| LCM-MVSNet | | | 99.43 1 | 99.49 1 | 99.24 1 | 99.95 1 | 98.13 1 | 99.37 1 | 99.57 1 | 99.82 1 | 99.86 1 | 99.85 1 | 99.52 1 | 99.73 1 | 97.58 1 | 99.94 1 | 99.85 1 |
|
| DTE-MVSNet | | | 96.74 17 | 97.43 5 | 94.67 113 | 99.13 6 | 84.68 194 | 96.51 35 | 97.94 83 | 98.14 3 | 98.67 12 | 98.32 34 | 95.04 48 | 99.69 2 | 93.27 77 | 99.82 7 | 99.62 10 |
|
| PS-CasMVS | | | 96.69 20 | 97.43 5 | 94.49 128 | 99.13 6 | 84.09 205 | 96.61 32 | 97.97 77 | 97.91 5 | 98.64 13 | 98.13 41 | 95.24 38 | 99.65 3 | 93.39 72 | 99.84 3 | 99.72 2 |
|
| PEN-MVS | | | 96.69 20 | 97.39 8 | 94.61 118 | 99.16 4 | 84.50 195 | 96.54 34 | 98.05 64 | 98.06 4 | 98.64 13 | 98.25 37 | 95.01 51 | 99.65 3 | 92.95 89 | 99.83 5 | 99.68 4 |
|
| K. test v3 | | | 93.37 149 | 93.27 159 | 93.66 158 | 98.05 85 | 82.62 225 | 94.35 126 | 86.62 355 | 96.05 29 | 97.51 43 | 98.85 12 | 76.59 311 | 99.65 3 | 93.21 79 | 98.20 204 | 98.73 96 |
|
| RRT_MVS | | | 95.41 77 | 95.20 92 | 96.05 55 | 98.86 22 | 88.92 104 | 97.49 11 | 94.48 266 | 93.12 73 | 97.94 27 | 98.54 25 | 81.19 271 | 99.63 6 | 95.48 24 | 99.69 14 | 99.60 12 |
|
| CP-MVSNet | | | 96.19 45 | 96.80 16 | 94.38 133 | 98.99 16 | 83.82 208 | 96.31 50 | 97.53 114 | 97.60 7 | 98.34 19 | 97.52 81 | 91.98 122 | 99.63 6 | 93.08 85 | 99.81 8 | 99.70 3 |
|
| WR-MVS_H | | | 96.60 25 | 97.05 13 | 95.24 92 | 99.02 12 | 86.44 160 | 96.78 27 | 98.08 57 | 97.42 9 | 98.48 16 | 97.86 62 | 91.76 128 | 99.63 6 | 94.23 42 | 99.84 3 | 99.66 6 |
|
| PS-MVSNAJss | | | 96.01 50 | 96.04 52 | 95.89 67 | 98.82 26 | 88.51 116 | 95.57 84 | 97.88 84 | 88.72 180 | 98.81 6 | 98.86 10 | 90.77 151 | 99.60 9 | 95.43 27 | 99.53 38 | 99.57 14 |
|
| MVSFormer | | | 92.18 189 | 92.23 181 | 92.04 220 | 94.74 277 | 80.06 258 | 97.15 15 | 97.37 123 | 88.98 174 | 88.83 319 | 92.79 304 | 77.02 304 | 99.60 9 | 96.41 9 | 96.75 276 | 96.46 259 |
|
| test_djsdf | | | 96.62 23 | 96.49 26 | 97.01 32 | 98.55 45 | 91.77 59 | 97.15 15 | 97.37 123 | 88.98 174 | 98.26 22 | 98.86 10 | 93.35 87 | 99.60 9 | 96.41 9 | 99.45 47 | 99.66 6 |
|
| SixPastTwentyTwo | | | 94.91 96 | 95.21 90 | 93.98 143 | 98.52 50 | 83.19 217 | 95.93 67 | 94.84 256 | 94.86 41 | 98.49 15 | 98.74 16 | 81.45 265 | 99.60 9 | 94.69 33 | 99.39 58 | 99.15 39 |
|
| mvs_tets | | | 96.83 8 | 96.71 18 | 97.17 27 | 98.83 25 | 92.51 48 | 96.58 33 | 97.61 107 | 87.57 207 | 98.80 7 | 98.90 9 | 96.50 9 | 99.59 13 | 96.15 13 | 99.47 43 | 99.40 21 |
|
| UA-Net | | | 97.35 4 | 97.24 11 | 97.69 4 | 98.22 74 | 93.87 30 | 98.42 6 | 98.19 39 | 96.95 14 | 95.46 144 | 99.23 4 | 93.45 82 | 99.57 14 | 95.34 30 | 99.89 2 | 99.63 9 |
|
| OurMVSNet-221017-0 | | | 96.80 12 | 96.75 17 | 96.96 35 | 99.03 11 | 91.85 57 | 97.98 7 | 98.01 72 | 94.15 51 | 98.93 3 | 99.07 5 | 88.07 188 | 99.57 14 | 95.86 15 | 99.69 14 | 99.46 18 |
|
| EPP-MVSNet | | | 93.91 137 | 93.68 144 | 94.59 122 | 98.08 82 | 85.55 185 | 97.44 12 | 94.03 275 | 94.22 50 | 94.94 171 | 96.19 181 | 82.07 260 | 99.57 14 | 87.28 227 | 98.89 126 | 98.65 107 |
|
| jajsoiax | | | 96.59 27 | 96.42 29 | 97.12 29 | 98.76 31 | 92.49 49 | 96.44 41 | 97.42 121 | 86.96 216 | 98.71 10 | 98.72 17 | 95.36 32 | 99.56 17 | 95.92 14 | 99.45 47 | 99.32 27 |
|
| CS-MVS-test | | | 95.32 81 | 95.10 96 | 95.96 58 | 96.86 158 | 90.75 74 | 96.33 47 | 99.20 2 | 93.99 53 | 91.03 285 | 93.73 281 | 93.52 81 | 99.55 18 | 91.81 116 | 99.45 47 | 97.58 203 |
|
| v7n | | | 96.82 9 | 97.31 10 | 95.33 86 | 98.54 48 | 86.81 148 | 96.83 23 | 98.07 60 | 96.59 20 | 98.46 17 | 98.43 32 | 92.91 102 | 99.52 19 | 96.25 12 | 99.76 10 | 99.65 8 |
|
| DPE-MVS |  | | 95.89 55 | 95.88 59 | 95.92 64 | 97.93 96 | 89.83 85 | 93.46 159 | 98.30 27 | 92.37 86 | 97.75 32 | 96.95 128 | 95.14 42 | 99.51 20 | 91.74 118 | 99.28 79 | 98.41 129 |
| Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025 |
| MSP-MVS | | | 95.34 80 | 94.63 115 | 97.48 14 | 98.67 33 | 94.05 23 | 96.41 43 | 98.18 41 | 91.26 126 | 95.12 163 | 95.15 228 | 86.60 217 | 99.50 21 | 93.43 71 | 96.81 273 | 98.89 75 |
| Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025 |
| anonymousdsp | | | 96.74 17 | 96.42 29 | 97.68 6 | 98.00 91 | 94.03 25 | 96.97 20 | 97.61 107 | 87.68 205 | 98.45 18 | 98.77 15 | 94.20 72 | 99.50 21 | 96.70 5 | 99.40 57 | 99.53 15 |
|
| APDe-MVS |  | | 96.46 31 | 96.64 21 | 95.93 62 | 97.68 116 | 89.38 95 | 96.90 22 | 98.41 19 | 92.52 83 | 97.43 48 | 97.92 58 | 95.11 45 | 99.50 21 | 94.45 36 | 99.30 71 | 98.92 72 |
| Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition |
| MM | | | | | 95.22 94 | | 87.21 138 | 94.31 131 | 90.92 326 | 94.48 46 | 92.80 241 | 97.52 81 | 85.27 230 | 99.49 24 | 96.58 8 | 99.57 35 | 98.97 62 |
|
| CS-MVS | | | 95.77 59 | 95.58 73 | 96.37 50 | 96.84 160 | 91.72 61 | 96.73 29 | 99.06 5 | 94.23 49 | 92.48 252 | 94.79 245 | 93.56 79 | 99.49 24 | 93.47 65 | 99.05 106 | 97.89 176 |
|
| EC-MVSNet | | | 95.44 72 | 95.62 71 | 94.89 103 | 96.93 154 | 87.69 131 | 96.48 38 | 99.14 4 | 93.93 56 | 92.77 243 | 94.52 255 | 93.95 76 | 99.49 24 | 93.62 57 | 99.22 89 | 97.51 209 |
|
| PGM-MVS | | | 96.32 40 | 95.94 55 | 97.43 18 | 98.59 41 | 93.84 32 | 95.33 90 | 98.30 27 | 91.40 124 | 95.76 126 | 96.87 134 | 95.26 37 | 99.45 27 | 92.77 91 | 99.21 90 | 99.00 54 |
|
| mvsmamba | | | 95.61 65 | 95.40 81 | 96.22 51 | 98.44 60 | 89.86 84 | 97.14 17 | 97.45 120 | 91.25 128 | 97.49 44 | 98.14 39 | 83.49 241 | 99.45 27 | 95.52 22 | 99.66 21 | 99.36 24 |
|
| ZNCC-MVS | | | 96.42 35 | 96.20 41 | 97.07 30 | 98.80 30 | 92.79 46 | 96.08 61 | 98.16 48 | 91.74 115 | 95.34 151 | 96.36 170 | 95.68 21 | 99.44 29 | 94.41 38 | 99.28 79 | 98.97 62 |
|
| TranMVSNet+NR-MVSNet | | | 96.07 49 | 96.26 38 | 95.50 80 | 98.26 71 | 87.69 131 | 93.75 150 | 97.86 85 | 95.96 32 | 97.48 46 | 97.14 114 | 95.33 34 | 99.44 29 | 90.79 139 | 99.76 10 | 99.38 22 |
|
| Vis-MVSNet |  | | 95.50 70 | 95.48 76 | 95.56 79 | 98.11 80 | 89.40 94 | 95.35 88 | 98.22 36 | 92.36 87 | 94.11 192 | 98.07 45 | 92.02 120 | 99.44 29 | 93.38 73 | 97.67 239 | 97.85 181 |
| Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020 |
| SR-MVS | | | 96.70 19 | 96.42 29 | 97.54 11 | 98.05 85 | 94.69 11 | 96.13 59 | 98.07 60 | 95.17 37 | 96.82 77 | 96.73 146 | 95.09 47 | 99.43 32 | 92.99 88 | 98.71 151 | 98.50 122 |
|
| SR-MVS-dyc-post | | | 96.84 7 | 96.60 24 | 97.56 10 | 98.07 83 | 95.27 9 | 96.37 44 | 98.12 51 | 95.66 33 | 97.00 68 | 97.03 123 | 94.85 56 | 99.42 33 | 93.49 62 | 98.84 133 | 98.00 161 |
|
| GST-MVS | | | 96.24 43 | 95.99 54 | 97.00 33 | 98.65 34 | 92.71 47 | 95.69 78 | 98.01 72 | 92.08 96 | 95.74 129 | 96.28 176 | 95.22 40 | 99.42 33 | 93.17 81 | 99.06 103 | 98.88 77 |
|
| MP-MVS |  | | 96.14 46 | 95.68 69 | 97.51 13 | 98.81 28 | 94.06 21 | 96.10 60 | 97.78 96 | 92.73 78 | 93.48 214 | 96.72 147 | 94.23 71 | 99.42 33 | 91.99 110 | 99.29 74 | 99.05 51 |
| Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo. |
| mPP-MVS | | | 96.46 31 | 96.05 51 | 97.69 4 | 98.62 36 | 94.65 13 | 96.45 39 | 97.74 98 | 92.59 82 | 95.47 142 | 96.68 149 | 94.50 66 | 99.42 33 | 93.10 83 | 99.26 82 | 98.99 56 |
|
| HPM-MVS |  | | 96.81 11 | 96.62 22 | 97.36 23 | 98.89 20 | 93.53 38 | 97.51 10 | 98.44 16 | 92.35 88 | 95.95 116 | 96.41 162 | 96.71 8 | 99.42 33 | 93.99 47 | 99.36 60 | 99.13 41 |
| Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023 |
| CP-MVS | | | 96.44 34 | 96.08 49 | 97.54 11 | 98.29 68 | 94.62 14 | 96.80 25 | 98.08 57 | 92.67 81 | 95.08 167 | 96.39 167 | 94.77 58 | 99.42 33 | 93.17 81 | 99.44 50 | 98.58 119 |
|
| MSC_two_6792asdad | | | | | 95.90 65 | 96.54 179 | 89.57 88 | | 96.87 167 | | | | | 99.41 39 | 94.06 45 | 99.30 71 | 98.72 97 |
|
| No_MVS | | | | | 95.90 65 | 96.54 179 | 89.57 88 | | 96.87 167 | | | | | 99.41 39 | 94.06 45 | 99.30 71 | 98.72 97 |
|
| region2R | | | 96.41 36 | 96.09 47 | 97.38 22 | 98.62 36 | 93.81 35 | 96.32 49 | 97.96 78 | 92.26 91 | 95.28 155 | 96.57 155 | 95.02 50 | 99.41 39 | 93.63 56 | 99.11 101 | 98.94 66 |
|
| ACMMPR | | | 96.46 31 | 96.14 45 | 97.41 20 | 98.60 39 | 93.82 33 | 96.30 54 | 97.96 78 | 92.35 88 | 95.57 137 | 96.61 153 | 94.93 54 | 99.41 39 | 93.78 52 | 99.15 98 | 99.00 54 |
|
| UniMVSNet_NR-MVSNet | | | 95.35 79 | 95.21 90 | 95.76 71 | 97.69 115 | 88.59 113 | 92.26 208 | 97.84 88 | 94.91 40 | 96.80 78 | 95.78 202 | 90.42 160 | 99.41 39 | 91.60 123 | 99.58 33 | 99.29 29 |
|
| DU-MVS | | | 95.28 85 | 95.12 95 | 95.75 72 | 97.75 107 | 88.59 113 | 92.58 188 | 97.81 91 | 93.99 53 | 96.80 78 | 95.90 193 | 90.10 168 | 99.41 39 | 91.60 123 | 99.58 33 | 99.26 30 |
|
| RPMNet | | | 90.31 231 | 90.14 233 | 90.81 266 | 91.01 353 | 78.93 284 | 92.52 190 | 98.12 51 | 91.91 101 | 89.10 316 | 96.89 133 | 68.84 338 | 99.41 39 | 90.17 162 | 92.70 357 | 94.08 331 |
|
| TSAR-MVS + MP. | | | 94.96 95 | 94.75 107 | 95.57 78 | 98.86 22 | 88.69 108 | 96.37 44 | 96.81 171 | 85.23 244 | 94.75 179 | 97.12 116 | 91.85 124 | 99.40 46 | 93.45 67 | 98.33 189 | 98.62 116 |
| Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition |
| FC-MVSNet-test | | | 95.32 81 | 95.88 59 | 93.62 159 | 98.49 58 | 81.77 234 | 95.90 69 | 98.32 24 | 93.93 56 | 97.53 42 | 97.56 76 | 88.48 181 | 99.40 46 | 92.91 90 | 99.83 5 | 99.68 4 |
|
| ACMMP |  | | 96.61 24 | 96.34 34 | 97.43 18 | 98.61 38 | 93.88 29 | 96.95 21 | 98.18 41 | 92.26 91 | 96.33 95 | 96.84 137 | 95.10 46 | 99.40 46 | 93.47 65 | 99.33 66 | 99.02 53 |
| Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence |
| ZD-MVS | | | | | | 97.23 139 | 90.32 78 | | 97.54 112 | 84.40 260 | 94.78 178 | 95.79 199 | 92.76 107 | 99.39 49 | 88.72 201 | 98.40 179 | |
|
| tttt0517 | | | 89.81 246 | 88.90 255 | 92.55 203 | 97.00 149 | 79.73 270 | 95.03 103 | 83.65 377 | 89.88 156 | 95.30 153 | 94.79 245 | 53.64 390 | 99.39 49 | 91.99 110 | 98.79 143 | 98.54 120 |
|
| MP-MVS-pluss | | | 96.08 48 | 95.92 58 | 96.57 44 | 99.06 10 | 91.21 65 | 93.25 165 | 98.32 24 | 87.89 198 | 96.86 75 | 97.38 90 | 95.55 26 | 99.39 49 | 95.47 25 | 99.47 43 | 99.11 44 |
| MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss |
| XVS | | | 96.49 29 | 96.18 42 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 80 | 94.58 43 | 94.38 189 | 96.49 157 | 94.56 64 | 99.39 49 | 93.57 58 | 99.05 106 | 98.93 68 |
|
| X-MVStestdata | | | 90.70 214 | 88.45 261 | 97.44 16 | 98.56 42 | 93.99 26 | 96.50 36 | 97.95 80 | 94.58 43 | 94.38 189 | 26.89 397 | 94.56 64 | 99.39 49 | 93.57 58 | 99.05 106 | 98.93 68 |
|
| APD-MVS_3200maxsize | | | 96.82 9 | 96.65 20 | 97.32 25 | 97.95 95 | 93.82 33 | 96.31 50 | 98.25 31 | 95.51 35 | 96.99 70 | 97.05 122 | 95.63 23 | 99.39 49 | 93.31 74 | 98.88 128 | 98.75 92 |
|
