This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n99.68 4699.79 2799.36 22599.94 1998.18 30199.52 86100.00 199.86 46100.00 199.88 4298.99 10299.96 5599.97 499.96 7199.95 11
test_vis3_rt99.89 399.90 399.87 2199.98 399.75 6899.70 35100.00 199.73 76100.00 199.89 3499.79 1699.88 19099.98 1100.00 199.98 3
test_fmvs399.83 1999.93 299.53 17599.96 798.62 27499.67 49100.00 199.95 20100.00 199.95 1399.85 1099.99 899.98 199.99 1699.98 3
test_f99.75 3299.88 699.37 22199.96 798.21 29899.51 90100.00 199.94 24100.00 199.93 1799.58 3699.94 7899.97 499.99 1699.97 7
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1899.99 2100.00 199.98 1099.78 17100.00 199.92 22100.00 199.87 30
ANet_high99.88 699.87 1099.91 299.99 199.91 499.65 59100.00 199.90 30100.00 199.97 1199.61 3299.97 3499.75 39100.00 199.84 36
test_fmvsmconf0.01_n99.89 399.88 699.91 299.98 399.76 6299.12 197100.00 1100.00 199.99 799.91 2499.98 1100.00 199.97 4100.00 199.99 1
test_cas_vis1_n_192099.76 3199.86 1299.45 19399.93 2698.40 28699.30 13599.98 1199.94 2499.99 799.89 3499.80 1599.97 3499.96 999.97 5699.97 7
test_vis1_n_192099.72 3699.88 699.27 24799.93 2697.84 32299.34 122100.00 199.99 299.99 799.82 7399.87 999.99 899.97 499.99 1699.97 7
test_fmvs1_n99.68 4699.81 2399.28 24499.95 1597.93 32099.49 95100.00 199.82 5999.99 799.89 3499.21 7599.98 2199.97 499.98 4199.93 15
test_fmvs299.72 3699.85 1699.34 22899.91 3298.08 31199.48 96100.00 199.90 3099.99 799.91 2499.50 4699.98 2199.98 199.99 1699.96 10
mvsany_test399.85 1199.88 699.75 7599.95 1599.37 17999.53 8599.98 1199.77 7499.99 799.95 1399.85 1099.94 7899.95 1299.98 4199.94 13
fmvsm_s_conf0.1_n_a99.85 1199.83 2099.91 299.95 1599.82 3599.10 20499.98 1199.99 299.98 1399.91 2499.68 2699.93 9599.93 2099.99 1699.99 1
fmvsm_s_conf0.1_n99.86 999.85 1699.89 1199.93 2699.78 4999.07 21599.98 1199.99 299.98 1399.90 2999.88 899.92 11799.93 2099.99 1699.98 3
test_fmvsmconf0.1_n99.87 899.86 1299.91 299.97 699.74 7499.01 22899.99 1099.99 299.98 1399.88 4299.97 299.99 899.96 9100.00 199.98 3
PS-MVSNAJss99.84 1599.82 2299.89 1199.96 799.77 5499.68 4599.85 5399.95 2099.98 1399.92 2199.28 6699.98 2199.75 39100.00 199.94 13
jajsoiax99.89 399.89 599.89 1199.96 799.78 4999.70 3599.86 4899.89 3699.98 1399.90 2999.94 499.98 2199.75 39100.00 199.90 20
mvs_tets99.90 299.90 399.90 899.96 799.79 4699.72 3099.88 4399.92 2899.98 1399.93 1799.94 499.98 2199.77 38100.00 199.92 18
fmvsm_s_conf0.5_n_a99.82 2199.79 2799.89 1199.85 5999.82 3599.03 22399.96 2399.99 299.97 1999.84 6299.58 3699.93 9599.92 2299.98 4199.93 15
fmvsm_s_conf0.5_n99.83 1999.81 2399.87 2199.85 5999.78 4999.03 22399.96 2399.99 299.97 1999.84 6299.78 1799.92 11799.92 2299.99 1699.92 18
test_djsdf99.84 1599.81 2399.91 299.94 1999.84 2499.77 1599.80 7999.73 7699.97 1999.92 2199.77 1999.98 2199.43 73100.00 199.90 20
LTVRE_ROB99.19 199.88 699.87 1099.88 1799.91 3299.90 799.96 199.92 2999.90 3099.97 1999.87 4799.81 1499.95 6499.54 6099.99 1699.80 47
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_l_conf0.5_n99.80 2399.78 3199.85 2799.88 4599.66 10299.11 20199.91 3299.98 1499.96 2399.64 17999.60 3499.99 899.95 1299.99 1699.88 25
test_fmvsmconf_n99.85 1199.84 1999.88 1799.91 3299.73 7798.97 24099.98 1199.99 299.96 2399.85 5699.93 799.99 899.94 1699.99 1699.93 15
test_fmvsmvis_n_192099.84 1599.86 1299.81 4199.88 4599.55 13999.17 17799.98 1199.99 299.96 2399.84 6299.96 399.99 899.96 999.99 1699.88 25
test_fmvsm_n_192099.84 1599.85 1699.83 3499.82 7399.70 9199.17 17799.97 1899.99 299.96 2399.82 7399.94 4100.00 199.95 12100.00 199.80 47
test_fmvs199.48 8899.65 5098.97 28799.54 21697.16 34499.11 20199.98 1199.78 7099.96 2399.81 7998.72 13799.97 3499.95 1299.97 5699.79 54
dcpmvs_299.61 6899.64 5499.53 17599.79 9998.82 25399.58 7699.97 1899.95 2099.96 2399.76 11298.44 17899.99 899.34 9099.96 7199.78 57
CHOSEN 1792x268899.39 11699.30 12499.65 12299.88 4599.25 20498.78 26899.88 4398.66 24199.96 2399.79 9397.45 25599.93 9599.34 9099.99 1699.78 57
wuyk23d97.58 31899.13 15292.93 38099.69 15699.49 14699.52 8699.77 9497.97 30299.96 2399.79 9399.84 1299.94 7895.85 34999.82 17979.36 396
fmvsm_l_conf0.5_n_a99.80 2399.79 2799.84 3199.88 4599.64 11199.12 19799.91 3299.98 1499.95 3199.67 16799.67 2799.99 899.94 1699.99 1699.88 25
test_vis1_rt99.45 9899.46 9099.41 20999.71 14498.63 27398.99 23699.96 2399.03 19999.95 3199.12 33398.75 13299.84 25499.82 3599.82 17999.77 61
UniMVSNet_ETH3D99.85 1199.83 2099.90 899.89 4099.91 499.89 499.71 12599.93 2699.95 3199.89 3499.71 2299.96 5599.51 6599.97 5699.84 36
pmmvs699.86 999.86 1299.83 3499.94 1999.90 799.83 699.91 3299.85 5199.94 3499.95 1399.73 2199.90 15999.65 4699.97 5699.69 84
v7n99.82 2199.80 2699.88 1799.96 799.84 2499.82 899.82 6699.84 5499.94 3499.91 2499.13 8699.96 5599.83 3299.99 1699.83 40
Gipumacopyleft99.57 7199.59 6599.49 18299.98 399.71 8499.72 3099.84 5999.81 6299.94 3499.78 10198.91 11299.71 33098.41 18299.95 8499.05 324
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
v899.68 4699.69 4399.65 12299.80 8799.40 17299.66 5399.76 9999.64 10499.93 3799.85 5698.66 14599.84 25499.88 2999.99 1699.71 77
OurMVSNet-221017-099.75 3299.71 3899.84 3199.96 799.83 2999.83 699.85 5399.80 6599.93 3799.93 1798.54 16299.93 9599.59 5199.98 4199.76 67
MIMVSNet199.66 5499.62 5699.80 4699.94 1999.87 1599.69 4299.77 9499.78 7099.93 3799.89 3497.94 22799.92 11799.65 4699.98 4199.62 139
DeepC-MVS98.90 499.62 6699.61 6099.67 11099.72 14199.44 15999.24 15799.71 12599.27 16099.93 3799.90 2999.70 2499.93 9598.99 13899.99 1699.64 123
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 10099.45 9299.40 21199.37 27798.64 27297.90 34999.59 19399.27 16099.92 4199.82 7399.74 2099.93 9599.55 5999.87 14599.63 128
anonymousdsp99.80 2399.77 3399.90 899.96 799.88 1299.73 2799.85 5399.70 8799.92 4199.93 1799.45 4799.97 3499.36 86100.00 199.85 35
v1099.69 4399.69 4399.66 11799.81 8199.39 17499.66 5399.75 10499.60 11699.92 4199.87 4798.75 13299.86 22299.90 2599.99 1699.73 72
bld_raw_dy_0_6499.70 4099.65 5099.85 2799.95 1599.77 5499.66 5399.71 12599.95 2099.91 4499.77 10898.35 190100.00 199.54 6099.99 1699.79 54
tt080599.63 6099.57 7299.81 4199.87 5299.88 1299.58 7698.70 34799.72 8099.91 4499.60 21499.43 4899.81 29399.81 3699.53 28799.73 72
RRT_MVS99.67 5299.59 6599.91 299.94 1999.88 1299.78 1299.27 30299.87 4299.91 4499.87 4798.04 21999.96 5599.68 4499.99 1699.90 20
LCM-MVSNet-Re99.28 14099.15 14999.67 11099.33 29599.76 6299.34 12299.97 1898.93 21099.91 4499.79 9398.68 14099.93 9596.80 30599.56 27699.30 267
TransMVSNet (Re)99.78 2799.77 3399.81 4199.91 3299.85 1999.75 2299.86 4899.70 8799.91 4499.89 3499.60 3499.87 20499.59 5199.74 21899.71 77
mvsmamba99.74 3599.70 3999.85 2799.93 2699.83 2999.76 1999.81 7599.96 1899.91 4499.81 7998.60 15399.94 7899.58 5499.98 4199.77 61
tfpnnormal99.43 10399.38 10499.60 15199.87 5299.75 6899.59 7499.78 9199.71 8299.90 5099.69 15298.85 11899.90 15997.25 28399.78 20399.15 297
Anonymous2023121199.62 6699.57 7299.76 6599.61 18199.60 12799.81 999.73 11399.82 5999.90 5099.90 2997.97 22699.86 22299.42 7899.96 7199.80 47
v124099.56 7499.58 6999.51 17999.80 8799.00 23599.00 23199.65 15799.15 18699.90 5099.75 11799.09 8999.88 19099.90 2599.96 7199.67 96
EU-MVSNet99.39 11699.62 5698.72 31699.88 4596.44 35899.56 8199.85 5399.90 3099.90 5099.85 5698.09 21599.83 26999.58 5499.95 8499.90 20
SDMVSNet99.77 3099.77 3399.76 6599.80 8799.65 10899.63 6199.86 4899.97 1699.89 5499.89 3499.52 4499.99 899.42 7899.96 7199.65 113
