This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_fmvsm_n_192099.84 1599.85 1699.83 3499.82 7399.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
bld_raw_dy_0_6499.70 4099.65 5099.85 2799.95 1599.77 5499.66 5399.71 12599.95 2099.91 4499.77 10898.35 190100.00 199.54 6099.99 1699.79 54
h-mvs3398.61 25398.34 26999.44 19699.60 18398.67 26599.27 14799.44 26099.68 9299.32 25599.49 25792.50 341100.00 199.24 10696.51 39299.65 113
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
DSMNet-mixed99.48 8899.65 5098.95 28999.71 14497.27 34199.50 9199.82 6699.59 11899.41 23799.85 5699.62 31100.00 199.53 6399.89 12599.59 160
HyFIR lowres test98.91 22498.64 23799.73 8999.85 5999.47 14898.07 33099.83 6198.64 24399.89 5499.60 21492.57 338100.00 199.33 9399.97 5699.72 74
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3199.88 4599.64 11199.12 19799.91 3299.98 1499.95 3199.67 16799.67 2799.99 899.94 1699.99 1699.88 25
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4599.66 10299.11 20199.91 3299.98 1499.96 2399.64 17999.60 3499.99 899.95 1299.99 1699.88 25
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
SSC-MVS99.52 8299.42 9999.83 3499.86 5599.65 10899.52 8699.81 7599.87 4299.81 8899.79 9396.78 28199.99 899.83 3299.51 29199.86 32
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1699.99 1699.93 15
test_fmvsmvis_n_192099.84 1599.86 1299.81 4199.88 4599.55 13999.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
SDMVSNet99.77 3099.77 3399.76 6599.80 8799.65 10899.63 6199.86 4899.97 1699.89 5499.89 3499.52 4499.99 899.42 7899.96 7199.65 113
sd_testset99.78 2799.78 3199.80 4699.80 8799.76 6299.80 1099.79 8599.97 1699.89 5499.89 3499.53 4399.99 899.36 8699.96 7199.65 113
test_vis1_n_192099.72 3699.88 699.27 24799.93 2697.84 32299.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
test_fmvs399.83 1999.93 299.53 17599.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
dcpmvs_299.61 6899.64 5499.53 17599.79 9998.82 25399.58 7699.97 1899.95 2099.96 2399.76 11298.44 17899.99 899.34 9099.96 7199.78 57
IterMVS-SCA-FT99.00 21199.16 14698.51 32499.75 12995.90 36898.07 33099.84 5999.84 5499.89 5499.73 12496.01 30499.99 899.33 93100.00 199.63 128
IterMVS98.97 21599.16 14698.42 32899.74 13595.64 37198.06 33299.83 6199.83 5799.85 7399.74 12096.10 30399.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
WB-MVS99.44 10099.32 11799.80 4699.81 8199.61 12499.47 9999.81 7599.82 5999.71 13399.72 13196.60 28599.98 2199.75 3999.23 33199.82 46
test_fmvs1_n99.68 4699.81 2399.28 24499.95 1597.93 32099.49 95100.00 199.82 5999.99 799.89 3499.21 7599.98 2199.97 499.98 4199.93 15
test_fmvs299.72 3699.85 1699.34 22899.91 3298.08 31199.48 96100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
patch_mono-299.51 8399.46 9099.64 12999.70 15299.11 22499.04 21999.87 4599.71 8299.47 21999.79 9398.24 20299.98 2199.38 8199.96 7199.83 40
CHOSEN 280x42098.41 27898.41 26198.40 32999.34 29095.89 36996.94 38599.44 26098.80 22799.25 26899.52 24893.51 33099.98 2198.94 14999.98 4199.32 261
Fast-Effi-MVS+-dtu99.20 16699.12 15699.43 20099.25 31299.69 9599.05 21699.82 6699.50 12498.97 30299.05 34198.98 10499.98 2198.20 19899.24 32998.62 355
Effi-MVS+-dtu99.07 19598.92 21299.52 17798.89 36199.78 4999.15 18599.66 14899.34 15198.92 30999.24 31997.69 24399.98 2198.11 20899.28 32398.81 347
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5399.95 2099.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4899.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4399.92 2899.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
MVSFormer99.41 11099.44 9599.31 23899.57 20298.40 28699.77 1599.80 7999.73 7699.63 16099.30 30398.02 22199.98 2199.43 7399.69 23899.55 175
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7999.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
Vis-MVSNetpermissive99.75 3299.74 3799.79 5299.88 4599.66 10299.69 4299.92 2999.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 4199.72 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
test_cas_vis1_n_192099.76 3199.86 1299.45 19399.93 2698.40 28699.30 13599.98 1199.94 2499.99 799.89 3499.80 1599.97 3499.96 999.97 5699.97 7
test_fmvs199.48 8899.65 5098.97 28799.54 21697.16 34499.11 20199.98 1199.78 7099.96 2399.81 7998.72 13799.97 3499.95 1299.97 5699.79 54
Anonymous2024052199.44 10099.42 9999.49 18299.89 4098.96 24199.62 6399.76 9999.85 5199.82 8199.88 4296.39 29599.97 3499.59 5199.98 4199.55 175
MVS_030499.17 17799.03 18799.59 15399.44 26098.90 24899.04 21995.32 39199.99 299.68 14399.57 23198.30 19799.97 3499.94 1699.98 4199.88 25
xiu_mvs_v1_base_debu99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v2_base99.02 20599.11 15998.77 31399.37 27798.09 30898.13 32299.51 24099.47 13099.42 23198.54 38099.38 5499.97 3498.83 15399.33 31698.24 374
xiu_mvs_v1_base99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base_debi99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5399.70 8799.92 4199.93 1799.45 4799.97 3499.36 86100.00 199.85 35
UA-Net99.78 2799.76 3699.86 2599.72 14199.71 8499.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
PS-MVSNAJ99.00 21199.08 17098.76 31499.37 27798.10 30798.00 33799.51 24099.47 13099.41 23798.50 38299.28 6699.97 3498.83 15399.34 31598.20 378
pmmvs398.08 29997.80 30898.91 29699.41 27097.69 33097.87 35099.66 14895.87 36599.50 21499.51 25090.35 36599.97 3498.55 17699.47 29899.08 317
DTE-MVSNet99.68 4699.61 6099.88 1799.80 8799.87 1599.67 4999.71 12599.72 8099.84 7699.78 10198.67 14399.97 3499.30 9999.95 8499.80 47
jason99.16 17999.11 15999.32 23599.75 12998.44 28398.26 31299.39 27698.70 23999.74 12399.30 30398.54 16299.97 3498.48 17999.82 17999.55 175
jason: jason.