| DVP-MVS++ | | | 95.93 52 | 96.34 34 | 94.70 112 | 96.54 179 | 86.66 154 | 98.45 4 | 98.22 36 | 93.26 71 | 97.54 40 | 97.36 94 | 93.12 95 | 99.38 55 | 93.88 48 | 98.68 155 | 98.04 156 |
|
| test_0728_SECOND | | | | | 94.88 104 | 98.55 45 | 86.72 151 | 95.20 96 | 98.22 36 | | | | | 99.38 55 | 93.44 68 | 99.31 69 | 98.53 121 |
|
| MTAPA | | | 96.65 22 | 96.38 33 | 97.47 15 | 98.95 18 | 94.05 23 | 95.88 70 | 97.62 105 | 94.46 47 | 96.29 99 | 96.94 129 | 93.56 79 | 99.37 57 | 94.29 41 | 99.42 52 | 98.99 56 |
|
| MVS_0304 | | | 93.92 136 | 93.68 144 | 94.64 117 | 95.94 231 | 85.83 178 | 94.34 127 | 88.14 343 | 92.98 77 | 91.09 284 | 97.68 67 | 86.73 214 | 99.36 58 | 96.64 7 | 99.59 28 | 98.72 97 |
|
| SteuartSystems-ACMMP | | | 96.40 37 | 96.30 36 | 96.71 40 | 98.63 35 | 91.96 55 | 95.70 76 | 98.01 72 | 93.34 70 | 96.64 85 | 96.57 155 | 94.99 52 | 99.36 58 | 93.48 64 | 99.34 64 | 98.82 82 |
| Skip Steuart: Steuart Systems R&D Blog. |
| SED-MVS | | | 96.00 51 | 96.41 32 | 94.76 109 | 98.51 51 | 86.97 144 | 95.21 94 | 98.10 54 | 91.95 98 | 97.63 35 | 97.25 104 | 96.48 10 | 99.35 60 | 93.29 75 | 99.29 74 | 97.95 169 |
|
| test_241102_TWO | | | | | | | | | 98.10 54 | 91.95 98 | 97.54 40 | 97.25 104 | 95.37 30 | 99.35 60 | 93.29 75 | 99.25 83 | 98.49 124 |
|
| IS-MVSNet | | | 94.49 112 | 94.35 123 | 94.92 102 | 98.25 73 | 86.46 159 | 97.13 18 | 94.31 269 | 96.24 25 | 96.28 101 | 96.36 170 | 82.88 249 | 99.35 60 | 88.19 207 | 99.52 41 | 98.96 64 |
|
| DVP-MVS |  | | 95.82 58 | 96.18 42 | 94.72 111 | 98.51 51 | 86.69 152 | 95.20 96 | 97.00 155 | 91.85 104 | 97.40 52 | 97.35 97 | 95.58 24 | 99.34 63 | 93.44 68 | 99.31 69 | 98.13 150 |
| Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025 |
| test_0728_THIRD | | | | | | | | | | 93.26 71 | 97.40 52 | 97.35 97 | 94.69 59 | 99.34 63 | 93.88 48 | 99.42 52 | 98.89 75 |
|
| UniMVSNet (Re) | | | 95.32 81 | 95.15 93 | 95.80 70 | 97.79 105 | 88.91 105 | 92.91 176 | 98.07 60 | 93.46 67 | 96.31 97 | 95.97 192 | 90.14 165 | 99.34 63 | 92.11 105 | 99.64 24 | 99.16 38 |
|
| HPM-MVS_fast | | | 97.01 6 | 96.89 14 | 97.39 21 | 99.12 8 | 93.92 28 | 97.16 14 | 98.17 45 | 93.11 74 | 96.48 90 | 97.36 94 | 96.92 6 | 99.34 63 | 94.31 40 | 99.38 59 | 98.92 72 |
|
| APD-MVS |  | | 95.00 93 | 94.69 111 | 95.93 62 | 97.38 132 | 90.88 71 | 94.59 116 | 97.81 91 | 89.22 170 | 95.46 144 | 96.17 184 | 93.42 85 | 99.34 63 | 89.30 182 | 98.87 131 | 97.56 206 |
| Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023 |
| NR-MVSNet | | | 95.28 85 | 95.28 88 | 95.26 90 | 97.75 107 | 87.21 138 | 95.08 100 | 97.37 123 | 93.92 58 | 97.65 34 | 95.90 193 | 90.10 168 | 99.33 68 | 90.11 164 | 99.66 21 | 99.26 30 |
|
| SF-MVS | | | 95.88 56 | 95.88 59 | 95.87 68 | 98.12 79 | 89.65 87 | 95.58 83 | 98.56 14 | 91.84 107 | 96.36 94 | 96.68 149 | 94.37 70 | 99.32 69 | 92.41 101 | 99.05 106 | 98.64 112 |
|
| SMA-MVS |  | | 95.77 59 | 95.54 74 | 96.47 49 | 98.27 70 | 91.19 66 | 95.09 99 | 97.79 95 | 86.48 219 | 97.42 50 | 97.51 84 | 94.47 69 | 99.29 70 | 93.55 60 | 99.29 74 | 98.93 68 |
| Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology |
| FIs | | | 94.90 97 | 95.35 83 | 93.55 162 | 98.28 69 | 81.76 235 | 95.33 90 | 98.14 49 | 93.05 76 | 97.07 63 | 97.18 111 | 87.65 195 | 99.29 70 | 91.72 119 | 99.69 14 | 99.61 11 |
|
| LPG-MVS_test | | | 96.38 39 | 96.23 39 | 96.84 38 | 98.36 66 | 92.13 52 | 95.33 90 | 98.25 31 | 91.78 111 | 97.07 63 | 97.22 108 | 96.38 12 | 99.28 72 | 92.07 108 | 99.59 28 | 99.11 44 |
|
| LGP-MVS_train | | | | | 96.84 38 | 98.36 66 | 92.13 52 | | 98.25 31 | 91.78 111 | 97.07 63 | 97.22 108 | 96.38 12 | 99.28 72 | 92.07 108 | 99.59 28 | 99.11 44 |
|
| HFP-MVS | | | 96.39 38 | 96.17 44 | 97.04 31 | 98.51 51 | 93.37 39 | 96.30 54 | 97.98 75 | 92.35 88 | 95.63 134 | 96.47 158 | 95.37 30 | 99.27 74 | 93.78 52 | 99.14 99 | 98.48 125 |
|
| thisisatest0530 | | | 88.69 273 | 87.52 284 | 92.20 211 | 96.33 196 | 79.36 277 | 92.81 178 | 84.01 376 | 86.44 220 | 93.67 209 | 92.68 308 | 53.62 391 | 99.25 75 | 89.65 176 | 98.45 177 | 98.00 161 |
|
| ACMMP_NAP | | | 96.21 44 | 96.12 46 | 96.49 48 | 98.90 19 | 91.42 63 | 94.57 119 | 98.03 69 | 90.42 148 | 96.37 93 | 97.35 97 | 95.68 21 | 99.25 75 | 94.44 37 | 99.34 64 | 98.80 86 |
|
| HPM-MVS++ |  | | 95.02 92 | 94.39 119 | 96.91 37 | 97.88 99 | 93.58 37 | 94.09 140 | 96.99 157 | 91.05 132 | 92.40 257 | 95.22 227 | 91.03 147 | 99.25 75 | 92.11 105 | 98.69 154 | 97.90 174 |
|
| dcpmvs_2 | | | 93.96 134 | 95.01 99 | 90.82 265 | 97.60 120 | 74.04 345 | 93.68 154 | 98.85 7 | 89.80 158 | 97.82 29 | 97.01 126 | 91.14 145 | 99.21 78 | 90.56 145 | 98.59 164 | 99.19 36 |
|
| CANet | | | 92.38 183 | 91.99 188 | 93.52 167 | 93.82 303 | 83.46 211 | 91.14 242 | 97.00 155 | 89.81 157 | 86.47 350 | 94.04 269 | 87.90 193 | 99.21 78 | 89.50 178 | 98.27 194 | 97.90 174 |
|
| LS3D | | | 96.11 47 | 95.83 63 | 96.95 36 | 94.75 276 | 94.20 19 | 97.34 13 | 97.98 75 | 97.31 11 | 95.32 152 | 96.77 139 | 93.08 97 | 99.20 80 | 91.79 117 | 98.16 206 | 97.44 214 |
|
| ETV-MVS | | | 92.99 162 | 92.74 169 | 93.72 157 | 95.86 234 | 86.30 165 | 92.33 202 | 97.84 88 | 91.70 118 | 92.81 240 | 86.17 378 | 92.22 116 | 99.19 81 | 88.03 214 | 97.73 234 | 95.66 293 |
|
| EIA-MVS | | | 92.35 184 | 92.03 186 | 93.30 174 | 95.81 238 | 83.97 206 | 92.80 179 | 98.17 45 | 87.71 203 | 89.79 309 | 87.56 368 | 91.17 144 | 99.18 82 | 87.97 215 | 97.27 254 | 96.77 247 |
|
| 3Dnovator+ | | 92.74 2 | 95.86 57 | 95.77 66 | 96.13 53 | 96.81 163 | 90.79 73 | 96.30 54 | 97.82 90 | 96.13 26 | 94.74 180 | 97.23 106 | 91.33 135 | 99.16 83 | 93.25 78 | 98.30 192 | 98.46 126 |
|
| Anonymous20231211 | | | 96.60 25 | 97.13 12 | 95.00 100 | 97.46 130 | 86.35 164 | 97.11 19 | 98.24 34 | 97.58 8 | 98.72 8 | 98.97 7 | 93.15 94 | 99.15 84 | 93.18 80 | 99.74 12 | 99.50 17 |
|
| v10 | | | 94.68 106 | 95.27 89 | 92.90 187 | 96.57 176 | 80.15 254 | 94.65 115 | 97.57 110 | 90.68 141 | 97.43 48 | 98.00 51 | 88.18 185 | 99.15 84 | 94.84 32 | 99.55 37 | 99.41 20 |
|
| h-mvs33 | | | 92.89 165 | 91.99 188 | 95.58 77 | 96.97 150 | 90.55 76 | 93.94 145 | 94.01 278 | 89.23 168 | 93.95 201 | 96.19 181 | 76.88 307 | 99.14 86 | 91.02 133 | 95.71 297 | 97.04 235 |
|
| HyFIR lowres test | | | 87.19 303 | 85.51 314 | 92.24 210 | 97.12 147 | 80.51 251 | 85.03 362 | 96.06 211 | 66.11 383 | 91.66 274 | 92.98 300 | 70.12 335 | 99.14 86 | 75.29 348 | 95.23 311 | 97.07 231 |
|
| iter_conf_final | | | 90.23 232 | 89.32 245 | 92.95 183 | 94.65 283 | 81.46 240 | 94.32 130 | 95.40 242 | 85.61 238 | 92.84 239 | 95.37 224 | 54.58 387 | 99.13 88 | 92.16 104 | 98.94 124 | 98.25 139 |
|
| iter_conf05 | | | 88.94 266 | 88.09 276 | 91.50 238 | 92.74 319 | 76.97 316 | 92.80 179 | 95.92 217 | 82.82 279 | 93.65 210 | 95.37 224 | 49.41 394 | 99.13 88 | 90.82 138 | 99.28 79 | 98.40 130 |
|
| test_0402 | | | 95.73 61 | 96.22 40 | 94.26 135 | 98.19 76 | 85.77 179 | 93.24 166 | 97.24 139 | 96.88 16 | 97.69 33 | 97.77 65 | 94.12 73 | 99.13 88 | 91.54 126 | 99.29 74 | 97.88 177 |
|
| GeoE | | | 94.55 110 | 94.68 113 | 94.15 137 | 97.23 139 | 85.11 190 | 94.14 138 | 97.34 130 | 88.71 181 | 95.26 156 | 95.50 214 | 94.65 61 | 99.12 91 | 90.94 136 | 98.40 179 | 98.23 140 |
|
| ACMP | | 88.15 13 | 95.71 62 | 95.43 79 | 96.54 45 | 98.17 77 | 91.73 60 | 94.24 132 | 98.08 57 | 89.46 163 | 96.61 87 | 96.47 158 | 95.85 18 | 99.12 91 | 90.45 147 | 99.56 36 | 98.77 91 |
| Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020 |
| lessismore_v0 | | | | | 93.87 151 | 98.05 85 | 83.77 209 | | 80.32 388 | | 97.13 60 | 97.91 59 | 77.49 296 | 99.11 93 | 92.62 97 | 98.08 213 | 98.74 95 |
|
| 9.14 | | | | 94.81 104 | | 97.49 127 | | 94.11 139 | 98.37 20 | 87.56 208 | 95.38 147 | 96.03 189 | 94.66 60 | 99.08 94 | 90.70 142 | 98.97 119 | |
|
| UniMVSNet_ETH3D | | | 97.13 5 | 97.72 3 | 95.35 84 | 99.51 2 | 87.38 134 | 97.70 8 | 97.54 112 | 98.16 2 | 98.94 2 | 99.33 2 | 97.84 4 | 99.08 94 | 90.73 141 | 99.73 13 | 99.59 13 |
|
| v8 | | | 94.65 107 | 95.29 87 | 92.74 192 | 96.65 170 | 79.77 269 | 94.59 116 | 97.17 143 | 91.86 103 | 97.47 47 | 97.93 55 | 88.16 186 | 99.08 94 | 94.32 39 | 99.47 43 | 99.38 22 |
|
| PVSNet_Blended_VisFu | | | 91.63 198 | 91.20 207 | 92.94 185 | 97.73 110 | 83.95 207 | 92.14 211 | 97.46 118 | 78.85 319 | 92.35 260 | 94.98 236 | 84.16 238 | 99.08 94 | 86.36 244 | 96.77 275 | 95.79 286 |
|
| v1240 | | | 93.29 151 | 93.71 142 | 92.06 219 | 96.01 226 | 77.89 301 | 91.81 229 | 97.37 123 | 85.12 248 | 96.69 83 | 96.40 163 | 86.67 215 | 99.07 98 | 94.51 35 | 98.76 146 | 99.22 33 |
|
| v1921920 | | | 93.26 153 | 93.61 148 | 92.19 212 | 96.04 225 | 78.31 295 | 91.88 224 | 97.24 139 | 85.17 246 | 96.19 109 | 96.19 181 | 86.76 213 | 99.05 99 | 94.18 43 | 98.84 133 | 99.22 33 |
|
| MIMVSNet1 | | | 95.52 69 | 95.45 77 | 95.72 73 | 99.14 5 | 89.02 102 | 96.23 57 | 96.87 167 | 93.73 60 | 97.87 28 | 98.49 29 | 90.73 155 | 99.05 99 | 86.43 243 | 99.60 26 | 99.10 47 |
|
| DeepC-MVS | | 91.39 4 | 95.43 73 | 95.33 85 | 95.71 74 | 97.67 117 | 90.17 80 | 93.86 147 | 98.02 71 | 87.35 209 | 96.22 105 | 97.99 53 | 94.48 68 | 99.05 99 | 92.73 94 | 99.68 18 | 97.93 171 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| v144192 | | | 93.20 158 | 93.54 152 | 92.16 216 | 96.05 221 | 78.26 296 | 91.95 217 | 97.14 145 | 84.98 252 | 95.96 115 | 96.11 185 | 87.08 206 | 99.04 102 | 93.79 51 | 98.84 133 | 99.17 37 |
|
| WR-MVS | | | 93.49 146 | 93.72 141 | 92.80 191 | 97.57 123 | 80.03 260 | 90.14 273 | 95.68 224 | 93.70 61 | 96.62 86 | 95.39 222 | 87.21 203 | 99.04 102 | 87.50 222 | 99.64 24 | 99.33 26 |
|
| v1192 | | | 93.49 146 | 93.78 139 | 92.62 199 | 96.16 211 | 79.62 271 | 91.83 228 | 97.22 141 | 86.07 227 | 96.10 112 | 96.38 168 | 87.22 202 | 99.02 104 | 94.14 44 | 98.88 128 | 99.22 33 |
|
| LCM-MVSNet-Re | | | 94.20 126 | 94.58 116 | 93.04 178 | 95.91 232 | 83.13 219 | 93.79 149 | 99.19 3 | 92.00 97 | 98.84 5 | 98.04 48 | 93.64 78 | 99.02 104 | 81.28 298 | 98.54 169 | 96.96 238 |
|
| ACMM | | 88.83 9 | 96.30 42 | 96.07 50 | 96.97 34 | 98.39 62 | 92.95 44 | 94.74 111 | 98.03 69 | 90.82 137 | 97.15 59 | 96.85 135 | 96.25 14 | 99.00 106 | 93.10 83 | 99.33 66 | 98.95 65 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| CPTT-MVS | | | 94.74 102 | 94.12 131 | 96.60 43 | 98.15 78 | 93.01 42 | 95.84 71 | 97.66 102 | 89.21 171 | 93.28 221 | 95.46 215 | 88.89 179 | 98.98 107 | 89.80 171 | 98.82 139 | 97.80 187 |
|
| GBi-Net | | | 93.21 156 | 92.96 162 | 93.97 144 | 95.40 256 | 84.29 198 | 95.99 63 | 96.56 188 | 88.63 182 | 95.10 164 | 98.53 26 | 81.31 267 | 98.98 107 | 86.74 233 | 98.38 183 | 98.65 107 |
|
