This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort by
LCM-MVSNet99.43 199.49 199.24 199.95 198.13 199.37 199.57 199.82 199.86 199.85 199.52 199.73 197.58 199.94 199.85 1
DTE-MVSNet96.74 1797.43 594.67 11399.13 684.68 19496.51 3597.94 8398.14 398.67 1298.32 3495.04 4899.69 293.27 7799.82 799.62 10
PS-CasMVS96.69 2097.43 594.49 12899.13 684.09 20596.61 3297.97 7797.91 598.64 1398.13 4195.24 3899.65 393.39 7299.84 399.72 2
PEN-MVS96.69 2097.39 894.61 11899.16 484.50 19596.54 3498.05 6498.06 498.64 1398.25 3795.01 5199.65 392.95 8999.83 599.68 4
K. test v393.37 14993.27 15993.66 15898.05 8582.62 22594.35 12686.62 35596.05 2997.51 4398.85 1276.59 31199.65 393.21 7998.20 20498.73 96
RRT_MVS95.41 7795.20 9296.05 5598.86 2288.92 10497.49 1194.48 26693.12 7397.94 2798.54 2581.19 27199.63 695.48 2499.69 1499.60 12
CP-MVSNet96.19 4596.80 1694.38 13398.99 1683.82 20896.31 5097.53 11497.60 798.34 1997.52 8191.98 12299.63 693.08 8599.81 899.70 3
WR-MVS_H96.60 2597.05 1395.24 9299.02 1286.44 16096.78 2798.08 5797.42 998.48 1697.86 6291.76 12899.63 694.23 4299.84 399.66 6
PS-MVSNAJss96.01 5096.04 5295.89 6798.82 2688.51 11695.57 8497.88 8488.72 18098.81 698.86 1090.77 15199.60 995.43 2799.53 3899.57 14
MVSFormer92.18 18992.23 18192.04 22094.74 27780.06 25897.15 1597.37 12388.98 17488.83 31992.79 30477.02 30499.60 996.41 996.75 27696.46 259
test_djsdf96.62 2396.49 2697.01 3298.55 4591.77 5997.15 1597.37 12388.98 17498.26 2298.86 1093.35 8799.60 996.41 999.45 4799.66 6
SixPastTwentyTwo94.91 9695.21 9093.98 14398.52 5083.19 21795.93 6794.84 25694.86 4198.49 1598.74 1681.45 26599.60 994.69 3399.39 5899.15 39
mvs_tets96.83 896.71 1897.17 2798.83 2592.51 4896.58 3397.61 10787.57 20798.80 798.90 996.50 999.59 1396.15 1399.47 4399.40 21
UA-Net97.35 497.24 1197.69 498.22 7493.87 3098.42 698.19 3996.95 1495.46 14499.23 493.45 8299.57 1495.34 3099.89 299.63 9
OurMVSNet-221017-096.80 1296.75 1796.96 3599.03 1191.85 5797.98 798.01 7294.15 5198.93 399.07 588.07 18899.57 1495.86 1599.69 1499.46 18
EPP-MVSNet93.91 13793.68 14494.59 12298.08 8285.55 18597.44 1294.03 27594.22 5094.94 17196.19 18182.07 26099.57 1487.28 22798.89 12698.65 107
jajsoiax96.59 2796.42 2997.12 2998.76 3192.49 4996.44 4197.42 12186.96 21698.71 1098.72 1795.36 3299.56 1795.92 1499.45 4799.32 27
CS-MVS-test95.32 8195.10 9695.96 5896.86 15890.75 7496.33 4799.20 293.99 5391.03 28593.73 28193.52 8199.55 1891.81 11699.45 4797.58 203
v7n96.82 997.31 1095.33 8698.54 4886.81 14896.83 2398.07 6096.59 2098.46 1798.43 3292.91 10299.52 1996.25 1299.76 1099.65 8
DPE-MVScopyleft95.89 5595.88 5995.92 6497.93 9689.83 8593.46 15998.30 2792.37 8697.75 3296.95 12895.14 4299.51 2091.74 11899.28 7998.41 129
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MSP-MVS95.34 8094.63 11597.48 1498.67 3394.05 2396.41 4398.18 4191.26 12695.12 16395.15 22886.60 21799.50 2193.43 7196.81 27398.89 75
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
anonymousdsp96.74 1796.42 2997.68 698.00 9194.03 2596.97 2097.61 10787.68 20598.45 1898.77 1594.20 7299.50 2196.70 599.40 5799.53 15
APDe-MVScopyleft96.46 3196.64 2195.93 6297.68 11689.38 9596.90 2298.41 1992.52 8397.43 4897.92 5895.11 4599.50 2194.45 3699.30 7198.92 72
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
MM95.22 9487.21 13894.31 13190.92 32694.48 4692.80 24197.52 8185.27 23099.49 2496.58 899.57 3598.97 62
CS-MVS95.77 5995.58 7396.37 5096.84 16091.72 6196.73 2999.06 594.23 4992.48 25294.79 24593.56 7999.49 2493.47 6599.05 10697.89 176
EC-MVSNet95.44 7295.62 7194.89 10396.93 15487.69 13196.48 3899.14 493.93 5692.77 24394.52 25593.95 7699.49 2493.62 5799.22 8997.51 209
PGM-MVS96.32 4095.94 5597.43 1898.59 4193.84 3295.33 9098.30 2791.40 12495.76 12696.87 13495.26 3799.45 2792.77 9199.21 9099.00 54
mvsmamba95.61 6595.40 8196.22 5198.44 6089.86 8497.14 1797.45 12091.25 12897.49 4498.14 3983.49 24199.45 2795.52 2299.66 2199.36 24
ZNCC-MVS96.42 3596.20 4197.07 3098.80 3092.79 4696.08 6198.16 4891.74 11595.34 15196.36 17095.68 2199.44 2994.41 3899.28 7998.97 62
TranMVSNet+NR-MVSNet96.07 4996.26 3895.50 8098.26 7187.69 13193.75 15097.86 8595.96 3297.48 4697.14 11495.33 3499.44 2990.79 13999.76 1099.38 22
Vis-MVSNetpermissive95.50 7095.48 7695.56 7998.11 8089.40 9495.35 8898.22 3692.36 8794.11 19298.07 4592.02 12099.44 2993.38 7397.67 23997.85 181
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
SR-MVS96.70 1996.42 2997.54 1198.05 8594.69 1196.13 5998.07 6095.17 3796.82 7796.73 14695.09 4799.43 3292.99 8898.71 15198.50 122
SR-MVS-dyc-post96.84 796.60 2497.56 1098.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12394.85 5699.42 3393.49 6298.84 13398.00 161
GST-MVS96.24 4395.99 5497.00 3398.65 3492.71 4795.69 7898.01 7292.08 9695.74 12996.28 17695.22 4099.42 3393.17 8199.06 10398.88 77
MP-MVScopyleft96.14 4695.68 6997.51 1398.81 2894.06 2196.10 6097.78 9692.73 7893.48 21496.72 14794.23 7199.42 3391.99 11099.29 7499.05 51
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
mPP-MVS96.46 3196.05 5197.69 498.62 3694.65 1396.45 3997.74 9892.59 8295.47 14296.68 14994.50 6699.42 3393.10 8399.26 8298.99 56
HPM-MVScopyleft96.81 1196.62 2297.36 2398.89 2093.53 3897.51 1098.44 1692.35 8895.95 11696.41 16296.71 899.42 3393.99 4799.36 6099.13 41
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
CP-MVS96.44 3496.08 4997.54 1198.29 6894.62 1496.80 2598.08 5792.67 8195.08 16796.39 16794.77 5899.42 3393.17 8199.44 5098.58 119
MSC_two_6792asdad95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
No_MVS95.90 6596.54 17989.57 8896.87 16799.41 3994.06 4599.30 7198.72 97
region2R96.41 3696.09 4797.38 2298.62 3693.81 3596.32 4997.96 7892.26 9195.28 15596.57 15595.02 5099.41 3993.63 5699.11 10198.94 66
ACMMPR96.46 3196.14 4597.41 2098.60 3993.82 3396.30 5497.96 7892.35 8895.57 13796.61 15394.93 5499.41 3993.78 5299.15 9899.00 54
UniMVSNet_NR-MVSNet95.35 7995.21 9095.76 7197.69 11588.59 11392.26 20897.84 8894.91 4096.80 7895.78 20290.42 16099.41 3991.60 12399.58 3399.29 29
DU-MVS95.28 8595.12 9595.75 7297.75 10788.59 11392.58 18897.81 9193.99 5396.80 7895.90 19390.10 16899.41 3991.60 12399.58 3399.26 30
RPMNet90.31 23190.14 23390.81 26691.01 35378.93 28492.52 19098.12 5191.91 10189.10 31696.89 13368.84 33899.41 3990.17 16292.70 35794.08 331
TSAR-MVS + MP.94.96 9594.75 10795.57 7898.86 2288.69 10896.37 4496.81 17185.23 24494.75 17997.12 11691.85 12499.40 4693.45 6798.33 18998.62 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
FC-MVSNet-test95.32 8195.88 5993.62 15998.49 5881.77 23495.90 6998.32 2493.93 5697.53 4297.56 7688.48 18199.40 4692.91 9099.83 599.68 4
ACMMPcopyleft96.61 2496.34 3497.43 1898.61 3893.88 2996.95 2198.18 4192.26 9196.33 9596.84 13795.10 4699.40 4693.47 6599.33 6699.02 53
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
ZD-MVS97.23 13990.32 7897.54 11284.40 26094.78 17895.79 19992.76 10799.39 4988.72 20198.40 179
tttt051789.81 24688.90 25592.55 20397.00 14979.73 27095.03 10383.65 37789.88 15695.30 15394.79 24553.64 39099.39 4991.99 11098.79 14398.54 120
MP-MVS-pluss96.08 4895.92 5896.57 4499.06 1091.21 6593.25 16598.32 2487.89 19896.86 7597.38 9095.55 2699.39 4995.47 2599.47 4399.11 44
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
XVS96.49 2996.18 4297.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18996.49 15794.56 6499.39 4993.57 5899.05 10698.93 68
X-MVStestdata90.70 21488.45 26197.44 1698.56 4293.99 2696.50 3697.95 8094.58 4394.38 18926.89 39794.56 6499.39 4993.57 5899.05 10698.93 68
APD-MVS_3200maxsize96.82 996.65 2097.32 2597.95 9593.82 3396.31 5098.25 3195.51 3596.99 7097.05 12295.63 2399.39 4993.31 7498.88 12898.75 92
DVP-MVS++95.93 5296.34 3494.70 11296.54 17986.66 15498.45 498.22 3693.26 7197.54 4097.36 9493.12 9599.38 5593.88 4898.68 15598.04 156
test_0728_SECOND94.88 10498.55 4586.72 15195.20 9698.22 3699.38 5593.44 6899.31 6998.53 121
MTAPA96.65 2296.38 3397.47 1598.95 1894.05 2395.88 7097.62 10594.46 4796.29 9996.94 12993.56 7999.37 5794.29 4199.42 5298.99 56
MVS_030493.92 13693.68 14494.64 11795.94 23185.83 17894.34 12788.14 34392.98 7791.09 28497.68 6786.73 21499.36 5896.64 799.59 2898.72 97
SteuartSystems-ACMMP96.40 3796.30 3696.71 4098.63 3591.96 5595.70 7698.01 7293.34 7096.64 8596.57 15594.99 5299.36 5893.48 6499.34 6498.82 82
Skip Steuart: Steuart Systems R&D Blog.
