This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
dcpmvs_298.78 9199.11 5297.78 26399.56 9093.67 32799.06 6399.86 1399.50 3099.66 4299.26 10197.21 15299.99 298.00 12399.91 6399.68 55
HyFIR lowres test97.19 25296.60 27798.96 14099.62 7797.28 20195.17 35099.50 8694.21 32999.01 14798.32 27986.61 33899.99 297.10 17399.84 8699.60 75
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13298.08 16099.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
bld_raw_dy_0_6499.07 5899.00 6299.29 8499.85 1798.18 12699.11 5899.40 12399.33 5099.38 8799.44 7195.21 23999.97 499.31 4199.98 1299.73 45
patch_mono-298.51 14198.63 10398.17 23799.38 14194.78 28797.36 24899.69 3698.16 15298.49 22799.29 9697.06 15899.97 498.29 10699.91 6399.76 39
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4499.09 8299.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3399.27 5899.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
DTE-MVSNet99.43 1899.35 2399.66 499.71 4899.30 1799.31 2799.51 8499.64 1599.56 5399.46 6698.23 7199.97 498.78 7399.93 4499.72 46
MVSFormer98.26 16998.43 13497.77 26498.88 24793.89 32199.39 1799.56 6899.11 7298.16 24998.13 29093.81 27899.97 499.26 4499.57 20799.43 159
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6899.11 7299.70 3599.73 1599.00 2299.97 499.26 4499.98 1299.89 11
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2698.11 13397.77 20499.90 999.33 5099.97 399.66 2799.71 399.96 1299.79 1399.99 599.96 5
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7198.10 13597.68 21599.84 1899.29 5699.92 899.57 4299.60 599.96 1299.74 1899.98 1299.89 11
SDMVSNet99.23 3899.32 2898.96 14099.68 5997.35 19798.84 8499.48 9599.69 999.63 4899.68 2099.03 2199.96 1297.97 12599.92 5599.57 92
sd_testset99.28 2999.31 3099.19 10299.68 5998.06 14599.41 1399.30 16799.69 999.63 4899.68 2099.25 1499.96 1297.25 16299.92 5599.57 92
test_fmvsm_n_192099.33 2699.45 1898.99 13699.57 8297.73 17897.93 18199.83 2099.22 6199.93 699.30 9599.42 1099.96 1299.85 599.99 599.29 214
h-mvs3397.77 21097.33 23499.10 11599.21 17497.84 16598.35 13598.57 29899.11 7298.58 21699.02 15388.65 32999.96 1298.11 11496.34 37699.49 128
IterMVS-SCA-FT97.85 20698.18 16696.87 32199.27 16291.16 36795.53 33999.25 18799.10 7999.41 8099.35 8493.10 28799.96 1298.65 8599.94 4099.49 128
UA-Net99.47 1399.40 2099.70 299.49 11699.29 1999.80 399.72 3299.82 399.04 14399.81 598.05 8999.96 1298.85 7099.99 599.86 18
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12999.20 4599.65 4599.48 3299.92 899.71 1798.07 8699.96 1299.53 30100.00 199.93 8
PEN-MVS99.41 2099.34 2599.62 699.73 3999.14 5299.29 3399.54 7799.62 2099.56 5399.42 7498.16 8299.96 1298.78 7399.93 4499.77 35
K. test v398.00 19097.66 21299.03 13199.79 2597.56 18699.19 4992.47 38599.62 2099.52 6299.66 2789.61 32099.96 1299.25 4699.81 10099.56 98
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14399.65 6697.05 21597.80 20099.76 2898.70 11099.78 2699.11 13498.79 3499.95 2399.85 599.96 2599.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13399.64 7197.28 20197.82 19799.76 2898.73 10799.82 2199.09 14098.81 3299.95 2399.86 499.96 2599.83 22
SSC-MVS98.71 10098.74 8498.62 18799.72 4596.08 24998.74 8698.64 29599.74 699.67 4199.24 10694.57 26099.95 2399.11 5399.24 26799.82 25
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6596.97 21998.00 17499.85 1599.24 6099.92 899.50 5999.39 1199.95 2399.89 399.98 1298.71 308
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1999.34 1599.69 499.58 5499.90 299.86 1899.78 899.58 699.95 2399.00 6299.95 3299.78 33
Fast-Effi-MVS+-dtu98.27 16798.09 17698.81 15998.43 31898.11 13397.61 22699.50 8698.64 11197.39 30697.52 33098.12 8599.95 2396.90 19298.71 31998.38 332
Effi-MVS+-dtu98.26 16997.90 19499.35 7098.02 34399.49 598.02 17099.16 21398.29 13697.64 28597.99 30296.44 19499.95 2396.66 21498.93 30798.60 320
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3698.93 9799.65 4599.72 1698.93 2699.95 2399.11 53100.00 199.82 25
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5099.66 1399.68 3999.66 2798.44 5999.95 2399.73 1999.96 2599.75 43
RRT_MVS99.09 5498.94 6799.55 2399.87 1298.82 7899.48 998.16 31799.49 3199.59 5299.65 3094.79 25699.95 2399.45 3599.96 2599.88 14
PS-CasMVS99.40 2199.33 2699.62 699.71 4899.10 6099.29 3399.53 8099.53 2999.46 7199.41 7798.23 7199.95 2398.89 6999.95 3299.81 28
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14798.87 7398.39 13199.42 12099.42 4199.36 9299.06 14198.38 6299.95 2398.34 10399.90 7099.57 92
Vis-MVSNetpermissive99.34 2599.36 2299.27 8999.73 3998.26 11899.17 5099.78 2699.11 7299.27 10899.48 6498.82 3199.95 2398.94 6599.93 4499.59 81
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052198.69 10798.87 7298.16 23999.77 2995.11 28199.08 5999.44 11199.34 4999.33 9799.55 4894.10 27499.94 3699.25 4699.96 2599.42 162
CP-MVSNet99.21 3999.09 5599.56 2199.65 6698.96 7099.13 5599.34 14799.42 4199.33 9799.26 10197.01 16399.94 3698.74 7799.93 4499.79 30
PVSNet_Blended_VisFu98.17 17998.15 17198.22 23499.73 3995.15 27897.36 24899.68 4194.45 32498.99 14999.27 9996.87 16999.94 3697.13 17199.91 6399.57 92
IterMVS97.73 21298.11 17596.57 32999.24 16790.28 37295.52 34199.21 19698.86 10299.33 9799.33 9093.11 28699.94 3698.49 9699.94 4099.48 138
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.57 799.67 599.28 8699.89 698.09 13699.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3699.31 41100.00 199.82 25
WB-MVS98.52 14098.55 11498.43 21699.65 6695.59 26098.52 11198.77 28299.65 1499.52 6299.00 16594.34 26699.93 4198.65 8598.83 31199.76 39
CS-MVS99.13 4999.10 5499.24 9699.06 21399.15 4799.36 1999.88 1199.36 4898.21 24698.46 26498.68 4299.93 4199.03 6099.85 8298.64 317
CHOSEN 280x42095.51 31595.47 30495.65 35098.25 33088.27 38093.25 38598.88 26093.53 34094.65 37697.15 34586.17 34299.93 4197.41 15499.93 4498.73 307
MVS_030498.10 18197.88 19698.76 17198.82 25896.50 23597.90 18691.35 39199.56 2698.32 24099.13 13196.06 20899.93 4199.84 799.97 2099.85 19
CS-MVS-test99.13 4999.09 5599.26 9199.13 19898.97 6699.31 2799.88 1199.44 3898.16 24998.51 25698.64 4399.93 4198.91 6699.85 8298.88 285
UniMVSNet_NR-MVSNet98.86 8298.68 9699.40 6299.17 18998.74 8297.68 21599.40 12399.14 7199.06 13698.59 24896.71 18399.93 4198.57 9099.77 12499.53 116
DU-MVS98.82 8598.63 10399.39 6399.16 19198.74 8297.54 23499.25 18798.84 10599.06 13698.76 21896.76 17999.93 4198.57 9099.77 12499.50 124
WR-MVS_H99.33 2699.22 4099.65 599.71 4899.24 2599.32 2399.55 7299.46 3599.50 6799.34 8897.30 14499.93 4198.90 6799.93 4499.77 35
SixPastTwentyTwo98.75 9698.62 10599.16 10699.83 2097.96 15699.28 3798.20 31499.37 4599.70 3599.65 3092.65 29799.93 4199.04 5999.84 8699.60 75
IterMVS-LS98.55 13398.70 9398.09 24199.48 12394.73 29097.22 26199.39 12698.97 9399.38 8799.31 9496.00 21299.93 4198.58 8899.97 2099.60 75
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MM98.91 14896.97 21997.89 18894.44 37499.54 2798.95 15799.14 13093.50 28299.92 5199.80 1299.96 2599.85 19
tttt051795.64 31194.98 32097.64 27899.36 14893.81 32398.72 9090.47 39398.08 15698.67 20198.34 27673.88 39299.92 5197.77 13799.51 22499.20 231
xiu_mvs_v1_base_debu97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
xiu_mvs_v1_base97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
xiu_mvs_v1_base_debi97.86 20198.17 16796.92 31898.98 22693.91 31896.45 29899.17 21097.85 17198.41 23497.14 34698.47 5599.92 5198.02 12099.05 29096.92 375
MTAPA98.88 7898.64 10299.61 999.67 6399.36 1198.43 12799.20 19898.83 10698.89 17098.90 18996.98 16599.92 5197.16 16699.70 15999.56 98
LCM-MVSNet-Re98.64 11998.48 12699.11 11398.85 25298.51 10298.49 11999.83 2098.37 12799.69 3799.46 6698.21 7699.92 5194.13 31499.30 25898.91 281
lessismore_v098.97 13999.73 3997.53 18886.71 39899.37 9099.52 5789.93 31899.92 5198.99 6399.72 14999.44 155
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5499.44 3899.78 2699.76 1096.39 19599.92 5199.44 3699.92 5599.68 55
GeoE99.05 5998.99 6599.25 9499.44 13098.35 11598.73 8999.56 6898.42 12698.91 16798.81 21098.94 2599.91 6098.35 10299.73 14299.49 128
Fast-Effi-MVS+97.67 21797.38 22998.57 19698.71 27597.43 19497.23 25899.45 10794.82 31596.13 35096.51 35498.52 5499.91 6096.19 24798.83 31198.37 334
mvsmamba99.24 3799.15 5099.49 4899.83 2098.85 7499.41 1399.55 7299.54 2799.40 8399.52 5795.86 22299.91 6099.32 4099.95 3299.70 52
jason97.45 23297.35 23297.76 26799.24 16793.93 31795.86 32898.42 30594.24 32898.50 22698.13 29094.82 25199.91 6097.22 16399.73 14299.43 159
jason: jason.