| test1 | | | 93.21 156 | 92.96 162 | 93.97 144 | 95.40 256 | 84.29 198 | 95.99 63 | 96.56 188 | 88.63 182 | 95.10 164 | 98.53 26 | 81.31 267 | 98.98 107 | 86.74 233 | 98.38 183 | 98.65 107 |
|
| FMVSNet1 | | | 94.84 99 | 95.13 94 | 93.97 144 | 97.60 120 | 84.29 198 | 95.99 63 | 96.56 188 | 92.38 85 | 97.03 67 | 98.53 26 | 90.12 166 | 98.98 107 | 88.78 199 | 99.16 97 | 98.65 107 |
|
| Effi-MVS+-dtu | | | 93.90 138 | 92.60 175 | 97.77 3 | 94.74 277 | 96.67 5 | 94.00 142 | 95.41 240 | 89.94 154 | 91.93 271 | 92.13 319 | 90.12 166 | 98.97 111 | 87.68 220 | 97.48 246 | 97.67 199 |
|
| v1144 | | | 93.50 145 | 93.81 136 | 92.57 202 | 96.28 201 | 79.61 272 | 91.86 227 | 96.96 158 | 86.95 217 | 95.91 119 | 96.32 172 | 87.65 195 | 98.96 112 | 93.51 61 | 98.88 128 | 99.13 41 |
|
| NCCC | | | 94.08 130 | 93.54 152 | 95.70 75 | 96.49 184 | 89.90 83 | 92.39 200 | 96.91 164 | 90.64 142 | 92.33 263 | 94.60 252 | 90.58 159 | 98.96 112 | 90.21 161 | 97.70 237 | 98.23 140 |
|
| test_241102_ONE | | | | | | 98.51 51 | 86.97 144 | | 98.10 54 | 91.85 104 | 97.63 35 | 97.03 123 | 96.48 10 | 98.95 114 | | | |
|
| nrg030 | | | 96.32 40 | 96.55 25 | 95.62 76 | 97.83 102 | 88.55 115 | 95.77 74 | 98.29 30 | 92.68 79 | 98.03 26 | 97.91 59 | 95.13 43 | 98.95 114 | 93.85 50 | 99.49 42 | 99.36 24 |
|
| HQP_MVS | | | 94.26 122 | 93.93 134 | 95.23 93 | 97.71 112 | 88.12 122 | 94.56 120 | 97.81 91 | 91.74 115 | 93.31 218 | 95.59 209 | 86.93 209 | 98.95 114 | 89.26 186 | 98.51 173 | 98.60 117 |
|
| plane_prior5 | | | | | | | | | 97.81 91 | | | | | 98.95 114 | 89.26 186 | 98.51 173 | 98.60 117 |
|
| IterMVS-SCA-FT | | | 91.65 197 | 91.55 197 | 91.94 221 | 93.89 300 | 79.22 281 | 87.56 327 | 93.51 285 | 91.53 122 | 95.37 149 | 96.62 152 | 78.65 286 | 98.90 118 | 91.89 114 | 94.95 316 | 97.70 196 |
|
| v2v482 | | | 93.29 151 | 93.63 146 | 92.29 208 | 96.35 194 | 78.82 289 | 91.77 231 | 96.28 200 | 88.45 186 | 95.70 133 | 96.26 178 | 86.02 223 | 98.90 118 | 93.02 86 | 98.81 141 | 99.14 40 |
|
| EPNet | | | 89.80 247 | 88.25 269 | 94.45 130 | 83.91 397 | 86.18 169 | 93.87 146 | 87.07 353 | 91.16 131 | 80.64 386 | 94.72 247 | 78.83 283 | 98.89 120 | 85.17 255 | 98.89 126 | 98.28 137 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| TEST9 | | | | | | 96.45 187 | 89.46 90 | 90.60 257 | 96.92 162 | 79.09 315 | 90.49 292 | 94.39 258 | 91.31 136 | 98.88 121 | | | |
|
| train_agg | | | 92.71 173 | 91.83 193 | 95.35 84 | 96.45 187 | 89.46 90 | 90.60 257 | 96.92 162 | 79.37 310 | 90.49 292 | 94.39 258 | 91.20 141 | 98.88 121 | 88.66 202 | 98.43 178 | 97.72 195 |
|
| CDPH-MVS | | | 92.67 174 | 91.83 193 | 95.18 96 | 96.94 152 | 88.46 118 | 90.70 254 | 97.07 151 | 77.38 325 | 92.34 262 | 95.08 233 | 92.67 109 | 98.88 121 | 85.74 250 | 98.57 166 | 98.20 143 |
|
| QAPM | | | 92.88 166 | 92.77 167 | 93.22 176 | 95.82 236 | 83.31 212 | 96.45 39 | 97.35 129 | 83.91 264 | 93.75 206 | 96.77 139 | 89.25 177 | 98.88 121 | 84.56 268 | 97.02 263 | 97.49 210 |
|
| bld_raw_dy_0_64 | | | 94.27 120 | 94.15 130 | 94.65 116 | 98.55 45 | 86.28 166 | 95.80 73 | 95.55 233 | 88.41 188 | 97.09 61 | 98.08 44 | 78.69 285 | 98.87 125 | 95.63 17 | 99.53 38 | 98.81 84 |
|
| EI-MVSNet-UG-set | | | 94.35 117 | 94.27 127 | 94.59 122 | 92.46 323 | 85.87 176 | 92.42 198 | 94.69 262 | 93.67 64 | 96.13 110 | 95.84 197 | 91.20 141 | 98.86 126 | 93.78 52 | 98.23 199 | 99.03 52 |
|
| EI-MVSNet-Vis-set | | | 94.36 116 | 94.28 125 | 94.61 118 | 92.55 322 | 85.98 173 | 92.44 196 | 94.69 262 | 93.70 61 | 96.12 111 | 95.81 198 | 91.24 138 | 98.86 126 | 93.76 55 | 98.22 201 | 98.98 60 |
|
| V42 | | | 93.43 148 | 93.58 149 | 92.97 181 | 95.34 260 | 81.22 244 | 92.67 184 | 96.49 193 | 87.25 211 | 96.20 107 | 96.37 169 | 87.32 201 | 98.85 128 | 92.39 102 | 98.21 202 | 98.85 81 |
|
| Fast-Effi-MVS+ | | | 91.28 207 | 90.86 214 | 92.53 204 | 95.45 255 | 82.53 226 | 89.25 303 | 96.52 192 | 85.00 251 | 89.91 305 | 88.55 364 | 92.94 100 | 98.84 129 | 84.72 267 | 95.44 304 | 96.22 268 |
|
| TDRefinement | | | 97.68 3 | 97.60 4 | 97.93 2 | 99.02 12 | 95.95 8 | 98.61 3 | 98.81 8 | 97.41 10 | 97.28 56 | 98.46 30 | 94.62 62 | 98.84 129 | 94.64 34 | 99.53 38 | 98.99 56 |
|
| xiu_mvs_v1_base_debu | | | 91.47 202 | 91.52 198 | 91.33 243 | 95.69 244 | 81.56 237 | 89.92 280 | 96.05 213 | 83.22 271 | 91.26 279 | 90.74 338 | 91.55 131 | 98.82 131 | 89.29 183 | 95.91 292 | 93.62 346 |
|
| xiu_mvs_v1_base | | | 91.47 202 | 91.52 198 | 91.33 243 | 95.69 244 | 81.56 237 | 89.92 280 | 96.05 213 | 83.22 271 | 91.26 279 | 90.74 338 | 91.55 131 | 98.82 131 | 89.29 183 | 95.91 292 | 93.62 346 |
|
| xiu_mvs_v1_base_debi | | | 91.47 202 | 91.52 198 | 91.33 243 | 95.69 244 | 81.56 237 | 89.92 280 | 96.05 213 | 83.22 271 | 91.26 279 | 90.74 338 | 91.55 131 | 98.82 131 | 89.29 183 | 95.91 292 | 93.62 346 |
|
| test_8 | | | | | | 96.37 189 | 89.14 100 | 90.51 260 | 96.89 165 | 79.37 310 | 90.42 294 | 94.36 260 | 91.20 141 | 98.82 131 | | | |
|
| PS-MVSNAJ | | | 88.86 268 | 88.99 252 | 88.48 317 | 94.88 268 | 74.71 335 | 86.69 346 | 95.60 226 | 80.88 297 | 87.83 339 | 87.37 371 | 90.77 151 | 98.82 131 | 82.52 284 | 94.37 330 | 91.93 365 |
|
| test1111 | | | 90.39 225 | 90.61 221 | 89.74 292 | 98.04 88 | 71.50 361 | 95.59 81 | 79.72 390 | 89.41 164 | 95.94 117 | 98.14 39 | 70.79 333 | 98.81 136 | 88.52 204 | 99.32 68 | 98.90 74 |
|
| xiu_mvs_v2_base | | | 89.00 263 | 89.19 246 | 88.46 318 | 94.86 270 | 74.63 337 | 86.97 337 | 95.60 226 | 80.88 297 | 87.83 339 | 88.62 363 | 91.04 146 | 98.81 136 | 82.51 285 | 94.38 329 | 91.93 365 |
|
| FMVSNet2 | | | 92.78 170 | 92.73 171 | 92.95 183 | 95.40 256 | 81.98 232 | 94.18 135 | 95.53 235 | 88.63 182 | 96.05 113 | 97.37 91 | 81.31 267 | 98.81 136 | 87.38 226 | 98.67 157 | 98.06 153 |
|
| FE-MVS | | | 89.06 259 | 88.29 266 | 91.36 242 | 94.78 274 | 79.57 273 | 96.77 28 | 90.99 324 | 84.87 254 | 92.96 236 | 96.29 174 | 60.69 378 | 98.80 139 | 80.18 309 | 97.11 260 | 95.71 289 |
|
| Anonymous20240529 | | | 95.50 70 | 95.83 63 | 94.50 126 | 97.33 136 | 85.93 174 | 95.19 98 | 96.77 175 | 96.64 19 | 97.61 38 | 98.05 46 | 93.23 91 | 98.79 140 | 88.60 203 | 99.04 111 | 98.78 88 |
|
| VDD-MVS | | | 94.37 115 | 94.37 121 | 94.40 132 | 97.49 127 | 86.07 172 | 93.97 144 | 93.28 289 | 94.49 45 | 96.24 103 | 97.78 63 | 87.99 191 | 98.79 140 | 88.92 195 | 99.14 99 | 98.34 132 |
|
| test12 | | | | | 94.43 131 | 95.95 229 | 86.75 150 | | 96.24 203 | | 89.76 310 | | 89.79 173 | 98.79 140 | | 97.95 225 | 97.75 193 |
|
| agg_prior | | | | | | 96.20 208 | 88.89 106 | | 96.88 166 | | 90.21 299 | | | 98.78 143 | | | |
|
| CSCG | | | 94.69 105 | 94.75 107 | 94.52 125 | 97.55 124 | 87.87 127 | 95.01 104 | 97.57 110 | 92.68 79 | 96.20 107 | 93.44 289 | 91.92 123 | 98.78 143 | 89.11 191 | 99.24 85 | 96.92 239 |
|
| PHI-MVS | | | 94.34 118 | 93.80 138 | 95.95 59 | 95.65 247 | 91.67 62 | 94.82 109 | 97.86 85 | 87.86 199 | 93.04 233 | 94.16 266 | 91.58 130 | 98.78 143 | 90.27 157 | 98.96 121 | 97.41 215 |
|
| COLMAP_ROB |  | 91.06 5 | 96.75 16 | 96.62 22 | 97.13 28 | 98.38 63 | 94.31 17 | 96.79 26 | 98.32 24 | 96.69 17 | 96.86 75 | 97.56 76 | 95.48 27 | 98.77 146 | 90.11 164 | 99.44 50 | 98.31 135 |
| Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016 |
| VDDNet | | | 94.03 131 | 94.27 127 | 93.31 173 | 98.87 21 | 82.36 229 | 95.51 86 | 91.78 318 | 97.19 12 | 96.32 96 | 98.60 22 | 84.24 237 | 98.75 147 | 87.09 230 | 98.83 138 | 98.81 84 |
|
| 114514_t | | | 90.51 219 | 89.80 239 | 92.63 198 | 98.00 91 | 82.24 230 | 93.40 162 | 97.29 135 | 65.84 384 | 89.40 314 | 94.80 244 | 86.99 207 | 98.75 147 | 83.88 273 | 98.61 161 | 96.89 241 |
|
| FMVSNet3 | | | 90.78 212 | 90.32 229 | 92.16 216 | 93.03 316 | 79.92 264 | 92.54 189 | 94.95 253 | 86.17 226 | 95.10 164 | 96.01 190 | 69.97 336 | 98.75 147 | 86.74 233 | 98.38 183 | 97.82 185 |
|
| IterMVS-LS | | | 93.78 140 | 94.28 125 | 92.27 209 | 96.27 202 | 79.21 282 | 91.87 225 | 96.78 173 | 91.77 113 | 96.57 89 | 97.07 120 | 87.15 204 | 98.74 150 | 91.99 110 | 99.03 112 | 98.86 78 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| DELS-MVS | | | 92.05 191 | 92.16 182 | 91.72 228 | 94.44 287 | 80.13 256 | 87.62 324 | 97.25 138 | 87.34 210 | 92.22 265 | 93.18 296 | 89.54 175 | 98.73 151 | 89.67 175 | 98.20 204 | 96.30 265 |
| Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023 |
| thisisatest0515 | | | 84.72 323 | 82.99 332 | 89.90 289 | 92.96 317 | 75.33 334 | 84.36 369 | 83.42 378 | 77.37 326 | 88.27 334 | 86.65 373 | 53.94 389 | 98.72 152 | 82.56 283 | 97.40 251 | 95.67 292 |
|
| alignmvs | | | 93.26 153 | 92.85 166 | 94.50 126 | 95.70 243 | 87.45 133 | 93.45 160 | 95.76 221 | 91.58 120 | 95.25 158 | 92.42 315 | 81.96 262 | 98.72 152 | 91.61 122 | 97.87 229 | 97.33 223 |
|
| MCST-MVS | | | 92.91 164 | 92.51 176 | 94.10 140 | 97.52 125 | 85.72 181 | 91.36 239 | 97.13 147 | 80.33 301 | 92.91 238 | 94.24 262 | 91.23 139 | 98.72 152 | 89.99 168 | 97.93 226 | 97.86 179 |
|
| XVG-ACMP-BASELINE | | | 95.68 63 | 95.34 84 | 96.69 41 | 98.40 61 | 93.04 41 | 94.54 123 | 98.05 64 | 90.45 147 | 96.31 97 | 96.76 141 | 92.91 102 | 98.72 152 | 91.19 130 | 99.42 52 | 98.32 133 |
|
| CNVR-MVS | | | 94.58 109 | 94.29 124 | 95.46 82 | 96.94 152 | 89.35 96 | 91.81 229 | 96.80 172 | 89.66 160 | 93.90 204 | 95.44 217 | 92.80 106 | 98.72 152 | 92.74 93 | 98.52 171 | 98.32 133 |
|
| DP-MVS | | | 95.62 64 | 95.84 62 | 94.97 101 | 97.16 144 | 88.62 111 | 94.54 123 | 97.64 103 | 96.94 15 | 96.58 88 | 97.32 101 | 93.07 98 | 98.72 152 | 90.45 147 | 98.84 133 | 97.57 204 |
|
| casdiffmvs_mvg |  | | 95.10 90 | 95.62 71 | 93.53 165 | 96.25 205 | 83.23 215 | 92.66 185 | 98.19 39 | 93.06 75 | 97.49 44 | 97.15 113 | 94.78 57 | 98.71 158 | 92.27 103 | 98.72 149 | 98.65 107 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| 原ACMM1 | | | | | 92.87 188 | 96.91 155 | 84.22 201 | | 97.01 154 | 76.84 331 | 89.64 312 | 94.46 256 | 88.00 190 | 98.70 159 | 81.53 296 | 98.01 220 | 95.70 291 |
|
| ANet_high | | | 94.83 100 | 96.28 37 | 90.47 273 | 96.65 170 | 73.16 350 | 94.33 128 | 98.74 11 | 96.39 24 | 98.09 25 | 98.93 8 | 93.37 86 | 98.70 159 | 90.38 150 | 99.68 18 | 99.53 15 |
|
| hse-mvs2 | | | 92.24 188 | 91.20 207 | 95.38 83 | 96.16 211 | 90.65 75 | 92.52 190 | 92.01 316 | 89.23 168 | 93.95 201 | 92.99 299 | 76.88 307 | 98.69 161 | 91.02 133 | 96.03 289 | 96.81 245 |
|
| AUN-MVS | | | 90.05 241 | 88.30 265 | 95.32 88 | 96.09 218 | 90.52 77 | 92.42 198 | 92.05 315 | 82.08 288 | 88.45 331 | 92.86 301 | 65.76 355 | 98.69 161 | 88.91 196 | 96.07 288 | 96.75 249 |
|
| test2506 | | | 85.42 317 | 84.57 320 | 87.96 325 | 97.81 103 | 66.53 379 | 96.14 58 | 56.35 402 | 89.04 172 | 93.55 213 | 98.10 42 | 42.88 402 | 98.68 163 | 88.09 211 | 99.18 94 | 98.67 105 |
