This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.93 199.92 199.94 199.99 199.97 199.90 199.89 1099.98 199.99 199.96 199.77 2100.00 199.81 11100.00 199.85 19
dcpmvs_298.78 9099.11 5297.78 26599.56 8993.67 32999.06 6299.86 1399.50 3099.66 4299.26 10097.21 15499.99 298.00 12399.91 6399.68 54
HyFIR lowres test97.19 25596.60 27998.96 13999.62 7697.28 20295.17 35899.50 8794.21 33899.01 14798.32 27786.61 34299.99 297.10 17399.84 8599.60 74
test_fmvsmconf0.01_n99.57 799.63 799.36 6499.87 1298.13 13198.08 16199.95 199.45 3699.98 299.75 1199.80 199.97 499.82 899.99 599.99 1
patch_mono-298.51 14098.63 10298.17 23799.38 14094.78 28997.36 24999.69 3798.16 15398.49 22699.29 9597.06 16099.97 498.29 10499.91 6399.76 39
jajsoiax99.58 699.61 899.48 5199.87 1298.61 9299.28 3799.66 4599.09 8399.89 1599.68 2099.53 799.97 499.50 3299.99 599.87 16
mvs_tets99.63 599.67 599.49 4899.88 998.61 9299.34 2099.71 3499.27 5799.90 1299.74 1399.68 499.97 499.55 2999.99 599.88 14
DTE-MVSNet99.43 1899.35 2399.66 499.71 4799.30 1799.31 2799.51 8599.64 1599.56 5399.46 6698.23 7399.97 498.78 7299.93 4499.72 45
MVSFormer98.26 17098.43 13397.77 26698.88 24693.89 32399.39 1799.56 6999.11 7398.16 24898.13 28893.81 28099.97 499.26 4399.57 20799.43 158
test_djsdf99.52 1099.51 1199.53 3499.86 1598.74 8299.39 1799.56 6999.11 7399.70 3599.73 1599.00 2299.97 499.26 4399.98 1299.89 11
test_fmvsmconf0.1_n99.49 1299.54 1099.34 7399.78 2598.11 13297.77 20599.90 999.33 5099.97 399.66 2799.71 399.96 1199.79 1399.99 599.96 5
test_fmvsmconf_n99.44 1599.48 1499.31 8399.64 7098.10 13497.68 21699.84 1899.29 5599.92 899.57 4299.60 599.96 1199.74 1899.98 1299.89 11
SDMVSNet99.23 3899.32 2898.96 13999.68 5897.35 19898.84 8599.48 9699.69 999.63 4899.68 2099.03 2199.96 1197.97 12599.92 5599.57 91
sd_testset99.28 2999.31 3099.19 10199.68 5898.06 14499.41 1399.30 16999.69 999.63 4899.68 2099.25 1499.96 1197.25 16299.92 5599.57 91
test_fmvsm_n_192099.33 2699.45 1898.99 13599.57 8197.73 17897.93 18299.83 2099.22 6099.93 699.30 9499.42 1099.96 1199.85 599.99 599.29 212
h-mvs3397.77 21297.33 23799.10 11499.21 17397.84 16498.35 13698.57 29999.11 7398.58 21599.02 15288.65 33399.96 1198.11 11396.34 38599.49 127
IterMVS-SCA-FT97.85 20898.18 16796.87 32499.27 16191.16 37295.53 34699.25 18999.10 8099.41 8099.35 8393.10 28999.96 1198.65 8399.94 4099.49 127
UA-Net99.47 1399.40 2099.70 299.49 11599.29 1999.80 399.72 3399.82 399.04 14399.81 598.05 9199.96 1198.85 6999.99 599.86 18
PS-MVSNAJss99.46 1499.49 1299.35 7099.90 498.15 12899.20 4599.65 4699.48 3299.92 899.71 1798.07 8899.96 1199.53 30100.00 199.93 8
PEN-MVS99.41 2099.34 2599.62 699.73 3899.14 5299.29 3399.54 7899.62 2099.56 5399.42 7398.16 8499.96 1198.78 7299.93 4499.77 35
K. test v398.00 19297.66 21499.03 13099.79 2497.56 18799.19 4992.47 39399.62 2099.52 6299.66 2789.61 32499.96 1199.25 4599.81 9999.56 97
fmvsm_l_conf0.5_n_a99.19 4199.27 3598.94 14299.65 6597.05 21697.80 20199.76 2998.70 11199.78 2699.11 13398.79 3499.95 2299.85 599.96 2599.83 22
fmvsm_l_conf0.5_n99.21 3999.28 3499.02 13299.64 7097.28 20297.82 19899.76 2998.73 10899.82 2199.09 13998.81 3299.95 2299.86 499.96 2599.83 22
SSC-MVS98.71 9998.74 8398.62 18699.72 4496.08 25298.74 8798.64 29699.74 699.67 4199.24 10594.57 26299.95 2299.11 5299.24 26799.82 25
test_fmvsmvis_n_192099.26 3299.49 1298.54 20499.66 6496.97 22098.00 17599.85 1599.24 5999.92 899.50 5999.39 1199.95 2299.89 399.98 1298.71 306
UniMVSNet_ETH3D99.69 299.69 499.69 399.84 1899.34 1599.69 499.58 5599.90 299.86 1899.78 899.58 699.95 2299.00 6199.95 3299.78 33
Fast-Effi-MVS+-dtu98.27 16898.09 17798.81 15898.43 31998.11 13297.61 22799.50 8798.64 11297.39 30797.52 32898.12 8799.95 2296.90 19298.71 31998.38 336
Effi-MVS+-dtu98.26 17097.90 19699.35 7098.02 34499.49 598.02 17199.16 21598.29 13797.64 28497.99 30096.44 19699.95 2296.66 21498.93 30798.60 318
anonymousdsp99.51 1199.47 1699.62 699.88 999.08 6399.34 2099.69 3798.93 9899.65 4599.72 1698.93 2699.95 2299.11 52100.00 199.82 25
v7n99.53 999.57 999.41 6099.88 998.54 10099.45 1099.61 5199.66 1399.68 3999.66 2798.44 6199.95 2299.73 1999.96 2599.75 43
RRT_MVS99.09 5498.94 6699.55 2399.87 1298.82 7899.48 998.16 31899.49 3199.59 5299.65 3094.79 25899.95 2299.45 3599.96 2599.88 14
PS-CasMVS99.40 2199.33 2699.62 699.71 4799.10 6099.29 3399.53 8199.53 2999.46 7199.41 7698.23 7399.95 2298.89 6899.95 3299.81 28
TranMVSNet+NR-MVSNet99.17 4299.07 5899.46 5699.37 14698.87 7398.39 13299.42 12399.42 4199.36 9299.06 14098.38 6499.95 2298.34 10199.90 6999.57 91
Vis-MVSNetpermissive99.34 2599.36 2299.27 8899.73 3898.26 11899.17 5099.78 2799.11 7399.27 10899.48 6498.82 3199.95 2298.94 6499.93 4499.59 80
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
Anonymous2024052198.69 10698.87 7198.16 23999.77 2895.11 28399.08 5899.44 11499.34 4999.33 9799.55 4894.10 27699.94 3599.25 4599.96 2599.42 161
CP-MVSNet99.21 3999.09 5599.56 2199.65 6598.96 7099.13 5599.34 14999.42 4199.33 9799.26 10097.01 16599.94 3598.74 7699.93 4499.79 30
PVSNet_Blended_VisFu98.17 18198.15 17298.22 23499.73 3895.15 28097.36 24999.68 4294.45 33398.99 14999.27 9896.87 17199.94 3597.13 17199.91 6399.57 91
IterMVS97.73 21498.11 17696.57 33399.24 16690.28 38095.52 34899.21 19898.86 10399.33 9799.33 8993.11 28899.94 3598.49 9499.94 4099.48 137
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
ANet_high99.57 799.67 599.28 8599.89 698.09 13599.14 5499.93 499.82 399.93 699.81 599.17 1899.94 3599.31 41100.00 199.82 25
WB-MVS98.52 13998.55 11398.43 21699.65 6595.59 26298.52 11298.77 28399.65 1499.52 6299.00 16494.34 26899.93 4098.65 8398.83 31199.76 39
CS-MVS99.13 4999.10 5499.24 9599.06 21299.15 4799.36 1999.88 1199.36 4898.21 24598.46 26298.68 4299.93 4099.03 5999.85 8198.64 315
CHOSEN 280x42095.51 31995.47 30895.65 35898.25 33188.27 38893.25 39498.88 26193.53 34994.65 38197.15 34386.17 34699.93 4097.41 15499.93 4498.73 305
MVS_030498.10 18397.88 19898.76 17098.82 25796.50 23697.90 18791.35 39999.56 2698.32 23999.13 13096.06 21099.93 4099.84 799.97 1999.85 19
CS-MVS-test99.13 4999.09 5599.26 9099.13 19798.97 6699.31 2799.88 1199.44 3898.16 24898.51 25498.64 4499.93 4098.91 6599.85 8198.88 283
UniMVSNet_NR-MVSNet98.86 8198.68 9599.40 6299.17 18898.74 8297.68 21699.40 12699.14 7299.06 13698.59 24696.71 18599.93 4098.57 8899.77 12499.53 115
DU-MVS98.82 8498.63 10299.39 6399.16 19098.74 8297.54 23599.25 18998.84 10699.06 13698.76 21696.76 18199.93 4098.57 8899.77 12499.50 123
WR-MVS_H99.33 2699.22 4099.65 599.71 4799.24 2599.32 2399.55 7399.46 3599.50 6799.34 8797.30 14699.93 4098.90 6699.93 4499.77 35
SixPastTwentyTwo98.75 9598.62 10499.16 10599.83 1997.96 15599.28 3798.20 31599.37 4599.70 3599.65 3092.65 29999.93 4099.04 5899.84 8599.60 74
IterMVS-LS98.55 13298.70 9298.09 24199.48 12294.73 29297.22 26299.39 12898.97 9499.38 8799.31 9396.00 21499.93 4098.58 8699.97 1999.60 74
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
MM98.22 17497.99 18798.91 14798.66 29196.97 22097.89 18994.44 38199.54 2798.95 15799.14 12993.50 28499.92 5099.80 1299.96 2599.85 19
tttt051795.64 31594.98 32497.64 28099.36 14793.81 32598.72 9190.47 40198.08 15698.67 20098.34 27473.88 39599.92 5097.77 13799.51 22499.20 229
xiu_mvs_v1_base_debu97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
xiu_mvs_v1_base_debi97.86 20398.17 16896.92 32198.98 22593.91 32096.45 30099.17 21297.85 17198.41 23397.14 34498.47 5799.92 5098.02 12099.05 29096.92 384
MTAPA98.88 7798.64 10199.61 999.67 6299.36 1198.43 12899.20 20098.83 10798.89 17098.90 18796.98 16799.92 5097.16 16699.70 15999.56 97
LCM-MVSNet-Re98.64 11898.48 12599.11 11298.85 25198.51 10298.49 12099.83 2098.37 12899.69 3799.46 6698.21 7899.92 5094.13 31699.30 25898.91 279
lessismore_v098.97 13899.73 3897.53 18986.71 40799.37 8999.52 5789.93 32299.92 5098.99 6299.72 14999.44 154
OurMVSNet-221017-099.37 2499.31 3099.53 3499.91 398.98 6599.63 699.58 5599.44 3899.78 2699.76 1096.39 19799.92 5099.44 3699.92 5599.68 54
GeoE99.05 5898.99 6499.25 9399.44 12998.35 11598.73 9099.56 6998.42 12798.91 16798.81 20898.94 2599.91 5998.35 10099.73 14299.49 127
Fast-Effi-MVS+97.67 21997.38 23298.57 19698.71 27497.43 19597.23 25999.45 11094.82 32496.13 35496.51 35498.52 5699.91 5996.19 24998.83 31198.37 338
mvsmamba99.24 3799.15 5099.49 4899.83 1998.85 7499.41 1399.55 7399.54 2799.40 8399.52 5795.86 22599.91 5999.32 4099.95 3299.70 51
jason97.45 23597.35 23597.76 26999.24 16693.93 31995.86 33598.42 30694.24 33798.50 22598.13 28894.82 25399.91 5997.22 16399.73 14299.43 158
jason: jason.