lupinMVS98.96 21898.87 21899.24 25599.57 20298.40 28698.12 32399.18 32298.28 28499.63 16099.13 32998.02 22199.97 3498.22 19699.69 23899.35 254
K. test v398.87 23198.60 24099.69 10599.93 2699.46 15299.74 2494.97 39299.78 7099.88 6299.88 4293.66 32899.97 3499.61 4999.95 8499.64 123
lessismore_v099.64 12999.86 5599.38 17690.66 40099.89 5499.83 6694.56 31899.97 3499.56 5799.92 10699.57 170
EPNet98.13 29697.77 31199.18 26294.57 40197.99 31399.24 15797.96 37199.74 7597.29 38299.62 19793.13 33399.97 3498.59 17499.83 17099.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PVSNet_Blended_VisFu99.40 11299.38 10499.44 19699.90 3898.66 26898.94 24599.91 3297.97 30299.79 9799.73 12499.05 9799.97 3499.15 12199.99 1699.68 90
IterMVS-LS99.41 11099.47 8699.25 25399.81 8198.09 30898.85 25399.76 9999.62 10799.83 8099.64 17998.54 16299.97 3499.15 12199.99 1699.68 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
test_vis1_n99.68 4699.79 2799.36 22599.94 1998.18 30199.52 86100.00 199.86 46100.00 199.88 4298.99 10299.96 5599.97 499.96 7199.95 11
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12599.93 2699.95 3199.89 3499.71 2299.96 5599.51 6599.97 5699.84 36
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6699.84 5499.94 3499.91 2499.13 8699.96 5599.83 3299.99 1699.83 40
RRT_MVS99.67 5299.59 6599.91 299.94 1999.88 1299.78 1299.27 30299.87 4299.91 4499.87 4798.04 21999.96 5599.68 4499.99 1699.90 20
PS-CasMVS99.66 5499.58 6999.89 1199.80 8799.85 1999.66 5399.73 11399.62 10799.84 7699.71 13998.62 14999.96 5599.30 9999.96 7199.86 32
PEN-MVS99.66 5499.59 6599.89 1199.83 6699.87 1599.66 5399.73 11399.70 8799.84 7699.73 12498.56 15999.96 5599.29 10299.94 9599.83 40
TranMVSNet+NR-MVSNet99.54 7999.47 8699.76 6599.58 19299.64 11199.30 13599.63 16599.61 11099.71 13399.56 23598.76 13099.96 5599.14 12799.92 10699.68 90
IB-MVS95.41 2095.30 36194.46 36597.84 34898.76 37495.33 37497.33 37496.07 38796.02 36495.37 39697.41 39776.17 40299.96 5597.54 26195.44 39698.22 375
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
OpenMVScopyleft98.12 1098.23 29297.89 30699.26 25099.19 32499.26 20199.65 5999.69 13791.33 38998.14 36299.77 10898.28 19999.96 5595.41 35999.55 28098.58 359
MM99.55 16998.81 25499.05 21697.79 37599.99 299.48 21799.59 21996.29 29999.95 6499.94 1699.98 4199.88 25
GeoE99.69 4399.66 4899.78 5599.76 11899.76 6299.60 7399.82 6699.46 13399.75 11599.56 23599.63 2999.95 6499.43 7399.88 13499.62 139
CS-MVS99.67 5299.70 3999.58 15799.53 22299.84 2499.79 1199.96 2399.90 3099.61 17599.41 27499.51 4599.95 6499.66 4599.89 12598.96 333
CANet_DTU98.91 22498.85 22099.09 27598.79 37098.13 30398.18 31699.31 29499.48 12698.86 31799.51 25096.56 28699.95 6499.05 13499.95 8499.19 289
CS-MVS-test99.68 4699.70 3999.64 12999.57 20299.83 2999.78 1299.97 1899.92 2899.50 21499.38 28499.57 3899.95 6499.69 4399.90 11699.15 297
Fast-Effi-MVS+99.02 20598.87 21899.46 19099.38 27599.50 14599.04 21999.79 8597.17 34498.62 33898.74 37199.34 6099.95 6498.32 18999.41 30698.92 338
MTAPA99.35 12699.20 14299.80 4699.81 8199.81 4099.33 12599.53 23199.27 16099.42 23199.63 19098.21 20799.95 6497.83 23599.79 19899.65 113
UniMVSNet_NR-MVSNet99.37 12199.25 13799.72 9599.47 25199.56 13698.97 24099.61 17599.43 14199.67 14999.28 30797.85 23499.95 6499.17 11899.81 18899.65 113
DU-MVS99.33 13499.21 14199.71 10099.43 26499.56 13698.83 25699.53 23199.38 14799.67 14999.36 29097.67 24599.95 6499.17 11899.81 18899.63 128
CP-MVSNet99.54 7999.43 9799.87 2199.76 11899.82 3599.57 7999.61 17599.54 12099.80 9299.64 17997.79 23899.95 6499.21 10999.94 9599.84 36
Patchmtry98.78 23898.54 25099.49 18298.89 36199.19 21799.32 12799.67 14499.65 10299.72 12899.79 9391.87 34699.95 6498.00 21599.97 5699.33 258
QAPM98.40 28097.99 29399.65 12299.39 27299.47 14899.67 4999.52 23691.70 38898.78 32799.80 8398.55 16099.95 6494.71 37099.75 21199.53 189
3Dnovator99.15 299.43 10399.36 11099.65 12299.39 27299.42 16699.70 3599.56 21099.23 16899.35 24799.80 8399.17 7999.95 6498.21 19799.84 16299.59 160
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 3099.97 1999.87 4799.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
mvsany_test399.85 1199.88 699.75 7599.95 1599.37 17999.53 8599.98 1199.77 7499.99 799.95 1399.85 1099.94 7899.95 1299.98 4199.94 13
test_f99.75 3299.88 699.37 22199.96 798.21 29899.51 90100.00 199.94 24100.00 199.93 1799.58 3699.94 7899.97 499.99 1699.97 7
test_method91.72 36392.32 36689.91 38193.49 40270.18 40690.28 39499.56 21061.71 39895.39 39599.52 24893.90 32299.94 7898.76 16398.27 37399.62 139
tttt051797.62 31697.20 32598.90 30299.76 11897.40 33899.48 9694.36 39499.06 19799.70 13799.49 25784.55 39199.94 7898.73 16699.65 25499.36 251
CANet99.11 19099.05 18099.28 24498.83 36598.56 27698.71 27599.41 26699.25 16499.23 27299.22 32197.66 24999.94 7899.19 11399.97 5699.33 258
patchmatchnet-post99.62 19790.58 36299.94 78
SCA98.11 29798.36 26697.36 35999.20 32292.99 38798.17 31898.49 35998.24 28699.10 29399.57 23196.01 30499.94 7896.86 30199.62 25999.14 302
ADS-MVSNet297.78 30997.66 31698.12 34299.14 33095.36 37399.22 16498.75 34596.97 34998.25 35499.64 17990.90 35799.94 7896.51 32199.56 27699.08 317
WR-MVS_H99.61 6899.53 8299.87 2199.80 8799.83 2999.67 4999.75 10499.58 11999.85 7399.69 15298.18 21199.94 7899.28 10499.95 8499.83 40
mvsmamba99.74 3599.70 3999.85 2799.93 2699.83 2999.76 1999.81 7599.96 1899.91 4499.81 7998.60 15399.94 7899.58 5499.98 4199.77 61
SixPastTwentyTwo99.42 10699.30 12499.76 6599.92 3199.67 10099.70 3599.14 32699.65 10299.89 5499.90 2996.20 30199.94 7899.42 7899.92 10699.67 96
CP-MVS99.23 15199.05 18099.75 7599.66 17099.66 10299.38 11399.62 16898.38 26999.06 29899.27 30998.79 12599.94 7897.51 26499.82 17999.66 105
SteuartSystems-ACMMP99.30 13899.14 15099.76 6599.87 5299.66 10299.18 17299.60 18798.55 25199.57 18699.67 16799.03 9999.94 7897.01 29399.80 19399.69 84
Skip Steuart: Steuart Systems R&D Blog.
PatchT98.45 27598.32 27198.83 30898.94 35698.29 29399.24 15798.82 34299.84 5499.08 29499.76 11291.37 34999.94 7898.82 15599.00 34298.26 373
new_pmnet98.88 23098.89 21698.84 30699.70 15297.62 33198.15 31999.50 24497.98 30199.62 16999.54 24498.15 21299.94 7897.55 26099.84 16298.95 335
wuyk23d97.58 31899.13 15292.93 38099.69 15699.49 14699.52 8699.77 9497.97 30299.96 2399.79 9399.84 1299.94 7895.85 34999.82 17979.36 396
3Dnovator+98.92 399.35 12699.24 13999.67 11099.35 28299.47 14899.62 6399.50 24499.44 13699.12 29099.78 10198.77 12999.94 7897.87 22899.72 22999.62 139
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9599.93 2099.99 1699.99 1
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5999.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9599.92 2299.98 4199.93 15
mvsany_test199.44 10099.45 9299.40 21199.37 27798.64 27297.90 34999.59 19399.27 16099.92 4199.82 7399.74 2099.93 9599.55 5999.87 14599.63 128
ETV-MVS99.18 17399.18 14499.16 26399.34 29099.28 19799.12 19799.79 8599.48 12698.93 30698.55 37999.40 4999.93 9598.51 17899.52 29098.28 372
thisisatest053097.45 32196.95 33198.94 29099.68 16497.73 32899.09 20994.19 39698.61 24799.56 19399.30 30384.30 39299.93 9598.27 19299.54 28599.16 295
our_test_398.85 23399.09 16898.13 34199.66 17094.90 37897.72 35599.58 20399.07 19599.64 15699.62 19798.19 20999.93 9598.41 18299.95 8499.55 175
MSP-MVS99.04 20298.79 22999.81 4199.78 10699.73 7799.35 12199.57 20598.54 25499.54 20098.99 35096.81 28099.93 9596.97 29599.53 28799.77 61
