This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
test_vis1_n99.68 4799.79 2999.36 23299.94 1898.18 31199.52 89100.00 199.86 46100.00 199.88 4798.99 10999.96 5699.97 499.96 6899.95 13
test_vis3_rt99.89 399.90 499.87 2099.98 399.75 6999.70 35100.00 199.73 78100.00 199.89 3899.79 1699.88 19899.98 1100.00 199.98 4
test_fmvs399.83 2099.93 299.53 17799.96 798.62 28399.67 50100.00 199.95 20100.00 199.95 1699.85 1099.99 899.98 199.99 1699.98 4
test_f99.75 3499.88 799.37 22899.96 798.21 30899.51 95100.00 199.94 23100.00 199.93 2199.58 3899.94 8199.97 499.99 1699.97 9
LCM-MVSNet99.95 199.95 199.95 199.99 199.99 199.95 299.97 1999.99 3100.00 199.98 1399.78 17100.00 199.92 21100.00 199.87 32
ANet_high99.88 699.87 1199.91 299.99 199.91 499.65 59100.00 199.90 31100.00 199.97 1499.61 3499.97 3599.75 41100.00 199.84 39
test_fmvsmconf0.01_n99.89 399.88 799.91 299.98 399.76 6399.12 208100.00 1100.00 199.99 799.91 2899.98 1100.00 199.97 4100.00 199.99 2
test_cas_vis1_n_192099.76 3399.86 1399.45 20099.93 2498.40 29699.30 14499.98 1299.94 2399.99 799.89 3899.80 1599.97 3599.96 999.97 5599.97 9
test_vis1_n_192099.72 3899.88 799.27 25699.93 2497.84 33499.34 129100.00 199.99 399.99 799.82 8099.87 999.99 899.97 499.99 1699.97 9
test_fmvs1_n99.68 4799.81 2599.28 25399.95 1597.93 33199.49 100100.00 199.82 6299.99 799.89 3899.21 7799.98 2199.97 499.98 4199.93 18
test_fmvs299.72 3899.85 1799.34 23599.91 3098.08 32299.48 102100.00 199.90 3199.99 799.91 2899.50 4899.98 2199.98 199.99 1699.96 12
mvsany_test399.85 1299.88 799.75 7699.95 1599.37 18399.53 8899.98 1299.77 7699.99 799.95 1699.85 1099.94 8199.95 1299.98 4199.94 16
MVStest198.22 30698.09 30198.62 33299.04 36096.23 37899.20 17699.92 3499.44 14899.98 1399.87 5285.87 40199.67 37099.91 2499.57 28599.95 13
fmvsm_s_conf0.1_n_a99.85 1299.83 2199.91 299.95 1599.82 3799.10 21699.98 1299.99 399.98 1399.91 2899.68 2699.93 9999.93 1999.99 1699.99 2
fmvsm_s_conf0.1_n99.86 1099.85 1799.89 1099.93 2499.78 5199.07 22699.98 1299.99 399.98 1399.90 3399.88 899.92 12599.93 1999.99 1699.98 4
test_fmvsmconf0.1_n99.87 999.86 1399.91 299.97 699.74 7599.01 24099.99 1199.99 399.98 1399.88 4799.97 299.99 899.96 9100.00 199.98 4
PS-MVSNAJss99.84 1699.82 2499.89 1099.96 799.77 5699.68 4699.85 6099.95 2099.98 1399.92 2599.28 6899.98 2199.75 41100.00 199.94 16
jajsoiax99.89 399.89 699.89 1099.96 799.78 5199.70 3599.86 5499.89 3799.98 1399.90 3399.94 499.98 2199.75 41100.00 199.90 24
mvs_tets99.90 299.90 499.90 799.96 799.79 4899.72 3099.88 4999.92 2899.98 1399.93 2199.94 499.98 2199.77 40100.00 199.92 22
fmvsm_s_conf0.5_n_a99.82 2299.79 2999.89 1099.85 5799.82 3799.03 23599.96 2599.99 399.97 2099.84 6999.58 3899.93 9999.92 2199.98 4199.93 18
fmvsm_s_conf0.5_n99.83 2099.81 2599.87 2099.85 5799.78 5199.03 23599.96 2599.99 399.97 2099.84 6999.78 1799.92 12599.92 2199.99 1699.92 22
test_djsdf99.84 1699.81 2599.91 299.94 1899.84 2499.77 1699.80 8599.73 7899.97 2099.92 2599.77 1999.98 2199.43 78100.00 199.90 24
LTVRE_ROB99.19 199.88 699.87 1199.88 1699.91 3099.90 799.96 199.92 3499.90 3199.97 2099.87 5299.81 1499.95 6699.54 6399.99 1699.80 50
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
fmvsm_l_conf0.5_n99.80 2499.78 3399.85 2699.88 4399.66 10399.11 21399.91 3899.98 1499.96 2499.64 19299.60 3699.99 899.95 1299.99 1699.88 28
test_fmvsmconf_n99.85 1299.84 2099.88 1699.91 3099.73 7898.97 25299.98 1299.99 399.96 2499.85 6399.93 799.99 899.94 1699.99 1699.93 18
test_fmvsmvis_n_192099.84 1699.86 1399.81 4199.88 4399.55 14099.17 18899.98 1299.99 399.96 2499.84 6999.96 399.99 899.96 999.99 1699.88 28
test_fmvsm_n_192099.84 1699.85 1799.83 3199.82 7299.70 9299.17 18899.97 1999.99 399.96 2499.82 8099.94 4100.00 199.95 12100.00 199.80 50
test_fmvs199.48 9199.65 5298.97 29799.54 22197.16 35799.11 21399.98 1299.78 7299.96 2499.81 8798.72 14699.97 3599.95 1299.97 5599.79 57
dcpmvs_299.61 6899.64 5599.53 17799.79 9898.82 26199.58 7999.97 1999.95 2099.96 2499.76 12298.44 18699.99 899.34 9599.96 6899.78 59
CHOSEN 1792x268899.39 12299.30 13099.65 12599.88 4399.25 20898.78 28099.88 4998.66 26199.96 2499.79 10097.45 26399.93 9999.34 9599.99 1699.78 59
wuyk23d97.58 33299.13 15892.93 40299.69 15699.49 14799.52 8999.77 10097.97 32499.96 2499.79 10099.84 1299.94 8195.85 37199.82 18279.36 420
fmvsm_l_conf0.5_n_a99.80 2499.79 2999.84 2899.88 4399.64 11299.12 20899.91 3899.98 1499.95 3299.67 18099.67 2799.99 899.94 1699.99 1699.88 28
test_vis1_rt99.45 10499.46 9399.41 21799.71 14498.63 28298.99 24899.96 2599.03 21399.95 3299.12 34798.75 14199.84 26499.82 3799.82 18299.77 63
UniMVSNet_ETH3D99.85 1299.83 2199.90 799.89 3899.91 499.89 599.71 13299.93 2599.95 3299.89 3899.71 2299.96 5699.51 6899.97 5599.84 39
pmmvs699.86 1099.86 1399.83 3199.94 1899.90 799.83 799.91 3899.85 5299.94 3599.95 1699.73 2199.90 16599.65 5099.97 5599.69 88
v7n99.82 2299.80 2899.88 1699.96 799.84 2499.82 999.82 7399.84 5599.94 3599.91 2899.13 8899.96 5699.83 3399.99 1699.83 43
Gipumacopyleft99.57 7199.59 6699.49 18899.98 399.71 8599.72 3099.84 6699.81 6599.94 3599.78 11098.91 12199.71 34498.41 19299.95 8199.05 336
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mamv499.73 3799.74 3999.70 10599.66 17199.87 1499.69 4299.93 3299.93 2599.93 3899.86 5999.07 97100.00 199.66 4899.92 10599.24 283
v899.68 4799.69 4599.65 12599.80 8699.40 17599.66 5499.76 10599.64 10899.93 3899.85 6398.66 15499.84 26499.88 2999.99 1699.71 79
OurMVSNet-221017-099.75 3499.71 4199.84 2899.96 799.83 2999.83 799.85 6099.80 6899.93 3899.93 2198.54 17099.93 9999.59 5599.98 4199.76 68
MIMVSNet199.66 5499.62 5799.80 4699.94 1899.87 1499.69 4299.77 10099.78 7299.93 3899.89 3897.94 23499.92 12599.65 5099.98 4199.62 145
DeepC-MVS98.90 499.62 6699.61 6199.67 11299.72 14199.44 16199.24 16699.71 13299.27 17499.93 3899.90 3399.70 2499.93 9998.99 14499.99 1699.64 129
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
mvsany_test199.44 10699.45 9599.40 21999.37 28498.64 28197.90 37199.59 20499.27 17499.92 4399.82 8099.74 2099.93 9999.55 6299.87 14799.63 134
anonymousdsp99.80 2499.77 3599.90 799.96 799.88 1299.73 2799.85 6099.70 8999.92 4399.93 2199.45 4999.97 3599.36 91100.00 199.85 37
v1099.69 4499.69 4599.66 11999.81 8099.39 17899.66 5499.75 11099.60 12399.92 4399.87 5298.75 14199.86 23199.90 2599.99 1699.73 73
tt080599.63 6099.57 7399.81 4199.87 5099.88 1299.58 7998.70 35999.72 8299.91 4699.60 22799.43 5099.81 30499.81 3899.53 29799.73 73
LCM-MVSNet-Re99.28 14699.15 15599.67 11299.33 30499.76 6399.34 12999.97 1998.93 22599.91 4699.79 10098.68 14999.93 9996.80 32399.56 28699.30 274
TransMVSNet (Re)99.78 2899.77 3599.81 4199.91 3099.85 1999.75 2299.86 5499.70 8999.91 4699.89 3899.60 3699.87 21299.59 5599.74 22499.71 79
tfpnnormal99.43 10999.38 10899.60 15499.87 5099.75 6999.59 7799.78 9799.71 8499.90 4999.69 16598.85 12799.90 16597.25 29999.78 20999.15 307
Anonymous2023121199.62 6699.57 7399.76 6699.61 18399.60 12899.81 1099.73 12099.82 6299.90 4999.90 3397.97 23399.86 23199.42 8399.96 6899.80 50
v124099.56 7499.58 6999.51 18299.80 8699.00 24299.00 24399.65 16799.15 20099.90 4999.75 12799.09 9299.88 19899.90 2599.96 6899.67 102
EU-MVSNet99.39 12299.62 5798.72 32899.88 4396.44 37299.56 8499.85 6099.90 3199.90 4999.85 6398.09 22399.83 27999.58 5899.95 8199.90 24
mvs5depth99.88 699.91 399.80 4699.92 2899.42 16899.94 3100.00 199.97 1699.89 5399.99 1299.63 3099.97 3599.87 3199.99 16100.00 1
SDMVSNet99.77 3299.77 3599.76 6699.80 8699.65 10999.63 6199.86 5499.97 1699.89 5399.89 3899.52 4699.99 899.42 8399.96 6899.65 119
sd_testset99.78 2899.78 3399.80 4699.80 8699.76 6399.80 1199.79 9199.97 1699.89 5399.89 3899.53 4599.99 899.36 9199.96 6899.65 119
IterMVS-SCA-FT99.00 22199.16 15298.51 33899.75 12995.90 38498.07 35199.84 6699.84 5599.89 5399.73 13596.01 31399.99 899.33 98100.00 199.63 134
v14419299.55 7799.54 8099.58 15999.78 10599.20 22099.11 21399.62 18099.18 18999.89 5399.72 14298.66 15499.87 21299.88 2999.97 5599.66 111