lupinMVS97.06 26396.86 25997.65 27898.88 24693.89 32395.48 34997.97 32493.53 34998.16 24897.58 32493.81 28099.91 5996.77 20399.57 20799.17 240
thisisatest053095.27 32294.45 33197.74 27299.19 18094.37 30397.86 19590.20 40297.17 23898.22 24497.65 32073.53 39699.90 6496.90 19299.35 24998.95 270
xiu_mvs_v2_base97.16 25897.49 22696.17 34798.54 30792.46 34995.45 35098.84 27297.25 22797.48 29996.49 35598.31 7099.90 6496.34 23998.68 32496.15 395
PS-MVSNAJ97.08 26297.39 23196.16 34998.56 30592.46 34995.24 35798.85 27197.25 22797.49 29895.99 36498.07 8899.90 6496.37 23698.67 32596.12 396
DSMNet-mixed97.42 23797.60 21996.87 32499.15 19491.46 36298.54 11099.12 22392.87 35997.58 28999.63 3396.21 20599.90 6495.74 27199.54 21599.27 215
EC-MVSNet99.09 5499.05 5999.20 9999.28 15998.93 7199.24 4199.84 1899.08 8598.12 25398.37 27098.72 3899.90 6499.05 5799.77 12498.77 300
MIMVSNet199.38 2399.32 2899.55 2399.86 1599.19 3799.41 1399.59 5399.59 2399.71 3399.57 4297.12 15799.90 6499.21 4899.87 7799.54 108
QAPM97.31 24496.81 26598.82 15698.80 26397.49 19099.06 6299.19 20490.22 38397.69 28299.16 12296.91 16999.90 6490.89 37799.41 24199.07 249
EPP-MVSNet98.30 16498.04 18399.07 12099.56 8997.83 16599.29 3398.07 32299.03 8998.59 21399.13 13092.16 30599.90 6496.87 19599.68 16799.49 127
3Dnovator98.27 298.81 8698.73 8599.05 12798.76 26597.81 17199.25 4099.30 16998.57 12198.55 22099.33 8997.95 9999.90 6497.16 16699.67 17399.44 154
OpenMVScopyleft96.65 797.09 26196.68 27298.32 22598.32 32797.16 21398.86 8299.37 13489.48 38796.29 35299.15 12696.56 19099.90 6492.90 34399.20 27397.89 360
MSC_two_6792asdad99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
No_MVS99.32 8098.43 31998.37 11198.86 26899.89 7497.14 16999.60 19499.71 46
DPE-MVScopyleft98.59 12698.26 15899.57 1699.27 16199.15 4797.01 27199.39 12897.67 18299.44 7598.99 16597.53 13199.89 7495.40 28399.68 16799.66 58
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
CANet97.87 20297.76 20498.19 23697.75 35795.51 26796.76 28699.05 23497.74 17796.93 32298.21 28495.59 23299.89 7497.86 13399.93 4499.19 234
APDe-MVScopyleft98.99 6298.79 8099.60 1199.21 17399.15 4798.87 8099.48 9697.57 19299.35 9499.24 10597.83 10499.89 7497.88 13199.70 15999.75 43
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
PGM-MVS98.66 11598.37 14399.55 2399.53 10199.18 3898.23 14399.49 9497.01 24698.69 19898.88 19498.00 9499.89 7495.87 26599.59 19899.58 86
mPP-MVS98.64 11898.34 14799.54 2799.54 9899.17 3998.63 9999.24 19497.47 20298.09 25698.68 22897.62 12299.89 7496.22 24799.62 18799.57 91
CP-MVS98.70 10398.42 13599.52 3999.36 14799.12 5798.72 9199.36 13897.54 19798.30 24098.40 26697.86 10399.89 7496.53 22899.72 14999.56 97
IB-MVS91.63 1992.24 36690.90 37096.27 34197.22 38391.24 37094.36 38293.33 39192.37 36492.24 39994.58 39166.20 40599.89 7493.16 34094.63 39897.66 373
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_vis1_n_192098.40 15098.92 6896.81 32899.74 3790.76 37798.15 15399.91 798.33 13199.89 1599.55 4895.07 24699.88 8399.76 1699.93 4499.79 30
DVP-MVS++98.90 7598.70 9299.51 4398.43 31999.15 4799.43 1199.32 15698.17 15099.26 11299.02 15298.18 8099.88 8397.07 17599.45 23699.49 127
SED-MVS98.91 7398.72 8799.49 4899.49 11599.17 3998.10 15999.31 16198.03 15799.66 4299.02 15298.36 6599.88 8396.91 18799.62 18799.41 164
test_241102_TWO99.30 16998.03 15799.26 11299.02 15297.51 13499.88 8396.91 18799.60 19499.66 58
ETV-MVS98.03 18997.86 20098.56 20098.69 28398.07 14197.51 23999.50 8798.10 15597.50 29795.51 37498.41 6299.88 8396.27 24399.24 26797.71 372
DVP-MVScopyleft98.77 9398.52 11799.52 3999.50 10899.21 2898.02 17198.84 27297.97 16099.08 13499.02 15297.61 12399.88 8396.99 18199.63 18499.48 137
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD98.17 15099.08 13499.02 15297.89 10199.88 8397.07 17599.71 15499.70 51
test_0728_SECOND99.60 1199.50 10899.23 2698.02 17199.32 15699.88 8396.99 18199.63 18499.68 54
MP-MVS-pluss98.57 12798.23 16299.60 1199.69 5699.35 1297.16 26699.38 13094.87 32398.97 15498.99 16598.01 9399.88 8397.29 15999.70 15999.58 86
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MSP-MVS98.40 15098.00 18699.61 999.57 8199.25 2498.57 10699.35 14397.55 19699.31 10597.71 31694.61 26199.88 8396.14 25399.19 27699.70 51
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
region2R98.69 10698.40 13799.54 2799.53 10199.17 3998.52 11299.31 16197.46 20798.44 23098.51 25497.83 10499.88 8396.46 23299.58 20399.58 86
VPA-MVSNet99.30 2899.30 3299.28 8599.49 11598.36 11499.00 6899.45 11099.63 1799.52 6299.44 7198.25 7199.88 8399.09 5499.84 8599.62 67
ACMMPR98.70 10398.42 13599.54 2799.52 10399.14 5298.52 11299.31 16197.47 20298.56 21898.54 25097.75 11199.88 8396.57 21999.59 19899.58 86
MP-MVScopyleft98.46 14498.09 17799.54 2799.57 8199.22 2798.50 11999.19 20497.61 18997.58 28998.66 23397.40 14299.88 8394.72 29799.60 19499.54 108
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
CHOSEN 1792x268897.49 23197.14 24798.54 20499.68 5896.09 25096.50 29899.62 4891.58 37198.84 18198.97 17192.36 30299.88 8396.76 20499.95 3299.67 57
SteuartSystems-ACMMP98.79 8898.54 11599.54 2799.73 3899.16 4398.23 14399.31 16197.92 16598.90 16898.90 18798.00 9499.88 8396.15 25299.72 14999.58 86
Skip Steuart: Steuart Systems R&D Blog.
