This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
mamv490.28 188.75 194.85 193.34 196.17 182.69 5791.63 186.34 197.97 194.77 366.57 12095.38 187.74 197.72 193.00 7
LCM-MVSNet86.90 288.67 281.57 2591.50 263.30 12384.80 3587.77 1086.18 296.26 296.06 190.32 184.49 7268.08 9297.05 296.93 1
FOURS189.19 2477.84 1491.64 189.11 384.05 391.57 3
DTE-MVSNet80.35 5282.89 3972.74 15289.84 837.34 35077.16 11481.81 10580.45 490.92 492.95 874.57 5086.12 3163.65 13894.68 3594.76 6
PS-CasMVS80.41 5182.86 4073.07 13889.93 739.21 33077.15 11581.28 11579.74 690.87 592.73 1275.03 4684.93 6563.83 13795.19 1995.07 3
wuyk23d61.97 27366.25 22849.12 36758.19 38860.77 15166.32 26852.97 36355.93 17790.62 686.91 14073.07 6035.98 41420.63 41791.63 8950.62 403
PEN-MVS80.46 5082.91 3873.11 13789.83 939.02 33377.06 11782.61 9380.04 590.60 792.85 1074.93 4785.21 6063.15 14595.15 2195.09 2
CP-MVSNet79.48 5881.65 4972.98 14189.66 1339.06 33276.76 11880.46 13578.91 990.32 891.70 2968.49 9684.89 6663.40 14295.12 2295.01 4
LCM-MVSNet-Re69.10 18971.57 16261.70 28970.37 28534.30 37061.45 31279.62 14856.81 16589.59 988.16 12368.44 9772.94 24742.30 31587.33 18177.85 260
WR-MVS_H80.22 5482.17 4574.39 11589.46 1542.69 30378.24 10182.24 9778.21 1389.57 1092.10 1968.05 10185.59 5066.04 11695.62 1094.88 5
anonymousdsp78.60 6577.80 7781.00 3578.01 17074.34 3780.09 8176.12 20050.51 24989.19 1190.88 4571.45 7277.78 19573.38 6090.60 12090.90 17
reproduce_model84.87 685.80 682.05 2385.52 6678.14 1387.69 685.36 3879.26 789.12 1292.10 1977.52 2585.92 3980.47 895.20 1882.10 186
reproduce-ours84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
our_new_method84.97 485.93 482.10 2186.11 5777.53 1887.08 1385.81 2878.70 1088.94 1391.88 2479.74 1286.05 3279.90 995.21 1682.72 171
LTVRE_ROB75.46 184.22 1084.98 1181.94 2484.82 7675.40 2991.60 387.80 873.52 2888.90 1593.06 771.39 7381.53 11981.53 492.15 8488.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-078.57 6678.53 7178.67 6380.48 13664.16 11680.24 7982.06 10061.89 12188.77 1693.32 557.15 21582.60 10370.08 8092.80 7389.25 28
test_040278.17 7279.48 6374.24 11783.50 9459.15 16372.52 17074.60 21575.34 1988.69 1791.81 2775.06 4582.37 10665.10 12188.68 15881.20 198
TDRefinement86.32 386.33 386.29 288.64 3281.19 588.84 490.72 278.27 1287.95 1892.53 1479.37 1584.79 6974.51 5196.15 392.88 8
LPG-MVS_test83.47 2084.33 1680.90 3687.00 4070.41 6482.04 6186.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
LGP-MVS_train80.90 3687.00 4070.41 6486.35 1769.77 5587.75 1991.13 3881.83 386.20 2677.13 3995.96 686.08 71
SixPastTwentyTwo75.77 8776.34 8974.06 12081.69 12454.84 19276.47 12075.49 20764.10 9987.73 2192.24 1850.45 25581.30 12367.41 10191.46 9386.04 73
SR-MVS-dyc-post84.75 785.26 983.21 486.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5079.20 1685.58 5178.11 2794.46 3984.89 95
RE-MVS-def85.50 786.19 5079.18 787.23 986.27 2077.51 1487.65 2290.73 5081.38 778.11 2794.46 3984.89 95
ACMH+66.64 1081.20 4082.48 4377.35 8081.16 13162.39 12880.51 7287.80 873.02 3087.57 2491.08 4080.28 982.44 10464.82 12596.10 587.21 58
v7n79.37 6080.41 5676.28 9278.67 16355.81 18579.22 9082.51 9570.72 4987.54 2592.44 1568.00 10381.34 12172.84 6491.72 8691.69 11
ACMM69.25 982.11 3383.31 3178.49 6688.17 3773.96 3883.11 5384.52 6066.40 7387.45 2689.16 9681.02 880.52 14274.27 5495.73 880.98 206
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 6278.67 6979.72 4784.81 7773.93 3980.65 7176.50 19851.98 23087.40 2791.86 2676.09 3678.53 17368.58 8790.20 12486.69 66