SED-MVS96.00 5196.41 3294.76 10998.51 5186.97 14495.21 9498.10 5491.95 9897.63 3597.25 10496.48 1099.35 6093.29 7599.29 7497.95 169
test_241102_TWO98.10 5491.95 9897.54 4097.25 10495.37 3099.35 6093.29 7599.25 8398.49 124
IS-MVSNet94.49 11294.35 12394.92 10298.25 7386.46 15997.13 1894.31 26996.24 2596.28 10196.36 17082.88 24999.35 6088.19 20799.52 4198.96 64
DVP-MVScopyleft95.82 5896.18 4294.72 11198.51 5186.69 15295.20 9697.00 15591.85 10497.40 5297.35 9795.58 2499.34 6393.44 6899.31 6998.13 150
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD93.26 7197.40 5297.35 9794.69 5999.34 6393.88 4899.42 5298.89 75
UniMVSNet (Re)95.32 8195.15 9395.80 7097.79 10588.91 10592.91 17698.07 6093.46 6796.31 9795.97 19290.14 16599.34 6392.11 10599.64 2499.16 38
HPM-MVS_fast97.01 696.89 1497.39 2199.12 893.92 2897.16 1498.17 4593.11 7496.48 9097.36 9496.92 699.34 6394.31 4099.38 5998.92 72
APD-MVScopyleft95.00 9394.69 11195.93 6297.38 13290.88 7194.59 11697.81 9189.22 17095.46 14496.17 18493.42 8599.34 6389.30 18298.87 13197.56 206
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
NR-MVSNet95.28 8595.28 8895.26 9097.75 10787.21 13895.08 10097.37 12393.92 5897.65 3495.90 19390.10 16899.33 6890.11 16499.66 2199.26 30
SF-MVS95.88 5695.88 5995.87 6898.12 7989.65 8795.58 8398.56 1491.84 10796.36 9496.68 14994.37 7099.32 6992.41 10199.05 10698.64 112
SMA-MVScopyleft95.77 5995.54 7496.47 4998.27 7091.19 6695.09 9997.79 9586.48 21997.42 5097.51 8494.47 6999.29 7093.55 6099.29 7498.93 68
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
FIs94.90 9795.35 8393.55 16298.28 6981.76 23595.33 9098.14 4993.05 7697.07 6397.18 11187.65 19599.29 7091.72 11999.69 1499.61 11
LPG-MVS_test96.38 3996.23 3996.84 3898.36 6692.13 5295.33 9098.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
LGP-MVS_train96.84 3898.36 6692.13 5298.25 3191.78 11197.07 6397.22 10896.38 1299.28 7292.07 10899.59 2899.11 44
HFP-MVS96.39 3896.17 4497.04 3198.51 5193.37 3996.30 5497.98 7592.35 8895.63 13496.47 15895.37 3099.27 7493.78 5299.14 9998.48 125
thisisatest053088.69 27387.52 28492.20 21196.33 19679.36 27792.81 17884.01 37686.44 22093.67 20992.68 30853.62 39199.25 7589.65 17698.45 17798.00 161
ACMMP_NAP96.21 4496.12 4696.49 4898.90 1991.42 6394.57 11998.03 6990.42 14896.37 9397.35 9795.68 2199.25 7594.44 3799.34 6498.80 86
HPM-MVS++copyleft95.02 9294.39 11996.91 3797.88 9993.58 3794.09 14096.99 15791.05 13292.40 25795.22 22791.03 14799.25 7592.11 10598.69 15497.90 174
dcpmvs_293.96 13495.01 9990.82 26597.60 12074.04 34593.68 15498.85 789.80 15897.82 2997.01 12691.14 14599.21 7890.56 14598.59 16499.19 36
CANet92.38 18391.99 18893.52 16793.82 30383.46 21191.14 24297.00 15589.81 15786.47 35094.04 26987.90 19399.21 7889.50 17898.27 19497.90 174
LS3D96.11 4795.83 6396.95 3694.75 27694.20 1997.34 1397.98 7597.31 1195.32 15296.77 13993.08 9799.20 8091.79 11798.16 20697.44 214
ETV-MVS92.99 16292.74 16993.72 15795.86 23486.30 16592.33 20297.84 8891.70 11892.81 24086.17 37892.22 11699.19 8188.03 21497.73 23495.66 293
EIA-MVS92.35 18492.03 18693.30 17495.81 23883.97 20692.80 17998.17 4587.71 20389.79 30987.56 36891.17 14499.18 8287.97 21597.27 25496.77 247
3Dnovator+92.74 295.86 5795.77 6696.13 5396.81 16390.79 7396.30 5497.82 9096.13 2694.74 18097.23 10691.33 13599.16 8393.25 7898.30 19298.46 126
Anonymous2023121196.60 2597.13 1295.00 10097.46 13086.35 16497.11 1998.24 3497.58 898.72 898.97 793.15 9499.15 8493.18 8099.74 1299.50 17
v1094.68 10695.27 8992.90 18796.57 17680.15 25494.65 11597.57 11090.68 14197.43 4898.00 5188.18 18599.15 8494.84 3299.55 3799.41 20
h-mvs3392.89 16591.99 18895.58 7796.97 15090.55 7693.94 14594.01 27889.23 16893.95 20196.19 18176.88 30799.14 8691.02 13395.71 29797.04 235
HyFIR lowres test87.19 30385.51 31492.24 21097.12 14780.51 25185.03 36296.06 21166.11 38391.66 27492.98 30070.12 33599.14 8675.29 34895.23 31197.07 231
iter_conf_final90.23 23289.32 24592.95 18394.65 28381.46 24094.32 13095.40 24285.61 23892.84 23995.37 22454.58 38799.13 8892.16 10498.94 12498.25 139
iter_conf0588.94 26688.09 27691.50 23892.74 31976.97 31692.80 17995.92 21782.82 27993.65 21095.37 22449.41 39499.13 8890.82 13899.28 7998.40 130
test_040295.73 6196.22 4094.26 13598.19 7685.77 17993.24 16697.24 13996.88 1697.69 3397.77 6594.12 7399.13 8891.54 12699.29 7497.88 177
GeoE94.55 11094.68 11394.15 13797.23 13985.11 19094.14 13897.34 13088.71 18195.26 15695.50 21494.65 6199.12 9190.94 13698.40 17998.23 140
ACMP88.15 1395.71 6295.43 7996.54 4598.17 7791.73 6094.24 13298.08 5789.46 16396.61 8796.47 15895.85 1899.12 9190.45 14799.56 3698.77 91
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
lessismore_v093.87 15198.05 8583.77 20980.32 38897.13 6097.91 5977.49 29699.11 9392.62 9798.08 21398.74 95
9.1494.81 10497.49 12794.11 13998.37 2087.56 20895.38 14796.03 18994.66 6099.08 9490.70 14298.97 119
UniMVSNet_ETH3D97.13 597.72 395.35 8499.51 287.38 13497.70 897.54 11298.16 298.94 299.33 297.84 499.08 9490.73 14199.73 1399.59 13
v894.65 10795.29 8792.74 19296.65 17079.77 26994.59 11697.17 14391.86 10397.47 4797.93 5588.16 18699.08 9494.32 3999.47 4399.38 22
PVSNet_Blended_VisFu91.63 19891.20 20792.94 18597.73 11083.95 20792.14 21197.46 11878.85 31992.35 26094.98 23684.16 23899.08 9486.36 24496.77 27595.79 286
v124093.29 15193.71 14292.06 21996.01 22677.89 30191.81 22997.37 12385.12 24896.69 8396.40 16386.67 21599.07 9894.51 3598.76 14699.22 33
v192192093.26 15393.61 14892.19 21296.04 22578.31 29591.88 22497.24 13985.17 24696.19 10996.19 18186.76 21399.05 9994.18 4398.84 13399.22 33
MIMVSNet195.52 6995.45 7795.72 7399.14 589.02 10296.23 5796.87 16793.73 6097.87 2898.49 2990.73 15599.05 9986.43 24399.60 2699.10 47
DeepC-MVS91.39 495.43 7395.33 8595.71 7497.67 11790.17 8093.86 14798.02 7187.35 20996.22 10597.99 5394.48 6899.05 9992.73 9499.68 1897.93 171
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
v14419293.20 15893.54 15292.16 21696.05 22178.26 29691.95 21797.14 14584.98 25295.96 11596.11 18587.08 20699.04 10293.79 5198.84 13399.17 37
WR-MVS93.49 14693.72 14192.80 19197.57 12380.03 26090.14 27395.68 22493.70 6196.62 8695.39 22287.21 20399.04 10287.50 22299.64 2499.33 26
v119293.49 14693.78 13992.62 19996.16 21179.62 27191.83 22897.22 14186.07 22796.10 11296.38 16887.22 20299.02 10494.14 4498.88 12899.22 33
LCM-MVSNet-Re94.20 12694.58 11693.04 17895.91 23283.13 21993.79 14999.19 392.00 9798.84 598.04 4893.64 7899.02 10481.28 29898.54 16996.96 238
ACMM88.83 996.30 4296.07 5096.97 3498.39 6292.95 4494.74 11198.03 6990.82 13797.15 5996.85 13596.25 1499.00 10693.10 8399.33 6698.95 65
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
CPTT-MVS94.74 10294.12 13196.60 4398.15 7893.01 4295.84 7197.66 10289.21 17193.28 22195.46 21588.89 17998.98 10789.80 17198.82 13997.80 187
GBi-Net93.21 15692.96 16293.97 14495.40 25684.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26798.98 10786.74 23398.38 18398.65 107
test193.21 15692.96 16293.97 14495.40 25684.29 19895.99 6396.56 18888.63 18295.10 16498.53 2681.31 26798.98 10786.74 23398.38 18398.65 107
FMVSNet194.84 9995.13 9493.97 14497.60 12084.29 19895.99 6396.56 18892.38 8597.03 6798.53 2690.12 16698.98 10788.78 19999.16 9798.65 107
Effi-MVS+-dtu93.90 13892.60 17597.77 394.74 27796.67 594.00 14295.41 24089.94 15491.93 27192.13 31990.12 16698.97 11187.68 22097.48 24697.67 199