sd_testset99.78 2799.78 3199.80 4699.80 8799.76 6299.80 1099.79 8599.97 1699.89 5499.89 3499.53 4399.99 899.36 8699.96 7199.65 113
IterMVS-SCA-FT99.00 21199.16 14698.51 32499.75 12995.90 36898.07 33099.84 5999.84 5499.89 5499.73 12496.01 30499.99 899.33 93100.00 199.63 128
v14419299.55 7799.54 7899.58 15799.78 10699.20 21699.11 20199.62 16899.18 17599.89 5499.72 13198.66 14599.87 20499.88 2999.97 5699.66 105
pm-mvs199.79 2699.79 2799.78 5599.91 3299.83 2999.76 1999.87 4599.73 7699.89 5499.87 4799.63 2999.87 20499.54 6099.92 10699.63 128
lessismore_v099.64 12999.86 5599.38 17690.66 40099.89 5499.83 6694.56 31899.97 3499.56 5799.92 10699.57 170
SixPastTwentyTwo99.42 10699.30 12499.76 6599.92 3199.67 10099.70 3599.14 32699.65 10299.89 5499.90 2996.20 30199.94 7899.42 7899.92 10699.67 96
HyFIR lowres test98.91 22498.64 23799.73 8999.85 5999.47 14898.07 33099.83 6198.64 24399.89 5499.60 21492.57 338100.00 199.33 9399.97 5699.72 74
testf199.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
APD_test299.63 6099.60 6399.72 9599.94 1999.95 299.47 9999.89 3999.43 14199.88 6299.80 8399.26 7099.90 15998.81 15799.88 13499.32 261
test111197.74 31098.16 28596.49 37399.60 18389.86 40399.71 3491.21 39999.89 3699.88 6299.87 4793.73 32799.90 15999.56 5799.99 1699.70 80
KD-MVS_self_test99.63 6099.59 6599.76 6599.84 6299.90 799.37 11799.79 8599.83 5799.88 6299.85 5698.42 18199.90 15999.60 5099.73 22399.49 212
new-patchmatchnet99.35 12699.57 7298.71 31899.82 7396.62 35698.55 28999.75 10499.50 12499.88 6299.87 4799.31 6299.88 19099.43 73100.00 199.62 139
v192192099.56 7499.57 7299.55 16999.75 12999.11 22499.05 21699.61 17599.15 18699.88 6299.71 13999.08 9299.87 20499.90 2599.97 5699.66 105
NR-MVSNet99.40 11299.31 11999.68 10799.43 26499.55 13999.73 2799.50 24499.46 13399.88 6299.36 29097.54 25299.87 20498.97 14299.87 14599.63 128
K. test v398.87 23198.60 24099.69 10599.93 2699.46 15299.74 2494.97 39299.78 7099.88 6299.88 4293.66 32899.97 3499.61 4999.95 8499.64 123
v119299.57 7199.57 7299.57 16399.77 11499.22 21199.04 21999.60 18799.18 17599.87 7099.72 13199.08 9299.85 23999.89 2899.98 4199.66 105
ECVR-MVScopyleft97.73 31198.04 29096.78 36799.59 18790.81 39999.72 3090.43 40199.89 3699.86 7199.86 5493.60 32999.89 17699.46 7099.99 1699.65 113
V4299.56 7499.54 7899.63 13699.79 9999.46 15299.39 11199.59 19399.24 16699.86 7199.70 14698.55 16099.82 27899.79 3799.95 8499.60 153
mvs_anonymous99.28 14099.39 10298.94 29099.19 32497.81 32499.02 22699.55 21699.78 7099.85 7399.80 8398.24 20299.86 22299.57 5699.50 29499.15 297
WR-MVS_H99.61 6899.53 8299.87 2199.80 8799.83 2999.67 4999.75 10499.58 11999.85 7399.69 15298.18 21199.94 7899.28 10499.95 8499.83 40
IterMVS98.97 21599.16 14698.42 32899.74 13595.64 37198.06 33299.83 6199.83 5799.85 7399.74 12096.10 30399.99 899.27 105100.00 199.63 128
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114499.54 7999.53 8299.59 15399.79 9999.28 19799.10 20499.61 17599.20 17399.84 7699.73 12498.67 14399.84 25499.86 3199.98 4199.64 123
PS-CasMVS99.66 5499.58 6999.89 1199.80 8799.85 1999.66 5399.73 11399.62 10799.84 7699.71 13998.62 14999.96 5599.30 9999.96 7199.86 32
PEN-MVS99.66 5499.59 6599.89 1199.83 6699.87 1599.66 5399.73 11399.70 8799.84 7699.73 12498.56 15999.96 5599.29 10299.94 9599.83 40
DTE-MVSNet99.68 4699.61 6099.88 1799.80 8799.87 1599.67 4999.71 12599.72 8099.84 7699.78 10198.67 14399.97 3499.30 9999.95 8499.80 47
IterMVS-LS99.41 11099.47 8699.25 25399.81 8198.09 30898.85 25399.76 9999.62 10799.83 8099.64 17998.54 16299.97 3499.15 12199.99 1699.68 90
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052199.44 10099.42 9999.49 18299.89 4098.96 24199.62 6399.76 9999.85 5199.82 8199.88 4296.39 29599.97 3499.59 5199.98 4199.55 175
SED-MVS99.40 11299.28 13199.77 5899.69 15699.82 3599.20 16799.54 22299.13 18899.82 8199.63 19098.91 11299.92 11797.85 23199.70 23499.58 165
test_241102_ONE99.69 15699.82 3599.54 22299.12 19199.82 8199.49 25798.91 11299.52 382
FC-MVSNet-test99.70 4099.65 5099.86 2599.88 4599.86 1899.72 3099.78 9199.90 3099.82 8199.83 6698.45 17799.87 20499.51 6599.97 5699.86 32
test20.0399.55 7799.54 7899.58 15799.79 9999.37 17999.02 22699.89 3999.60 11699.82 8199.62 19798.81 12099.89 17699.43 7399.86 15399.47 220
FMVSNet199.66 5499.63 5599.73 8999.78 10699.77 5499.68 4599.70 13199.67 9699.82 8199.83 6698.98 10499.90 15999.24 10699.97 5699.53 189
XXY-MVS99.71 3999.67 4799.81 4199.89 4099.72 8299.59 7499.82 6699.39 14699.82 8199.84 6299.38 5499.91 14199.38 8199.93 10299.80 47
SSC-MVS99.52 8299.42 9999.83 3499.86 5599.65 10899.52 8699.81 7599.87 4299.81 8899.79 9396.78 28199.99 899.83 3299.51 29199.86 32
v14899.40 11299.41 10199.39 21599.76 11898.94 24299.09 20999.59 19399.17 18099.81 8899.61 20698.41 18299.69 33899.32 9599.94 9599.53 189
v2v48299.50 8499.47 8699.58 15799.78 10699.25 20499.14 18799.58 20399.25 16499.81 8899.62 19798.24 20299.84 25499.83 3299.97 5699.64 123
PM-MVS99.36 12499.29 12999.58 15799.83 6699.66 10298.95 24399.86 4898.85 22099.81 8899.73 12498.40 18699.92 11798.36 18599.83 17099.17 293
EI-MVSNet-UG-set99.48 8899.50 8499.42 20299.57 20298.65 27199.24 15799.46 25599.68 9299.80 9299.66 17298.99 10299.89 17699.19 11399.90 11699.72 74
VPA-MVSNet99.66 5499.62 5699.79 5299.68 16499.75 6899.62 6399.69 13799.85 5199.80 9299.81 7998.81 12099.91 14199.47 6999.88 13499.70 80
CP-MVSNet99.54 7999.43 9799.87 2199.76 11899.82 3599.57 7999.61 17599.54 12099.80 9299.64 17997.79 23899.95 6499.21 10999.94 9599.84 36
EG-PatchMatch MVS99.57 7199.56 7799.62 14599.77 11499.33 18999.26 14999.76 9999.32 15499.80 9299.78 10199.29 6499.87 20499.15 12199.91 11599.66 105
ACMH98.42 699.59 7099.54 7899.72 9599.86 5599.62 11899.56 8199.79 8598.77 23299.80 9299.85 5699.64 2899.85 23998.70 16899.89 12599.70 80
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set99.47 9599.49 8599.42 20299.57 20298.66 26899.24 15799.46 25599.67 9699.79 9799.65 17798.97 10699.89 17699.15 12199.89 12599.71 77
casdiffmvs_mvgpermissive99.68 4699.68 4699.69 10599.81 8199.59 12999.29 14299.90 3799.71 8299.79 9799.73 12499.54 4199.84 25499.36 8699.96 7199.65 113
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.40 11299.38 10499.44 19699.90 3898.66 26898.94 24599.91 3297.97 30299.79 9799.73 12499.05 9799.97 3499.15 12199.99 1699.68 90
N_pmnet98.73 24598.53 25299.35 22799.72 14198.67 26598.34 30694.65 39398.35 27699.79 9799.68 16398.03 22099.93 9598.28 19199.92 10699.44 230
ppachtmachnet_test98.89 22999.12 15698.20 33999.66 17095.24 37597.63 35999.68 14099.08 19399.78 10199.62 19798.65 14799.88 19098.02 21199.96 7199.48 216
nrg03099.70 4099.66 4899.82 3899.76 11899.84 2499.61 6899.70 13199.93 2699.78 10199.68 16399.10 8799.78 30599.45 7199.96 7199.83 40
PMMVS299.48 8899.45 9299.57 16399.76 11898.99 23698.09 32799.90 3798.95 20699.78 10199.58 22299.57 3899.93 9599.48 6899.95 8499.79 54
TAMVS99.49 8699.45 9299.63 13699.48 24599.42 16699.45 10399.57 20599.66 10099.78 10199.83 6697.85 23499.86 22299.44 7299.96 7199.61 149
TDRefinement99.72 3699.70 3999.77 5899.90 3899.85 1999.86 599.92 2999.69 9099.78 10199.92 2199.37 5699.88 19098.93 15099.95 8499.60 153
Vis-MVSNetpermissive99.75 3299.74 3799.79 5299.88 4599.66 10299.69 4299.92 2999.67 9699.77 10699.75 11799.61 3299.98 2199.35 8999.98 4199.72 74
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+98.40 899.50 8499.43 9799.71 10099.86 5599.76 6299.32 12799.77 9499.53 12299.77 10699.76 11299.26 7099.78 30597.77 23699.88 13499.60 153