SED-MVS81.78 3583.48 2876.67 8586.12 5461.06 14383.62 4684.72 5272.61 3587.38 2889.70 8377.48 2685.89 4275.29 4594.39 4483.08 159
test_241102_ONE86.12 5461.06 14384.72 5272.64 3487.38 2889.47 8677.48 2685.74 46
test_djsdf78.88 6378.27 7380.70 3981.42 12671.24 5683.98 4075.72 20552.27 22587.37 3092.25 1768.04 10280.56 13972.28 7191.15 10090.32 21
jajsoiax78.51 6778.16 7579.59 4984.65 8073.83 4180.42 7476.12 20051.33 24087.19 3191.51 3373.79 5778.44 17768.27 9090.13 12886.49 68
PMVScopyleft70.70 681.70 3683.15 3577.36 7990.35 682.82 382.15 5979.22 15774.08 2487.16 3291.97 2184.80 276.97 20264.98 12393.61 6372.28 315
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH63.62 1477.50 7680.11 5869.68 19779.61 14356.28 18078.81 9383.62 7663.41 11087.14 3390.23 7476.11 3573.32 24467.58 9894.44 4279.44 237
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP69.50 882.64 2983.38 3080.40 4186.50 4669.44 7182.30 5886.08 2466.80 6986.70 3489.99 7881.64 685.95 3574.35 5396.11 485.81 77
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
APDe-MVScopyleft82.88 2784.14 1879.08 5584.80 7866.72 9486.54 2385.11 4272.00 4286.65 3591.75 2878.20 2287.04 1177.93 2994.32 5183.47 145
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testf175.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
APD_test275.66 9076.57 8672.95 14267.07 32767.62 8576.10 12980.68 12964.95 9186.58 3690.94 4371.20 7571.68 26760.46 16491.13 10279.56 233
APD-MVS_3200maxsize83.57 1784.33 1681.31 3282.83 10973.53 4485.50 3087.45 1374.11 2386.45 3890.52 5880.02 1084.48 7377.73 3194.34 5085.93 75
PS-MVSNAJss77.54 7577.35 8278.13 7284.88 7566.37 9678.55 9679.59 15153.48 21686.29 3992.43 1662.39 15680.25 14667.90 9790.61 11987.77 50
HPM-MVS_fast84.59 885.10 1083.06 588.60 3375.83 2786.27 2786.89 1673.69 2786.17 4091.70 2978.23 2185.20 6179.45 1694.91 2888.15 48
SR-MVS84.51 985.27 882.25 1988.52 3477.71 1586.81 1985.25 4077.42 1786.15 4190.24 7381.69 585.94 3677.77 3093.58 6483.09 158
SD-MVS80.28 5381.55 5176.47 9083.57 9367.83 8483.39 5185.35 3964.42 9686.14 4287.07 13674.02 5480.97 13377.70 3292.32 8280.62 218
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft72.78 383.75 1584.11 1982.68 1382.97 10674.39 3687.18 1188.18 778.98 886.11 4391.47 3479.70 1485.76 4566.91 11195.46 1287.89 49
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1075.69 8976.20 9174.16 11874.44 22848.69 24075.84 13582.93 8659.02 14485.92 4489.17 9558.56 19882.74 10170.73 7689.14 15191.05 14
ACMMPcopyleft84.22 1084.84 1282.35 1889.23 2276.66 2687.65 785.89 2671.03 4785.85 4590.58 5478.77 1885.78 4479.37 1995.17 2084.62 107
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 4183.12 3675.24 10786.16 5260.78 14983.77 4480.58 13372.48 3785.83 4690.41 6278.57 1985.69 4775.86 4294.39 4479.24 239
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2585.83 4690.41 6275.58 4085.69 4777.43 3494.74 3384.31 122
v875.07 10075.64 9773.35 13173.42 24347.46 26075.20 13881.45 11160.05 13485.64 4889.26 9058.08 20681.80 11669.71 8487.97 16990.79 18
XVG-ACMP-BASELINE80.54 4881.06 5278.98 5987.01 3972.91 4780.23 8085.56 3166.56 7285.64 4889.57 8569.12 9280.55 14172.51 6893.37 6683.48 144
SteuartSystems-ACMMP83.07 2583.64 2681.35 3085.14 7271.00 5885.53 2984.78 4970.91 4885.64 4890.41 6275.55 4187.69 579.75 1195.08 2385.36 86
Skip Steuart: Steuart Systems R&D Blog.