|
| test_prior | | | | | 94.61 118 | 95.95 229 | 87.23 137 | | 97.36 128 | | | | | 98.68 163 | | | 97.93 171 |
|
| Effi-MVS+ | | | 92.79 169 | 92.74 169 | 92.94 185 | 95.10 264 | 83.30 213 | 94.00 142 | 97.53 114 | 91.36 125 | 89.35 315 | 90.65 343 | 94.01 75 | 98.66 165 | 87.40 225 | 95.30 309 | 96.88 243 |
|
| canonicalmvs | | | 94.59 108 | 94.69 111 | 94.30 134 | 95.60 251 | 87.03 143 | 95.59 81 | 98.24 34 | 91.56 121 | 95.21 161 | 92.04 321 | 94.95 53 | 98.66 165 | 91.45 127 | 97.57 243 | 97.20 228 |
|
| 3Dnovator | | 92.54 3 | 94.80 101 | 94.90 101 | 94.47 129 | 95.47 254 | 87.06 142 | 96.63 31 | 97.28 137 | 91.82 110 | 94.34 191 | 97.41 88 | 90.60 158 | 98.65 167 | 92.47 100 | 98.11 210 | 97.70 196 |
|
| ECVR-MVS |  | | 90.12 236 | 90.16 230 | 90.00 288 | 97.81 103 | 72.68 355 | 95.76 75 | 78.54 393 | 89.04 172 | 95.36 150 | 98.10 42 | 70.51 334 | 98.64 168 | 87.10 229 | 99.18 94 | 98.67 105 |
|
| ACMH+ | | 88.43 11 | 96.48 30 | 96.82 15 | 95.47 81 | 98.54 48 | 89.06 101 | 95.65 79 | 98.61 12 | 96.10 27 | 98.16 23 | 97.52 81 | 96.90 7 | 98.62 169 | 90.30 155 | 99.60 26 | 98.72 97 |
|
| HQP4-MVS | | | | | | | | | | | 88.81 321 | | | 98.61 170 | | | 98.15 148 |
|
| LTVRE_ROB | | 93.87 1 | 97.93 2 | 98.16 2 | 97.26 26 | 98.81 28 | 93.86 31 | 99.07 2 | 98.98 6 | 97.01 13 | 98.92 4 | 98.78 14 | 95.22 40 | 98.61 170 | 96.85 3 | 99.77 9 | 99.31 28 |
| Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016 |
| Fast-Effi-MVS+-dtu | | | 92.77 171 | 92.16 182 | 94.58 124 | 94.66 282 | 88.25 120 | 92.05 213 | 96.65 182 | 89.62 161 | 90.08 301 | 91.23 331 | 92.56 110 | 98.60 172 | 86.30 245 | 96.27 286 | 96.90 240 |
|
| HQP-MVS | | | 92.09 190 | 91.49 201 | 93.88 150 | 96.36 191 | 84.89 192 | 91.37 236 | 97.31 132 | 87.16 212 | 88.81 321 | 93.40 290 | 84.76 234 | 98.60 172 | 86.55 240 | 97.73 234 | 98.14 149 |
|
| æ— å…ˆéªŒ | | | | | | | | 89.94 279 | 95.75 222 | 70.81 366 | | | | 98.59 174 | 81.17 301 | | 94.81 315 |
|
| DeepC-MVS_fast | | 89.96 7 | 93.73 141 | 93.44 154 | 94.60 121 | 96.14 214 | 87.90 126 | 93.36 164 | 97.14 145 | 85.53 241 | 93.90 204 | 95.45 216 | 91.30 137 | 98.59 174 | 89.51 177 | 98.62 160 | 97.31 224 |
| Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020 |
| CANet_DTU | | | 89.85 245 | 89.17 247 | 91.87 222 | 92.20 329 | 80.02 261 | 90.79 250 | 95.87 219 | 86.02 228 | 82.53 377 | 91.77 324 | 80.01 276 | 98.57 176 | 85.66 252 | 97.70 237 | 97.01 236 |
|
| OPM-MVS | | | 95.61 65 | 95.45 77 | 96.08 54 | 98.49 58 | 91.00 68 | 92.65 186 | 97.33 131 | 90.05 153 | 96.77 80 | 96.85 135 | 95.04 48 | 98.56 177 | 92.77 91 | 99.06 103 | 98.70 101 |
| Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS). |
| jason | | | 89.17 256 | 88.32 264 | 91.70 230 | 95.73 242 | 80.07 257 | 88.10 320 | 93.22 290 | 71.98 358 | 90.09 300 | 92.79 304 | 78.53 289 | 98.56 177 | 87.43 224 | 97.06 261 | 96.46 259 |
| jason: jason. |
| F-COLMAP | | | 92.28 186 | 91.06 211 | 95.95 59 | 97.52 125 | 91.90 56 | 93.53 156 | 97.18 142 | 83.98 263 | 88.70 327 | 94.04 269 | 88.41 183 | 98.55 179 | 80.17 310 | 95.99 291 | 97.39 219 |
|
| lupinMVS | | | 88.34 278 | 87.31 286 | 91.45 239 | 94.74 277 | 80.06 258 | 87.23 332 | 92.27 308 | 71.10 363 | 88.83 319 | 91.15 332 | 77.02 304 | 98.53 180 | 86.67 236 | 96.75 276 | 95.76 287 |
|
| PCF-MVS | | 84.52 17 | 89.12 257 | 87.71 281 | 93.34 172 | 96.06 220 | 85.84 177 | 86.58 351 | 97.31 132 | 68.46 377 | 93.61 211 | 93.89 277 | 87.51 198 | 98.52 181 | 67.85 382 | 98.11 210 | 95.66 293 |
| Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019 |
| VPA-MVSNet | | | 95.14 89 | 95.67 70 | 93.58 161 | 97.76 106 | 83.15 218 | 94.58 118 | 97.58 109 | 93.39 68 | 97.05 66 | 98.04 48 | 93.25 90 | 98.51 182 | 89.75 174 | 99.59 28 | 99.08 48 |
|
| EI-MVSNet | | | 92.99 162 | 93.26 160 | 92.19 212 | 92.12 332 | 79.21 282 | 92.32 203 | 94.67 264 | 91.77 113 | 95.24 159 | 95.85 195 | 87.14 205 | 98.49 183 | 91.99 110 | 98.26 195 | 98.86 78 |
|
| casdiffmvs |  | | 94.32 119 | 94.80 105 | 92.85 189 | 96.05 221 | 81.44 241 | 92.35 201 | 98.05 64 | 91.53 122 | 95.75 128 | 96.80 138 | 93.35 87 | 98.49 183 | 91.01 135 | 98.32 191 | 98.64 112 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| MVSTER | | | 89.32 254 | 88.75 257 | 91.03 255 | 90.10 365 | 76.62 321 | 90.85 248 | 94.67 264 | 82.27 286 | 95.24 159 | 95.79 199 | 61.09 376 | 98.49 183 | 90.49 146 | 98.26 195 | 97.97 168 |
|
| UGNet | | | 93.08 159 | 92.50 177 | 94.79 108 | 93.87 301 | 87.99 125 | 95.07 101 | 94.26 272 | 90.64 142 | 87.33 346 | 97.67 69 | 86.89 211 | 98.49 183 | 88.10 210 | 98.71 151 | 97.91 173 |
| Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022 |
| baseline | | | 94.26 122 | 94.80 105 | 92.64 196 | 96.08 219 | 80.99 247 | 93.69 153 | 98.04 68 | 90.80 138 | 94.89 174 | 96.32 172 | 93.19 92 | 98.48 187 | 91.68 121 | 98.51 173 | 98.43 128 |
|
| LFMVS | | | 91.33 205 | 91.16 210 | 91.82 224 | 96.27 202 | 79.36 277 | 95.01 104 | 85.61 365 | 96.04 30 | 94.82 176 | 97.06 121 | 72.03 329 | 98.46 188 | 84.96 263 | 98.70 153 | 97.65 200 |
|
| FA-MVS(test-final) | | | 91.81 194 | 91.85 192 | 91.68 231 | 94.95 267 | 79.99 262 | 96.00 62 | 93.44 287 | 87.80 200 | 94.02 199 | 97.29 102 | 77.60 295 | 98.45 189 | 88.04 213 | 97.49 245 | 96.61 251 |
|
| test_fmvsmconf0.01_n | | | 95.90 54 | 96.09 47 | 95.31 89 | 97.30 137 | 89.21 97 | 94.24 132 | 98.76 10 | 86.25 223 | 97.56 39 | 98.66 18 | 95.73 19 | 98.44 190 | 97.35 2 | 98.99 113 | 98.27 138 |
|
| test_fmvsmconf0.1_n | | | 95.61 65 | 95.72 68 | 95.26 90 | 96.85 159 | 89.20 98 | 93.51 157 | 98.60 13 | 85.68 235 | 97.42 50 | 98.30 35 | 95.34 33 | 98.39 191 | 96.85 3 | 98.98 114 | 98.19 144 |
|
| thres600view7 | | | 87.66 289 | 87.10 295 | 89.36 299 | 96.05 221 | 73.17 349 | 92.72 181 | 85.31 368 | 91.89 102 | 93.29 220 | 90.97 335 | 63.42 367 | 98.39 191 | 73.23 359 | 96.99 268 | 96.51 254 |
|
| IB-MVS | | 77.21 19 | 83.11 333 | 81.05 344 | 89.29 300 | 91.15 351 | 75.85 329 | 85.66 357 | 86.00 360 | 79.70 306 | 82.02 381 | 86.61 374 | 48.26 395 | 98.39 191 | 77.84 330 | 92.22 362 | 93.63 345 |
| Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021 |
| test_fmvsmconf_n | | | 95.43 73 | 95.50 75 | 95.22 94 | 96.48 186 | 89.19 99 | 93.23 167 | 98.36 21 | 85.61 238 | 96.92 73 | 98.02 50 | 95.23 39 | 98.38 194 | 96.69 6 | 98.95 123 | 98.09 152 |
|
| v148 | | | 92.87 167 | 93.29 156 | 91.62 233 | 96.25 205 | 77.72 304 | 91.28 240 | 95.05 249 | 89.69 159 | 95.93 118 | 96.04 188 | 87.34 200 | 98.38 194 | 90.05 167 | 97.99 221 | 98.78 88 |
|
| CDS-MVSNet | | | 89.55 248 | 88.22 272 | 93.53 165 | 95.37 259 | 86.49 157 | 89.26 301 | 93.59 282 | 79.76 305 | 91.15 282 | 92.31 316 | 77.12 302 | 98.38 194 | 77.51 334 | 97.92 227 | 95.71 289 |
| Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022 |
| OpenMVS |  | 89.45 8 | 92.27 187 | 92.13 185 | 92.68 195 | 94.53 286 | 84.10 204 | 95.70 76 | 97.03 153 | 82.44 285 | 91.14 283 | 96.42 161 | 88.47 182 | 98.38 194 | 85.95 248 | 97.47 247 | 95.55 297 |
|
| MVS_Test | | | 92.57 178 | 93.29 156 | 90.40 276 | 93.53 307 | 75.85 329 | 92.52 190 | 96.96 158 | 88.73 179 | 92.35 260 | 96.70 148 | 90.77 151 | 98.37 198 | 92.53 99 | 95.49 302 | 96.99 237 |
|
| KD-MVS_self_test | | | 94.10 129 | 94.73 110 | 92.19 212 | 97.66 118 | 79.49 275 | 94.86 108 | 97.12 148 | 89.59 162 | 96.87 74 | 97.65 70 | 90.40 162 | 98.34 199 | 89.08 192 | 99.35 61 | 98.75 92 |
|
| VPNet | | | 93.08 159 | 93.76 140 | 91.03 255 | 98.60 39 | 75.83 331 | 91.51 234 | 95.62 225 | 91.84 107 | 95.74 129 | 97.10 119 | 89.31 176 | 98.32 200 | 85.07 262 | 99.06 103 | 98.93 68 |
|
| AdaColmap |  | | 91.63 198 | 91.36 204 | 92.47 206 | 95.56 252 | 86.36 163 | 92.24 210 | 96.27 201 | 88.88 178 | 89.90 306 | 92.69 307 | 91.65 129 | 98.32 200 | 77.38 336 | 97.64 240 | 92.72 359 |
|
| thres100view900 | | | 87.35 298 | 86.89 297 | 88.72 310 | 96.14 214 | 73.09 351 | 93.00 173 | 85.31 368 | 92.13 95 | 93.26 223 | 90.96 336 | 63.42 367 | 98.28 202 | 71.27 371 | 96.54 281 | 94.79 317 |
|
| tfpn200view9 | | | 87.05 306 | 86.52 305 | 88.67 311 | 95.77 239 | 72.94 352 | 91.89 222 | 86.00 360 | 90.84 135 | 92.61 247 | 89.80 347 | 63.93 364 | 98.28 202 | 71.27 371 | 96.54 281 | 94.79 317 |
|
| thres400 | | | 87.20 302 | 86.52 305 | 89.24 303 | 95.77 239 | 72.94 352 | 91.89 222 | 86.00 360 | 90.84 135 | 92.61 247 | 89.80 347 | 63.93 364 | 98.28 202 | 71.27 371 | 96.54 281 | 96.51 254 |
|
| Vis-MVSNet (Re-imp) | | | 90.42 222 | 90.16 230 | 91.20 251 | 97.66 118 | 77.32 309 | 94.33 128 | 87.66 348 | 91.20 129 | 92.99 234 | 95.13 230 | 75.40 316 | 98.28 202 | 77.86 329 | 99.19 92 | 97.99 164 |
|
| eth_miper_zixun_eth | | | 90.72 213 | 90.61 221 | 91.05 254 | 92.04 335 | 76.84 318 | 86.91 339 | 96.67 181 | 85.21 245 | 94.41 187 | 93.92 275 | 79.53 279 | 98.26 206 | 89.76 173 | 97.02 263 | 98.06 153 |
|
| PLC |  | 85.34 15 | 90.40 223 | 88.92 253 | 94.85 105 | 96.53 182 | 90.02 81 | 91.58 233 | 96.48 194 | 80.16 302 | 86.14 352 | 92.18 317 | 85.73 225 | 98.25 207 | 76.87 339 | 94.61 326 | 96.30 265 |
| Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019 |
| æ–°å‡ ä½•1 | | | | | 93.17 177 | 97.16 144 | 87.29 135 | | 94.43 267 | 67.95 378 | 91.29 278 | 94.94 238 | 86.97 208 | 98.23 208 | 81.06 302 | 97.75 233 | 93.98 336 |
|
| pmmvs6 | | | 96.80 12 | 97.36 9 | 95.15 97 | 99.12 8 | 87.82 129 | 96.68 30 | 97.86 85 | 96.10 27 | 98.14 24 | 99.28 3 | 97.94 3 | 98.21 209 | 91.38 129 | 99.69 14 | 99.42 19 |
|
| 1112_ss | | | 88.42 276 | 87.41 285 | 91.45 239 | 96.69 167 | 80.99 247 | 89.72 287 | 96.72 178 | 73.37 349 | 87.00 348 | 90.69 341 | 77.38 299 | 98.20 210 | 81.38 297 | 93.72 342 | 95.15 304 |
|
| DP-MVS Recon | | | 92.31 185 | 91.88 191 | 93.60 160 | 97.18 143 | 86.87 147 | 91.10 244 | 97.37 123 | 84.92 253 | 92.08 268 | 94.08 268 | 88.59 180 | 98.20 210 | 83.50 274 | 98.14 208 | 95.73 288 |
|
| TAMVS | | | 90.16 234 | 89.05 249 | 93.49 169 | 96.49 184 | 86.37 162 | 90.34 267 | 92.55 305 | 80.84 299 | 92.99 234 | 94.57 254 | 81.94 263 | 98.20 210 | 73.51 357 | 98.21 202 | 95.90 282 |
|
| ET-MVSNet_ETH3D | | | 86.15 312 | 84.27 323 | 91.79 225 | 93.04 315 | 81.28 242 | 87.17 335 | 86.14 358 | 79.57 308 | 83.65 369 | 88.66 361 | 57.10 382 | 98.18 213 | 87.74 219 | 95.40 305 | 95.90 282 |
|
| tfpnnormal | | | 94.27 120 | 94.87 103 | 92.48 205 | 97.71 112 | 80.88 249 | 94.55 122 | 95.41 240 | 93.70 61 | 96.67 84 | 97.72 66 | 91.40 134 | 98.18 213 | 87.45 223 | 99.18 94 | 98.36 131 |
|
| c3_l | | | 91.32 206 | 91.42 202 | 91.00 258 | 92.29 325 | 76.79 319 | 87.52 330 | 96.42 196 | 85.76 233 | 94.72 182 | 93.89 277 | 82.73 253 | 98.16 215 | 90.93 137 | 98.55 167 | 98.04 156 |