iter_conf_final98.75 24198.54 25099.40 21199.33 29598.75 26099.26 14999.59 19399.80 6599.76 10899.58 22290.17 36799.92 11799.37 8499.97 5699.54 183
DVP-MVS++99.38 11899.25 13799.77 5899.03 34899.77 5499.74 2499.61 17599.18 17599.76 10899.61 20699.00 10099.92 11797.72 24299.60 26999.62 139
test_241102_TWO99.54 22299.13 18899.76 10899.63 19098.32 19699.92 11797.85 23199.69 23899.75 70
Anonymous2024052999.42 10699.34 11299.65 12299.53 22299.60 12799.63 6199.39 27699.47 13099.76 10899.78 10198.13 21399.86 22298.70 16899.68 24399.49 212
DPE-MVScopyleft99.14 18398.92 21299.82 3899.57 20299.77 5498.74 27199.60 18798.55 25199.76 10899.69 15298.23 20699.92 11796.39 32799.75 21199.76 67
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
iter_conf0598.46 27398.23 27699.15 26599.04 34797.99 31399.10 20499.61 17599.79 6899.76 10899.58 22287.88 37799.92 11799.31 9899.97 5699.53 189
casdiffmvspermissive99.63 6099.61 6099.67 11099.79 9999.59 12999.13 19399.85 5399.79 6899.76 10899.72 13199.33 6199.82 27899.21 10999.94 9599.59 160
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE99.69 4399.66 4899.78 5599.76 11899.76 6299.60 7399.82 6699.46 13399.75 11599.56 23599.63 2999.95 6499.43 7399.88 13499.62 139
pmmvs-eth3d99.48 8899.47 8699.51 17999.77 11499.41 17198.81 26199.66 14899.42 14599.75 11599.66 17299.20 7699.76 31598.98 14099.99 1699.36 251
SD-MVS99.01 20999.30 12498.15 34099.50 23599.40 17298.94 24599.61 17599.22 17299.75 11599.82 7399.54 4195.51 40097.48 26599.87 14599.54 183
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.48 8899.36 11099.85 2799.55 21499.81 4099.50 9199.69 13798.99 20199.75 11599.71 13998.79 12599.93 9598.46 18099.85 15799.80 47
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet99.38 11899.44 9599.21 25799.58 19298.09 30899.26 14999.46 25599.62 10799.75 11599.67 16798.54 16299.85 23999.15 12199.92 10699.68 90
testgi99.29 13999.26 13599.37 22199.75 12998.81 25498.84 25499.89 3998.38 26999.75 11599.04 34399.36 5999.86 22299.08 13299.25 32799.45 225
MVSTER98.47 27298.22 27899.24 25599.06 34498.35 29299.08 21299.46 25599.27 16099.75 11599.66 17288.61 37599.85 23999.14 12799.92 10699.52 200
USDC98.96 21898.93 20899.05 28199.54 21697.99 31397.07 38399.80 7998.21 28899.75 11599.77 10898.43 17999.64 36597.90 22399.88 13499.51 202
Patchmatch-RL test98.60 25598.36 26699.33 23199.77 11499.07 23298.27 31199.87 4598.91 21399.74 12399.72 13190.57 36399.79 30298.55 17699.85 15799.11 306
FIs99.65 5999.58 6999.84 3199.84 6299.85 1999.66 5399.75 10499.86 4699.74 12399.79 9398.27 20099.85 23999.37 8499.93 10299.83 40
jason99.16 17999.11 15999.32 23599.75 12998.44 28398.26 31299.39 27698.70 23999.74 12399.30 30398.54 16299.97 3498.48 17999.82 17999.55 175
jason: jason.
DP-MVS99.48 8899.39 10299.74 8099.57 20299.62 11899.29 14299.61 17599.87 4299.74 12399.76 11298.69 13999.87 20498.20 19899.80 19399.75 70
test072699.69 15699.80 4499.24 15799.57 20599.16 18299.73 12799.65 17798.35 190
pmmvs599.19 16999.11 15999.42 20299.76 11898.88 25098.55 28999.73 11398.82 22499.72 12899.62 19796.56 28699.82 27899.32 9599.95 8499.56 172
Anonymous2023120699.35 12699.31 11999.47 18899.74 13599.06 23499.28 14499.74 10999.23 16899.72 12899.53 24697.63 25199.88 19099.11 12999.84 16299.48 216
CVMVSNet98.61 25398.88 21797.80 34999.58 19293.60 38599.26 14999.64 16399.66 10099.72 12899.67 16793.26 33199.93 9599.30 9999.81 18899.87 30
baseline99.63 6099.62 5699.66 11799.80 8799.62 11899.44 10599.80 7999.71 8299.72 12899.69 15299.15 8199.83 26999.32 9599.94 9599.53 189
Patchmtry98.78 23898.54 25099.49 18298.89 36199.19 21799.32 12799.67 14499.65 10299.72 12899.79 9391.87 34699.95 6498.00 21599.97 5699.33 258
WB-MVS99.44 10099.32 11799.80 4699.81 8199.61 12499.47 9999.81 7599.82 5999.71 13399.72 13196.60 28599.98 2199.75 3999.23 33199.82 46
test250694.73 36294.59 36495.15 37999.59 18785.90 40599.75 2274.01 40599.89 3699.71 13399.86 5479.00 40199.90 15999.52 6499.99 1699.65 113
UA-Net99.78 2799.76 3699.86 2599.72 14199.71 8499.91 399.95 2899.96 1899.71 13399.91 2499.15 8199.97 3499.50 67100.00 199.90 20
TranMVSNet+NR-MVSNet99.54 7999.47 8699.76 6599.58 19299.64 11199.30 13599.63 16599.61 11099.71 13399.56 23598.76 13099.96 5599.14 12799.92 10699.68 90
tttt051797.62 31697.20 32598.90 30299.76 11897.40 33899.48 9694.36 39499.06 19799.70 13799.49 25784.55 39199.94 7898.73 16699.65 25499.36 251
UniMVSNet (Re)99.37 12199.26 13599.68 10799.51 22999.58 13398.98 23999.60 18799.43 14199.70 13799.36 29097.70 24199.88 19099.20 11299.87 14599.59 160
FMVSNet299.35 12699.28 13199.55 16999.49 24099.35 18699.45 10399.57 20599.44 13699.70 13799.74 12097.21 26699.87 20499.03 13599.94 9599.44 230
APD_test199.36 12499.28 13199.61 14899.89 4099.89 1099.32 12799.74 10999.18 17599.69 14099.75 11798.41 18299.84 25497.85 23199.70 23499.10 308
IU-MVS99.69 15699.77 5499.22 31597.50 32899.69 14097.75 24099.70 23499.77 61
VPNet99.46 9699.37 10799.71 10099.82 7399.59 12999.48 9699.70 13199.81 6299.69 14099.58 22297.66 24999.86 22299.17 11899.44 30199.67 96
PC_three_145297.56 32299.68 14399.41 27499.09 8997.09 39896.66 31399.60 26999.62 139
D2MVS99.22 15999.19 14399.29 24299.69 15698.74 26298.81 26199.41 26698.55 25199.68 14399.69 15298.13 21399.87 20498.82 15599.98 4199.24 275
MVS_030499.17 17799.03 18799.59 15399.44 26098.90 24899.04 21995.32 39199.99 299.68 14399.57 23198.30 19799.97 3499.94 1699.98 4199.88 25
xiu_mvs_v1_base_debu99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
xiu_mvs_v1_base_debi99.23 15199.34 11298.91 29699.59 18798.23 29598.47 29899.66 14899.61 11099.68 14398.94 35999.39 5099.97 3499.18 11599.55 28098.51 362
ambc99.20 25999.35 28298.53 27799.17 17799.46 25599.67 14999.80 8398.46 17699.70 33297.92 22199.70 23499.38 245
UniMVSNet_NR-MVSNet99.37 12199.25 13799.72 9599.47 25199.56 13698.97 24099.61 17599.43 14199.67 14999.28 30797.85 23499.95 6499.17 11899.81 18899.65 113
DU-MVS99.33 13499.21 14199.71 10099.43 26499.56 13698.83 25699.53 23199.38 14799.67 14999.36 29097.67 24599.95 6499.17 11899.81 18899.63 128
COLMAP_ROBcopyleft98.06 1299.45 9899.37 10799.70 10499.83 6699.70 9199.38 11399.78 9199.53 12299.67 14999.78 10199.19 7799.86 22297.32 27399.87 14599.55 175
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS99.21 16499.06 17699.65 12299.82 7399.62 11897.87 35099.74 10998.36 27199.66 15399.68 16399.71 2299.90 15996.84 30499.88 13499.43 236
DeepPCF-MVS98.42 699.18 17399.02 18999.67 11099.22 31799.75 6897.25 37799.47 25298.72 23799.66 15399.70 14699.29 6499.63 36698.07 21099.81 18899.62 139
Baseline_NR-MVSNet99.49 8699.37 10799.82 3899.91 3299.84 2498.83 25699.86 4899.68 9299.65 15599.88 4297.67 24599.87 20499.03 13599.86 15399.76 67
our_test_398.85 23399.09 16898.13 34199.66 17094.90 37897.72 35599.58 20399.07 19599.64 15699.62 19798.19 20999.93 9598.41 18299.95 8499.55 175
LPG-MVS_test99.22 15999.05 18099.74 8099.82 7399.63 11699.16 18399.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
LGP-MVS_train99.74 8099.82 7399.63 11699.73 11397.56 32299.64 15699.69 15299.37 5699.89 17696.66 31399.87 14599.69 84
ACMM98.09 1199.46 9699.38 10499.72 9599.80 8799.69 9599.13 19399.65 15798.99 20199.64 15699.72 13199.39 5099.86 22298.23 19599.81 18899.60 153
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FA-MVS(test-final)98.52 26598.32 27199.10 27499.48 24598.67 26599.77 1598.60 35497.35 33699.63 16099.80 8393.07 33499.84 25497.92 22199.30 32098.78 350