pm-mvs199.79 2799.79 2999.78 5699.91 3099.83 2999.76 2099.87 5199.73 7899.89 5399.87 5299.63 3099.87 21299.54 6399.92 10599.63 134
lessismore_v099.64 13299.86 5399.38 18090.66 42299.89 5399.83 7394.56 33099.97 3599.56 6099.92 10599.57 176
SixPastTwentyTwo99.42 11299.30 13099.76 6699.92 2899.67 10199.70 3599.14 33799.65 10599.89 5399.90 3396.20 31099.94 8199.42 8399.92 10599.67 102
HyFIR lowres test98.91 23498.64 24799.73 9099.85 5799.47 15098.07 35199.83 6898.64 26399.89 5399.60 22792.57 350100.00 199.33 9899.97 5599.72 76
testf199.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
APD_test299.63 6099.60 6499.72 9699.94 1899.95 299.47 10599.89 4599.43 15499.88 6299.80 9099.26 7299.90 16598.81 16499.88 13599.32 268
test111197.74 32498.16 29796.49 39599.60 18589.86 42599.71 3491.21 42199.89 3799.88 6299.87 5293.73 33999.90 16599.56 6099.99 1699.70 82
KD-MVS_self_test99.63 6099.59 6699.76 6699.84 6199.90 799.37 12499.79 9199.83 6099.88 6299.85 6398.42 18999.90 16599.60 5499.73 23099.49 217
new-patchmatchnet99.35 13299.57 7398.71 33099.82 7296.62 36998.55 30599.75 11099.50 13399.88 6299.87 5299.31 6499.88 19899.43 78100.00 199.62 145
v192192099.56 7499.57 7399.55 17199.75 12999.11 23099.05 22799.61 18799.15 20099.88 6299.71 15099.08 9599.87 21299.90 2599.97 5599.66 111
NR-MVSNet99.40 11899.31 12599.68 10999.43 27099.55 14099.73 2799.50 25599.46 14399.88 6299.36 30397.54 26099.87 21298.97 14899.87 14799.63 134
K. test v398.87 24198.60 25099.69 10799.93 2499.46 15499.74 2494.97 41299.78 7299.88 6299.88 4793.66 34099.97 3599.61 5399.95 8199.64 129
v119299.57 7199.57 7399.57 16599.77 11399.22 21599.04 23299.60 19899.18 18999.87 7099.72 14299.08 9599.85 24999.89 2899.98 4199.66 111
reproduce_monomvs97.40 33897.46 33297.20 38599.05 35791.91 41399.20 17699.18 33299.84 5599.86 7199.75 12780.67 40899.83 27999.69 4599.95 8199.85 37
ECVR-MVScopyleft97.73 32598.04 30496.78 38999.59 19090.81 42199.72 3090.43 42399.89 3799.86 7199.86 5993.60 34199.89 18499.46 7499.99 1699.65 119
V4299.56 7499.54 8099.63 13999.79 9899.46 15499.39 11799.59 20499.24 18099.86 7199.70 15898.55 16899.82 28999.79 3999.95 8199.60 159
mvs_anonymous99.28 14699.39 10698.94 30199.19 33397.81 33699.02 23899.55 22699.78 7299.85 7499.80 9098.24 20999.86 23199.57 5999.50 30499.15 307
WR-MVS_H99.61 6899.53 8499.87 2099.80 8699.83 2999.67 5099.75 11099.58 12699.85 7499.69 16598.18 21999.94 8199.28 10899.95 8199.83 43
IterMVS98.97 22599.16 15298.42 34399.74 13595.64 38898.06 35399.83 6899.83 6099.85 7499.74 13196.10 31299.99 899.27 109100.00 199.63 134
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
v114499.54 8099.53 8499.59 15699.79 9899.28 20199.10 21699.61 18799.20 18799.84 7799.73 13598.67 15299.84 26499.86 3299.98 4199.64 129
PS-CasMVS99.66 5499.58 6999.89 1099.80 8699.85 1999.66 5499.73 12099.62 11399.84 7799.71 15098.62 15899.96 5699.30 10399.96 6899.86 34
PEN-MVS99.66 5499.59 6699.89 1099.83 6599.87 1499.66 5499.73 12099.70 8999.84 7799.73 13598.56 16799.96 5699.29 10699.94 9499.83 43
DTE-MVSNet99.68 4799.61 6199.88 1699.80 8699.87 1499.67 5099.71 13299.72 8299.84 7799.78 11098.67 15299.97 3599.30 10399.95 8199.80 50
IterMVS-LS99.41 11699.47 8999.25 26299.81 8098.09 31998.85 26599.76 10599.62 11399.83 8199.64 19298.54 17099.97 3599.15 12699.99 1699.68 94
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Anonymous2024052199.44 10699.42 10299.49 18899.89 3898.96 24999.62 6499.76 10599.85 5299.82 8299.88 4796.39 30399.97 3599.59 5599.98 4199.55 181
SED-MVS99.40 11899.28 13799.77 5999.69 15699.82 3799.20 17699.54 23299.13 20299.82 8299.63 20398.91 12199.92 12597.85 24499.70 24199.58 171
test_241102_ONE99.69 15699.82 3799.54 23299.12 20599.82 8299.49 26898.91 12199.52 403
FC-MVSNet-test99.70 4299.65 5299.86 2499.88 4399.86 1899.72 3099.78 9799.90 3199.82 8299.83 7398.45 18599.87 21299.51 6899.97 5599.86 34
test20.0399.55 7799.54 8099.58 15999.79 9899.37 18399.02 23899.89 4599.60 12399.82 8299.62 21098.81 12999.89 18499.43 7899.86 15599.47 225
FMVSNet199.66 5499.63 5699.73 9099.78 10599.77 5699.68 4699.70 13799.67 9899.82 8299.83 7398.98 11199.90 16599.24 11099.97 5599.53 195
XXY-MVS99.71 4199.67 4999.81 4199.89 3899.72 8399.59 7799.82 7399.39 15999.82 8299.84 6999.38 5699.91 14799.38 8799.93 10199.80 50
SSC-MVS99.52 8399.42 10299.83 3199.86 5399.65 10999.52 8999.81 8299.87 4399.81 8999.79 10096.78 28999.99 899.83 3399.51 30199.86 34
v14899.40 11899.41 10499.39 22299.76 11798.94 25199.09 22099.59 20499.17 19499.81 8999.61 21998.41 19099.69 35399.32 10099.94 9499.53 195
v2v48299.50 8599.47 8999.58 15999.78 10599.25 20899.14 19899.58 21399.25 17899.81 8999.62 21098.24 20999.84 26499.83 3399.97 5599.64 129
PM-MVS99.36 13099.29 13599.58 15999.83 6599.66 10398.95 25599.86 5498.85 23699.81 8999.73 13598.40 19499.92 12598.36 19599.83 17399.17 303
reproduce_model99.50 8599.40 10599.83 3199.60 18599.83 2999.12 20899.68 14799.49 13599.80 9399.79 10099.01 10699.93 9998.24 20599.82 18299.73 73
EI-MVSNet-UG-set99.48 9199.50 8699.42 21099.57 20598.65 27999.24 16699.46 26699.68 9499.80 9399.66 18598.99 10999.89 18499.19 11899.90 11699.72 76
VPA-MVSNet99.66 5499.62 5799.79 5399.68 16499.75 6999.62 6499.69 14499.85 5299.80 9399.81 8798.81 12999.91 14799.47 7399.88 13599.70 82
CP-MVSNet99.54 8099.43 10099.87 2099.76 11799.82 3799.57 8299.61 18799.54 12799.80 9399.64 19297.79 24599.95 6699.21 11499.94 9499.84 39
EG-PatchMatch MVS99.57 7199.56 7899.62 14899.77 11399.33 19399.26 15999.76 10599.32 16899.80 9399.78 11099.29 6699.87 21299.15 12699.91 11599.66 111
ACMH98.42 699.59 7099.54 8099.72 9699.86 5399.62 11999.56 8499.79 9198.77 25099.80 9399.85 6399.64 2899.85 24998.70 17699.89 12699.70 82
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
EI-MVSNet-Vis-set99.47 9999.49 8899.42 21099.57 20598.66 27699.24 16699.46 26699.67 9899.79 9999.65 19098.97 11399.89 18499.15 12699.89 12699.71 79
casdiffmvs_mvgpermissive99.68 4799.68 4899.69 10799.81 8099.59 13099.29 15199.90 4399.71 8499.79 9999.73 13599.54 4399.84 26499.36 9199.96 6899.65 119
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
PVSNet_Blended_VisFu99.40 11899.38 10899.44 20499.90 3698.66 27698.94 25799.91 3897.97 32499.79 9999.73 13599.05 10299.97 3599.15 12699.99 1699.68 94
N_pmnet98.73 25598.53 26299.35 23499.72 14198.67 27398.34 32694.65 41398.35 29899.79 9999.68 17698.03 22799.93 9998.28 20199.92 10599.44 235
reproduce-ours99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
our_new_method99.46 10099.35 11699.82 3699.56 21699.83 2999.05 22799.65 16799.45 14699.78 10399.78 11098.93 11699.93 9998.11 21999.81 19299.70 82
balanced_conf0399.50 8599.50 8699.50 18499.42 27599.49 14799.52 8999.75 11099.86 4699.78 10399.71 15098.20 21699.90 16599.39 8699.88 13599.10 318
ppachtmachnet_test98.89 23999.12 16298.20 35599.66 17195.24 39497.63 38199.68 14799.08 20799.78 10399.62 21098.65 15699.88 19898.02 22499.96 6899.48 221
nrg03099.70 4299.66 5099.82 3699.76 11799.84 2499.61 7099.70 13799.93 2599.78 10399.68 17699.10 9099.78 31799.45 7699.96 6899.83 43
PMMVS299.48 9199.45 9599.57 16599.76 11798.99 24498.09 34899.90 4398.95 22199.78 10399.58 23599.57 4099.93 9999.48 7299.95 8199.79 57
TAMVS99.49 8999.45 9599.63 13999.48 25299.42 16899.45 10999.57 21599.66 10299.78 10399.83 7397.85 24199.86 23199.44 7799.96 6899.61 155
TDRefinement99.72 3899.70 4299.77 5999.90 3699.85 1999.86 699.92 3499.69 9299.78 10399.92 2599.37 5899.88 19898.93 15699.95 8199.60 159
MVSMamba_PlusPlus99.55 7799.58 6999.47 19499.68 16499.40 17599.52 8999.70 13799.92 2899.77 11199.86 5998.28 20599.96 5699.54 6399.90 11699.05 336
Vis-MVSNetpermissive99.75 3499.74 3999.79 5399.88 4399.66 10399.69 4299.92 3499.67 9899.77 11199.75 12799.61 3499.98 2199.35 9499.98 4199.72 76
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
ACMH+98.40 899.50 8599.43 10099.71 10199.86 5399.76 6399.32 13699.77 10099.53 12999.77 11199.76 12299.26 7299.78 31797.77 24999.88 13599.60 159