FMVSNet596.01 30395.20 32098.41 21897.53 37196.10 24798.74 8799.50 8797.22 23698.03 26299.04 14969.80 39799.88 8397.27 16099.71 15499.25 219
ZNCC-MVS98.68 11198.40 13799.54 2799.57 8199.21 2898.46 12599.29 17797.28 22498.11 25498.39 26798.00 9499.87 10096.86 19799.64 18199.55 104
SR-MVS98.71 9998.43 13399.57 1699.18 18799.35 1298.36 13599.29 17798.29 13798.88 17498.85 20097.53 13199.87 10096.14 25399.31 25599.48 137
pmmvs699.67 399.70 399.60 1199.90 499.27 2299.53 799.76 2999.64 1599.84 2099.83 399.50 899.87 10099.36 3899.92 5599.64 63
iter_conf0596.54 28796.07 29397.92 25597.90 35294.50 29997.87 19399.14 22197.73 17898.89 17098.95 17875.75 39399.87 10098.50 9399.92 5599.40 173
HPM-MVScopyleft98.79 8898.53 11699.59 1599.65 6599.29 1999.16 5199.43 12096.74 26098.61 20998.38 26998.62 4799.87 10096.47 23199.67 17399.59 80
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
EPNet96.14 30095.44 31198.25 23190.76 41195.50 26897.92 18494.65 37998.97 9492.98 39598.85 20089.12 32899.87 10095.99 25899.68 16799.39 175
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
RPMNet97.02 26696.93 25397.30 30397.71 36094.22 30598.11 15799.30 16999.37 4596.91 32599.34 8786.72 34199.87 10097.53 14997.36 37197.81 365
ACMMPcopyleft98.75 9598.50 12099.52 3999.56 8999.16 4398.87 8099.37 13497.16 23998.82 18599.01 16197.71 11399.87 10096.29 24299.69 16299.54 108
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
test111196.49 29196.82 26395.52 36099.42 13587.08 39399.22 4287.14 40699.11 7399.46 7199.58 4188.69 33099.86 10898.80 7199.95 3299.62 67
KD-MVS_self_test99.25 3399.18 4299.44 5799.63 7499.06 6498.69 9599.54 7899.31 5299.62 5199.53 5497.36 14499.86 10899.24 4799.71 15499.39 175
ZD-MVS99.01 22098.84 7599.07 23094.10 34198.05 26098.12 29096.36 20199.86 10892.70 35199.19 276
SR-MVS-dyc-post98.81 8698.55 11399.57 1699.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.49 13899.86 10896.56 22399.39 24399.45 150
tfpnnormal98.90 7598.90 7098.91 14799.67 6297.82 16899.00 6899.44 11499.45 3699.51 6699.24 10598.20 7999.86 10895.92 26199.69 16299.04 255
UniMVSNet (Re)98.87 7898.71 8999.35 7099.24 16698.73 8597.73 21299.38 13098.93 9899.12 12898.73 21996.77 17999.86 10898.63 8599.80 10999.46 146
NR-MVSNet98.95 6998.82 7799.36 6499.16 19098.72 8799.22 4299.20 20099.10 8099.72 3198.76 21696.38 19999.86 10898.00 12399.82 9599.50 123
GBi-Net98.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
test198.65 11698.47 12799.17 10298.90 24098.24 12099.20 4599.44 11498.59 11898.95 15799.55 4894.14 27299.86 10897.77 13799.69 16299.41 164
FMVSNet199.17 4299.17 4399.17 10299.55 9398.24 12099.20 4599.44 11499.21 6299.43 7699.55 4897.82 10799.86 10898.42 9899.89 7399.41 164
XXY-MVS99.14 4699.15 5099.10 11499.76 3197.74 17698.85 8399.62 4898.48 12699.37 8999.49 6398.75 3699.86 10898.20 10899.80 10999.71 46
1112_ss97.29 24796.86 25998.58 19399.34 15396.32 24196.75 28799.58 5593.14 35496.89 32997.48 33092.11 30699.86 10896.91 18799.54 21599.57 91
fmvsm_s_conf0.1_n99.16 4599.33 2698.64 18199.71 4796.10 24797.87 19399.85 1598.56 12399.90 1299.68 2098.69 4199.85 12099.72 2199.98 1299.97 3
EGC-MVSNET85.24 37280.54 37599.34 7399.77 2899.20 3499.08 5899.29 17712.08 40820.84 40999.42 7397.55 12899.85 12097.08 17499.72 14998.96 269
GST-MVS98.61 12398.30 15299.52 3999.51 10599.20 3498.26 14199.25 18997.44 21098.67 20098.39 26797.68 11499.85 12096.00 25799.51 22499.52 118
patchmatchnet-post98.77 21484.37 36199.85 120
SCA96.41 29496.66 27595.67 35698.24 33288.35 38795.85 33796.88 35396.11 28697.67 28398.67 23093.10 28999.85 12094.16 31299.22 27098.81 292
FC-MVSNet-test99.27 3099.25 3899.34 7399.77 2898.37 11199.30 3299.57 6299.61 2299.40 8399.50 5997.12 15799.85 12099.02 6099.94 4099.80 29
HFP-MVS98.71 9998.44 13299.51 4399.49 11599.16 4398.52 11299.31 16197.47 20298.58 21598.50 25897.97 9899.85 12096.57 21999.59 19899.53 115
EI-MVSNet-UG-set98.69 10698.71 8998.62 18699.10 20196.37 23997.23 25998.87 26399.20 6499.19 12298.99 16597.30 14699.85 12098.77 7599.79 11499.65 62
EI-MVSNet-Vis-set98.68 11198.70 9298.63 18599.09 20496.40 23897.23 25998.86 26899.20 6499.18 12698.97 17197.29 14899.85 12098.72 7899.78 11999.64 63
v124098.55 13298.62 10498.32 22599.22 17195.58 26497.51 23999.45 11097.16 23999.45 7499.24 10596.12 20899.85 12099.60 2599.88 7499.55 104
APD-MVS_3200maxsize98.84 8298.61 10899.53 3499.19 18099.27 2298.49 12099.33 15498.64 11299.03 14698.98 16997.89 10199.85 12096.54 22799.42 24099.46 146
ADS-MVSNet295.43 32094.98 32496.76 33198.14 33891.74 35997.92 18497.76 32890.23 38196.51 34698.91 18485.61 35199.85 12092.88 34496.90 37898.69 310
MDA-MVSNet-bldmvs97.94 19697.91 19598.06 24699.44 12994.96 28696.63 29399.15 22098.35 12998.83 18299.11 13394.31 26999.85 12096.60 21698.72 31799.37 184
WR-MVS98.40 15098.19 16699.03 13099.00 22197.65 18296.85 28198.94 25098.57 12198.89 17098.50 25895.60 23199.85 12097.54 14899.85 8199.59 80
APD-MVScopyleft98.10 18397.67 21199.42 5899.11 19998.93 7197.76 20899.28 18094.97 32098.72 19798.77 21497.04 16199.85 12093.79 32699.54 21599.49 127
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
Patchmtry97.35 24196.97 25298.50 21097.31 38196.47 23798.18 14998.92 25598.95 9798.78 18899.37 7985.44 35499.85 12095.96 26099.83 9299.17 240
N_pmnet97.63 22297.17 24398.99 13599.27 16197.86 16295.98 32693.41 39095.25 31499.47 7098.90 18795.63 23099.85 12096.91 18799.73 14299.27 215
fmvsm_s_conf0.1_n_a99.17 4299.30 3298.80 16099.75 3596.59 23497.97 18199.86 1398.22 14299.88 1799.71 1798.59 5099.84 13799.73 1999.98 1299.98 2
fmvsm_s_conf0.5_n_a99.10 5399.20 4198.78 16699.55 9396.59 23497.79 20299.82 2298.21 14399.81 2399.53 5498.46 6099.84 13799.70 2299.97 1999.90 10
fmvsm_s_conf0.5_n99.09 5499.26 3798.61 18999.55 9396.09 25097.74 21099.81 2498.55 12499.85 1999.55 4898.60 4999.84 13799.69 2499.98 1299.89 11
test250692.39 36291.89 36493.89 37899.38 14082.28 40899.32 2366.03 41499.08 8598.77 19199.57 4266.26 40499.84 13798.71 7999.95 3299.54 108
our_test_397.39 23997.73 20896.34 33898.70 27889.78 38294.61 37698.97 24996.50 26999.04 14398.85 20095.98 21999.84 13797.26 16199.67 17399.41 164
CANet_DTU97.26 24897.06 24997.84 26097.57 36694.65 29696.19 31798.79 28097.23 23395.14 37598.24 28193.22 28699.84 13797.34 15799.84 8599.04 255
ACMMP_NAP98.75 9598.48 12599.57 1699.58 7799.29 1997.82 19899.25 18996.94 24998.78 18899.12 13298.02 9299.84 13797.13 17199.67 17399.59 80
v14419298.54 13498.57 11298.45 21499.21 17395.98 25397.63 22499.36 13897.15 24199.32 10399.18 11695.84 22699.84 13799.50 3299.91 6399.54 108
v192192098.54 13498.60 10998.38 22199.20 17795.76 26197.56 23399.36 13897.23 23399.38 8799.17 12096.02 21299.84 13799.57 2799.90 6999.54 108
HPM-MVS++copyleft98.10 18397.64 21699.48 5199.09 20499.13 5597.52 23798.75 28797.46 20796.90 32897.83 31196.01 21399.84 13795.82 26999.35 24999.46 146
PMMVS298.07 18898.08 18098.04 24999.41 13794.59 29894.59 37799.40 12697.50 19998.82 18598.83 20396.83 17499.84 13797.50 15199.81 9999.71 46
XVG-ACMP-BASELINE98.56 12898.34 14799.22 9899.54 9898.59 9497.71 21399.46 10697.25 22798.98 15098.99 16597.54 12999.84 13795.88 26299.74 13999.23 224
CPTT-MVS97.84 20997.36 23499.27 8899.31 15498.46 10598.29 13899.27 18394.90 32297.83 27398.37 27094.90 24999.84 13793.85 32599.54 21599.51 120
UGNet98.53 13698.45 13098.79 16397.94 34996.96 22299.08 5898.54 30099.10 8096.82 33399.47 6596.55 19199.84 13798.56 9199.94 4099.55 104
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
CSCG98.68 11198.50 12099.20 9999.45 12898.63 8998.56 10799.57 6297.87 16998.85 17998.04 29897.66 11699.84 13796.72 20999.81 9999.13 244
DeepC-MVS97.60 498.97 6698.93 6799.10 11499.35 15197.98 15198.01 17499.46 10697.56 19499.54 5699.50 5998.97 2399.84 13798.06 11899.92 5599.49 127
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