v114493.50 14593.81 13692.57 20296.28 20179.61 27291.86 22796.96 15886.95 21795.91 11996.32 17287.65 19598.96 11293.51 6198.88 12899.13 41
NCCC94.08 13093.54 15295.70 7596.49 18489.90 8392.39 20096.91 16490.64 14292.33 26394.60 25290.58 15998.96 11290.21 16197.70 23798.23 140
test_241102_ONE98.51 5186.97 14498.10 5491.85 10497.63 3597.03 12396.48 1098.95 114
nrg03096.32 4096.55 2595.62 7697.83 10288.55 11595.77 7498.29 3092.68 7998.03 2697.91 5995.13 4398.95 11493.85 5099.49 4299.36 24
HQP_MVS94.26 12293.93 13495.23 9397.71 11288.12 12294.56 12097.81 9191.74 11593.31 21895.59 20986.93 20998.95 11489.26 18698.51 17398.60 117
plane_prior597.81 9198.95 11489.26 18698.51 17398.60 117
IterMVS-SCA-FT91.65 19791.55 19791.94 22193.89 30079.22 28187.56 32793.51 28591.53 12295.37 14996.62 15278.65 28698.90 11891.89 11494.95 31697.70 196
v2v48293.29 15193.63 14692.29 20896.35 19478.82 28991.77 23196.28 20088.45 18695.70 13396.26 17886.02 22398.90 11893.02 8698.81 14199.14 40
EPNet89.80 24788.25 26994.45 13083.91 39786.18 16993.87 14687.07 35391.16 13180.64 38694.72 24778.83 28398.89 12085.17 25598.89 12698.28 137
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
TEST996.45 18789.46 9090.60 25796.92 16279.09 31590.49 29294.39 25891.31 13698.88 121
train_agg92.71 17391.83 19395.35 8496.45 18789.46 9090.60 25796.92 16279.37 31090.49 29294.39 25891.20 14198.88 12188.66 20298.43 17897.72 195
CDPH-MVS92.67 17491.83 19395.18 9696.94 15288.46 11890.70 25497.07 15177.38 32592.34 26295.08 23392.67 10998.88 12185.74 25098.57 16698.20 143
QAPM92.88 16692.77 16793.22 17695.82 23683.31 21296.45 3997.35 12983.91 26493.75 20696.77 13989.25 17798.88 12184.56 26897.02 26397.49 210
bld_raw_dy_0_6494.27 12094.15 13094.65 11698.55 4586.28 16695.80 7395.55 23388.41 18897.09 6198.08 4478.69 28598.87 12595.63 1799.53 3898.81 84
EI-MVSNet-UG-set94.35 11794.27 12794.59 12292.46 32385.87 17692.42 19894.69 26293.67 6496.13 11095.84 19791.20 14198.86 12693.78 5298.23 19999.03 52
EI-MVSNet-Vis-set94.36 11694.28 12594.61 11892.55 32285.98 17392.44 19694.69 26293.70 6196.12 11195.81 19891.24 13898.86 12693.76 5598.22 20198.98 60
V4293.43 14893.58 14992.97 18195.34 26081.22 24492.67 18496.49 19387.25 21196.20 10796.37 16987.32 20198.85 12892.39 10298.21 20298.85 81
Fast-Effi-MVS+91.28 20790.86 21492.53 20495.45 25582.53 22689.25 30396.52 19285.00 25189.91 30588.55 36492.94 10098.84 12984.72 26795.44 30496.22 268
TDRefinement97.68 397.60 497.93 299.02 1295.95 898.61 398.81 897.41 1097.28 5698.46 3094.62 6298.84 12994.64 3499.53 3898.99 56
xiu_mvs_v1_base_debu91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
xiu_mvs_v1_base91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
xiu_mvs_v1_base_debi91.47 20291.52 19891.33 24395.69 24481.56 23789.92 28096.05 21383.22 27191.26 27990.74 33891.55 13198.82 13189.29 18395.91 29293.62 346
test_896.37 18989.14 10090.51 26096.89 16579.37 31090.42 29494.36 26091.20 14198.82 131
PS-MVSNAJ88.86 26888.99 25288.48 31794.88 26874.71 33586.69 34695.60 22680.88 29787.83 33987.37 37190.77 15198.82 13182.52 28494.37 33091.93 365
test111190.39 22590.61 22189.74 29298.04 8871.50 36195.59 8179.72 39089.41 16495.94 11798.14 3970.79 33398.81 13688.52 20499.32 6898.90 74
xiu_mvs_v2_base89.00 26389.19 24688.46 31894.86 27074.63 33786.97 33795.60 22680.88 29787.83 33988.62 36391.04 14698.81 13682.51 28594.38 32991.93 365
FMVSNet292.78 17092.73 17192.95 18395.40 25681.98 23294.18 13595.53 23588.63 18296.05 11397.37 9181.31 26798.81 13687.38 22698.67 15798.06 153
FE-MVS89.06 25988.29 26691.36 24294.78 27479.57 27396.77 2890.99 32484.87 25492.96 23696.29 17460.69 37898.80 13980.18 30997.11 26095.71 289
Anonymous2024052995.50 7095.83 6394.50 12697.33 13685.93 17495.19 9896.77 17596.64 1997.61 3898.05 4693.23 9198.79 14088.60 20399.04 11198.78 88
VDD-MVS94.37 11594.37 12194.40 13297.49 12786.07 17293.97 14493.28 28994.49 4596.24 10397.78 6387.99 19198.79 14088.92 19599.14 9998.34 132
test1294.43 13195.95 22986.75 15096.24 20389.76 31089.79 17398.79 14097.95 22597.75 193
agg_prior96.20 20888.89 10696.88 16690.21 29998.78 143
CSCG94.69 10594.75 10794.52 12597.55 12487.87 12795.01 10497.57 11092.68 7996.20 10793.44 28991.92 12398.78 14389.11 19199.24 8596.92 239
PHI-MVS94.34 11893.80 13895.95 5995.65 24791.67 6294.82 10997.86 8587.86 19993.04 23394.16 26691.58 13098.78 14390.27 15798.96 12197.41 215
COLMAP_ROBcopyleft91.06 596.75 1696.62 2297.13 2898.38 6394.31 1796.79 2698.32 2496.69 1796.86 7597.56 7695.48 2798.77 14690.11 16499.44 5098.31 135
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
VDDNet94.03 13194.27 12793.31 17398.87 2182.36 22995.51 8691.78 31897.19 1296.32 9698.60 2284.24 23798.75 14787.09 23098.83 13898.81 84
114514_t90.51 21989.80 23992.63 19898.00 9182.24 23093.40 16297.29 13565.84 38489.40 31494.80 24486.99 20798.75 14783.88 27398.61 16196.89 241
FMVSNet390.78 21290.32 22992.16 21693.03 31679.92 26492.54 18994.95 25386.17 22695.10 16496.01 19069.97 33698.75 14786.74 23398.38 18397.82 185
IterMVS-LS93.78 14094.28 12592.27 20996.27 20279.21 28291.87 22596.78 17391.77 11396.57 8997.07 12087.15 20498.74 15091.99 11099.03 11298.86 78
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DELS-MVS92.05 19192.16 18291.72 22894.44 28780.13 25687.62 32497.25 13887.34 21092.22 26593.18 29689.54 17598.73 15189.67 17598.20 20496.30 265
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
thisisatest051584.72 32382.99 33289.90 28992.96 31775.33 33484.36 36983.42 37877.37 32688.27 33486.65 37353.94 38998.72 15282.56 28397.40 25195.67 292
alignmvs93.26 15392.85 16694.50 12695.70 24387.45 13393.45 16095.76 22191.58 12095.25 15892.42 31581.96 26298.72 15291.61 12297.87 22997.33 223
MCST-MVS92.91 16492.51 17694.10 14097.52 12585.72 18191.36 23997.13 14780.33 30192.91 23894.24 26291.23 13998.72 15289.99 16897.93 22697.86 179
XVG-ACMP-BASELINE95.68 6395.34 8496.69 4198.40 6193.04 4194.54 12398.05 6490.45 14796.31 9796.76 14192.91 10298.72 15291.19 13099.42 5298.32 133
CNVR-MVS94.58 10994.29 12495.46 8296.94 15289.35 9691.81 22996.80 17289.66 16093.90 20495.44 21792.80 10698.72 15292.74 9398.52 17198.32 133
DP-MVS95.62 6495.84 6294.97 10197.16 14488.62 11194.54 12397.64 10396.94 1596.58 8897.32 10193.07 9898.72 15290.45 14798.84 13397.57 204
casdiffmvs_mvgpermissive95.10 9095.62 7193.53 16596.25 20583.23 21592.66 18598.19 3993.06 7597.49 4497.15 11394.78 5798.71 15892.27 10398.72 14998.65 107
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
原ACMM192.87 18896.91 15584.22 20197.01 15476.84 33189.64 31294.46 25688.00 19098.70 15981.53 29698.01 22095.70 291
ANet_high94.83 10096.28 3790.47 27396.65 17073.16 35094.33 12898.74 1196.39 2498.09 2598.93 893.37 8698.70 15990.38 15099.68 1899.53 15
hse-mvs292.24 18891.20 20795.38 8396.16 21190.65 7592.52 19092.01 31689.23 16893.95 20192.99 29976.88 30798.69 16191.02 13396.03 28996.81 245
AUN-MVS90.05 24188.30 26595.32 8896.09 21890.52 7792.42 19892.05 31582.08 28888.45 33192.86 30165.76 35598.69 16188.91 19696.07 28896.75 249
test250685.42 31784.57 32087.96 32597.81 10366.53 37996.14 5856.35 40289.04 17293.55 21398.10 4242.88 40298.68 16388.09 21199.18 9498.67 105
test_prior94.61 11895.95 22987.23 13797.36 12898.68 16397.93 171
Effi-MVS+92.79 16992.74 16992.94 18595.10 26483.30 21394.00 14297.53 11491.36 12589.35 31590.65 34394.01 7598.66 16587.40 22595.30 30996.88 243