test_one_060185.84 6461.45 13785.63 3075.27 2185.62 5190.38 6776.72 30
OPM-MVS80.99 4581.63 5079.07 5686.86 4469.39 7279.41 8884.00 7365.64 7785.54 5289.28 8976.32 3483.47 8874.03 5693.57 6584.35 121
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D76.74 8279.02 6569.92 19589.27 2043.81 29074.47 15471.70 23772.33 4085.50 5393.65 477.98 2376.88 20554.60 22191.64 8889.08 32
DPE-MVScopyleft82.00 3483.02 3778.95 6085.36 6967.25 8982.91 5484.98 4573.52 2885.43 5490.03 7776.37 3286.97 1374.56 5094.02 5882.62 175
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 3083.46 2979.76 4588.88 3168.44 8081.57 6486.33 1963.17 11285.38 5591.26 3776.33 3384.67 7183.30 294.96 2686.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072686.16 5260.78 14983.81 4385.10 4372.48 3785.27 5689.96 7978.57 19
HPM-MVScopyleft84.12 1284.63 1382.60 1488.21 3674.40 3585.24 3187.21 1470.69 5085.14 5790.42 6178.99 1786.62 1580.83 694.93 2786.79 64
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS84.01 1484.39 1582.88 790.65 481.38 487.08 1382.79 8772.41 3985.11 5890.85 4776.65 3184.89 6679.30 2094.63 3682.35 180
DVP-MVS++81.24 3982.74 4176.76 8483.14 9960.90 14791.64 185.49 3274.03 2584.93 5990.38 6766.82 11385.90 4077.43 3490.78 11583.49 142
test_241102_TWO84.80 4872.61 3584.93 5989.70 8377.73 2485.89 4275.29 4594.22 5583.25 153
MTAPA83.19 2283.87 2281.13 3491.16 378.16 1284.87 3380.63 13172.08 4184.93 5990.79 4874.65 4984.42 7580.98 594.75 3280.82 210
PGM-MVS83.07 2583.25 3482.54 1689.57 1477.21 2482.04 6185.40 3667.96 6484.91 6290.88 4575.59 3986.57 1678.16 2694.71 3483.82 132
K. test v373.67 11573.61 12473.87 12379.78 14155.62 18974.69 15062.04 31766.16 7584.76 6393.23 649.47 26080.97 13365.66 11986.67 19785.02 94
CP-MVS84.12 1284.55 1482.80 1189.42 1879.74 688.19 584.43 6171.96 4384.70 6490.56 5577.12 2886.18 2879.24 2195.36 1382.49 178
test_part285.90 6066.44 9584.61 65
ACMMPR83.62 1683.93 2182.69 1289.78 1177.51 2287.01 1784.19 6870.23 5184.49 6690.67 5375.15 4486.37 2079.58 1494.26 5284.18 125
HFP-MVS83.39 2184.03 2081.48 2789.25 2175.69 2887.01 1784.27 6470.23 5184.47 6790.43 6076.79 2985.94 3679.58 1494.23 5482.82 167
SF-MVS80.72 4781.80 4677.48 7782.03 11964.40 11583.41 5088.46 665.28 8584.29 6889.18 9473.73 5883.22 9276.01 4193.77 6184.81 102
SMA-MVScopyleft82.12 3282.68 4280.43 4088.90 3069.52 6985.12 3284.76 5063.53 10684.23 6991.47 3472.02 6787.16 879.74 1394.36 4884.61 108
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS82.79 2883.27 3381.34 3188.99 2773.29 4585.94 2885.13 4168.58 6284.14 7090.21 7573.37 5986.41 1879.09 2293.98 5984.30 124