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R99.23 15199.05 18099.77 5899.76 11899.70 9199.31 13299.59 19398.41 26599.32 25599.36 29098.73 13699.93 9597.29 27599.74 21899.67 96
APDe-MVScopyleft99.48 8899.36 11099.85 2799.55 21499.81 4099.50 9199.69 13798.99 20199.75 11599.71 13998.79 12599.93 9598.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
CVMVSNet98.61 25398.88 21797.80 34999.58 19293.60 38599.26 14999.64 16399.66 10099.72 12899.67 16793.26 33199.93 9599.30 9999.81 18899.87 30
ACMMPR99.23 15199.06 17699.76 6599.74 13599.69 9599.31 13299.59 19398.36 27199.35 24799.38 28498.61 15199.93 9597.43 26899.75 21199.67 96
PGM-MVS99.20 16699.01 19299.77 5899.75 12999.71 8499.16 18399.72 12297.99 30099.42 23199.60 21498.81 12099.93 9596.91 29899.74 21899.66 105
LCM-MVSNet-Re99.28 14099.15 14999.67 11099.33 29599.76 6299.34 12299.97 1898.93 21099.91 4499.79 9398.68 14099.93 9596.80 30599.56 27699.30 267
PMMVS299.48 8899.45 9299.57 16399.76 11898.99 23698.09 32799.90 3798.95 20699.78 10199.58 22299.57 3899.93 9599.48 6899.95 8499.79 54
mPP-MVS99.19 16999.00 19599.76 6599.76 11899.68 9899.38 11399.54 22298.34 28099.01 30099.50 25398.53 16699.93 9597.18 28899.78 20399.66 105
OurMVSNet-221017-099.75 3299.71 3899.84 3199.96 799.83 2999.83 699.85 5399.80 6599.93 3799.93 1798.54 16299.93 9599.59 5199.98 4199.76 67
CHOSEN 1792x268899.39 11699.30 12499.65 12299.88 4599.25 20498.78 26899.88 4398.66 24199.96 2399.79 9397.45 25599.93 9599.34 9099.99 1699.78 57
N_pmnet98.73 24598.53 25299.35 22799.72 14198.67 26598.34 30694.65 39398.35 27699.79 9799.68 16398.03 22099.93 9598.28 19199.92 10699.44 230
UGNet99.38 11899.34 11299.49 18298.90 35898.90 24899.70 3599.35 28599.86 4698.57 34399.81 7998.50 17299.93 9599.38 8199.98 4199.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
EC-MVSNet99.69 4399.69 4399.68 10799.71 14499.91 499.76 1999.96 2399.86 4699.51 21299.39 28299.57 3899.93 9599.64 4899.86 15399.20 286
EPP-MVSNet99.17 17799.00 19599.66 11799.80 8799.43 16399.70 3599.24 31199.48 12699.56 19399.77 10894.89 31399.93 9598.72 16799.89 12599.63 128
DeepC-MVS98.90 499.62 6699.61 6099.67 11099.72 14199.44 15999.24 15799.71 12599.27 16099.93 3799.90 2999.70 2499.93 9598.99 13899.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11799.93 2099.99 1699.98 3
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5999.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11799.92 2299.99 1699.92 18
iter_conf_final98.75 24198.54 25099.40 21199.33 29598.75 26099.26 14999.59 19399.80 6599.76 10899.58 22290.17 36799.92 11799.37 8499.97 5699.54 183
EGC-MVSNET89.05 36485.52 36799.64 12999.89 4099.78 4999.56 8199.52 23624.19 39949.96 40099.83 6699.15 8199.92 11797.71 24499.85 15799.21 282
DVP-MVS++99.38 11899.25 13799.77 5899.03 34899.77 5499.74 2499.61 17599.18 17599.76 10899.61 20699.00 10099.92 11797.72 24299.60 26999.62 139
MSC_two_6792asdad99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
No_MVS99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
ZD-MVS99.43 26499.61 12499.43 26396.38 35999.11 29199.07 33997.86 23299.92 11794.04 37899.49 296
SED-MVS99.40 11299.28 13199.77 5899.69 15699.82 3599.20 16799.54 22299.13 18899.82 8199.63 19098.91 11299.92 11797.85 23199.70 23499.58 165
test_241102_TWO99.54 22299.13 18899.76 10899.63 19098.32 19699.92 11797.85 23199.69 23899.75 70
ZNCC-MVS99.22 15999.04 18599.77 5899.76 11899.73 7799.28 14499.56 21098.19 29099.14 28799.29 30698.84 11999.92 11797.53 26399.80 19399.64 123
test_0728_SECOND99.83 3499.70 15299.79 4699.14 18799.61 17599.92 11797.88 22599.72 22999.77 61
SR-MVS99.19 16999.00 19599.74 8099.51 22999.72 8299.18 17299.60 18798.85 22099.47 21999.58 22298.38 18799.92 11796.92 29799.54 28599.57 170
DPE-MVScopyleft99.14 18398.92 21299.82 3899.57 20299.77 5498.74 27199.60 18798.55 25199.76 10899.69 15298.23 20699.92 11796.39 32799.75 21199.76 67
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0598.46 27398.23 27699.15 26599.04 34797.99 31399.10 20499.61 17599.79 6899.76 10899.58 22287.88 37799.92 11799.31 9899.97 5699.53 189
MP-MVScopyleft99.06 19698.83 22499.76 6599.76 11899.71 8499.32 12799.50 24498.35 27698.97 30299.48 26098.37 18899.92 11795.95 34799.75 21199.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PM-MVS99.36 12499.29 12999.58 15799.83 6699.66 10298.95 24399.86 4898.85 22099.81 8899.73 12498.40 18699.92 11798.36 18599.83 17099.17 293
HPM-MVScopyleft99.25 14799.07 17499.78 5599.81 8199.75 6899.61 6899.67 14497.72 31799.35 24799.25 31499.23 7399.92 11797.21 28699.82 17999.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
tpm97.15 32896.95 33197.75 35198.91 35794.24 38199.32 12797.96 37197.71 31898.29 35299.32 29986.72 38699.92 11798.10 20996.24 39499.09 312
RPMNet98.60 25598.53 25298.83 30899.05 34598.12 30499.30 13599.62 16899.86 4699.16 28399.74 12092.53 34099.92 11798.75 16498.77 35398.44 367
CPTT-MVS98.74 24398.44 25899.64 12999.61 18199.38 17699.18 17299.55 21696.49 35799.27 26699.37 28697.11 27299.92 11795.74 35399.67 24999.62 139
MIMVSNet199.66 5499.62 5699.80 4699.94 1999.87 1599.69 4299.77 9499.78 7099.93 3799.89 3497.94 22799.92 11799.65 4699.98 4199.62 139
CSCG99.37 12199.29 12999.60 15199.71 14499.46 15299.43 10799.85 5398.79 22899.41 23799.60 21498.92 11099.92 11798.02 21199.92 10699.43 236
ACMMPcopyleft99.25 14799.08 17099.74 8099.79 9999.68 9899.50 9199.65 15798.07 29699.52 20799.69 15298.57 15799.92 11797.18 28899.79 19899.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
SR-MVS-dyc-post99.27 14499.11 15999.73 8999.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.41 18299.91 14197.27 27899.61 26699.54 183
DVP-MVScopyleft99.32 13699.17 14599.77 5899.69 15699.80 4499.14 18799.31 29499.16 18299.62 16999.61 20698.35 19099.91 14197.88 22599.72 22999.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 17599.62 16999.61 20698.58 15699.91 14197.72 24299.80 19399.77 61
GST-MVS99.16 17998.96 20699.75 7599.73 13899.73 7799.20 16799.55 21698.22 28799.32 25599.35 29598.65 14799.91 14196.86 30199.74 21899.62 139
MP-MVS-pluss99.14 18398.92 21299.80 4699.83 6699.83 2998.61 27799.63 16596.84 35399.44 22599.58 22298.81 12099.91 14197.70 24799.82 17999.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
HFP-MVS99.25 14799.08 17099.76 6599.73 13899.70 9199.31 13299.59 19398.36 27199.36 24699.37 28698.80 12499.91 14197.43 26899.75 21199.68 90
HPM-MVS++copyleft98.96 21898.70 23599.74 8099.52 22799.71 8498.86 25199.19 32198.47 26198.59 34199.06 34098.08 21799.91 14196.94 29699.60 26999.60 153
test-LLR97.15 32896.95 33197.74 35298.18 39195.02 37697.38 37196.10 38598.00 29897.81 37598.58 37590.04 36999.91 14197.69 25398.78 35198.31 370
test-mter96.23 35095.73 35197.74 35298.18 39195.02 37697.38 37196.10 38597.90 30797.81 37598.58 37579.12 40099.91 14197.69 25398.78 35198.31 370
VPA-MVSNet99.66 5499.62 5699.79 5299.68 16499.75 6899.62 6399.69 13799.85 5199.80 9299.81 7998.81 12099.91 14199.47 6999.88 13499.70 80
XVG-ACMP-BASELINE99.23 15199.10 16799.63 13699.82 7399.58 13398.83 25699.72 12298.36 27199.60 17899.71 13998.92 11099.91 14197.08 29199.84 16299.40 241
APD-MVScopyleft98.87 23198.59 24299.71 10099.50 23599.62 11899.01 22899.57 20596.80 35599.54 20099.63 19098.29 19899.91 14195.24 36299.71 23299.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
CR-MVSNet98.35 28598.20 28098.83 30899.05 34598.12 30499.30 13599.67 14497.39 33499.16 28399.79 9391.87 34699.91 14198.78 16298.77 35398.44 367