DVP-MVS++99.38 12499.25 14399.77 5999.03 36199.77 5699.74 2499.61 18799.18 18999.76 11499.61 21999.00 10799.92 12597.72 25599.60 27799.62 145
test_241102_TWO99.54 23299.13 20299.76 11499.63 20398.32 20399.92 12597.85 24499.69 24599.75 71
Anonymous2024052999.42 11299.34 11899.65 12599.53 22799.60 12899.63 6199.39 28799.47 14099.76 11499.78 11098.13 22199.86 23198.70 17699.68 25099.49 217
DPE-MVScopyleft99.14 18998.92 22299.82 3699.57 20599.77 5698.74 28499.60 19898.55 27299.76 11499.69 16598.23 21399.92 12596.39 34899.75 21799.76 68
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
casdiffmvspermissive99.63 6099.61 6199.67 11299.79 9899.59 13099.13 20499.85 6099.79 7099.76 11499.72 14299.33 6399.82 28999.21 11499.94 9499.59 166
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
GeoE99.69 4499.66 5099.78 5699.76 11799.76 6399.60 7699.82 7399.46 14399.75 11999.56 24699.63 3099.95 6699.43 7899.88 13599.62 145
pmmvs-eth3d99.48 9199.47 8999.51 18299.77 11399.41 17498.81 27399.66 15799.42 15899.75 11999.66 18599.20 7899.76 32898.98 14699.99 1699.36 258
SD-MVS99.01 21999.30 13098.15 35699.50 24299.40 17598.94 25799.61 18799.22 18699.75 11999.82 8099.54 4395.51 42397.48 27999.87 14799.54 190
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
APDe-MVScopyleft99.48 9199.36 11499.85 2699.55 21999.81 4299.50 9699.69 14498.99 21599.75 11999.71 15098.79 13499.93 9998.46 19099.85 16099.80 50
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
EI-MVSNet99.38 12499.44 9899.21 26699.58 19598.09 31999.26 15999.46 26699.62 11399.75 11999.67 18098.54 17099.85 24999.15 12699.92 10599.68 94
testgi99.29 14599.26 14199.37 22899.75 12998.81 26298.84 26699.89 4598.38 29199.75 11999.04 35799.36 6199.86 23199.08 13899.25 33799.45 230
MVSTER98.47 28498.22 29099.24 26499.06 35698.35 30299.08 22399.46 26699.27 17499.75 11999.66 18588.61 38899.85 24999.14 13299.92 10599.52 205
USDC98.96 22898.93 21899.05 29199.54 22197.99 32597.07 40599.80 8598.21 31099.75 11999.77 11998.43 18799.64 38397.90 23699.88 13599.51 207
Patchmatch-RL test98.60 26798.36 27799.33 23899.77 11399.07 23898.27 33199.87 5198.91 22899.74 12799.72 14290.57 37799.79 31498.55 18699.85 16099.11 316
FIs99.65 5999.58 6999.84 2899.84 6199.85 1999.66 5499.75 11099.86 4699.74 12799.79 10098.27 20799.85 24999.37 9099.93 10199.83 43
jason99.16 18599.11 16599.32 24399.75 12998.44 29398.26 33399.39 28798.70 25899.74 12799.30 31798.54 17099.97 3598.48 18999.82 18299.55 181
jason: jason.
DP-MVS99.48 9199.39 10699.74 8199.57 20599.62 11999.29 15199.61 18799.87 4399.74 12799.76 12298.69 14899.87 21298.20 20999.80 19999.75 71
BP-MVS198.72 25698.46 26699.50 18499.53 22799.00 24299.34 12998.53 36999.65 10599.73 13199.38 29690.62 37599.96 5699.50 7099.86 15599.55 181
test072699.69 15699.80 4699.24 16699.57 21599.16 19699.73 13199.65 19098.35 198
pmmvs599.19 17599.11 16599.42 21099.76 11798.88 25898.55 30599.73 12098.82 24199.72 13399.62 21096.56 29499.82 28999.32 10099.95 8199.56 178
Anonymous2023120699.35 13299.31 12599.47 19499.74 13599.06 24099.28 15399.74 11699.23 18299.72 13399.53 25797.63 25999.88 19899.11 13499.84 16599.48 221
CVMVSNet98.61 26498.88 22797.80 36999.58 19593.60 40699.26 15999.64 17599.66 10299.72 13399.67 18093.26 34399.93 9999.30 10399.81 19299.87 32
baseline99.63 6099.62 5799.66 11999.80 8699.62 11999.44 11199.80 8599.71 8499.72 13399.69 16599.15 8399.83 27999.32 10099.94 9499.53 195
Patchmtry98.78 24998.54 26199.49 18898.89 37599.19 22199.32 13699.67 15299.65 10599.72 13399.79 10091.87 35899.95 6698.00 22899.97 5599.33 265
WB-MVS99.44 10699.32 12399.80 4699.81 8099.61 12599.47 10599.81 8299.82 6299.71 13899.72 14296.60 29399.98 2199.75 4199.23 34199.82 49
test250694.73 38594.59 38695.15 40199.59 19085.90 42799.75 2274.01 42999.89 3799.71 13899.86 5979.00 41899.90 16599.52 6799.99 1699.65 119
UA-Net99.78 2899.76 3899.86 2499.72 14199.71 8599.91 499.95 3099.96 1999.71 13899.91 2899.15 8399.97 3599.50 70100.00 199.90 24
TranMVSNet+NR-MVSNet99.54 8099.47 8999.76 6699.58 19599.64 11299.30 14499.63 17799.61 11799.71 13899.56 24698.76 13999.96 5699.14 13299.92 10599.68 94
tttt051797.62 33097.20 34098.90 31399.76 11797.40 35199.48 10294.36 41499.06 21199.70 14299.49 26884.55 40499.94 8198.73 17499.65 26199.36 258
UniMVSNet (Re)99.37 12799.26 14199.68 10999.51 23699.58 13498.98 25199.60 19899.43 15499.70 14299.36 30397.70 24999.88 19899.20 11799.87 14799.59 166
FMVSNet299.35 13299.28 13799.55 17199.49 24799.35 19099.45 10999.57 21599.44 14899.70 14299.74 13197.21 27499.87 21299.03 14199.94 9499.44 235
APD_test199.36 13099.28 13799.61 15199.89 3899.89 1099.32 13699.74 11699.18 18999.69 14599.75 12798.41 19099.84 26497.85 24499.70 24199.10 318
IU-MVS99.69 15699.77 5699.22 32597.50 35099.69 14597.75 25399.70 24199.77 63
VPNet99.46 10099.37 11199.71 10199.82 7299.59 13099.48 10299.70 13799.81 6599.69 14599.58 23597.66 25799.86 23199.17 12399.44 31199.67 102
PC_three_145297.56 34499.68 14899.41 28699.09 9297.09 42096.66 33199.60 27799.62 145
D2MVS99.22 16599.19 14999.29 25099.69 15698.74 26998.81 27399.41 27798.55 27299.68 14899.69 16598.13 22199.87 21298.82 16299.98 4199.24 283
xiu_mvs_v1_base_debu99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
xiu_mvs_v1_base99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
xiu_mvs_v1_base_debi99.23 15799.34 11898.91 30799.59 19098.23 30598.47 31699.66 15799.61 11799.68 14898.94 37399.39 5299.97 3599.18 12099.55 29098.51 386
ambc99.20 26899.35 29098.53 28799.17 18899.46 26699.67 15399.80 9098.46 18499.70 34797.92 23499.70 24199.38 252
RRT-MVS99.08 20099.00 20299.33 23899.27 31798.65 27999.62 6499.93 3299.66 10299.67 15399.82 8095.27 32399.93 9998.64 18299.09 34799.41 246
UniMVSNet_NR-MVSNet99.37 12799.25 14399.72 9699.47 25899.56 13798.97 25299.61 18799.43 15499.67 15399.28 32197.85 24199.95 6699.17 12399.81 19299.65 119
DU-MVS99.33 14099.21 14799.71 10199.43 27099.56 13798.83 26899.53 24199.38 16099.67 15399.36 30397.67 25399.95 6699.17 12399.81 19299.63 134
COLMAP_ROBcopyleft98.06 1299.45 10499.37 11199.70 10599.83 6599.70 9299.38 12099.78 9799.53 12999.67 15399.78 11099.19 7999.86 23197.32 28899.87 14799.55 181
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
XVG-OURS99.21 17099.06 18299.65 12599.82 7299.62 11997.87 37299.74 11698.36 29399.66 15899.68 17699.71 2299.90 16596.84 32199.88 13599.43 241
DeepPCF-MVS98.42 699.18 17999.02 19599.67 11299.22 32699.75 6997.25 39999.47 26398.72 25599.66 15899.70 15899.29 6699.63 38498.07 22399.81 19299.62 145
Baseline_NR-MVSNet99.49 8999.37 11199.82 3699.91 3099.84 2498.83 26899.86 5499.68 9499.65 16099.88 4797.67 25399.87 21299.03 14199.86 15599.76 68
our_test_398.85 24399.09 17498.13 35799.66 17194.90 39897.72 37799.58 21399.07 20999.64 16199.62 21098.19 21799.93 9998.41 19299.95 8199.55 181
LPG-MVS_test99.22 16599.05 18699.74 8199.82 7299.63 11799.16 19499.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
LGP-MVS_train99.74 8199.82 7299.63 11799.73 12097.56 34499.64 16199.69 16599.37 5899.89 18496.66 33199.87 14799.69 88
ACMM98.09 1199.46 10099.38 10899.72 9699.80 8699.69 9699.13 20499.65 16798.99 21599.64 16199.72 14299.39 5299.86 23198.23 20699.81 19299.60 159
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
FA-MVS(test-final)98.52 27798.32 28299.10 28299.48 25298.67 27399.77 1698.60 36797.35 35899.63 16599.80 9093.07 34699.84 26497.92 23499.30 33098.78 370
FOURS199.83 6599.89 1099.74 2499.71 13299.69 9299.63 165
AllTest99.21 17099.07 18099.63 13999.78 10599.64 11299.12 20899.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
TestCases99.63 13999.78 10599.64 11299.83 6898.63 26499.63 16599.72 14298.68 14999.75 33296.38 34999.83 17399.51 207
MDA-MVSNet-bldmvs99.06 20499.05 18699.07 28899.80 8697.83 33598.89 26099.72 12999.29 17099.63 16599.70 15896.47 29899.89 18498.17 21599.82 18299.50 212