ZNCC-MVS83.12 2483.68 2581.45 2889.14 2573.28 4686.32 2685.97 2567.39 6584.02 7190.39 6574.73 4886.46 1780.73 794.43 4384.60 110
ACMMP_NAP82.33 3183.28 3279.46 5189.28 1969.09 7883.62 4684.98 4564.77 9483.97 7291.02 4175.53 4285.93 3882.00 394.36 4883.35 151
region2R83.54 1883.86 2382.58 1589.82 1077.53 1887.06 1684.23 6770.19 5383.86 7390.72 5275.20 4386.27 2379.41 1894.25 5383.95 130
lessismore_v072.75 15179.60 14456.83 17957.37 33283.80 7489.01 10147.45 27578.74 17064.39 12886.49 20082.69 173
APD-MVScopyleft81.13 4281.73 4879.36 5384.47 8370.53 6383.85 4283.70 7569.43 5783.67 7588.96 10375.89 3786.41 1872.62 6792.95 7181.14 200
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF80.35 4276.94 18673.60 4280.48 13466.87 6883.64 7686.18 16670.25 8379.90 15261.12 15988.95 15687.56 54
nrg03074.87 10775.99 9471.52 17174.90 21749.88 23374.10 16082.58 9454.55 19683.50 7789.21 9271.51 7075.74 21561.24 15692.34 8188.94 37
V4271.06 16070.83 17071.72 16867.25 32347.14 26565.94 27180.35 13951.35 23983.40 7883.23 21859.25 19278.80 16865.91 11780.81 27089.23 29
TranMVSNet+NR-MVSNet76.13 8577.66 7971.56 17084.61 8142.57 30570.98 20078.29 17768.67 6183.04 7989.26 9072.99 6180.75 13855.58 21295.47 1191.35 12
9.1480.22 5780.68 13480.35 7787.69 1159.90 13583.00 8088.20 12074.57 5081.75 11773.75 5893.78 60
APD_test175.04 10175.38 10174.02 12169.89 29370.15 6676.46 12179.71 14765.50 7982.99 8188.60 11266.94 11072.35 25759.77 17588.54 15979.56 233
Anonymous2023121175.54 9277.19 8370.59 17977.67 17645.70 27874.73 14880.19 14068.80 5882.95 8292.91 966.26 12276.76 20758.41 18692.77 7489.30 27
XVS83.51 1983.73 2482.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 8390.39 6573.86 5586.31 2178.84 2394.03 5684.64 105
X-MVStestdata76.81 8174.79 10382.85 989.43 1677.61 1686.80 2084.66 5672.71 3282.87 839.95 42073.86 5586.31 2178.84 2394.03 5684.64 105
dcpmvs_271.02 16272.65 14466.16 24976.06 20450.49 22071.97 18079.36 15450.34 25082.81 8583.63 20664.38 14167.27 30461.54 15483.71 23980.71 216
XVG-OURS79.51 5779.82 6078.58 6586.11 5774.96 3276.33 12784.95 4766.89 6782.75 8688.99 10266.82 11378.37 18174.80 4790.76 11882.40 179
ZD-MVS83.91 9069.36 7381.09 12158.91 14682.73 8789.11 9775.77 3886.63 1472.73 6592.93 72
FC-MVSNet-test73.32 12374.78 10468.93 21579.21 15136.57 35271.82 18779.54 15357.63 15982.57 8890.38 6759.38 19178.99 16557.91 18994.56 3791.23 13
ANet_high67.08 21969.94 17858.51 31857.55 38927.09 40158.43 33876.80 19663.56 10582.40 8991.93 2359.82 18764.98 32550.10 25688.86 15783.46 146
v124073.06 13073.14 13372.84 14974.74 22147.27 26471.88 18681.11 11951.80 23182.28 9084.21 19756.22 22682.34 10768.82 8687.17 18988.91 38