lupinMVS97.06 26196.86 25697.65 27698.88 24793.89 32195.48 34297.97 32393.53 34098.16 24997.58 32693.81 27899.91 6096.77 20399.57 20799.17 242
thisisatest053095.27 31894.45 32797.74 27099.19 18194.37 30197.86 19490.20 39497.17 23798.22 24597.65 32273.53 39399.90 6596.90 19299.35 24998.95 272
xiu_mvs_v2_base97.16 25597.49 22396.17 33998.54 30792.46 34595.45 34398.84 27197.25 22797.48 30096.49 35598.31 6899.90 6596.34 23998.68 32296.15 386
PS-MVSNAJ97.08 26097.39 22896.16 34198.56 30592.46 34595.24 34998.85 27097.25 22797.49 29995.99 36498.07 8699.90 6596.37 23698.67 32396.12 387
DSMNet-mixed97.42 23497.60 21796.87 32199.15 19591.46 35898.54 10999.12 22192.87 35097.58 29099.63 3396.21 20399.90 6595.74 26999.54 21599.27 217
EC-MVSNet99.09 5499.05 5999.20 10099.28 16098.93 7199.24 4199.84 1899.08 8498.12 25498.37 27298.72 3899.90 6599.05 5899.77 12498.77 302
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5299.59 2399.71 3399.57 4297.12 15599.90 6599.21 4999.87 7899.54 109
QAPM97.31 24196.81 26298.82 15798.80 26497.49 18999.06 6399.19 20290.22 37497.69 28399.16 12396.91 16799.90 6590.89 37099.41 24199.07 251
EPP-MVSNet98.30 16398.04 18299.07 12199.56 9097.83 16699.29 3398.07 32199.03 8898.59 21499.13 13192.16 30299.90 6596.87 19599.68 16799.49 128
3Dnovator98.27 298.81 8798.73 8699.05 12898.76 26697.81 17199.25 4099.30 16798.57 12098.55 22199.33 9097.95 9799.90 6597.16 16699.67 17399.44 155
OpenMVScopyleft96.65 797.09 25996.68 26998.32 22598.32 32697.16 21298.86 8199.37 13289.48 37896.29 34999.15 12796.56 18899.90 6592.90 33899.20 27397.89 351
MSC_two_6792asdad99.32 8098.43 31898.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
No_MVS99.32 8098.43 31898.37 11198.86 26799.89 7597.14 16999.60 19499.71 47
DPE-MVScopyleft98.59 12798.26 15899.57 1699.27 16299.15 4797.01 27099.39 12697.67 18299.44 7598.99 16697.53 12999.89 7595.40 28199.68 16799.66 59
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CANet97.87 20097.76 20298.19 23697.75 35495.51 26596.76 28599.05 23397.74 17796.93 32098.21 28695.59 22999.89 7597.86 13399.93 4499.19 236
APDe-MVScopyleft98.99 6398.79 8199.60 1199.21 17499.15 4798.87 7999.48 9597.57 19299.35 9499.24 10697.83 10299.89 7597.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS98.66 11698.37 14499.55 2399.53 10299.18 3898.23 14399.49 9397.01 24598.69 19998.88 19698.00 9299.89 7595.87 26399.59 19899.58 87
mPP-MVS98.64 11998.34 14899.54 2799.54 9999.17 3998.63 9899.24 19297.47 20298.09 25798.68 23097.62 12099.89 7596.22 24599.62 18799.57 92
CP-MVS98.70 10498.42 13699.52 3999.36 14899.12 5798.72 9099.36 13697.54 19798.30 24198.40 26897.86 10199.89 7596.53 22899.72 14999.56 98
IB-MVS91.63 1992.24 35790.90 36196.27 33697.22 37591.24 36594.36 37393.33 38392.37 35592.24 39094.58 38766.20 40199.89 7593.16 33694.63 38997.66 364
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_vis1_n_192098.40 15198.92 6996.81 32599.74 3890.76 37198.15 15299.91 798.33 13099.89 1599.55 4895.07 24499.88 8499.76 1699.93 4499.79 30
DVP-MVS++98.90 7698.70 9399.51 4398.43 31899.15 4799.43 1199.32 15498.17 14999.26 11299.02 15398.18 7899.88 8497.07 17599.45 23699.49 128
SED-MVS98.91 7498.72 8899.49 4899.49 11699.17 3998.10 15899.31 15998.03 15799.66 4299.02 15398.36 6399.88 8496.91 18799.62 18799.41 165
test_241102_TWO99.30 16798.03 15799.26 11299.02 15397.51 13299.88 8496.91 18799.60 19499.66 59
ETV-MVS98.03 18797.86 19898.56 20098.69 28498.07 14297.51 23899.50 8698.10 15497.50 29895.51 37398.41 6099.88 8496.27 24399.24 26797.71 363
DVP-MVScopyleft98.77 9498.52 11899.52 3999.50 10999.21 2898.02 17098.84 27197.97 16099.08 13499.02 15397.61 12199.88 8496.99 18199.63 18499.48 138
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 14999.08 13499.02 15397.89 9999.88 8497.07 17599.71 15499.70 52
test_0728_SECOND99.60 1199.50 10999.23 2698.02 17099.32 15499.88 8496.99 18199.63 18499.68 55
MP-MVS-pluss98.57 12898.23 16199.60 1199.69 5799.35 1297.16 26599.38 12894.87 31498.97 15498.99 16698.01 9199.88 8497.29 15999.70 15999.58 87
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15198.00 18599.61 999.57 8299.25 2498.57 10599.35 14197.55 19699.31 10597.71 31894.61 25999.88 8496.14 25199.19 27699.70 52
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.69 10798.40 13899.54 2799.53 10299.17 3998.52 11199.31 15997.46 20798.44 23198.51 25697.83 10299.88 8496.46 23299.58 20399.58 87
VPA-MVSNet99.30 2899.30 3299.28 8699.49 11698.36 11499.00 6999.45 10799.63 1799.52 6299.44 7198.25 6999.88 8499.09 5599.84 8699.62 68
ACMMPR98.70 10498.42 13699.54 2799.52 10499.14 5298.52 11199.31 15997.47 20298.56 21998.54 25297.75 10999.88 8496.57 21999.59 19899.58 87
MP-MVScopyleft98.46 14598.09 17699.54 2799.57 8299.22 2798.50 11899.19 20297.61 18997.58 29098.66 23597.40 14099.88 8494.72 29599.60 19499.54 109
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CHOSEN 1792x268897.49 22897.14 24498.54 20499.68 5996.09 24796.50 29699.62 4791.58 36298.84 18298.97 17292.36 29999.88 8496.76 20499.95 3299.67 58
SteuartSystems-ACMMP98.79 8998.54 11699.54 2799.73 3999.16 4398.23 14399.31 15997.92 16598.90 16898.90 18998.00 9299.88 8496.15 25099.72 14999.58 87
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet596.01 30095.20 31698.41 21897.53 36596.10 24498.74 8699.50 8697.22 23698.03 26399.04 15069.80 39499.88 8497.27 16099.71 15499.25 221
iter_conf_final97.10 25796.65 27498.45 21398.53 30996.08 24998.30 13799.11 22398.10 15498.85 17998.95 17979.38 38099.87 10198.68 8399.91 6399.40 174
ZNCC-MVS98.68 11298.40 13899.54 2799.57 8299.21 2898.46 12499.29 17597.28 22498.11 25598.39 26998.00 9299.87 10196.86 19799.64 18199.55 105
SR-MVS98.71 10098.43 13499.57 1699.18 18899.35 1298.36 13499.29 17598.29 13698.88 17498.85 20297.53 12999.87 10196.14 25199.31 25599.48 138
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2899.64 1599.84 2099.83 399.50 899.87 10199.36 3899.92 5599.64 64
iter_conf0596.54 28496.07 29097.92 25397.90 34994.50 29797.87 19299.14 21997.73 17898.89 17098.95 17975.75 39099.87 10198.50 9599.92 5599.40 174
HPM-MVScopyleft98.79 8998.53 11799.59 1599.65 6699.29 1999.16 5199.43 11796.74 25798.61 21098.38 27198.62 4699.87 10196.47 23199.67 17399.59 81
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet96.14 29795.44 30798.25 23190.76 40195.50 26697.92 18394.65 37298.97 9392.98 38898.85 20289.12 32499.87 10195.99 25699.68 16799.39 177
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet97.02 26496.93 25097.30 30197.71 35794.22 30398.11 15699.30 16799.37 4596.91 32399.34 8886.72 33799.87 10197.53 14997.36 36397.81 356
ACMMPcopyleft98.75 9698.50 12199.52 3999.56 9099.16 4398.87 7999.37 13297.16 23898.82 18699.01 16297.71 11199.87 10196.29 24299.69 16299.54 109
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test111196.49 28896.82 26095.52 35299.42 13687.08 38599.22 4287.14 39799.11 7299.46 7199.58 4188.69 32699.86 11098.80 7299.95 3299.62 68
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7599.06 6498.69 9499.54 7799.31 5399.62 5199.53 5497.36 14299.86 11099.24 4899.71 15499.39 177
ZD-MVS99.01 22198.84 7599.07 22994.10 33298.05 26198.12 29296.36 19999.86 11092.70 34699.19 276
SR-MVS-dyc-post98.81 8798.55 11499.57 1699.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.49 13699.86 11096.56 22399.39 24399.45 151