TSAR-MVS + GP.99.12 19399.04 19299.38 22599.34 29999.16 22498.15 34099.29 30998.18 31399.63 16599.62 21099.18 8099.68 36598.20 20999.74 22499.30 274
XVG-OURS-SEG-HR99.16 18598.99 20999.66 11999.84 6199.64 11298.25 33499.73 12098.39 29099.63 16599.43 28399.70 2499.90 16597.34 28798.64 37999.44 235
MVSFormer99.41 11699.44 9899.31 24699.57 20598.40 29699.77 1699.80 8599.73 7899.63 16599.30 31798.02 22899.98 2199.43 7899.69 24599.55 181
lupinMVS98.96 22898.87 22899.24 26499.57 20598.40 29698.12 34499.18 33298.28 30699.63 16599.13 34398.02 22899.97 3598.22 20799.69 24599.35 261
DVP-MVScopyleft99.32 14299.17 15199.77 5999.69 15699.80 4699.14 19899.31 30599.16 19699.62 17499.61 21998.35 19899.91 14797.88 23899.72 23699.61 155
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD99.18 18999.62 17499.61 21998.58 16499.91 14797.72 25599.80 19999.77 63
GBi-Net99.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
test199.42 11299.31 12599.73 9099.49 24799.77 5699.68 4699.70 13799.44 14899.62 17499.83 7397.21 27499.90 16598.96 15099.90 11699.53 195
new_pmnet98.88 24098.89 22698.84 31899.70 15297.62 34398.15 34099.50 25597.98 32399.62 17499.54 25598.15 22099.94 8197.55 27499.84 16598.95 351
FMVSNet398.80 24898.63 24999.32 24399.13 34298.72 27099.10 21699.48 26099.23 18299.62 17499.64 19292.57 35099.86 23198.96 15099.90 11699.39 250
CS-MVS99.67 5399.70 4299.58 15999.53 22799.84 2499.79 1299.96 2599.90 3199.61 18099.41 28699.51 4799.95 6699.66 4899.89 12698.96 349
CDS-MVSNet99.22 16599.13 15899.50 18499.35 29099.11 23098.96 25499.54 23299.46 14399.61 18099.70 15896.31 30699.83 27999.34 9599.88 13599.55 181
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
IS-MVSNet99.03 21198.85 23099.55 17199.80 8699.25 20899.73 2799.15 33699.37 16199.61 18099.71 15094.73 32899.81 30497.70 26099.88 13599.58 171
cl____98.54 27598.41 27298.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.85 33699.78 31797.97 23199.89 12699.17 303
DIV-MVS_self_test98.54 27598.42 27198.92 30599.03 36197.80 33897.46 39199.59 20498.90 22999.60 18399.46 27893.87 33599.78 31797.97 23199.89 12699.18 301
XVG-ACMP-BASELINE99.23 15799.10 17399.63 13999.82 7299.58 13498.83 26899.72 12998.36 29399.60 18399.71 15098.92 11999.91 14797.08 30799.84 16599.40 248
miper_lstm_enhance98.65 26398.60 25098.82 32399.20 33197.33 35397.78 37599.66 15799.01 21499.59 18699.50 26494.62 32999.85 24998.12 21899.90 11699.26 280
YYNet198.95 23198.99 20998.84 31899.64 17697.14 35998.22 33699.32 30198.92 22799.59 18699.66 18597.40 26599.83 27998.27 20299.90 11699.55 181
eth_miper_zixun_eth98.68 26198.71 24398.60 33499.10 35196.84 36697.52 38999.54 23298.94 22299.58 18899.48 27196.25 30999.76 32898.01 22799.93 10199.21 292
pmmvs499.13 19199.06 18299.36 23299.57 20599.10 23598.01 35799.25 31898.78 24899.58 18899.44 28298.24 20999.76 32898.74 17399.93 10199.22 289
DeepC-MVS_fast98.47 599.23 15799.12 16299.56 16899.28 31599.22 21598.99 24899.40 28499.08 20799.58 18899.64 19298.90 12499.83 27997.44 28199.75 21799.63 134
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
GDP-MVS98.81 24798.57 25699.50 18499.53 22799.12 22999.28 15399.86 5499.53 12999.57 19199.32 31290.88 37199.98 2199.46 7499.74 22499.42 245
SMA-MVScopyleft99.19 17599.00 20299.73 9099.46 26299.73 7899.13 20499.52 24697.40 35599.57 19199.64 19298.93 11699.83 27997.61 27199.79 20499.63 134
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
TSAR-MVS + MP.99.34 13799.24 14599.63 13999.82 7299.37 18399.26 15999.35 29698.77 25099.57 19199.70 15899.27 7199.88 19897.71 25799.75 21799.65 119
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
APD-MVS_3200maxsize99.31 14399.16 15299.74 8199.53 22799.75 6999.27 15799.61 18799.19 18899.57 19199.64 19298.76 13999.90 16597.29 29099.62 26799.56 178
WR-MVS99.11 19698.93 21899.66 11999.30 31099.42 16898.42 32299.37 29299.04 21299.57 19199.20 33996.89 28699.86 23198.66 18099.87 14799.70 82
SteuartSystems-ACMMP99.30 14499.14 15699.76 6699.87 5099.66 10399.18 18399.60 19898.55 27299.57 19199.67 18099.03 10599.94 8197.01 30999.80 19999.69 88
Skip Steuart: Steuart Systems R&D Blog.
ab-mvs99.33 14099.28 13799.47 19499.57 20599.39 17899.78 1499.43 27498.87 23399.57 19199.82 8098.06 22699.87 21298.69 17899.73 23099.15 307
CMPMVSbinary77.52 2398.50 28098.19 29599.41 21798.33 40999.56 13799.01 24099.59 20495.44 39399.57 19199.80 9095.64 31699.46 40896.47 34499.92 10599.21 292
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
thisisatest053097.45 33696.95 34798.94 30199.68 16497.73 34099.09 22094.19 41698.61 26899.56 19999.30 31784.30 40599.93 9998.27 20299.54 29599.16 305
Anonymous20240521198.75 25298.46 26699.63 13999.34 29999.66 10399.47 10597.65 39699.28 17399.56 19999.50 26493.15 34499.84 26498.62 18399.58 28399.40 248
VDD-MVS99.20 17299.11 16599.44 20499.43 27098.98 24599.50 9698.32 38399.80 6899.56 19999.69 16596.99 28499.85 24998.99 14499.73 23099.50 212
MDA-MVSNet_test_wron98.95 23198.99 20998.85 31699.64 17697.16 35798.23 33599.33 29998.93 22599.56 19999.66 18597.39 26799.83 27998.29 20099.88 13599.55 181
EPP-MVSNet99.17 18499.00 20299.66 11999.80 8699.43 16599.70 3599.24 32199.48 13699.56 19999.77 11994.89 32599.93 9998.72 17599.89 12699.63 134
test_part299.62 18299.67 10199.55 204
UnsupCasMVSNet_eth98.83 24498.57 25699.59 15699.68 16499.45 15998.99 24899.67 15299.48 13699.55 20499.36 30394.92 32499.86 23198.95 15496.57 41399.45 230
CL-MVSNet_self_test98.71 25898.56 26099.15 27499.22 32698.66 27697.14 40299.51 25198.09 31799.54 20699.27 32396.87 28799.74 33598.43 19198.96 35699.03 340
c3_l98.72 25698.71 24398.72 32899.12 34497.22 35697.68 38099.56 22098.90 22999.54 20699.48 27196.37 30499.73 33897.88 23899.88 13599.21 292
MSP-MVS99.04 21098.79 23999.81 4199.78 10599.73 7899.35 12899.57 21598.54 27599.54 20698.99 36496.81 28899.93 9996.97 31299.53 29799.77 63
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
APD-MVScopyleft98.87 24198.59 25299.71 10199.50 24299.62 11999.01 24099.57 21596.80 37799.54 20699.63 20398.29 20499.91 14795.24 38499.71 23999.61 155
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
TinyColmap98.97 22598.93 21899.07 28899.46 26298.19 30997.75 37699.75 11098.79 24699.54 20699.70 15898.97 11399.62 38596.63 33599.83 17399.41 246
ACMMP_NAP99.28 14699.11 16599.79 5399.75 12999.81 4298.95 25599.53 24198.27 30799.53 21199.73 13598.75 14199.87 21297.70 26099.83 17399.68 94
MSDG99.08 20098.98 21299.37 22899.60 18599.13 22797.54 38599.74 11698.84 23999.53 21199.55 25399.10 9099.79 31497.07 30899.86 15599.18 301
WBMVS97.50 33597.18 34198.48 34098.85 37995.89 38598.44 32199.52 24699.53 12999.52 21399.42 28580.10 41199.86 23199.24 11099.95 8199.68 94
SR-MVS-dyc-post99.27 15099.11 16599.73 9099.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.41 19099.91 14797.27 29399.61 27499.54 190
RE-MVS-def99.13 15899.54 22199.74 7599.26 15999.62 18099.16 19699.52 21399.64 19298.57 16597.27 29399.61 27499.54 190
miper_ehance_all_eth98.59 27098.59 25298.59 33598.98 36797.07 36097.49 39099.52 24698.50 27999.52 21399.37 29996.41 30299.71 34497.86 24299.62 26799.00 347
OPM-MVS99.26 15299.13 15899.63 13999.70 15299.61 12598.58 29999.48 26098.50 27999.52 21399.63 20399.14 8699.76 32897.89 23799.77 21399.51 207
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
ACMMPcopyleft99.25 15399.08 17699.74 8199.79 9899.68 9999.50 9699.65 16798.07 31899.52 21399.69 16598.57 16599.92 12597.18 30499.79 20499.63 134
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
HPM-MVS_fast99.43 10999.30 13099.80 4699.83 6599.81 4299.52 8999.70 13798.35 29899.51 21999.50 26499.31 6499.88 19898.18 21399.84 16599.69 88
EC-MVSNet99.69 4499.69 4599.68 10999.71 14499.91 499.76 2099.96 2599.86 4699.51 21999.39 29499.57 4099.93 9999.64 5299.86 15599.20 296
SPE-MVS-test99.68 4799.70 4299.64 13299.57 20599.83 2999.78 1499.97 1999.92 2899.50 22199.38 29699.57 4099.95 6699.69 4599.90 11699.15 307