FOURS199.83 6699.89 1099.74 2499.71 12599.69 9099.63 160
AllTest99.21 16499.07 17499.63 13699.78 10699.64 11199.12 19799.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
TestCases99.63 13699.78 10699.64 11199.83 6198.63 24499.63 16099.72 13198.68 14099.75 31996.38 32899.83 17099.51 202
MDA-MVSNet-bldmvs99.06 19699.05 18099.07 27999.80 8797.83 32398.89 24899.72 12299.29 15699.63 16099.70 14696.47 29099.89 17698.17 20499.82 17999.50 207
TSAR-MVS + GP.99.12 18799.04 18599.38 21899.34 29099.16 21998.15 31999.29 29898.18 29199.63 16099.62 19799.18 7899.68 34898.20 19899.74 21899.30 267
XVG-OURS-SEG-HR99.16 17998.99 20099.66 11799.84 6299.64 11198.25 31399.73 11398.39 26899.63 16099.43 27299.70 2499.90 15997.34 27298.64 36399.44 230
MVSFormer99.41 11099.44 9599.31 23899.57 20298.40 28699.77 1599.80 7999.73 7699.63 16099.30 30398.02 22199.98 2199.43 7399.69 23899.55 175
lupinMVS98.96 21898.87 21899.24 25599.57 20298.40 28698.12 32399.18 32298.28 28499.63 16099.13 32998.02 22199.97 3498.22 19699.69 23899.35 254
DVP-MVScopyleft99.32 13699.17 14599.77 5899.69 15699.80 4499.14 18799.31 29499.16 18299.62 16999.61 20698.35 19099.91 14197.88 22599.72 22999.61 149
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 17599.62 16999.61 20698.58 15699.91 14197.72 24299.80 19399.77 61
GBi-Net99.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
test199.42 10699.31 11999.73 8999.49 24099.77 5499.68 4599.70 13199.44 13699.62 16999.83 6697.21 26699.90 15998.96 14499.90 11699.53 189
new_pmnet98.88 23098.89 21698.84 30699.70 15297.62 33198.15 31999.50 24497.98 30199.62 16999.54 24498.15 21299.94 7897.55 26099.84 16298.95 335
FMVSNet398.80 23798.63 23999.32 23599.13 33298.72 26399.10 20499.48 24999.23 16899.62 16999.64 17992.57 33899.86 22298.96 14499.90 11699.39 243
CS-MVS99.67 5299.70 3999.58 15799.53 22299.84 2499.79 1199.96 2399.90 3099.61 17599.41 27499.51 4599.95 6499.66 4599.89 12598.96 333
CDS-MVSNet99.22 15999.13 15299.50 18199.35 28299.11 22498.96 24299.54 22299.46 13399.61 17599.70 14696.31 29799.83 26999.34 9099.88 13499.55 175
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 20398.85 22099.55 16999.80 8799.25 20499.73 2799.15 32599.37 14899.61 17599.71 13994.73 31699.81 29397.70 24799.88 13499.58 165
cl____98.54 26398.41 26198.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.85 32499.78 30597.97 21899.89 12599.17 293
DIV-MVS_self_test98.54 26398.42 26098.92 29499.03 34897.80 32697.46 36999.59 19398.90 21499.60 17899.46 26793.87 32399.78 30597.97 21899.89 12599.18 291
XVG-ACMP-BASELINE99.23 15199.10 16799.63 13699.82 7399.58 13398.83 25699.72 12298.36 27199.60 17899.71 13998.92 11099.91 14197.08 29199.84 16299.40 241
miper_lstm_enhance98.65 25298.60 24098.82 31199.20 32297.33 34097.78 35399.66 14899.01 20099.59 18199.50 25394.62 31799.85 23998.12 20799.90 11699.26 272
YYNet198.95 22198.99 20098.84 30699.64 17497.14 34698.22 31599.32 29098.92 21299.59 18199.66 17297.40 25799.83 26998.27 19299.90 11699.55 175
eth_miper_zixun_eth98.68 25098.71 23398.60 32099.10 34096.84 35397.52 36799.54 22298.94 20799.58 18399.48 26096.25 30099.76 31598.01 21499.93 10299.21 282
pmmvs499.13 18599.06 17699.36 22599.57 20299.10 22998.01 33599.25 30898.78 23099.58 18399.44 27198.24 20299.76 31598.74 16599.93 10299.22 280
DeepC-MVS_fast98.47 599.23 15199.12 15699.56 16699.28 30799.22 21198.99 23699.40 27399.08 19399.58 18399.64 17998.90 11599.83 26997.44 26799.75 21199.63 128
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
SMA-MVScopyleft99.19 16999.00 19599.73 8999.46 25599.73 7799.13 19399.52 23697.40 33399.57 18699.64 17998.93 10999.83 26997.61 25799.79 19899.63 128
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.34 13199.24 13999.63 13699.82 7399.37 17999.26 14999.35 28598.77 23299.57 18699.70 14699.27 6999.88 19097.71 24499.75 21199.65 113
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize99.31 13799.16 14699.74 8099.53 22299.75 6899.27 14799.61 17599.19 17499.57 18699.64 17998.76 13099.90 15997.29 27599.62 25999.56 172
WR-MVS99.11 19098.93 20899.66 11799.30 30299.42 16698.42 30399.37 28199.04 19899.57 18699.20 32596.89 27899.86 22298.66 17299.87 14599.70 80
SteuartSystems-ACMMP99.30 13899.14 15099.76 6599.87 5299.66 10299.18 17299.60 18798.55 25199.57 18699.67 16799.03 9999.94 7897.01 29399.80 19399.69 84
Skip Steuart: Steuart Systems R&D Blog.
ab-mvs99.33 13499.28 13199.47 18899.57 20299.39 17499.78 1299.43 26398.87 21899.57 18699.82 7398.06 21899.87 20498.69 17099.73 22399.15 297
CMPMVSbinary77.52 2398.50 26898.19 28399.41 20998.33 38799.56 13699.01 22899.59 19395.44 37199.57 18699.80 8395.64 30799.46 38796.47 32499.92 10699.21 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053097.45 32196.95 33198.94 29099.68 16497.73 32899.09 20994.19 39698.61 24799.56 19399.30 30384.30 39299.93 9598.27 19299.54 28599.16 295
Anonymous20240521198.75 24198.46 25699.63 13699.34 29099.66 10299.47 9997.65 37699.28 15999.56 19399.50 25393.15 33299.84 25498.62 17399.58 27499.40 241
VDD-MVS99.20 16699.11 15999.44 19699.43 26498.98 23799.50 9198.32 36699.80 6599.56 19399.69 15296.99 27699.85 23998.99 13899.73 22399.50 207
MDA-MVSNet_test_wron98.95 22198.99 20098.85 30499.64 17497.16 34498.23 31499.33 28898.93 21099.56 19399.66 17297.39 25999.83 26998.29 19099.88 13499.55 175
EPP-MVSNet99.17 17799.00 19599.66 11799.80 8799.43 16399.70 3599.24 31199.48 12699.56 19399.77 10894.89 31399.93 9598.72 16799.89 12599.63 128
test_part299.62 18099.67 10099.55 198
UnsupCasMVSNet_eth98.83 23498.57 24699.59 15399.68 16499.45 15798.99 23699.67 14499.48 12699.55 19899.36 29094.92 31299.86 22298.95 14896.57 39199.45 225
CL-MVSNet_self_test98.71 24798.56 24999.15 26599.22 31798.66 26897.14 38099.51 24098.09 29599.54 20099.27 30996.87 27999.74 32198.43 18198.96 34399.03 326
c3_l98.72 24698.71 23398.72 31699.12 33497.22 34397.68 35899.56 21098.90 21499.54 20099.48 26096.37 29699.73 32497.88 22599.88 13499.21 282
MSP-MVS99.04 20298.79 22999.81 4199.78 10699.73 7799.35 12199.57 20598.54 25499.54 20098.99 35096.81 28099.93 9596.97 29599.53 28799.77 61
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 23198.59 24299.71 10099.50 23599.62 11899.01 22899.57 20596.80 35599.54 20099.63 19098.29 19899.91 14195.24 36299.71 23299.61 149
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TinyColmap98.97 21598.93 20899.07 27999.46 25598.19 29997.75 35499.75 10498.79 22899.54 20099.70 14698.97 10699.62 36796.63 31699.83 17099.41 240
ACMMP_NAP99.28 14099.11 15999.79 5299.75 12999.81 4098.95 24399.53 23198.27 28599.53 20599.73 12498.75 13299.87 20497.70 24799.83 17099.68 90
MSDG99.08 19498.98 20399.37 22199.60 18399.13 22297.54 36399.74 10998.84 22399.53 20599.55 24299.10 8799.79 30297.07 29299.86 15399.18 291
SR-MVS-dyc-post99.27 14499.11 15999.73 8999.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.41 18299.91 14197.27 27899.61 26699.54 183
RE-MVS-def99.13 15299.54 21699.74 7499.26 14999.62 16899.16 18299.52 20799.64 17998.57 15797.27 27899.61 26699.54 183
miper_ehance_all_eth98.59 25898.59 24298.59 32198.98 35497.07 34797.49 36899.52 23698.50 25799.52 20799.37 28696.41 29499.71 33097.86 22999.62 25999.00 332
OPM-MVS99.26 14699.13 15299.63 13699.70 15299.61 12498.58 28399.48 24998.50 25799.52 20799.63 19099.14 8499.76 31597.89 22499.77 20799.51 202
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft99.25 14799.08 17099.74 8099.79 9999.68 9899.50 9199.65 15798.07 29699.52 20799.69 15298.57 15799.92 11797.18 28899.79 19899.63 128