tfpnnormal98.90 7698.90 7198.91 14899.67 6397.82 16999.00 6999.44 11199.45 3699.51 6699.24 10698.20 7799.86 11095.92 25999.69 16299.04 257
UniMVSNet (Re)98.87 7998.71 9099.35 7099.24 16798.73 8597.73 21199.38 12898.93 9799.12 12898.73 22196.77 17799.86 11098.63 8799.80 11099.46 147
NR-MVSNet98.95 7098.82 7899.36 6499.16 19198.72 8799.22 4299.20 19899.10 7999.72 3198.76 21896.38 19799.86 11098.00 12399.82 9699.50 124
GBi-Net98.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27099.86 11097.77 13799.69 16299.41 165
test198.65 11798.47 12899.17 10398.90 24198.24 12099.20 4599.44 11198.59 11798.95 15799.55 4894.14 27099.86 11097.77 13799.69 16299.41 165
FMVSNet199.17 4299.17 4399.17 10399.55 9498.24 12099.20 4599.44 11199.21 6399.43 7699.55 4897.82 10599.86 11098.42 10099.89 7499.41 165
XXY-MVS99.14 4699.15 5099.10 11599.76 3297.74 17698.85 8299.62 4798.48 12599.37 9099.49 6398.75 3699.86 11098.20 11099.80 11099.71 47
1112_ss97.29 24496.86 25698.58 19499.34 15496.32 24096.75 28699.58 5493.14 34596.89 32797.48 33292.11 30399.86 11096.91 18799.54 21599.57 92
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18299.71 4896.10 24497.87 19299.85 1598.56 12299.90 1299.68 2098.69 4199.85 12299.72 2199.98 1299.97 3
EGC-MVSNET85.24 36280.54 36599.34 7399.77 2999.20 3499.08 5999.29 17512.08 39920.84 40099.42 7497.55 12699.85 12297.08 17499.72 14998.96 271
GST-MVS98.61 12498.30 15399.52 3999.51 10699.20 3498.26 14199.25 18797.44 21098.67 20198.39 26997.68 11299.85 12296.00 25599.51 22499.52 119
patchmatchnet-post98.77 21684.37 35799.85 122
SCA96.41 29196.66 27295.67 34898.24 33188.35 37995.85 33096.88 35296.11 27997.67 28498.67 23293.10 28799.85 12294.16 31099.22 27098.81 294
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2998.37 11199.30 3299.57 6199.61 2299.40 8399.50 5997.12 15599.85 12299.02 6199.94 4099.80 29
HFP-MVS98.71 10098.44 13399.51 4399.49 11699.16 4398.52 11199.31 15997.47 20298.58 21698.50 26097.97 9699.85 12296.57 21999.59 19899.53 116
EI-MVSNet-UG-set98.69 10798.71 9098.62 18799.10 20296.37 23897.23 25898.87 26299.20 6599.19 12298.99 16697.30 14499.85 12298.77 7699.79 11599.65 63
EI-MVSNet-Vis-set98.68 11298.70 9398.63 18699.09 20596.40 23797.23 25898.86 26799.20 6599.18 12698.97 17297.29 14699.85 12298.72 7999.78 12099.64 64
v124098.55 13398.62 10598.32 22599.22 17295.58 26297.51 23899.45 10797.16 23899.45 7499.24 10696.12 20699.85 12299.60 2599.88 7599.55 105
APD-MVS_3200maxsize98.84 8398.61 10999.53 3499.19 18199.27 2298.49 11999.33 15298.64 11199.03 14698.98 17097.89 9999.85 12296.54 22799.42 24099.46 147
ADS-MVSNet295.43 31694.98 32096.76 32898.14 33791.74 35597.92 18397.76 32790.23 37296.51 34398.91 18685.61 34799.85 12292.88 33996.90 36998.69 312
MDA-MVSNet-bldmvs97.94 19497.91 19398.06 24699.44 13094.96 28496.63 29299.15 21898.35 12898.83 18399.11 13494.31 26799.85 12296.60 21698.72 31799.37 186
WR-MVS98.40 15198.19 16599.03 13199.00 22297.65 18296.85 28098.94 24998.57 12098.89 17098.50 26095.60 22899.85 12297.54 14899.85 8299.59 81
APD-MVScopyleft98.10 18197.67 20999.42 5899.11 20098.93 7197.76 20799.28 17894.97 31198.72 19898.77 21697.04 15999.85 12293.79 32499.54 21599.49 128
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmtry97.35 23896.97 24998.50 20997.31 37396.47 23698.18 14898.92 25498.95 9698.78 18999.37 8085.44 35099.85 12295.96 25899.83 9399.17 242
N_pmnet97.63 22097.17 24098.99 13699.27 16297.86 16395.98 31993.41 38295.25 30599.47 7098.90 18995.63 22799.85 12296.91 18799.73 14299.27 217
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16199.75 3696.59 23397.97 18099.86 1398.22 14199.88 1799.71 1798.59 4999.84 13999.73 1999.98 1299.98 2
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16799.55 9496.59 23397.79 20199.82 2298.21 14299.81 2399.53 5498.46 5899.84 13999.70 2299.97 2099.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 19099.55 9496.09 24797.74 20999.81 2398.55 12399.85 1999.55 4898.60 4899.84 13999.69 2499.98 1299.89 11
test250692.39 35491.89 35793.89 36999.38 14182.28 39999.32 2366.03 40599.08 8498.77 19299.57 4266.26 40099.84 13998.71 8099.95 3299.54 109
our_test_397.39 23697.73 20696.34 33398.70 27989.78 37494.61 36798.97 24896.50 26599.04 14398.85 20295.98 21699.84 13997.26 16199.67 17399.41 165
CANet_DTU97.26 24597.06 24697.84 25897.57 36294.65 29496.19 31398.79 27997.23 23395.14 37198.24 28393.22 28499.84 13997.34 15799.84 8699.04 257
ACMMP_NAP98.75 9698.48 12699.57 1699.58 7899.29 1997.82 19799.25 18796.94 24898.78 18999.12 13398.02 9099.84 13997.13 17199.67 17399.59 81
v14419298.54 13598.57 11398.45 21399.21 17495.98 25197.63 22399.36 13697.15 24099.32 10399.18 11795.84 22399.84 13999.50 3299.91 6399.54 109
v192192098.54 13598.60 11098.38 22199.20 17895.76 25997.56 23299.36 13697.23 23399.38 8799.17 12196.02 21099.84 13999.57 2799.90 7099.54 109
HPM-MVS++copyleft98.10 18197.64 21499.48 5199.09 20599.13 5597.52 23698.75 28697.46 20796.90 32697.83 31396.01 21199.84 13995.82 26799.35 24999.46 147
PMMVS298.07 18698.08 17998.04 24999.41 13894.59 29694.59 36899.40 12397.50 19998.82 18698.83 20596.83 17299.84 13997.50 15199.81 10099.71 47
XVG-ACMP-BASELINE98.56 12998.34 14899.22 9999.54 9998.59 9497.71 21299.46 10497.25 22798.98 15098.99 16697.54 12799.84 13995.88 26099.74 13999.23 226
CPTT-MVS97.84 20797.36 23199.27 8999.31 15598.46 10598.29 13899.27 18194.90 31397.83 27498.37 27294.90 24799.84 13993.85 32399.54 21599.51 121
UGNet98.53 13798.45 13198.79 16497.94 34696.96 22199.08 5998.54 29999.10 7996.82 33199.47 6596.55 18999.84 13998.56 9399.94 4099.55 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG98.68 11298.50 12199.20 10099.45 12998.63 8998.56 10699.57 6197.87 16998.85 17998.04 30097.66 11499.84 13996.72 20999.81 10099.13 246
DeepC-MVS97.60 498.97 6798.93 6899.10 11599.35 15297.98 15298.01 17399.46 10497.56 19499.54 5699.50 5998.97 2399.84 13998.06 11899.92 5599.49 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+97.89 398.69 10798.51 11999.24 9698.81 26198.40 10799.02 6699.19 20298.99 9198.07 25899.28 9797.11 15799.84 13996.84 19899.32 25399.47 145
Anonymous2023121199.27 3099.27 3599.26 9199.29 15998.18 12699.49 899.51 8499.70 899.80 2499.68 2096.84 17099.83 15699.21 4999.91 6399.77 35
Anonymous2023120698.21 17498.21 16298.20 23599.51 10695.43 26998.13 15399.32 15496.16 27898.93 16598.82 20896.00 21299.83 15697.32 15899.73 14299.36 192
XVS98.72 9998.45 13199.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29498.63 24297.50 13399.83 15696.79 20099.53 21999.56 98
X-MVStestdata94.32 33092.59 34899.53 3499.46 12699.21 2898.65 9699.34 14798.62 11597.54 29445.85 39797.50 13399.83 15696.79 20099.53 21999.56 98
v1098.97 6799.11 5298.55 20199.44 13096.21 24398.90 7799.55 7298.73 10799.48 6899.60 3996.63 18699.83 15699.70 2299.99 599.61 74
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2398.58 9599.27 3999.57 6199.39 4399.75 3099.62 3499.17 1899.83 15699.06 5799.62 18799.66 59
Baseline_NR-MVSNet98.98 6698.86 7599.36 6499.82 2298.55 9797.47 24299.57 6199.37 4599.21 12099.61 3796.76 17999.83 15698.06 11899.83 9399.71 47
LPG-MVS_test98.71 10098.46 13099.47 5499.57 8298.97 6698.23 14399.48 9596.60 26299.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