pmmvs398.08 31397.80 32298.91 30799.41 27797.69 34297.87 37299.66 15795.87 38799.50 22199.51 26190.35 37999.97 3598.55 18699.47 30899.08 329
RPSCF99.18 17999.02 19599.64 13299.83 6599.85 1999.44 11199.82 7398.33 30399.50 22199.78 11097.90 23699.65 38196.78 32499.83 17399.44 235
MM99.18 17999.05 18699.55 17199.35 29098.81 26299.05 22797.79 39599.99 399.48 22499.59 23296.29 30899.95 6699.94 1699.98 4199.88 28
diffmvspermissive99.34 13799.32 12399.39 22299.67 17098.77 26798.57 30399.81 8299.61 11799.48 22499.41 28698.47 18199.86 23198.97 14899.90 11699.53 195
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-299.51 8499.46 9399.64 13299.70 15299.11 23099.04 23299.87 5199.71 8499.47 22699.79 10098.24 20999.98 2199.38 8799.96 6899.83 43
SR-MVS99.19 17599.00 20299.74 8199.51 23699.72 8399.18 18399.60 19898.85 23699.47 22699.58 23598.38 19599.92 12596.92 31499.54 29599.57 176
VNet99.18 17999.06 18299.56 16899.24 32399.36 18799.33 13399.31 30599.67 9899.47 22699.57 24296.48 29799.84 26499.15 12699.30 33099.47 225
ACMP97.51 1499.05 20798.84 23299.67 11299.78 10599.55 14098.88 26199.66 15797.11 37099.47 22699.60 22799.07 9799.89 18496.18 35799.85 16099.58 171
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
baseline197.73 32597.33 33698.96 29899.30 31097.73 34099.40 11598.42 37699.33 16799.46 23099.21 33791.18 36499.82 28998.35 19691.26 42199.32 268
Test_1112_low_res98.95 23198.73 24199.63 13999.68 16499.15 22698.09 34899.80 8597.14 36899.46 23099.40 29096.11 31199.89 18499.01 14399.84 16599.84 39
MP-MVS-pluss99.14 18998.92 22299.80 4699.83 6599.83 2998.61 29299.63 17796.84 37599.44 23299.58 23598.81 12999.91 14797.70 26099.82 18299.67 102
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
MS-PatchMatch99.00 22198.97 21399.09 28399.11 34998.19 30998.76 28299.33 29998.49 28199.44 23299.58 23598.21 21499.69 35398.20 20999.62 26799.39 250
OMC-MVS98.90 23698.72 24299.44 20499.39 27999.42 16898.58 29999.64 17597.31 36099.44 23299.62 21098.59 16299.69 35396.17 35899.79 20499.22 289
OpenMVS_ROBcopyleft97.31 1797.36 34196.84 35198.89 31499.29 31299.45 15998.87 26299.48 26086.54 41799.44 23299.74 13197.34 26999.86 23191.61 40799.28 33397.37 413
mmtdpeth99.78 2899.83 2199.66 11999.85 5799.05 24199.79 1299.97 19100.00 199.43 23699.94 1999.64 2899.94 8199.83 3399.99 1699.98 4
miper_enhance_ethall98.03 31597.94 31598.32 34998.27 41096.43 37396.95 40699.41 27796.37 38299.43 23698.96 37194.74 32799.69 35397.71 25799.62 26798.83 366
1112_ss99.05 20798.84 23299.67 11299.66 17199.29 19998.52 31199.82 7397.65 34299.43 23699.16 34196.42 30099.91 14799.07 13999.84 16599.80 50
SF-MVS99.10 19998.93 21899.62 14899.58 19599.51 14599.13 20499.65 16797.97 32499.42 23999.61 21998.86 12699.87 21296.45 34699.68 25099.49 217
xiu_mvs_v2_base99.02 21399.11 16598.77 32599.37 28498.09 31998.13 34399.51 25199.47 14099.42 23998.54 39599.38 5699.97 3598.83 16099.33 32698.24 398
MTAPA99.35 13299.20 14899.80 4699.81 8099.81 4299.33 13399.53 24199.27 17499.42 23999.63 20398.21 21499.95 6697.83 24899.79 20499.65 119
PGM-MVS99.20 17299.01 19899.77 5999.75 12999.71 8599.16 19499.72 12997.99 32299.42 23999.60 22798.81 12999.93 9996.91 31599.74 22499.66 111
114514_t98.49 28298.11 30099.64 13299.73 13899.58 13499.24 16699.76 10589.94 41499.42 23999.56 24697.76 24899.86 23197.74 25499.82 18299.47 225
PMVScopyleft92.94 2198.82 24598.81 23698.85 31699.84 6197.99 32599.20 17699.47 26399.71 8499.42 23999.82 8098.09 22399.47 40693.88 40399.85 16099.07 334
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
cl2297.56 33397.28 33798.40 34498.37 40896.75 36797.24 40099.37 29297.31 36099.41 24599.22 33587.30 39099.37 41097.70 26099.62 26799.08 329
PS-MVSNAJ99.00 22199.08 17698.76 32699.37 28498.10 31898.00 35999.51 25199.47 14099.41 24598.50 39799.28 6899.97 3598.83 16099.34 32598.20 402
DSMNet-mixed99.48 9199.65 5298.95 30099.71 14497.27 35499.50 9699.82 7399.59 12599.41 24599.85 6399.62 33100.00 199.53 6699.89 12699.59 166
DELS-MVS99.34 13799.30 13099.48 19299.51 23699.36 18798.12 34499.53 24199.36 16499.41 24599.61 21999.22 7699.87 21299.21 11499.68 25099.20 296
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
CSCG99.37 12799.29 13599.60 15499.71 14499.46 15499.43 11399.85 6098.79 24699.41 24599.60 22798.92 11999.92 12598.02 22499.92 10599.43 241
MonoMVSNet98.23 30498.32 28297.99 36098.97 36896.62 36999.49 10098.42 37699.62 11399.40 25099.79 10095.51 32098.58 41997.68 26895.98 41798.76 373
test_040299.22 16599.14 15699.45 20099.79 9899.43 16599.28 15399.68 14799.54 12799.40 25099.56 24699.07 9799.82 28996.01 36299.96 6899.11 316
LF4IMVS99.01 21998.92 22299.27 25699.71 14499.28 20198.59 29799.77 10098.32 30499.39 25299.41 28698.62 15899.84 26496.62 33699.84 16598.69 375
VDDNet98.97 22598.82 23599.42 21099.71 14498.81 26299.62 6498.68 36099.81 6599.38 25399.80 9094.25 33299.85 24998.79 16699.32 32899.59 166
sss98.90 23698.77 24099.27 25699.48 25298.44 29398.72 28699.32 30197.94 32899.37 25499.35 30896.31 30699.91 14798.85 15899.63 26699.47 225
ttmdpeth99.48 9199.55 7999.29 25099.76 11798.16 31399.33 13399.95 3099.79 7099.36 25599.89 3899.13 8899.77 32599.09 13699.64 26399.93 18
HFP-MVS99.25 15399.08 17699.76 6699.73 13899.70 9299.31 14199.59 20498.36 29399.36 25599.37 29998.80 13399.91 14797.43 28299.75 21799.68 94
ACMMPR99.23 15799.06 18299.76 6699.74 13599.69 9699.31 14199.59 20498.36 29399.35 25799.38 29698.61 16099.93 9997.43 28299.75 21799.67 102
mvsmamba99.08 20098.95 21699.45 20099.36 28799.18 22399.39 11798.81 35499.37 16199.35 25799.70 15896.36 30599.94 8198.66 18099.59 28199.22 289
HPM-MVScopyleft99.25 15399.07 18099.78 5699.81 8099.75 6999.61 7099.67 15297.72 33999.35 25799.25 32899.23 7599.92 12597.21 30299.82 18299.67 102
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
3Dnovator99.15 299.43 10999.36 11499.65 12599.39 27999.42 16899.70 3599.56 22099.23 18299.35 25799.80 9099.17 8199.95 6698.21 20899.84 16599.59 166
PVSNet_BlendedMVS99.03 21199.01 19899.09 28399.54 22197.99 32598.58 29999.82 7397.62 34399.34 26199.71 15098.52 17799.77 32597.98 22999.97 5599.52 205
PVSNet_Blended98.70 25998.59 25299.02 29399.54 22197.99 32597.58 38499.82 7395.70 39199.34 26198.98 36798.52 17799.77 32597.98 22999.83 17399.30 274
FE-MVS97.85 32097.42 33499.15 27499.44 26798.75 26899.77 1698.20 38695.85 38899.33 26399.80 9088.86 38799.88 19896.40 34799.12 34498.81 367
MIMVSNet98.43 28798.20 29299.11 28099.53 22798.38 30099.58 7998.61 36598.96 21999.33 26399.76 12290.92 36899.81 30497.38 28599.76 21599.15 307
ITE_SJBPF99.38 22599.63 17899.44 16199.73 12098.56 27199.33 26399.53 25798.88 12599.68 36596.01 36299.65 26199.02 345
h-mvs3398.61 26498.34 28099.44 20499.60 18598.67 27399.27 15799.44 27199.68 9499.32 26699.49 26892.50 353100.00 199.24 11096.51 41499.65 119
hse-mvs298.52 27798.30 28599.16 27299.29 31298.60 28498.77 28199.02 34599.68 9499.32 26699.04 35792.50 35399.85 24999.24 11097.87 40499.03 340
GST-MVS99.16 18598.96 21599.75 7699.73 13899.73 7899.20 17699.55 22698.22 30999.32 26699.35 30898.65 15699.91 14796.86 31899.74 22499.62 145
MVS_030498.61 26498.30 28599.52 17997.88 41898.95 25098.76 28294.11 41799.84 5599.32 26699.57 24295.57 31999.95 6699.68 4799.98 4199.68 94
region2R99.23 15799.05 18699.77 5999.76 11799.70 9299.31 14199.59 20498.41 28799.32 26699.36 30398.73 14599.93 9997.29 29099.74 22499.67 102
test_one_060199.63 17899.76 6399.55 22699.23 18299.31 27199.61 21998.59 162
MVP-Stereo99.16 18599.08 17699.43 20899.48 25299.07 23899.08 22399.55 22698.63 26499.31 27199.68 17698.19 21799.78 31798.18 21399.58 28399.45 230
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
LFMVS98.46 28598.19 29599.26 25999.24 32398.52 28999.62 6496.94 40499.87 4399.31 27199.58 23591.04 36699.81 30498.68 17999.42 31599.45 230
MVS_111021_LR99.13 19199.03 19499.42 21099.58 19599.32 19597.91 37099.73 12098.68 25999.31 27199.48 27199.09 9299.66 37597.70 26099.77 21399.29 277