3Dnovator+97.89 398.69 10698.51 11899.24 9598.81 26098.40 10799.02 6599.19 20498.99 9298.07 25799.28 9697.11 15999.84 13796.84 19899.32 25399.47 144
Anonymous2023121199.27 3099.27 3599.26 9099.29 15898.18 12699.49 899.51 8599.70 899.80 2499.68 2096.84 17299.83 15499.21 4899.91 6399.77 35
Anonymous2023120698.21 17698.21 16398.20 23599.51 10595.43 27198.13 15499.32 15696.16 28598.93 16598.82 20696.00 21499.83 15497.32 15899.73 14299.36 190
XVS98.72 9898.45 13099.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29398.63 24097.50 13599.83 15496.79 20099.53 21999.56 97
X-MVStestdata94.32 33492.59 35299.53 3499.46 12599.21 2898.65 9799.34 14998.62 11697.54 29345.85 40697.50 13599.83 15496.79 20099.53 21999.56 97
v1098.97 6699.11 5298.55 20199.44 12996.21 24698.90 7899.55 7398.73 10899.48 6899.60 3996.63 18899.83 15499.70 2299.99 599.61 73
TransMVSNet (Re)99.44 1599.47 1699.36 6499.80 2298.58 9599.27 3999.57 6299.39 4399.75 3099.62 3499.17 1899.83 15499.06 5699.62 18799.66 58
Baseline_NR-MVSNet98.98 6598.86 7499.36 6499.82 2198.55 9797.47 24399.57 6299.37 4599.21 12099.61 3796.76 18199.83 15498.06 11899.83 9299.71 46
LPG-MVS_test98.71 9998.46 12999.47 5499.57 8198.97 6698.23 14399.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
LGP-MVS_train99.47 5499.57 8198.97 6699.48 9696.60 26599.10 13299.06 14098.71 3999.83 15495.58 27999.78 11999.62 67
Test_1112_low_res96.99 27096.55 28198.31 22799.35 15195.47 26995.84 33899.53 8191.51 37396.80 33498.48 26191.36 31399.83 15496.58 21799.53 21999.62 67
ECVR-MVScopyleft96.42 29396.61 27795.85 35299.38 14088.18 38999.22 4286.00 40899.08 8599.36 9299.57 4288.47 33599.82 16498.52 9299.95 3299.54 108
SF-MVS98.53 13698.27 15799.32 8099.31 15498.75 8198.19 14899.41 12496.77 25998.83 18298.90 18797.80 10899.82 16495.68 27599.52 22299.38 182
new-patchmatchnet98.35 15698.74 8397.18 30899.24 16692.23 35696.42 30399.48 9698.30 13499.69 3799.53 5497.44 14099.82 16498.84 7099.77 12499.49 127
FIs99.14 4699.09 5599.29 8499.70 5498.28 11799.13 5599.52 8499.48 3299.24 11799.41 7696.79 17899.82 16498.69 8199.88 7499.76 39
v119298.60 12498.66 9898.41 21899.27 16195.88 25697.52 23799.36 13897.41 21199.33 9799.20 11296.37 20099.82 16499.57 2799.92 5599.55 104
pm-mvs199.44 1599.48 1499.33 7899.80 2298.63 8999.29 3399.63 4799.30 5499.65 4599.60 3999.16 2099.82 16499.07 5599.83 9299.56 97
VPNet98.87 7898.83 7699.01 13399.70 5497.62 18598.43 12899.35 14399.47 3499.28 10699.05 14796.72 18499.82 16498.09 11599.36 24799.59 80
pmmvs395.03 32694.40 33296.93 32097.70 36292.53 34895.08 36197.71 33088.57 39197.71 28098.08 29579.39 38399.82 16496.19 24999.11 28898.43 331
HPM-MVS_fast99.01 6098.82 7799.57 1699.71 4799.35 1299.00 6899.50 8797.33 21898.94 16498.86 19798.75 3699.82 16497.53 14999.71 15499.56 97
DELS-MVS98.27 16898.20 16498.48 21198.86 24896.70 23295.60 34499.20 20097.73 17898.45 22998.71 22297.50 13599.82 16498.21 10799.59 19898.93 275
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
FMVSNet298.49 14198.40 13798.75 17398.90 24097.14 21598.61 10299.13 22298.59 11899.19 12299.28 9694.14 27299.82 16497.97 12599.80 10999.29 212
WTY-MVS96.67 28296.27 29197.87 25998.81 26094.61 29796.77 28597.92 32694.94 32197.12 31397.74 31591.11 31599.82 16493.89 32298.15 34699.18 236
ACMP95.32 1598.41 14898.09 17799.36 6499.51 10598.79 8097.68 21699.38 13095.76 29998.81 18798.82 20698.36 6599.82 16494.75 29499.77 12499.48 137
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
ET-MVSNet_ETH3D94.30 33693.21 34697.58 28498.14 33894.47 30194.78 36993.24 39294.72 32589.56 40395.87 36878.57 38899.81 17796.91 18797.11 37798.46 324
TSAR-MVS + MP.98.63 12098.49 12499.06 12699.64 7097.90 15998.51 11798.94 25096.96 24799.24 11798.89 19397.83 10499.81 17796.88 19499.49 23299.48 137
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
v899.01 6099.16 4598.57 19699.47 12496.31 24298.90 7899.47 10499.03 8999.52 6299.57 4296.93 16899.81 17799.60 2599.98 1299.60 74
CR-MVSNet96.28 29795.95 29597.28 30497.71 36094.22 30598.11 15798.92 25592.31 36596.91 32599.37 7985.44 35499.81 17797.39 15597.36 37197.81 365
PatchT96.65 28396.35 28597.54 28997.40 37895.32 27497.98 17896.64 35799.33 5096.89 32999.42 7384.32 36299.81 17797.69 14497.49 36297.48 378
FMVSNet397.50 22997.24 24098.29 22998.08 34295.83 25897.86 19598.91 25797.89 16898.95 15798.95 17887.06 33999.81 17797.77 13799.69 16299.23 224
LTVRE_ROB98.40 199.67 399.71 299.56 2199.85 1799.11 5999.90 199.78 2799.63 1799.78 2699.67 2599.48 999.81 17799.30 4299.97 1999.77 35
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
EIA-MVS98.00 19297.74 20698.80 16098.72 27198.09 13598.05 16699.60 5297.39 21396.63 34095.55 37397.68 11499.80 18496.73 20899.27 26298.52 322
Anonymous2024052998.93 7198.87 7199.12 11099.19 18098.22 12599.01 6698.99 24899.25 5899.54 5699.37 7997.04 16199.80 18497.89 12899.52 22299.35 194
thisisatest051594.12 34093.16 34796.97 31998.60 29792.90 34193.77 39190.61 40094.10 34196.91 32595.87 36874.99 39499.80 18494.52 30199.12 28798.20 344
Effi-MVS+98.02 19097.82 20298.62 18698.53 30997.19 21097.33 25199.68 4297.30 22296.68 33897.46 33298.56 5499.80 18496.63 21598.20 34198.86 285
v114498.60 12498.66 9898.41 21899.36 14795.90 25597.58 23199.34 14997.51 19899.27 10899.15 12696.34 20299.80 18499.47 3499.93 4499.51 120
VDDNet98.21 17697.95 19099.01 13399.58 7797.74 17699.01 6697.29 34199.67 1298.97 15499.50 5990.45 31999.80 18497.88 13199.20 27399.48 137
EI-MVSNet98.40 15098.51 11898.04 24999.10 20194.73 29297.20 26398.87 26398.97 9499.06 13699.02 15296.00 21499.80 18498.58 8699.82 9599.60 74
CVMVSNet96.25 29897.21 24293.38 38499.10 20180.56 41197.20 26398.19 31796.94 24999.00 14899.02 15289.50 32699.80 18496.36 23899.59 19899.78 33
MVSTER96.86 27496.55 28197.79 26497.91 35194.21 30797.56 23398.87 26397.49 20199.06 13699.05 14780.72 37699.80 18498.44 9699.82 9599.37 184
sss97.21 25396.93 25398.06 24698.83 25495.22 27896.75 28798.48 30494.49 32997.27 31097.90 30792.77 29799.80 18496.57 21999.32 25399.16 243
ab-mvs98.41 14898.36 14498.59 19299.19 18097.23 20599.32 2398.81 27797.66 18398.62 20799.40 7896.82 17599.80 18495.88 26299.51 22498.75 303
TDRefinement99.42 1999.38 2199.55 2399.76 3199.33 1699.68 599.71 3499.38 4499.53 6099.61 3798.64 4499.80 18498.24 10599.84 8599.52 118
LS3D98.63 12098.38 14299.36 6497.25 38299.38 899.12 5799.32 15699.21 6298.44 23098.88 19497.31 14599.80 18496.58 21799.34 25198.92 276
hse-mvs297.46 23397.07 24898.64 18198.73 26997.33 19997.45 24497.64 33499.11 7398.58 21597.98 30188.65 33399.79 19798.11 11397.39 36898.81 292
AUN-MVS96.24 29995.45 31098.60 19198.70 27897.22 20797.38 24797.65 33295.95 29495.53 37097.96 30582.11 37599.79 19796.31 24097.44 36598.80 297
SMA-MVScopyleft98.40 15098.03 18499.51 4399.16 19099.21 2898.05 16699.22 19794.16 33998.98 15099.10 13697.52 13399.79 19796.45 23399.64 18199.53 115
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
testdata299.79 19792.80 348
VDD-MVS98.56 12898.39 14099.07 12099.13 19798.07 14198.59 10497.01 34699.59 2399.11 12999.27 9894.82 25399.79 19798.34 10199.63 18499.34 196
v2v48298.56 12898.62 10498.37 22299.42 13595.81 25997.58 23199.16 21597.90 16799.28 10699.01 16195.98 21999.79 19799.33 3999.90 6999.51 120
mvs_anonymous97.83 21198.16 17196.87 32498.18 33691.89 35897.31 25398.90 25897.37 21598.83 18299.46 6696.28 20399.79 19798.90 6698.16 34598.95 270
tpm94.67 33094.34 33495.66 35797.68 36588.42 38697.88 19094.90 37794.46 33196.03 35998.56 24978.66 38699.79 19795.88 26295.01 39698.78 299
IS-MVSNet98.19 17897.90 19699.08 11899.57 8197.97 15299.31 2798.32 31099.01 9198.98 15099.03 15191.59 31099.79 19795.49 28199.80 10999.48 137
test_040298.76 9498.71 8998.93 14499.56 8998.14 13098.45 12799.34 14999.28 5698.95 15798.91 18498.34 6999.79 19795.63 27699.91 6398.86 285
ACMM96.08 1298.91 7398.73 8599.48 5199.55 9399.14 5298.07 16399.37 13497.62 18699.04 14398.96 17498.84 3099.79 19797.43 15399.65 17999.49 127