FMVSNet597.80 30897.25 32499.42 20298.83 36598.97 23999.38 11399.80 7998.87 21899.25 26899.69 15280.60 39699.91 14198.96 14499.90 11699.38 245
XXY-MVS99.71 3999.67 4799.81 4199.89 4099.72 8299.59 7499.82 6699.39 14699.82 8199.84 6299.38 5499.91 14199.38 8199.93 10299.80 47
sss98.90 22698.77 23099.27 24799.48 24598.44 28398.72 27399.32 29097.94 30699.37 24599.35 29596.31 29799.91 14198.85 15299.63 25899.47 220
1112_ss99.05 19998.84 22299.67 11099.66 17099.29 19598.52 29499.82 6697.65 32099.43 22999.16 32796.42 29299.91 14199.07 13399.84 16299.80 47
LS3D99.24 15099.11 15999.61 14898.38 38599.79 4699.57 7999.68 14099.61 11099.15 28599.71 13998.70 13899.91 14197.54 26199.68 24399.13 305
testf199.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
APD_test299.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
test250694.73 36294.59 36495.15 37999.59 18785.90 40599.75 2274.01 40599.89 3699.71 13399.86 5479.00 40199.90 15999.52 6499.99 1699.65 113
test111197.74 31098.16 28596.49 37399.60 18389.86 40399.71 3491.21 39999.89 3699.88 6299.87 4793.73 32799.90 15999.56 5799.99 1699.70 80
KD-MVS_self_test99.63 6099.59 6599.76 6599.84 6299.90 799.37 11799.79 8599.83 5799.88 6299.85 5698.42 18199.90 15999.60 5099.73 22399.49 212
ET-MVSNet_ETH3D96.78 33696.07 34598.91 29699.26 31197.92 32197.70 35796.05 38897.96 30592.37 39898.43 38387.06 38099.90 15998.27 19297.56 38698.91 339
tfpnnormal99.43 10399.38 10499.60 15199.87 5299.75 6899.59 7499.78 9199.71 8299.90 5099.69 15298.85 11899.90 15997.25 28399.78 20399.15 297
pmmvs699.86 999.86 1299.83 3499.94 1999.90 799.83 699.91 3299.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5699.69 84
APD-MVS_3200maxsize99.31 13799.16 14699.74 8099.53 22299.75 6899.27 14799.61 17599.19 17499.57 18699.64 17998.76 13099.90 15997.29 27599.62 25999.56 172
baseline296.83 33596.28 34198.46 32799.09 34296.91 35198.83 25693.87 39797.23 34196.23 39298.36 38488.12 37699.90 15996.68 31198.14 37898.57 360
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11799.84 6299.64 11198.25 31399.73 11398.39 26899.63 16099.43 27299.70 2499.90 15997.34 27298.64 36399.44 230
XVG-OURS99.21 16499.06 17699.65 12299.82 7399.62 11897.87 35099.74 10998.36 27199.66 15399.68 16399.71 2299.90 15996.84 30499.88 13499.43 236
JIA-IIPM98.06 30097.92 30398.50 32598.59 37997.02 34898.80 26498.51 35799.88 4197.89 37099.87 4791.89 34599.90 15998.16 20597.68 38598.59 357
GBi-Net99.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
test199.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
FMVSNet199.66 5499.63 5599.73 8999.78 10699.77 5499.68 4599.70 13199.67 9699.82 8199.83 6698.98 10499.90 15999.24 10699.97 5699.53 189
WTY-MVS98.59 25898.37 26599.26 25099.43 26498.40 28698.74 27199.13 32898.10 29399.21 27799.24 31994.82 31499.90 15997.86 22998.77 35399.49 212
ECVR-MVScopyleft97.73 31198.04 29096.78 36799.59 18790.81 39999.72 3090.43 40199.89 3699.86 7199.86 5493.60 32999.89 17699.46 7099.99 1699.65 113
EI-MVSNet-UG-set99.48 8899.50 8499.42 20299.57 20298.65 27199.24 15799.46 25599.68 9299.80 9299.66 17298.99 10299.89 17699.19 11399.90 11699.72 74
EI-MVSNet-Vis-set99.47 9599.49 8599.42 20299.57 20298.66 26899.24 15799.46 25599.67 9699.79 9799.65 17798.97 10699.89 17699.15 12199.89 12599.71 77
新几何199.52 17799.50 23599.22 21199.26 30595.66 37098.60 34099.28 30797.67 24599.89 17695.95 34799.32 31899.45 225
testdata299.89 17695.99 344
testdata99.42 20299.51 22998.93 24599.30 29796.20 36298.87 31699.40 27898.33 19599.89 17696.29 33199.28 32399.44 230
TESTMET0.1,196.24 34995.84 35097.41 35898.24 38993.84 38497.38 37195.84 38998.43 26297.81 37598.56 37879.77 39799.89 17697.77 23698.77 35398.52 361
test20.0399.55 7799.54 7899.58 15799.79 9999.37 17999.02 22699.89 3999.60 11699.82 8199.62 19798.81 12099.89 17699.43 7399.86 15399.47 220
MDA-MVSNet-bldmvs99.06 19699.05 18099.07 27999.80 8797.83 32398.89 24899.72 12299.29 15699.63 16099.70 14696.47 29099.89 17698.17 20499.82 17999.50 207
LPG-MVS_test99.22 15999.05 18099.74 8099.82 7399.63 11699.16 18399.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
LGP-MVS_train99.74 8099.82 7399.63 11699.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
Test_1112_low_res98.95 22198.73 23199.63 13699.68 16499.15 22198.09 32799.80 7997.14 34699.46 22399.40 27896.11 30299.89 17699.01 13799.84 16299.84 36
PatchmatchNetpermissive97.65 31597.80 30897.18 36498.82 36892.49 38999.17 17798.39 36398.12 29298.79 32599.58 22290.71 36199.89 17697.23 28499.41 30699.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
ACMP97.51 1499.05 19998.84 22299.67 11099.78 10699.55 13998.88 24999.66 14897.11 34899.47 21999.60 21499.07 9499.89 17696.18 33699.85 15799.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 76100.00 199.89 3499.79 1699.88 19099.98 1100.00 199.98 3
FE-MVS97.85 30697.42 31999.15 26599.44 26098.75 26099.77 1598.20 36895.85 36699.33 25299.80 8388.86 37499.88 19096.40 32699.12 33498.81 347
ppachtmachnet_test98.89 22999.12 15698.20 33999.66 17095.24 37597.63 35999.68 14099.08 19399.78 10199.62 19798.65 14799.88 19098.02 21199.96 7199.48 216
TSAR-MVS + MP.99.34 13199.24 13999.63 13699.82 7399.37 17999.26 14999.35 28598.77 23299.57 18699.70 14699.27 6999.88 19097.71 24499.75 21199.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
new-patchmatchnet99.35 12699.57 7298.71 31899.82 7396.62 35698.55 28999.75 10499.50 12499.88 6299.87 4799.31 6299.88 19099.43 73100.00 199.62 139
Anonymous2023120699.35 12699.31 11999.47 18899.74 13599.06 23499.28 14499.74 10999.23 16899.72 12899.53 24697.63 25199.88 19099.11 12999.84 16299.48 216
XVS99.27 14499.11 15999.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32899.47 26498.47 17399.88 19097.62 25599.73 22399.67 96
v124099.56 7499.58 6999.51 17999.80 8799.00 23599.00 23199.65 15799.15 18699.90 5099.75 11799.09 8999.88 19099.90 2599.96 7199.67 96
X-MVStestdata96.09 35194.87 36099.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32861.30 40698.47 17399.88 19097.62 25599.73 22399.67 96
旧先验297.94 34495.33 37398.94 30599.88 19096.75 307
UniMVSNet (Re)99.37 12199.26 13599.68 10799.51 22999.58 13398.98 23999.60 18799.43 14199.70 13799.36 29097.70 24199.88 19099.20 11299.87 14599.59 160
HPM-MVS_fast99.43 10399.30 12499.80 4699.83 6699.81 4099.52 8699.70 13198.35 27699.51 21299.50 25399.31 6299.88 19098.18 20299.84 16299.69 84
TDRefinement99.72 3699.70 3999.77 5899.90 3899.85 1999.86 599.92 2999.69 9099.78 10199.92 2199.37 5699.88 19098.93 15099.95 8499.60 153
PCF-MVS96.03 1896.73 33895.86 34999.33 23199.44 26099.16 21996.87 38699.44 26086.58 39398.95 30499.40 27894.38 31999.88 19087.93 39299.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
SF-MVS99.10 19398.93 20899.62 14599.58 19299.51 14499.13 19399.65 15797.97 30299.42 23199.61 20698.86 11799.87 20496.45 32599.68 24399.49 212
D2MVS99.22 15999.19 14399.29 24299.69 15698.74 26298.81 26199.41 26698.55 25199.68 14399.69 15298.13 21399.87 20498.82 15599.98 4199.24 275
thisisatest051596.98 33296.42 33998.66 31999.42 26997.47 33597.27 37694.30 39597.24 34099.15 28598.86 36585.01 38999.87 20497.10 29099.39 30898.63 354
ACMMP_NAP99.28 14099.11 15999.79 5299.75 12999.81 4098.95 24399.53 23198.27 28599.53 20599.73 12498.75 13299.87 20497.70 24799.83 17099.68 90
Patchmatch-test98.10 29897.98 29598.48 32699.27 30996.48 35799.40 10999.07 33098.81 22599.23 27299.57 23190.11 36899.87 20496.69 31099.64 25699.09 312