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast99.43 10399.30 12499.80 4699.83 6699.81 4099.52 8699.70 13198.35 27699.51 21299.50 25399.31 6299.88 19098.18 20299.84 16299.69 84
EC-MVSNet99.69 4399.69 4399.68 10799.71 14499.91 499.76 1999.96 2399.86 4699.51 21299.39 28299.57 3899.93 9599.64 4899.86 15399.20 286
CS-MVS-test99.68 4699.70 3999.64 12999.57 20299.83 2999.78 1299.97 1899.92 2899.50 21499.38 28499.57 3899.95 6499.69 4399.90 11699.15 297
pmmvs398.08 29997.80 30898.91 29699.41 27097.69 33097.87 35099.66 14895.87 36599.50 21499.51 25090.35 36599.97 3498.55 17699.47 29899.08 317
RPSCF99.18 17399.02 18999.64 12999.83 6699.85 1999.44 10599.82 6698.33 28199.50 21499.78 10197.90 22999.65 36396.78 30699.83 17099.44 230
MM99.55 16998.81 25499.05 21697.79 37599.99 299.48 21799.59 21996.29 29999.95 6499.94 1699.98 4199.88 25
diffmvspermissive99.34 13199.32 11799.39 21599.67 16998.77 25998.57 28799.81 7599.61 11099.48 21799.41 27498.47 17399.86 22298.97 14299.90 11699.53 189
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-299.51 8399.46 9099.64 12999.70 15299.11 22499.04 21999.87 4599.71 8299.47 21999.79 9398.24 20299.98 2199.38 8199.96 7199.83 40
SR-MVS99.19 16999.00 19599.74 8099.51 22999.72 8299.18 17299.60 18798.85 22099.47 21999.58 22298.38 18799.92 11796.92 29799.54 28599.57 170
VNet99.18 17399.06 17699.56 16699.24 31499.36 18399.33 12599.31 29499.67 9699.47 21999.57 23196.48 28999.84 25499.15 12199.30 32099.47 220
ACMP97.51 1499.05 19998.84 22299.67 11099.78 10699.55 13998.88 24999.66 14897.11 34899.47 21999.60 21499.07 9499.89 17696.18 33699.85 15799.58 165
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline197.73 31197.33 32198.96 28899.30 30297.73 32899.40 10998.42 36199.33 15399.46 22399.21 32391.18 35299.82 27898.35 18691.26 39799.32 261
Test_1112_low_res98.95 22198.73 23199.63 13699.68 16499.15 22198.09 32799.80 7997.14 34699.46 22399.40 27896.11 30299.89 17699.01 13799.84 16299.84 36
MP-MVS-pluss99.14 18398.92 21299.80 4699.83 6699.83 2998.61 27799.63 16596.84 35399.44 22599.58 22298.81 12099.91 14197.70 24799.82 17999.67 96
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 21198.97 20499.09 27599.11 33998.19 29998.76 27099.33 28898.49 25999.44 22599.58 22298.21 20799.69 33898.20 19899.62 25999.39 243
OMC-MVS98.90 22698.72 23299.44 19699.39 27299.42 16698.58 28399.64 16397.31 33899.44 22599.62 19798.59 15499.69 33896.17 33799.79 19899.22 280
OpenMVS_ROBcopyleft97.31 1797.36 32596.84 33598.89 30399.29 30499.45 15798.87 25099.48 24986.54 39499.44 22599.74 12097.34 26199.86 22291.61 38599.28 32397.37 389
miper_enhance_ethall98.03 30197.94 30198.32 33498.27 38896.43 35996.95 38499.41 26696.37 36099.43 22998.96 35794.74 31599.69 33897.71 24499.62 25998.83 346
1112_ss99.05 19998.84 22299.67 11099.66 17099.29 19598.52 29499.82 6697.65 32099.43 22999.16 32796.42 29299.91 14199.07 13399.84 16299.80 47
SF-MVS99.10 19398.93 20899.62 14599.58 19299.51 14499.13 19399.65 15797.97 30299.42 23199.61 20698.86 11799.87 20496.45 32599.68 24399.49 212
xiu_mvs_v2_base99.02 20599.11 15998.77 31399.37 27798.09 30898.13 32299.51 24099.47 13099.42 23198.54 38099.38 5499.97 3498.83 15399.33 31698.24 374
MTAPA99.35 12699.20 14299.80 4699.81 8199.81 4099.33 12599.53 23199.27 16099.42 23199.63 19098.21 20799.95 6497.83 23599.79 19899.65 113
PGM-MVS99.20 16699.01 19299.77 5899.75 12999.71 8499.16 18399.72 12297.99 30099.42 23199.60 21498.81 12099.93 9596.91 29899.74 21899.66 105
114514_t98.49 27098.11 28799.64 12999.73 13899.58 13399.24 15799.76 9989.94 39199.42 23199.56 23597.76 24099.86 22297.74 24199.82 17999.47 220
PMVScopyleft92.94 2198.82 23598.81 22698.85 30499.84 6297.99 31399.20 16799.47 25299.71 8299.42 23199.82 7398.09 21599.47 38593.88 38199.85 15799.07 322
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cl2297.56 31997.28 32298.40 32998.37 38696.75 35497.24 37899.37 28197.31 33899.41 23799.22 32187.30 37899.37 38997.70 24799.62 25999.08 317
PS-MVSNAJ99.00 21199.08 17098.76 31499.37 27798.10 30798.00 33799.51 24099.47 13099.41 23798.50 38299.28 6699.97 3498.83 15399.34 31598.20 378
DSMNet-mixed99.48 8899.65 5098.95 28999.71 14497.27 34199.50 9199.82 6699.59 11899.41 23799.85 5699.62 31100.00 199.53 6399.89 12599.59 160
DELS-MVS99.34 13199.30 12499.48 18699.51 22999.36 18398.12 32399.53 23199.36 15099.41 23799.61 20699.22 7499.87 20499.21 10999.68 24399.20 286
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.37 12199.29 12999.60 15199.71 14499.46 15299.43 10799.85 5398.79 22899.41 23799.60 21498.92 11099.92 11798.02 21199.92 10699.43 236
test_040299.22 15999.14 15099.45 19399.79 9999.43 16399.28 14499.68 14099.54 12099.40 24299.56 23599.07 9499.82 27896.01 34199.96 7199.11 306
LF4IMVS99.01 20998.92 21299.27 24799.71 14499.28 19798.59 28299.77 9498.32 28299.39 24399.41 27498.62 14999.84 25496.62 31799.84 16298.69 353
VDDNet98.97 21598.82 22599.42 20299.71 14498.81 25499.62 6398.68 34899.81 6299.38 24499.80 8394.25 32099.85 23998.79 15999.32 31899.59 160
sss98.90 22698.77 23099.27 24799.48 24598.44 28398.72 27399.32 29097.94 30699.37 24599.35 29596.31 29799.91 14198.85 15299.63 25899.47 220
HFP-MVS99.25 14799.08 17099.76 6599.73 13899.70 9199.31 13299.59 19398.36 27199.36 24699.37 28698.80 12499.91 14197.43 26899.75 21199.68 90
ACMMPR99.23 15199.06 17699.76 6599.74 13599.69 9599.31 13299.59 19398.36 27199.35 24799.38 28498.61 15199.93 9597.43 26899.75 21199.67 96
HPM-MVScopyleft99.25 14799.07 17499.78 5599.81 8199.75 6899.61 6899.67 14497.72 31799.35 24799.25 31499.23 7399.92 11797.21 28699.82 17999.67 96
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator99.15 299.43 10399.36 11099.65 12299.39 27299.42 16699.70 3599.56 21099.23 16899.35 24799.80 8399.17 7999.95 6498.21 19799.84 16299.59 160
PVSNet_BlendedMVS99.03 20399.01 19299.09 27599.54 21697.99 31398.58 28399.82 6697.62 32199.34 25099.71 13998.52 16999.77 31397.98 21699.97 5699.52 200
PVSNet_Blended98.70 24898.59 24299.02 28399.54 21697.99 31397.58 36299.82 6695.70 36999.34 25098.98 35398.52 16999.77 31397.98 21699.83 17099.30 267
FE-MVS97.85 30697.42 31999.15 26599.44 26098.75 26099.77 1598.20 36895.85 36699.33 25299.80 8388.86 37499.88 19096.40 32699.12 33498.81 347
MIMVSNet98.43 27698.20 28099.11 27299.53 22298.38 29099.58 7698.61 35298.96 20599.33 25299.76 11290.92 35699.81 29397.38 27199.76 20999.15 297
ITE_SJBPF99.38 21899.63 17699.44 15999.73 11398.56 25099.33 25299.53 24698.88 11699.68 34896.01 34199.65 25499.02 330
h-mvs3398.61 25398.34 26999.44 19699.60 18398.67 26599.27 14799.44 26099.68 9299.32 25599.49 25792.50 341100.00 199.24 10696.51 39299.65 113
hse-mvs298.52 26598.30 27399.16 26399.29 30498.60 27598.77 26999.02 33499.68 9299.32 25599.04 34392.50 34199.85 23999.24 10697.87 38399.03 326
GST-MVS99.16 17998.96 20699.75 7599.73 13899.73 7799.20 16799.55 21698.22 28799.32 25599.35 29598.65 14799.91 14196.86 30199.74 21899.62 139
region2R99.23 15199.05 18099.77 5899.76 11899.70 9199.31 13299.59 19398.41 26599.32 25599.36 29098.73 13699.93 9597.29 27599.74 21899.67 96
test_one_060199.63 17699.76 6299.55 21699.23 16899.31 25999.61 20698.59 154
MVP-Stereo99.16 17999.08 17099.43 20099.48 24599.07 23299.08 21299.55 21698.63 24499.31 25999.68 16398.19 20999.78 30598.18 20299.58 27499.45 225