canonicalmvs94.59 10894.69 11194.30 13495.60 25187.03 14395.59 8198.24 3491.56 12195.21 16192.04 32194.95 5398.66 16591.45 12797.57 24397.20 228
3Dnovator92.54 394.80 10194.90 10194.47 12995.47 25487.06 14296.63 3197.28 13791.82 11094.34 19197.41 8890.60 15898.65 16792.47 10098.11 21097.70 196
ECVR-MVScopyleft90.12 23690.16 23090.00 28897.81 10372.68 35595.76 7578.54 39389.04 17295.36 15098.10 4270.51 33498.64 16887.10 22999.18 9498.67 105
ACMH+88.43 1196.48 3096.82 1595.47 8198.54 4889.06 10195.65 7998.61 1296.10 2798.16 2397.52 8196.90 798.62 16990.30 15599.60 2698.72 97
HQP4-MVS88.81 32198.61 17098.15 148
LTVRE_ROB93.87 197.93 298.16 297.26 2698.81 2893.86 3199.07 298.98 697.01 1398.92 498.78 1495.22 4098.61 17096.85 399.77 999.31 28
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
Fast-Effi-MVS+-dtu92.77 17192.16 18294.58 12494.66 28288.25 12092.05 21396.65 18289.62 16190.08 30191.23 33192.56 11098.60 17286.30 24596.27 28696.90 240
HQP-MVS92.09 19091.49 20193.88 15096.36 19184.89 19291.37 23697.31 13287.16 21288.81 32193.40 29084.76 23498.60 17286.55 24097.73 23498.14 149
无先验89.94 27995.75 22270.81 36698.59 17481.17 30194.81 315
DeepC-MVS_fast89.96 793.73 14193.44 15494.60 12196.14 21487.90 12693.36 16497.14 14585.53 24193.90 20495.45 21691.30 13798.59 17489.51 17798.62 16097.31 224
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
CANet_DTU89.85 24589.17 24791.87 22292.20 32980.02 26190.79 25095.87 21986.02 22882.53 37791.77 32480.01 27698.57 17685.66 25297.70 23797.01 236
OPM-MVS95.61 6595.45 7796.08 5498.49 5891.00 6892.65 18697.33 13190.05 15396.77 8096.85 13595.04 4898.56 17792.77 9199.06 10398.70 101
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
jason89.17 25688.32 26491.70 23095.73 24280.07 25788.10 32093.22 29071.98 35890.09 30092.79 30478.53 28998.56 17787.43 22497.06 26196.46 259
jason: jason.
F-COLMAP92.28 18691.06 21195.95 5997.52 12591.90 5693.53 15697.18 14283.98 26388.70 32794.04 26988.41 18398.55 17980.17 31095.99 29197.39 219
lupinMVS88.34 27887.31 28691.45 23994.74 27780.06 25887.23 33292.27 30871.10 36388.83 31991.15 33277.02 30498.53 18086.67 23696.75 27695.76 287
PCF-MVS84.52 1789.12 25787.71 28193.34 17296.06 22085.84 17786.58 35197.31 13268.46 37793.61 21193.89 27787.51 19898.52 18167.85 38298.11 21095.66 293
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
VPA-MVSNet95.14 8995.67 7093.58 16197.76 10683.15 21894.58 11897.58 10993.39 6897.05 6698.04 4893.25 9098.51 18289.75 17499.59 2899.08 48
EI-MVSNet92.99 16293.26 16092.19 21292.12 33279.21 28292.32 20394.67 26491.77 11395.24 15995.85 19587.14 20598.49 18391.99 11098.26 19598.86 78
casdiffmvspermissive94.32 11994.80 10592.85 18996.05 22181.44 24192.35 20198.05 6491.53 12295.75 12896.80 13893.35 8798.49 18391.01 13598.32 19198.64 112
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
MVSTER89.32 25488.75 25791.03 25590.10 36576.62 32190.85 24894.67 26482.27 28695.24 15995.79 19961.09 37698.49 18390.49 14698.26 19597.97 168
UGNet93.08 15992.50 17794.79 10893.87 30187.99 12595.07 10194.26 27290.64 14287.33 34697.67 6986.89 21198.49 18388.10 21098.71 15197.91 173
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
baseline94.26 12294.80 10592.64 19696.08 21980.99 24793.69 15398.04 6890.80 13894.89 17496.32 17293.19 9298.48 18791.68 12198.51 17398.43 128
LFMVS91.33 20591.16 21091.82 22496.27 20279.36 27795.01 10485.61 36596.04 3094.82 17697.06 12172.03 32998.46 18884.96 26398.70 15397.65 200
FA-MVS(test-final)91.81 19491.85 19291.68 23194.95 26779.99 26296.00 6293.44 28787.80 20094.02 19997.29 10277.60 29598.45 18988.04 21397.49 24596.61 251
test_fmvsmconf0.01_n95.90 5496.09 4795.31 8997.30 13789.21 9794.24 13298.76 1086.25 22397.56 3998.66 1895.73 1998.44 19097.35 298.99 11398.27 138
test_fmvsmconf0.1_n95.61 6595.72 6895.26 9096.85 15989.20 9893.51 15798.60 1385.68 23597.42 5098.30 3595.34 3398.39 19196.85 398.98 11498.19 144
thres600view787.66 28987.10 29589.36 29996.05 22173.17 34992.72 18185.31 36891.89 10293.29 22090.97 33563.42 36798.39 19173.23 35996.99 26896.51 254
IB-MVS77.21 1983.11 33381.05 34489.29 30091.15 35175.85 32985.66 35786.00 36079.70 30682.02 38186.61 37448.26 39598.39 19177.84 33092.22 36293.63 345
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test_fmvsmconf_n95.43 7395.50 7595.22 9496.48 18689.19 9993.23 16798.36 2185.61 23896.92 7398.02 5095.23 3998.38 19496.69 698.95 12398.09 152
v14892.87 16793.29 15691.62 23396.25 20577.72 30491.28 24095.05 24989.69 15995.93 11896.04 18887.34 20098.38 19490.05 16797.99 22198.78 88
CDS-MVSNet89.55 24888.22 27293.53 16595.37 25986.49 15789.26 30193.59 28279.76 30591.15 28292.31 31677.12 30298.38 19477.51 33497.92 22795.71 289
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
OpenMVScopyleft89.45 892.27 18792.13 18592.68 19594.53 28684.10 20495.70 7697.03 15382.44 28591.14 28396.42 16188.47 18298.38 19485.95 24897.47 24795.55 297
MVS_Test92.57 17893.29 15690.40 27693.53 30775.85 32992.52 19096.96 15888.73 17992.35 26096.70 14890.77 15198.37 19892.53 9995.49 30296.99 237
KD-MVS_self_test94.10 12994.73 11092.19 21297.66 11879.49 27594.86 10897.12 14889.59 16296.87 7497.65 7090.40 16298.34 19989.08 19299.35 6198.75 92
VPNet93.08 15993.76 14091.03 25598.60 3975.83 33191.51 23495.62 22591.84 10795.74 12997.10 11989.31 17698.32 20085.07 26299.06 10398.93 68
AdaColmapbinary91.63 19891.36 20492.47 20695.56 25286.36 16392.24 21096.27 20188.88 17889.90 30692.69 30791.65 12998.32 20077.38 33697.64 24092.72 359
thres100view90087.35 29886.89 29788.72 31096.14 21473.09 35193.00 17385.31 36892.13 9593.26 22390.96 33663.42 36798.28 20271.27 37196.54 28194.79 317
tfpn200view987.05 30686.52 30588.67 31195.77 23972.94 35291.89 22286.00 36090.84 13592.61 24789.80 34763.93 36498.28 20271.27 37196.54 28194.79 317
thres40087.20 30286.52 30589.24 30395.77 23972.94 35291.89 22286.00 36090.84 13592.61 24789.80 34763.93 36498.28 20271.27 37196.54 28196.51 254
Vis-MVSNet (Re-imp)90.42 22290.16 23091.20 25197.66 11877.32 30994.33 12887.66 34891.20 12992.99 23495.13 23075.40 31698.28 20277.86 32999.19 9297.99 164
eth_miper_zixun_eth90.72 21390.61 22191.05 25492.04 33576.84 31886.91 33996.67 18185.21 24594.41 18793.92 27579.53 27998.26 20689.76 17397.02 26398.06 153
PLCcopyleft85.34 1590.40 22388.92 25394.85 10596.53 18290.02 8191.58 23396.48 19480.16 30286.14 35292.18 31785.73 22598.25 20776.87 33994.61 32696.30 265
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
新几何193.17 17797.16 14487.29 13594.43 26767.95 37891.29 27894.94 23886.97 20898.23 20881.06 30297.75 23393.98 336
pmmvs696.80 1297.36 995.15 9799.12 887.82 12996.68 3097.86 8596.10 2798.14 2499.28 397.94 398.21 20991.38 12999.69 1499.42 19
1112_ss88.42 27687.41 28591.45 23996.69 16780.99 24789.72 28796.72 17873.37 34987.00 34890.69 34177.38 29998.20 21081.38 29793.72 34295.15 304
DP-MVS Recon92.31 18591.88 19193.60 16097.18 14386.87 14791.10 24497.37 12384.92 25392.08 26894.08 26888.59 18098.20 21083.50 27498.14 20895.73 288
TAMVS90.16 23489.05 24993.49 16996.49 18486.37 16290.34 26792.55 30580.84 29992.99 23494.57 25481.94 26398.20 21073.51 35798.21 20295.90 282
ET-MVSNet_ETH3D86.15 31284.27 32391.79 22593.04 31581.28 24287.17 33586.14 35879.57 30883.65 36988.66 36157.10 38298.18 21387.74 21995.40 30595.90 282
tfpnnormal94.27 12094.87 10392.48 20597.71 11280.88 24994.55 12295.41 24093.70 6196.67 8497.72 6691.40 13498.18 21387.45 22399.18 9498.36 131