LGP-MVS_train99.47 5499.57 8298.97 6699.48 9596.60 26299.10 13299.06 14198.71 3999.83 15695.58 27799.78 12099.62 68
Test_1112_low_res96.99 26896.55 27998.31 22799.35 15295.47 26795.84 33199.53 8091.51 36496.80 33298.48 26391.36 30999.83 15696.58 21799.53 21999.62 68
ECVR-MVScopyleft96.42 29096.61 27595.85 34499.38 14188.18 38199.22 4286.00 39999.08 8499.36 9299.57 4288.47 33199.82 16698.52 9499.95 3299.54 109
SF-MVS98.53 13798.27 15799.32 8099.31 15598.75 8198.19 14799.41 12196.77 25698.83 18398.90 18997.80 10699.82 16695.68 27399.52 22299.38 184
new-patchmatchnet98.35 15798.74 8497.18 30699.24 16792.23 35296.42 30199.48 9598.30 13399.69 3799.53 5497.44 13899.82 16698.84 7199.77 12499.49 128
FIs99.14 4699.09 5599.29 8499.70 5598.28 11799.13 5599.52 8399.48 3299.24 11799.41 7796.79 17699.82 16698.69 8299.88 7599.76 39
v119298.60 12598.66 9998.41 21899.27 16295.88 25497.52 23699.36 13697.41 21199.33 9799.20 11396.37 19899.82 16699.57 2799.92 5599.55 105
pm-mvs199.44 1599.48 1499.33 7899.80 2398.63 8999.29 3399.63 4699.30 5599.65 4599.60 3999.16 2099.82 16699.07 5699.83 9399.56 98
VPNet98.87 7998.83 7799.01 13499.70 5597.62 18598.43 12799.35 14199.47 3499.28 10699.05 14896.72 18299.82 16698.09 11699.36 24799.59 81
pmmvs395.03 32294.40 32896.93 31797.70 35992.53 34495.08 35397.71 32988.57 38297.71 28198.08 29779.39 37999.82 16696.19 24799.11 28898.43 330
HPM-MVS_fast99.01 6198.82 7899.57 1699.71 4899.35 1299.00 6999.50 8697.33 21898.94 16498.86 19998.75 3699.82 16697.53 14999.71 15499.56 98
DELS-MVS98.27 16798.20 16398.48 21098.86 24996.70 23195.60 33799.20 19897.73 17898.45 23098.71 22497.50 13399.82 16698.21 10999.59 19898.93 277
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet298.49 14298.40 13898.75 17498.90 24197.14 21498.61 10199.13 22098.59 11799.19 12299.28 9794.14 27099.82 16697.97 12599.80 11099.29 214
WTY-MVS96.67 27996.27 28897.87 25798.81 26194.61 29596.77 28497.92 32594.94 31297.12 31297.74 31791.11 31199.82 16693.89 32098.15 34299.18 238
ACMP95.32 1598.41 14998.09 17699.36 6499.51 10698.79 8097.68 21599.38 12895.76 29198.81 18898.82 20898.36 6399.82 16694.75 29299.77 12499.48 138
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ET-MVSNet_ETH3D94.30 33293.21 34297.58 28298.14 33794.47 29994.78 36093.24 38494.72 31689.56 39495.87 36878.57 38599.81 17996.91 18797.11 36898.46 325
TSAR-MVS + MP.98.63 12198.49 12599.06 12799.64 7197.90 16098.51 11698.94 24996.96 24699.24 11798.89 19597.83 10299.81 17996.88 19499.49 23299.48 138
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v899.01 6199.16 4598.57 19699.47 12596.31 24198.90 7799.47 10299.03 8899.52 6299.57 4296.93 16699.81 17999.60 2599.98 1299.60 75
CR-MVSNet96.28 29495.95 29297.28 30297.71 35794.22 30398.11 15698.92 25492.31 35696.91 32399.37 8085.44 35099.81 17997.39 15597.36 36397.81 356
PatchT96.65 28096.35 28397.54 28797.40 37095.32 27297.98 17796.64 35599.33 5096.89 32799.42 7484.32 35899.81 17997.69 14497.49 35697.48 369
FMVSNet397.50 22697.24 23798.29 22998.08 34195.83 25697.86 19498.91 25697.89 16898.95 15798.95 17987.06 33599.81 17997.77 13799.69 16299.23 226
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2699.63 1799.78 2699.67 2599.48 999.81 17999.30 4399.97 2099.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EIA-MVS98.00 19097.74 20498.80 16198.72 27298.09 13698.05 16599.60 5197.39 21396.63 33795.55 37297.68 11299.80 18696.73 20899.27 26298.52 323
Anonymous2024052998.93 7298.87 7299.12 11199.19 18198.22 12599.01 6798.99 24799.25 5999.54 5699.37 8097.04 15999.80 18697.89 12899.52 22299.35 196
thisisatest051594.12 33693.16 34396.97 31698.60 29792.90 33893.77 38290.61 39294.10 33296.91 32395.87 36874.99 39199.80 18694.52 29999.12 28798.20 338
Effi-MVS+98.02 18897.82 20098.62 18798.53 30997.19 20997.33 25099.68 4197.30 22296.68 33597.46 33498.56 5299.80 18696.63 21598.20 33798.86 287
v114498.60 12598.66 9998.41 21899.36 14895.90 25397.58 23099.34 14797.51 19899.27 10899.15 12796.34 20099.80 18699.47 3499.93 4499.51 121
VDDNet98.21 17497.95 18899.01 13499.58 7897.74 17699.01 6797.29 34099.67 1298.97 15499.50 5990.45 31599.80 18697.88 13199.20 27399.48 138
EI-MVSNet98.40 15198.51 11998.04 24999.10 20294.73 29097.20 26298.87 26298.97 9399.06 13699.02 15396.00 21299.80 18698.58 8899.82 9699.60 75
CVMVSNet96.25 29597.21 23993.38 37599.10 20280.56 40297.20 26298.19 31696.94 24899.00 14899.02 15389.50 32299.80 18696.36 23899.59 19899.78 33
MVSTER96.86 27296.55 27997.79 26297.91 34894.21 30597.56 23298.87 26297.49 20199.06 13699.05 14880.72 37299.80 18698.44 9899.82 9699.37 186
sss97.21 25096.93 25098.06 24698.83 25595.22 27696.75 28698.48 30394.49 32097.27 30997.90 30992.77 29599.80 18696.57 21999.32 25399.16 245
ab-mvs98.41 14998.36 14598.59 19399.19 18197.23 20499.32 2398.81 27697.66 18398.62 20899.40 7996.82 17399.80 18695.88 26099.51 22498.75 305
TDRefinement99.42 1999.38 2199.55 2399.76 3299.33 1699.68 599.71 3399.38 4499.53 6099.61 3798.64 4399.80 18698.24 10799.84 8699.52 119
LS3D98.63 12198.38 14399.36 6497.25 37499.38 899.12 5799.32 15499.21 6398.44 23198.88 19697.31 14399.80 18696.58 21799.34 25198.92 278
hse-mvs297.46 23097.07 24598.64 18298.73 27097.33 19897.45 24397.64 33399.11 7298.58 21697.98 30388.65 32999.79 19998.11 11497.39 36098.81 294
AUN-MVS96.24 29695.45 30698.60 19298.70 27997.22 20697.38 24697.65 33195.95 28695.53 36697.96 30782.11 37199.79 19996.31 24097.44 35898.80 299
SMA-MVScopyleft98.40 15198.03 18399.51 4399.16 19199.21 2898.05 16599.22 19594.16 33098.98 15099.10 13797.52 13199.79 19996.45 23399.64 18199.53 116
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testdata299.79 19992.80 343
VDD-MVS98.56 12998.39 14199.07 12199.13 19898.07 14298.59 10397.01 34599.59 2399.11 12999.27 9994.82 25199.79 19998.34 10399.63 18499.34 198
v2v48298.56 12998.62 10598.37 22299.42 13695.81 25797.58 23099.16 21397.90 16799.28 10699.01 16295.98 21699.79 19999.33 3999.90 7099.51 121
mvs_anonymous97.83 20998.16 17096.87 32198.18 33591.89 35497.31 25298.90 25797.37 21598.83 18399.46 6696.28 20199.79 19998.90 6798.16 34198.95 272
tpm94.67 32694.34 33095.66 34997.68 36188.42 37897.88 18994.90 37194.46 32296.03 35598.56 25178.66 38399.79 19995.88 26095.01 38798.78 301
IS-MVSNet98.19 17697.90 19499.08 11999.57 8297.97 15399.31 2798.32 30999.01 9098.98 15099.03 15291.59 30799.79 19995.49 27999.80 11099.48 138
test_040298.76 9598.71 9098.93 14599.56 9098.14 13198.45 12699.34 14799.28 5798.95 15798.91 18698.34 6799.79 19995.63 27499.91 6398.86 287
ACMM96.08 1298.91 7498.73 8699.48 5199.55 9499.14 5298.07 16299.37 13297.62 18699.04 14398.96 17598.84 3099.79 19997.43 15399.65 17999.49 128
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
miper_lstm_enhance97.18 25397.16 24197.25 30598.16 33692.85 33995.15 35299.31 15997.25 22798.74 19798.78 21490.07 31799.78 21097.19 16499.80 11099.11 248
Anonymous20240521197.90 19597.50 22299.08 11998.90 24198.25 11998.53 11096.16 36198.87 10199.11 12998.86 19990.40 31699.78 21097.36 15699.31 25599.19 236
ppachtmachnet_test97.50 22697.74 20496.78 32798.70 27991.23 36694.55 36999.05 23396.36 27099.21 12098.79 21396.39 19599.78 21096.74 20699.82 9699.34 198
新几何198.91 14898.94 23197.76 17498.76 28387.58 38596.75 33498.10 29494.80 25499.78 21092.73 34599.00 29999.20 231
