This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 12084.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8997.05 196.93 1
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
DTE-MVSNet80.35 4882.89 3572.74 14889.84 737.34 33777.16 11081.81 9780.45 390.92 392.95 774.57 4786.12 2963.65 13494.68 3194.76 6
PS-CasMVS80.41 4782.86 3673.07 13589.93 639.21 31777.15 11181.28 10779.74 590.87 492.73 1175.03 4384.93 6263.83 13395.19 1595.07 3
wuyk23d61.97 26266.25 21749.12 34658.19 36660.77 15066.32 25852.97 35055.93 17090.62 586.91 13373.07 5735.98 39120.63 39591.63 8750.62 381
PEN-MVS80.46 4682.91 3473.11 13389.83 839.02 32077.06 11382.61 8680.04 490.60 692.85 974.93 4485.21 5763.15 14195.15 1795.09 2
CP-MVSNet79.48 5481.65 4572.98 13889.66 1239.06 31976.76 11480.46 12778.91 790.32 791.70 2568.49 9184.89 6363.40 13895.12 1895.01 4
LCM-MVSNet-Re69.10 18071.57 15661.70 28170.37 27134.30 35761.45 30279.62 14156.81 15989.59 888.16 12068.44 9272.94 23942.30 30387.33 17777.85 252
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29478.24 9782.24 8978.21 989.57 992.10 1868.05 9685.59 4866.04 11395.62 994.88 5
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19350.51 24089.19 1090.88 4271.45 6777.78 18973.38 5690.60 11990.90 18
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7375.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 6881.53 11481.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13364.16 11380.24 7482.06 9261.89 11688.77 1293.32 457.15 20882.60 9870.08 7792.80 7189.25 28
test_040278.17 6979.48 5974.24 11383.50 9159.15 16272.52 16374.60 20875.34 1588.69 1391.81 2275.06 4282.37 10165.10 11988.68 15781.20 191
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1669.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
SixPastTwentyTwo75.77 8476.34 8574.06 11681.69 12254.84 18876.47 11675.49 20064.10 9587.73 1792.24 1750.45 24781.30 11867.41 9891.46 9286.04 73
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 95
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 1977.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 95
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12962.39 12580.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 9964.82 12296.10 487.21 57
v7n79.37 5680.41 5276.28 9078.67 16155.81 18379.22 8682.51 8870.72 4487.54 2192.44 1468.00 9881.34 11672.84 6191.72 8491.69 10
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5666.40 6987.45 2289.16 9481.02 880.52 13774.27 5195.73 780.98 199
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 5878.67 6579.72 4384.81 7473.93 3580.65 6576.50 19151.98 21987.40 2391.86 2176.09 3378.53 16768.58 8490.20 12386.69 66
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14183.62 4284.72 4872.61 3087.38 2489.70 8177.48 2385.89 4075.29 4294.39 4183.08 156
test_241102_ONE86.12 5361.06 14184.72 4872.64 2987.38 2489.47 8477.48 2385.74 44
test_djsdf78.88 5978.27 6980.70 3581.42 12471.24 5283.98 3675.72 19852.27 21487.37 2692.25 1668.04 9780.56 13472.28 6791.15 9990.32 22
jajsoiax78.51 6378.16 7079.59 4784.65 7773.83 3780.42 6976.12 19351.33 23087.19 2791.51 2973.79 5478.44 17168.27 8790.13 12786.49 68
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15074.08 2087.16 2891.97 1984.80 276.97 19664.98 12193.61 6072.28 298
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH63.62 1477.50 7280.11 5469.68 19379.61 14056.28 17978.81 8983.62 7263.41 10687.14 2990.23 7276.11 3273.32 23667.58 9594.44 3979.44 229
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2366.80 6586.70 3089.99 7681.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_MVS78.18 6877.69 7379.66 4683.14 9661.34 13683.29 4880.34 13257.43 15486.65 3191.79 2350.52 24586.01 3171.36 7094.65 3291.62 11
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7566.72 9086.54 2085.11 3872.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testf175.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD_test275.66 8776.57 8172.95 13967.07 31067.62 8176.10 12580.68 12164.95 8786.58 3390.94 4071.20 7071.68 25960.46 16191.13 10179.56 225
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10773.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PS-MVSNAJss77.54 7177.35 7778.13 7084.88 7266.37 9278.55 9379.59 14453.48 20686.29 3692.43 1562.39 14980.25 14167.90 9490.61 11887.77 49
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3677.42 1386.15 3890.24 7181.69 585.94 3577.77 2693.58 6183.09 155
SD-MVS80.28 4981.55 4776.47 8883.57 9067.83 8083.39 4785.35 3564.42 9286.14 3987.07 13074.02 5180.97 12877.70 2892.32 8080.62 211
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10474.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10895.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1075.69 8676.20 8774.16 11474.44 22248.69 23475.84 13282.93 8159.02 13885.92 4189.17 9358.56 19182.74 9670.73 7389.14 15091.05 15
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2571.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 106
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14883.77 4080.58 12572.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 231
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 121
v875.07 9675.64 9473.35 12773.42 23547.46 25375.20 13581.45 10360.05 12885.64 4589.26 8858.08 19981.80 11169.71 8187.97 16790.79 19
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2866.56 6885.64 4589.57 8369.12 8780.55 13672.51 6593.37 6383.48 141
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4570.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
test_one_060185.84 6161.45 13485.63 2775.27 1785.62 4890.38 6476.72 27
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 6965.64 7385.54 4989.28 8776.32 3183.47 8474.03 5293.57 6284.35 120
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D76.74 7879.02 6169.92 19189.27 1943.81 28274.47 14971.70 22972.33 3585.50 5093.65 377.98 2176.88 19954.60 21291.64 8689.08 32
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4173.52 2485.43 5190.03 7576.37 2986.97 1174.56 4794.02 5582.62 170
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1863.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072686.16 5160.78 14883.81 3985.10 3972.48 3285.27 5389.96 7778.57 17
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8272.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 175
DVP-MVS++81.24 3582.74 3776.76 8283.14 9660.90 14591.64 185.49 2974.03 2184.93 5690.38 6466.82 10885.90 3877.43 3090.78 11483.49 139
test_241102_TWO84.80 4472.61 3084.93 5689.70 8177.73 2285.89 4075.29 4294.22 5283.25 150
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12372.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 203
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3367.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
K. test v373.67 11173.61 11973.87 11979.78 13855.62 18674.69 14662.04 30666.16 7184.76 6093.23 549.47 25280.97 12865.66 11686.67 19185.02 94
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5771.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 173
test_part285.90 5766.44 9184.61 62
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6470.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 124
