.59 34175.77 35489.17 35165.04 34594.79 34172.12 35081.02 30790.23 352
Effi-MVS+-dtu94.53 18395.30 15292.22 30397.77 19382.54 34399.59 17197.06 28794.92 8995.29 18795.37 29085.81 21697.89 24194.80 17297.07 17196.23 234
pmmvs380.27 32677.77 33087.76 33680.32 36782.43 34498.23 30191.97 36672.74 35978.75 34487.97 35457.30 35990.99 36170.31 35262.37 36089.87 354
SixPastTwentyTwo88.73 29488.01 29590.88 31491.85 33582.24 34598.22 30295.18 35388.97 26182.26 32996.89 23771.75 31996.67 30184.00 30782.98 29093.72 311
K. test v388.05 29887.24 30090.47 31991.82 33682.23 34698.96 25097.42 25389.05 25776.93 34995.60 27568.49 33195.42 33185.87 29881.01 30893.75 307
UnsupCasMVSNet_bld79.97 32877.03 33188.78 33185.62 36281.98 34793.66 35097.35 26075.51 35570.79 35983.05 36148.70 36694.91 33978.31 33660.29 36389.46 358
EG-PatchMatch MVS85.35 31183.81 31389.99 32490.39 34781.89 34898.21 30396.09 33481.78 33874.73 35593.72 32951.56 36497.12 27579.16 33388.61 24590.96 347
CL-MVSNet_self_test84.50 31683.15 31888.53 33386.00 36181.79 34998.82 26797.35 26085.12 31783.62 32590.91 34976.66 28991.40 35969.53 35460.36 36292.40 335
DeepPCF-MVS95.94 297.71 8598.98 1193.92 27399.63 9381.76 35099.96 2598.56 7899.47 199.19 8099.99 194.16 90100.00 199.92 1299.93 67100.00 1
EGC-MVSNET69.38 32963.76 33686.26 33990.32 34881.66 35196.24 33693.85 3630.99 3763.22 37792.33 34352.44 36292.92 35559.53 36684.90 27684.21 362
OurMVSNet-221017-089.81 28389.48 27290.83 31691.64 33781.21 35298.17 30495.38 34891.48 21885.65 31597.31 22272.66 31597.29 26588.15 27384.83 27793.97 292
LF4IMVS89.25 29288.85 28190.45 32092.81 32581.19 35398.12 30594.79 35591.44 22086.29 30997.11 22765.30 34498.11 22888.53 26985.25 27392.07 337
EU-MVSNet90.14 27990.34 25389.54 32692.55 32781.06 35498.69 27898.04 19691.41 22386.59 30296.84 24280.83 25893.31 35486.20 29481.91 29794.26 261
lessismore_v090.53 31790.58 34680.90 35595.80 33877.01 34895.84 26666.15 34096.95 28683.03 31475.05 34493.74 310
KD-MVS_self_test83.59 32182.06 32188.20 33586.93 35980.70 35697.21 32196.38 32882.87 33282.49 32888.97 35267.63 33592.32 35673.75 34862.30 36191.58 343
test20.0384.72 31583.99 30986.91 33788.19 35880.62 35798.88 25895.94 33688.36 27578.87 34394.62 31668.75 32989.11 36466.52 35975.82 34191.00 346
Anonymous2023120686.32 30485.42 30689.02 32989.11 35580.53 35899.05 24195.28 34985.43 31582.82 32793.92 32674.40 30993.44 35366.99 35881.83 29893.08 325
new-patchmatchnet81.19 32379.34 32886.76 33882.86 36680.36 35997.92 31195.27 35082.09 33772.02 35786.87 35762.81 35090.74 36271.10 35163.08 35989.19 359
LCM-MVSNet-Re92.31 23192.60 21191.43 31197.53 20779.27 36099.02 24491.83 36792.07 20080.31 33994.38 32383.50 23695.48 33097.22 13497.58 15999.54 151
Patchmatch-RL test86.90 30385.98 30589.67 32584.45 36375.59 36189.71 36192.43 36586.89 29577.83 34790.94 34894.22 8693.63 35187.75 27869.61 34999.79 104
DSMNet-mixed88.28 29788.24 29288.42 33489.64 35375.38 36298.06 30889.86 37085.59 31288.20 28292.14 34476.15 29691.95 35878.46 33596.05 18897.92 218
PM-MVS80.47 32578.88 32985.26 34083.79 36572.22 36395.89 34291.08 36885.71 31176.56 35188.30 35336.64 36893.90 34882.39 31769.57 35089.66 356
RPSCF91.80 24392.79 20888.83 33098.15 17269.87 36498.11 30696.60 32383.93 32694.33 19899.27 13179.60 27099.46 15491.99 22393.16 22497.18 228
Gipumacopyleft66.95 33365.00 33372.79 34891.52 33967.96 36566.16 36895.15 35447.89 36658.54 36467.99 36829.74 37087.54 36550.20 36877.83 32962.87 368
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
test_method80.79 32479.70 32784.08 34192.83 32367.06 36699.51 18495.42 34654.34 36481.07 33793.53 33044.48 36792.22 35778.90 33477.23 33592.94 327
ambc83.23 34377.17 36862.61 36787.38 36394.55 35976.72 35086.65 35830.16 36996.36 31184.85 30469.86 34890.73 349
CMPMVSbinary61.59 2184.75 31485.14 30883.57 34290.32 34862.54 36896.98 32797.59 23474.33 35769.95 36096.66 24664.17 34698.32 21287.88 27788.41 25089.84 355
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PMMVS267.15 33264.15 33576.14 34770.56 37262.07 36993.89 34887.52 37458.09 36360.02 36378.32 36322.38 37484.54 36759.56 36547.03 36781.80 363
DeepMVS_CXcopyleft82.92 34495.98 26258.66 37096.01 33592.72 17278.34 34695.51 28158.29 35798.08 22982.57 31685.29 27292.03 339