|
| PVSNet_BlendedMVS | | | 90.35 228 | 89.96 235 | 91.54 236 | 94.81 272 | 78.80 291 | 90.14 273 | 96.93 160 | 79.43 309 | 88.68 328 | 95.06 234 | 86.27 220 | 98.15 216 | 80.27 306 | 98.04 216 | 97.68 198 |
|
| PVSNet_Blended | | | 88.74 271 | 88.16 275 | 90.46 275 | 94.81 272 | 78.80 291 | 86.64 347 | 96.93 160 | 74.67 341 | 88.68 328 | 89.18 359 | 86.27 220 | 98.15 216 | 80.27 306 | 96.00 290 | 94.44 326 |
|
| testing3 | | | 83.66 330 | 82.52 335 | 87.08 334 | 95.84 235 | 65.84 381 | 89.80 285 | 77.17 396 | 88.17 193 | 90.84 287 | 88.63 362 | 30.95 404 | 98.11 218 | 84.05 271 | 97.19 257 | 97.28 226 |
|
| OMC-MVS | | | 94.22 125 | 93.69 143 | 95.81 69 | 97.25 138 | 91.27 64 | 92.27 207 | 97.40 122 | 87.10 215 | 94.56 184 | 95.42 218 | 93.74 77 | 98.11 218 | 86.62 237 | 98.85 132 | 98.06 153 |
|
| DeepPCF-MVS | | 90.46 6 | 94.20 126 | 93.56 151 | 96.14 52 | 95.96 228 | 92.96 43 | 89.48 293 | 97.46 118 | 85.14 247 | 96.23 104 | 95.42 218 | 93.19 92 | 98.08 220 | 90.37 151 | 98.76 146 | 97.38 221 |
|
| OPU-MVS | | | | | 95.15 97 | 96.84 160 | 89.43 92 | 95.21 94 | | | | 95.66 207 | 93.12 95 | 98.06 221 | 86.28 246 | 98.61 161 | 97.95 169 |
|
| miper_ehance_all_eth | | | 90.48 220 | 90.42 226 | 90.69 268 | 91.62 346 | 76.57 322 | 86.83 342 | 96.18 208 | 83.38 267 | 94.06 196 | 92.66 309 | 82.20 258 | 98.04 222 | 89.79 172 | 97.02 263 | 97.45 212 |
|
| test_yl | | | 90.11 237 | 89.73 242 | 91.26 247 | 94.09 295 | 79.82 266 | 90.44 261 | 92.65 301 | 90.90 133 | 93.19 228 | 93.30 292 | 73.90 320 | 98.03 223 | 82.23 288 | 96.87 270 | 95.93 279 |
|
| DCV-MVSNet | | | 90.11 237 | 89.73 242 | 91.26 247 | 94.09 295 | 79.82 266 | 90.44 261 | 92.65 301 | 90.90 133 | 93.19 228 | 93.30 292 | 73.90 320 | 98.03 223 | 82.23 288 | 96.87 270 | 95.93 279 |
|
| testdata2 | | | | | | | | | | | | | | 98.03 223 | 80.24 308 | | |
|
| EGC-MVSNET | | | 80.97 350 | 75.73 363 | 96.67 42 | 98.85 24 | 94.55 15 | 96.83 23 | 96.60 184 | 2.44 399 | 5.32 400 | 98.25 37 | 92.24 115 | 98.02 226 | 91.85 115 | 99.21 90 | 97.45 212 |
|
| DPM-MVS | | | 89.35 253 | 88.40 262 | 92.18 215 | 96.13 216 | 84.20 202 | 86.96 338 | 96.15 210 | 75.40 338 | 87.36 345 | 91.55 329 | 83.30 244 | 98.01 227 | 82.17 290 | 96.62 279 | 94.32 329 |
|
| thres200 | | | 85.85 314 | 85.18 315 | 87.88 328 | 94.44 287 | 72.52 356 | 89.08 305 | 86.21 357 | 88.57 185 | 91.44 276 | 88.40 365 | 64.22 362 | 98.00 228 | 68.35 380 | 95.88 295 | 93.12 352 |
|
| ACMH | | 88.36 12 | 96.59 27 | 97.43 5 | 94.07 141 | 98.56 42 | 85.33 188 | 96.33 47 | 98.30 27 | 94.66 42 | 98.72 8 | 98.30 35 | 97.51 5 | 98.00 228 | 94.87 31 | 99.59 28 | 98.86 78 |
| Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019 |
| DIV-MVS_self_test | | | 90.65 216 | 90.56 223 | 90.91 262 | 91.85 339 | 76.99 314 | 86.75 344 | 95.36 243 | 85.52 243 | 94.06 196 | 94.89 239 | 77.37 300 | 97.99 230 | 90.28 156 | 98.97 119 | 97.76 191 |
|
| cl____ | | | 90.65 216 | 90.56 223 | 90.91 262 | 91.85 339 | 76.98 315 | 86.75 344 | 95.36 243 | 85.53 241 | 94.06 196 | 94.89 239 | 77.36 301 | 97.98 231 | 90.27 157 | 98.98 114 | 97.76 191 |
|
| Anonymous20240521 | | | 92.86 168 | 93.57 150 | 90.74 267 | 96.57 176 | 75.50 333 | 94.15 136 | 95.60 226 | 89.38 165 | 95.90 120 | 97.90 61 | 80.39 275 | 97.96 232 | 92.60 98 | 99.68 18 | 98.75 92 |
|
| TAPA-MVS | | 88.58 10 | 92.49 179 | 91.75 195 | 94.73 110 | 96.50 183 | 89.69 86 | 92.91 176 | 97.68 101 | 78.02 323 | 92.79 242 | 94.10 267 | 90.85 149 | 97.96 232 | 84.76 266 | 98.16 206 | 96.54 252 |
| Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019 |
| tt0805 | | | 95.42 76 | 95.93 57 | 93.86 152 | 98.75 32 | 88.47 117 | 97.68 9 | 94.29 270 | 96.48 21 | 95.38 147 | 93.63 283 | 94.89 55 | 97.94 234 | 95.38 28 | 96.92 269 | 95.17 302 |
|
| testf1 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 22 | 94.96 38 | 97.30 54 | 97.93 55 | 96.05 16 | 97.90 235 | 89.32 180 | 99.23 86 | 98.19 144 |
|
| APD_test2 | | | 96.77 14 | 96.49 26 | 97.60 8 | 99.01 14 | 96.70 3 | 96.31 50 | 98.33 22 | 94.96 38 | 97.30 54 | 97.93 55 | 96.05 16 | 97.90 235 | 89.32 180 | 99.23 86 | 98.19 144 |
|
| TransMVSNet (Re) | | | 95.27 87 | 96.04 52 | 92.97 181 | 98.37 65 | 81.92 233 | 95.07 101 | 96.76 176 | 93.97 55 | 97.77 31 | 98.57 23 | 95.72 20 | 97.90 235 | 88.89 197 | 99.23 86 | 99.08 48 |
|
| EG-PatchMatch MVS | | | 94.54 111 | 94.67 114 | 94.14 138 | 97.87 101 | 86.50 156 | 92.00 216 | 96.74 177 | 88.16 194 | 96.93 72 | 97.61 73 | 93.04 99 | 97.90 235 | 91.60 123 | 98.12 209 | 98.03 159 |
|
| miper_enhance_ethall | | | 88.42 276 | 87.87 279 | 90.07 285 | 88.67 379 | 75.52 332 | 85.10 361 | 95.59 230 | 75.68 334 | 92.49 251 | 89.45 355 | 78.96 282 | 97.88 239 | 87.86 218 | 97.02 263 | 96.81 245 |
|
| BH-RMVSNet | | | 90.47 221 | 90.44 225 | 90.56 272 | 95.21 263 | 78.65 293 | 89.15 304 | 93.94 280 | 88.21 191 | 92.74 244 | 94.22 263 | 86.38 218 | 97.88 239 | 78.67 326 | 95.39 306 | 95.14 305 |
|
| Test_1112_low_res | | | 87.50 295 | 86.58 302 | 90.25 280 | 96.80 164 | 77.75 303 | 87.53 329 | 96.25 202 | 69.73 373 | 86.47 350 | 93.61 285 | 75.67 314 | 97.88 239 | 79.95 312 | 93.20 349 | 95.11 306 |
|
| MAR-MVS | | | 90.32 230 | 88.87 256 | 94.66 115 | 94.82 271 | 91.85 57 | 94.22 134 | 94.75 260 | 80.91 296 | 87.52 344 | 88.07 367 | 86.63 216 | 97.87 242 | 76.67 340 | 96.21 287 | 94.25 330 |
| Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020 |
| AllTest | | | 94.88 98 | 94.51 117 | 96.00 56 | 98.02 89 | 92.17 50 | 95.26 93 | 98.43 17 | 90.48 145 | 95.04 168 | 96.74 144 | 92.54 111 | 97.86 243 | 85.11 260 | 98.98 114 | 97.98 165 |
|
| TestCases | | | | | 96.00 56 | 98.02 89 | 92.17 50 | | 98.43 17 | 90.48 145 | 95.04 168 | 96.74 144 | 92.54 111 | 97.86 243 | 85.11 260 | 98.98 114 | 97.98 165 |
|
| CLD-MVS | | | 91.82 193 | 91.41 203 | 93.04 178 | 96.37 189 | 83.65 210 | 86.82 343 | 97.29 135 | 84.65 257 | 92.27 264 | 89.67 352 | 92.20 118 | 97.85 245 | 83.95 272 | 99.47 43 | 97.62 201 |
| Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020 |
| fmvsm_l_conf0.5_n | | | 93.79 139 | 93.81 136 | 93.73 156 | 96.16 211 | 86.26 167 | 92.46 194 | 96.72 178 | 81.69 291 | 95.77 125 | 97.11 117 | 90.83 150 | 97.82 246 | 95.58 20 | 97.99 221 | 97.11 230 |
|
| TSAR-MVS + GP. | | | 93.07 161 | 92.41 179 | 95.06 99 | 95.82 236 | 90.87 72 | 90.97 246 | 92.61 304 | 88.04 195 | 94.61 183 | 93.79 280 | 88.08 187 | 97.81 247 | 89.41 179 | 98.39 182 | 96.50 257 |
|
| SSC-MVS | | | 90.16 234 | 92.96 162 | 81.78 368 | 97.88 99 | 48.48 400 | 90.75 251 | 87.69 347 | 96.02 31 | 96.70 82 | 97.63 72 | 85.60 229 | 97.80 248 | 85.73 251 | 98.60 163 | 99.06 50 |
|
| ambc | | | | | 92.98 180 | 96.88 156 | 83.01 221 | 95.92 68 | 96.38 198 | | 96.41 92 | 97.48 86 | 88.26 184 | 97.80 248 | 89.96 169 | 98.93 125 | 98.12 151 |
|
| baseline2 | | | 83.38 332 | 81.54 341 | 88.90 306 | 91.38 348 | 72.84 354 | 88.78 312 | 81.22 385 | 78.97 316 | 79.82 388 | 87.56 368 | 61.73 374 | 97.80 248 | 74.30 354 | 90.05 375 | 96.05 275 |
|
| OpenMVS_ROB |  | 85.12 16 | 89.52 250 | 89.05 249 | 90.92 260 | 94.58 285 | 81.21 245 | 91.10 244 | 93.41 288 | 77.03 329 | 93.41 215 | 93.99 273 | 83.23 245 | 97.80 248 | 79.93 314 | 94.80 321 | 93.74 342 |
|
| BH-untuned | | | 90.68 215 | 90.90 212 | 90.05 287 | 95.98 227 | 79.57 273 | 90.04 276 | 94.94 254 | 87.91 196 | 94.07 195 | 93.00 298 | 87.76 194 | 97.78 252 | 79.19 323 | 95.17 312 | 92.80 358 |
|
| RPSCF | | | 95.58 68 | 94.89 102 | 97.62 7 | 97.58 122 | 96.30 7 | 95.97 66 | 97.53 114 | 92.42 84 | 93.41 215 | 97.78 63 | 91.21 140 | 97.77 253 | 91.06 132 | 97.06 261 | 98.80 86 |
|
| MVS_111021_HR | | | 93.63 143 | 93.42 155 | 94.26 135 | 96.65 170 | 86.96 146 | 89.30 300 | 96.23 204 | 88.36 190 | 93.57 212 | 94.60 252 | 93.45 82 | 97.77 253 | 90.23 160 | 98.38 183 | 98.03 159 |
|
| GA-MVS | | | 87.70 287 | 86.82 298 | 90.31 277 | 93.27 310 | 77.22 311 | 84.72 366 | 92.79 298 | 85.11 249 | 89.82 307 | 90.07 344 | 66.80 348 | 97.76 255 | 84.56 268 | 94.27 333 | 95.96 277 |
|
| test_fmvsmvis_n_1920 | | | 95.08 91 | 95.40 81 | 94.13 139 | 96.66 169 | 87.75 130 | 93.44 161 | 98.49 15 | 85.57 240 | 98.27 20 | 97.11 117 | 94.11 74 | 97.75 256 | 96.26 11 | 98.72 149 | 96.89 241 |
|
| Baseline_NR-MVSNet | | | 94.47 113 | 95.09 97 | 92.60 201 | 98.50 57 | 80.82 250 | 92.08 212 | 96.68 180 | 93.82 59 | 96.29 99 | 98.56 24 | 90.10 168 | 97.75 256 | 90.10 166 | 99.66 21 | 99.24 32 |
|
| MG-MVS | | | 89.54 249 | 89.80 239 | 88.76 309 | 94.88 268 | 72.47 357 | 89.60 289 | 92.44 307 | 85.82 231 | 89.48 313 | 95.98 191 | 82.85 251 | 97.74 258 | 81.87 291 | 95.27 310 | 96.08 273 |
|
| fmvsm_l_conf0.5_n_a | | | 93.59 144 | 93.63 146 | 93.49 169 | 96.10 217 | 85.66 183 | 92.32 203 | 96.57 187 | 81.32 293 | 95.63 134 | 97.14 114 | 90.19 164 | 97.73 259 | 95.37 29 | 98.03 217 | 97.07 231 |
|
| pm-mvs1 | | | 95.43 73 | 95.94 55 | 93.93 148 | 98.38 63 | 85.08 191 | 95.46 87 | 97.12 148 | 91.84 107 | 97.28 56 | 98.46 30 | 95.30 36 | 97.71 260 | 90.17 162 | 99.42 52 | 98.99 56 |
|
| EPNet_dtu | | | 85.63 315 | 84.37 321 | 89.40 298 | 86.30 390 | 74.33 342 | 91.64 232 | 88.26 339 | 84.84 255 | 72.96 395 | 89.85 345 | 71.27 332 | 97.69 261 | 76.60 341 | 97.62 241 | 96.18 270 |
| Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023 |
| EU-MVSNet | | | 87.39 297 | 86.71 301 | 89.44 296 | 93.40 308 | 76.11 326 | 94.93 107 | 90.00 332 | 57.17 393 | 95.71 132 | 97.37 91 | 64.77 361 | 97.68 262 | 92.67 96 | 94.37 330 | 94.52 324 |
|
| test_fmvsm_n_1920 | | | 94.72 103 | 94.74 109 | 94.67 113 | 96.30 200 | 88.62 111 | 93.19 168 | 98.07 60 | 85.63 237 | 97.08 62 | 97.35 97 | 90.86 148 | 97.66 263 | 95.70 16 | 98.48 176 | 97.74 194 |
|
| APD_test1 | | | 95.91 53 | 95.42 80 | 97.36 23 | 98.82 26 | 96.62 6 | 95.64 80 | 97.64 103 | 93.38 69 | 95.89 121 | 97.23 106 | 93.35 87 | 97.66 263 | 88.20 206 | 98.66 159 | 97.79 188 |
|
| CR-MVSNet | | | 87.89 283 | 87.12 294 | 90.22 281 | 91.01 353 | 78.93 284 | 92.52 190 | 92.81 296 | 73.08 352 | 89.10 316 | 96.93 130 | 67.11 345 | 97.64 265 | 88.80 198 | 92.70 357 | 94.08 331 |
|
| patchmatchnet-post | | | | | | | | | | | | 91.71 325 | 66.22 354 | 97.59 266 | | | |
|
| SCA | | | 87.43 296 | 87.21 290 | 88.10 324 | 92.01 336 | 71.98 359 | 89.43 295 | 88.11 344 | 82.26 287 | 88.71 326 | 92.83 302 | 78.65 286 | 97.59 266 | 79.61 318 | 93.30 348 | 94.75 319 |
|
| cl22 | | | 89.02 260 | 88.50 260 | 90.59 271 | 89.76 367 | 76.45 323 | 86.62 349 | 94.03 275 | 82.98 277 | 92.65 246 | 92.49 310 | 72.05 328 | 97.53 268 | 88.93 194 | 97.02 263 | 97.78 189 |
|