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6070.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
SF-MVS80.72 4381.80 4277.48 7482.03 11764.40 11283.41 4688.46 565.28 8184.29 6589.18 9273.73 5583.22 8876.01 3893.77 5884.81 101
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4663.53 10284.23 6691.47 3072.02 6287.16 779.74 994.36 4584.61 107
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3768.58 5784.14 6790.21 7373.37 5686.41 1679.09 1893.98 5684.30 123
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2467.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 109
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4164.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
mvsmamba77.20 7476.37 8479.69 4580.34 13561.52 13380.58 6682.12 9153.54 20583.93 7091.03 3749.49 25185.97 3373.26 5793.08 6791.59 12
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6370.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
lessismore_v072.75 14779.60 14156.83 17857.37 32183.80 7289.01 9847.45 26678.74 16564.39 12586.49 19482.69 168
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 8070.53 5983.85 3883.70 7169.43 5283.67 7388.96 10075.89 3486.41 1672.62 6492.95 6981.14 193
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12666.87 6483.64 7486.18 15970.25 7879.90 14761.12 15688.95 15587.56 53
nrg03074.87 10375.99 9071.52 16774.90 21149.88 22874.10 15482.58 8754.55 18783.50 7589.21 9071.51 6575.74 20961.24 15292.34 7988.94 37
V4271.06 15370.83 16471.72 16467.25 30647.14 25765.94 26180.35 13151.35 22983.40 7683.23 20759.25 18578.80 16365.91 11480.81 26389.23 29
bld_raw_dy_0_6472.85 13472.76 13673.09 13485.08 7064.80 10878.72 9064.22 29351.92 22083.13 7790.26 7039.21 31269.91 27270.73 7391.60 8984.56 111
TranMVSNet+NR-MVSNet76.13 8277.66 7471.56 16684.61 7842.57 29670.98 19278.29 17068.67 5683.04 7889.26 8872.99 5880.75 13355.58 20495.47 1091.35 13
9.1480.22 5380.68 13180.35 7287.69 1059.90 12983.00 7988.20 11774.57 4781.75 11273.75 5493.78 57
APD_test175.04 9775.38 9874.02 11769.89 27570.15 6276.46 11779.71 14065.50 7582.99 8088.60 10966.94 10572.35 24959.77 17188.54 15879.56 225
Anonymous2023121175.54 8977.19 7870.59 17577.67 17445.70 27174.73 14480.19 13368.80 5382.95 8192.91 866.26 11676.76 20158.41 18192.77 7289.30 27
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 8290.39 6273.86 5286.31 1978.84 1994.03 5384.64 104
X-MVStestdata76.81 7774.79 10082.85 889.43 1577.61 1486.80 1784.66 5272.71 2782.87 829.95 39673.86 5286.31 1978.84 1994.03 5384.64 104
dcpmvs_271.02 15572.65 13866.16 24276.06 19950.49 21571.97 17279.36 14750.34 24182.81 8483.63 19564.38 13467.27 29661.54 15083.71 23280.71 209
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12384.95 4366.89 6382.75 8588.99 9966.82 10878.37 17574.80 4490.76 11782.40 174
ZD-MVS83.91 8769.36 6981.09 11358.91 14082.73 8689.11 9575.77 3586.63 1272.73 6292.93 70
FC-MVSNet-test73.32 11874.78 10168.93 20979.21 14936.57 33971.82 17979.54 14657.63 15382.57 8790.38 6459.38 18478.99 16057.91 18494.56 3491.23 14
ANet_high67.08 21069.94 16958.51 30657.55 36727.09 38258.43 32576.80 18963.56 10182.40 8891.93 2059.82 18064.98 31250.10 24688.86 15683.46 143
v124073.06 12573.14 12772.84 14574.74 21547.27 25671.88 17881.11 11151.80 22182.28 8984.21 18756.22 21882.34 10268.82 8387.17 18488.91 38
tt080576.12 8378.43 6869.20 20181.32 12641.37 30276.72 11577.64 17963.78 9982.06 9087.88 12379.78 1179.05 15864.33 12692.40 7787.17 60
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2677.48 1281.98 9189.95 7869.14 8685.26 5466.15 11091.24 9687.61 52
v119273.40 11673.42 12073.32 12974.65 21948.67 23572.21 16681.73 9852.76 21181.85 9284.56 18257.12 20982.24 10568.58 8487.33 17789.06 33
PC_three_145246.98 27181.83 9386.28 15566.55 11584.47 7163.31 14090.78 11483.49 139
v114473.29 11973.39 12173.01 13674.12 22748.11 24172.01 17181.08 11453.83 20281.77 9484.68 18058.07 20081.91 10968.10 8886.86 18688.99 36
OMC-MVS79.41 5578.79 6381.28 2980.62 13270.71 5880.91 6384.76 4662.54 11281.77 9486.65 14571.46 6683.53 8367.95 9392.44 7689.60 24
UniMVSNet_NR-MVSNet74.90 10175.65 9372.64 15183.04 10245.79 26869.26 21478.81 15666.66 6781.74 9686.88 13463.26 13981.07 12456.21 19694.98 2091.05 15
DU-MVS74.91 10075.57 9572.93 14283.50 9145.79 26869.47 21180.14 13565.22 8281.74 9687.08 12861.82 15581.07 12456.21 19694.98 2091.93 8
v192192072.96 13172.98 13272.89 14474.67 21647.58 25171.92 17680.69 12051.70 22381.69 9883.89 19256.58 21582.25 10468.34 8687.36 17588.82 40
WR-MVS71.20 15272.48 14167.36 22984.98 7135.70 34764.43 28268.66 26265.05 8681.49 9986.43 15357.57 20676.48 20350.36 24493.32 6589.90 23
v14419272.99 12973.06 13072.77 14674.58 22047.48 25271.90 17780.44 12851.57 22481.46 10084.11 18958.04 20182.12 10667.98 9287.47 17388.70 43
IU-MVS86.12 5360.90 14580.38 12945.49 28181.31 10175.64 4194.39 4184.65 103
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7371.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmvis_n_192072.36 14272.49 14071.96 16271.29 26064.06 11472.79 16281.82 9640.23 32481.25 10381.04 23270.62 7568.69 28169.74 8083.60 23483.14 154
v2v48272.55 14172.58 13972.43 15672.92 24846.72 26071.41 18479.13 15155.27 17481.17 10485.25 17655.41 22081.13 12167.25 10685.46 20289.43 26
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 3964.94 8981.05 10588.38 11457.10 21087.10 879.75 783.87 22884.31 121
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet-bldmvs62.34 26161.73 25964.16 25461.64 34449.90 22448.11 36557.24 32453.31 20780.95 10679.39 25949.00 25761.55 32645.92 28480.05 27081.03 196
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9368.80 5380.92 10788.52 11072.00 6382.39 10074.80 4493.04 6881.14 193
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6088.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive75.26 9276.18 8872.52 15372.87 24949.47 22972.94 16184.71 5059.49 13280.90 10988.81 10470.07 7979.71 14967.40 9988.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 13973.80 11468.84 21278.74 16037.74 33371.02 19179.83 13956.12 16680.88 11089.45 8558.18 19378.28 17856.63 19093.36 6490.51 21
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12572.03 4584.38 3486.23 2277.28 1480.65 11190.18 7459.80 18187.58 573.06 5991.34 9489.01 34
IterMVS-LS73.01 12773.12 12972.66 15073.79 23149.90 22471.63 18178.44 16658.22 14380.51 11286.63 14658.15 19579.62 15062.51 14388.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS78.44 6679.29 6075.90 9481.86 12065.33 10279.05 8784.63 5474.83 1880.41 11386.27 15671.68 6483.45 8562.45 14592.40 7778.92 236
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11185.39 3466.73 6680.39 11488.85 10374.43 5078.33 17774.73 4685.79 20082.35 175
DeepPCF-MVS71.07 578.48 6577.14 7982.52 1684.39 8377.04 2176.35 12184.05 6756.66 16280.27 11585.31 17568.56 9087.03 1067.39 10091.26 9583.50 138
AllTest77.66 7077.43 7578.35 6679.19 15070.81 5578.60 9288.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11870.33 7678.43 17255.60 20190.90 11085.81 76
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 13775.34 1579.80 11894.91 269.79 8380.25 14172.63 6394.46 3688.78 42