c3_l91.32 20691.42 20291.00 25892.29 32576.79 31987.52 33096.42 19685.76 23394.72 18293.89 27782.73 25398.16 21590.93 13798.55 16798.04 156
PVSNet_BlendedMVS90.35 22889.96 23591.54 23694.81 27278.80 29190.14 27396.93 16079.43 30988.68 32895.06 23486.27 22098.15 21680.27 30698.04 21697.68 198
PVSNet_Blended88.74 27188.16 27590.46 27594.81 27278.80 29186.64 34796.93 16074.67 34188.68 32889.18 35986.27 22098.15 21680.27 30696.00 29094.44 326
testing383.66 33082.52 33587.08 33495.84 23565.84 38189.80 28577.17 39688.17 19390.84 28788.63 36230.95 40498.11 21884.05 27197.19 25797.28 226
OMC-MVS94.22 12593.69 14395.81 6997.25 13891.27 6492.27 20797.40 12287.10 21594.56 18495.42 21893.74 7798.11 21886.62 23798.85 13298.06 153
DeepPCF-MVS90.46 694.20 12693.56 15196.14 5295.96 22892.96 4389.48 29397.46 11885.14 24796.23 10495.42 21893.19 9298.08 22090.37 15198.76 14697.38 221
OPU-MVS95.15 9796.84 16089.43 9295.21 9495.66 20793.12 9598.06 22186.28 24698.61 16197.95 169
miper_ehance_all_eth90.48 22090.42 22690.69 26891.62 34676.57 32286.83 34296.18 20883.38 26794.06 19692.66 30982.20 25898.04 22289.79 17297.02 26397.45 212
test_yl90.11 23789.73 24291.26 24794.09 29579.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32098.03 22382.23 28896.87 27095.93 279
DCV-MVSNet90.11 23789.73 24291.26 24794.09 29579.82 26690.44 26192.65 30190.90 13393.19 22893.30 29273.90 32098.03 22382.23 28896.87 27095.93 279
testdata298.03 22380.24 308
EGC-MVSNET80.97 35075.73 36396.67 4298.85 2494.55 1596.83 2396.60 1842.44 3995.32 40098.25 3792.24 11598.02 22691.85 11599.21 9097.45 212
DPM-MVS89.35 25388.40 26292.18 21596.13 21684.20 20286.96 33896.15 21075.40 33887.36 34591.55 32983.30 24498.01 22782.17 29096.62 27994.32 329
thres20085.85 31485.18 31587.88 32894.44 28772.52 35689.08 30586.21 35788.57 18591.44 27688.40 36564.22 36298.00 22868.35 38095.88 29593.12 352
ACMH88.36 1296.59 2797.43 594.07 14198.56 4285.33 18896.33 4798.30 2794.66 4298.72 898.30 3597.51 598.00 22894.87 3199.59 2898.86 78
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
DIV-MVS_self_test90.65 21690.56 22390.91 26291.85 33976.99 31486.75 34495.36 24385.52 24394.06 19694.89 23977.37 30097.99 23090.28 15698.97 11997.76 191
cl____90.65 21690.56 22390.91 26291.85 33976.98 31586.75 34495.36 24385.53 24194.06 19694.89 23977.36 30197.98 23190.27 15798.98 11497.76 191
Anonymous2024052192.86 16893.57 15090.74 26796.57 17675.50 33394.15 13695.60 22689.38 16595.90 12097.90 6180.39 27597.96 23292.60 9899.68 1898.75 92
TAPA-MVS88.58 1092.49 17991.75 19594.73 11096.50 18389.69 8692.91 17697.68 10178.02 32392.79 24294.10 26790.85 14997.96 23284.76 26698.16 20696.54 252
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
tt080595.42 7695.93 5793.86 15298.75 3288.47 11797.68 994.29 27096.48 2195.38 14793.63 28394.89 5597.94 23495.38 2896.92 26995.17 302
testf196.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
APD_test296.77 1496.49 2697.60 899.01 1496.70 396.31 5098.33 2294.96 3897.30 5497.93 5596.05 1697.90 23589.32 18099.23 8698.19 144
TransMVSNet (Re)95.27 8796.04 5292.97 18198.37 6581.92 23395.07 10196.76 17693.97 5597.77 3198.57 2395.72 2097.90 23588.89 19799.23 8699.08 48
EG-PatchMatch MVS94.54 11194.67 11494.14 13897.87 10186.50 15692.00 21696.74 17788.16 19496.93 7297.61 7393.04 9997.90 23591.60 12398.12 20998.03 159
miper_enhance_ethall88.42 27687.87 27990.07 28588.67 37975.52 33285.10 36195.59 23075.68 33492.49 25189.45 35578.96 28297.88 23987.86 21897.02 26396.81 245
BH-RMVSNet90.47 22190.44 22590.56 27295.21 26378.65 29389.15 30493.94 28088.21 19192.74 24494.22 26386.38 21897.88 23978.67 32695.39 30695.14 305
Test_1112_low_res87.50 29586.58 30290.25 28096.80 16477.75 30387.53 32996.25 20269.73 37386.47 35093.61 28575.67 31497.88 23979.95 31293.20 34995.11 306
MAR-MVS90.32 23088.87 25694.66 11594.82 27191.85 5794.22 13494.75 26080.91 29687.52 34488.07 36786.63 21697.87 24276.67 34096.21 28794.25 330
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
AllTest94.88 9894.51 11796.00 5698.02 8992.17 5095.26 9398.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
TestCases96.00 5698.02 8992.17 5098.43 1790.48 14595.04 16896.74 14492.54 11197.86 24385.11 26098.98 11497.98 165
CLD-MVS91.82 19391.41 20393.04 17896.37 18983.65 21086.82 34397.29 13584.65 25792.27 26489.67 35292.20 11897.85 24583.95 27299.47 4397.62 201
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
fmvsm_l_conf0.5_n93.79 13993.81 13693.73 15696.16 21186.26 16792.46 19496.72 17881.69 29195.77 12597.11 11790.83 15097.82 24695.58 2097.99 22197.11 230
TSAR-MVS + GP.93.07 16192.41 17995.06 9995.82 23690.87 7290.97 24692.61 30488.04 19594.61 18393.79 28088.08 18797.81 24789.41 17998.39 18296.50 257
SSC-MVS90.16 23492.96 16281.78 36897.88 9948.48 40090.75 25187.69 34796.02 3196.70 8297.63 7285.60 22997.80 24885.73 25198.60 16399.06 50
ambc92.98 18096.88 15683.01 22195.92 6896.38 19896.41 9297.48 8688.26 18497.80 24889.96 16998.93 12598.12 151
baseline283.38 33281.54 34188.90 30691.38 34872.84 35488.78 31281.22 38578.97 31679.82 38887.56 36861.73 37497.80 24874.30 35490.05 37596.05 275
OpenMVS_ROBcopyleft85.12 1689.52 25089.05 24990.92 26094.58 28581.21 24591.10 24493.41 28877.03 32993.41 21593.99 27383.23 24597.80 24879.93 31494.80 32193.74 342
BH-untuned90.68 21590.90 21290.05 28795.98 22779.57 27390.04 27694.94 25487.91 19694.07 19593.00 29887.76 19497.78 25279.19 32395.17 31292.80 358
RPSCF95.58 6894.89 10297.62 797.58 12296.30 795.97 6697.53 11492.42 8493.41 21597.78 6391.21 14097.77 25391.06 13297.06 26198.80 86
MVS_111021_HR93.63 14393.42 15594.26 13596.65 17086.96 14689.30 30096.23 20488.36 19093.57 21294.60 25293.45 8297.77 25390.23 16098.38 18398.03 159
GA-MVS87.70 28786.82 29890.31 27793.27 31077.22 31184.72 36692.79 29885.11 24989.82 30790.07 34466.80 34897.76 25584.56 26894.27 33395.96 277
test_fmvsmvis_n_192095.08 9195.40 8194.13 13996.66 16987.75 13093.44 16198.49 1585.57 24098.27 2097.11 11794.11 7497.75 25696.26 1198.72 14996.89 241
Baseline_NR-MVSNet94.47 11395.09 9792.60 20198.50 5780.82 25092.08 21296.68 18093.82 5996.29 9998.56 2490.10 16897.75 25690.10 16699.66 2199.24 32
MG-MVS89.54 24989.80 23988.76 30994.88 26872.47 35789.60 28992.44 30785.82 23189.48 31395.98 19182.85 25197.74 25881.87 29195.27 31096.08 273
fmvsm_l_conf0.5_n_a93.59 14493.63 14693.49 16996.10 21785.66 18392.32 20396.57 18781.32 29395.63 13497.14 11490.19 16497.73 25995.37 2998.03 21797.07 231
pm-mvs195.43 7395.94 5593.93 14898.38 6385.08 19195.46 8797.12 14891.84 10797.28 5698.46 3095.30 3697.71 26090.17 16299.42 5298.99 56
EPNet_dtu85.63 31584.37 32189.40 29886.30 39074.33 34291.64 23288.26 33984.84 25572.96 39589.85 34571.27 33297.69 26176.60 34197.62 24196.18 270
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
EU-MVSNet87.39 29786.71 30189.44 29693.40 30876.11 32694.93 10790.00 33257.17 39395.71 13297.37 9164.77 36197.68 26292.67 9694.37 33094.52 324
test_fmvsm_n_192094.72 10394.74 10994.67 11396.30 20088.62 11193.19 16898.07 6085.63 23797.08 6297.35 9790.86 14897.66 26395.70 1698.48 17697.74 194
APD_test195.91 5395.42 8097.36 2398.82 2696.62 695.64 8097.64 10393.38 6995.89 12197.23 10693.35 8797.66 26388.20 20698.66 15997.79 188
CR-MVSNet87.89 28387.12 29490.22 28191.01 35378.93 28492.52 19092.81 29673.08 35289.10 31696.93 13067.11 34597.64 26588.80 19892.70 35794.08 331