V4298.78 9198.78 8298.76 17199.44 13097.04 21698.27 14099.19 20297.87 16999.25 11699.16 12396.84 17099.78 21099.21 4999.84 8699.46 147
VNet98.42 14898.30 15398.79 16498.79 26597.29 20098.23 14398.66 29299.31 5398.85 17998.80 21194.80 25499.78 21098.13 11399.13 28499.31 209
testing393.51 34492.09 35297.75 26898.60 29794.40 30097.32 25195.26 37097.56 19496.79 33395.50 37453.57 40499.77 21695.26 28398.97 30399.08 249
FE-MVS95.66 31094.95 32297.77 26498.53 30995.28 27399.40 1696.09 36393.11 34697.96 26599.26 10179.10 38299.77 21692.40 35098.71 31998.27 336
agg_prior98.68 28697.99 14999.01 24495.59 35999.77 216
baseline293.73 34192.83 34796.42 33297.70 35991.28 36496.84 28189.77 39593.96 33692.44 38995.93 36679.14 38199.77 21692.94 33796.76 37398.21 337
PM-MVS98.82 8598.72 8899.12 11199.64 7198.54 10097.98 17799.68 4197.62 18699.34 9699.18 11797.54 12799.77 21697.79 13699.74 13999.04 257
TAMVS98.24 17298.05 18198.80 16199.07 20997.18 21097.88 18998.81 27696.66 26199.17 12799.21 11194.81 25399.77 21696.96 18599.88 7599.44 155
9.1497.78 20199.07 20997.53 23599.32 15495.53 29798.54 22398.70 22797.58 12399.76 22294.32 30999.46 234
TEST998.71 27598.08 14095.96 32299.03 23891.40 36595.85 35697.53 32896.52 19099.76 222
train_agg97.10 25796.45 28299.07 12198.71 27598.08 14095.96 32299.03 23891.64 36095.85 35697.53 32896.47 19299.76 22293.67 32599.16 27999.36 192
test_898.67 28798.01 14895.91 32799.02 24191.64 36095.79 35897.50 33196.47 19299.76 222
test20.0398.78 9198.77 8398.78 16799.46 12697.20 20897.78 20299.24 19299.04 8799.41 8098.90 18997.65 11599.76 22297.70 14299.79 11599.39 177
EG-PatchMatch MVS98.99 6399.01 6198.94 14399.50 10997.47 19098.04 16799.59 5298.15 15399.40 8399.36 8398.58 5199.76 22298.78 7399.68 16799.59 81
ACMH96.65 799.25 3399.24 3999.26 9199.72 4598.38 10999.07 6299.55 7298.30 13399.65 4599.45 7099.22 1599.76 22298.44 9899.77 12499.64 64
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.64 21997.49 22398.08 24499.14 19695.12 28096.70 28999.05 23393.77 33798.62 20898.83 20593.23 28399.75 22998.33 10599.76 13599.36 192
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13699.43 13597.73 17898.00 17499.62 4799.22 6199.55 5599.22 11098.93 2699.75 22998.66 8499.81 10099.50 124
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS95.94 1395.90 30495.35 31297.55 28697.95 34594.79 28698.81 8596.94 35092.28 35795.17 37098.57 25089.90 31999.75 22991.20 36597.33 36598.10 343
DP-MVS98.93 7298.81 8099.28 8699.21 17498.45 10698.46 12499.33 15299.63 1799.48 6899.15 12797.23 15099.75 22997.17 16599.66 17899.63 67
PatchmatchNetpermissive95.58 31295.67 29995.30 35797.34 37287.32 38497.65 22196.65 35495.30 30497.07 31598.69 22884.77 35399.75 22994.97 28898.64 32498.83 289
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_cas_vis1_n_192098.33 15998.68 9697.27 30399.69 5792.29 35098.03 16899.85 1597.62 18699.96 499.62 3493.98 27599.74 23499.52 3199.86 8199.79 30
ADS-MVSNet95.24 31994.93 32396.18 33898.14 33790.10 37397.92 18397.32 33990.23 37296.51 34398.91 18685.61 34799.74 23492.88 33996.90 36998.69 312
diffmvspermissive98.22 17398.24 16098.17 23799.00 22295.44 26896.38 30399.58 5497.79 17598.53 22498.50 26096.76 17999.74 23497.95 12799.64 18199.34 198
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 19797.60 21798.75 17499.31 15597.17 21197.62 22499.35 14198.72 10998.76 19498.68 23092.57 29899.74 23497.76 14195.60 38499.34 198
CDS-MVSNet97.69 21597.35 23298.69 17998.73 27097.02 21896.92 27898.75 28695.89 28898.59 21498.67 23292.08 30499.74 23496.72 20999.81 10099.32 205
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
nrg03099.40 2199.35 2399.54 2799.58 7899.13 5598.98 7299.48 9599.68 1199.46 7199.26 10198.62 4699.73 23999.17 5299.92 5599.76 39
无先验95.74 33398.74 28889.38 37999.73 23992.38 35199.22 230
LFMVS97.20 25196.72 26698.64 18298.72 27296.95 22298.93 7594.14 38099.74 698.78 18999.01 16284.45 35699.73 23997.44 15299.27 26299.25 221
YYNet197.60 22197.67 20997.39 29999.04 21793.04 33795.27 34798.38 30897.25 22798.92 16698.95 17995.48 23499.73 23996.99 18198.74 31599.41 165
MDA-MVSNet_test_wron97.60 22197.66 21297.41 29899.04 21793.09 33395.27 34798.42 30597.26 22698.88 17498.95 17995.43 23599.73 23997.02 17898.72 31799.41 165
Vis-MVSNet (Re-imp)97.46 23097.16 24198.34 22499.55 9496.10 24498.94 7498.44 30498.32 13298.16 24998.62 24488.76 32599.73 23993.88 32199.79 11599.18 238
PCF-MVS92.86 1894.36 32993.00 34698.42 21798.70 27997.56 18693.16 38699.11 22379.59 39497.55 29397.43 33592.19 30199.73 23979.85 39599.45 23697.97 350
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft96.50 1098.99 6398.85 7699.41 6099.58 7899.10 6098.74 8699.56 6899.09 8299.33 9799.19 11498.40 6199.72 24695.98 25799.76 13599.42 162
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
test_fmvs399.12 5199.41 1998.25 23199.76 3295.07 28299.05 6599.94 297.78 17699.82 2199.84 298.56 5299.71 24799.96 199.96 2599.97 3
原ACMM198.35 22398.90 24196.25 24298.83 27592.48 35496.07 35398.10 29495.39 23699.71 24792.61 34898.99 30099.08 249
UnsupCasMVSNet_bld97.30 24296.92 25298.45 21399.28 16096.78 23096.20 31299.27 18195.42 30098.28 24398.30 28093.16 28599.71 24794.99 28797.37 36198.87 286
test_post21.25 40083.86 36299.70 250
testdata98.09 24198.93 23395.40 27098.80 27890.08 37697.45 30298.37 27295.26 23899.70 25093.58 32898.95 30599.17 242
HQP_MVS97.99 19397.67 20998.93 14599.19 18197.65 18297.77 20499.27 18198.20 14697.79 27797.98 30394.90 24799.70 25094.42 30499.51 22499.45 151
plane_prior599.27 18199.70 25094.42 30499.51 22499.45 151
cl____97.02 26496.83 25997.58 28297.82 35294.04 31194.66 36499.16 21397.04 24398.63 20698.71 22488.68 32899.69 25497.00 17999.81 10099.00 264
DIV-MVS_self_test97.02 26496.84 25897.58 28297.82 35294.03 31294.66 36499.16 21397.04 24398.63 20698.71 22488.69 32699.69 25497.00 17999.81 10099.01 261
eth_miper_zixun_eth97.23 24997.25 23697.17 30798.00 34492.77 34194.71 36199.18 20697.27 22598.56 21998.74 22091.89 30599.69 25497.06 17799.81 10099.05 253
D2MVS97.84 20797.84 19997.83 25999.14 19694.74 28996.94 27498.88 26095.84 28998.89 17098.96 17594.40 26499.69 25497.55 14699.95 3299.05 253
Patchmatch-test96.55 28396.34 28497.17 30798.35 32493.06 33498.40 13097.79 32697.33 21898.41 23498.67 23283.68 36399.69 25495.16 28599.31 25598.77 302
CDPH-MVS97.26 24596.66 27299.07 12199.00 22298.15 12996.03 31899.01 24491.21 36897.79 27797.85 31296.89 16899.69 25492.75 34499.38 24699.39 177
test1298.93 14598.58 30297.83 16698.66 29296.53 34195.51 23299.69 25499.13 28499.27 217
casdiffmvspermissive98.95 7099.00 6298.81 15999.38 14197.33 19897.82 19799.57 6199.17 7099.35 9499.17 12198.35 6699.69 25498.46 9799.73 14299.41 165
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6999.02 6098.76 17199.38 14197.26 20398.49 11999.50 8698.86 10299.19 12299.06 14198.23 7199.69 25498.71 8099.76 13599.33 203
EU-MVSNet97.66 21898.50 12195.13 35899.63 7585.84 38898.35 13598.21 31398.23 14099.54 5699.46 6695.02 24599.68 26398.24 10799.87 7899.87 16
F-COLMAP97.30 24296.68 26999.14 10999.19 18198.39 10897.27 25799.30 16792.93 34896.62 33898.00 30195.73 22599.68 26392.62 34798.46 33099.35 196
OpenMVS_ROBcopyleft95.38 1495.84 30695.18 31797.81 26198.41 32297.15 21397.37 24798.62 29683.86 39098.65 20498.37 27294.29 26899.68 26388.41 37898.62 32696.60 381