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
iter_conf05_1196.72 27996.30 28897.97 25397.97 34696.24 24594.99 36496.19 36396.45 27496.77 33696.84 34891.46 31299.78 20896.27 24399.78 11997.90 358
miper_lstm_enhance97.18 25697.16 24497.25 30798.16 33792.85 34295.15 36099.31 16197.25 22798.74 19698.78 21290.07 32199.78 20897.19 16499.80 10999.11 246
Anonymous20240521197.90 19797.50 22599.08 11898.90 24098.25 11998.53 11196.16 36498.87 10299.11 12998.86 19790.40 32099.78 20897.36 15699.31 25599.19 234
ppachtmachnet_test97.50 22997.74 20696.78 33098.70 27891.23 37194.55 37899.05 23496.36 27799.21 12098.79 21196.39 19799.78 20896.74 20699.82 9599.34 196
新几何198.91 14798.94 23097.76 17498.76 28487.58 39496.75 33798.10 29294.80 25699.78 20892.73 35099.00 29999.20 229
V4298.78 9098.78 8198.76 17099.44 12997.04 21798.27 14099.19 20497.87 16999.25 11699.16 12296.84 17299.78 20899.21 4899.84 8599.46 146
VNet98.42 14798.30 15298.79 16398.79 26497.29 20198.23 14398.66 29399.31 5298.85 17998.80 20994.80 25699.78 20898.13 11299.13 28499.31 207
testing393.51 34892.09 35797.75 27098.60 29794.40 30297.32 25295.26 37697.56 19496.79 33595.50 37553.57 41399.77 21595.26 28598.97 30399.08 247
FE-MVS95.66 31494.95 32697.77 26698.53 30995.28 27599.40 1696.09 36693.11 35597.96 26499.26 10079.10 38599.77 21592.40 35598.71 31998.27 342
agg_prior98.68 28597.99 14899.01 24595.59 36399.77 215
baseline293.73 34592.83 35196.42 33797.70 36291.28 36896.84 28289.77 40393.96 34592.44 39895.93 36679.14 38499.77 21592.94 34296.76 38298.21 343
PM-MVS98.82 8498.72 8799.12 11099.64 7098.54 10097.98 17899.68 4297.62 18699.34 9699.18 11697.54 12999.77 21597.79 13699.74 13999.04 255
TAMVS98.24 17398.05 18298.80 16099.07 20897.18 21197.88 19098.81 27796.66 26499.17 12799.21 11094.81 25599.77 21596.96 18599.88 7499.44 154
9.1497.78 20399.07 20897.53 23699.32 15695.53 30698.54 22298.70 22597.58 12599.76 22194.32 31199.46 234
TEST998.71 27498.08 13995.96 32999.03 23991.40 37495.85 36097.53 32696.52 19299.76 221
train_agg97.10 26096.45 28499.07 12098.71 27498.08 13995.96 32999.03 23991.64 36995.85 36097.53 32696.47 19499.76 22193.67 32899.16 27999.36 190
test_898.67 28698.01 14795.91 33499.02 24291.64 36995.79 36297.50 32996.47 19499.76 221
test20.0398.78 9098.77 8298.78 16699.46 12597.20 20997.78 20399.24 19499.04 8899.41 8098.90 18797.65 11799.76 22197.70 14299.79 11499.39 175
EG-PatchMatch MVS98.99 6299.01 6198.94 14299.50 10897.47 19198.04 16899.59 5398.15 15499.40 8399.36 8298.58 5399.76 22198.78 7299.68 16799.59 80
ACMH96.65 799.25 3399.24 3999.26 9099.72 4498.38 10999.07 6199.55 7398.30 13499.65 4599.45 7099.22 1599.76 22198.44 9699.77 12499.64 63
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
pmmvs597.64 22197.49 22698.08 24499.14 19595.12 28296.70 29099.05 23493.77 34698.62 20798.83 20393.23 28599.75 22898.33 10399.76 13599.36 190
casdiffmvs_mvgpermissive99.12 5199.16 4598.99 13599.43 13497.73 17898.00 17599.62 4899.22 6099.55 5599.22 10998.93 2699.75 22898.66 8299.81 9999.50 123
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
HY-MVS95.94 1395.90 30795.35 31697.55 28897.95 34894.79 28898.81 8696.94 35192.28 36695.17 37498.57 24889.90 32399.75 22891.20 37197.33 37398.10 349
DP-MVS98.93 7198.81 7999.28 8599.21 17398.45 10698.46 12599.33 15499.63 1799.48 6899.15 12697.23 15299.75 22897.17 16599.66 17899.63 66
PatchmatchNetpermissive95.58 31695.67 30295.30 36597.34 38087.32 39297.65 22296.65 35695.30 31397.07 31698.69 22684.77 35799.75 22894.97 29098.64 32698.83 287
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
test_cas_vis1_n_192098.33 16098.68 9597.27 30599.69 5692.29 35498.03 16999.85 1597.62 18699.96 499.62 3493.98 27799.74 23399.52 3199.86 8099.79 30
ADS-MVSNet95.24 32394.93 32796.18 34698.14 33890.10 38197.92 18497.32 34090.23 38196.51 34698.91 18485.61 35199.74 23392.88 34496.90 37898.69 310
diffmvspermissive98.22 17498.24 16198.17 23799.00 22195.44 27096.38 30599.58 5597.79 17598.53 22398.50 25896.76 18199.74 23397.95 12799.64 18199.34 196
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
UnsupCasMVSNet_eth97.89 19997.60 21998.75 17399.31 15497.17 21297.62 22599.35 14398.72 11098.76 19398.68 22892.57 30099.74 23397.76 14195.60 39399.34 196
CDS-MVSNet97.69 21797.35 23598.69 17898.73 26997.02 21996.92 27998.75 28795.89 29698.59 21398.67 23092.08 30799.74 23396.72 20999.81 9999.32 203
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
nrg03099.40 2199.35 2399.54 2799.58 7799.13 5598.98 7199.48 9699.68 1199.46 7199.26 10098.62 4799.73 23899.17 5199.92 5599.76 39
无先验95.74 34098.74 28989.38 38899.73 23892.38 35699.22 228
LFMVS97.20 25496.72 26998.64 18198.72 27196.95 22398.93 7694.14 38799.74 698.78 18899.01 16184.45 36099.73 23897.44 15299.27 26299.25 219
YYNet197.60 22497.67 21197.39 30199.04 21693.04 34095.27 35598.38 30997.25 22798.92 16698.95 17895.48 23799.73 23896.99 18198.74 31599.41 164
MDA-MVSNet_test_wron97.60 22497.66 21497.41 30099.04 21693.09 33695.27 35598.42 30697.26 22698.88 17498.95 17895.43 23899.73 23897.02 17898.72 31799.41 164
Vis-MVSNet (Re-imp)97.46 23397.16 24498.34 22499.55 9396.10 24798.94 7598.44 30598.32 13398.16 24898.62 24288.76 32999.73 23893.88 32399.79 11499.18 236
PCF-MVS92.86 1894.36 33393.00 35098.42 21798.70 27897.56 18793.16 39599.11 22579.59 40397.55 29297.43 33392.19 30499.73 23879.85 40499.45 23697.97 357
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
COLMAP_ROBcopyleft96.50 1098.99 6298.85 7599.41 6099.58 7799.10 6098.74 8799.56 6999.09 8399.33 9799.19 11398.40 6399.72 24595.98 25999.76 13599.42 161
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
UWE-MVS92.38 36391.76 36694.21 37497.16 38484.65 40195.42 35288.45 40595.96 29396.17 35395.84 37066.36 40399.71 24691.87 35998.64 32698.28 341
test_fmvs399.12 5199.41 1998.25 23199.76 3195.07 28499.05 6499.94 297.78 17699.82 2199.84 298.56 5499.71 24699.96 199.96 2599.97 3
原ACMM198.35 22398.90 24096.25 24498.83 27692.48 36396.07 35798.10 29295.39 23999.71 24692.61 35398.99 30099.08 247
UnsupCasMVSNet_bld97.30 24596.92 25598.45 21499.28 15996.78 23196.20 31699.27 18395.42 30998.28 24298.30 27893.16 28799.71 24694.99 28997.37 36998.87 284
bld_raw_dy_0_6497.62 22397.51 22497.96 25497.97 34696.28 24398.20 14799.82 2296.46 27399.37 8997.12 34792.42 30199.70 25096.27 24399.97 1997.90 358
test_post21.25 40983.86 36699.70 250
testdata98.09 24198.93 23295.40 27298.80 27990.08 38597.45 30298.37 27095.26 24199.70 25093.58 33198.95 30599.17 240
HQP_MVS97.99 19597.67 21198.93 14499.19 18097.65 18297.77 20599.27 18398.20 14797.79 27697.98 30194.90 24999.70 25094.42 30699.51 22499.45 150
plane_prior599.27 18399.70 25094.42 30699.51 22499.45 150
cl____97.02 26696.83 26297.58 28497.82 35594.04 31394.66 37399.16 21597.04 24498.63 20598.71 22288.68 33299.69 25597.00 17999.81 9999.00 262
DIV-MVS_self_test97.02 26696.84 26197.58 28497.82 35594.03 31494.66 37399.16 21597.04 24498.63 20598.71 22288.69 33099.69 25597.00 17999.81 9999.01 259
eth_miper_zixun_eth97.23 25297.25 23997.17 31098.00 34592.77 34494.71 37099.18 20897.27 22598.56 21898.74 21891.89 30899.69 25597.06 17799.81 9999.05 251
D2MVS97.84 20997.84 20197.83 26199.14 19594.74 29196.94 27598.88 26195.84 29798.89 17098.96 17494.40 26699.69 25597.55 14699.95 3299.05 251
Patchmatch-test96.55 28696.34 28697.17 31098.35 32593.06 33798.40 13197.79 32797.33 21898.41 23398.67 23083.68 36799.69 25595.16 28799.31 25598.77 300
CDPH-MVS97.26 24896.66 27599.07 12099.00 22198.15 12896.03 32599.01 24591.21 37797.79 27697.85 31096.89 17099.69 25592.75 34999.38 24699.39 175
test1298.93 14498.58 30297.83 16598.66 29396.53 34495.51 23599.69 25599.13 28499.27 215
casdiffmvspermissive98.95 6999.00 6298.81 15899.38 14097.33 19997.82 19899.57 6299.17 7199.35 9499.17 12098.35 6899.69 25598.46 9599.73 14299.41 164