patchmatchnet-post91.71 32566.22 35497.59 266
SCA87.43 29687.21 29088.10 32492.01 33671.98 35989.43 29588.11 34482.26 28788.71 32692.83 30278.65 28697.59 26679.61 31893.30 34894.75 319
cl2289.02 26088.50 26090.59 27189.76 36776.45 32386.62 34994.03 27582.98 27792.65 24692.49 31072.05 32897.53 26888.93 19497.02 26397.78 189
Patchmtry90.11 23789.92 23690.66 26990.35 36277.00 31392.96 17492.81 29690.25 15194.74 18096.93 13067.11 34597.52 26985.17 25598.98 11497.46 211
Anonymous20240521192.58 17692.50 17792.83 19096.55 17883.22 21692.43 19791.64 32094.10 5295.59 13696.64 15181.88 26497.50 27085.12 25998.52 17197.77 190
ab-mvs92.40 18292.62 17491.74 22797.02 14881.65 23695.84 7195.50 23686.95 21792.95 23797.56 7690.70 15697.50 27079.63 31797.43 24996.06 274
FMVSNet587.82 28686.56 30391.62 23392.31 32479.81 26893.49 15894.81 25983.26 26991.36 27796.93 13052.77 39297.49 27276.07 34498.03 21797.55 207
diffmvspermissive91.74 19591.93 19091.15 25393.06 31478.17 29788.77 31397.51 11786.28 22292.42 25693.96 27488.04 18997.46 27390.69 14396.67 27897.82 185
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
ppachtmachnet_test88.61 27488.64 25888.50 31691.76 34170.99 36484.59 36792.98 29379.30 31492.38 25893.53 28879.57 27897.45 27486.50 24297.17 25897.07 231
IterMVS90.18 23390.16 23090.21 28293.15 31275.98 32887.56 32792.97 29486.43 22194.09 19396.40 16378.32 29097.43 27587.87 21794.69 32497.23 227
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
HY-MVS82.50 1886.81 30985.93 31189.47 29593.63 30577.93 29994.02 14191.58 32175.68 33483.64 37093.64 28277.40 29897.42 27671.70 36892.07 36493.05 355
TR-MVS87.70 28787.17 29189.27 30194.11 29479.26 27988.69 31591.86 31781.94 28990.69 29089.79 34982.82 25297.42 27672.65 36391.98 36591.14 371
mvs_anonymous90.37 22791.30 20687.58 33092.17 33168.00 37489.84 28394.73 26183.82 26693.22 22797.40 8987.54 19797.40 27887.94 21695.05 31497.34 222
MVP-Stereo90.07 24088.92 25393.54 16496.31 19886.49 15790.93 24795.59 23079.80 30391.48 27595.59 20980.79 27297.39 27978.57 32791.19 36996.76 248
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
VNet92.67 17492.96 16291.79 22596.27 20280.15 25491.95 21794.98 25292.19 9494.52 18696.07 18787.43 19997.39 27984.83 26498.38 18397.83 183
testdata91.03 25596.87 15782.01 23194.28 27171.55 35992.46 25395.42 21885.65 22797.38 28182.64 28297.27 25493.70 343
tpm84.38 32684.08 32485.30 35090.47 36063.43 39089.34 29885.63 36477.24 32887.62 34295.03 23561.00 37797.30 28279.26 32291.09 37195.16 303
PAPM_NR91.03 20990.81 21691.68 23196.73 16581.10 24693.72 15296.35 19988.19 19288.77 32592.12 32085.09 23397.25 28382.40 28793.90 33996.68 250
PAPM81.91 34480.11 35487.31 33393.87 30172.32 35884.02 37293.22 29069.47 37476.13 39389.84 34672.15 32797.23 28453.27 39589.02 37792.37 362
fmvsm_s_conf0.1_n94.19 12894.41 11893.52 16797.22 14184.37 19693.73 15195.26 24584.45 25995.76 12698.00 5191.85 12497.21 28595.62 1897.82 23198.98 60
fmvsm_s_conf0.5_n94.00 13394.20 12993.42 17196.69 16784.37 19693.38 16395.13 24884.50 25895.40 14697.55 8091.77 12697.20 28695.59 1997.79 23298.69 104
gm-plane-assit87.08 38859.33 39571.22 36183.58 38597.20 28673.95 355
fmvsm_s_conf0.1_n_a94.26 12294.37 12193.95 14797.36 13485.72 18194.15 13695.44 23783.25 27095.51 13998.05 4692.54 11197.19 28895.55 2197.46 24898.94 66
fmvsm_s_conf0.5_n_a94.02 13294.08 13393.84 15396.72 16685.73 18093.65 15595.23 24683.30 26895.13 16297.56 7692.22 11697.17 28995.51 2397.41 25098.64 112
PAPR87.65 29086.77 30090.27 27992.85 31877.38 30888.56 31896.23 20476.82 33284.98 36189.75 35186.08 22297.16 29072.33 36493.35 34796.26 267
CHOSEN 1792x268887.19 30385.92 31291.00 25897.13 14679.41 27684.51 36895.60 22664.14 38790.07 30294.81 24278.26 29197.14 29173.34 35895.38 30796.46 259
patch_mono-292.46 18092.72 17291.71 22996.65 17078.91 28788.85 31097.17 14383.89 26592.45 25496.76 14189.86 17297.09 29290.24 15998.59 16499.12 43
ITE_SJBPF95.95 5997.34 13593.36 4096.55 19191.93 10094.82 17695.39 22291.99 12197.08 29385.53 25397.96 22497.41 215
API-MVS91.52 20191.61 19691.26 24794.16 29286.26 16794.66 11494.82 25791.17 13092.13 26791.08 33490.03 17197.06 29479.09 32497.35 25390.45 375
XVG-OURS-SEG-HR95.38 7895.00 10096.51 4698.10 8194.07 2092.46 19498.13 5090.69 14093.75 20696.25 17998.03 297.02 29592.08 10795.55 30098.45 127
XVG-OURS94.72 10394.12 13196.50 4798.00 9194.23 1891.48 23598.17 4590.72 13995.30 15396.47 15887.94 19296.98 29691.41 12897.61 24298.30 136
WB-MVS89.44 25292.15 18481.32 36997.73 11048.22 40189.73 28687.98 34595.24 3696.05 11396.99 12785.18 23196.95 29782.45 28697.97 22398.78 88
D2MVS89.93 24389.60 24490.92 26094.03 29778.40 29488.69 31594.85 25578.96 31793.08 23095.09 23274.57 31896.94 29888.19 20798.96 12197.41 215
cascas87.02 30786.28 30989.25 30291.56 34776.45 32384.33 37096.78 17371.01 36486.89 34985.91 37981.35 26696.94 29883.09 27895.60 29994.35 328
MDA-MVSNet-bldmvs91.04 20890.88 21391.55 23594.68 28180.16 25385.49 35892.14 31290.41 14994.93 17295.79 19985.10 23296.93 30085.15 25794.19 33697.57 204
BH-w/o87.21 30187.02 29687.79 32994.77 27577.27 31087.90 32293.21 29281.74 29089.99 30488.39 36683.47 24296.93 30071.29 37092.43 36189.15 376
CostFormer83.09 33482.21 33785.73 34689.27 37467.01 37590.35 26686.47 35670.42 36983.52 37293.23 29561.18 37596.85 30277.21 33788.26 38093.34 351
pmmvs-eth3d91.54 20090.73 21993.99 14295.76 24187.86 12890.83 24993.98 27978.23 32294.02 19996.22 18082.62 25696.83 30386.57 23898.33 18997.29 225
MVS84.98 32184.30 32287.01 33591.03 35277.69 30591.94 21994.16 27359.36 39284.23 36787.50 37085.66 22696.80 30471.79 36693.05 35486.54 385
tpmvs84.22 32783.97 32584.94 35287.09 38765.18 38391.21 24188.35 33882.87 27885.21 35690.96 33665.24 35996.75 30579.60 32085.25 38592.90 357
pmmvs587.87 28487.14 29290.07 28593.26 31176.97 31688.89 30892.18 30973.71 34888.36 33293.89 27776.86 30996.73 30680.32 30596.81 27396.51 254
CVMVSNet85.16 31984.72 31786.48 34092.12 33270.19 36692.32 20388.17 34256.15 39490.64 29195.85 19567.97 34396.69 30788.78 19990.52 37392.56 360
tpm281.46 34580.35 35284.80 35389.90 36665.14 38490.44 26185.36 36765.82 38582.05 38092.44 31357.94 38196.69 30770.71 37588.49 37992.56 360
PatchmatchNetpermissive85.22 31884.64 31886.98 33689.51 37269.83 37190.52 25987.34 35178.87 31887.22 34792.74 30666.91 34796.53 30981.77 29286.88 38294.58 323
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
旧先验290.00 27868.65 37692.71 24596.52 31085.15 257
new-patchmatchnet88.97 26490.79 21783.50 36394.28 29155.83 39885.34 36093.56 28486.18 22595.47 14295.73 20583.10 24696.51 31185.40 25498.06 21498.16 147
SDMVSNet94.43 11495.02 9892.69 19497.93 9682.88 22391.92 22195.99 21693.65 6595.51 13998.63 2094.60 6396.48 31287.57 22199.35 6198.70 101
ADS-MVSNet284.01 32882.20 33889.41 29789.04 37576.37 32587.57 32590.98 32572.71 35684.46 36492.45 31168.08 34196.48 31270.58 37683.97 38695.38 300
TinyColmap92.00 19292.76 16889.71 29395.62 25077.02 31290.72 25396.17 20987.70 20495.26 15696.29 17492.54 11196.45 31481.77 29298.77 14595.66 293
pmmvs488.95 26587.70 28292.70 19394.30 29085.60 18487.22 33392.16 31174.62 34289.75 31194.19 26477.97 29396.41 31582.71 28196.36 28596.09 272
USDC89.02 26089.08 24888.84 30895.07 26574.50 34088.97 30696.39 19773.21 35193.27 22296.28 17682.16 25996.39 31677.55 33398.80 14295.62 296