PCF-MVS63.80 1372.70 13771.69 15175.72 9678.10 16560.01 15573.04 16081.50 10145.34 28379.66 11984.35 18665.15 12882.65 9748.70 25889.38 14684.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)75.00 9875.48 9673.56 12583.14 9647.92 24570.41 20181.04 11563.67 10079.54 12086.37 15462.83 14381.82 11057.10 18895.25 1490.94 17
Baseline_NR-MVSNet70.62 15973.19 12662.92 27276.97 18234.44 35568.84 21970.88 24860.25 12779.50 12190.53 5361.82 15569.11 27854.67 21195.27 1385.22 87
FMVSNet171.06 15372.48 14166.81 23577.65 17540.68 30871.96 17373.03 21661.14 12079.45 12290.36 6760.44 17375.20 21550.20 24588.05 16484.54 112
ambc70.10 18777.74 17250.21 21974.28 15277.93 17779.26 12388.29 11654.11 22779.77 14864.43 12491.10 10380.30 216
IS-MVSNet75.10 9575.42 9774.15 11579.23 14848.05 24379.43 8278.04 17470.09 4979.17 12488.02 12253.04 23183.60 8158.05 18393.76 5990.79 19
CSCG74.12 10774.39 10473.33 12879.35 14461.66 13277.45 10681.98 9462.47 11479.06 12580.19 24661.83 15478.79 16459.83 17087.35 17679.54 228
RPSCF75.76 8574.37 10579.93 4074.81 21377.53 1677.53 10579.30 14959.44 13378.88 12689.80 8071.26 6973.09 23857.45 18580.89 26089.17 31
tttt051769.46 17467.79 20074.46 10775.34 20452.72 20275.05 13663.27 29954.69 18378.87 12784.37 18526.63 37681.15 12063.95 13087.93 16889.51 25
v14869.38 17769.39 17369.36 19769.14 28544.56 27768.83 22072.70 22254.79 18178.59 12884.12 18854.69 22276.74 20259.40 17582.20 24386.79 63
EI-MVSNet-Vis-set72.78 13571.87 14875.54 9974.77 21459.02 16572.24 16571.56 23263.92 9678.59 12871.59 33066.22 11778.60 16667.58 9580.32 26789.00 35
EI-MVSNet-UG-set72.63 13871.68 15275.47 10074.67 21658.64 17072.02 17071.50 23363.53 10278.58 13071.39 33365.98 11878.53 16767.30 10580.18 26989.23 29
旧先验271.17 19045.11 28678.54 13161.28 32759.19 176
MIMVSNet166.57 21669.23 17658.59 30581.26 12837.73 33464.06 28557.62 31857.02 15778.40 13290.75 4662.65 14458.10 33841.77 30889.58 14079.95 220
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 2965.45 7678.23 13389.11 9560.83 17086.15 2771.09 7190.94 10684.82 99
plane_prior365.67 9963.82 9878.23 133
eth_miper_zixun_eth69.42 17568.73 18671.50 16867.99 29846.42 26367.58 23878.81 15650.72 23778.13 13580.34 24350.15 24980.34 13960.18 16484.65 21887.74 50
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13464.71 9178.11 13688.39 11365.46 12583.14 8977.64 2991.20 9778.94 235
h-mvs3373.08 12371.61 15477.48 7483.89 8972.89 4470.47 19971.12 24554.28 18977.89 13783.41 19749.04 25580.98 12763.62 13590.77 11678.58 239
hse-mvs272.32 14370.66 16677.31 7983.10 10171.77 4769.19 21671.45 23554.28 18977.89 13778.26 27549.04 25579.23 15563.62 13589.13 15180.92 200
PM-MVS64.49 23763.61 24767.14 23376.68 18975.15 2768.49 22942.85 38051.17 23377.85 13980.51 23945.76 26966.31 30852.83 22976.35 29959.96 369
BH-untuned69.39 17669.46 17269.18 20277.96 16956.88 17668.47 23077.53 18056.77 16077.79 14079.63 25560.30 17580.20 14446.04 28380.65 26470.47 314
c3_l69.82 16969.89 17069.61 19466.24 31643.48 28668.12 23379.61 14351.43 22677.72 14180.18 24754.61 22478.15 18363.62 13587.50 17287.20 58
MSLP-MVS++74.48 10575.78 9270.59 17584.66 7662.40 12478.65 9184.24 6260.55 12577.71 14281.98 22163.12 14077.64 19162.95 14288.14 16271.73 303
CDPH-MVS77.33 7377.06 8078.14 6984.21 8463.98 11576.07 12783.45 7454.20 19377.68 14387.18 12669.98 8085.37 5168.01 9192.72 7485.08 92
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 10081.50 10163.92 9677.51 14486.56 14968.43 9384.82 6573.83 5391.61 8882.26 179
casdiffmvspermissive73.06 12573.84 11370.72 17371.32 25946.71 26170.93 19384.26 6155.62 17277.46 14587.10 12767.09 10477.81 18763.95 13086.83 18887.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TinyColmap67.98 19669.28 17464.08 25667.98 29946.82 25970.04 20375.26 20253.05 20877.36 14686.79 13659.39 18372.59 24645.64 28688.01 16672.83 291
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10551.71 22277.15 14791.42 3265.49 12487.20 679.44 1387.17 18484.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
KD-MVS_self_test66.38 21867.51 20262.97 27061.76 34334.39 35658.11 32775.30 20150.84 23677.12 14885.42 17356.84 21369.44 27551.07 23891.16 9885.08 92
TEST985.47 6369.32 7076.42 11978.69 16153.73 20376.97 14986.74 13966.84 10781.10 122
train_agg76.38 8076.55 8375.86 9585.47 6369.32 7076.42 11978.69 16154.00 19876.97 14986.74 13966.60 11381.10 12272.50 6691.56 9077.15 258
agg_prior84.44 8266.02 9778.62 16476.95 15180.34 139
IterMVS-SCA-FT67.68 20166.07 22072.49 15573.34 23758.20 17263.80 28765.55 28048.10 26076.91 15282.64 21545.20 27378.84 16261.20 15377.89 29480.44 215
Anonymous2024052972.56 13973.79 11568.86 21176.89 18745.21 27368.80 22377.25 18567.16 6176.89 15390.44 5665.95 11974.19 22950.75 24090.00 12887.18 59
test_885.09 6967.89 7976.26 12478.66 16354.00 19876.89 15386.72 14166.60 11380.89 132
cl____68.26 19568.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.42 21748.74 25975.38 21160.92 15889.81 13385.80 80
DIV-MVS_self_test68.27 19468.26 19168.29 21964.98 32843.67 28465.89 26274.67 20650.04 24676.86 15582.43 21648.74 25975.38 21160.94 15789.81 13385.81 76
MVS_111021_LR72.10 14571.82 15072.95 13979.53 14273.90 3670.45 20066.64 27156.87 15876.81 15781.76 22568.78 8871.76 25761.81 14683.74 23073.18 288
CLD-MVS72.88 13372.36 14474.43 11077.03 17954.30 19268.77 22483.43 7552.12 21676.79 15874.44 30869.54 8583.91 7555.88 19993.25 6685.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FMVSNet267.48 20368.21 19365.29 24773.14 24038.94 32168.81 22171.21 24454.81 17876.73 15986.48 15148.63 26174.60 22347.98 26886.11 19882.35 175
test_fmvs356.78 29755.99 30659.12 30153.96 38548.09 24258.76 32266.22 27327.54 37776.66 16068.69 35425.32 38451.31 34753.42 22773.38 32577.97 251
baseline73.10 12273.96 11270.51 17771.46 25846.39 26572.08 16984.40 5855.95 16976.62 16186.46 15267.20 10278.03 18464.22 12787.27 18087.11 61
canonicalmvs72.29 14473.38 12269.04 20474.23 22347.37 25473.93 15683.18 7654.36 18876.61 16281.64 22772.03 6175.34 21357.12 18787.28 17984.40 118
SSC-MVS61.79 26566.08 21948.89 34876.91 18410.00 40253.56 35047.37 36868.20 5876.56 16389.21 9054.13 22657.59 33954.75 20974.07 32179.08 234
EG-PatchMatch MVS70.70 15870.88 16370.16 18582.64 11058.80 16771.48 18273.64 21254.98 17776.55 16481.77 22461.10 16778.94 16154.87 20880.84 26272.74 293
alignmvs70.54 16071.00 16269.15 20373.50 23348.04 24469.85 20879.62 14153.94 20176.54 16582.00 22059.00 18774.68 22257.32 18687.21 18284.72 102
test_prior275.57 13358.92 13976.53 16686.78 13767.83 10069.81 7892.76 73
test_fmvsmconf0.01_n73.91 10873.64 11874.71 10469.79 28066.25 9375.90 13079.90 13846.03 27676.48 16785.02 17867.96 9973.97 23174.47 4987.22 18183.90 129
EPP-MVSNet73.86 11073.38 12275.31 10178.19 16453.35 20080.45 6877.32 18365.11 8576.47 16886.80 13549.47 25283.77 7753.89 22192.72 7488.81 41
pmmvs671.82 14773.66 11766.31 24175.94 20042.01 29866.99 24972.53 22463.45 10476.43 16992.78 1072.95 5969.69 27451.41 23590.46 12087.22 56
testdata64.13 25585.87 5963.34 11961.80 30747.83 26476.42 17086.60 14848.83 25862.31 32354.46 21481.26 25866.74 341
GeoE73.14 12173.77 11671.26 17078.09 16652.64 20374.32 15079.56 14556.32 16576.35 17183.36 20270.76 7477.96 18563.32 13981.84 24983.18 153