test_fmvs298.70 10498.97 6697.89 25699.54 9994.05 30998.55 10799.92 696.78 25599.72 3199.78 896.60 18799.67 26699.91 299.90 7099.94 7
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9299.69 3698.90 9999.43 7699.35 8498.86 2899.67 26697.81 13499.81 10099.24 224
test-LLR93.90 33993.85 33394.04 36696.53 38684.62 39394.05 37892.39 38696.17 27694.12 38195.07 37882.30 36999.67 26695.87 26398.18 33897.82 354
test-mter92.33 35691.76 35994.04 36696.53 38684.62 39394.05 37892.39 38694.00 33594.12 38195.07 37865.63 40299.67 26695.87 26398.18 33897.82 354
thres600view794.45 32893.83 33496.29 33599.06 21391.53 35797.99 17694.24 37898.34 12997.44 30395.01 38079.84 37599.67 26684.33 38798.23 33597.66 364
114514_t96.50 28795.77 29498.69 17999.48 12397.43 19497.84 19699.55 7281.42 39396.51 34398.58 24995.53 23099.67 26693.41 33399.58 20398.98 266
PVSNet_BlendedMVS97.55 22597.53 22097.60 28098.92 23793.77 32596.64 29199.43 11794.49 32097.62 28699.18 11796.82 17399.67 26694.73 29399.93 4499.36 192
PVSNet_Blended96.88 27196.68 26997.47 29498.92 23793.77 32594.71 36199.43 11790.98 37097.62 28697.36 34096.82 17399.67 26694.73 29399.56 21098.98 266
PHI-MVS98.29 16697.95 18899.34 7398.44 31799.16 4398.12 15599.38 12896.01 28498.06 25998.43 26697.80 10699.67 26695.69 27299.58 20399.20 231
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4898.83 7698.60 10299.58 5499.11 7299.53 6099.18 11798.81 3299.67 26696.71 21199.77 12499.50 124
test_post197.59 22920.48 40183.07 36699.66 27794.16 310
旧先验295.76 33288.56 38397.52 29699.66 27794.48 300
MCST-MVS98.00 19097.63 21599.10 11599.24 16798.17 12896.89 27998.73 28995.66 29297.92 26697.70 32097.17 15399.66 27796.18 24999.23 26999.47 145
NCCC97.86 20197.47 22699.05 12898.61 29598.07 14296.98 27298.90 25797.63 18597.04 31797.93 30895.99 21599.66 27795.31 28298.82 31399.43 159
PMMVS96.51 28595.98 29198.09 24197.53 36595.84 25594.92 35798.84 27191.58 36296.05 35495.58 37195.68 22699.66 27795.59 27698.09 34598.76 304
FA-MVS(test-final)96.99 26896.82 26097.50 29198.70 27994.78 28799.34 2096.99 34695.07 30898.48 22899.33 9088.41 33299.65 28296.13 25398.92 30898.07 345
OPM-MVS98.56 12998.32 15299.25 9499.41 13898.73 8597.13 26799.18 20697.10 24198.75 19598.92 18598.18 7899.65 28296.68 21399.56 21099.37 186
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet96.62 28296.25 28997.71 27399.04 21794.66 29399.16 5196.92 35197.23 23397.87 27099.10 13786.11 34499.65 28291.65 35699.21 27298.82 290
CL-MVSNet_self_test97.44 23397.22 23898.08 24498.57 30495.78 25894.30 37498.79 27996.58 26498.60 21298.19 28894.74 25899.64 28596.41 23598.84 31098.82 290
c3_l97.36 23797.37 23097.31 30098.09 34093.25 33295.01 35599.16 21397.05 24298.77 19298.72 22392.88 29299.64 28596.93 18699.76 13599.05 253
DeepC-MVS_fast96.85 698.30 16398.15 17198.75 17498.61 29597.23 20497.76 20799.09 22797.31 22198.75 19598.66 23597.56 12599.64 28596.10 25499.55 21399.39 177
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
pmmvs-eth3d98.47 14498.34 14898.86 15399.30 15897.76 17497.16 26599.28 17895.54 29699.42 7999.19 11497.27 14799.63 28897.89 12899.97 2099.20 231
baseline195.96 30395.44 30797.52 28998.51 31293.99 31598.39 13196.09 36398.21 14298.40 23897.76 31686.88 33699.63 28895.42 28089.27 39698.95 272
thres100view90094.19 33393.67 33795.75 34799.06 21391.35 36198.03 16894.24 37898.33 13097.40 30594.98 38279.84 37599.62 29083.05 38998.08 34696.29 382
tfpn200view994.03 33793.44 33995.78 34698.93 23391.44 35997.60 22794.29 37697.94 16397.10 31394.31 38879.67 37799.62 29083.05 38998.08 34696.29 382
Patchmatch-RL test97.26 24597.02 24897.99 25299.52 10495.53 26496.13 31699.71 3397.47 20299.27 10899.16 12384.30 35999.62 29097.89 12899.77 12498.81 294
v14898.45 14698.60 11098.00 25199.44 13094.98 28397.44 24499.06 23098.30 13399.32 10398.97 17296.65 18599.62 29098.37 10199.85 8299.39 177
thres40094.14 33593.44 33996.24 33798.93 23391.44 35997.60 22794.29 37697.94 16397.10 31394.31 38879.67 37799.62 29083.05 38998.08 34697.66 364
CostFormer93.97 33893.78 33594.51 36397.53 36585.83 38997.98 17795.96 36589.29 38094.99 37398.63 24278.63 38499.62 29094.54 29896.50 37498.09 344
miper_ehance_all_eth97.06 26197.03 24797.16 30997.83 35193.06 33494.66 36499.09 22795.99 28598.69 19998.45 26592.73 29699.61 29696.79 20099.03 29498.82 290
gm-plane-assit94.83 39681.97 40088.07 38494.99 38199.60 29791.76 354
MVP-Stereo98.08 18597.92 19298.57 19698.96 22996.79 22797.90 18699.18 20696.41 26998.46 22998.95 17995.93 21999.60 29796.51 22998.98 30299.31 209
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs497.58 22497.28 23598.51 20798.84 25396.93 22495.40 34598.52 30193.60 33998.61 21098.65 23795.10 24399.60 29796.97 18499.79 11598.99 265
JIA-IIPM95.52 31495.03 31997.00 31396.85 38294.03 31296.93 27695.82 36699.20 6594.63 37799.71 1783.09 36599.60 29794.42 30494.64 38897.36 372
test_prior98.95 14298.69 28497.95 15799.03 23899.59 30199.30 212
tpmrst95.07 32195.46 30593.91 36897.11 37684.36 39597.62 22496.96 34894.98 31096.35 34898.80 21185.46 34999.59 30195.60 27596.23 37897.79 359
dp93.47 34593.59 33893.13 37796.64 38581.62 40197.66 21996.42 35992.80 35196.11 35198.64 24078.55 38699.59 30193.31 33492.18 39598.16 340
PLCcopyleft94.65 1696.51 28595.73 29698.85 15498.75 26897.91 15996.42 30199.06 23090.94 37195.59 35997.38 33894.41 26399.59 30190.93 36898.04 35199.05 253
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD_test198.83 8498.66 9999.34 7399.78 2699.47 698.42 12999.45 10798.28 13898.98 15099.19 11497.76 10899.58 30596.57 21999.55 21398.97 269
miper_enhance_ethall96.01 30095.74 29596.81 32596.41 38992.27 35193.69 38398.89 25991.14 36998.30 24197.35 34190.58 31499.58 30596.31 24099.03 29498.60 320
AllTest98.44 14798.20 16399.16 10699.50 10998.55 9798.25 14299.58 5496.80 25398.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
TestCases99.16 10699.50 10998.55 9799.58 5496.80 25398.88 17499.06 14197.65 11599.57 30794.45 30299.61 19299.37 186
CNVR-MVS98.17 17997.87 19799.07 12198.67 28798.24 12097.01 27098.93 25197.25 22797.62 28698.34 27697.27 14799.57 30796.42 23499.33 25299.39 177
TESTMET0.1,192.19 35891.77 35893.46 37396.48 38882.80 39894.05 37891.52 39094.45 32494.00 38494.88 38466.65 39999.56 31095.78 26898.11 34498.02 347
thres20093.72 34293.14 34495.46 35598.66 29291.29 36396.61 29394.63 37397.39 21396.83 33093.71 39079.88 37499.56 31082.40 39298.13 34395.54 391
MVS_Test98.18 17798.36 14597.67 27498.48 31394.73 29098.18 14899.02 24197.69 18198.04 26299.11 13497.22 15199.56 31098.57 9098.90 30998.71 308
test_yl96.69 27796.29 28697.90 25498.28 32895.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34099.55 31394.87 29098.32 33298.89 282
DCV-MVSNet96.69 27796.29 28697.90 25498.28 32895.24 27497.29 25497.36 33698.21 14298.17 24797.86 31086.27 34099.55 31394.87 29098.32 33298.89 282
alignmvs97.35 23896.88 25598.78 16798.54 30798.09 13697.71 21297.69 33099.20 6597.59 28995.90 36788.12 33499.55 31398.18 11198.96 30498.70 311
HQP4-MVS95.56 36199.54 31699.32 205
HQP-MVS97.00 26796.49 28198.55 20198.67 28796.79 22796.29 30799.04 23696.05 28195.55 36296.84 34993.84 27699.54 31692.82 34199.26 26599.32 205
tpmvs95.02 32395.25 31494.33 36496.39 39085.87 38798.08 16096.83 35395.46 29995.51 36798.69 22885.91 34599.53 31894.16 31096.23 37897.58 367