v14419299.55 7799.54 7899.58 15799.78 10699.20 21699.11 20199.62 16899.18 17599.89 5499.72 13198.66 14599.87 20499.88 2999.97 5699.66 105
v192192099.56 7499.57 7299.55 16999.75 12999.11 22499.05 21699.61 17599.15 18699.88 6299.71 13999.08 9299.87 20499.90 2599.97 5699.66 105
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4599.86 1899.72 3099.78 9199.90 3099.82 8199.83 6698.45 17799.87 20499.51 6599.97 5699.86 32
pm-mvs199.79 2699.79 2799.78 5599.91 3299.83 2999.76 1999.87 4599.73 7699.89 5499.87 4799.63 2999.87 20499.54 6099.92 10699.63 128
TransMVSNet (Re)99.78 2799.77 3399.81 4199.91 3299.85 1999.75 2299.86 4899.70 8799.91 4499.89 3499.60 3499.87 20499.59 5199.74 21899.71 77
NR-MVSNet99.40 11299.31 11999.68 10799.43 26499.55 13999.73 2799.50 24499.46 13399.88 6299.36 29097.54 25299.87 20498.97 14299.87 14599.63 128
Baseline_NR-MVSNet99.49 8699.37 10799.82 3899.91 3299.84 2498.83 25699.86 4899.68 9299.65 15599.88 4297.67 24599.87 20499.03 13599.86 15399.76 67
EG-PatchMatch MVS99.57 7199.56 7799.62 14599.77 11499.33 18999.26 14999.76 9999.32 15499.80 9299.78 10199.29 6499.87 20499.15 12199.91 11599.66 105
DELS-MVS99.34 13199.30 12499.48 18699.51 22999.36 18398.12 32399.53 23199.36 15099.41 23799.61 20699.22 7499.87 20499.21 10999.68 24399.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet299.35 12699.28 13199.55 16999.49 24099.35 18699.45 10399.57 20599.44 13699.70 13799.74 12097.21 26699.87 20499.03 13599.94 9599.44 230
ab-mvs99.33 13499.28 13199.47 18899.57 20299.39 17499.78 1299.43 26398.87 21899.57 18699.82 7398.06 21899.87 20498.69 17099.73 22399.15 297
DP-MVS99.48 8899.39 10299.74 8099.57 20299.62 11899.29 14299.61 17599.87 4299.74 12399.76 11298.69 13999.87 20498.20 19899.80 19399.75 70
F-COLMAP98.74 24398.45 25799.62 14599.57 20299.47 14898.84 25499.65 15796.31 36198.93 30699.19 32697.68 24499.87 20496.52 32099.37 31199.53 189
Anonymous2024052999.42 10699.34 11299.65 12299.53 22299.60 12799.63 6199.39 27699.47 13099.76 10899.78 10198.13 21399.86 22298.70 16899.68 24399.49 212
test_post52.41 40790.25 36699.86 222
Anonymous2023121199.62 6699.57 7299.76 6599.61 18199.60 12799.81 999.73 11399.82 5999.90 5099.90 2997.97 22699.86 22299.42 7899.96 7199.80 47
v1099.69 4399.69 4399.66 11799.81 8199.39 17499.66 5399.75 10499.60 11699.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 72
VPNet99.46 9699.37 10799.71 10099.82 7399.59 12999.48 9699.70 13199.81 6299.69 14099.58 22297.66 24999.86 22299.17 11899.44 30199.67 96
testgi99.29 13999.26 13599.37 22199.75 12998.81 25498.84 25499.89 3998.38 26999.75 11599.04 34399.36 5999.86 22299.08 13299.25 32799.45 225
mvs_anonymous99.28 14099.39 10298.94 29099.19 32497.81 32499.02 22699.55 21699.78 7099.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 297
diffmvspermissive99.34 13199.32 11799.39 21599.67 16998.77 25998.57 28799.81 7599.61 11099.48 21799.41 27498.47 17399.86 22298.97 14299.90 11699.53 189
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
WR-MVS99.11 19098.93 20899.66 11799.30 30299.42 16698.42 30399.37 28199.04 19899.57 18699.20 32596.89 27899.86 22298.66 17299.87 14599.70 80
114514_t98.49 27098.11 28799.64 12999.73 13899.58 13399.24 15799.76 9989.94 39199.42 23199.56 23597.76 24099.86 22297.74 24199.82 17999.47 220
UnsupCasMVSNet_eth98.83 23498.57 24699.59 15399.68 16499.45 15798.99 23699.67 14499.48 12699.55 19899.36 29094.92 31299.86 22298.95 14896.57 39199.45 225
FMVSNet398.80 23798.63 23999.32 23599.13 33298.72 26399.10 20499.48 24999.23 16899.62 16999.64 17992.57 33899.86 22298.96 14499.90 11699.39 243
HY-MVS98.23 998.21 29497.95 29798.99 28599.03 34898.24 29499.61 6898.72 34696.81 35498.73 33099.51 25094.06 32199.86 22296.91 29898.20 37498.86 343
TAMVS99.49 8699.45 9299.63 13699.48 24599.42 16699.45 10399.57 20599.66 10099.78 10199.83 6697.85 23499.86 22299.44 7299.96 7199.61 149
ACMM98.09 1199.46 9699.38 10499.72 9599.80 8799.69 9599.13 19399.65 15798.99 20199.64 15699.72 13199.39 5099.86 22298.23 19599.81 18899.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
OpenMVS_ROBcopyleft97.31 1797.36 32596.84 33598.89 30399.29 30499.45 15798.87 25099.48 24986.54 39499.44 22599.74 12097.34 26199.86 22291.61 38599.28 32397.37 389
COLMAP_ROBcopyleft98.06 1299.45 9899.37 10799.70 10499.83 6699.70 9199.38 11399.78 9199.53 12299.67 14999.78 10199.19 7799.86 22297.32 27399.87 14599.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
testing396.48 34395.63 35399.01 28499.23 31697.81 32498.90 24799.10 32998.72 23797.84 37497.92 39172.44 40399.85 23997.21 28699.33 31699.35 254
hse-mvs298.52 26598.30 27399.16 26399.29 30498.60 27598.77 26999.02 33499.68 9299.32 25599.04 34392.50 34199.85 23999.24 10697.87 38399.03 326
AUN-MVS97.82 30797.38 32099.14 26999.27 30998.53 27798.72 27399.02 33498.10 29397.18 38599.03 34789.26 37399.85 23997.94 22097.91 38199.03 326
miper_lstm_enhance98.65 25298.60 24098.82 31199.20 32297.33 34097.78 35399.66 14899.01 20099.59 18199.50 25394.62 31799.85 23998.12 20799.90 11699.26 272
TEST999.35 28299.35 18698.11 32599.41 26694.83 38197.92 36898.99 35098.02 22199.85 239
train_agg98.35 28597.95 29799.57 16399.35 28299.35 18698.11 32599.41 26694.90 37897.92 36898.99 35098.02 22199.85 23995.38 36099.44 30199.50 207
agg_prior99.35 28299.36 18399.39 27697.76 37899.85 239
FIs99.65 5999.58 6999.84 3199.84 6299.85 1999.66 5399.75 10499.86 4699.74 12399.79 9398.27 20099.85 23999.37 8499.93 10299.83 40
v119299.57 7199.57 7299.57 16399.77 11499.22 21199.04 21999.60 18799.18 17599.87 7099.72 13199.08 9299.85 23999.89 2899.98 4199.66 105
无先验98.01 33599.23 31295.83 36799.85 23995.79 35299.44 230
VDD-MVS99.20 16699.11 15999.44 19699.43 26498.98 23799.50 9198.32 36699.80 6599.56 19399.69 15296.99 27699.85 23998.99 13899.73 22399.50 207
VDDNet98.97 21598.82 22599.42 20299.71 14498.81 25499.62 6398.68 34899.81 6299.38 24499.80 8394.25 32099.85 23998.79 15999.32 31899.59 160
EI-MVSNet99.38 11899.44 9599.21 25799.58 19298.09 30899.26 14999.46 25599.62 10799.75 11599.67 16798.54 16299.85 23999.15 12199.92 10699.68 90
MVSTER98.47 27298.22 27899.24 25599.06 34498.35 29299.08 21299.46 25599.27 16099.75 11599.66 17288.61 37599.85 23999.14 12799.92 10699.52 200
ACMH98.42 699.59 7099.54 7899.72 9599.86 5599.62 11899.56 8199.79 8598.77 23299.80 9299.85 5699.64 2899.85 23998.70 16899.89 12599.70 80
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
APD_test199.36 12499.28 13199.61 14899.89 4099.89 1099.32 12799.74 10999.18 17599.69 14099.75 11798.41 18299.84 25497.85 23199.70 23499.10 308
test_vis1_rt99.45 9899.46 9099.41 20999.71 14498.63 27398.99 23699.96 2399.03 19999.95 3199.12 33398.75 13299.84 25499.82 3599.82 17999.77 61
FA-MVS(test-final)98.52 26598.32 27199.10 27499.48 24598.67 26599.77 1598.60 35497.35 33699.63 16099.80 8393.07 33499.84 25497.92 22199.30 32098.78 350
EIA-MVS99.12 18799.01 19299.45 19399.36 28099.62 11899.34 12299.79 8598.41 26598.84 31998.89 36398.75 13299.84 25498.15 20699.51 29198.89 340
Anonymous20240521198.75 24198.46 25699.63 13699.34 29099.66 10299.47 9997.65 37699.28 15999.56 19399.50 25393.15 33299.84 25498.62 17399.58 27499.40 241
Effi-MVS+99.06 19698.97 20499.34 22899.31 29898.98 23798.31 30999.91 3298.81 22598.79 32598.94 35999.14 8499.84 25498.79 15998.74 35799.20 286
gm-plane-assit97.59 39589.02 40493.47 38498.30 38599.84 25496.38 328
test_899.34 29099.31 19298.08 32999.40 27394.90 37897.87 37298.97 35598.02 22199.84 254