miper_ehance_all_eth68.36 19068.16 19568.98 20665.14 32743.34 28867.07 24878.92 15549.11 25476.21 17277.72 28253.48 22977.92 18661.16 15484.59 22085.68 82
TAPA-MVS65.27 1275.16 9474.29 10777.77 7274.86 21268.08 7777.89 10184.04 6855.15 17676.19 17383.39 19866.91 10680.11 14560.04 16890.14 12685.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MVS_111021_HR72.98 13072.97 13372.99 13780.82 13065.47 10068.81 22172.77 22157.67 15075.76 17482.38 21871.01 7277.17 19461.38 15186.15 19676.32 264
CNLPA73.44 11473.03 13174.66 10578.27 16375.29 2675.99 12878.49 16565.39 7875.67 17583.22 20961.23 16366.77 30553.70 22385.33 20681.92 184
NR-MVSNet73.62 11274.05 11072.33 15983.50 9143.71 28365.65 26777.32 18364.32 9375.59 17687.08 12862.45 14881.34 11654.90 20795.63 891.93 8
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11665.77 7275.55 17786.25 15867.42 10185.42 5070.10 7690.88 11281.81 185
test_fmvsmconf0.1_n73.26 12072.82 13574.56 10669.10 28666.18 9574.65 14879.34 14845.58 27875.54 17883.91 19167.19 10373.88 23473.26 5786.86 18683.63 137
YYNet152.58 31953.50 31749.85 34054.15 38236.45 34140.53 38046.55 37138.09 33675.52 17973.31 32041.08 30043.88 37641.10 31171.14 34069.21 326
MDA-MVSNet_test_wron52.57 32053.49 31949.81 34154.24 38136.47 34040.48 38146.58 37038.13 33575.47 18073.32 31941.05 30143.85 37740.98 31371.20 33969.10 328
EI-MVSNet69.61 17269.01 18071.41 16973.94 22949.90 22471.31 18771.32 23858.22 14375.40 18170.44 33658.16 19475.85 20562.51 14379.81 27388.48 44
MVSTER63.29 25061.60 26368.36 21759.77 35846.21 26660.62 31071.32 23841.83 30775.40 18179.12 26530.25 36475.85 20556.30 19579.81 27383.03 158
TransMVSNet (Re)69.62 17171.63 15363.57 26276.51 19035.93 34565.75 26671.29 24061.05 12175.02 18389.90 7965.88 12170.41 27149.79 24789.48 14184.38 119
新几何169.99 18988.37 3471.34 5162.08 30443.85 29274.99 18486.11 16452.85 23270.57 26750.99 23983.23 23768.05 332
Effi-MVS+-dtu75.43 9072.28 14584.91 277.05 17883.58 178.47 9477.70 17857.68 14974.89 18578.13 27964.80 13184.26 7456.46 19485.32 20786.88 62
DeepC-MVS_fast69.89 777.17 7576.33 8679.70 4483.90 8867.94 7880.06 7983.75 7056.73 16174.88 18685.32 17465.54 12387.79 265.61 11791.14 10083.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet71.60 14973.13 12867.02 23486.29 4741.11 30469.97 20566.50 27268.72 5574.74 18791.70 2559.90 17875.81 20748.58 26091.72 8484.15 125
GBi-Net68.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
test168.30 19168.79 18266.81 23573.14 24040.68 30871.96 17373.03 21654.81 17874.72 18890.36 6748.63 26175.20 21547.12 27385.37 20384.54 112
FMVSNet365.00 23065.16 23164.52 25369.47 28237.56 33666.63 25570.38 25151.55 22574.72 18883.27 20537.89 32174.44 22547.12 27385.37 20381.57 189
EC-MVSNet77.08 7677.39 7676.14 9276.86 18856.87 17780.32 7387.52 1163.45 10474.66 19184.52 18369.87 8284.94 6169.76 7989.59 13986.60 67
test_fmvsmconf_n72.91 13272.40 14374.46 10768.62 29066.12 9674.21 15378.80 15845.64 27774.62 19283.25 20666.80 11173.86 23572.97 6086.66 19283.39 145
Patchmatch-RL test59.95 28059.12 28162.44 27572.46 25154.61 19159.63 31647.51 36741.05 31574.58 19374.30 31031.06 35865.31 30951.61 23379.85 27267.39 334
cl2267.14 20966.51 21569.03 20563.20 33743.46 28766.88 25376.25 19249.22 25274.48 19477.88 28145.49 27277.40 19360.64 16084.59 22086.24 69
thisisatest053067.05 21265.16 23172.73 14973.10 24350.55 21471.26 18963.91 29550.22 24374.46 19580.75 23626.81 37580.25 14159.43 17486.50 19387.37 54
TSAR-MVS + GP.73.08 12371.60 15577.54 7378.99 15770.73 5774.96 13769.38 25760.73 12474.39 19678.44 27357.72 20582.78 9560.16 16589.60 13879.11 233
test_fmvsm_n_192069.63 17068.45 18873.16 13170.56 26865.86 9870.26 20278.35 16737.69 33874.29 19778.89 26961.10 16768.10 28765.87 11579.07 28085.53 83
原ACMM173.90 11885.90 5765.15 10681.67 9950.97 23474.25 19886.16 16161.60 15783.54 8256.75 18991.08 10473.00 289
CS-MVS76.51 7976.00 8978.06 7177.02 18064.77 10980.78 6482.66 8560.39 12674.15 19983.30 20469.65 8482.07 10769.27 8286.75 19087.36 55
pmmvs-eth3d64.41 24063.27 25167.82 22675.81 20260.18 15469.49 21062.05 30538.81 33374.13 20082.23 21943.76 28368.65 28242.53 30280.63 26674.63 277
VPA-MVSNet68.71 18570.37 16763.72 26076.13 19538.06 33164.10 28471.48 23456.60 16474.10 20188.31 11564.78 13269.72 27347.69 27190.15 12583.37 147
WB-MVS60.04 27964.19 24147.59 35076.09 19610.22 40152.44 35546.74 36965.17 8474.07 20287.48 12553.48 22955.28 34249.36 25272.84 32877.28 255
VDD-MVS70.81 15771.44 15868.91 21079.07 15546.51 26267.82 23670.83 24961.23 11974.07 20288.69 10659.86 17975.62 21051.11 23790.28 12284.61 107
FA-MVS(test-final)71.27 15171.06 16171.92 16373.96 22852.32 20676.45 11876.12 19359.07 13774.04 20486.18 15952.18 23579.43 15459.75 17281.76 25084.03 126
pm-mvs168.40 18969.85 17164.04 25873.10 24339.94 31464.61 28070.50 25055.52 17373.97 20589.33 8663.91 13768.38 28449.68 24988.02 16583.81 131
BH-RMVSNet68.69 18668.20 19470.14 18676.40 19153.90 19764.62 27973.48 21458.01 14573.91 20681.78 22359.09 18678.22 17948.59 25977.96 29378.31 242
test1276.51 8682.28 11460.94 14481.64 10073.60 20764.88 13085.19 5990.42 12183.38 146
QAPM69.18 17969.26 17568.94 20871.61 25752.58 20480.37 7178.79 15949.63 24973.51 20885.14 17753.66 22879.12 15755.11 20675.54 30575.11 275
Gipumacopyleft69.55 17372.83 13459.70 29763.63 33653.97 19580.08 7875.93 19664.24 9473.49 20988.93 10257.89 20362.46 32159.75 17291.55 9162.67 360
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvs_anonymous65.08 22965.49 22663.83 25963.79 33437.60 33566.52 25769.82 25543.44 29973.46 21086.08 16558.79 19071.75 25851.90 23275.63 30482.15 180
miper_enhance_ethall65.86 22265.05 23868.28 22161.62 34542.62 29564.74 27777.97 17542.52 30473.42 21172.79 32349.66 25077.68 19058.12 18284.59 22084.54 112
Vis-MVSNetpermissive74.85 10474.56 10275.72 9681.63 12364.64 11076.35 12179.06 15262.85 11073.33 21288.41 11262.54 14779.59 15263.94 13282.92 23882.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR73.91 10874.16 10973.16 13181.90 11953.50 19881.28 6081.40 10466.17 7073.30 21383.31 20359.96 17783.10 9158.45 18081.66 25582.87 162
PHI-MVS74.92 9974.36 10676.61 8476.40 19162.32 12680.38 7083.15 7754.16 19573.23 21480.75 23662.19 15283.86 7668.02 9090.92 10983.65 136
miper_lstm_enhance61.97 26261.63 26262.98 26960.04 35245.74 27047.53 36770.95 24644.04 29173.06 21578.84 27039.72 30860.33 32855.82 20084.64 21982.88 161
test22287.30 3769.15 7367.85 23559.59 31441.06 31473.05 21685.72 17248.03 26480.65 26466.92 337
iter_conf0567.34 20865.62 22472.50 15469.82 27647.06 25872.19 16776.86 18745.32 28472.86 21782.85 21020.53 39283.73 7861.13 15589.02 15486.70 65
MCST-MVS73.42 11573.34 12473.63 12481.28 12759.17 16174.80 14283.13 7845.50 27972.84 21883.78 19465.15 12880.99 12664.54 12389.09 15380.73 207
tfpnnormal66.48 21767.93 19662.16 27873.40 23636.65 33863.45 29064.99 28455.97 16872.82 21987.80 12457.06 21169.10 27948.31 26487.54 17080.72 208
FE-MVS68.29 19366.96 21272.26 16074.16 22654.24 19377.55 10473.42 21557.65 15272.66 22084.91 17932.02 34981.49 11548.43 26281.85 24881.04 195
Anonymous2024052163.55 24666.07 22055.99 31666.18 31844.04 28168.77 22468.80 26046.99 27072.57 22185.84 17039.87 30750.22 35053.40 22892.23 8173.71 285