MVS_111021_LR93.66 14293.28 15894.80 10796.25 20590.95 6990.21 27095.43 23987.91 19693.74 20894.40 25792.88 10496.38 31790.39 14998.28 19397.07 231
PatchT87.51 29488.17 27485.55 34790.64 35666.91 37692.02 21586.09 35992.20 9389.05 31897.16 11264.15 36396.37 31889.21 18992.98 35593.37 350
MSLP-MVS++93.25 15593.88 13591.37 24196.34 19582.81 22493.11 17097.74 9889.37 16694.08 19495.29 22690.40 16296.35 31990.35 15298.25 19794.96 309
LF4IMVS92.72 17292.02 18794.84 10695.65 24791.99 5492.92 17596.60 18485.08 25092.44 25593.62 28486.80 21296.35 31986.81 23298.25 19796.18 270
PC_three_145275.31 33995.87 12295.75 20492.93 10196.34 32187.18 22898.68 15598.04 156
gg-mvs-nofinetune82.10 34381.02 34585.34 34987.46 38571.04 36294.74 11167.56 39996.44 2379.43 38998.99 645.24 39696.15 32267.18 38492.17 36388.85 378
JIA-IIPM85.08 32083.04 33191.19 25287.56 38386.14 17089.40 29784.44 37588.98 17482.20 37897.95 5456.82 38496.15 32276.55 34283.45 38891.30 370
KD-MVS_2432*160082.17 34180.75 34886.42 34282.04 39970.09 36881.75 38090.80 32782.56 28190.37 29689.30 35642.90 40096.11 32474.47 35292.55 35993.06 353
miper_refine_blended82.17 34180.75 34886.42 34282.04 39970.09 36881.75 38090.80 32782.56 28190.37 29689.30 35642.90 40096.11 32474.47 35292.55 35993.06 353
CL-MVSNet_self_test90.04 24289.90 23790.47 27395.24 26277.81 30286.60 35092.62 30385.64 23693.25 22593.92 27583.84 23996.06 32679.93 31498.03 21797.53 208
test_post190.21 2705.85 40165.36 35796.00 32779.61 318
PM-MVS93.33 15092.67 17395.33 8696.58 17594.06 2192.26 20892.18 30985.92 23096.22 10596.61 15385.64 22895.99 32890.35 15298.23 19995.93 279
sd_testset93.94 13594.39 11992.61 20097.93 9683.24 21493.17 16995.04 25093.65 6595.51 13998.63 2094.49 6795.89 32981.72 29499.35 6198.70 101
test_post6.07 40065.74 35695.84 330
MSDG90.82 21090.67 22091.26 24794.16 29283.08 22086.63 34896.19 20790.60 14491.94 27091.89 32289.16 17895.75 33180.96 30394.51 32794.95 310
our_test_387.55 29387.59 28387.44 33291.76 34170.48 36583.83 37390.55 33079.79 30492.06 26992.17 31878.63 28895.63 33284.77 26594.73 32296.22 268
MDTV_nov1_ep1383.88 32789.42 37361.52 39288.74 31487.41 34973.99 34684.96 36294.01 27265.25 35895.53 33378.02 32893.16 350
baseline187.62 29187.31 28688.54 31494.71 28074.27 34393.10 17188.20 34186.20 22492.18 26693.04 29773.21 32395.52 33479.32 32185.82 38495.83 284
MIMVSNet87.13 30586.54 30488.89 30796.05 22176.11 32694.39 12588.51 33781.37 29288.27 33496.75 14372.38 32695.52 33465.71 38795.47 30395.03 307
Gipumacopyleft95.31 8495.80 6593.81 15597.99 9490.91 7096.42 4297.95 8096.69 1791.78 27298.85 1291.77 12695.49 33691.72 11999.08 10295.02 308
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
PMVScopyleft87.21 1494.97 9495.33 8593.91 14998.97 1797.16 295.54 8595.85 22096.47 2293.40 21797.46 8795.31 3595.47 33786.18 24798.78 14489.11 377
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
dp79.28 35778.62 35981.24 37085.97 39256.45 39786.91 33985.26 37072.97 35481.45 38589.17 36056.01 38695.45 33873.19 36076.68 39491.82 368
Anonymous2023120688.77 27088.29 26690.20 28396.31 19878.81 29089.56 29193.49 28674.26 34592.38 25895.58 21282.21 25795.43 33972.07 36598.75 14896.34 263
CHOSEN 280x42080.04 35577.97 36286.23 34590.13 36474.53 33972.87 38989.59 33366.38 38276.29 39285.32 38156.96 38395.36 34069.49 37994.72 32388.79 379
tpmrst82.85 33782.93 33382.64 36587.65 38258.99 39690.14 27387.90 34675.54 33683.93 36891.63 32766.79 35095.36 34081.21 30081.54 39293.57 349
Patchmatch-RL test88.81 26988.52 25989.69 29495.33 26179.94 26386.22 35392.71 30078.46 32095.80 12494.18 26566.25 35395.33 34289.22 18898.53 17093.78 340
tpm cat180.61 35379.46 35684.07 36088.78 37765.06 38689.26 30188.23 34062.27 39081.90 38289.66 35362.70 37295.29 34371.72 36780.60 39391.86 367
test20.0390.80 21190.85 21590.63 27095.63 24979.24 28089.81 28492.87 29589.90 15594.39 18896.40 16385.77 22495.27 34473.86 35699.05 10697.39 219
miper_lstm_enhance89.90 24489.80 23990.19 28491.37 34977.50 30683.82 37495.00 25184.84 25593.05 23294.96 23776.53 31295.20 34589.96 16998.67 15797.86 179
Syy-MVS84.81 32284.93 31684.42 35791.71 34363.36 39185.89 35481.49 38381.03 29485.13 35881.64 38977.44 29795.00 34685.94 24994.12 33794.91 313
myMVS_eth3d79.62 35678.26 36083.72 36191.71 34361.25 39385.89 35481.49 38381.03 29485.13 35881.64 38932.12 40395.00 34671.17 37494.12 33794.91 313
131486.46 31186.33 30886.87 33891.65 34574.54 33891.94 21994.10 27474.28 34484.78 36387.33 37283.03 24895.00 34678.72 32591.16 37091.06 372
MVS-HIRNet78.83 35980.60 35073.51 37893.07 31347.37 40287.10 33678.00 39468.94 37577.53 39197.26 10371.45 33194.62 34963.28 39088.74 37878.55 393
PVSNet76.22 2082.89 33682.37 33684.48 35693.96 29864.38 38878.60 38688.61 33671.50 36084.43 36686.36 37774.27 31994.60 35069.87 37893.69 34394.46 325
XXY-MVS92.58 17693.16 16190.84 26497.75 10779.84 26591.87 22596.22 20685.94 22995.53 13897.68 6792.69 10894.48 35183.21 27797.51 24498.21 142
GG-mvs-BLEND83.24 36485.06 39571.03 36394.99 10665.55 40074.09 39475.51 39444.57 39794.46 35259.57 39287.54 38184.24 387
PatchMatch-RL89.18 25588.02 27892.64 19695.90 23392.87 4588.67 31791.06 32380.34 30090.03 30391.67 32683.34 24394.42 35376.35 34394.84 32090.64 374
CNLPA91.72 19691.20 20793.26 17596.17 21091.02 6791.14 24295.55 23390.16 15290.87 28693.56 28786.31 21994.40 35479.92 31697.12 25994.37 327
SD-MVS95.19 8895.73 6793.55 16296.62 17488.88 10794.67 11398.05 6491.26 12697.25 5896.40 16395.42 2894.36 35592.72 9599.19 9297.40 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
UnsupCasMVSNet_bld88.50 27588.03 27789.90 28995.52 25378.88 28887.39 33194.02 27779.32 31393.06 23194.02 27180.72 27394.27 35675.16 34993.08 35396.54 252
WTY-MVS86.93 30886.50 30788.24 32194.96 26674.64 33687.19 33492.07 31478.29 32188.32 33391.59 32878.06 29294.27 35674.88 35093.15 35195.80 285
MS-PatchMatch88.05 28287.75 28088.95 30593.28 30977.93 29987.88 32392.49 30675.42 33792.57 25093.59 28680.44 27494.24 35881.28 29892.75 35694.69 322
CMPMVSbinary68.83 2287.28 29985.67 31392.09 21888.77 37885.42 18790.31 26894.38 26870.02 37188.00 33793.30 29273.78 32294.03 35975.96 34696.54 28196.83 244
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
YYNet188.17 28088.24 27087.93 32692.21 32873.62 34780.75 38388.77 33582.51 28494.99 17095.11 23182.70 25493.70 36083.33 27593.83 34096.48 258
MDA-MVSNet_test_wron88.16 28188.23 27187.93 32692.22 32773.71 34680.71 38488.84 33482.52 28394.88 17595.14 22982.70 25493.61 36183.28 27693.80 34196.46 259
test-LLR83.58 33183.17 33084.79 35489.68 36966.86 37783.08 37584.52 37383.07 27582.85 37584.78 38362.86 37093.49 36282.85 27994.86 31894.03 334
test-mter81.21 34880.01 35584.79 35489.68 36966.86 37783.08 37584.52 37373.85 34782.85 37584.78 38343.66 39993.49 36282.85 27994.86 31894.03 334
pmmvs380.83 35178.96 35886.45 34187.23 38677.48 30784.87 36382.31 38063.83 38885.03 36089.50 35449.66 39393.10 36473.12 36195.10 31388.78 380
testgi90.38 22691.34 20587.50 33197.49 12771.54 36089.43 29595.16 24788.38 18994.54 18594.68 24992.88 10493.09 36571.60 36997.85 23097.88 177
UnsupCasMVSNet_eth90.33 22990.34 22890.28 27894.64 28480.24 25289.69 28895.88 21885.77 23293.94 20395.69 20681.99 26192.98 36684.21 27091.30 36897.62 201
EPMVS81.17 34980.37 35183.58 36285.58 39365.08 38590.31 26871.34 39877.31 32785.80 35491.30 33059.38 37992.70 36779.99 31182.34 39192.96 356