MVS-HIRNet97.86 31998.22 29096.76 39099.28 31591.53 41798.38 32492.60 42099.13 20299.31 27199.96 1597.18 27899.68 36598.34 19799.83 17399.07 334
tmp_tt95.75 37995.42 37396.76 39089.90 42894.42 40098.86 26397.87 39478.01 41999.30 27699.69 16597.70 24995.89 42199.29 10698.14 39799.95 13
9.1498.64 24799.45 26698.81 27399.60 19897.52 34999.28 27799.56 24698.53 17499.83 27995.36 38399.64 263
CPTT-MVS98.74 25398.44 26999.64 13299.61 18399.38 18099.18 18399.55 22696.49 37999.27 27899.37 29997.11 28099.92 12595.74 37599.67 25699.62 145
CLD-MVS98.76 25198.57 25699.33 23899.57 20598.97 24797.53 38799.55 22696.41 38099.27 27899.13 34399.07 9799.78 31796.73 32799.89 12699.23 287
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
CHOSEN 280x42098.41 28998.41 27298.40 34499.34 29995.89 38596.94 40799.44 27198.80 24599.25 28099.52 25993.51 34299.98 2198.94 15599.98 4199.32 268
FMVSNet597.80 32297.25 33999.42 21098.83 38198.97 24799.38 12099.80 8598.87 23399.25 28099.69 16580.60 41099.91 14798.96 15099.90 11699.38 252
PHI-MVS99.11 19698.95 21699.59 15699.13 34299.59 13099.17 18899.65 16797.88 33299.25 28099.46 27898.97 11399.80 31197.26 29599.82 18299.37 255
Vis-MVSNet (Re-imp)98.77 25098.58 25599.34 23599.78 10598.88 25899.61 7099.56 22099.11 20699.24 28399.56 24693.00 34899.78 31797.43 28299.89 12699.35 261
CANet99.11 19699.05 18699.28 25398.83 38198.56 28698.71 28899.41 27799.25 17899.23 28499.22 33597.66 25799.94 8199.19 11899.97 5599.33 265
Patchmatch-test98.10 31297.98 30998.48 34099.27 31796.48 37199.40 11599.07 34198.81 24399.23 28499.57 24290.11 38199.87 21296.69 32899.64 26399.09 323
MG-MVS98.52 27798.39 27498.94 30199.15 33997.39 35298.18 33799.21 32898.89 23299.23 28499.63 20397.37 26899.74 33594.22 39799.61 27499.69 88
test_yl98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
DCV-MVSNet98.25 30197.95 31199.13 27899.17 33798.47 29099.00 24398.67 36298.97 21799.22 28799.02 36291.31 36299.69 35397.26 29598.93 35799.24 283
test0.0.03 197.37 34096.91 35098.74 32797.72 41997.57 34497.60 38397.36 40298.00 32099.21 28998.02 40590.04 38299.79 31498.37 19495.89 41898.86 363
MVS_Test99.28 14699.31 12599.19 26999.35 29098.79 26599.36 12799.49 25999.17 19499.21 28999.67 18098.78 13699.66 37599.09 13699.66 25999.10 318
CDPH-MVS98.56 27398.20 29299.61 15199.50 24299.46 15498.32 32899.41 27795.22 39699.21 28999.10 35198.34 20099.82 28995.09 38899.66 25999.56 178
WTY-MVS98.59 27098.37 27699.26 25999.43 27098.40 29698.74 28499.13 33998.10 31599.21 28999.24 33394.82 32699.90 16597.86 24298.77 36899.49 217
MDTV_nov1_ep13_2view91.44 41899.14 19897.37 35799.21 28991.78 36096.75 32599.03 340
BH-untuned98.22 30698.09 30198.58 33799.38 28297.24 35598.55 30598.98 34897.81 33799.20 29498.76 38597.01 28399.65 38194.83 38998.33 38798.86 363
CR-MVSNet98.35 29698.20 29298.83 32099.05 35798.12 31599.30 14499.67 15297.39 35699.16 29599.79 10091.87 35899.91 14798.78 17098.77 36898.44 391
RPMNet98.60 26798.53 26298.83 32099.05 35798.12 31599.30 14499.62 18099.86 4699.16 29599.74 13192.53 35299.92 12598.75 17298.77 36898.44 391
thisisatest051596.98 34896.42 35598.66 33199.42 27597.47 34797.27 39894.30 41597.24 36299.15 29798.86 37985.01 40299.87 21297.10 30699.39 31898.63 376
LS3D99.24 15699.11 16599.61 15198.38 40799.79 4899.57 8299.68 14799.61 11799.15 29799.71 15098.70 14799.91 14797.54 27599.68 25099.13 315
ZNCC-MVS99.22 16599.04 19299.77 5999.76 11799.73 7899.28 15399.56 22098.19 31299.14 29999.29 32098.84 12899.92 12597.53 27799.80 19999.64 129
HQP_MVS98.90 23698.68 24699.55 17199.58 19599.24 21298.80 27699.54 23298.94 22299.14 29999.25 32897.24 27299.82 28995.84 37299.78 20999.60 159
plane_prior399.31 19698.36 29399.14 299
3Dnovator+98.92 399.35 13299.24 14599.67 11299.35 29099.47 15099.62 6499.50 25599.44 14899.12 30299.78 11098.77 13899.94 8197.87 24199.72 23699.62 145
ZD-MVS99.43 27099.61 12599.43 27496.38 38199.11 30399.07 35397.86 23999.92 12594.04 40099.49 306
PatchMatch-RL98.68 26198.47 26599.30 24999.44 26799.28 20198.14 34299.54 23297.12 36999.11 30399.25 32897.80 24499.70 34796.51 34099.30 33098.93 354
SCA98.11 31198.36 27797.36 38099.20 33192.99 40898.17 33998.49 37398.24 30899.10 30599.57 24296.01 31399.94 8196.86 31899.62 26799.14 312
PatchT98.45 28698.32 28298.83 32098.94 37098.29 30399.24 16698.82 35399.84 5599.08 30699.76 12291.37 36199.94 8198.82 16299.00 35498.26 397
UnsupCasMVSNet_bld98.55 27498.27 28899.40 21999.56 21699.37 18397.97 36499.68 14797.49 35199.08 30699.35 30895.41 32299.82 28997.70 26098.19 39499.01 346
MVS_111021_HR99.12 19399.02 19599.40 21999.50 24299.11 23097.92 36899.71 13298.76 25399.08 30699.47 27599.17 8199.54 39897.85 24499.76 21599.54 190
TAPA-MVS97.92 1398.03 31597.55 33199.46 19799.47 25899.44 16198.50 31399.62 18086.79 41599.07 30999.26 32698.26 20899.62 38597.28 29299.73 23099.31 272
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
CP-MVS99.23 15799.05 18699.75 7699.66 17199.66 10399.38 12099.62 18098.38 29199.06 31099.27 32398.79 13499.94 8197.51 27899.82 18299.66 111
MCST-MVS99.02 21398.81 23699.65 12599.58 19599.49 14798.58 29999.07 34198.40 28999.04 31199.25 32898.51 17999.80 31197.31 28999.51 30199.65 119
mPP-MVS99.19 17599.00 20299.76 6699.76 11799.68 9999.38 12099.54 23298.34 30299.01 31299.50 26498.53 17499.93 9997.18 30499.78 20999.66 111
PVSNet97.47 1598.42 28898.44 26998.35 34699.46 26296.26 37796.70 41099.34 29897.68 34199.00 31399.13 34397.40 26599.72 34097.59 27399.68 25099.08 329
Fast-Effi-MVS+-dtu99.20 17299.12 16299.43 20899.25 32199.69 9699.05 22799.82 7399.50 13398.97 31499.05 35598.98 11199.98 2198.20 20999.24 33998.62 377
MP-MVScopyleft99.06 20498.83 23499.76 6699.76 11799.71 8599.32 13699.50 25598.35 29898.97 31499.48 27198.37 19699.92 12595.95 36899.75 21799.63 134
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
PCF-MVS96.03 1896.73 35495.86 36699.33 23899.44 26799.16 22496.87 40899.44 27186.58 41698.95 31699.40 29094.38 33199.88 19887.93 41499.80 19998.95 351
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
旧先验297.94 36695.33 39598.94 31799.88 19896.75 325
ETV-MVS99.18 17999.18 15099.16 27299.34 29999.28 20199.12 20899.79 9199.48 13698.93 31898.55 39499.40 5199.93 9998.51 18899.52 30098.28 396
BH-RMVSNet98.41 28998.14 29899.21 26699.21 32898.47 29098.60 29498.26 38498.35 29898.93 31899.31 31597.20 27799.66 37594.32 39599.10 34699.51 207
F-COLMAP98.74 25398.45 26899.62 14899.57 20599.47 15098.84 26699.65 16796.31 38398.93 31899.19 34097.68 25299.87 21296.52 33999.37 32199.53 195
Effi-MVS+-dtu99.07 20398.92 22299.52 17998.89 37599.78 5199.15 19699.66 15799.34 16598.92 32199.24 33397.69 25199.98 2198.11 21999.28 33398.81 367
EMVS96.96 34997.28 33795.99 40098.76 39291.03 41995.26 41798.61 36599.34 16598.92 32198.88 37893.79 33799.66 37592.87 40499.05 35097.30 414
tpmrst97.73 32598.07 30396.73 39298.71 39692.00 41299.10 21698.86 35098.52 27798.92 32199.54 25591.90 35699.82 28998.02 22499.03 35298.37 393
MSLP-MVS++99.05 20799.09 17498.91 30799.21 32898.36 30198.82 27299.47 26398.85 23698.90 32499.56 24698.78 13699.09 41398.57 18599.68 25099.26 280
KD-MVS_2432*160095.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
miper_refine_blended95.89 37495.41 37497.31 38394.96 42493.89 40297.09 40399.22 32597.23 36398.88 32599.04 35779.23 41599.54 39896.24 35596.81 41198.50 389
E-PMN97.14 34697.43 33396.27 39798.79 38791.62 41695.54 41599.01 34799.44 14898.88 32599.12 34792.78 34999.68 36594.30 39699.03 35297.50 410
testdata99.42 21099.51 23698.93 25499.30 30896.20 38498.87 32899.40 29098.33 20299.89 18496.29 35299.28 33399.44 235
CANet_DTU98.91 23498.85 23099.09 28398.79 38798.13 31498.18 33799.31 30599.48 13698.86 32999.51 26196.56 29499.95 6699.05 14099.95 8199.19 299
DP-MVS Recon98.50 28098.23 28999.31 24699.49 24799.46 15498.56 30499.63 17794.86 40298.85 33099.37 29997.81 24399.59 39296.08 35999.44 31198.88 361
EIA-MVS99.12 19399.01 19899.45 20099.36 28799.62 11999.34 12999.79 9198.41 28798.84 33198.89 37798.75 14199.84 26498.15 21799.51 30198.89 360