| Patchmtry | | | 90.11 237 | 89.92 236 | 90.66 269 | 90.35 362 | 77.00 313 | 92.96 174 | 92.81 296 | 90.25 151 | 94.74 180 | 96.93 130 | 67.11 345 | 97.52 269 | 85.17 255 | 98.98 114 | 97.46 211 |
|
| Anonymous202405211 | | | 92.58 176 | 92.50 177 | 92.83 190 | 96.55 178 | 83.22 216 | 92.43 197 | 91.64 320 | 94.10 52 | 95.59 136 | 96.64 151 | 81.88 264 | 97.50 270 | 85.12 259 | 98.52 171 | 97.77 190 |
|
| ab-mvs | | | 92.40 182 | 92.62 174 | 91.74 227 | 97.02 148 | 81.65 236 | 95.84 71 | 95.50 236 | 86.95 217 | 92.95 237 | 97.56 76 | 90.70 156 | 97.50 270 | 79.63 317 | 97.43 249 | 96.06 274 |
|
| FMVSNet5 | | | 87.82 286 | 86.56 303 | 91.62 233 | 92.31 324 | 79.81 268 | 93.49 158 | 94.81 259 | 83.26 269 | 91.36 277 | 96.93 130 | 52.77 392 | 97.49 272 | 76.07 344 | 98.03 217 | 97.55 207 |
|
| diffmvs |  | | 91.74 195 | 91.93 190 | 91.15 253 | 93.06 314 | 78.17 297 | 88.77 313 | 97.51 117 | 86.28 222 | 92.42 256 | 93.96 274 | 88.04 189 | 97.46 273 | 90.69 143 | 96.67 278 | 97.82 185 |
| Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025 |
| ppachtmachnet_test | | | 88.61 274 | 88.64 258 | 88.50 316 | 91.76 341 | 70.99 364 | 84.59 367 | 92.98 293 | 79.30 314 | 92.38 258 | 93.53 288 | 79.57 278 | 97.45 274 | 86.50 242 | 97.17 258 | 97.07 231 |
|
| IterMVS | | | 90.18 233 | 90.16 230 | 90.21 282 | 93.15 312 | 75.98 328 | 87.56 327 | 92.97 294 | 86.43 221 | 94.09 193 | 96.40 163 | 78.32 290 | 97.43 275 | 87.87 217 | 94.69 324 | 97.23 227 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo. |
| HY-MVS | | 82.50 18 | 86.81 309 | 85.93 311 | 89.47 295 | 93.63 305 | 77.93 299 | 94.02 141 | 91.58 321 | 75.68 334 | 83.64 370 | 93.64 282 | 77.40 298 | 97.42 276 | 71.70 368 | 92.07 364 | 93.05 355 |
|
| TR-MVS | | | 87.70 287 | 87.17 291 | 89.27 301 | 94.11 294 | 79.26 279 | 88.69 315 | 91.86 317 | 81.94 289 | 90.69 290 | 89.79 349 | 82.82 252 | 97.42 276 | 72.65 363 | 91.98 365 | 91.14 371 |
|
| mvs_anonymous | | | 90.37 227 | 91.30 206 | 87.58 330 | 92.17 331 | 68.00 374 | 89.84 283 | 94.73 261 | 83.82 266 | 93.22 227 | 97.40 89 | 87.54 197 | 97.40 278 | 87.94 216 | 95.05 314 | 97.34 222 |
|
| MVP-Stereo | | | 90.07 240 | 88.92 253 | 93.54 164 | 96.31 198 | 86.49 157 | 90.93 247 | 95.59 230 | 79.80 303 | 91.48 275 | 95.59 209 | 80.79 272 | 97.39 279 | 78.57 327 | 91.19 369 | 96.76 248 |
| Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application. |
| VNet | | | 92.67 174 | 92.96 162 | 91.79 225 | 96.27 202 | 80.15 254 | 91.95 217 | 94.98 252 | 92.19 94 | 94.52 186 | 96.07 187 | 87.43 199 | 97.39 279 | 84.83 264 | 98.38 183 | 97.83 183 |
|
| testdata | | | | | 91.03 255 | 96.87 157 | 82.01 231 | | 94.28 271 | 71.55 359 | 92.46 253 | 95.42 218 | 85.65 227 | 97.38 281 | 82.64 282 | 97.27 254 | 93.70 343 |
|
| tpm | | | 84.38 326 | 84.08 324 | 85.30 350 | 90.47 360 | 63.43 390 | 89.34 298 | 85.63 364 | 77.24 328 | 87.62 342 | 95.03 235 | 61.00 377 | 97.30 282 | 79.26 322 | 91.09 371 | 95.16 303 |
|
| PAPM_NR | | | 91.03 209 | 90.81 216 | 91.68 231 | 96.73 165 | 81.10 246 | 93.72 152 | 96.35 199 | 88.19 192 | 88.77 325 | 92.12 320 | 85.09 233 | 97.25 283 | 82.40 287 | 93.90 339 | 96.68 250 |
|
| PAPM | | | 81.91 344 | 80.11 354 | 87.31 333 | 93.87 301 | 72.32 358 | 84.02 372 | 93.22 290 | 69.47 374 | 76.13 393 | 89.84 346 | 72.15 327 | 97.23 284 | 53.27 395 | 89.02 377 | 92.37 362 |
|
| fmvsm_s_conf0.1_n | | | 94.19 128 | 94.41 118 | 93.52 167 | 97.22 141 | 84.37 196 | 93.73 151 | 95.26 245 | 84.45 259 | 95.76 126 | 98.00 51 | 91.85 124 | 97.21 285 | 95.62 18 | 97.82 231 | 98.98 60 |
|
| fmvsm_s_conf0.5_n | | | 94.00 133 | 94.20 129 | 93.42 171 | 96.69 167 | 84.37 196 | 93.38 163 | 95.13 248 | 84.50 258 | 95.40 146 | 97.55 80 | 91.77 126 | 97.20 286 | 95.59 19 | 97.79 232 | 98.69 104 |
|
| gm-plane-assit | | | | | | 87.08 388 | 59.33 395 | | | 71.22 361 | | 83.58 385 | | 97.20 286 | 73.95 355 | | |
|
| fmvsm_s_conf0.1_n_a | | | 94.26 122 | 94.37 121 | 93.95 147 | 97.36 134 | 85.72 181 | 94.15 136 | 95.44 237 | 83.25 270 | 95.51 139 | 98.05 46 | 92.54 111 | 97.19 288 | 95.55 21 | 97.46 248 | 98.94 66 |
|
| fmvsm_s_conf0.5_n_a | | | 94.02 132 | 94.08 133 | 93.84 153 | 96.72 166 | 85.73 180 | 93.65 155 | 95.23 246 | 83.30 268 | 95.13 162 | 97.56 76 | 92.22 116 | 97.17 289 | 95.51 23 | 97.41 250 | 98.64 112 |
|
| PAPR | | | 87.65 290 | 86.77 300 | 90.27 279 | 92.85 318 | 77.38 308 | 88.56 318 | 96.23 204 | 76.82 332 | 84.98 361 | 89.75 351 | 86.08 222 | 97.16 290 | 72.33 364 | 93.35 347 | 96.26 267 |
|
| CHOSEN 1792x2688 | | | 87.19 303 | 85.92 312 | 91.00 258 | 97.13 146 | 79.41 276 | 84.51 368 | 95.60 226 | 64.14 387 | 90.07 302 | 94.81 242 | 78.26 291 | 97.14 291 | 73.34 358 | 95.38 307 | 96.46 259 |
|
| patch_mono-2 | | | 92.46 180 | 92.72 172 | 91.71 229 | 96.65 170 | 78.91 287 | 88.85 310 | 97.17 143 | 83.89 265 | 92.45 254 | 96.76 141 | 89.86 172 | 97.09 292 | 90.24 159 | 98.59 164 | 99.12 43 |
|
| ITE_SJBPF | | | | | 95.95 59 | 97.34 135 | 93.36 40 | | 96.55 191 | 91.93 100 | 94.82 176 | 95.39 222 | 91.99 121 | 97.08 293 | 85.53 253 | 97.96 224 | 97.41 215 |
|
| API-MVS | | | 91.52 201 | 91.61 196 | 91.26 247 | 94.16 292 | 86.26 167 | 94.66 114 | 94.82 257 | 91.17 130 | 92.13 267 | 91.08 334 | 90.03 171 | 97.06 294 | 79.09 324 | 97.35 253 | 90.45 375 |
|
| XVG-OURS-SEG-HR | | | 95.38 78 | 95.00 100 | 96.51 46 | 98.10 81 | 94.07 20 | 92.46 194 | 98.13 50 | 90.69 140 | 93.75 206 | 96.25 179 | 98.03 2 | 97.02 295 | 92.08 107 | 95.55 300 | 98.45 127 |
|
| XVG-OURS | | | 94.72 103 | 94.12 131 | 96.50 47 | 98.00 91 | 94.23 18 | 91.48 235 | 98.17 45 | 90.72 139 | 95.30 153 | 96.47 158 | 87.94 192 | 96.98 296 | 91.41 128 | 97.61 242 | 98.30 136 |
|
| WB-MVS | | | 89.44 252 | 92.15 184 | 81.32 369 | 97.73 110 | 48.22 401 | 89.73 286 | 87.98 345 | 95.24 36 | 96.05 113 | 96.99 127 | 85.18 231 | 96.95 297 | 82.45 286 | 97.97 223 | 98.78 88 |
|
| D2MVS | | | 89.93 243 | 89.60 244 | 90.92 260 | 94.03 297 | 78.40 294 | 88.69 315 | 94.85 255 | 78.96 317 | 93.08 230 | 95.09 232 | 74.57 318 | 96.94 298 | 88.19 207 | 98.96 121 | 97.41 215 |
|
| cascas | | | 87.02 307 | 86.28 309 | 89.25 302 | 91.56 347 | 76.45 323 | 84.33 370 | 96.78 173 | 71.01 364 | 86.89 349 | 85.91 379 | 81.35 266 | 96.94 298 | 83.09 278 | 95.60 299 | 94.35 328 |
|
| MDA-MVSNet-bldmvs | | | 91.04 208 | 90.88 213 | 91.55 235 | 94.68 281 | 80.16 253 | 85.49 358 | 92.14 312 | 90.41 149 | 94.93 172 | 95.79 199 | 85.10 232 | 96.93 300 | 85.15 257 | 94.19 336 | 97.57 204 |
|
| BH-w/o | | | 87.21 301 | 87.02 296 | 87.79 329 | 94.77 275 | 77.27 310 | 87.90 322 | 93.21 292 | 81.74 290 | 89.99 304 | 88.39 366 | 83.47 242 | 96.93 300 | 71.29 370 | 92.43 361 | 89.15 376 |
|
| CostFormer | | | 83.09 334 | 82.21 337 | 85.73 346 | 89.27 374 | 67.01 375 | 90.35 266 | 86.47 356 | 70.42 369 | 83.52 372 | 93.23 295 | 61.18 375 | 96.85 302 | 77.21 337 | 88.26 380 | 93.34 351 |
|
| pmmvs-eth3d | | | 91.54 200 | 90.73 219 | 93.99 142 | 95.76 241 | 87.86 128 | 90.83 249 | 93.98 279 | 78.23 322 | 94.02 199 | 96.22 180 | 82.62 256 | 96.83 303 | 86.57 238 | 98.33 189 | 97.29 225 |
|
| MVS | | | 84.98 321 | 84.30 322 | 87.01 335 | 91.03 352 | 77.69 305 | 91.94 219 | 94.16 273 | 59.36 392 | 84.23 367 | 87.50 370 | 85.66 226 | 96.80 304 | 71.79 366 | 93.05 354 | 86.54 385 |
|
| tpmvs | | | 84.22 327 | 83.97 325 | 84.94 352 | 87.09 387 | 65.18 383 | 91.21 241 | 88.35 338 | 82.87 278 | 85.21 356 | 90.96 336 | 65.24 359 | 96.75 305 | 79.60 320 | 85.25 385 | 92.90 357 |
|
| pmmvs5 | | | 87.87 284 | 87.14 292 | 90.07 285 | 93.26 311 | 76.97 316 | 88.89 308 | 92.18 309 | 73.71 348 | 88.36 332 | 93.89 277 | 76.86 309 | 96.73 306 | 80.32 305 | 96.81 273 | 96.51 254 |
|
| CVMVSNet | | | 85.16 319 | 84.72 317 | 86.48 340 | 92.12 332 | 70.19 366 | 92.32 203 | 88.17 342 | 56.15 394 | 90.64 291 | 95.85 195 | 67.97 343 | 96.69 307 | 88.78 199 | 90.52 373 | 92.56 360 |
|
| tpm2 | | | 81.46 345 | 80.35 352 | 84.80 353 | 89.90 366 | 65.14 384 | 90.44 261 | 85.36 367 | 65.82 385 | 82.05 380 | 92.44 313 | 57.94 381 | 96.69 307 | 70.71 375 | 88.49 379 | 92.56 360 |
|
| PatchmatchNet |  | | 85.22 318 | 84.64 318 | 86.98 336 | 89.51 372 | 69.83 371 | 90.52 259 | 87.34 351 | 78.87 318 | 87.22 347 | 92.74 306 | 66.91 347 | 96.53 309 | 81.77 292 | 86.88 382 | 94.58 323 |
| Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo. |
| 旧先验2 | | | | | | | | 90.00 278 | | 68.65 376 | 92.71 245 | | | 96.52 310 | 85.15 257 | | |
|
| new-patchmatchnet | | | 88.97 264 | 90.79 217 | 83.50 363 | 94.28 291 | 55.83 398 | 85.34 360 | 93.56 284 | 86.18 225 | 95.47 142 | 95.73 205 | 83.10 246 | 96.51 311 | 85.40 254 | 98.06 214 | 98.16 147 |
|
| SDMVSNet | | | 94.43 114 | 95.02 98 | 92.69 194 | 97.93 96 | 82.88 223 | 91.92 221 | 95.99 216 | 93.65 65 | 95.51 139 | 98.63 20 | 94.60 63 | 96.48 312 | 87.57 221 | 99.35 61 | 98.70 101 |
|
| ADS-MVSNet2 | | | 84.01 328 | 82.20 338 | 89.41 297 | 89.04 375 | 76.37 325 | 87.57 325 | 90.98 325 | 72.71 356 | 84.46 364 | 92.45 311 | 68.08 341 | 96.48 312 | 70.58 376 | 83.97 386 | 95.38 300 |
|
| TinyColmap | | | 92.00 192 | 92.76 168 | 89.71 293 | 95.62 250 | 77.02 312 | 90.72 253 | 96.17 209 | 87.70 204 | 95.26 156 | 96.29 174 | 92.54 111 | 96.45 314 | 81.77 292 | 98.77 145 | 95.66 293 |
|
| pmmvs4 | | | 88.95 265 | 87.70 282 | 92.70 193 | 94.30 290 | 85.60 184 | 87.22 333 | 92.16 311 | 74.62 342 | 89.75 311 | 94.19 264 | 77.97 293 | 96.41 315 | 82.71 281 | 96.36 285 | 96.09 272 |
|
| USDC | | | 89.02 260 | 89.08 248 | 88.84 308 | 95.07 265 | 74.50 340 | 88.97 306 | 96.39 197 | 73.21 351 | 93.27 222 | 96.28 176 | 82.16 259 | 96.39 316 | 77.55 333 | 98.80 142 | 95.62 296 |
|
| MVS_111021_LR | | | 93.66 142 | 93.28 158 | 94.80 107 | 96.25 205 | 90.95 69 | 90.21 270 | 95.43 239 | 87.91 196 | 93.74 208 | 94.40 257 | 92.88 104 | 96.38 317 | 90.39 149 | 98.28 193 | 97.07 231 |
|
| PatchT | | | 87.51 294 | 88.17 274 | 85.55 347 | 90.64 356 | 66.91 376 | 92.02 215 | 86.09 359 | 92.20 93 | 89.05 318 | 97.16 112 | 64.15 363 | 96.37 318 | 89.21 189 | 92.98 355 | 93.37 350 |
|
| MSLP-MVS++ | | | 93.25 155 | 93.88 135 | 91.37 241 | 96.34 195 | 82.81 224 | 93.11 170 | 97.74 98 | 89.37 166 | 94.08 194 | 95.29 226 | 90.40 162 | 96.35 319 | 90.35 152 | 98.25 197 | 94.96 309 |
|
| LF4IMVS | | | 92.72 172 | 92.02 187 | 94.84 106 | 95.65 247 | 91.99 54 | 92.92 175 | 96.60 184 | 85.08 250 | 92.44 255 | 93.62 284 | 86.80 212 | 96.35 319 | 86.81 232 | 98.25 197 | 96.18 270 |
|
| PC_three_1452 | | | | | | | | | | 75.31 339 | 95.87 122 | 95.75 204 | 92.93 101 | 96.34 321 | 87.18 228 | 98.68 155 | 98.04 156 |
|