114514_t73.40 11673.33 12573.64 12384.15 8657.11 17578.20 9880.02 13643.76 29572.55 22286.07 16664.00 13683.35 8760.14 16691.03 10580.45 214
AdaColmapbinary74.22 10674.56 10273.20 13081.95 11860.97 14379.43 8280.90 11765.57 7472.54 22381.76 22570.98 7385.26 5447.88 26990.00 12873.37 286
LF4IMVS67.50 20267.31 20668.08 22258.86 36261.93 12871.43 18375.90 19744.67 28972.42 22480.20 24557.16 20770.44 26958.99 17786.12 19771.88 301
MM79.55 4865.47 10080.94 6278.74 16071.22 4072.40 22588.70 10560.51 17287.70 377.40 3289.13 15185.48 84
F-COLMAP75.29 9173.99 11179.18 5281.73 12171.90 4681.86 5882.98 7959.86 13172.27 22684.00 19064.56 13383.07 9251.48 23487.19 18382.56 172
USDC62.80 25663.10 25361.89 27965.19 32443.30 28967.42 24174.20 21035.80 34872.25 22784.48 18445.67 27071.95 25537.95 33384.97 21170.42 316
3Dnovator65.95 1171.50 15071.22 16072.34 15873.16 23963.09 12178.37 9578.32 16857.67 15072.22 22884.61 18154.77 22178.47 16960.82 15981.07 25975.45 270
ETV-MVS72.72 13672.16 14774.38 11276.90 18655.95 18073.34 15884.67 5162.04 11572.19 22970.81 33465.90 12085.24 5658.64 17884.96 21481.95 183
Patchmtry60.91 27163.01 25454.62 32166.10 31926.27 38567.47 24056.40 33354.05 19772.04 23086.66 14333.19 33860.17 32943.69 29687.45 17477.42 253
diffmvspermissive67.42 20667.50 20367.20 23162.26 34145.21 27364.87 27677.04 18648.21 25971.74 23179.70 25458.40 19271.17 26364.99 12080.27 26885.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AUN-MVS70.22 16267.88 19877.22 8082.96 10571.61 4869.08 21771.39 23649.17 25371.70 23278.07 28037.62 32379.21 15661.81 14689.15 14980.82 203
HQP4-MVS71.59 23385.31 5283.74 134
HQP-NCC82.37 11177.32 10759.08 13471.58 234
ACMP_Plane82.37 11177.32 10759.08 13471.58 234
HQP-MVS75.24 9375.01 9975.94 9382.37 11158.80 16777.32 10784.12 6559.08 13471.58 23485.96 16858.09 19785.30 5367.38 10289.16 14783.73 135
MVS_Test69.84 16870.71 16567.24 23067.49 30443.25 29069.87 20781.22 11052.69 21271.57 23786.68 14262.09 15374.51 22466.05 11278.74 28383.96 127
TR-MVS64.59 23563.54 24867.73 22775.75 20350.83 21363.39 29170.29 25249.33 25171.55 23874.55 30650.94 24378.46 17040.43 31675.69 30373.89 283
IterMVS63.12 25262.48 25865.02 25066.34 31552.86 20163.81 28662.25 30146.57 27371.51 23980.40 24144.60 27866.82 30451.38 23675.47 30675.38 272
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+68.81 18368.30 19070.35 18074.66 21848.61 23666.06 26078.32 16850.62 23871.48 24075.54 29768.75 8979.59 15250.55 24378.73 28482.86 163
test111164.62 23465.19 23062.93 27179.01 15629.91 37565.45 27054.41 34154.09 19671.47 24188.48 11137.02 32574.29 22846.83 27889.94 13184.58 110
VPNet65.58 22467.56 20159.65 29879.72 13930.17 37460.27 31362.14 30254.19 19471.24 24286.63 14658.80 18967.62 29144.17 29590.87 11381.18 192
API-MVS70.97 15671.51 15769.37 19675.20 20655.94 18180.99 6176.84 18862.48 11371.24 24277.51 28561.51 15980.96 13152.04 23085.76 20171.22 308
LFMVS67.06 21167.89 19764.56 25278.02 16738.25 32870.81 19659.60 31365.18 8371.06 24486.56 14943.85 28275.22 21446.35 28089.63 13780.21 218
BH-w/o64.81 23264.29 24066.36 24076.08 19854.71 18965.61 26875.23 20350.10 24571.05 24571.86 32954.33 22579.02 15938.20 33176.14 30165.36 347
Effi-MVS+72.10 14572.28 14571.58 16574.21 22550.33 21774.72 14582.73 8362.62 11170.77 24676.83 28969.96 8180.97 12860.20 16378.43 28783.45 144
thres100view90061.17 27061.09 26761.39 28572.14 25435.01 35165.42 27156.99 32655.23 17570.71 24779.90 25132.07 34772.09 25135.61 35081.73 25177.08 260
OpenMVS_ROBcopyleft54.93 1763.23 25163.28 25063.07 26869.81 27745.34 27268.52 22867.14 26843.74 29670.61 24879.22 26247.90 26572.66 24248.75 25773.84 32471.21 309
MSDG67.47 20567.48 20467.46 22870.70 26554.69 19066.90 25278.17 17160.88 12370.41 24974.76 30361.22 16573.18 23747.38 27276.87 29774.49 278
DP-MVS Recon73.57 11372.69 13776.23 9182.85 10663.39 11874.32 15082.96 8057.75 14870.35 25081.98 22164.34 13584.41 7349.69 24889.95 13080.89 201
thres600view761.82 26461.38 26563.12 26771.81 25634.93 35264.64 27856.99 32654.78 18270.33 25179.74 25332.07 34772.42 24838.61 32783.46 23582.02 181
OpenMVScopyleft62.51 1568.76 18468.75 18468.78 21370.56 26853.91 19678.29 9677.35 18248.85 25670.22 25283.52 19652.65 23376.93 19755.31 20581.99 24575.49 269
testing358.28 29158.38 28958.00 30977.45 17726.12 38660.78 30943.00 37956.02 16770.18 25375.76 29413.27 40467.24 29748.02 26780.89 26080.65 210
CS-MVS-test74.89 10274.23 10876.86 8177.01 18162.94 12378.98 8884.61 5558.62 14170.17 25480.80 23566.74 11281.96 10861.74 14889.40 14585.69 81
D2MVS62.58 25961.05 26867.20 23163.85 33347.92 24556.29 33569.58 25639.32 32870.07 25578.19 27734.93 33272.68 24153.44 22683.74 23081.00 198
ECVR-MVScopyleft64.82 23165.22 22963.60 26178.80 15831.14 37166.97 25056.47 33254.23 19169.94 25688.68 10737.23 32474.81 22145.28 29189.41 14384.86 97
iter_conf_final68.69 18667.00 21173.76 12173.68 23252.33 20575.96 12973.54 21350.56 23969.90 25782.85 21024.76 38583.73 7865.40 11886.33 19585.22 87
Vis-MVSNet (Re-imp)62.74 25763.21 25261.34 28672.19 25331.56 36867.31 24653.87 34253.60 20469.88 25883.37 20040.52 30370.98 26441.40 31086.78 18981.48 190
TAMVS65.31 22663.75 24569.97 19082.23 11559.76 15766.78 25463.37 29845.20 28569.79 25979.37 26047.42 26772.17 25034.48 35585.15 21077.99 250
Anonymous20240521166.02 22166.89 21363.43 26574.22 22438.14 32959.00 31966.13 27463.33 10769.76 26085.95 16951.88 23670.50 26844.23 29487.52 17181.64 188
fmvsm_l_conf0.5_n67.48 20366.88 21469.28 20067.41 30562.04 12770.69 19769.85 25439.46 32769.59 26181.09 23158.15 19568.73 28067.51 9778.16 29277.07 262
test_fmvs254.80 30754.11 31556.88 31351.76 38949.95 22356.70 33365.80 27626.22 38269.42 26265.25 36531.82 35049.98 35149.63 25070.36 34470.71 313
FPMVS59.43 28460.07 27557.51 31177.62 17671.52 4962.33 29950.92 35557.40 15569.40 26380.00 25039.14 31361.92 32537.47 33766.36 36239.09 392
GA-MVS62.91 25461.66 26066.66 23967.09 30844.49 27861.18 30669.36 25851.33 23069.33 26474.47 30736.83 32674.94 21850.60 24274.72 31280.57 213
MVS_030476.32 8175.96 9177.42 7679.33 14560.86 14780.18 7674.88 20566.93 6269.11 26588.95 10157.84 20486.12 2976.63 3789.77 13685.28 86
EU-MVSNet60.82 27260.80 27160.86 29168.37 29241.16 30372.27 16468.27 26526.96 37969.08 26675.71 29532.09 34667.44 29455.59 20378.90 28273.97 281
HyFIR lowres test63.01 25360.47 27370.61 17483.04 10254.10 19459.93 31572.24 22833.67 35969.00 26775.63 29638.69 31576.93 19736.60 34275.45 30780.81 205
ET-MVSNet_ETH3D63.32 24960.69 27271.20 17170.15 27455.66 18465.02 27564.32 29143.28 30368.99 26872.05 32825.46 38278.19 18254.16 22082.80 23979.74 224
DELS-MVS68.83 18268.31 18970.38 17870.55 27048.31 23763.78 28882.13 9054.00 19868.96 26975.17 30158.95 18880.06 14658.55 17982.74 24082.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_vis3_rt51.94 32651.04 33254.65 32046.32 39650.13 22044.34 37678.17 17123.62 38968.95 27062.81 37121.41 39038.52 38941.49 30972.22 33375.30 274
SDMVSNet66.36 21967.85 19961.88 28073.04 24646.14 26758.54 32371.36 23751.42 22768.93 27182.72 21365.62 12262.22 32454.41 21584.67 21677.28 255
sd_testset63.55 24665.38 22758.07 30873.04 24638.83 32357.41 33065.44 28151.42 22768.93 27182.72 21363.76 13858.11 33741.05 31284.67 21677.28 255