tpm293.09 34992.58 34994.62 36297.56 36386.53 38697.66 21995.79 36786.15 38794.07 38398.23 28575.95 38899.53 31890.91 36996.86 37297.81 356
MDTV_nov1_ep1395.22 31597.06 37983.20 39797.74 20996.16 36194.37 32696.99 31998.83 20583.95 36199.53 31893.90 31997.95 352
AdaColmapbinary97.14 25696.71 26798.46 21298.34 32597.80 17296.95 27398.93 25195.58 29596.92 32197.66 32195.87 22199.53 31890.97 36799.14 28298.04 346
new_pmnet96.99 26896.76 26497.67 27498.72 27294.89 28595.95 32498.20 31492.62 35398.55 22198.54 25294.88 25099.52 32293.96 31899.44 23998.59 322
RPSCF98.62 12398.36 14599.42 5899.65 6699.42 798.55 10799.57 6197.72 18098.90 16899.26 10196.12 20699.52 32295.72 27099.71 15499.32 205
MAR-MVS96.47 28995.70 29798.79 16497.92 34799.12 5798.28 13998.60 29792.16 35895.54 36596.17 36294.77 25799.52 32289.62 37598.23 33597.72 362
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 19597.69 20898.52 20699.17 18997.66 18197.19 26499.47 10296.31 27397.85 27398.20 28796.71 18399.52 32294.62 29699.72 14998.38 332
Gipumacopyleft99.03 6099.16 4598.64 18299.94 298.51 10299.32 2399.75 3199.58 2598.60 21299.62 3498.22 7499.51 32697.70 14299.73 14297.89 351
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
ambc98.24 23398.82 25895.97 25298.62 10099.00 24699.27 10899.21 11196.99 16499.50 32796.55 22699.50 23199.26 220
testgi98.32 16098.39 14198.13 24099.57 8295.54 26397.78 20299.49 9397.37 21599.19 12297.65 32298.96 2499.49 32896.50 23098.99 30099.34 198
EPNet_dtu94.93 32494.78 32595.38 35693.58 39887.68 38396.78 28395.69 36897.35 21789.14 39598.09 29688.15 33399.49 32894.95 28999.30 25898.98 266
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.24 24896.78 26398.61 19099.03 22097.83 16696.36 30499.06 23093.49 34297.36 30897.78 31495.75 22499.49 32893.44 33298.77 31498.52 323
test_fmvs1_n98.09 18498.28 15597.52 28999.68 5993.47 33098.63 9899.93 495.41 30399.68 3999.64 3291.88 30699.48 33199.82 899.87 7899.62 68
test_241102_ONE99.49 11699.17 3999.31 15997.98 15999.66 4298.90 18998.36 6399.48 331
CLD-MVS97.49 22897.16 24198.48 21099.07 20997.03 21794.71 36199.21 19694.46 32298.06 25997.16 34497.57 12499.48 33194.46 30199.78 12098.95 272
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-untuned96.83 27396.75 26597.08 31098.74 26993.33 33196.71 28898.26 31196.72 25898.44 23197.37 33995.20 24099.47 33491.89 35397.43 35998.44 329
OMC-MVS97.88 19997.49 22399.04 13098.89 24698.63 8996.94 27499.25 18795.02 30998.53 22498.51 25697.27 14799.47 33493.50 33199.51 22499.01 261
canonicalmvs98.34 15898.26 15898.58 19498.46 31597.82 16998.96 7399.46 10499.19 6997.46 30195.46 37698.59 4999.46 33698.08 11798.71 31998.46 325
mvsany_test398.87 7998.92 6998.74 17899.38 14196.94 22398.58 10499.10 22596.49 26699.96 499.81 598.18 7899.45 33798.97 6499.79 11599.83 22
CNLPA97.17 25496.71 26798.55 20198.56 30598.05 14696.33 30598.93 25196.91 25097.06 31697.39 33794.38 26599.45 33791.66 35599.18 27898.14 341
BH-RMVSNet96.83 27396.58 27897.58 28298.47 31494.05 30996.67 29097.36 33696.70 26097.87 27097.98 30395.14 24299.44 33990.47 37298.58 32899.25 221
DPM-MVS96.32 29295.59 30298.51 20798.76 26697.21 20794.54 37098.26 31191.94 35996.37 34797.25 34293.06 28999.43 34091.42 36198.74 31598.89 282
PVSNet93.40 1795.67 30995.70 29795.57 35198.83 25588.57 37792.50 38897.72 32892.69 35296.49 34696.44 35893.72 28199.43 34093.61 32699.28 26198.71 308
test_vis1_n98.31 16298.50 12197.73 27299.76 3294.17 30798.68 9599.91 796.31 27399.79 2599.57 4292.85 29499.42 34299.79 1399.84 8699.60 75
test_fmvs197.72 21397.94 19097.07 31298.66 29292.39 34797.68 21599.81 2395.20 30799.54 5699.44 7191.56 30899.41 34399.78 1599.77 12499.40 174
TSAR-MVS + GP.98.18 17797.98 18698.77 17098.71 27597.88 16196.32 30698.66 29296.33 27199.23 11998.51 25697.48 13799.40 34497.16 16699.46 23499.02 260
TAPA-MVS96.21 1196.63 28195.95 29298.65 18198.93 23398.09 13696.93 27699.28 17883.58 39198.13 25397.78 31496.13 20599.40 34493.52 32999.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 34793.13 34593.75 37097.39 37184.74 39297.39 24597.65 33183.39 39294.16 38098.41 26782.86 36799.39 34691.56 35995.35 38697.14 374
MG-MVS96.77 27696.61 27597.26 30498.31 32793.06 33495.93 32598.12 32096.45 26897.92 26698.73 22193.77 28099.39 34691.19 36699.04 29399.33 203
MVS_111021_HR98.25 17198.08 17998.75 17499.09 20597.46 19195.97 32099.27 18197.60 19097.99 26498.25 28298.15 8499.38 34896.87 19599.57 20799.42 162
Syy-MVS96.04 29995.56 30397.49 29297.10 37794.48 29896.18 31496.58 35695.65 29394.77 37492.29 39491.27 31099.36 34998.17 11298.05 34998.63 318
myMVS_eth3d91.92 35990.45 36296.30 33497.10 37790.90 36996.18 31496.58 35695.65 29394.77 37492.29 39453.88 40399.36 34989.59 37698.05 34998.63 318
MS-PatchMatch97.68 21697.75 20397.45 29598.23 33393.78 32497.29 25498.84 27196.10 28098.64 20598.65 23796.04 20999.36 34996.84 19899.14 28299.20 231
ITE_SJBPF98.87 15299.22 17298.48 10499.35 14197.50 19998.28 24398.60 24797.64 11899.35 35293.86 32299.27 26298.79 300
MVS_111021_LR98.30 16398.12 17498.83 15699.16 19198.03 14796.09 31799.30 16797.58 19198.10 25698.24 28398.25 6999.34 35396.69 21299.65 17999.12 247
USDC97.41 23597.40 22797.44 29698.94 23193.67 32795.17 35099.53 8094.03 33498.97 15499.10 13795.29 23799.34 35395.84 26699.73 14299.30 212
MSDG97.71 21497.52 22198.28 23098.91 24096.82 22694.42 37199.37 13297.65 18498.37 23998.29 28197.40 14099.33 35594.09 31599.22 27098.68 315
XVG-OURS98.53 13798.34 14899.11 11399.50 10998.82 7895.97 32099.50 8697.30 22299.05 14198.98 17099.35 1299.32 35695.72 27099.68 16799.18 238
DP-MVS Recon97.33 24096.92 25298.57 19699.09 20597.99 14996.79 28299.35 14193.18 34497.71 28198.07 29895.00 24699.31 35793.97 31799.13 28498.42 331
EPMVS93.72 34293.27 34195.09 36096.04 39387.76 38298.13 15385.01 40094.69 31796.92 32198.64 24078.47 38799.31 35795.04 28696.46 37598.20 338
mvsany_test197.60 22197.54 21997.77 26497.72 35595.35 27195.36 34697.13 34394.13 33199.71 3399.33 9097.93 9899.30 35997.60 14598.94 30698.67 316
MVS93.19 34892.09 35296.50 33196.91 38094.03 31298.07 16298.06 32268.01 39594.56 37896.48 35695.96 21899.30 35983.84 38896.89 37196.17 384
GA-MVS95.86 30595.32 31397.49 29298.60 29794.15 30893.83 38197.93 32495.49 29896.68 33597.42 33683.21 36499.30 35996.22 24598.55 32999.01 261
XVG-OURS-SEG-HR98.49 14298.28 15599.14 10999.49 11698.83 7696.54 29499.48 9597.32 22099.11 12998.61 24699.33 1399.30 35996.23 24498.38 33199.28 216
DeepPCF-MVS96.93 598.32 16098.01 18499.23 9898.39 32398.97 6695.03 35499.18 20696.88 25199.33 9798.78 21498.16 8299.28 36396.74 20699.62 18799.44 155
TinyColmap97.89 19797.98 18697.60 28098.86 24994.35 30296.21 31199.44 11197.45 20999.06 13698.88 19697.99 9599.28 36394.38 30899.58 20399.18 238
KD-MVS_2432*160092.87 35191.99 35495.51 35391.37 39989.27 37594.07 37698.14 31895.42 30097.25 31096.44 35867.86 39699.24 36591.28 36396.08 38198.02 347
cl2295.79 30795.39 31096.98 31596.77 38492.79 34094.40 37298.53 30094.59 31997.89 26998.17 28982.82 36899.24 36596.37 23699.03 29498.92 278
miper_refine_blended92.87 35191.99 35495.51 35391.37 39989.27 37594.07 37698.14 31895.42 30097.25 31096.44 35867.86 39699.24 36591.28 36396.08 38198.02 347