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS98.46 27398.19 28399.26 25099.24 31498.52 27999.62 6396.94 38399.87 4299.31 25999.58 22291.04 35499.81 29398.68 17199.42 30599.45 225
MVS_111021_LR99.13 18599.03 18799.42 20299.58 19299.32 19197.91 34899.73 11398.68 24099.31 25999.48 26099.09 8999.66 35797.70 24799.77 20799.29 270
MVS-HIRNet97.86 30598.22 27896.76 36899.28 30791.53 39598.38 30592.60 39899.13 18899.31 25999.96 1297.18 27099.68 34898.34 18799.83 17099.07 322
tmp_tt95.75 35795.42 35596.76 36889.90 40394.42 38098.86 25197.87 37478.01 39599.30 26499.69 15297.70 24195.89 39999.29 10298.14 37899.95 11
9.1498.64 23799.45 25998.81 26199.60 18797.52 32799.28 26599.56 23598.53 16699.83 26995.36 36199.64 256
CPTT-MVS98.74 24398.44 25899.64 12999.61 18199.38 17699.18 17299.55 21696.49 35799.27 26699.37 28697.11 27299.92 11795.74 35399.67 24999.62 139
CLD-MVS98.76 24098.57 24699.33 23199.57 20298.97 23997.53 36599.55 21696.41 35899.27 26699.13 32999.07 9499.78 30596.73 30999.89 12599.23 278
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42098.41 27898.41 26198.40 32999.34 29095.89 36996.94 38599.44 26098.80 22799.25 26899.52 24893.51 33099.98 2198.94 14999.98 4199.32 261
FMVSNet597.80 30897.25 32499.42 20298.83 36598.97 23999.38 11399.80 7998.87 21899.25 26899.69 15280.60 39699.91 14198.96 14499.90 11699.38 245
PHI-MVS99.11 19098.95 20799.59 15399.13 33299.59 12999.17 17799.65 15797.88 31099.25 26899.46 26798.97 10699.80 29997.26 28099.82 17999.37 248
Vis-MVSNet (Re-imp)98.77 23998.58 24599.34 22899.78 10698.88 25099.61 6899.56 21099.11 19299.24 27199.56 23593.00 33699.78 30597.43 26899.89 12599.35 254
CANet99.11 19099.05 18099.28 24498.83 36598.56 27698.71 27599.41 26699.25 16499.23 27299.22 32197.66 24999.94 7899.19 11399.97 5699.33 258
Patchmatch-test98.10 29897.98 29598.48 32699.27 30996.48 35799.40 10999.07 33098.81 22599.23 27299.57 23190.11 36899.87 20496.69 31099.64 25699.09 312
MG-MVS98.52 26598.39 26398.94 29099.15 32997.39 33998.18 31699.21 31898.89 21799.23 27299.63 19097.37 26099.74 32194.22 37599.61 26699.69 84
test_yl98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
DCV-MVSNet98.25 28997.95 29799.13 27099.17 32798.47 28099.00 23198.67 35098.97 20399.22 27599.02 34891.31 35099.69 33897.26 28098.93 34499.24 275
test0.0.03 197.37 32496.91 33498.74 31597.72 39497.57 33297.60 36197.36 38298.00 29899.21 27798.02 38990.04 36999.79 30298.37 18495.89 39598.86 343
MVS_Test99.28 14099.31 11999.19 26099.35 28298.79 25799.36 12099.49 24899.17 18099.21 27799.67 16798.78 12799.66 35799.09 13199.66 25299.10 308
CDPH-MVS98.56 26198.20 28099.61 14899.50 23599.46 15298.32 30899.41 26695.22 37499.21 27799.10 33798.34 19399.82 27895.09 36699.66 25299.56 172
WTY-MVS98.59 25898.37 26599.26 25099.43 26498.40 28698.74 27199.13 32898.10 29399.21 27799.24 31994.82 31499.90 15997.86 22998.77 35399.49 212
MDTV_nov1_ep13_2view91.44 39699.14 18797.37 33599.21 27791.78 34896.75 30799.03 326
BH-untuned98.22 29398.09 28898.58 32399.38 27597.24 34298.55 28998.98 33797.81 31599.20 28298.76 37097.01 27599.65 36394.83 36798.33 37198.86 343
CR-MVSNet98.35 28598.20 28098.83 30899.05 34598.12 30499.30 13599.67 14497.39 33499.16 28399.79 9391.87 34699.91 14198.78 16298.77 35398.44 367
RPMNet98.60 25598.53 25298.83 30899.05 34598.12 30499.30 13599.62 16899.86 4699.16 28399.74 12092.53 34099.92 11798.75 16498.77 35398.44 367
thisisatest051596.98 33296.42 33998.66 31999.42 26997.47 33597.27 37694.30 39597.24 34099.15 28598.86 36585.01 38999.87 20497.10 29099.39 30898.63 354
LS3D99.24 15099.11 15999.61 14898.38 38599.79 4699.57 7999.68 14099.61 11099.15 28599.71 13998.70 13899.91 14197.54 26199.68 24399.13 305
ZNCC-MVS99.22 15999.04 18599.77 5899.76 11899.73 7799.28 14499.56 21098.19 29099.14 28799.29 30698.84 11999.92 11797.53 26399.80 19399.64 123
HQP_MVS98.90 22698.68 23699.55 16999.58 19299.24 20898.80 26499.54 22298.94 20799.14 28799.25 31497.24 26499.82 27895.84 35099.78 20399.60 153
plane_prior399.31 19298.36 27199.14 287
3Dnovator+98.92 399.35 12699.24 13999.67 11099.35 28299.47 14899.62 6399.50 24499.44 13699.12 29099.78 10198.77 12999.94 7897.87 22899.72 22999.62 139
ZD-MVS99.43 26499.61 12499.43 26396.38 35999.11 29199.07 33997.86 23299.92 11794.04 37899.49 296
PatchMatch-RL98.68 25098.47 25599.30 24199.44 26099.28 19798.14 32199.54 22297.12 34799.11 29199.25 31497.80 23799.70 33296.51 32199.30 32098.93 337
SCA98.11 29798.36 26697.36 35999.20 32292.99 38798.17 31898.49 35998.24 28699.10 29399.57 23196.01 30499.94 7896.86 30199.62 25999.14 302
PatchT98.45 27598.32 27198.83 30898.94 35698.29 29399.24 15798.82 34299.84 5499.08 29499.76 11291.37 34999.94 7898.82 15599.00 34298.26 373
UnsupCasMVSNet_bld98.55 26298.27 27599.40 21199.56 21399.37 17997.97 34299.68 14097.49 32999.08 29499.35 29595.41 31199.82 27897.70 24798.19 37699.01 331
MVS_111021_HR99.12 18799.02 18999.40 21199.50 23599.11 22497.92 34699.71 12598.76 23599.08 29499.47 26499.17 7999.54 37897.85 23199.76 20999.54 183
TAPA-MVS97.92 1398.03 30197.55 31799.46 19099.47 25199.44 15998.50 29699.62 16886.79 39299.07 29799.26 31298.26 20199.62 36797.28 27799.73 22399.31 265
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CP-MVS99.23 15199.05 18099.75 7599.66 17099.66 10299.38 11399.62 16898.38 26999.06 29899.27 30998.79 12599.94 7897.51 26499.82 17999.66 105
MCST-MVS99.02 20598.81 22699.65 12299.58 19299.49 14698.58 28399.07 33098.40 26799.04 29999.25 31498.51 17199.80 29997.31 27499.51 29199.65 113
mPP-MVS99.19 16999.00 19599.76 6599.76 11899.68 9899.38 11399.54 22298.34 28099.01 30099.50 25398.53 16699.93 9597.18 28899.78 20399.66 105
PVSNet97.47 1598.42 27798.44 25898.35 33199.46 25596.26 36296.70 38899.34 28797.68 31999.00 30199.13 32997.40 25799.72 32697.59 25999.68 24399.08 317
Fast-Effi-MVS+-dtu99.20 16699.12 15699.43 20099.25 31299.69 9599.05 21699.82 6699.50 12498.97 30299.05 34198.98 10499.98 2198.20 19899.24 32998.62 355
MP-MVScopyleft99.06 19698.83 22499.76 6599.76 11899.71 8499.32 12799.50 24498.35 27698.97 30299.48 26098.37 18899.92 11795.95 34799.75 21199.63 128
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PCF-MVS96.03 1896.73 33895.86 34999.33 23199.44 26099.16 21996.87 38699.44 26086.58 39398.95 30499.40 27894.38 31999.88 19087.93 39299.80 19398.95 335
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验297.94 34495.33 37398.94 30599.88 19096.75 307
ETV-MVS99.18 17399.18 14499.16 26399.34 29099.28 19799.12 19799.79 8599.48 12698.93 30698.55 37999.40 4999.93 9598.51 17899.52 29098.28 372
BH-RMVSNet98.41 27898.14 28699.21 25799.21 31998.47 28098.60 27998.26 36798.35 27698.93 30699.31 30197.20 26999.66 35794.32 37399.10 33699.51 202
F-COLMAP98.74 24398.45 25799.62 14599.57 20299.47 14898.84 25499.65 15796.31 36198.93 30699.19 32697.68 24499.87 20496.52 32099.37 31199.53 189
Effi-MVS+-dtu99.07 19598.92 21299.52 17798.89 36199.78 4999.15 18599.66 14899.34 15198.92 30999.24 31997.69 24399.98 2198.11 20899.28 32398.81 347
EMVS96.96 33397.28 32295.99 37898.76 37491.03 39795.26 39398.61 35299.34 15198.92 30998.88 36493.79 32599.66 35792.87 38299.05 33897.30 390
tpmrst97.73 31198.07 28996.73 37098.71 37692.00 39199.10 20498.86 33998.52 25598.92 30999.54 24491.90 34499.82 27898.02 21199.03 34098.37 369
MSLP-MVS++99.05 19999.09 16898.91 29699.21 31998.36 29198.82 26099.47 25298.85 22098.90 31299.56 23598.78 12799.09 39298.57 17599.68 24399.26 272
KD-MVS_2432*160095.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