ADS-MVSNet82.25 33981.55 34084.34 35889.04 37565.30 38287.57 32585.13 37272.71 35684.46 36492.45 31168.08 34192.33 36870.58 37683.97 38695.38 300
test_vis1_n_192089.45 25189.85 23888.28 32093.59 30676.71 32090.67 25597.78 9679.67 30790.30 29896.11 18576.62 31092.17 36990.31 15493.57 34495.96 277
sss87.23 30086.82 29888.46 31893.96 29877.94 29886.84 34192.78 29977.59 32487.61 34391.83 32378.75 28491.92 37077.84 33094.20 33495.52 298
N_pmnet88.90 26787.25 28993.83 15494.40 28993.81 3584.73 36487.09 35279.36 31293.26 22392.43 31479.29 28191.68 37177.50 33597.22 25696.00 276
PMMVS83.00 33581.11 34388.66 31283.81 39886.44 16082.24 37985.65 36361.75 39182.07 37985.64 38079.75 27791.59 37275.99 34593.09 35287.94 382
test_fmvs392.42 18192.40 18092.46 20793.80 30487.28 13693.86 14797.05 15276.86 33096.25 10298.66 1882.87 25091.26 37395.44 2696.83 27298.82 82
Patchmatch-test86.10 31386.01 31086.38 34490.63 35774.22 34489.57 29086.69 35485.73 23489.81 30892.83 30265.24 35991.04 37477.82 33295.78 29693.88 339
test_fmvs290.62 21890.40 22791.29 24691.93 33885.46 18692.70 18396.48 19474.44 34394.91 17397.59 7475.52 31590.57 37593.44 6896.56 28097.84 182
TESTMET0.1,179.09 35878.04 36182.25 36687.52 38464.03 38983.08 37580.62 38770.28 37080.16 38783.22 38644.13 39890.56 37679.95 31293.36 34692.15 363
DSMNet-mixed82.21 34081.56 33984.16 35989.57 37170.00 37090.65 25677.66 39554.99 39583.30 37397.57 7577.89 29490.50 37766.86 38595.54 30191.97 364
mvsany_test389.11 25888.21 27391.83 22391.30 35090.25 7988.09 32178.76 39176.37 33396.43 9198.39 3383.79 24090.43 37886.57 23894.20 33494.80 316
test_cas_vis1_n_192088.25 27988.27 26888.20 32292.19 33078.92 28689.45 29495.44 23775.29 34093.23 22695.65 20871.58 33090.23 37988.05 21293.55 34595.44 299
EMVS80.35 35480.28 35380.54 37184.73 39669.07 37272.54 39080.73 38687.80 20081.66 38381.73 38862.89 36989.84 38075.79 34794.65 32582.71 390
test_vis1_n89.01 26289.01 25189.03 30492.57 32182.46 22892.62 18796.06 21173.02 35390.40 29595.77 20374.86 31789.68 38190.78 14094.98 31594.95 310
PVSNet_070.34 2174.58 36172.96 36479.47 37390.63 35766.24 38073.26 38783.40 37963.67 38978.02 39078.35 39372.53 32489.59 38256.68 39360.05 39782.57 391
test_fmvs1_n88.73 27288.38 26389.76 29192.06 33482.53 22692.30 20696.59 18671.14 36292.58 24995.41 22168.55 33989.57 38391.12 13195.66 29897.18 229
test_fmvs187.59 29287.27 28888.54 31488.32 38081.26 24390.43 26495.72 22370.55 36891.70 27394.63 25068.13 34089.42 38490.59 14495.34 30894.94 312
E-PMN80.72 35280.86 34780.29 37285.11 39468.77 37372.96 38881.97 38187.76 20283.25 37483.01 38762.22 37389.17 38577.15 33894.31 33282.93 389
test0.0.03 182.48 33881.47 34285.48 34889.70 36873.57 34884.73 36481.64 38283.07 27588.13 33686.61 37462.86 37089.10 38666.24 38690.29 37493.77 341
mvsany_test183.91 32982.93 33386.84 33986.18 39185.93 17481.11 38275.03 39770.80 36788.57 33094.63 25083.08 24787.38 38780.39 30486.57 38387.21 383
test_vis3_rt90.40 22390.03 23491.52 23792.58 32088.95 10390.38 26597.72 10073.30 35097.79 3097.51 8477.05 30387.10 38889.03 19394.89 31798.50 122
dmvs_re84.69 32483.94 32686.95 33792.24 32682.93 22289.51 29287.37 35084.38 26185.37 35585.08 38272.44 32586.59 38968.05 38191.03 37291.33 369
FPMVS84.50 32583.28 32988.16 32396.32 19794.49 1685.76 35685.47 36683.09 27485.20 35794.26 26163.79 36686.58 39063.72 38991.88 36783.40 388
dmvs_testset78.23 36078.99 35775.94 37691.99 33755.34 39988.86 30978.70 39282.69 28081.64 38479.46 39175.93 31385.74 39148.78 39782.85 39086.76 384
test_vis1_rt85.58 31684.58 31988.60 31387.97 38186.76 14985.45 35993.59 28266.43 38187.64 34189.20 35879.33 28085.38 39281.59 29589.98 37693.66 344
new_pmnet81.22 34781.01 34681.86 36790.92 35570.15 36784.03 37180.25 38970.83 36585.97 35389.78 35067.93 34484.65 39367.44 38391.90 36690.78 373
PMMVS281.31 34683.44 32874.92 37790.52 35946.49 40369.19 39185.23 37184.30 26287.95 33894.71 24876.95 30684.36 39464.07 38898.09 21293.89 338
test_f86.65 31087.13 29385.19 35190.28 36386.11 17186.52 35291.66 31969.76 37295.73 13197.21 11069.51 33781.28 39589.15 19094.40 32888.17 381
wuyk23d87.83 28590.79 21778.96 37490.46 36188.63 11092.72 18190.67 32991.65 11998.68 1197.64 7196.06 1577.53 39659.84 39199.41 5670.73 394
MVEpermissive59.87 2373.86 36272.65 36577.47 37587.00 38974.35 34161.37 39360.93 40167.27 37969.69 39686.49 37681.24 27072.33 39756.45 39483.45 38885.74 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
test_method50.44 36348.94 36654.93 37939.68 40212.38 40628.59 39490.09 3316.82 39741.10 39978.41 39254.41 38870.69 39850.12 39651.26 39881.72 392
DeepMVS_CXcopyleft53.83 38070.38 40164.56 38748.52 40433.01 39665.50 39774.21 39556.19 38546.64 39938.45 39970.07 39550.30 395
tmp_tt37.97 36444.33 36718.88 38111.80 40321.54 40563.51 39245.66 4054.23 39851.34 39850.48 39659.08 38022.11 40044.50 39868.35 39613.00 396
test1239.49 36612.01 3691.91 3822.87 4041.30 40782.38 3781.34 4071.36 4002.84 4016.56 3992.45 4050.97 4012.73 4005.56 3993.47 397
testmvs9.02 36711.42 3701.81 3832.77 4051.13 40879.44 3851.90 4061.18 4012.65 4026.80 3981.95 4060.87 4022.62 4013.45 4003.44 398
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k23.35 36531.13 3680.00 3840.00 4060.00 4090.00 39595.58 2320.00 4020.00 40391.15 33293.43 840.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas7.56 36810.09 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40290.77 1510.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re7.56 36810.08 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40390.69 3410.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS61.25 39374.55 351
FOURS199.21 394.68 1298.45 498.81 897.73 698.27 20
test_one_060198.26 7187.14 14098.18 4194.25 4896.99 7097.36 9495.13 43
eth-test20.00 406
eth-test0.00 406
RE-MVS-def96.66 1998.07 8395.27 996.37 4498.12 5195.66 3397.00 6897.03 12395.40 2993.49 6298.84 13398.00 161
IU-MVS98.51 5186.66 15496.83 17072.74 35595.83 12393.00 8799.29 7498.64 112
save fliter97.46 13088.05 12492.04 21497.08 15087.63 206
test072698.51 5186.69 15295.34 8998.18 4191.85 10497.63 3597.37 9195.58 24
GSMVS94.75 319
test_part298.21 7589.41 9396.72 81
sam_mvs166.64 35194.75 319
sam_mvs66.41 352
MTGPAbinary97.62 105
MTMP94.82 10954.62 403
test9_res88.16 20998.40 17997.83 183
agg_prior287.06 23198.36 18897.98 165
test_prior489.91 8290.74 252
test_prior290.21 27089.33 16790.77 28894.81 24290.41 16188.21 20598.55 167
新几何290.02 277
旧先验196.20 20884.17 20394.82 25795.57 21389.57 17497.89 22896.32 264
原ACMM289.34 298
test22296.95 15185.27 18988.83 31193.61 28165.09 38690.74 28994.85 24184.62 23697.36 25293.91 337
segment_acmp92.14 119
testdata188.96 30788.44 187
plane_prior797.71 11288.68 109
plane_prior697.21 14288.23 12186.93 209
plane_prior495.59 209
plane_prior388.43 11990.35 15093.31 218
plane_prior294.56 12091.74 115
plane_prior197.38 132
plane_prior88.12 12293.01 17288.98 17498.06 214
n20.00 408
nn0.00 408
door-mid92.13 313
test1196.65 182
door91.26 322
HQP5-MVS84.89 192
HQP-NCC96.36 19191.37 23687.16 21288.81 321
ACMP_Plane96.36 19191.37 23687.16 21288.81 321
BP-MVS86.55 240
HQP3-MVS97.31 13297.73 234
HQP2-MVS84.76 234
NP-MVS96.82 16287.10 14193.40 290
MDTV_nov1_ep13_2view42.48 40488.45 31967.22 38083.56 37166.80 34872.86 36294.06 333
ACMMP++_ref98.82 139
ACMMP++99.25 83
Test By Simon90.61 157