test_yl65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
DCV-MVSNet65.11 22765.09 23565.18 24870.59 26640.86 30663.22 29572.79 21957.91 14668.88 27379.07 26742.85 28974.89 21945.50 28884.97 21179.81 221
Fast-Effi-MVS+-dtu70.00 16568.74 18573.77 12073.47 23464.53 11171.36 18578.14 17355.81 17168.84 27574.71 30565.36 12675.75 20852.00 23179.00 28181.03 196
fmvsm_s_conf0.1_n_a67.37 20766.36 21670.37 17970.86 26261.17 13974.00 15557.18 32540.77 31968.83 27680.88 23463.11 14167.61 29266.94 10774.72 31282.33 178
MG-MVS70.47 16171.34 15967.85 22479.26 14740.42 31274.67 14775.15 20458.41 14268.74 27788.14 12156.08 21983.69 8059.90 16981.71 25479.43 230
fmvsm_l_conf0.5_n_a66.66 21465.97 22268.72 21467.09 30861.38 13570.03 20469.15 25938.59 33468.41 27880.36 24256.56 21668.32 28566.10 11177.45 29676.46 263
fmvsm_s_conf0.5_n_a67.00 21365.95 22370.17 18469.72 28161.16 14073.34 15856.83 32840.96 31668.36 27980.08 24962.84 14267.57 29366.90 10974.50 31681.78 186
tfpn200view960.35 27759.97 27661.51 28370.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25177.08 260
thres40060.77 27459.97 27663.15 26670.78 26335.35 34963.27 29357.47 31953.00 20968.31 28077.09 28732.45 34472.09 25135.61 35081.73 25182.02 181
fmvsm_s_conf0.1_n66.60 21565.54 22569.77 19268.99 28759.15 16272.12 16856.74 33040.72 32168.25 28280.14 24861.18 16666.92 29967.34 10474.40 31783.23 152
testgi54.00 31456.86 29945.45 35958.20 36525.81 38749.05 36149.50 36045.43 28267.84 28381.17 23051.81 23943.20 37929.30 37579.41 27867.34 336
fmvsm_s_conf0.5_n66.34 22065.27 22869.57 19568.20 29559.14 16471.66 18056.48 33140.92 31767.78 28479.46 25761.23 16366.90 30067.39 10074.32 32082.66 169
xiu_mvs_v1_base_debu67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
xiu_mvs_v1_base_debi67.87 19767.07 20870.26 18179.13 15261.90 12967.34 24271.25 24147.98 26167.70 28574.19 31361.31 16072.62 24356.51 19178.26 28976.27 265
test250661.23 26960.85 27062.38 27678.80 15827.88 38167.33 24537.42 39354.23 19167.55 28888.68 10717.87 39774.39 22646.33 28189.41 14384.86 97
CL-MVSNet_self_test62.44 26063.40 24959.55 29972.34 25232.38 36456.39 33464.84 28651.21 23267.46 28981.01 23350.75 24463.51 31938.47 32988.12 16382.75 166
test_f43.79 35445.63 34938.24 37642.29 40038.58 32434.76 38947.68 36622.22 39267.34 29063.15 37031.82 35030.60 39439.19 32262.28 37245.53 388
CDS-MVSNet64.33 24162.66 25769.35 19880.44 13458.28 17165.26 27265.66 27844.36 29067.30 29175.54 29743.27 28571.77 25637.68 33484.44 22378.01 249
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended_VisFu70.04 16468.88 18173.53 12682.71 10863.62 11774.81 14081.95 9548.53 25867.16 29279.18 26451.42 24178.38 17454.39 21679.72 27678.60 238
PLCcopyleft62.01 1671.79 14870.28 16876.33 8980.31 13668.63 7578.18 9981.24 10854.57 18667.09 29380.63 23859.44 18281.74 11346.91 27684.17 22578.63 237
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet64.01 24565.15 23360.57 29273.28 23835.61 34857.60 32967.08 26954.61 18566.76 29483.37 20056.28 21766.87 30142.19 30485.20 20979.23 232
PAPR69.20 17868.66 18770.82 17275.15 20847.77 24875.31 13481.11 11149.62 25066.33 29579.27 26161.53 15882.96 9348.12 26681.50 25781.74 187
pmmvs460.78 27359.04 28266.00 24473.06 24557.67 17464.53 28160.22 31136.91 34365.96 29677.27 28639.66 30968.54 28338.87 32474.89 31171.80 302
CMPMVSbinary48.73 2061.54 26860.89 26963.52 26361.08 34751.55 20868.07 23468.00 26633.88 35665.87 29781.25 22937.91 32067.71 28949.32 25382.60 24171.31 307
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 27859.61 27962.20 27767.70 30244.33 27958.18 32660.96 30940.75 32065.80 29872.57 32441.23 29663.92 31646.87 27782.42 24278.33 241
MAR-MVS67.72 20066.16 21872.40 15774.45 22164.99 10774.87 13877.50 18148.67 25765.78 29968.58 35557.01 21277.79 18846.68 27981.92 24674.42 279
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvs1_n52.70 31852.01 32554.76 31953.83 38650.36 21655.80 33965.90 27524.96 38565.39 30060.64 37927.69 37348.46 35645.88 28567.99 35765.46 346
ab-mvs64.11 24365.13 23461.05 28871.99 25538.03 33267.59 23768.79 26149.08 25565.32 30186.26 15758.02 20266.85 30339.33 32079.79 27578.27 243
jason64.47 23862.84 25569.34 19976.91 18459.20 15867.15 24765.67 27735.29 34965.16 30276.74 29044.67 27770.68 26554.74 21079.28 27978.14 246
jason: jason.
test20.0355.74 30257.51 29550.42 33759.89 35732.09 36650.63 35949.01 36150.11 24465.07 30383.23 20745.61 27148.11 35930.22 37083.82 22971.07 311
mvsany_test343.76 35541.01 35952.01 33248.09 39457.74 17342.47 37823.85 40223.30 39064.80 30462.17 37427.12 37440.59 38529.17 37848.11 39257.69 374
EIA-MVS68.59 18867.16 20772.90 14375.18 20755.64 18569.39 21281.29 10652.44 21364.53 30570.69 33560.33 17482.30 10354.27 21876.31 30080.75 206
KD-MVS_2432*160052.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
miper_refine_blended52.05 32451.58 32753.44 32552.11 38731.20 36944.88 37464.83 28741.53 30964.37 30670.03 34115.61 40164.20 31336.25 34474.61 31464.93 351
new-patchmatchnet52.89 31755.76 30844.26 36559.94 3566.31 40337.36 38750.76 35741.10 31364.28 30879.82 25244.77 27648.43 35836.24 34687.61 16978.03 248
DPM-MVS69.98 16669.22 17772.26 16082.69 10958.82 16670.53 19881.23 10947.79 26564.16 30980.21 24451.32 24283.12 9060.14 16684.95 21574.83 276
patch_mono-262.73 25864.08 24258.68 30470.36 27255.87 18260.84 30864.11 29441.23 31264.04 31078.22 27660.00 17648.80 35454.17 21983.71 23271.37 305
thres20057.55 29557.02 29759.17 30067.89 30134.93 35258.91 32157.25 32350.24 24264.01 31171.46 33232.49 34371.39 26131.31 36679.57 27771.19 310
test_cas_vis1_n_192050.90 33050.92 33450.83 33654.12 38447.80 24751.44 35854.61 33926.95 38063.95 31260.85 37737.86 32244.97 37045.53 28762.97 37059.72 370
our_test_356.46 29856.51 30156.30 31467.70 30239.66 31655.36 34252.34 35340.57 32363.85 31369.91 34340.04 30658.22 33643.49 29975.29 31071.03 312
baseline157.82 29458.36 29056.19 31569.17 28430.76 37362.94 29755.21 33646.04 27563.83 31478.47 27241.20 29763.68 31739.44 31968.99 35274.13 280
XXY-MVS55.19 30557.40 29648.56 34964.45 33134.84 35451.54 35753.59 34438.99 33263.79 31579.43 25856.59 21445.57 36536.92 34171.29 33865.25 348
cascas64.59 23562.77 25670.05 18875.27 20550.02 22161.79 30171.61 23042.46 30563.68 31668.89 35149.33 25480.35 13847.82 27084.05 22779.78 223
test_fmvs151.51 32850.86 33553.48 32449.72 39249.35 23254.11 34764.96 28524.64 38763.66 31759.61 38228.33 37248.45 35745.38 29067.30 36162.66 361
thisisatest051560.48 27657.86 29268.34 21867.25 30646.42 26360.58 31162.14 30240.82 31863.58 31869.12 34726.28 37878.34 17648.83 25682.13 24480.26 217
MVSFormer69.93 16769.03 17972.63 15274.93 20959.19 15983.98 3675.72 19852.27 21463.53 31976.74 29043.19 28680.56 13472.28 6778.67 28578.14 246
lupinMVS63.36 24861.49 26468.97 20774.93 20959.19 15965.80 26564.52 29034.68 35463.53 31974.25 31143.19 28670.62 26653.88 22278.67 28577.10 259
UnsupCasMVSNet_eth52.26 32253.29 32049.16 34555.08 37833.67 36050.03 36058.79 31637.67 33963.43 32174.75 30441.82 29445.83 36438.59 32859.42 37967.98 333
Anonymous2023120654.13 31055.82 30749.04 34770.89 26135.96 34451.73 35650.87 35634.86 35062.49 32279.22 26242.52 29244.29 37527.95 38181.88 24766.88 338