| gg-mvs-nofinetune | | | 82.10 343 | 81.02 345 | 85.34 349 | 87.46 385 | 71.04 362 | 94.74 111 | 67.56 399 | 96.44 23 | 79.43 389 | 98.99 6 | 45.24 396 | 96.15 322 | 67.18 384 | 92.17 363 | 88.85 378 |
|
| JIA-IIPM | | | 85.08 320 | 83.04 331 | 91.19 252 | 87.56 383 | 86.14 170 | 89.40 297 | 84.44 375 | 88.98 174 | 82.20 378 | 97.95 54 | 56.82 384 | 96.15 322 | 76.55 342 | 83.45 388 | 91.30 370 |
|
| KD-MVS_2432*1600 | | | 82.17 341 | 80.75 348 | 86.42 342 | 82.04 399 | 70.09 368 | 81.75 380 | 90.80 327 | 82.56 281 | 90.37 296 | 89.30 356 | 42.90 400 | 96.11 324 | 74.47 352 | 92.55 359 | 93.06 353 |
|
| miper_refine_blended | | | 82.17 341 | 80.75 348 | 86.42 342 | 82.04 399 | 70.09 368 | 81.75 380 | 90.80 327 | 82.56 281 | 90.37 296 | 89.30 356 | 42.90 400 | 96.11 324 | 74.47 352 | 92.55 359 | 93.06 353 |
|
| CL-MVSNet_self_test | | | 90.04 242 | 89.90 237 | 90.47 273 | 95.24 262 | 77.81 302 | 86.60 350 | 92.62 303 | 85.64 236 | 93.25 225 | 93.92 275 | 83.84 239 | 96.06 326 | 79.93 314 | 98.03 217 | 97.53 208 |
|
| test_post1 | | | | | | | | 90.21 270 | | | | 5.85 401 | 65.36 357 | 96.00 327 | 79.61 318 | | |
|
| PM-MVS | | | 93.33 150 | 92.67 173 | 95.33 86 | 96.58 175 | 94.06 21 | 92.26 208 | 92.18 309 | 85.92 230 | 96.22 105 | 96.61 153 | 85.64 228 | 95.99 328 | 90.35 152 | 98.23 199 | 95.93 279 |
|
| sd_testset | | | 93.94 135 | 94.39 119 | 92.61 200 | 97.93 96 | 83.24 214 | 93.17 169 | 95.04 250 | 93.65 65 | 95.51 139 | 98.63 20 | 94.49 67 | 95.89 329 | 81.72 294 | 99.35 61 | 98.70 101 |
|
| test_post | | | | | | | | | | | | 6.07 400 | 65.74 356 | 95.84 330 | | | |
|
| MSDG | | | 90.82 210 | 90.67 220 | 91.26 247 | 94.16 292 | 83.08 220 | 86.63 348 | 96.19 207 | 90.60 144 | 91.94 270 | 91.89 322 | 89.16 178 | 95.75 331 | 80.96 303 | 94.51 327 | 94.95 310 |
|
| our_test_3 | | | 87.55 293 | 87.59 283 | 87.44 332 | 91.76 341 | 70.48 365 | 83.83 373 | 90.55 330 | 79.79 304 | 92.06 269 | 92.17 318 | 78.63 288 | 95.63 332 | 84.77 265 | 94.73 322 | 96.22 268 |
|
| MDTV_nov1_ep13 | | | | 83.88 327 | | 89.42 373 | 61.52 392 | 88.74 314 | 87.41 349 | 73.99 346 | 84.96 362 | 94.01 272 | 65.25 358 | 95.53 333 | 78.02 328 | 93.16 350 | |
|
| baseline1 | | | 87.62 291 | 87.31 286 | 88.54 314 | 94.71 280 | 74.27 343 | 93.10 171 | 88.20 341 | 86.20 224 | 92.18 266 | 93.04 297 | 73.21 323 | 95.52 334 | 79.32 321 | 85.82 384 | 95.83 284 |
|
| MIMVSNet | | | 87.13 305 | 86.54 304 | 88.89 307 | 96.05 221 | 76.11 326 | 94.39 125 | 88.51 337 | 81.37 292 | 88.27 334 | 96.75 143 | 72.38 326 | 95.52 334 | 65.71 387 | 95.47 303 | 95.03 307 |
|
| Gipuma |  | | 95.31 84 | 95.80 65 | 93.81 155 | 97.99 94 | 90.91 70 | 96.42 42 | 97.95 80 | 96.69 17 | 91.78 272 | 98.85 12 | 91.77 126 | 95.49 336 | 91.72 119 | 99.08 102 | 95.02 308 |
| S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015 |
| PMVS |  | 87.21 14 | 94.97 94 | 95.33 85 | 93.91 149 | 98.97 17 | 97.16 2 | 95.54 85 | 95.85 220 | 96.47 22 | 93.40 217 | 97.46 87 | 95.31 35 | 95.47 337 | 86.18 247 | 98.78 144 | 89.11 377 |
| Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010) |
| dp | | | 79.28 357 | 78.62 359 | 81.24 370 | 85.97 392 | 56.45 397 | 86.91 339 | 85.26 370 | 72.97 354 | 81.45 385 | 89.17 360 | 56.01 386 | 95.45 338 | 73.19 360 | 76.68 394 | 91.82 368 |
|
| Anonymous20231206 | | | 88.77 270 | 88.29 266 | 90.20 283 | 96.31 198 | 78.81 290 | 89.56 291 | 93.49 286 | 74.26 345 | 92.38 258 | 95.58 212 | 82.21 257 | 95.43 339 | 72.07 365 | 98.75 148 | 96.34 263 |
|
| CHOSEN 280x420 | | | 80.04 355 | 77.97 362 | 86.23 345 | 90.13 364 | 74.53 339 | 72.87 389 | 89.59 333 | 66.38 382 | 76.29 392 | 85.32 381 | 56.96 383 | 95.36 340 | 69.49 379 | 94.72 323 | 88.79 379 |
|
| tpmrst | | | 82.85 337 | 82.93 333 | 82.64 365 | 87.65 382 | 58.99 396 | 90.14 273 | 87.90 346 | 75.54 336 | 83.93 368 | 91.63 327 | 66.79 350 | 95.36 340 | 81.21 300 | 81.54 392 | 93.57 349 |
|
| Patchmatch-RL test | | | 88.81 269 | 88.52 259 | 89.69 294 | 95.33 261 | 79.94 263 | 86.22 353 | 92.71 300 | 78.46 320 | 95.80 124 | 94.18 265 | 66.25 353 | 95.33 342 | 89.22 188 | 98.53 170 | 93.78 340 |
|
| tpm cat1 | | | 80.61 353 | 79.46 356 | 84.07 360 | 88.78 377 | 65.06 386 | 89.26 301 | 88.23 340 | 62.27 390 | 81.90 382 | 89.66 353 | 62.70 372 | 95.29 343 | 71.72 367 | 80.60 393 | 91.86 367 |
|
| test20.03 | | | 90.80 211 | 90.85 215 | 90.63 270 | 95.63 249 | 79.24 280 | 89.81 284 | 92.87 295 | 89.90 155 | 94.39 188 | 96.40 163 | 85.77 224 | 95.27 344 | 73.86 356 | 99.05 106 | 97.39 219 |
|
| miper_lstm_enhance | | | 89.90 244 | 89.80 239 | 90.19 284 | 91.37 349 | 77.50 306 | 83.82 374 | 95.00 251 | 84.84 255 | 93.05 232 | 94.96 237 | 76.53 312 | 95.20 345 | 89.96 169 | 98.67 157 | 97.86 179 |
|
| Syy-MVS | | | 84.81 322 | 84.93 316 | 84.42 357 | 91.71 343 | 63.36 391 | 85.89 354 | 81.49 383 | 81.03 294 | 85.13 358 | 81.64 389 | 77.44 297 | 95.00 346 | 85.94 249 | 94.12 337 | 94.91 313 |
|
| myMVS_eth3d | | | 79.62 356 | 78.26 360 | 83.72 361 | 91.71 343 | 61.25 393 | 85.89 354 | 81.49 383 | 81.03 294 | 85.13 358 | 81.64 389 | 32.12 403 | 95.00 346 | 71.17 374 | 94.12 337 | 94.91 313 |
|
| 1314 | | | 86.46 311 | 86.33 308 | 86.87 338 | 91.65 345 | 74.54 338 | 91.94 219 | 94.10 274 | 74.28 344 | 84.78 363 | 87.33 372 | 83.03 248 | 95.00 346 | 78.72 325 | 91.16 370 | 91.06 372 |
|
| MVS-HIRNet | | | 78.83 359 | 80.60 350 | 73.51 378 | 93.07 313 | 47.37 402 | 87.10 336 | 78.00 394 | 68.94 375 | 77.53 391 | 97.26 103 | 71.45 331 | 94.62 349 | 63.28 390 | 88.74 378 | 78.55 393 |
|
| PVSNet | | 76.22 20 | 82.89 336 | 82.37 336 | 84.48 356 | 93.96 298 | 64.38 388 | 78.60 386 | 88.61 336 | 71.50 360 | 84.43 366 | 86.36 377 | 74.27 319 | 94.60 350 | 69.87 378 | 93.69 343 | 94.46 325 |
|
| XXY-MVS | | | 92.58 176 | 93.16 161 | 90.84 264 | 97.75 107 | 79.84 265 | 91.87 225 | 96.22 206 | 85.94 229 | 95.53 138 | 97.68 67 | 92.69 108 | 94.48 351 | 83.21 277 | 97.51 244 | 98.21 142 |
|
| GG-mvs-BLEND | | | | | 83.24 364 | 85.06 395 | 71.03 363 | 94.99 106 | 65.55 400 | | 74.09 394 | 75.51 394 | 44.57 397 | 94.46 352 | 59.57 392 | 87.54 381 | 84.24 387 |
|
| PatchMatch-RL | | | 89.18 255 | 88.02 278 | 92.64 196 | 95.90 233 | 92.87 45 | 88.67 317 | 91.06 323 | 80.34 300 | 90.03 303 | 91.67 326 | 83.34 243 | 94.42 353 | 76.35 343 | 94.84 320 | 90.64 374 |
|
| CNLPA | | | 91.72 196 | 91.20 207 | 93.26 175 | 96.17 210 | 91.02 67 | 91.14 242 | 95.55 233 | 90.16 152 | 90.87 286 | 93.56 287 | 86.31 219 | 94.40 354 | 79.92 316 | 97.12 259 | 94.37 327 |
|
| SD-MVS | | | 95.19 88 | 95.73 67 | 93.55 162 | 96.62 174 | 88.88 107 | 94.67 113 | 98.05 64 | 91.26 126 | 97.25 58 | 96.40 163 | 95.42 28 | 94.36 355 | 92.72 95 | 99.19 92 | 97.40 218 |
| Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024 |
| UnsupCasMVSNet_bld | | | 88.50 275 | 88.03 277 | 89.90 289 | 95.52 253 | 78.88 288 | 87.39 331 | 94.02 277 | 79.32 313 | 93.06 231 | 94.02 271 | 80.72 273 | 94.27 356 | 75.16 349 | 93.08 353 | 96.54 252 |
|
| WTY-MVS | | | 86.93 308 | 86.50 307 | 88.24 321 | 94.96 266 | 74.64 336 | 87.19 334 | 92.07 314 | 78.29 321 | 88.32 333 | 91.59 328 | 78.06 292 | 94.27 356 | 74.88 350 | 93.15 351 | 95.80 285 |
|
| MS-PatchMatch | | | 88.05 282 | 87.75 280 | 88.95 305 | 93.28 309 | 77.93 299 | 87.88 323 | 92.49 306 | 75.42 337 | 92.57 250 | 93.59 286 | 80.44 274 | 94.24 358 | 81.28 298 | 92.75 356 | 94.69 322 |
|
| CMPMVS |  | 68.83 22 | 87.28 299 | 85.67 313 | 92.09 218 | 88.77 378 | 85.42 187 | 90.31 268 | 94.38 268 | 70.02 371 | 88.00 337 | 93.30 292 | 73.78 322 | 94.03 359 | 75.96 346 | 96.54 281 | 96.83 244 |
| M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011 |
| YYNet1 | | | 88.17 280 | 88.24 270 | 87.93 326 | 92.21 328 | 73.62 347 | 80.75 383 | 88.77 335 | 82.51 284 | 94.99 170 | 95.11 231 | 82.70 254 | 93.70 360 | 83.33 275 | 93.83 340 | 96.48 258 |
|
| MDA-MVSNet_test_wron | | | 88.16 281 | 88.23 271 | 87.93 326 | 92.22 327 | 73.71 346 | 80.71 384 | 88.84 334 | 82.52 283 | 94.88 175 | 95.14 229 | 82.70 254 | 93.61 361 | 83.28 276 | 93.80 341 | 96.46 259 |
|
| test-LLR | | | 83.58 331 | 83.17 330 | 84.79 354 | 89.68 369 | 66.86 377 | 83.08 375 | 84.52 373 | 83.07 275 | 82.85 375 | 84.78 383 | 62.86 370 | 93.49 362 | 82.85 279 | 94.86 318 | 94.03 334 |
|
| test-mter | | | 81.21 348 | 80.01 355 | 84.79 354 | 89.68 369 | 66.86 377 | 83.08 375 | 84.52 373 | 73.85 347 | 82.85 375 | 84.78 383 | 43.66 399 | 93.49 362 | 82.85 279 | 94.86 318 | 94.03 334 |
|
| pmmvs3 | | | 80.83 351 | 78.96 358 | 86.45 341 | 87.23 386 | 77.48 307 | 84.87 363 | 82.31 380 | 63.83 388 | 85.03 360 | 89.50 354 | 49.66 393 | 93.10 364 | 73.12 361 | 95.10 313 | 88.78 380 |
|
| testgi | | | 90.38 226 | 91.34 205 | 87.50 331 | 97.49 127 | 71.54 360 | 89.43 295 | 95.16 247 | 88.38 189 | 94.54 185 | 94.68 249 | 92.88 104 | 93.09 365 | 71.60 369 | 97.85 230 | 97.88 177 |
|
| UnsupCasMVSNet_eth | | | 90.33 229 | 90.34 228 | 90.28 278 | 94.64 284 | 80.24 252 | 89.69 288 | 95.88 218 | 85.77 232 | 93.94 203 | 95.69 206 | 81.99 261 | 92.98 366 | 84.21 270 | 91.30 368 | 97.62 201 |
|
| EPMVS | | | 81.17 349 | 80.37 351 | 83.58 362 | 85.58 393 | 65.08 385 | 90.31 268 | 71.34 398 | 77.31 327 | 85.80 354 | 91.30 330 | 59.38 379 | 92.70 367 | 79.99 311 | 82.34 391 | 92.96 356 |
|
| ADS-MVSNet | | | 82.25 339 | 81.55 340 | 84.34 358 | 89.04 375 | 65.30 382 | 87.57 325 | 85.13 372 | 72.71 356 | 84.46 364 | 92.45 311 | 68.08 341 | 92.33 368 | 70.58 376 | 83.97 386 | 95.38 300 |
|
| test_vis1_n_1920 | | | 89.45 251 | 89.85 238 | 88.28 320 | 93.59 306 | 76.71 320 | 90.67 255 | 97.78 96 | 79.67 307 | 90.30 298 | 96.11 185 | 76.62 310 | 92.17 369 | 90.31 154 | 93.57 344 | 95.96 277 |
|
| sss | | | 87.23 300 | 86.82 298 | 88.46 318 | 93.96 298 | 77.94 298 | 86.84 341 | 92.78 299 | 77.59 324 | 87.61 343 | 91.83 323 | 78.75 284 | 91.92 370 | 77.84 330 | 94.20 334 | 95.52 298 |
|
| N_pmnet | | | 88.90 267 | 87.25 289 | 93.83 154 | 94.40 289 | 93.81 35 | 84.73 364 | 87.09 352 | 79.36 312 | 93.26 223 | 92.43 314 | 79.29 281 | 91.68 371 | 77.50 335 | 97.22 256 | 96.00 276 |
|
| PMMVS | | | 83.00 335 | 81.11 343 | 88.66 312 | 83.81 398 | 86.44 160 | 82.24 379 | 85.65 363 | 61.75 391 | 82.07 379 | 85.64 380 | 79.75 277 | 91.59 372 | 75.99 345 | 93.09 352 | 87.94 382 |
|
| test_fmvs3 | | | 92.42 181 | 92.40 180 | 92.46 207 | 93.80 304 | 87.28 136 | 93.86 147 | 97.05 152 | 76.86 330 | 96.25 102 | 98.66 18 | 82.87 250 | 91.26 373 | 95.44 26 | 96.83 272 | 98.82 82 |
|
| Patchmatch-test | | | 86.10 313 | 86.01 310 | 86.38 344 | 90.63 357 | 74.22 344 | 89.57 290 | 86.69 354 | 85.73 234 | 89.81 308 | 92.83 302 | 65.24 359 | 91.04 374 | 77.82 332 | 95.78 296 | 93.88 339 |
|