v114499.54 7999.53 8299.59 15399.79 9999.28 19799.10 20499.61 17599.20 17399.84 7699.73 12498.67 14399.84 25499.86 3199.98 4199.64 123
v899.68 4699.69 4399.65 12299.80 8799.40 17299.66 5399.76 9999.64 10499.93 3799.85 5698.66 14599.84 25499.88 2999.99 1699.71 77
v2v48299.50 8499.47 8699.58 15799.78 10699.25 20499.14 18799.58 20399.25 16499.81 8899.62 19798.24 20299.84 25499.83 3299.97 5699.64 123
VNet99.18 17399.06 17699.56 16699.24 31499.36 18399.33 12599.31 29499.67 9699.47 21999.57 23196.48 28999.84 25499.15 12199.30 32099.47 220
ADS-MVSNet97.72 31497.67 31597.86 34799.14 33094.65 37999.22 16498.86 33996.97 34998.25 35499.64 17990.90 35799.84 25496.51 32199.56 27699.08 317
casdiffmvs_mvgpermissive99.68 4699.68 4699.69 10599.81 8199.59 12999.29 14299.90 3799.71 8299.79 9799.73 12499.54 4199.84 25499.36 8699.96 7199.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
LF4IMVS99.01 20998.92 21299.27 24799.71 14499.28 19798.59 28299.77 9498.32 28299.39 24399.41 27498.62 14999.84 25496.62 31799.84 16298.69 353
9.1498.64 23799.45 25998.81 26199.60 18797.52 32799.28 26599.56 23598.53 16699.83 26995.36 36199.64 256
SMA-MVScopyleft99.19 16999.00 19599.73 8999.46 25599.73 7799.13 19399.52 23697.40 33399.57 18699.64 17998.93 10999.83 26997.61 25799.79 19899.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EU-MVSNet99.39 11699.62 5698.72 31699.88 4596.44 35899.56 8199.85 5399.90 3099.90 5099.85 5698.09 21599.83 26999.58 5499.95 8499.90 20
YYNet198.95 22198.99 20098.84 30699.64 17497.14 34698.22 31599.32 29098.92 21299.59 18199.66 17297.40 25799.83 26998.27 19299.90 11699.55 175
MDA-MVSNet_test_wron98.95 22198.99 20098.85 30499.64 17497.16 34498.23 31499.33 28898.93 21099.56 19399.66 17297.39 25999.83 26998.29 19099.88 13499.55 175
baseline99.63 6099.62 5699.66 11799.80 8799.62 11899.44 10599.80 7999.71 8299.72 12899.69 15299.15 8199.83 26999.32 9599.94 9599.53 189
CDS-MVSNet99.22 15999.13 15299.50 18199.35 28299.11 22498.96 24299.54 22299.46 13399.61 17599.70 14696.31 29799.83 26999.34 9099.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
DeepC-MVS_fast98.47 599.23 15199.12 15699.56 16699.28 30799.22 21198.99 23699.40 27399.08 19399.58 18399.64 17998.90 11599.83 26997.44 26799.75 21199.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
PLCcopyleft97.35 1698.36 28297.99 29399.48 18699.32 29799.24 20898.50 29699.51 24095.19 37698.58 34298.96 35796.95 27799.83 26995.63 35499.25 32799.37 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
pmmvs599.19 16999.11 15999.42 20299.76 11898.88 25098.55 28999.73 11398.82 22499.72 12899.62 19796.56 28699.82 27899.32 9599.95 8499.56 172
test_post199.14 18751.63 40889.54 37299.82 27896.86 301
原ACMM199.37 22199.47 25198.87 25299.27 30296.74 35698.26 35399.32 29997.93 22899.82 27895.96 34699.38 30999.43 236
V4299.56 7499.54 7899.63 13699.79 9999.46 15299.39 11199.59 19399.24 16699.86 7199.70 14698.55 16099.82 27899.79 3799.95 8499.60 153
CDPH-MVS98.56 26198.20 28099.61 14899.50 23599.46 15298.32 30899.41 26695.22 37499.21 27799.10 33798.34 19399.82 27895.09 36699.66 25299.56 172
test1299.54 17499.29 30499.33 18999.16 32498.43 34997.54 25299.82 27899.47 29899.48 216
casdiffmvspermissive99.63 6099.61 6099.67 11099.79 9999.59 12999.13 19399.85 5399.79 6899.76 10899.72 13199.33 6199.82 27899.21 10999.94 9599.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline197.73 31197.33 32198.96 28899.30 30297.73 32899.40 10998.42 36199.33 15399.46 22399.21 32391.18 35299.82 27898.35 18691.26 39799.32 261
HQP_MVS98.90 22698.68 23699.55 16999.58 19299.24 20898.80 26499.54 22298.94 20799.14 28799.25 31497.24 26499.82 27895.84 35099.78 20399.60 153
plane_prior599.54 22299.82 27895.84 35099.78 20399.60 153
tpmrst97.73 31198.07 28996.73 37098.71 37692.00 39199.10 20498.86 33998.52 25598.92 30999.54 24491.90 34499.82 27898.02 21199.03 34098.37 369
UnsupCasMVSNet_bld98.55 26298.27 27599.40 21199.56 21399.37 17997.97 34299.68 14097.49 32999.08 29499.35 29595.41 31199.82 27897.70 24798.19 37699.01 331
dp96.86 33497.07 32796.24 37698.68 37890.30 40299.19 17198.38 36497.35 33698.23 35699.59 21987.23 37999.82 27896.27 33298.73 35998.59 357
test_040299.22 15999.14 15099.45 19399.79 9999.43 16399.28 14499.68 14099.54 12099.40 24299.56 23599.07 9499.82 27896.01 34199.96 7199.11 306
PMMVS98.49 27098.29 27499.11 27298.96 35598.42 28597.54 36399.32 29097.53 32698.47 34898.15 38897.88 23199.82 27897.46 26699.24 32999.09 312
tt080599.63 6099.57 7299.81 4199.87 5299.88 1299.58 7698.70 34799.72 8099.91 4499.60 21499.43 4899.81 29399.81 3699.53 28799.73 72
LFMVS98.46 27398.19 28399.26 25099.24 31498.52 27999.62 6396.94 38399.87 4299.31 25999.58 22291.04 35499.81 29398.68 17199.42 30599.45 225
NCCC98.82 23598.57 24699.58 15799.21 31999.31 19298.61 27799.25 30898.65 24298.43 34999.26 31297.86 23299.81 29396.55 31899.27 32699.61 149
MIMVSNet98.43 27698.20 28099.11 27299.53 22298.38 29099.58 7698.61 35298.96 20599.33 25299.76 11290.92 35699.81 29397.38 27199.76 20999.15 297
IS-MVSNet99.03 20398.85 22099.55 16999.80 8799.25 20499.73 2799.15 32599.37 14899.61 17599.71 13994.73 31699.81 29397.70 24799.88 13499.58 165
AdaColmapbinary98.60 25598.35 26899.38 21899.12 33499.22 21198.67 27699.42 26597.84 31498.81 32299.27 30997.32 26299.81 29395.14 36499.53 28799.10 308
MCST-MVS99.02 20598.81 22699.65 12299.58 19299.49 14698.58 28399.07 33098.40 26799.04 29999.25 31498.51 17199.80 29997.31 27499.51 29199.65 113
CostFormer96.71 33996.79 33896.46 37498.90 35890.71 40099.41 10898.68 34894.69 38298.14 36299.34 29886.32 38899.80 29997.60 25898.07 38098.88 341
PHI-MVS99.11 19098.95 20799.59 15399.13 33299.59 12999.17 17799.65 15797.88 31099.25 26899.46 26798.97 10699.80 29997.26 28099.82 17999.37 248
Patchmatch-RL test98.60 25598.36 26699.33 23199.77 11499.07 23298.27 31199.87 4598.91 21399.74 12399.72 13190.57 36399.79 30298.55 17699.85 15799.11 306
test0.0.03 197.37 32496.91 33498.74 31597.72 39497.57 33297.60 36197.36 38298.00 29899.21 27798.02 38990.04 36999.79 30298.37 18495.89 39598.86 343
MSDG99.08 19498.98 20399.37 22199.60 18399.13 22297.54 36399.74 10998.84 22399.53 20599.55 24299.10 8799.79 30297.07 29299.86 15399.18 291
cl____98.54 26398.41 26198.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.85 32499.78 30597.97 21899.89 12599.17 293
DIV-MVS_self_test98.54 26398.42 26098.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.87 32399.78 30597.97 21899.89 12599.18 291
MVP-Stereo99.16 17999.08 17099.43 20099.48 24599.07 23299.08 21299.55 21698.63 24499.31 25999.68 16398.19 20999.78 30598.18 20299.58 27499.45 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
nrg03099.70 4099.66 4899.82 3899.76 11899.84 2499.61 6899.70 13199.93 2699.78 10199.68 16399.10 8799.78 30599.45 7199.96 7199.83 40
Vis-MVSNet (Re-imp)98.77 23998.58 24599.34 22899.78 10698.88 25099.61 6899.56 21099.11 19299.24 27199.56 23593.00 33699.78 30597.43 26899.89 12599.35 254
CNLPA98.57 26098.34 26999.28 24499.18 32699.10 22998.34 30699.41 26698.48 26098.52 34598.98 35397.05 27499.78 30595.59 35599.50 29498.96 333
ACMH+98.40 899.50 8499.43 9799.71 10099.86 5599.76 6299.32 12799.77 9499.53 12299.77 10699.76 11299.26 7099.78 30597.77 23699.88 13499.60 153
CLD-MVS98.76 24098.57 24699.33 23199.57 20298.97 23997.53 36599.55 21696.41 35899.27 26699.13 32999.07 9499.78 30596.73 30999.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21697.99 31398.58 28399.82 6697.62 32199.34 25099.71 13998.52 16999.77 31397.98 21699.97 5699.52 200