ANet_high56.10 33552.24 33867.66 35149.27 37756.82 37183.94 36482.02 37570.47 36033.28 37464.54 36917.23 37769.16 37245.59 37023.85 37177.02 365
LCM-MVSNet67.77 33164.73 33476.87 34662.95 37556.25 37289.37 36293.74 36444.53 36761.99 36280.74 36220.42 37586.53 36669.37 35559.50 36487.84 360
MVEpermissive53.74 2251.54 33847.86 34262.60 35259.56 37650.93 37379.41 36677.69 37635.69 37136.27 37361.76 3725.79 38169.63 37137.97 37236.61 36867.24 366
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
tmp_tt65.23 33462.94 33772.13 34944.90 37850.03 37481.05 36589.42 37338.45 36848.51 37099.90 1954.09 36178.70 37091.84 22718.26 37287.64 361
E-PMN52.30 33752.18 33952.67 35471.51 37045.40 37593.62 35176.60 37736.01 37043.50 37164.13 37027.11 37267.31 37331.06 37326.06 36945.30 372
N_pmnet80.06 32780.78 32577.89 34591.94 33345.28 37698.80 27056.82 37978.10 34880.08 34193.33 33177.03 28495.76 32968.14 35782.81 29192.64 330
EMVS51.44 33951.22 34152.11 35570.71 37144.97 37794.04 34775.66 37835.34 37242.40 37261.56 37328.93 37165.87 37427.64 37424.73 37045.49 371
FPMVS68.72 33068.72 33268.71 35065.95 37344.27 37895.97 34194.74 35651.13 36553.26 36890.50 35025.11 37383.00 36860.80 36480.97 30978.87 364
PMVScopyleft49.05 2353.75 33651.34 34060.97 35340.80 37934.68 37974.82 36789.62 37237.55 36928.67 37572.12 3657.09 37981.63 36943.17 37168.21 35566.59 367
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
wuyk23d20.37 34320.84 34618.99 35865.34 37427.73 38050.43 3697.67 3829.50 3758.01 3766.34 3766.13 38026.24 37523.40 37510.69 3742.99 373
test12337.68 34139.14 34433.31 35619.94 38024.83 38198.36 2959.75 38115.53 37451.31 36987.14 35619.62 37617.74 37647.10 3693.47 37557.36 369
testmvs40.60 34044.45 34329.05 35719.49 38114.11 38299.68 15518.47 38020.74 37364.59 36198.48 19510.95 37817.09 37756.66 36711.01 37355.94 370
test_blank0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.02 3770.00 3820.00 3780.00 3760.00 3760.00 374
uanet_test0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
cdsmvs_eth3d_5k23.43 34231.24 3450.00 3590.00 3820.00 3830.00 37098.09 1910.00 3770.00 37899.67 9883.37 2370.00 3780.00 3760.00 3760.00 374
pcd_1.5k_mvsjas7.60 34510.13 3480.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 37891.20 1560.00 3780.00 3760.00 3760.00 374
sosnet-low-res0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
sosnet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
uncertanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
Regformer0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
ab-mvs-re8.28 34411.04 3470.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 37899.40 1210.00 3820.00 3780.00 3760.00 3760.00 374
uanet0.00 3460.00 3490.00 3590.00 3820.00 3830.00 3700.00 3830.00 3770.00 3780.00 3780.00 3820.00 3780.00 3760.00 3760.00 374
PC_three_145296.96 2999.80 1699.79 6497.49 9100.00 199.99 599.98 35100.00 1
eth-test20.00 382
eth-test0.00 382
test_241102_TWO98.43 11997.27 2099.80 1699.94 497.18 20100.00 1100.00 1100.00 1100.00 1
9.1498.38 3999.87 5799.91 7498.33 15793.22 15799.78 2499.89 2194.57 7199.85 9899.84 1799.97 48
test_0728_THIRD96.48 4299.83 1099.91 1597.87 4100.00 199.92 12100.00 1100.00 1
GSMVS99.59 138
sam_mvs194.72 6799.59 138
sam_mvs94.25 85
MTGPAbinary98.28 166
test_post195.78 34359.23 37493.20 11797.74 24591.06 236
test_post63.35 37194.43 7298.13 227
patchmatchnet-post91.70 34595.12 5197.95 238
MTMP99.87 9296.49 326
test9_res99.71 3399.99 22100.00 1
agg_prior299.48 40100.00 1100.00 1
test_prior299.95 4395.78 6399.73 2999.76 7596.00 3299.78 24100.00 1
旧先验299.46 19394.21 12199.85 699.95 6496.96 141
新几何299.40 198
无先验99.49 18898.71 5493.46 151100.00 194.36 18599.99 24
原ACMM299.90 78
testdata299.99 4090.54 248
segment_acmp96.68 25
testdata199.28 21896.35 51
plane_prior597.87 21198.37 20997.79 12089.55 23294.52 240
plane_prior498.59 186
plane_prior299.84 11096.38 47
plane_prior195.73 270
n20.00 383
nn0.00 383
door-mid89.69 371
test1198.44 111
door90.31 369
HQP-NCC95.78 26499.87 9296.82 3193.37 208
ACMP_Plane95.78 26499.87 9296.82 3193.37 208
BP-MVS97.92 115
HQP4-MVS93.37 20898.39 20494.53 238
HQP3-MVS97.89 20989.60 229
HQP2-MVS80.65 261
ACMMP++_ref87.04 262
ACMMP++88.23 251
Test By Simon92.82 126