DPM-MVS98.28 29997.94 31599.32 24399.36 28799.11 23097.31 39798.78 35696.88 37398.84 33199.11 35097.77 24699.61 39094.03 40199.36 32299.23 287
MDTV_nov1_ep1397.73 32698.70 39790.83 42099.15 19698.02 38998.51 27898.82 33399.61 21990.98 36799.66 37596.89 31798.92 359
GA-MVS97.99 31897.68 32898.93 30499.52 23498.04 32397.19 40199.05 34498.32 30498.81 33498.97 36989.89 38499.41 40998.33 19899.05 35099.34 264
AdaColmapbinary98.60 26798.35 27999.38 22599.12 34499.22 21598.67 28999.42 27697.84 33698.81 33499.27 32397.32 27099.81 30495.14 38699.53 29799.10 318
WB-MVSnew98.34 29898.14 29898.96 29898.14 41697.90 33398.27 33197.26 40398.63 26498.80 33698.00 40797.77 24699.90 16597.37 28698.98 35599.09 323
CNVR-MVS98.99 22498.80 23899.56 16899.25 32199.43 16598.54 30899.27 31398.58 27098.80 33699.43 28398.53 17499.70 34797.22 30199.59 28199.54 190
Effi-MVS+99.06 20498.97 21399.34 23599.31 30698.98 24598.31 32999.91 3898.81 24398.79 33898.94 37399.14 8699.84 26498.79 16698.74 37299.20 296
PatchmatchNetpermissive97.65 32997.80 32297.18 38698.82 38492.49 41099.17 18898.39 37998.12 31498.79 33899.58 23590.71 37499.89 18497.23 30099.41 31699.16 305
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
QAPM98.40 29197.99 30799.65 12599.39 27999.47 15099.67 5099.52 24691.70 41198.78 34099.80 9098.55 16899.95 6694.71 39299.75 21799.53 195
XVS99.27 15099.11 16599.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34199.47 27598.47 18199.88 19897.62 26999.73 23099.67 102
X-MVStestdata96.09 37094.87 38299.75 7699.71 14499.71 8599.37 12499.61 18799.29 17098.76 34161.30 43298.47 18199.88 19897.62 26999.73 23099.67 102
HY-MVS98.23 998.21 30897.95 31198.99 29599.03 36198.24 30499.61 7098.72 35896.81 37698.73 34399.51 26194.06 33399.86 23196.91 31598.20 39298.86 363
dmvs_re98.69 26098.48 26499.31 24699.55 21999.42 16899.54 8798.38 38099.32 16898.72 34498.71 38796.76 29099.21 41196.01 36299.35 32499.31 272
alignmvs98.28 29997.96 31099.25 26299.12 34498.93 25499.03 23598.42 37699.64 10898.72 34497.85 40990.86 37299.62 38598.88 15799.13 34399.19 299
thres600view796.60 35796.16 35997.93 36499.63 17896.09 38299.18 18397.57 39798.77 25098.72 34497.32 41787.04 39399.72 34088.57 41298.62 38097.98 406
thres100view90096.39 36296.03 36297.47 37799.63 17895.93 38399.18 18397.57 39798.75 25498.70 34797.31 41887.04 39399.67 37087.62 41598.51 38496.81 415
test22299.51 23699.08 23797.83 37499.29 30995.21 39798.68 34899.31 31597.28 27199.38 31999.43 241
API-MVS98.38 29298.39 27498.35 34698.83 38199.26 20599.14 19899.18 33298.59 26998.66 34998.78 38498.61 16099.57 39494.14 39899.56 28696.21 417
sasdasda99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
canonicalmvs99.02 21399.00 20299.09 28399.10 35198.70 27199.61 7099.66 15799.63 11098.64 35097.65 41299.04 10399.54 39898.79 16698.92 35999.04 338
Fast-Effi-MVS+99.02 21398.87 22899.46 19799.38 28299.50 14699.04 23299.79 9197.17 36698.62 35298.74 38699.34 6299.95 6698.32 19999.41 31698.92 356
EPMVS96.53 35896.32 35697.17 38798.18 41392.97 40999.39 11789.95 42498.21 31098.61 35399.59 23286.69 39999.72 34096.99 31099.23 34198.81 367
新几何199.52 17999.50 24299.22 21599.26 31595.66 39298.60 35499.28 32197.67 25399.89 18495.95 36899.32 32899.45 230
HPM-MVS++copyleft98.96 22898.70 24599.74 8199.52 23499.71 8598.86 26399.19 33198.47 28398.59 35599.06 35498.08 22599.91 14796.94 31399.60 27799.60 159
MGCFI-Net99.02 21399.01 19899.06 29099.11 34998.60 28499.63 6199.67 15299.63 11098.58 35697.65 41299.07 9799.57 39498.85 15898.92 35999.03 340
PLCcopyleft97.35 1698.36 29397.99 30799.48 19299.32 30599.24 21298.50 31399.51 25195.19 39898.58 35698.96 37196.95 28599.83 27995.63 37699.25 33799.37 255
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
UGNet99.38 12499.34 11899.49 18898.90 37298.90 25799.70 3599.35 29699.86 4698.57 35899.81 8798.50 18099.93 9999.38 8799.98 4199.66 111
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PAPM_NR98.36 29398.04 30499.33 23899.48 25298.93 25498.79 27999.28 31297.54 34798.56 35998.57 39297.12 27999.69 35394.09 39998.90 36399.38 252
tfpn200view996.30 36595.89 36497.53 37499.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38496.81 415
thres40096.40 36195.89 36497.92 36599.58 19596.11 38099.00 24397.54 40098.43 28498.52 36096.98 42086.85 39599.67 37087.62 41598.51 38497.98 406
CNLPA98.57 27298.34 28099.28 25399.18 33699.10 23598.34 32699.41 27798.48 28298.52 36098.98 36797.05 28299.78 31795.59 37799.50 30498.96 349
PMMVS98.49 28298.29 28799.11 28098.96 36998.42 29597.54 38599.32 30197.53 34898.47 36398.15 40497.88 23899.82 28997.46 28099.24 33999.09 323
UWE-MVS96.21 36895.78 36897.49 37598.53 40293.83 40598.04 35493.94 41898.96 21998.46 36498.17 40379.86 41299.87 21296.99 31099.06 34898.78 370
test1299.54 17699.29 31299.33 19399.16 33598.43 36597.54 26099.82 28999.47 30899.48 221
NCCC98.82 24598.57 25699.58 15999.21 32899.31 19698.61 29299.25 31898.65 26298.43 36599.26 32697.86 23999.81 30496.55 33799.27 33699.61 155
thres20096.09 37095.68 37097.33 38299.48 25296.22 37998.53 31097.57 39798.06 31998.37 36796.73 42486.84 39799.61 39086.99 41898.57 38196.16 418
tpm97.15 34496.95 34797.75 37198.91 37194.24 40199.32 13697.96 39097.71 34098.29 36899.32 31286.72 39899.92 12598.10 22296.24 41699.09 323
原ACMM199.37 22899.47 25898.87 26099.27 31396.74 37898.26 36999.32 31297.93 23599.82 28995.96 36799.38 31999.43 241
ADS-MVSNet297.78 32397.66 33098.12 35899.14 34095.36 39199.22 17398.75 35796.97 37198.25 37099.64 19290.90 36999.94 8196.51 34099.56 28699.08 329
ADS-MVSNet97.72 32897.67 32997.86 36799.14 34094.65 39999.22 17398.86 35096.97 37198.25 37099.64 19290.90 36999.84 26496.51 34099.56 28699.08 329
dp96.86 35097.07 34396.24 39898.68 39890.30 42499.19 18298.38 38097.35 35898.23 37299.59 23287.23 39199.82 28996.27 35398.73 37598.59 380
TR-MVS97.44 33797.15 34298.32 34998.53 40297.46 34898.47 31697.91 39296.85 37498.21 37398.51 39696.42 30099.51 40492.16 40697.29 40997.98 406
HQP-NCC99.31 30697.98 36197.45 35298.15 374
ACMP_Plane99.31 30697.98 36197.45 35298.15 374
HQP4-MVS98.15 37499.70 34799.53 195
HQP-MVS98.36 29398.02 30699.39 22299.31 30698.94 25197.98 36199.37 29297.45 35298.15 37498.83 38096.67 29199.70 34794.73 39099.67 25699.53 195
CostFormer96.71 35596.79 35496.46 39698.90 37290.71 42299.41 11498.68 36094.69 40498.14 37899.34 31186.32 40099.80 31197.60 27298.07 40098.88 361
OpenMVScopyleft98.12 1098.23 30497.89 32099.26 25999.19 33399.26 20599.65 5999.69 14491.33 41298.14 37899.77 11998.28 20599.96 5695.41 38199.55 29098.58 382
test_prior297.95 36597.87 33398.05 38099.05 35597.90 23695.99 36599.49 306
MAR-MVS98.24 30397.92 31799.19 26998.78 38999.65 10999.17 18899.14 33795.36 39498.04 38198.81 38397.47 26299.72 34095.47 38099.06 34898.21 400
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
PAPR97.56 33397.07 34399.04 29298.80 38598.11 31797.63 38199.25 31894.56 40598.02 38298.25 40297.43 26499.68 36590.90 41098.74 37299.33 265
BH-w/o97.20 34397.01 34597.76 37099.08 35595.69 38798.03 35698.52 37095.76 39097.96 38398.02 40595.62 31799.47 40692.82 40597.25 41098.12 404
TEST999.35 29099.35 19098.11 34699.41 27794.83 40397.92 38498.99 36498.02 22899.85 249
train_agg98.35 29697.95 31199.57 16599.35 29099.35 19098.11 34699.41 27794.90 40097.92 38498.99 36498.02 22899.85 24995.38 38299.44 31199.50 212
tpm296.35 36396.22 35896.73 39298.88 37791.75 41599.21 17598.51 37193.27 40797.89 38699.21 33784.83 40399.70 34796.04 36198.18 39598.75 374
JIA-IIPM98.06 31497.92 31798.50 33998.59 40097.02 36198.80 27698.51 37199.88 4297.89 38699.87 5291.89 35799.90 16598.16 21697.68 40698.59 380
test_899.34 29999.31 19698.08 35099.40 28494.90 40097.87 38898.97 36998.02 22899.84 264
tpmvs97.39 33997.69 32796.52 39498.41 40691.76 41499.30 14498.94 34997.74 33897.85 38999.55 25392.40 35599.73 33896.25 35498.73 37598.06 405