PAPM91.88 36090.34 36396.51 33098.06 34292.56 34392.44 38997.17 34186.35 38690.38 39396.01 36386.61 33899.21 36870.65 39995.43 38597.75 360
MVS-HIRNet94.32 33095.62 30090.42 37998.46 31575.36 40396.29 30789.13 39695.25 30595.38 36899.75 1192.88 29299.19 36994.07 31699.39 24396.72 380
PAPM_NR96.82 27596.32 28598.30 22899.07 20996.69 23297.48 24098.76 28395.81 29096.61 33996.47 35794.12 27399.17 37090.82 37197.78 35399.06 252
TR-MVS95.55 31395.12 31896.86 32497.54 36493.94 31696.49 29796.53 35894.36 32797.03 31896.61 35394.26 26999.16 37186.91 38396.31 37797.47 370
API-MVS97.04 26396.91 25497.42 29797.88 35098.23 12498.18 14898.50 30297.57 19297.39 30696.75 35196.77 17799.15 37290.16 37399.02 29794.88 392
PAPR95.29 31794.47 32697.75 26897.50 36995.14 27994.89 35898.71 29091.39 36695.35 36995.48 37594.57 26099.14 37384.95 38697.37 36198.97 269
131495.74 30895.60 30196.17 33997.53 36592.75 34298.07 16298.31 31091.22 36794.25 37996.68 35295.53 23099.03 37491.64 35797.18 36696.74 379
gg-mvs-nofinetune92.37 35591.20 36095.85 34495.80 39592.38 34899.31 2781.84 40299.75 591.83 39199.74 1368.29 39599.02 37587.15 38297.12 36796.16 385
BH-w/o95.13 32094.89 32495.86 34398.20 33491.31 36295.65 33597.37 33593.64 33896.52 34295.70 37093.04 29099.02 37588.10 38095.82 38397.24 373
test0.0.03 194.51 32793.69 33696.99 31496.05 39293.61 32994.97 35693.49 38196.17 27697.57 29294.88 38482.30 36999.01 37793.60 32794.17 39198.37 334
tt080598.69 10798.62 10598.90 15199.75 3699.30 1799.15 5396.97 34798.86 10298.87 17897.62 32598.63 4598.96 37899.41 3798.29 33498.45 327
E-PMN94.17 33494.37 32993.58 37296.86 38185.71 39090.11 39297.07 34498.17 14997.82 27697.19 34384.62 35598.94 37989.77 37497.68 35596.09 388
EMVS93.83 34094.02 33293.23 37696.83 38384.96 39189.77 39396.32 36097.92 16597.43 30496.36 36186.17 34298.93 38087.68 38197.73 35495.81 389
test_vis3_rt99.14 4699.17 4399.07 12199.78 2698.38 10998.92 7699.94 297.80 17499.91 1199.67 2597.15 15498.91 38199.76 1699.56 21099.92 9
CMPMVSbinary75.91 2396.29 29395.44 30798.84 15596.25 39198.69 8897.02 26999.12 22188.90 38197.83 27498.86 19989.51 32198.90 38291.92 35299.51 22498.92 278
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_089.98 2191.15 36190.30 36493.70 37197.72 35584.34 39690.24 39197.42 33490.20 37593.79 38693.09 39290.90 31298.89 38386.57 38472.76 39897.87 353
MSLP-MVS++98.02 18898.14 17397.64 27898.58 30295.19 27797.48 24099.23 19497.47 20297.90 26898.62 24497.04 15998.81 38497.55 14699.41 24198.94 276
OPU-MVS98.82 15798.59 30098.30 11698.10 15898.52 25598.18 7898.75 38594.62 29699.48 23399.41 165
test_f98.67 11598.87 7298.05 24899.72 4595.59 26098.51 11699.81 2396.30 27599.78 2699.82 496.14 20498.63 38699.82 899.93 4499.95 6
cascas94.79 32594.33 33196.15 34296.02 39492.36 34992.34 39099.26 18685.34 38995.08 37294.96 38392.96 29198.53 38794.41 30798.59 32797.56 368
wuyk23d96.06 29897.62 21691.38 37898.65 29498.57 9698.85 8296.95 34996.86 25299.90 1299.16 12399.18 1798.40 38889.23 37799.77 12477.18 396
test_vis1_rt97.75 21197.72 20797.83 25998.81 26196.35 23997.30 25399.69 3694.61 31897.87 27098.05 29996.26 20298.32 38998.74 7798.18 33898.82 290
PMVScopyleft91.26 2097.86 20197.94 19097.65 27699.71 4897.94 15898.52 11198.68 29198.99 9197.52 29699.35 8497.41 13998.18 39091.59 35899.67 17396.82 378
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND94.76 36194.54 39792.13 35399.31 2780.47 40388.73 39691.01 39667.59 39898.16 39182.30 39394.53 39093.98 393
dmvs_re95.98 30295.39 31097.74 27098.86 24997.45 19298.37 13395.69 36897.95 16296.56 34095.95 36590.70 31397.68 39288.32 37996.13 38098.11 342
test_method79.78 36379.50 36680.62 38080.21 40245.76 40670.82 39498.41 30731.08 39880.89 39997.71 31884.85 35297.37 39391.51 36080.03 39798.75 305
PC_three_145293.27 34399.40 8398.54 25298.22 7497.00 39495.17 28499.45 23699.49 128
dmvs_testset92.94 35092.21 35195.13 35898.59 30090.99 36897.65 22192.09 38896.95 24794.00 38493.55 39192.34 30096.97 39572.20 39892.52 39397.43 371
FPMVS93.44 34692.23 35097.08 31099.25 16697.86 16395.61 33697.16 34292.90 34993.76 38798.65 23775.94 38995.66 39679.30 39697.49 35697.73 361
MVEpermissive83.40 2292.50 35391.92 35694.25 36598.83 25591.64 35692.71 38783.52 40195.92 28786.46 39895.46 37695.20 24095.40 39780.51 39498.64 32495.73 390
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SD-MVS98.40 15198.68 9697.54 28798.96 22997.99 14997.88 18999.36 13698.20 14699.63 4899.04 15098.76 3595.33 39896.56 22399.74 13999.31 209
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepMVS_CXcopyleft93.44 37498.24 33194.21 30594.34 37564.28 39691.34 39294.87 38689.45 32392.77 39977.54 39793.14 39293.35 394
tmp_tt78.77 36478.73 36778.90 38158.45 40374.76 40594.20 37578.26 40439.16 39786.71 39792.82 39380.50 37375.19 40086.16 38592.29 39486.74 395
test12317.04 36720.11 3707.82 38210.25 4054.91 40794.80 3594.47 4074.93 40010.00 40224.28 3999.69 4053.64 40110.14 40012.43 40014.92 397
testmvs17.12 36620.53 3696.87 38312.05 4044.20 40893.62 3846.73 4064.62 40110.41 40124.33 3988.28 4063.56 4029.69 40115.07 39912.86 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.66 36532.88 3680.00 3840.00 4060.00 4090.00 39599.10 2250.00 4020.00 40397.58 32699.21 160.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas8.17 36810.90 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40298.07 860.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.12 36910.83 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40397.48 3320.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS90.90 36991.37 362
FOURS199.73 3999.67 299.43 1199.54 7799.43 4099.26 112
test_one_060199.39 14099.20 3499.31 15998.49 12498.66 20399.02 15397.64 118
eth-test20.00 406
eth-test0.00 406
RE-MVS-def98.58 11299.20 17899.38 898.48 12299.30 16798.64 11198.95 15798.96 17597.75 10996.56 22399.39 24399.45 151
IU-MVS99.49 11699.15 4798.87 26292.97 34799.41 8096.76 20499.62 18799.66 59
save fliter99.11 20097.97 15396.53 29599.02 24198.24 139
test072699.50 10999.21 2898.17 15199.35 14197.97 16099.26 11299.06 14197.61 121
GSMVS98.81 294
test_part299.36 14899.10 6099.05 141
sam_mvs184.74 35498.81 294
sam_mvs84.29 360
MTGPAbinary99.20 198
MTMP97.93 18191.91 389
test9_res93.28 33599.15 28199.38 184
agg_prior292.50 34999.16 27999.37 186
test_prior497.97 15395.86 328
test_prior295.74 33396.48 26796.11 35197.63 32495.92 22094.16 31099.20 273
新几何295.93 325
旧先验198.82 25897.45 19298.76 28398.34 27695.50 23399.01 29899.23 226
原ACMM295.53 339
test22298.92 23796.93 22495.54 33898.78 28185.72 38896.86 32998.11 29394.43 26299.10 28999.23 226
segment_acmp97.02 162
testdata195.44 34496.32 272
plane_prior799.19 18197.87 162
plane_prior698.99 22597.70 18094.90 247
plane_prior497.98 303
plane_prior397.78 17397.41 21197.79 277
plane_prior297.77 20498.20 146
plane_prior199.05 216
plane_prior97.65 18297.07 26896.72 25899.36 247
n20.00 408
nn0.00 408
door-mid99.57 61
test1198.87 262
door99.41 121
HQP5-MVS96.79 227
HQP-NCC98.67 28796.29 30796.05 28195.55 362
ACMP_Plane98.67 28796.29 30796.05 28195.55 362
BP-MVS92.82 341
HQP3-MVS99.04 23699.26 265
HQP2-MVS93.84 276
NP-MVS98.84 25397.39 19696.84 349
MDTV_nov1_ep13_2view74.92 40497.69 21490.06 37797.75 28085.78 34693.52 32998.69 312
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 190