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
baseline98.96 6899.02 6098.76 17099.38 14097.26 20498.49 12099.50 8798.86 10399.19 12299.06 14098.23 7399.69 25598.71 7999.76 13599.33 201
EU-MVSNet97.66 22098.50 12095.13 36699.63 7485.84 39698.35 13698.21 31498.23 14199.54 5699.46 6695.02 24799.68 26498.24 10599.87 7799.87 16
F-COLMAP97.30 24596.68 27299.14 10899.19 18098.39 10897.27 25899.30 16992.93 35796.62 34198.00 29995.73 22899.68 26492.62 35298.46 33399.35 194
OpenMVS_ROBcopyleft95.38 1495.84 30995.18 32197.81 26398.41 32397.15 21497.37 24898.62 29783.86 39998.65 20398.37 27094.29 27099.68 26488.41 38598.62 32996.60 390
test_fmvs298.70 10398.97 6597.89 25899.54 9894.05 31198.55 10899.92 696.78 25899.72 3199.78 896.60 18999.67 26799.91 299.90 6999.94 7
testf199.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
APD_test299.25 3399.16 4599.51 4399.89 699.63 398.71 9399.69 3798.90 10099.43 7699.35 8398.86 2899.67 26797.81 13499.81 9999.24 222
test-LLR93.90 34393.85 33794.04 37596.53 39684.62 40294.05 38792.39 39496.17 28394.12 38695.07 38282.30 37399.67 26795.87 26598.18 34297.82 363
test-mter92.33 36591.76 36694.04 37596.53 39684.62 40294.05 38792.39 39494.00 34494.12 38695.07 38265.63 40699.67 26795.87 26598.18 34297.82 363
thres600view794.45 33293.83 33896.29 34099.06 21291.53 36197.99 17794.24 38598.34 13097.44 30395.01 38479.84 37999.67 26784.33 39698.23 33997.66 373
114514_t96.50 29095.77 29798.69 17899.48 12297.43 19597.84 19799.55 7381.42 40296.51 34698.58 24795.53 23399.67 26793.41 33699.58 20398.98 264
PVSNet_BlendedMVS97.55 22897.53 22297.60 28298.92 23693.77 32796.64 29299.43 12094.49 32997.62 28599.18 11696.82 17599.67 26794.73 29599.93 4499.36 190
PVSNet_Blended96.88 27396.68 27297.47 29698.92 23693.77 32794.71 37099.43 12090.98 37997.62 28597.36 33896.82 17599.67 26794.73 29599.56 21098.98 264
PHI-MVS98.29 16797.95 19099.34 7398.44 31899.16 4398.12 15699.38 13096.01 29198.06 25898.43 26497.80 10899.67 26795.69 27499.58 20399.20 229
ACMH+96.62 999.08 5799.00 6299.33 7899.71 4798.83 7698.60 10399.58 5599.11 7399.53 6099.18 11698.81 3299.67 26796.71 21199.77 12499.50 123
test_post197.59 23020.48 41083.07 37099.66 27894.16 312
旧先验295.76 33988.56 39297.52 29599.66 27894.48 302
MCST-MVS98.00 19297.63 21799.10 11499.24 16698.17 12796.89 28098.73 29095.66 30097.92 26597.70 31897.17 15599.66 27896.18 25199.23 26999.47 144
NCCC97.86 20397.47 22999.05 12798.61 29598.07 14196.98 27398.90 25897.63 18597.04 31897.93 30695.99 21899.66 27895.31 28498.82 31399.43 158
PMMVS96.51 28895.98 29498.09 24197.53 37195.84 25794.92 36698.84 27291.58 37196.05 35895.58 37295.68 22999.66 27895.59 27898.09 34998.76 302
FA-MVS(test-final)96.99 27096.82 26397.50 29398.70 27894.78 28999.34 2096.99 34795.07 31798.48 22799.33 8988.41 33699.65 28396.13 25598.92 30898.07 351
OPM-MVS98.56 12898.32 15199.25 9399.41 13798.73 8597.13 26899.18 20897.10 24298.75 19498.92 18398.18 8099.65 28396.68 21399.56 21099.37 184
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
MIMVSNet96.62 28596.25 29297.71 27599.04 21694.66 29599.16 5196.92 35297.23 23397.87 26999.10 13686.11 34899.65 28391.65 36299.21 27298.82 288
CL-MVSNet_self_test97.44 23697.22 24198.08 24498.57 30495.78 26094.30 38398.79 28096.58 26798.60 21198.19 28694.74 26099.64 28696.41 23598.84 31098.82 288
c3_l97.36 24097.37 23397.31 30298.09 34193.25 33595.01 36399.16 21597.05 24398.77 19198.72 22192.88 29499.64 28696.93 18699.76 13599.05 251
DeepC-MVS_fast96.85 698.30 16498.15 17298.75 17398.61 29597.23 20597.76 20899.09 22897.31 22198.75 19498.66 23397.56 12799.64 28696.10 25699.55 21399.39 175
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
testing9193.32 35192.27 35496.47 33697.54 36991.25 36996.17 32096.76 35597.18 23793.65 39393.50 39765.11 40799.63 28993.04 34197.45 36498.53 321
pmmvs-eth3d98.47 14398.34 14798.86 15299.30 15797.76 17497.16 26699.28 18095.54 30599.42 7999.19 11397.27 14999.63 28997.89 12899.97 1999.20 229
baseline195.96 30695.44 31197.52 29198.51 31193.99 31798.39 13296.09 36698.21 14398.40 23797.76 31486.88 34099.63 28995.42 28289.27 40598.95 270
thres100view90094.19 33793.67 34195.75 35599.06 21291.35 36598.03 16994.24 38598.33 13197.40 30594.98 38679.84 37999.62 29283.05 39898.08 35096.29 391
tfpn200view994.03 34193.44 34395.78 35498.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35096.29 391
Patchmatch-RL test97.26 24897.02 25197.99 25299.52 10395.53 26696.13 32199.71 3497.47 20299.27 10899.16 12284.30 36399.62 29297.89 12899.77 12498.81 292
v14898.45 14598.60 10998.00 25199.44 12994.98 28597.44 24599.06 23198.30 13499.32 10398.97 17196.65 18799.62 29298.37 9999.85 8199.39 175
thres40094.14 33993.44 34396.24 34398.93 23291.44 36397.60 22894.29 38397.94 16397.10 31494.31 39279.67 38199.62 29283.05 39898.08 35097.66 373
CostFormer93.97 34293.78 33994.51 37197.53 37185.83 39797.98 17895.96 36889.29 38994.99 37798.63 24078.63 38799.62 29294.54 30096.50 38398.09 350
miper_ehance_all_eth97.06 26397.03 25097.16 31297.83 35493.06 33794.66 37399.09 22895.99 29298.69 19898.45 26392.73 29899.61 29896.79 20099.03 29498.82 288
gm-plane-assit94.83 40681.97 40988.07 39394.99 38599.60 29991.76 360
MVP-Stereo98.08 18797.92 19498.57 19698.96 22896.79 22897.90 18799.18 20896.41 27698.46 22898.95 17895.93 22299.60 29996.51 22998.98 30299.31 207
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
pmmvs497.58 22797.28 23898.51 20798.84 25296.93 22595.40 35398.52 30293.60 34898.61 20998.65 23595.10 24599.60 29996.97 18499.79 11498.99 263
JIA-IIPM95.52 31895.03 32397.00 31696.85 39194.03 31496.93 27795.82 37099.20 6494.63 38299.71 1783.09 36999.60 29994.42 30694.64 39797.36 381
testing1193.08 35592.02 35996.26 34297.56 36790.83 37696.32 30995.70 37296.47 27292.66 39793.73 39464.36 40899.59 30393.77 32797.57 36098.37 338
testing9993.04 35691.98 36296.23 34497.53 37190.70 37896.35 30795.94 36996.87 25393.41 39493.43 39863.84 40999.59 30393.24 33997.19 37498.40 334
test_prior98.95 14198.69 28397.95 15699.03 23999.59 30399.30 210
tpmrst95.07 32595.46 30993.91 37797.11 38584.36 40497.62 22596.96 34994.98 31996.35 35198.80 20985.46 35399.59 30395.60 27796.23 38797.79 368
dp93.47 34993.59 34293.13 38696.64 39581.62 41097.66 22096.42 36192.80 36096.11 35598.64 23878.55 38999.59 30393.31 33792.18 40498.16 346
PLCcopyleft94.65 1696.51 28895.73 29998.85 15398.75 26797.91 15896.42 30399.06 23190.94 38095.59 36397.38 33694.41 26599.59 30390.93 37598.04 35599.05 251
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
APD_test198.83 8398.66 9899.34 7399.78 2599.47 698.42 13099.45 11098.28 13998.98 15099.19 11397.76 11099.58 30996.57 21999.55 21398.97 267
miper_enhance_ethall96.01 30395.74 29896.81 32896.41 39992.27 35593.69 39298.89 26091.14 37898.30 24097.35 33990.58 31899.58 30996.31 24099.03 29498.60 318
AllTest98.44 14698.20 16499.16 10599.50 10898.55 9798.25 14299.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
TestCases99.16 10599.50 10898.55 9799.58 5596.80 25698.88 17499.06 14097.65 11799.57 31194.45 30499.61 19299.37 184
CNVR-MVS98.17 18197.87 19999.07 12098.67 28698.24 12097.01 27198.93 25297.25 22797.62 28598.34 27497.27 14999.57 31196.42 23499.33 25299.39 175
TESTMET0.1,192.19 36791.77 36593.46 38296.48 39882.80 40794.05 38791.52 39894.45 33394.00 38994.88 38866.65 40299.56 31495.78 27098.11 34898.02 353
thres20093.72 34693.14 34895.46 36398.66 29191.29 36796.61 29494.63 38097.39 21396.83 33293.71 39579.88 37899.56 31482.40 40198.13 34795.54 400
MVS_Test98.18 17998.36 14497.67 27698.48 31294.73 29298.18 14999.02 24297.69 18198.04 26199.11 13397.22 15399.56 31498.57 8898.90 30998.71 306
testing22291.96 36890.37 37296.72 33297.47 37792.59 34696.11 32294.76 37896.83 25592.90 39692.87 40057.92 41199.55 31786.93 39197.52 36198.00 356