PVSNet_Blended98.70 24898.59 24299.02 28399.54 21697.99 31397.58 36299.82 6695.70 36999.34 25098.98 35398.52 16999.77 31397.98 21699.83 17099.30 267
eth_miper_zixun_eth98.68 25098.71 23398.60 32099.10 34096.84 35397.52 36799.54 22298.94 20799.58 18399.48 26096.25 30099.76 31598.01 21499.93 10299.21 282
OPM-MVS99.26 14699.13 15299.63 13699.70 15299.61 12498.58 28399.48 24998.50 25799.52 20799.63 19099.14 8499.76 31597.89 22499.77 20799.51 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
pmmvs-eth3d99.48 8899.47 8699.51 17999.77 11499.41 17198.81 26199.66 14899.42 14599.75 11599.66 17299.20 7699.76 31598.98 14099.99 1699.36 251
pmmvs499.13 18599.06 17699.36 22599.57 20299.10 22998.01 33599.25 30898.78 23099.58 18399.44 27198.24 20299.76 31598.74 16599.93 10299.22 280
AllTest99.21 16499.07 17499.63 13699.78 10699.64 11199.12 19799.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
TestCases99.63 13699.78 10699.64 11199.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
CL-MVSNet_self_test98.71 24798.56 24999.15 26599.22 31798.66 26897.14 38099.51 24098.09 29599.54 20099.27 30996.87 27999.74 32198.43 18198.96 34399.03 326
MVS95.72 35894.63 36398.99 28598.56 38097.98 31999.30 13598.86 33972.71 39797.30 38199.08 33898.34 19399.74 32189.21 38998.33 37199.26 272
MG-MVS98.52 26598.39 26398.94 29099.15 32997.39 33998.18 31699.21 31898.89 21799.23 27299.63 19097.37 26099.74 32194.22 37599.61 26699.69 84
c3_l98.72 24698.71 23398.72 31699.12 33497.22 34397.68 35899.56 21098.90 21499.54 20099.48 26096.37 29699.73 32497.88 22599.88 13499.21 282
tpmvs97.39 32397.69 31396.52 37298.41 38491.76 39299.30 13598.94 33897.74 31697.85 37399.55 24292.40 34399.73 32496.25 33398.73 35998.06 381
thres600view796.60 34196.16 34397.93 34599.63 17696.09 36699.18 17297.57 37798.77 23298.72 33197.32 39887.04 38199.72 32688.57 39098.62 36497.98 382
EPMVS96.53 34296.32 34097.17 36598.18 39192.97 38899.39 11189.95 40298.21 28898.61 33999.59 21986.69 38799.72 32696.99 29499.23 33198.81 347
PVSNet97.47 1598.42 27798.44 25898.35 33199.46 25596.26 36296.70 38899.34 28797.68 31999.00 30199.13 32997.40 25799.72 32697.59 25999.68 24399.08 317
MAR-MVS98.24 29197.92 30399.19 26098.78 37299.65 10899.17 17799.14 32695.36 37298.04 36598.81 36897.47 25499.72 32695.47 35899.06 33798.21 376
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
miper_ehance_all_eth98.59 25898.59 24298.59 32198.98 35497.07 34797.49 36899.52 23698.50 25799.52 20799.37 28696.41 29499.71 33097.86 22999.62 25999.00 332
Gipumacopyleft99.57 7199.59 6599.49 18299.98 399.71 8499.72 3099.84 5999.81 6299.94 3499.78 10198.91 11299.71 33098.41 18299.95 8499.05 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc99.20 25999.35 28298.53 27799.17 17799.46 25599.67 14999.80 8398.46 17699.70 33297.92 22199.70 23499.38 245
HQP4-MVS98.15 35899.70 33299.53 189
CNVR-MVS98.99 21498.80 22899.56 16699.25 31299.43 16398.54 29299.27 30298.58 24998.80 32499.43 27298.53 16699.70 33297.22 28599.59 27399.54 183
tpm296.35 34696.22 34296.73 37098.88 36391.75 39399.21 16698.51 35793.27 38597.89 37099.21 32384.83 39099.70 33296.04 34098.18 37798.75 352
HQP-MVS98.36 28298.02 29299.39 21599.31 29898.94 24297.98 33999.37 28197.45 33098.15 35898.83 36696.67 28399.70 33294.73 36899.67 24999.53 189
PatchMatch-RL98.68 25098.47 25599.30 24199.44 26099.28 19798.14 32199.54 22297.12 34799.11 29199.25 31497.80 23799.70 33296.51 32199.30 32098.93 337
miper_enhance_ethall98.03 30197.94 30198.32 33498.27 38896.43 35996.95 38499.41 26696.37 36099.43 22998.96 35794.74 31599.69 33897.71 24499.62 25998.83 346
test_yl98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
DCV-MVSNet98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33998.19 29998.76 27099.33 28898.49 25999.44 22599.58 22298.21 20799.69 33898.20 19899.62 25999.39 243
v14899.40 11299.41 10199.39 21599.76 11898.94 24299.09 20999.59 19399.17 18099.81 8899.61 20698.41 18299.69 33899.32 9599.94 9599.53 189
test_prior99.46 19099.35 28299.22 21199.39 27699.69 33899.48 216
tpm cat196.78 33696.98 33096.16 37798.85 36490.59 40199.08 21299.32 29092.37 38697.73 37999.46 26791.15 35399.69 33896.07 33998.80 35098.21 376
PAPM_NR98.36 28298.04 29099.33 23199.48 24598.93 24598.79 26799.28 30197.54 32598.56 34498.57 37797.12 27199.69 33894.09 37798.90 34899.38 245
PAPM95.61 36094.71 36298.31 33699.12 33496.63 35596.66 38998.46 36090.77 39096.25 39098.68 37493.01 33599.69 33881.60 39997.86 38498.62 355
OMC-MVS98.90 22698.72 23299.44 19699.39 27299.42 16698.58 28399.64 16397.31 33899.44 22599.62 19798.59 15499.69 33896.17 33799.79 19899.22 280
E-PMN97.14 33097.43 31896.27 37598.79 37091.62 39495.54 39299.01 33699.44 13698.88 31399.12 33392.78 33799.68 34894.30 37499.03 34097.50 386
TSAR-MVS + GP.99.12 18799.04 18599.38 21899.34 29099.16 21998.15 31999.29 29898.18 29199.63 16099.62 19799.18 7899.68 34898.20 19899.74 21899.30 267
MVS-HIRNet97.86 30598.22 27896.76 36899.28 30791.53 39598.38 30592.60 39899.13 18899.31 25999.96 1297.18 27099.68 34898.34 18799.83 17099.07 322
PAPR97.56 31997.07 32799.04 28298.80 36998.11 30697.63 35999.25 30894.56 38398.02 36698.25 38797.43 25699.68 34890.90 38898.74 35799.33 258
ITE_SJBPF99.38 21899.63 17699.44 15999.73 11398.56 25099.33 25299.53 24698.88 11699.68 34896.01 34199.65 25499.02 330
thres100view90096.39 34596.03 34697.47 35699.63 17695.93 36799.18 17297.57 37798.75 23698.70 33497.31 39987.04 38199.67 35387.62 39398.51 36896.81 391
tfpn200view996.30 34895.89 34797.53 35499.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36896.81 391
131498.00 30397.90 30598.27 33898.90 35897.45 33799.30 13599.06 33294.98 37797.21 38499.12 33398.43 17999.67 35395.58 35698.56 36697.71 385
thres40096.40 34495.89 34797.92 34699.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36897.98 382
EMVS96.96 33397.28 32295.99 37898.76 37491.03 39795.26 39398.61 35299.34 15198.92 30998.88 36493.79 32599.66 35792.87 38299.05 33897.30 390
MVS_Test99.28 14099.31 11999.19 26099.35 28298.79 25799.36 12099.49 24899.17 18099.21 27799.67 16798.78 12799.66 35799.09 13199.66 25299.10 308
EPNet_dtu97.62 31697.79 31097.11 36696.67 39892.31 39098.51 29598.04 36999.24 16695.77 39399.47 26493.78 32699.66 35798.98 14099.62 25999.37 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
BH-RMVSNet98.41 27898.14 28699.21 25799.21 31998.47 28098.60 27998.26 36798.35 27698.93 30699.31 30197.20 26999.66 35794.32 37399.10 33699.51 202
MDTV_nov1_ep1397.73 31298.70 37790.83 39899.15 18598.02 37098.51 25698.82 32199.61 20690.98 35599.66 35796.89 30098.92 346
MVS_111021_LR99.13 18599.03 18799.42 20299.58 19299.32 19197.91 34899.73 11398.68 24099.31 25999.48 26099.09 8999.66 35797.70 24799.77 20799.29 270
BH-untuned98.22 29398.09 28898.58 32399.38 27597.24 34298.55 28998.98 33797.81 31599.20 28298.76 37097.01 27599.65 36394.83 36798.33 37198.86 343
RPSCF99.18 17399.02 18999.64 12999.83 6699.85 1999.44 10599.82 6698.33 28199.50 21499.78 10197.90 22999.65 36396.78 30699.83 17099.44 230
USDC98.96 21898.93 20899.05 28199.54 21697.99 31397.07 38399.80 7998.21 28899.75 11599.77 10898.43 17999.64 36597.90 22399.88 13499.51 202
DeepPCF-MVS98.42 699.18 17399.02 18999.67 11099.22 31799.75 6897.25 37799.47 25298.72 23799.66 15399.70 14699.29 6499.63 36698.07 21099.81 18899.62 139
alignmvs98.28 28797.96 29699.25 25399.12 33498.93 24599.03 22398.42 36199.64 10498.72 33197.85 39290.86 35999.62 36798.88 15199.13 33399.19 289