CANet73.00 12871.84 14976.48 8775.82 20161.28 13774.81 14080.37 13063.17 10862.43 32380.50 24061.10 16785.16 6064.00 12984.34 22483.01 159
xiu_mvs_v2_base64.43 23963.96 24365.85 24677.72 17351.32 21063.63 28972.31 22745.06 28861.70 32469.66 34462.56 14573.93 23349.06 25573.91 32272.31 297
PS-MVSNAJ64.27 24263.73 24665.90 24577.82 17151.42 20963.33 29272.33 22645.09 28761.60 32568.04 35662.39 14973.95 23249.07 25473.87 32372.34 296
CHOSEN 1792x268858.09 29256.30 30363.45 26479.95 13750.93 21254.07 34865.59 27928.56 37561.53 32674.33 30941.09 29966.52 30733.91 35867.69 36072.92 290
CR-MVSNet58.96 28658.49 28760.36 29466.37 31348.24 23970.93 19356.40 33332.87 36261.35 32786.66 14333.19 33863.22 32048.50 26170.17 34669.62 322
RPMNet65.77 22365.08 23767.84 22566.37 31348.24 23970.93 19386.27 1954.66 18461.35 32786.77 13833.29 33785.67 4755.93 19870.17 34669.62 322
PatchMatch-RL58.68 28957.72 29361.57 28276.21 19473.59 3961.83 30049.00 36247.30 26961.08 32968.97 34950.16 24859.01 33236.06 34968.84 35352.10 379
FMVSNet555.08 30655.54 30953.71 32365.80 32033.50 36156.22 33652.50 35243.72 29761.06 33083.38 19925.46 38254.87 34330.11 37181.64 25672.75 292
131459.83 28158.86 28462.74 27365.71 32144.78 27668.59 22672.63 22333.54 36161.05 33167.29 36143.62 28471.26 26249.49 25167.84 35972.19 299
SCA58.57 29058.04 29160.17 29570.17 27341.07 30565.19 27353.38 34843.34 30261.00 33273.48 31745.20 27369.38 27640.34 31770.31 34570.05 317
UGNet70.20 16369.05 17873.65 12276.24 19363.64 11675.87 13172.53 22461.48 11860.93 33386.14 16252.37 23477.12 19550.67 24185.21 20880.17 219
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UnsupCasMVSNet_bld50.01 33551.03 33346.95 35258.61 36332.64 36348.31 36353.27 34934.27 35560.47 33471.53 33141.40 29547.07 36230.68 36860.78 37661.13 367
CVMVSNet59.21 28558.44 28861.51 28373.94 22947.76 24971.31 18764.56 28926.91 38160.34 33570.44 33636.24 32967.65 29053.57 22468.66 35469.12 327
PVSNet_BlendedMVS65.38 22564.30 23968.61 21569.81 27749.36 23065.60 26978.96 15345.50 27959.98 33678.61 27151.82 23778.20 18044.30 29284.11 22678.27 243
PVSNet_Blended62.90 25561.64 26166.69 23869.81 27749.36 23061.23 30578.96 15342.04 30659.98 33668.86 35251.82 23778.20 18044.30 29277.77 29572.52 294
MVS60.62 27559.97 27662.58 27468.13 29747.28 25568.59 22673.96 21132.19 36359.94 33868.86 35250.48 24677.64 19141.85 30775.74 30262.83 358
1112_ss59.48 28358.99 28360.96 29077.84 17042.39 29761.42 30368.45 26437.96 33759.93 33967.46 35845.11 27565.07 31140.89 31471.81 33675.41 271
test_vis1_n_192052.96 31653.50 31751.32 33459.15 36044.90 27556.13 33764.29 29230.56 37359.87 34060.68 37840.16 30547.47 36048.25 26562.46 37161.58 366
test_vis1_n51.27 32950.41 33953.83 32256.99 36950.01 22256.75 33260.53 31025.68 38359.74 34157.86 38329.40 36947.41 36143.10 30063.66 36864.08 356
Test_1112_low_res58.78 28858.69 28559.04 30379.41 14338.13 33057.62 32866.98 27034.74 35259.62 34277.56 28442.92 28863.65 31838.66 32670.73 34275.35 273
CostFormer57.35 29656.14 30460.97 28963.76 33538.43 32567.50 23960.22 31137.14 34259.12 34376.34 29232.78 34171.99 25439.12 32369.27 35172.47 295
PatchmatchNetpermissive54.60 30854.27 31455.59 31765.17 32639.08 31866.92 25151.80 35439.89 32558.39 34473.12 32131.69 35258.33 33543.01 30158.38 38369.38 325
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MS-PatchMatch55.59 30354.89 31257.68 31069.18 28349.05 23361.00 30762.93 30035.98 34658.36 34568.93 35036.71 32766.59 30637.62 33663.30 36957.39 375
tpm256.12 29954.64 31360.55 29366.24 31636.01 34368.14 23256.77 32933.60 36058.25 34675.52 29930.25 36474.33 22733.27 36169.76 35071.32 306
Syy-MVS54.13 31055.45 31050.18 33868.77 28823.59 39055.02 34344.55 37443.80 29358.05 34764.07 36746.22 26858.83 33346.16 28272.36 33168.12 330
myMVS_eth3d50.36 33350.52 33849.88 33968.77 28822.69 39255.02 34344.55 37443.80 29358.05 34764.07 36714.16 40358.83 33333.90 35972.36 33168.12 330
N_pmnet52.06 32351.11 33154.92 31859.64 35971.03 5337.42 38661.62 30833.68 35857.12 34972.10 32537.94 31931.03 39329.13 38071.35 33762.70 359
tpm50.60 33152.42 32445.14 36165.18 32526.29 38460.30 31243.50 37637.41 34057.01 35079.09 26630.20 36642.32 38032.77 36366.36 36266.81 340
tpm cat154.02 31352.63 32258.19 30764.85 33039.86 31566.26 25957.28 32232.16 36456.90 35170.39 33832.75 34265.30 31034.29 35658.79 38069.41 324
Patchmatch-test47.93 34049.96 34141.84 36957.42 36824.26 38948.75 36241.49 38739.30 32956.79 35273.48 31730.48 36333.87 39229.29 37672.61 32967.39 334
EPNet69.10 18067.32 20574.46 10768.33 29461.27 13877.56 10363.57 29760.95 12256.62 35382.75 21251.53 24081.24 11954.36 21790.20 12380.88 202
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo61.56 26759.22 28068.58 21679.28 14660.44 15269.20 21571.57 23143.58 29856.42 35478.37 27439.57 31076.46 20434.86 35460.16 37768.86 329
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs55.84 30055.45 31057.01 31260.33 35133.20 36265.89 26259.29 31547.52 26856.04 35573.60 31631.05 35968.06 28840.64 31564.64 36569.77 320
MIMVSNet54.39 30956.12 30549.20 34472.57 25030.91 37259.98 31448.43 36441.66 30855.94 35683.86 19341.19 29850.42 34926.05 38475.38 30866.27 342
IB-MVS49.67 1859.69 28256.96 29867.90 22368.19 29650.30 21861.42 30365.18 28347.57 26755.83 35767.15 36223.77 38879.60 15143.56 29879.97 27173.79 284
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 147.72 34148.31 34345.93 35755.53 37729.39 37646.40 37141.21 38943.41 30055.81 35867.65 35729.22 37043.77 37825.73 38769.87 34864.62 353
pmmvs552.49 32152.58 32352.21 33154.99 37932.38 36455.45 34153.84 34332.15 36555.49 35974.81 30238.08 31857.37 34034.02 35774.40 31766.88 338
dmvs_re49.91 33650.77 33647.34 35159.98 35338.86 32253.18 35153.58 34539.75 32655.06 36061.58 37636.42 32844.40 37429.15 37968.23 35558.75 372
CANet_DTU64.04 24463.83 24464.66 25168.39 29142.97 29273.45 15774.50 20952.05 21854.78 36175.44 30043.99 28170.42 27053.49 22578.41 28880.59 212
PatchT53.35 31556.47 30243.99 36664.19 33217.46 39759.15 31743.10 37852.11 21754.74 36286.95 13229.97 36749.98 35143.62 29774.40 31764.53 355
HY-MVS49.31 1957.96 29357.59 29459.10 30266.85 31236.17 34265.13 27465.39 28239.24 33054.69 36378.14 27844.28 28067.18 29833.75 36070.79 34173.95 282
PVSNet43.83 2151.56 32751.17 33052.73 32868.34 29338.27 32748.22 36453.56 34636.41 34454.29 36464.94 36634.60 33354.20 34630.34 36969.87 34865.71 345
WTY-MVS49.39 33750.31 34046.62 35561.22 34632.00 36746.61 37049.77 35933.87 35754.12 36569.55 34641.96 29345.40 36731.28 36764.42 36662.47 362
PAPM61.79 26560.37 27466.05 24376.09 19641.87 29969.30 21376.79 19040.64 32253.80 36679.62 25644.38 27982.92 9429.64 37473.11 32773.36 287
tpmrst50.15 33451.38 32946.45 35656.05 37324.77 38864.40 28349.98 35836.14 34553.32 36769.59 34535.16 33148.69 35539.24 32158.51 38265.89 343
MDTV_nov1_ep1354.05 31665.54 32229.30 37759.00 31955.22 33535.96 34752.44 36875.98 29330.77 36159.62 33038.21 33073.33 326
sss47.59 34248.32 34245.40 36056.73 37233.96 35845.17 37348.51 36332.11 36752.37 36965.79 36340.39 30441.91 38331.85 36461.97 37360.35 368
test_vis1_rt46.70 34445.24 35251.06 33544.58 39751.04 21139.91 38267.56 26721.84 39351.94 37050.79 39133.83 33539.77 38635.25 35361.50 37462.38 363