miper_refine_blended95.89 35395.41 35697.31 36294.96 39993.89 38297.09 38199.22 31597.23 34198.88 31399.04 34379.23 39899.54 37896.24 33496.81 38998.50 365
E-PMN97.14 33097.43 31896.27 37598.79 37091.62 39495.54 39299.01 33699.44 13698.88 31399.12 33392.78 33799.68 34894.30 37499.03 34097.50 386
testdata99.42 20299.51 22998.93 24599.30 29796.20 36298.87 31699.40 27898.33 19599.89 17696.29 33199.28 32399.44 230
CANet_DTU98.91 22498.85 22099.09 27598.79 37098.13 30398.18 31699.31 29499.48 12698.86 31799.51 25096.56 28699.95 6499.05 13499.95 8499.19 289
DP-MVS Recon98.50 26898.23 27699.31 23899.49 24099.46 15298.56 28899.63 16594.86 38098.85 31899.37 28697.81 23699.59 37396.08 33899.44 30198.88 341
EIA-MVS99.12 18799.01 19299.45 19399.36 28099.62 11899.34 12299.79 8598.41 26598.84 31998.89 36398.75 13299.84 25498.15 20699.51 29198.89 340
DPM-MVS98.28 28797.94 30199.32 23599.36 28099.11 22497.31 37598.78 34496.88 35198.84 31999.11 33697.77 23999.61 37194.03 37999.36 31299.23 278
MDTV_nov1_ep1397.73 31298.70 37790.83 39899.15 18598.02 37098.51 25698.82 32199.61 20690.98 35599.66 35796.89 30098.92 346
GA-MVS97.99 30497.68 31498.93 29399.52 22798.04 31297.19 37999.05 33398.32 28298.81 32298.97 35589.89 37199.41 38898.33 18899.05 33899.34 257
AdaColmapbinary98.60 25598.35 26899.38 21899.12 33499.22 21198.67 27699.42 26597.84 31498.81 32299.27 30997.32 26299.81 29395.14 36499.53 28799.10 308
CNVR-MVS98.99 21498.80 22899.56 16699.25 31299.43 16398.54 29299.27 30298.58 24998.80 32499.43 27298.53 16699.70 33297.22 28599.59 27399.54 183
Effi-MVS+99.06 19698.97 20499.34 22899.31 29898.98 23798.31 30999.91 3298.81 22598.79 32598.94 35999.14 8499.84 25498.79 15998.74 35799.20 286
PatchmatchNetpermissive97.65 31597.80 30897.18 36498.82 36892.49 38999.17 17798.39 36398.12 29298.79 32599.58 22290.71 36199.89 17697.23 28499.41 30699.16 295
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM98.40 28097.99 29399.65 12299.39 27299.47 14899.67 4999.52 23691.70 38898.78 32799.80 8398.55 16099.95 6494.71 37099.75 21199.53 189
XVS99.27 14499.11 15999.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32899.47 26498.47 17399.88 19097.62 25599.73 22399.67 96
X-MVStestdata96.09 35194.87 36099.75 7599.71 14499.71 8499.37 11799.61 17599.29 15698.76 32861.30 40698.47 17399.88 19097.62 25599.73 22399.67 96
HY-MVS98.23 998.21 29497.95 29798.99 28599.03 34898.24 29499.61 6898.72 34696.81 35498.73 33099.51 25094.06 32199.86 22296.91 29898.20 37498.86 343
dmvs_re98.69 24998.48 25499.31 23899.55 21499.42 16699.54 8498.38 36499.32 15498.72 33198.71 37296.76 28299.21 39096.01 34199.35 31499.31 265
alignmvs98.28 28797.96 29699.25 25399.12 33498.93 24599.03 22398.42 36199.64 10498.72 33197.85 39290.86 35999.62 36798.88 15199.13 33399.19 289
thres600view796.60 34196.16 34397.93 34599.63 17696.09 36699.18 17297.57 37798.77 23298.72 33197.32 39887.04 38199.72 32688.57 39098.62 36497.98 382
thres100view90096.39 34596.03 34697.47 35699.63 17695.93 36799.18 17297.57 37798.75 23698.70 33497.31 39987.04 38199.67 35387.62 39398.51 36896.81 391
test22299.51 22999.08 23197.83 35299.29 29895.21 37598.68 33599.31 30197.28 26399.38 30999.43 236
API-MVS98.38 28198.39 26398.35 33198.83 36599.26 20199.14 18799.18 32298.59 24898.66 33698.78 36998.61 15199.57 37594.14 37699.56 27696.21 393
canonicalmvs99.02 20599.00 19599.09 27599.10 34098.70 26499.61 6899.66 14899.63 10698.64 33797.65 39599.04 9899.54 37898.79 15998.92 34699.04 325
Fast-Effi-MVS+99.02 20598.87 21899.46 19099.38 27599.50 14599.04 21999.79 8597.17 34498.62 33898.74 37199.34 6099.95 6498.32 18999.41 30698.92 338
EPMVS96.53 34296.32 34097.17 36598.18 39192.97 38899.39 11189.95 40298.21 28898.61 33999.59 21986.69 38799.72 32696.99 29499.23 33198.81 347
新几何199.52 17799.50 23599.22 21199.26 30595.66 37098.60 34099.28 30797.67 24599.89 17695.95 34799.32 31899.45 225
HPM-MVS++copyleft98.96 21898.70 23599.74 8099.52 22799.71 8498.86 25199.19 32198.47 26198.59 34199.06 34098.08 21799.91 14196.94 29699.60 26999.60 153
PLCcopyleft97.35 1698.36 28297.99 29399.48 18699.32 29799.24 20898.50 29699.51 24095.19 37698.58 34298.96 35796.95 27799.83 26995.63 35499.25 32799.37 248
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet99.38 11899.34 11299.49 18298.90 35898.90 24899.70 3599.35 28599.86 4698.57 34399.81 7998.50 17299.93 9599.38 8199.98 4199.66 105
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM_NR98.36 28298.04 29099.33 23199.48 24598.93 24598.79 26799.28 30197.54 32598.56 34498.57 37797.12 27199.69 33894.09 37798.90 34899.38 245
tfpn200view996.30 34895.89 34797.53 35499.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36896.81 391
thres40096.40 34495.89 34797.92 34699.58 19296.11 36499.00 23197.54 38098.43 26298.52 34596.98 40186.85 38399.67 35387.62 39398.51 36897.98 382
CNLPA98.57 26098.34 26999.28 24499.18 32699.10 22998.34 30699.41 26698.48 26098.52 34598.98 35397.05 27499.78 30595.59 35599.50 29498.96 333
PMMVS98.49 27098.29 27499.11 27298.96 35598.42 28597.54 36399.32 29097.53 32698.47 34898.15 38897.88 23199.82 27897.46 26699.24 32999.09 312
test1299.54 17499.29 30499.33 18999.16 32498.43 34997.54 25299.82 27899.47 29899.48 216
NCCC98.82 23598.57 24699.58 15799.21 31999.31 19298.61 27799.25 30898.65 24298.43 34999.26 31297.86 23299.81 29396.55 31899.27 32699.61 149
thres20096.09 35195.68 35297.33 36199.48 24596.22 36398.53 29397.57 37798.06 29798.37 35196.73 40386.84 38599.61 37186.99 39698.57 36596.16 394
tpm97.15 32896.95 33197.75 35198.91 35794.24 38199.32 12797.96 37197.71 31898.29 35299.32 29986.72 38699.92 11798.10 20996.24 39499.09 312
原ACMM199.37 22199.47 25198.87 25299.27 30296.74 35698.26 35399.32 29997.93 22899.82 27895.96 34699.38 30999.43 236
ADS-MVSNet297.78 30997.66 31698.12 34299.14 33095.36 37399.22 16498.75 34596.97 34998.25 35499.64 17990.90 35799.94 7896.51 32199.56 27699.08 317
ADS-MVSNet97.72 31497.67 31597.86 34799.14 33094.65 37999.22 16498.86 33996.97 34998.25 35499.64 17990.90 35799.84 25496.51 32199.56 27699.08 317
dp96.86 33497.07 32796.24 37698.68 37890.30 40299.19 17198.38 36497.35 33698.23 35699.59 21987.23 37999.82 27896.27 33298.73 35998.59 357
TR-MVS97.44 32297.15 32698.32 33498.53 38197.46 33698.47 29897.91 37396.85 35298.21 35798.51 38196.42 29299.51 38392.16 38497.29 38797.98 382
HQP-NCC99.31 29897.98 33997.45 33098.15 358
ACMP_Plane99.31 29897.98 33997.45 33098.15 358
HQP4-MVS98.15 35899.70 33299.53 189
HQP-MVS98.36 28298.02 29299.39 21599.31 29898.94 24297.98 33999.37 28197.45 33098.15 35898.83 36696.67 28399.70 33294.73 36899.67 24999.53 189
CostFormer96.71 33996.79 33896.46 37498.90 35890.71 40099.41 10898.68 34894.69 38298.14 36299.34 29886.32 38899.80 29997.60 25898.07 38098.88 341
OpenMVScopyleft98.12 1098.23 29297.89 30699.26 25099.19 32499.26 20199.65 5999.69 13791.33 38998.14 36299.77 10898.28 19999.96 5595.41 35999.55 28098.58 359
test_prior297.95 34397.87 31198.05 36499.05 34197.90 22995.99 34499.49 296
MAR-MVS98.24 29197.92 30399.19 26098.78 37299.65 10899.17 17799.14 32695.36 37298.04 36598.81 36897.47 25499.72 32695.47 35899.06 33798.21 376
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR97.56 31997.07 32799.04 28298.80 36998.11 30697.63 35999.25 30894.56 38398.02 36698.25 38797.43 25699.68 34890.90 38898.74 35799.33 258
BH-w/o97.20 32797.01 32997.76 35099.08 34395.69 37098.03 33498.52 35695.76 36897.96 36798.02 38995.62 30899.47 38592.82 38397.25 38898.12 380
TEST999.35 28299.35 18698.11 32599.41 26694.83 38197.92 36898.99 35098.02 22199.85 239