DeepMVS_CXcopyleft97.98 34399.69 15696.95 34999.26 30575.51 39695.74 39498.28 38696.47 29099.62 36791.23 38797.89 38297.38 388
TinyColmap98.97 21598.93 20899.07 27999.46 25598.19 29997.75 35499.75 10498.79 22899.54 20099.70 14698.97 10699.62 36796.63 31699.83 17099.41 240
TAPA-MVS97.92 1398.03 30197.55 31799.46 19099.47 25199.44 15998.50 29699.62 16886.79 39299.07 29799.26 31298.26 20199.62 36797.28 27799.73 22399.31 265
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
DPM-MVS98.28 28797.94 30199.32 23599.36 28099.11 22497.31 37598.78 34496.88 35198.84 31999.11 33697.77 23999.61 37194.03 37999.36 31299.23 278
thres20096.09 35195.68 35297.33 36199.48 24596.22 36398.53 29397.57 37798.06 29798.37 35196.73 40386.84 38599.61 37186.99 39698.57 36596.16 394
DP-MVS Recon98.50 26898.23 27699.31 23899.49 24099.46 15298.56 28899.63 16594.86 38098.85 31899.37 28697.81 23699.59 37396.08 33899.44 30198.88 341
PVSNet_095.53 1995.85 35695.31 35897.47 35698.78 37293.48 38695.72 39199.40 27396.18 36397.37 38097.73 39395.73 30699.58 37495.49 35781.40 39899.36 251
Syy-MVS98.17 29597.85 30799.15 26598.50 38298.79 25798.60 27999.21 31897.89 30896.76 38796.37 40495.47 31099.57 37599.10 13098.73 35999.09 312
myMVS_eth3d95.63 35994.73 36198.34 33398.50 38296.36 36098.60 27999.21 31897.89 30896.76 38796.37 40472.10 40499.57 37594.38 37298.73 35999.09 312
API-MVS98.38 28198.39 26398.35 33198.83 36599.26 20199.14 18799.18 32298.59 24898.66 33698.78 36998.61 15199.57 37594.14 37699.56 27696.21 393
KD-MVS_2432*160095.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
miper_refine_blended95.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
canonicalmvs99.02 20599.00 19599.09 27599.10 34098.70 26499.61 6899.66 14899.63 10698.64 33797.65 39599.04 9899.54 37898.79 15998.92 34699.04 325
MVS_111021_HR99.12 18799.02 18999.40 21199.50 23599.11 22497.92 34699.71 12598.76 23599.08 29499.47 26499.17 7999.54 37897.85 23199.76 20999.54 183
test_241102_ONE99.69 15699.82 3599.54 22299.12 19199.82 8199.49 25798.91 11299.52 382
gg-mvs-nofinetune95.87 35595.17 35997.97 34498.19 39096.95 34999.69 4289.23 40399.89 3696.24 39199.94 1681.19 39499.51 38393.99 38098.20 37497.44 387
TR-MVS97.44 32297.15 32698.32 33498.53 38197.46 33698.47 29897.91 37396.85 35298.21 35798.51 38196.42 29299.51 38392.16 38497.29 38797.98 382
BH-w/o97.20 32797.01 32997.76 35099.08 34395.69 37098.03 33498.52 35695.76 36897.96 36798.02 38995.62 30899.47 38592.82 38397.25 38898.12 380
PMVScopyleft92.94 2198.82 23598.81 22698.85 30499.84 6297.99 31399.20 16799.47 25299.71 8299.42 23199.82 7398.09 21599.47 38593.88 38199.85 15799.07 322
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
CMPMVSbinary77.52 2398.50 26898.19 28399.41 20998.33 38799.56 13699.01 22899.59 19395.44 37199.57 18699.80 8395.64 30799.46 38796.47 32499.92 10699.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
GA-MVS97.99 30497.68 31498.93 29399.52 22798.04 31297.19 37999.05 33398.32 28298.81 32298.97 35589.89 37199.41 38898.33 18899.05 33899.34 257
cl2297.56 31997.28 32298.40 32998.37 38696.75 35497.24 37899.37 28197.31 33899.41 23799.22 32187.30 37899.37 38997.70 24799.62 25999.08 317
dmvs_re98.69 24998.48 25499.31 23899.55 21499.42 16699.54 8498.38 36499.32 15498.72 33198.71 37296.76 28299.21 39096.01 34199.35 31499.31 265
GG-mvs-BLEND97.36 35997.59 39596.87 35299.70 3588.49 40494.64 39797.26 40080.66 39599.12 39191.50 38696.50 39396.08 395
MSLP-MVS++99.05 19999.09 16898.91 29699.21 31998.36 29198.82 26099.47 25298.85 22098.90 31299.56 23598.78 12799.09 39298.57 17599.68 24399.26 272
FPMVS96.32 34795.50 35498.79 31299.60 18398.17 30298.46 30298.80 34397.16 34596.28 38999.63 19082.19 39399.09 39288.45 39198.89 34999.10 308
dmvs_testset97.27 32696.83 33698.59 32199.46 25597.55 33399.25 15696.84 38498.78 23097.24 38397.67 39497.11 27298.97 39486.59 39898.54 36799.27 271
OPU-MVS99.29 24299.12 33499.44 15999.20 16799.40 27899.00 10098.84 39596.54 31999.60 26999.58 165
cascas96.99 33196.82 33797.48 35597.57 39795.64 37196.43 39099.56 21091.75 38797.13 38697.61 39695.58 30998.63 39696.68 31199.11 33598.18 379
MVEpermissive92.54 2296.66 34096.11 34498.31 33699.68 16497.55 33397.94 34495.60 39099.37 14890.68 39998.70 37396.56 28698.61 39786.94 39799.55 28098.77 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
PC_three_145297.56 32299.68 14399.41 27499.09 8997.09 39896.66 31399.60 26999.62 139
tmp_tt95.75 35795.42 35596.76 36889.90 40394.42 38098.86 25197.87 37478.01 39599.30 26499.69 15297.70 24195.89 39999.29 10298.14 37899.95 11
SD-MVS99.01 20999.30 12498.15 34099.50 23599.40 17298.94 24599.61 17599.22 17299.75 11599.82 7399.54 4195.51 40097.48 26599.87 14599.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
test12329.31 36533.05 37018.08 38225.93 40512.24 40797.53 36510.93 40711.78 40024.21 40150.08 41021.04 4058.60 40123.51 40032.43 40033.39 397
testmvs28.94 36633.33 36815.79 38326.03 4049.81 40896.77 38715.67 40611.55 40123.87 40250.74 40919.03 4068.53 40223.21 40133.07 39929.03 398
test_blank8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.88 36733.17 3690.00 3840.00 4060.00 4090.00 39599.62 1680.00 4020.00 40399.13 32999.82 130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas16.61 36822.14 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 199.28 660.00 4030.00 4020.00 4010.00 399
sosnet-low-res8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
sosnet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
Regformer8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.26 37711.02 3800.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.16 3270.00 4070.00 4030.00 4020.00 4010.00 399
uanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS96.36 36095.20 363
FOURS199.83 6699.89 1099.74 2499.71 12599.69 9099.63 160
test_one_060199.63 17699.76 6299.55 21699.23 16899.31 25999.61 20698.59 154
eth-test20.00 406
eth-test0.00 406
RE-MVS-def99.13 15299.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.57 15797.27 27899.61 26699.54 183
IU-MVS99.69 15699.77 5499.22 31597.50 32899.69 14097.75 24099.70 23499.77 61
save fliter99.53 22299.25 20498.29 31099.38 28099.07 195
test072699.69 15699.80 4499.24 15799.57 20599.16 18299.73 12799.65 17798.35 190
GSMVS99.14 302
test_part299.62 18099.67 10099.55 198
sam_mvs190.81 36099.14 302
sam_mvs90.52 364
MTGPAbinary99.53 231
MTMP99.09 20998.59 355
test9_res95.10 36599.44 30199.50 207
agg_prior294.58 37199.46 30099.50 207
test_prior499.19 21798.00 337
test_prior297.95 34397.87 31198.05 36499.05 34197.90 22995.99 34499.49 296
新几何298.04 333
旧先验199.49 24099.29 19599.26 30599.39 28297.67 24599.36 31299.46 224
原ACMM297.92 346
test22299.51 22999.08 23197.83 35299.29 29895.21 37598.68 33599.31 30197.28 26399.38 30999.43 236
segment_acmp98.37 188
testdata197.72 35597.86 313
plane_prior799.58 19299.38 176
plane_prior699.47 25199.26 20197.24 264
plane_prior499.25 314
plane_prior399.31 19298.36 27199.14 287
plane_prior298.80 26498.94 207
plane_prior199.51 229
plane_prior99.24 20898.42 30397.87 31199.71 232
n20.00 408
nn0.00 408
door-mid99.83 61
test1199.29 298
door99.77 94
HQP5-MVS98.94 242
HQP-NCC99.31 29897.98 33997.45 33098.15 358
ACMP_Plane99.31 29897.98 33997.45 33098.15 358
BP-MVS94.73 368
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27199.13 22298.83 366
MDTV_nov1_ep13_2view91.44 39699.14 18797.37 33599.21 27791.78 34896.75 30799.03 326
ACMMP++_ref99.94 95
ACMMP++99.79 198
Test By Simon98.41 182