WB-MVSnew95.73 31295.57 30696.23 34496.70 39490.70 37896.07 32493.86 38895.60 30397.04 31895.45 38196.00 21499.55 31791.04 37398.31 33798.43 331
test_yl96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
DCV-MVSNet96.69 28096.29 28997.90 25698.28 32995.24 27697.29 25597.36 33798.21 14398.17 24697.86 30886.27 34499.55 31794.87 29298.32 33598.89 280
alignmvs97.35 24196.88 25898.78 16698.54 30798.09 13597.71 21397.69 33199.20 6497.59 28895.90 36788.12 33899.55 31798.18 10998.96 30498.70 309
HQP4-MVS95.56 36599.54 32299.32 203
HQP-MVS97.00 26996.49 28398.55 20198.67 28696.79 22896.29 31199.04 23796.05 28895.55 36696.84 34893.84 27899.54 32292.82 34699.26 26599.32 203
tpmvs95.02 32795.25 31894.33 37296.39 40085.87 39598.08 16196.83 35495.46 30895.51 37198.69 22685.91 34999.53 32494.16 31296.23 38797.58 376
tpm293.09 35492.58 35394.62 37097.56 36786.53 39497.66 22095.79 37186.15 39694.07 38898.23 28375.95 39199.53 32490.91 37696.86 38197.81 365
MDTV_nov1_ep1395.22 31997.06 38883.20 40697.74 21096.16 36494.37 33596.99 32198.83 20383.95 36599.53 32493.90 32197.95 356
AdaColmapbinary97.14 25996.71 27098.46 21398.34 32697.80 17296.95 27498.93 25295.58 30496.92 32397.66 31995.87 22499.53 32490.97 37499.14 28298.04 352
new_pmnet96.99 27096.76 26797.67 27698.72 27194.89 28795.95 33198.20 31592.62 36298.55 22098.54 25094.88 25299.52 32893.96 32099.44 23998.59 320
RPSCF98.62 12298.36 14499.42 5899.65 6599.42 798.55 10899.57 6297.72 18098.90 16899.26 10096.12 20899.52 32895.72 27299.71 15499.32 203
MAR-MVS96.47 29295.70 30098.79 16397.92 35099.12 5798.28 13998.60 29892.16 36795.54 36996.17 36294.77 25999.52 32889.62 38298.23 33997.72 371
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
LF4IMVS97.90 19797.69 21098.52 20699.17 18897.66 18197.19 26599.47 10496.31 28097.85 27298.20 28596.71 18599.52 32894.62 29899.72 14998.38 336
Gipumacopyleft99.03 5999.16 4598.64 18199.94 298.51 10299.32 2399.75 3299.58 2598.60 21199.62 3498.22 7699.51 33297.70 14299.73 14297.89 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
MGCFI-Net98.34 15798.28 15498.51 20798.47 31397.59 18698.96 7299.48 9699.18 7097.40 30595.50 37598.66 4399.50 33398.18 10998.71 31998.44 329
ETVMVS92.60 36091.08 36997.18 30897.70 36293.65 33196.54 29595.70 37296.51 26894.68 38092.39 40261.80 41099.50 33386.97 39097.41 36798.40 334
ambc98.24 23398.82 25795.97 25498.62 10199.00 24799.27 10899.21 11096.99 16699.50 33396.55 22699.50 23199.26 218
testgi98.32 16198.39 14098.13 24099.57 8195.54 26597.78 20399.49 9497.37 21599.19 12297.65 32098.96 2499.49 33696.50 23098.99 30099.34 196
EPNet_dtu94.93 32894.78 32995.38 36493.58 40887.68 39196.78 28495.69 37497.35 21789.14 40498.09 29488.15 33799.49 33694.95 29199.30 25898.98 264
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
PatchMatch-RL97.24 25196.78 26698.61 18999.03 21997.83 16596.36 30699.06 23193.49 35197.36 30997.78 31295.75 22799.49 33693.44 33598.77 31498.52 322
test_fmvs1_n98.09 18698.28 15497.52 29199.68 5893.47 33398.63 9999.93 495.41 31299.68 3999.64 3291.88 30999.48 33999.82 899.87 7799.62 67
test_241102_ONE99.49 11599.17 3999.31 16197.98 15999.66 4298.90 18798.36 6599.48 339
CLD-MVS97.49 23197.16 24498.48 21199.07 20897.03 21894.71 37099.21 19894.46 33198.06 25897.16 34297.57 12699.48 33994.46 30399.78 11998.95 270
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
BH-untuned96.83 27596.75 26897.08 31398.74 26893.33 33496.71 28998.26 31296.72 26198.44 23097.37 33795.20 24299.47 34291.89 35897.43 36698.44 329
OMC-MVS97.88 20197.49 22699.04 12998.89 24598.63 8996.94 27599.25 18995.02 31898.53 22398.51 25497.27 14999.47 34293.50 33499.51 22499.01 259
sasdasda98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
canonicalmvs98.34 15798.26 15898.58 19398.46 31597.82 16898.96 7299.46 10699.19 6897.46 30095.46 37898.59 5099.46 34498.08 11698.71 31998.46 324
mvsany_test398.87 7898.92 6898.74 17799.38 14096.94 22498.58 10599.10 22696.49 27099.96 499.81 598.18 8099.45 34698.97 6399.79 11499.83 22
CNLPA97.17 25796.71 27098.55 20198.56 30598.05 14596.33 30898.93 25296.91 25197.06 31797.39 33594.38 26799.45 34691.66 36199.18 27898.14 347
BH-RMVSNet96.83 27596.58 28097.58 28498.47 31394.05 31196.67 29197.36 33796.70 26397.87 26997.98 30195.14 24499.44 34890.47 37998.58 33199.25 219
DPM-MVS96.32 29595.59 30598.51 20798.76 26597.21 20894.54 37998.26 31291.94 36896.37 35097.25 34093.06 29199.43 34991.42 36798.74 31598.89 280
PVSNet93.40 1795.67 31395.70 30095.57 35998.83 25488.57 38592.50 39797.72 32992.69 36196.49 34996.44 35893.72 28399.43 34993.61 32999.28 26198.71 306
test_vis1_n98.31 16398.50 12097.73 27499.76 3194.17 30998.68 9699.91 796.31 28099.79 2599.57 4292.85 29699.42 35199.79 1399.84 8599.60 74
test_fmvs197.72 21597.94 19297.07 31598.66 29192.39 35197.68 21699.81 2495.20 31699.54 5699.44 7191.56 31199.41 35299.78 1599.77 12499.40 173
TSAR-MVS + GP.98.18 17997.98 18898.77 16998.71 27497.88 16096.32 30998.66 29396.33 27899.23 11998.51 25497.48 13999.40 35397.16 16699.46 23499.02 258
TAPA-MVS96.21 1196.63 28495.95 29598.65 18098.93 23298.09 13596.93 27799.28 18083.58 40098.13 25297.78 31296.13 20799.40 35393.52 33299.29 26098.45 327
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tpm cat193.29 35293.13 34993.75 37997.39 37984.74 40097.39 24697.65 33283.39 40194.16 38598.41 26582.86 37199.39 35591.56 36595.35 39597.14 383
MG-MVS96.77 27896.61 27797.26 30698.31 32893.06 33795.93 33298.12 32196.45 27497.92 26598.73 21993.77 28299.39 35591.19 37299.04 29399.33 201
MVS_111021_HR98.25 17298.08 18098.75 17399.09 20497.46 19295.97 32799.27 18397.60 19097.99 26398.25 28098.15 8699.38 35796.87 19599.57 20799.42 161
Syy-MVS96.04 30295.56 30797.49 29497.10 38694.48 30096.18 31896.58 35895.65 30194.77 37892.29 40391.27 31499.36 35898.17 11198.05 35398.63 316
myMVS_eth3d91.92 36990.45 37196.30 33997.10 38690.90 37496.18 31896.58 35895.65 30194.77 37892.29 40353.88 41299.36 35889.59 38398.05 35398.63 316
MS-PatchMatch97.68 21897.75 20597.45 29798.23 33493.78 32697.29 25598.84 27296.10 28798.64 20498.65 23596.04 21199.36 35896.84 19899.14 28299.20 229
ITE_SJBPF98.87 15199.22 17198.48 10499.35 14397.50 19998.28 24298.60 24597.64 12099.35 36193.86 32499.27 26298.79 298
MVS_111021_LR98.30 16498.12 17598.83 15599.16 19098.03 14696.09 32399.30 16997.58 19198.10 25598.24 28198.25 7199.34 36296.69 21299.65 17999.12 245
USDC97.41 23897.40 23097.44 29898.94 23093.67 32995.17 35899.53 8194.03 34398.97 15499.10 13695.29 24099.34 36295.84 26899.73 14299.30 210
MSDG97.71 21697.52 22398.28 23098.91 23996.82 22794.42 38099.37 13497.65 18498.37 23898.29 27997.40 14299.33 36494.09 31799.22 27098.68 313
XVG-OURS98.53 13698.34 14799.11 11299.50 10898.82 7895.97 32799.50 8797.30 22299.05 14198.98 16999.35 1299.32 36595.72 27299.68 16799.18 236
DP-MVS Recon97.33 24396.92 25598.57 19699.09 20497.99 14896.79 28399.35 14393.18 35397.71 28098.07 29695.00 24899.31 36693.97 31999.13 28498.42 333
EPMVS93.72 34693.27 34595.09 36896.04 40387.76 39098.13 15485.01 40994.69 32696.92 32398.64 23878.47 39099.31 36695.04 28896.46 38498.20 344
mvsany_test197.60 22497.54 22197.77 26697.72 35895.35 27395.36 35497.13 34494.13 34099.71 3399.33 8997.93 10099.30 36897.60 14598.94 30698.67 314
MVS93.19 35392.09 35796.50 33596.91 38994.03 31498.07 16398.06 32368.01 40494.56 38396.48 35695.96 22199.30 36883.84 39796.89 38096.17 393
GA-MVS95.86 30895.32 31797.49 29498.60 29794.15 31093.83 39097.93 32595.49 30796.68 33897.42 33483.21 36899.30 36896.22 24798.55 33299.01 259
XVG-OURS-SEG-HR98.49 14198.28 15499.14 10899.49 11598.83 7696.54 29599.48 9697.32 22099.11 12998.61 24499.33 1399.30 36896.23 24698.38 33499.28 214
DeepPCF-MVS96.93 598.32 16198.01 18599.23 9798.39 32498.97 6695.03 36299.18 20896.88 25299.33 9798.78 21298.16 8499.28 37296.74 20699.62 18799.44 154