train_agg98.35 28597.95 29799.57 16399.35 28299.35 18698.11 32599.41 26694.90 37897.92 36898.99 35098.02 22199.85 23995.38 36099.44 30199.50 207
tpm296.35 34696.22 34296.73 37098.88 36391.75 39399.21 16698.51 35793.27 38597.89 37099.21 32384.83 39099.70 33296.04 34098.18 37798.75 352
JIA-IIPM98.06 30097.92 30398.50 32598.59 37997.02 34898.80 26498.51 35799.88 4197.89 37099.87 4791.89 34599.90 15998.16 20597.68 38598.59 357
test_899.34 29099.31 19298.08 32999.40 27394.90 37897.87 37298.97 35598.02 22199.84 254
tpmvs97.39 32397.69 31396.52 37298.41 38491.76 39299.30 13598.94 33897.74 31697.85 37399.55 24292.40 34399.73 32496.25 33398.73 35998.06 381
testing396.48 34395.63 35399.01 28499.23 31697.81 32498.90 24799.10 32998.72 23797.84 37497.92 39172.44 40399.85 23997.21 28699.33 31699.35 254
test-LLR97.15 32896.95 33197.74 35298.18 39195.02 37697.38 37196.10 38598.00 29897.81 37598.58 37590.04 36999.91 14197.69 25398.78 35198.31 370
TESTMET0.1,196.24 34995.84 35097.41 35898.24 38993.84 38497.38 37195.84 38998.43 26297.81 37598.56 37879.77 39799.89 17697.77 23698.77 35398.52 361
test-mter96.23 35095.73 35197.74 35298.18 39195.02 37697.38 37196.10 38597.90 30797.81 37598.58 37579.12 40099.91 14197.69 25398.78 35198.31 370
agg_prior99.35 28299.36 18399.39 27697.76 37899.85 239
tpm cat196.78 33696.98 33096.16 37798.85 36490.59 40199.08 21299.32 29092.37 38697.73 37999.46 26791.15 35399.69 33896.07 33998.80 35098.21 376
PVSNet_095.53 1995.85 35695.31 35897.47 35698.78 37293.48 38695.72 39199.40 27396.18 36397.37 38097.73 39395.73 30699.58 37495.49 35781.40 39899.36 251
MVS95.72 35894.63 36398.99 28598.56 38097.98 31999.30 13598.86 33972.71 39797.30 38199.08 33898.34 19399.74 32189.21 38998.33 37199.26 272
EPNet98.13 29697.77 31199.18 26294.57 40197.99 31399.24 15797.96 37199.74 7597.29 38299.62 19793.13 33399.97 3498.59 17499.83 17099.58 165
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dmvs_testset97.27 32696.83 33698.59 32199.46 25597.55 33399.25 15696.84 38498.78 23097.24 38397.67 39497.11 27298.97 39486.59 39898.54 36799.27 271
131498.00 30397.90 30598.27 33898.90 35897.45 33799.30 13599.06 33294.98 37797.21 38499.12 33398.43 17999.67 35395.58 35698.56 36697.71 385
AUN-MVS97.82 30797.38 32099.14 26999.27 30998.53 27798.72 27399.02 33498.10 29397.18 38599.03 34789.26 37399.85 23997.94 22097.91 38199.03 326
cascas96.99 33196.82 33797.48 35597.57 39795.64 37196.43 39099.56 21091.75 38797.13 38697.61 39695.58 30998.63 39696.68 31199.11 33598.18 379
Syy-MVS98.17 29597.85 30799.15 26598.50 38298.79 25798.60 27999.21 31897.89 30896.76 38796.37 40495.47 31099.57 37599.10 13098.73 35999.09 312
myMVS_eth3d95.63 35994.73 36198.34 33398.50 38296.36 36098.60 27999.21 31897.89 30896.76 38796.37 40472.10 40499.57 37594.38 37298.73 35999.09 312
FPMVS96.32 34795.50 35498.79 31299.60 18398.17 30298.46 30298.80 34397.16 34596.28 38999.63 19082.19 39399.09 39288.45 39198.89 34999.10 308
PAPM95.61 36094.71 36298.31 33699.12 33496.63 35596.66 38998.46 36090.77 39096.25 39098.68 37493.01 33599.69 33881.60 39997.86 38498.62 355
gg-mvs-nofinetune95.87 35595.17 35997.97 34498.19 39096.95 34999.69 4289.23 40399.89 3696.24 39199.94 1681.19 39499.51 38393.99 38098.20 37497.44 387
baseline296.83 33596.28 34198.46 32799.09 34296.91 35198.83 25693.87 39797.23 34196.23 39298.36 38488.12 37699.90 15996.68 31198.14 37898.57 360
EPNet_dtu97.62 31697.79 31097.11 36696.67 39892.31 39098.51 29598.04 36999.24 16695.77 39399.47 26493.78 32699.66 35798.98 14099.62 25999.37 248
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft97.98 34399.69 15696.95 34999.26 30575.51 39695.74 39498.28 38696.47 29099.62 36791.23 38797.89 38297.38 388
test_method91.72 36392.32 36689.91 38193.49 40270.18 40690.28 39499.56 21061.71 39895.39 39599.52 24893.90 32299.94 7898.76 16398.27 37399.62 139
IB-MVS95.41 2095.30 36194.46 36597.84 34898.76 37495.33 37497.33 37496.07 38796.02 36495.37 39697.41 39776.17 40299.96 5597.54 26195.44 39698.22 375
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND97.36 35997.59 39596.87 35299.70 3588.49 40494.64 39797.26 40080.66 39599.12 39191.50 38696.50 39396.08 395
ET-MVSNet_ETH3D96.78 33696.07 34598.91 29699.26 31197.92 32197.70 35796.05 38897.96 30592.37 39898.43 38387.06 38099.90 15998.27 19297.56 38698.91 339
MVEpermissive92.54 2296.66 34096.11 34498.31 33699.68 16497.55 33397.94 34495.60 39099.37 14890.68 39998.70 37396.56 28698.61 39786.94 39799.55 28098.77 351
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EGC-MVSNET89.05 36485.52 36799.64 12999.89 4099.78 4999.56 8199.52 23624.19 39949.96 40099.83 6699.15 8199.92 11797.71 24499.85 15799.21 282
test12329.31 36533.05 37018.08 38225.93 40512.24 40797.53 36510.93 40711.78 40024.21 40150.08 41021.04 4058.60 40123.51 40032.43 40033.39 397
testmvs28.94 36633.33 36815.79 38326.03 4049.81 40896.77 38715.67 40611.55 40123.87 40250.74 40919.03 4068.53 40223.21 40133.07 39929.03 398
test_blank8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k24.88 36733.17 3690.00 3840.00 4060.00 4090.00 39599.62 1680.00 4020.00 40399.13 32999.82 130.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas16.61 36822.14 3710.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 199.28 660.00 4030.00 4020.00 4010.00 399
sosnet-low-res8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
sosnet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
Regformer8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re8.26 37711.02 3800.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40399.16 3270.00 4070.00 4030.00 4020.00 4010.00 399
uanet8.33 36911.11 3720.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 403100.00 10.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS96.36 36095.20 363
MSC_two_6792asdad99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
No_MVS99.74 8099.03 34899.53 14299.23 31299.92 11797.77 23699.69 23899.78 57
eth-test20.00 406
eth-test0.00 406
OPU-MVS99.29 24299.12 33499.44 15999.20 16799.40 27899.00 10098.84 39596.54 31999.60 26999.58 165
save fliter99.53 22299.25 20498.29 31099.38 28099.07 195
test_0728_SECOND99.83 3499.70 15299.79 4699.14 18799.61 17599.92 11797.88 22599.72 22999.77 61
GSMVS99.14 302
sam_mvs190.81 36099.14 302
sam_mvs90.52 364
MTGPAbinary99.53 231
test_post199.14 18751.63 40889.54 37299.82 27896.86 301
test_post52.41 40790.25 36699.86 222
patchmatchnet-post99.62 19790.58 36299.94 78
MTMP99.09 20998.59 355
gm-plane-assit97.59 39589.02 40493.47 38498.30 38599.84 25496.38 328
test9_res95.10 36599.44 30199.50 207
agg_prior294.58 37199.46 30099.50 207
test_prior499.19 21798.00 337
test_prior99.46 19099.35 28299.22 21199.39 27699.69 33899.48 216
新几何298.04 333
旧先验199.49 24099.29 19599.26 30599.39 28297.67 24599.36 31299.46 224
无先验98.01 33599.23 31295.83 36799.85 23995.79 35299.44 230
原ACMM297.92 346
testdata299.89 17695.99 344
segment_acmp98.37 188
testdata197.72 35597.86 313
plane_prior799.58 19299.38 176
plane_prior699.47 25199.26 20197.24 264
plane_prior599.54 22299.82 27895.84 35099.78 20399.60 153
plane_prior499.25 314
plane_prior298.80 26498.94 207
plane_prior199.51 229
plane_prior99.24 20898.42 30397.87 31199.71 232
n20.00 408
nn0.00 408
door-mid99.83 61
test1199.29 298
door99.77 94
HQP5-MVS98.94 242
BP-MVS94.73 368
HQP3-MVS99.37 28199.67 249
HQP2-MVS96.67 283
NP-MVS99.40 27199.13 22298.83 366
ACMMP++_ref99.94 95
ACMMP++99.79 198
Test By Simon98.41 182