dmvs_testset45.26 34747.51 34538.49 37559.96 35514.71 39958.50 32443.39 37741.30 31151.79 37156.48 38439.44 31149.91 35321.42 39355.35 38950.85 380
baseline255.57 30452.74 32164.05 25765.26 32344.11 28062.38 29854.43 34039.03 33151.21 37267.35 36033.66 33672.45 24737.14 33964.22 36775.60 268
EPMVS45.74 34546.53 34843.39 36754.14 38322.33 39455.02 34335.00 39634.69 35351.09 37370.20 34025.92 38042.04 38237.19 33855.50 38765.78 344
gg-mvs-nofinetune55.75 30156.75 30052.72 32962.87 33828.04 38068.92 21841.36 38871.09 4150.80 37492.63 1220.74 39166.86 30229.97 37272.41 33063.25 357
ADS-MVSNet248.76 33847.25 34753.29 32755.90 37540.54 31147.34 36854.99 33831.41 37050.48 37572.06 32631.23 35554.26 34525.93 38555.93 38565.07 349
ADS-MVSNet44.62 35145.58 35041.73 37055.90 37520.83 39547.34 36839.94 39131.41 37050.48 37572.06 32631.23 35539.31 38725.93 38555.93 38565.07 349
pmmvs346.71 34345.09 35351.55 33356.76 37148.25 23855.78 34039.53 39224.13 38850.35 37763.40 36915.90 40051.08 34829.29 37670.69 34355.33 378
JIA-IIPM54.03 31251.62 32661.25 28759.14 36155.21 18759.10 31847.72 36550.85 23550.31 37885.81 17120.10 39463.97 31536.16 34755.41 38864.55 354
test-LLR50.43 33250.69 33749.64 34260.76 34841.87 29953.18 35145.48 37243.41 30049.41 37960.47 38029.22 37044.73 37242.09 30572.14 33462.33 364
test-mter48.56 33948.20 34449.64 34260.76 34841.87 29953.18 35145.48 37231.91 36849.41 37960.47 38018.34 39544.73 37242.09 30572.14 33462.33 364
PMMVS237.74 36040.87 36028.36 37842.41 3995.35 40424.61 39127.75 39832.15 36547.85 38170.27 33935.85 33029.51 39519.08 39667.85 35850.22 382
EPNet_dtu58.93 28758.52 28660.16 29667.91 30047.70 25069.97 20558.02 31749.73 24847.28 38273.02 32238.14 31762.34 32236.57 34385.99 19970.43 315
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed43.18 35644.66 35638.75 37454.75 38028.88 37957.06 33127.42 39913.47 39547.27 38377.67 28338.83 31439.29 38825.32 38960.12 37848.08 383
mvsany_test137.88 35935.74 36444.28 36447.28 39549.90 22436.54 38824.37 40119.56 39445.76 38453.46 38732.99 34037.97 39026.17 38335.52 39444.99 389
GG-mvs-BLEND52.24 33060.64 35029.21 37869.73 20942.41 38145.47 38552.33 38920.43 39368.16 28625.52 38865.42 36459.36 371
new_pmnet37.55 36139.80 36330.79 37756.83 37016.46 39839.35 38330.65 39725.59 38445.26 38661.60 37524.54 38628.02 39621.60 39252.80 39047.90 384
MDTV_nov1_ep13_2view18.41 39653.74 34931.57 36944.89 38729.90 36832.93 36271.48 304
TESTMET0.1,145.17 34844.93 35445.89 35856.02 37438.31 32653.18 35141.94 38627.85 37644.86 38856.47 38517.93 39641.50 38438.08 33268.06 35657.85 373
PVSNet_036.71 2241.12 35840.78 36142.14 36859.97 35440.13 31340.97 37942.24 38530.81 37244.86 38849.41 39240.70 30245.12 36923.15 39134.96 39541.16 391
dp44.09 35344.88 35541.72 37158.53 36423.18 39154.70 34642.38 38334.80 35144.25 39065.61 36424.48 38744.80 37129.77 37349.42 39157.18 376
PMMVS44.69 35043.95 35846.92 35350.05 39153.47 19948.08 36642.40 38222.36 39144.01 39153.05 38842.60 29145.49 36631.69 36561.36 37541.79 390
MVS-HIRNet45.53 34647.29 34640.24 37262.29 34026.82 38356.02 33837.41 39429.74 37443.69 39281.27 22833.96 33455.48 34124.46 39056.79 38438.43 393
E-PMN45.17 34845.36 35144.60 36350.07 39042.75 29338.66 38442.29 38446.39 27439.55 39351.15 39026.00 37945.37 36837.68 33476.41 29845.69 387
MVEpermissive27.91 2336.69 36235.64 36539.84 37343.37 39835.85 34619.49 39224.61 40024.68 38639.05 39462.63 37338.67 31627.10 39721.04 39447.25 39356.56 377
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS44.61 35244.45 35745.10 36248.91 39343.00 29137.92 38541.10 39046.75 27238.00 39548.43 39326.42 37746.27 36337.11 34075.38 30846.03 386
CHOSEN 280x42041.62 35739.89 36246.80 35461.81 34251.59 20733.56 39035.74 39527.48 37837.64 39653.53 38623.24 38942.09 38127.39 38258.64 38146.72 385
tmp_tt11.98 36514.73 3683.72 3812.28 4034.62 40519.44 39314.50 4040.47 39921.55 3979.58 39725.78 3814.57 40011.61 39827.37 3961.96 396
DeepMVS_CXcopyleft11.83 38015.51 40113.86 40011.25 4055.76 39620.85 39826.46 39517.06 3999.22 3999.69 39913.82 39812.42 395
test_method19.26 36319.12 36719.71 3799.09 4021.91 4067.79 39453.44 3471.42 39710.27 39935.80 39417.42 39825.11 39812.44 39724.38 39732.10 394
EGC-MVSNET64.77 23361.17 26675.60 9886.90 4274.47 3084.04 3568.62 2630.60 3981.13 40091.61 2865.32 12774.15 23064.01 12888.28 16078.17 245
test1234.43 3685.78 3710.39 3830.97 4040.28 40746.33 3720.45 4060.31 4000.62 4011.50 4000.61 4060.11 4020.56 4000.63 3990.77 398
testmvs4.06 3695.28 3720.41 3820.64 4050.16 40842.54 3770.31 4070.26 4010.50 4021.40 4010.77 4050.17 4010.56 4000.55 4000.90 397
test_blank0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uanet_test0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
DCPMVS0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
cdsmvs_eth3d_5k17.71 36423.62 3660.00 3840.00 4060.00 4090.00 39570.17 2530.00 4020.00 40374.25 31168.16 950.00 4030.00 4020.00 4010.00 399
pcd_1.5k_mvsjas5.20 3676.93 3700.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 40262.39 1490.00 4030.00 4020.00 4010.00 399
sosnet-low-res0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
sosnet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
uncertanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
Regformer0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
ab-mvs-re5.62 3667.50 3690.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 40367.46 3580.00 4070.00 4030.00 4020.00 4010.00 399
uanet0.00 3700.00 3730.00 3840.00 4060.00 4090.00 3950.00 4080.00 4020.00 4030.00 4020.00 4070.00 4030.00 4020.00 4010.00 399
WAC-MVS22.69 39236.10 348
MSC_two_6792asdad79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9667.03 8780.75 11886.24 2277.27 3394.85 2583.78 132
eth-test20.00 406
eth-test0.00 406
OPU-MVS78.65 6283.44 9466.85 8983.62 4286.12 16366.82 10886.01 3161.72 14989.79 13583.08 156
save fliter87.00 3967.23 8679.24 8577.94 17656.65 163
test_0728_SECOND76.57 8586.20 4860.57 15183.77 4085.49 2985.90 3875.86 3994.39 4183.25 150
GSMVS70.05 317
sam_mvs131.41 35370.05 317
sam_mvs31.21 357
MTGPAbinary80.63 123
test_post166.63 2552.08 39830.66 36259.33 33140.34 317
test_post1.99 39930.91 36054.76 344
patchmatchnet-post68.99 34831.32 35469.38 276
MTMP84.83 3119.26 403
gm-plane-assit62.51 33933.91 35937.25 34162.71 37272.74 24038.70 325
test9_res72.12 6991.37 9377.40 254
agg_prior270.70 7590.93 10878.55 240
test_prior470.14 6377.57 102
test_prior75.27 10282.15 11659.85 15684.33 5983.39 8682.58 171
新几何271.33 186
旧先验184.55 7960.36 15363.69 29687.05 13154.65 22383.34 23669.66 321
无先验74.82 13970.94 24747.75 26676.85 20054.47 21372.09 300
原ACMM274.78 143
testdata267.30 29548.34 263
segment_acmp68.30 94
testdata168.34 23157.24 156
plane_prior785.18 6666.21 94
plane_prior684.18 8565.31 10360.83 170
plane_prior585.49 2986.15 2771.09 7190.94 10684.82 99
plane_prior489.11 95
plane_prior282.74 5165.45 76
plane_prior184.46 81
plane_prior65.18 10480.06 7961.88 11789.91 132
n20.00 408
nn0.00 408
door-mid55.02 337
test1182.71 84
door52.91 351
HQP5-MVS58.80 167
BP-MVS67.38 102
HQP3-MVS84.12 6589.16 147
HQP2-MVS58.09 197
NP-MVS83.34 9563.07 12285.97 167
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 145