TinyColmap97.89 19997.98 18897.60 28298.86 24894.35 30496.21 31599.44 11497.45 20999.06 13698.88 19497.99 9799.28 37294.38 31099.58 20399.18 236
KD-MVS_2432*160092.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
cl2295.79 31095.39 31496.98 31896.77 39392.79 34394.40 38198.53 30194.59 32897.89 26898.17 28782.82 37299.24 37496.37 23699.03 29498.92 276
miper_refine_blended92.87 35891.99 36095.51 36191.37 40989.27 38394.07 38598.14 31995.42 30997.25 31196.44 35867.86 39999.24 37491.28 36996.08 39098.02 353
PAPM91.88 37090.34 37396.51 33498.06 34392.56 34792.44 39897.17 34286.35 39590.38 40296.01 36386.61 34299.21 37770.65 40895.43 39497.75 369
MVS-HIRNet94.32 33495.62 30390.42 38898.46 31575.36 41296.29 31189.13 40495.25 31495.38 37299.75 1192.88 29499.19 37894.07 31899.39 24396.72 389
PAPM_NR96.82 27796.32 28798.30 22899.07 20896.69 23397.48 24198.76 28495.81 29896.61 34296.47 35794.12 27599.17 37990.82 37897.78 35799.06 250
TR-MVS95.55 31795.12 32296.86 32797.54 36993.94 31896.49 29996.53 36094.36 33697.03 32096.61 35394.26 27199.16 38086.91 39296.31 38697.47 379
API-MVS97.04 26596.91 25797.42 29997.88 35398.23 12498.18 14998.50 30397.57 19297.39 30796.75 35196.77 17999.15 38190.16 38099.02 29794.88 401
PAPR95.29 32194.47 33097.75 27097.50 37695.14 28194.89 36798.71 29191.39 37595.35 37395.48 37794.57 26299.14 38284.95 39597.37 36998.97 267
131495.74 31195.60 30496.17 34797.53 37192.75 34598.07 16398.31 31191.22 37694.25 38496.68 35295.53 23399.03 38391.64 36397.18 37596.74 388
gg-mvs-nofinetune92.37 36491.20 36895.85 35295.80 40592.38 35299.31 2781.84 41199.75 591.83 40099.74 1368.29 39899.02 38487.15 38997.12 37696.16 394
BH-w/o95.13 32494.89 32895.86 35198.20 33591.31 36695.65 34297.37 33693.64 34796.52 34595.70 37193.04 29299.02 38488.10 38795.82 39297.24 382
test0.0.03 194.51 33193.69 34096.99 31796.05 40293.61 33294.97 36593.49 38996.17 28397.57 29194.88 38882.30 37399.01 38693.60 33094.17 40098.37 338
tt080598.69 10698.62 10498.90 15099.75 3599.30 1799.15 5396.97 34898.86 10398.87 17897.62 32398.63 4698.96 38799.41 3798.29 33898.45 327
E-PMN94.17 33894.37 33393.58 38196.86 39085.71 39890.11 40197.07 34598.17 15097.82 27597.19 34184.62 35998.94 38889.77 38197.68 35996.09 397
EMVS93.83 34494.02 33693.23 38596.83 39284.96 39989.77 40296.32 36297.92 16597.43 30496.36 36186.17 34698.93 38987.68 38897.73 35895.81 398
test_vis3_rt99.14 4699.17 4399.07 12099.78 2598.38 10998.92 7799.94 297.80 17499.91 1199.67 2597.15 15698.91 39099.76 1699.56 21099.92 9
CMPMVSbinary75.91 2396.29 29695.44 31198.84 15496.25 40198.69 8897.02 27099.12 22388.90 39097.83 27398.86 19789.51 32598.90 39191.92 35799.51 22498.92 276
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
PVSNet_089.98 2191.15 37190.30 37493.70 38097.72 35884.34 40590.24 40097.42 33590.20 38493.79 39193.09 39990.90 31698.89 39286.57 39372.76 40797.87 362
MSLP-MVS++98.02 19098.14 17497.64 28098.58 30295.19 27997.48 24199.23 19697.47 20297.90 26798.62 24297.04 16198.81 39397.55 14699.41 24198.94 274
OPU-MVS98.82 15698.59 30098.30 11698.10 15998.52 25398.18 8098.75 39494.62 29899.48 23399.41 164
test_f98.67 11498.87 7198.05 24899.72 4495.59 26298.51 11799.81 2496.30 28299.78 2699.82 496.14 20698.63 39599.82 899.93 4499.95 6
cascas94.79 32994.33 33596.15 35096.02 40492.36 35392.34 39999.26 18885.34 39895.08 37694.96 38792.96 29398.53 39694.41 30998.59 33097.56 377
wuyk23d96.06 30197.62 21891.38 38798.65 29498.57 9698.85 8396.95 35096.86 25499.90 1299.16 12299.18 1798.40 39789.23 38499.77 12477.18 405
test_vis1_rt97.75 21397.72 20997.83 26198.81 26096.35 24097.30 25499.69 3794.61 32797.87 26998.05 29796.26 20498.32 39898.74 7698.18 34298.82 288
PMVScopyleft91.26 2097.86 20397.94 19297.65 27899.71 4797.94 15798.52 11298.68 29298.99 9297.52 29599.35 8397.41 14198.18 39991.59 36499.67 17396.82 387
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
GG-mvs-BLEND94.76 36994.54 40792.13 35799.31 2780.47 41288.73 40591.01 40567.59 40198.16 40082.30 40294.53 39993.98 402
dmvs_re95.98 30595.39 31497.74 27298.86 24897.45 19398.37 13495.69 37497.95 16296.56 34395.95 36590.70 31797.68 40188.32 38696.13 38998.11 348
test_method79.78 37379.50 37680.62 38980.21 41245.76 41570.82 40398.41 30831.08 40780.89 40897.71 31684.85 35697.37 40291.51 36680.03 40698.75 303
PC_three_145293.27 35299.40 8398.54 25098.22 7697.00 40395.17 28699.45 23699.49 127
dmvs_testset92.94 35792.21 35695.13 36698.59 30090.99 37397.65 22292.09 39696.95 24894.00 38993.55 39692.34 30396.97 40472.20 40792.52 40297.43 380
FPMVS93.44 35092.23 35597.08 31399.25 16597.86 16295.61 34397.16 34392.90 35893.76 39298.65 23575.94 39295.66 40579.30 40597.49 36297.73 370
MVEpermissive83.40 2292.50 36191.92 36394.25 37398.83 25491.64 36092.71 39683.52 41095.92 29586.46 40795.46 37895.20 24295.40 40680.51 40398.64 32695.73 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
SD-MVS98.40 15098.68 9597.54 28998.96 22897.99 14897.88 19099.36 13898.20 14799.63 4899.04 14998.76 3595.33 40796.56 22399.74 13999.31 207
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
DeepMVS_CXcopyleft93.44 38398.24 33294.21 30794.34 38264.28 40591.34 40194.87 39089.45 32792.77 40877.54 40693.14 40193.35 403
tmp_tt78.77 37478.73 37778.90 39058.45 41374.76 41494.20 38478.26 41339.16 40686.71 40692.82 40180.50 37775.19 40986.16 39492.29 40386.74 404
test12317.04 37720.11 3807.82 39110.25 4154.91 41694.80 3684.47 4164.93 40910.00 41124.28 4089.69 4143.64 41010.14 40912.43 40914.92 406
testmvs17.12 37620.53 3796.87 39212.05 4144.20 41793.62 3936.73 4154.62 41010.41 41024.33 4078.28 4153.56 4119.69 41015.07 40812.86 407
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k24.66 37532.88 3780.00 3930.00 4160.00 4180.00 40499.10 2260.00 4110.00 41297.58 32499.21 160.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas8.17 37810.90 3810.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41198.07 880.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re8.12 37910.83 3820.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41297.48 3300.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS90.90 37491.37 368
FOURS199.73 3899.67 299.43 1199.54 7899.43 4099.26 112
test_one_060199.39 13999.20 3499.31 16198.49 12598.66 20299.02 15297.64 120
eth-test20.00 416
eth-test0.00 416
RE-MVS-def98.58 11199.20 17799.38 898.48 12399.30 16998.64 11298.95 15798.96 17497.75 11196.56 22399.39 24399.45 150
IU-MVS99.49 11599.15 4798.87 26392.97 35699.41 8096.76 20499.62 18799.66 58
save fliter99.11 19997.97 15296.53 29799.02 24298.24 140
test072699.50 10899.21 2898.17 15299.35 14397.97 16099.26 11299.06 14097.61 123
GSMVS98.81 292
test_part299.36 14799.10 6099.05 141
sam_mvs184.74 35898.81 292
sam_mvs84.29 364
MTGPAbinary99.20 200
MTMP97.93 18291.91 397
test9_res93.28 33899.15 28199.38 182
agg_prior292.50 35499.16 27999.37 184
test_prior497.97 15295.86 335
test_prior295.74 34096.48 27196.11 35597.63 32295.92 22394.16 31299.20 273
新几何295.93 332
旧先验198.82 25797.45 19398.76 28498.34 27495.50 23699.01 29899.23 224
原ACMM295.53 346
test22298.92 23696.93 22595.54 34598.78 28285.72 39796.86 33198.11 29194.43 26499.10 28999.23 224
segment_acmp97.02 164
testdata195.44 35196.32 279
plane_prior799.19 18097.87 161
plane_prior698.99 22497.70 18094.90 249
plane_prior497.98 301
plane_prior397.78 17397.41 21197.79 276
plane_prior297.77 20598.20 147
plane_prior199.05 215
plane_prior97.65 18297.07 26996.72 26199.36 247
n20.00 417
nn0.00 417
door-mid99.57 62
test1198.87 263
door99.41 124
HQP5-MVS96.79 228
HQP-NCC98.67 28696.29 31196.05 28895.55 366
ACMP_Plane98.67 28696.29 31196.05 28895.55 366
BP-MVS92.82 346
HQP3-MVS99.04 23799.26 265
HQP2-MVS93.84 278
NP-MVS98.84 25297.39 19796.84 348
MDTV_nov1_ep13_2view74.92 41397.69 21590.06 38697.75 27985.78 35093.52 33298.69 310
ACMMP++_ref99.77 124
ACMMP++99.68 167
Test By Simon96.52 192