testing396.48 36095.63 37199.01 29499.23 32597.81 33698.90 25999.10 34098.72 25597.84 39097.92 40872.44 42499.85 24997.21 30299.33 32699.35 261
test-LLR97.15 34496.95 34797.74 37298.18 41395.02 39697.38 39396.10 40698.00 32097.81 39198.58 39090.04 38299.91 14797.69 26698.78 36698.31 394
TESTMET0.1,196.24 36695.84 36797.41 37998.24 41193.84 40497.38 39395.84 41098.43 28497.81 39198.56 39379.77 41499.89 18497.77 24998.77 36898.52 385
test-mter96.23 36795.73 36997.74 37298.18 41395.02 39697.38 39396.10 40697.90 32997.81 39198.58 39079.12 41799.91 14797.69 26698.78 36698.31 394
agg_prior99.35 29099.36 18799.39 28797.76 39499.85 249
tpm cat196.78 35296.98 34696.16 39998.85 37990.59 42399.08 22399.32 30192.37 40897.73 39599.46 27891.15 36599.69 35396.07 36098.80 36598.21 400
PVSNet_095.53 1995.85 37895.31 37897.47 37798.78 38993.48 40795.72 41499.40 28496.18 38597.37 39697.73 41095.73 31599.58 39395.49 37981.40 42299.36 258
UBG96.53 35895.95 36398.29 35398.87 37896.31 37698.48 31598.07 38798.83 24097.32 39796.54 42779.81 41399.62 38596.84 32198.74 37298.95 351
MVS95.72 38094.63 38598.99 29598.56 40197.98 33099.30 14498.86 35072.71 42197.30 39899.08 35298.34 20099.74 33589.21 41198.33 38799.26 280
EPNet98.13 31097.77 32599.18 27194.57 42697.99 32599.24 16697.96 39099.74 7797.29 39999.62 21093.13 34599.97 3598.59 18499.83 17399.58 171
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dmvs_testset97.27 34296.83 35298.59 33599.46 26297.55 34599.25 16596.84 40598.78 24897.24 40097.67 41197.11 28098.97 41586.59 42098.54 38399.27 278
131498.00 31797.90 31998.27 35498.90 37297.45 34999.30 14499.06 34394.98 39997.21 40199.12 34798.43 18799.67 37095.58 37898.56 38297.71 409
ETVMVS96.14 36995.22 37998.89 31498.80 38598.01 32498.66 29098.35 38298.71 25797.18 40296.31 43174.23 42399.75 33296.64 33498.13 39998.90 358
AUN-MVS97.82 32197.38 33599.14 27799.27 31798.53 28798.72 28699.02 34598.10 31597.18 40299.03 36189.26 38699.85 24997.94 23397.91 40299.03 340
cascas96.99 34796.82 35397.48 37697.57 42295.64 38896.43 41299.56 22091.75 41097.13 40497.61 41595.58 31898.63 41796.68 32999.11 34598.18 403
testing9196.00 37395.32 37798.02 35998.76 39295.39 39098.38 32498.65 36498.82 24196.84 40596.71 42575.06 42199.71 34496.46 34598.23 39198.98 348
Syy-MVS98.17 30997.85 32199.15 27498.50 40498.79 26598.60 29499.21 32897.89 33096.76 40696.37 42995.47 32199.57 39499.10 13598.73 37599.09 323
myMVS_eth3d95.63 38194.73 38398.34 34898.50 40496.36 37498.60 29499.21 32897.89 33096.76 40696.37 42972.10 42599.57 39494.38 39498.73 37599.09 323
testing9995.86 37795.19 38097.87 36698.76 39295.03 39598.62 29198.44 37598.68 25996.67 40896.66 42674.31 42299.69 35396.51 34098.03 40198.90 358
testing1196.05 37295.41 37497.97 36298.78 38995.27 39398.59 29798.23 38598.86 23596.56 40996.91 42275.20 42099.69 35397.26 29598.29 38998.93 354
testing22295.60 38394.59 38698.61 33398.66 39997.45 34998.54 30897.90 39398.53 27696.54 41096.47 42870.62 42799.81 30495.91 37098.15 39698.56 384
FPMVS96.32 36495.50 37298.79 32499.60 18598.17 31298.46 32098.80 35597.16 36796.28 41199.63 20382.19 40699.09 41388.45 41398.89 36499.10 318
PAPM95.61 38294.71 38498.31 35199.12 34496.63 36896.66 41198.46 37490.77 41396.25 41298.68 38993.01 34799.69 35381.60 42197.86 40598.62 377
gg-mvs-nofinetune95.87 37695.17 38197.97 36298.19 41296.95 36299.69 4289.23 42599.89 3796.24 41399.94 1981.19 40799.51 40493.99 40298.20 39297.44 411
baseline296.83 35196.28 35798.46 34299.09 35496.91 36498.83 26893.87 41997.23 36396.23 41498.36 39988.12 38999.90 16596.68 32998.14 39798.57 383
EPNet_dtu97.62 33097.79 32497.11 38896.67 42392.31 41198.51 31298.04 38899.24 18095.77 41599.47 27593.78 33899.66 37598.98 14699.62 26799.37 255
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DeepMVS_CXcopyleft97.98 36199.69 15696.95 36299.26 31575.51 42095.74 41698.28 40196.47 29899.62 38591.23 40997.89 40397.38 412
test_method91.72 38692.32 38989.91 40493.49 42770.18 43090.28 41899.56 22061.71 42295.39 41799.52 25993.90 33499.94 8198.76 17198.27 39099.62 145
IB-MVS95.41 2095.30 38494.46 38897.84 36898.76 39295.33 39297.33 39696.07 40896.02 38695.37 41897.41 41676.17 41999.96 5697.54 27595.44 42098.22 399
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
GG-mvs-BLEND97.36 38097.59 42096.87 36599.70 3588.49 42694.64 41997.26 41980.66 40999.12 41291.50 40896.50 41596.08 419
dongtai89.37 38788.91 39090.76 40399.19 33377.46 42895.47 41687.82 42792.28 40994.17 42098.82 38271.22 42695.54 42263.85 42297.34 40899.27 278
ET-MVSNet_ETH3D96.78 35296.07 36198.91 30799.26 32097.92 33297.70 37996.05 40997.96 32792.37 42198.43 39887.06 39299.90 16598.27 20297.56 40798.91 357
MVEpermissive92.54 2296.66 35696.11 36098.31 35199.68 16497.55 34597.94 36695.60 41199.37 16190.68 42298.70 38896.56 29498.61 41886.94 41999.55 29098.77 372
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
kuosan85.65 38984.57 39288.90 40597.91 41777.11 42996.37 41387.62 42885.24 41885.45 42396.83 42369.94 42890.98 42445.90 42395.83 41998.62 377
EGC-MVSNET89.05 38885.52 39199.64 13299.89 3899.78 5199.56 8499.52 24624.19 42349.96 42499.83 7399.15 8399.92 12597.71 25799.85 16099.21 292
test12329.31 39033.05 39518.08 40625.93 43012.24 43197.53 38710.93 43111.78 42424.21 42550.08 43621.04 4298.60 42523.51 42432.43 42433.39 421
testmvs28.94 39133.33 39315.79 40726.03 4299.81 43296.77 40915.67 43011.55 42523.87 42650.74 43519.03 4308.53 42623.21 42533.07 42329.03 422
mmdepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
test_blank8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.88 39233.17 3940.00 4080.00 4310.00 4330.00 41999.62 1800.00 4260.00 42799.13 34399.82 130.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas16.61 39322.14 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 199.28 680.00 4270.00 4260.00 4250.00 423
sosnet-low-res8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
sosnet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
Regformer8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re8.26 40411.02 4070.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42799.16 3410.00 4310.00 4270.00 4260.00 4250.00 423
uanet8.33 39411.11 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 427100.00 10.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS96.36 37495.20 385
MSC_two_6792asdad99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
No_MVS99.74 8199.03 36199.53 14399.23 32299.92 12597.77 24999.69 24599.78 59
eth-test20.00 431
eth-test0.00 431
OPU-MVS99.29 25099.12 34499.44 16199.20 17699.40 29099.00 10798.84 41696.54 33899.60 27799.58 171
save fliter99.53 22799.25 20898.29 33099.38 29199.07 209
test_0728_SECOND99.83 3199.70 15299.79 4899.14 19899.61 18799.92 12597.88 23899.72 23699.77 63
GSMVS99.14 312
sam_mvs190.81 37399.14 312
sam_mvs90.52 378
MTGPAbinary99.53 241
test_post199.14 19851.63 43489.54 38599.82 28996.86 318
test_post52.41 43390.25 38099.86 231
patchmatchnet-post99.62 21090.58 37699.94 81
MTMP99.09 22098.59 368
gm-plane-assit97.59 42089.02 42693.47 40698.30 40099.84 26496.38 349
test9_res95.10 38799.44 31199.50 212
agg_prior294.58 39399.46 31099.50 212
test_prior499.19 22198.00 359
test_prior99.46 19799.35 29099.22 21599.39 28799.69 35399.48 221
新几何298.04 354
旧先验199.49 24799.29 19999.26 31599.39 29497.67 25399.36 32299.46 229
无先验98.01 35799.23 32295.83 38999.85 24995.79 37499.44 235
原ACMM297.92 368
testdata299.89 18495.99 365
segment_acmp98.37 196
testdata197.72 37797.86 335
plane_prior799.58 19599.38 180
plane_prior699.47 25899.26 20597.24 272
plane_prior599.54 23299.82 28995.84 37299.78 20999.60 159
plane_prior499.25 328
plane_prior298.80 27698.94 222
plane_prior199.51 236
plane_prior99.24 21298.42 32297.87 33399.71 239
n20.00 432
nn0.00 432
door-mid99.83 68
test1199.29 309
door99.77 100
HQP5-MVS98.94 251
BP-MVS94.73 390
HQP3-MVS99.37 29299.67 256
HQP2-MVS96.67 291
NP-MVS99.40 27899.13 22798.83 380
ACMMP++_ref99.94 94
ACMMP++99.79 204
Test By Simon98.41 190