| test_fmvs2 | | | 90.62 218 | 90.40 227 | 91.29 246 | 91.93 338 | 85.46 186 | 92.70 183 | 96.48 194 | 74.44 343 | 94.91 173 | 97.59 74 | 75.52 315 | 90.57 375 | 93.44 68 | 96.56 280 | 97.84 182 |
|
| TESTMET0.1,1 | | | 79.09 358 | 78.04 361 | 82.25 366 | 87.52 384 | 64.03 389 | 83.08 375 | 80.62 387 | 70.28 370 | 80.16 387 | 83.22 386 | 44.13 398 | 90.56 376 | 79.95 312 | 93.36 346 | 92.15 363 |
|
| DSMNet-mixed | | | 82.21 340 | 81.56 339 | 84.16 359 | 89.57 371 | 70.00 370 | 90.65 256 | 77.66 395 | 54.99 395 | 83.30 373 | 97.57 75 | 77.89 294 | 90.50 377 | 66.86 385 | 95.54 301 | 91.97 364 |
|
| mvsany_test3 | | | 89.11 258 | 88.21 273 | 91.83 223 | 91.30 350 | 90.25 79 | 88.09 321 | 78.76 391 | 76.37 333 | 96.43 91 | 98.39 33 | 83.79 240 | 90.43 378 | 86.57 238 | 94.20 334 | 94.80 316 |
|
| test_cas_vis1_n_1920 | | | 88.25 279 | 88.27 268 | 88.20 322 | 92.19 330 | 78.92 286 | 89.45 294 | 95.44 237 | 75.29 340 | 93.23 226 | 95.65 208 | 71.58 330 | 90.23 379 | 88.05 212 | 93.55 345 | 95.44 299 |
|
| EMVS | | | 80.35 354 | 80.28 353 | 80.54 371 | 84.73 396 | 69.07 372 | 72.54 390 | 80.73 386 | 87.80 200 | 81.66 383 | 81.73 388 | 62.89 369 | 89.84 380 | 75.79 347 | 94.65 325 | 82.71 390 |
|
| test_vis1_n | | | 89.01 262 | 89.01 251 | 89.03 304 | 92.57 321 | 82.46 228 | 92.62 187 | 96.06 211 | 73.02 353 | 90.40 295 | 95.77 203 | 74.86 317 | 89.68 381 | 90.78 140 | 94.98 315 | 94.95 310 |
|
| PVSNet_0 | | 70.34 21 | 74.58 361 | 72.96 364 | 79.47 373 | 90.63 357 | 66.24 380 | 73.26 387 | 83.40 379 | 63.67 389 | 78.02 390 | 78.35 393 | 72.53 324 | 89.59 382 | 56.68 393 | 60.05 397 | 82.57 391 |
|
| test_fmvs1_n | | | 88.73 272 | 88.38 263 | 89.76 291 | 92.06 334 | 82.53 226 | 92.30 206 | 96.59 186 | 71.14 362 | 92.58 249 | 95.41 221 | 68.55 339 | 89.57 383 | 91.12 131 | 95.66 298 | 97.18 229 |
|
| test_fmvs1 | | | 87.59 292 | 87.27 288 | 88.54 314 | 88.32 380 | 81.26 243 | 90.43 264 | 95.72 223 | 70.55 368 | 91.70 273 | 94.63 250 | 68.13 340 | 89.42 384 | 90.59 144 | 95.34 308 | 94.94 312 |
|
| E-PMN | | | 80.72 352 | 80.86 347 | 80.29 372 | 85.11 394 | 68.77 373 | 72.96 388 | 81.97 381 | 87.76 202 | 83.25 374 | 83.01 387 | 62.22 373 | 89.17 385 | 77.15 338 | 94.31 332 | 82.93 389 |
|
| test0.0.03 1 | | | 82.48 338 | 81.47 342 | 85.48 348 | 89.70 368 | 73.57 348 | 84.73 364 | 81.64 382 | 83.07 275 | 88.13 336 | 86.61 374 | 62.86 370 | 89.10 386 | 66.24 386 | 90.29 374 | 93.77 341 |
|
| mvsany_test1 | | | 83.91 329 | 82.93 333 | 86.84 339 | 86.18 391 | 85.93 174 | 81.11 382 | 75.03 397 | 70.80 367 | 88.57 330 | 94.63 250 | 83.08 247 | 87.38 387 | 80.39 304 | 86.57 383 | 87.21 383 |
|
| test_vis3_rt | | | 90.40 223 | 90.03 234 | 91.52 237 | 92.58 320 | 88.95 103 | 90.38 265 | 97.72 100 | 73.30 350 | 97.79 30 | 97.51 84 | 77.05 303 | 87.10 388 | 89.03 193 | 94.89 317 | 98.50 122 |
|
| dmvs_re | | | 84.69 324 | 83.94 326 | 86.95 337 | 92.24 326 | 82.93 222 | 89.51 292 | 87.37 350 | 84.38 261 | 85.37 355 | 85.08 382 | 72.44 325 | 86.59 389 | 68.05 381 | 91.03 372 | 91.33 369 |
|
| FPMVS | | | 84.50 325 | 83.28 329 | 88.16 323 | 96.32 197 | 94.49 16 | 85.76 356 | 85.47 366 | 83.09 274 | 85.20 357 | 94.26 261 | 63.79 366 | 86.58 390 | 63.72 389 | 91.88 367 | 83.40 388 |
|
| dmvs_testset | | | 78.23 360 | 78.99 357 | 75.94 376 | 91.99 337 | 55.34 399 | 88.86 309 | 78.70 392 | 82.69 280 | 81.64 384 | 79.46 391 | 75.93 313 | 85.74 391 | 48.78 397 | 82.85 390 | 86.76 384 |
|
| test_vis1_rt | | | 85.58 316 | 84.58 319 | 88.60 313 | 87.97 381 | 86.76 149 | 85.45 359 | 93.59 282 | 66.43 381 | 87.64 341 | 89.20 358 | 79.33 280 | 85.38 392 | 81.59 295 | 89.98 376 | 93.66 344 |
|
| new_pmnet | | | 81.22 347 | 81.01 346 | 81.86 367 | 90.92 355 | 70.15 367 | 84.03 371 | 80.25 389 | 70.83 365 | 85.97 353 | 89.78 350 | 67.93 344 | 84.65 393 | 67.44 383 | 91.90 366 | 90.78 373 |
|
| PMMVS2 | | | 81.31 346 | 83.44 328 | 74.92 377 | 90.52 359 | 46.49 403 | 69.19 391 | 85.23 371 | 84.30 262 | 87.95 338 | 94.71 248 | 76.95 306 | 84.36 394 | 64.07 388 | 98.09 212 | 93.89 338 |
|
| test_f | | | 86.65 310 | 87.13 293 | 85.19 351 | 90.28 363 | 86.11 171 | 86.52 352 | 91.66 319 | 69.76 372 | 95.73 131 | 97.21 110 | 69.51 337 | 81.28 395 | 89.15 190 | 94.40 328 | 88.17 381 |
|
| wuyk23d | | | 87.83 285 | 90.79 217 | 78.96 374 | 90.46 361 | 88.63 110 | 92.72 181 | 90.67 329 | 91.65 119 | 98.68 11 | 97.64 71 | 96.06 15 | 77.53 396 | 59.84 391 | 99.41 56 | 70.73 394 |
|
| MVE |  | 59.87 23 | 73.86 362 | 72.65 365 | 77.47 375 | 87.00 389 | 74.35 341 | 61.37 393 | 60.93 401 | 67.27 379 | 69.69 396 | 86.49 376 | 81.24 270 | 72.33 397 | 56.45 394 | 83.45 388 | 85.74 386 |
| Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014) |
| test_method | | | 50.44 363 | 48.94 366 | 54.93 379 | 39.68 402 | 12.38 406 | 28.59 394 | 90.09 331 | 6.82 397 | 41.10 399 | 78.41 392 | 54.41 388 | 70.69 398 | 50.12 396 | 51.26 398 | 81.72 392 |
|
| DeepMVS_CX |  | | | | 53.83 380 | 70.38 401 | 64.56 387 | | 48.52 404 | 33.01 396 | 65.50 397 | 74.21 395 | 56.19 385 | 46.64 399 | 38.45 399 | 70.07 395 | 50.30 395 |
|
| tmp_tt | | | 37.97 364 | 44.33 367 | 18.88 381 | 11.80 403 | 21.54 405 | 63.51 392 | 45.66 405 | 4.23 398 | 51.34 398 | 50.48 396 | 59.08 380 | 22.11 400 | 44.50 398 | 68.35 396 | 13.00 396 |
|
| test123 | | | 9.49 366 | 12.01 369 | 1.91 382 | 2.87 404 | 1.30 407 | 82.38 378 | 1.34 407 | 1.36 400 | 2.84 401 | 6.56 399 | 2.45 405 | 0.97 401 | 2.73 400 | 5.56 399 | 3.47 397 |
|
| testmvs | | | 9.02 367 | 11.42 370 | 1.81 383 | 2.77 405 | 1.13 408 | 79.44 385 | 1.90 406 | 1.18 401 | 2.65 402 | 6.80 398 | 1.95 406 | 0.87 402 | 2.62 401 | 3.45 400 | 3.44 398 |
|
| test_blank | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet_test | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| DCPMVS | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| cdsmvs_eth3d_5k | | | 23.35 365 | 31.13 368 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 95.58 232 | 0.00 402 | 0.00 403 | 91.15 332 | 93.43 84 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| pcd_1.5k_mvsjas | | | 7.56 368 | 10.09 371 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 90.77 151 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet-low-res | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| sosnet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uncertanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| Regformer | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| ab-mvs-re | | | 7.56 368 | 10.08 372 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 90.69 341 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| uanet | | | 0.00 370 | 0.00 373 | 0.00 384 | 0.00 406 | 0.00 409 | 0.00 395 | 0.00 408 | 0.00 402 | 0.00 403 | 0.00 402 | 0.00 407 | 0.00 403 | 0.00 402 | 0.00 401 | 0.00 399 |
|
| WAC-MVS | | | | | | | 61.25 393 | | | | | | | | 74.55 351 | | |
|
| FOURS1 | | | | | | 99.21 3 | 94.68 12 | 98.45 4 | 98.81 8 | 97.73 6 | 98.27 20 | | | | | | |
|
| test_one_0601 | | | | | | 98.26 71 | 87.14 140 | | 98.18 41 | 94.25 48 | 96.99 70 | 97.36 94 | 95.13 43 | | | | |
|
| eth-test2 | | | | | | 0.00 406 | | | | | | | | | | | |
|
| eth-test | | | | | | 0.00 406 | | | | | | | | | | | |
|
| RE-MVS-def | | | | 96.66 19 | | 98.07 83 | 95.27 9 | 96.37 44 | 98.12 51 | 95.66 33 | 97.00 68 | 97.03 123 | 95.40 29 | | 93.49 62 | 98.84 133 | 98.00 161 |
|
| IU-MVS | | | | | | 98.51 51 | 86.66 154 | | 96.83 170 | 72.74 355 | 95.83 123 | | | | 93.00 87 | 99.29 74 | 98.64 112 |
|
| save fliter | | | | | | 97.46 130 | 88.05 124 | 92.04 214 | 97.08 150 | 87.63 206 | | | | | | | |
|
| test0726 | | | | | | 98.51 51 | 86.69 152 | 95.34 89 | 98.18 41 | 91.85 104 | 97.63 35 | 97.37 91 | 95.58 24 | | | | |
|
| GSMVS | | | | | | | | | | | | | | | | | 94.75 319 |
|
| test_part2 | | | | | | 98.21 75 | 89.41 93 | | | | 96.72 81 | | | | | | |
|
| sam_mvs1 | | | | | | | | | | | | | 66.64 351 | | | | 94.75 319 |
|
| sam_mvs | | | | | | | | | | | | | 66.41 352 | | | | |
|
| MTGPA |  | | | | | | | | 97.62 105 | | | | | | | | |
|
| MTMP | | | | | | | | 94.82 109 | 54.62 403 | | | | | | | | |
|
| test9_res | | | | | | | | | | | | | | | 88.16 209 | 98.40 179 | 97.83 183 |
|
| agg_prior2 | | | | | | | | | | | | | | | 87.06 231 | 98.36 188 | 97.98 165 |
|
| test_prior4 | | | | | | | 89.91 82 | 90.74 252 | | | | | | | | | |
|
| test_prior2 | | | | | | | | 90.21 270 | | 89.33 167 | 90.77 288 | 94.81 242 | 90.41 161 | | 88.21 205 | 98.55 167 | |
|
| æ–°å‡ ä½•2 | | | | | | | | 90.02 277 | | | | | | | | | |
|
| 旧先验1 | | | | | | 96.20 208 | 84.17 203 | | 94.82 257 | | | 95.57 213 | 89.57 174 | | | 97.89 228 | 96.32 264 |
|
| 原ACMM2 | | | | | | | | 89.34 298 | | | | | | | | | |
|
| test222 | | | | | | 96.95 151 | 85.27 189 | 88.83 311 | 93.61 281 | 65.09 386 | 90.74 289 | 94.85 241 | 84.62 236 | | | 97.36 252 | 93.91 337 |
|
| segment_acmp | | | | | | | | | | | | | 92.14 119 | | | | |
|
| testdata1 | | | | | | | | 88.96 307 | | 88.44 187 | | | | | | | |
|
| plane_prior7 | | | | | | 97.71 112 | 88.68 109 | | | | | | | | | | |
|
| plane_prior6 | | | | | | 97.21 142 | 88.23 121 | | | | | | 86.93 209 | | | | |
|
| plane_prior4 | | | | | | | | | | | | 95.59 209 | | | | | |
|
| plane_prior3 | | | | | | | 88.43 119 | | | 90.35 150 | 93.31 218 | | | | | | |
|
| plane_prior2 | | | | | | | | 94.56 120 | | 91.74 115 | | | | | | | |
|
| plane_prior1 | | | | | | 97.38 132 | | | | | | | | | | | |
|
| plane_prior | | | | | | | 88.12 122 | 93.01 172 | | 88.98 174 | | | | | | 98.06 214 | |
|
| n2 | | | | | | | | | 0.00 408 | | | | | | | | |
|
| nn | | | | | | | | | 0.00 408 | | | | | | | | |
|
| door-mid | | | | | | | | | 92.13 313 | | | | | | | | |
|
| test11 | | | | | | | | | 96.65 182 | | | | | | | | |
|
| door | | | | | | | | | 91.26 322 | | | | | | | | |
|
| HQP5-MVS | | | | | | | 84.89 192 | | | | | | | | | | |
|
| HQP-NCC | | | | | | 96.36 191 | | 91.37 236 | | 87.16 212 | 88.81 321 | | | | | | |
|
| ACMP_Plane | | | | | | 96.36 191 | | 91.37 236 | | 87.16 212 | 88.81 321 | | | | | | |
|
| BP-MVS | | | | | | | | | | | | | | | 86.55 240 | | |
|
| HQP3-MVS | | | | | | | | | 97.31 132 | | | | | | | 97.73 234 | |
|
| HQP2-MVS | | | | | | | | | | | | | 84.76 234 | | | | |
|
| NP-MVS | | | | | | 96.82 162 | 87.10 141 | | | | | 93.40 290 | | | | | |
|
| MDTV_nov1_ep13_2view | | | | | | | 42.48 404 | 88.45 319 | | 67.22 380 | 83.56 371 | | 66.80 348 | | 72.86 362 | | 94.06 333 |
|
| ACMMP++_ref | | | | | | | | | | | | | | | | 98.82 139 | |
|
| ACMMP++ | | | | | | | | | | | | | | | | 99.25 83 | |
|
| Test By Simon | | | | | | | | | | | | | 90.61 157 | | | | |
|