tt080576.12 8678.43 7269.20 20581.32 12841.37 31176.72 11977.64 18663.78 10382.06 9187.88 12679.78 1179.05 16364.33 12992.40 7987.17 61
LS3D80.99 4580.85 5381.41 2978.37 16471.37 5487.45 885.87 2777.48 1681.98 9289.95 8069.14 9185.26 5766.15 11391.24 9787.61 53
v119273.40 12173.42 12573.32 13374.65 22548.67 24172.21 17481.73 10652.76 22181.85 9384.56 19157.12 21682.24 11068.58 8787.33 18189.06 33
PC_three_145246.98 28381.83 9486.28 16266.55 12184.47 7463.31 14490.78 11583.49 142
v114473.29 12473.39 12673.01 13974.12 23448.11 24772.01 17981.08 12253.83 21381.77 9584.68 18758.07 20781.91 11468.10 9186.86 19288.99 36
OMC-MVS79.41 5978.79 6781.28 3380.62 13570.71 6280.91 6984.76 5062.54 11781.77 9586.65 15271.46 7183.53 8667.95 9692.44 7889.60 24
UniMVSNet_NR-MVSNet74.90 10575.65 9672.64 15583.04 10445.79 27569.26 22378.81 16366.66 7181.74 9786.88 14163.26 14681.07 12956.21 20394.98 2491.05 14
DU-MVS74.91 10475.57 9872.93 14583.50 9445.79 27569.47 21980.14 14265.22 8681.74 9787.08 13461.82 16281.07 12956.21 20394.98 2491.93 9
v192192072.96 13672.98 13972.89 14774.67 22247.58 25871.92 18480.69 12851.70 23381.69 9983.89 20256.58 22282.25 10968.34 8987.36 17888.82 40
WR-MVS71.20 15972.48 14767.36 23684.98 7435.70 36064.43 29268.66 27365.05 9081.49 10086.43 16057.57 21276.48 20950.36 25493.32 6889.90 22
v14419272.99 13473.06 13772.77 15074.58 22647.48 25971.90 18580.44 13651.57 23481.46 10184.11 19958.04 20882.12 11167.98 9587.47 17688.70 43
IU-MVS86.12 5460.90 14780.38 13745.49 29581.31 10275.64 4494.39 4484.65 104
MP-MVScopyleft83.19 2283.54 2782.14 2090.54 579.00 986.42 2583.59 7771.31 4481.26 10390.96 4274.57 5084.69 7078.41 2594.78 3182.74 170
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmvis_n_192072.36 14672.49 14671.96 16671.29 27164.06 11772.79 16981.82 10440.23 34181.25 10481.04 24370.62 8068.69 28969.74 8383.60 24183.14 157
v2v48272.55 14572.58 14572.43 15972.92 25746.72 26771.41 19279.13 15855.27 18281.17 10585.25 18355.41 22881.13 12667.25 10985.46 20989.43 26
MSP-MVS80.49 4979.67 6282.96 689.70 1277.46 2387.16 1285.10 4364.94 9381.05 10688.38 11757.10 21787.10 979.75 1183.87 23584.31 122
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet-bldmvs62.34 27261.73 27064.16 26161.64 36449.90 22948.11 38757.24 33553.31 21780.95 10779.39 27149.00 26661.55 33945.92 29680.05 27981.03 203
CPTT-MVS81.51 3881.76 4780.76 3889.20 2378.75 1086.48 2482.03 10168.80 5880.92 10888.52 11372.00 6882.39 10574.80 4793.04 7081.14 200
DeepC-MVS72.44 481.00 4480.83 5481.50 2686.70 4570.03 6882.06 6087.00 1559.89 13680.91 10990.53 5672.19 6488.56 273.67 5994.52 3885.92 76
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive75.26 9676.18 9272.52 15772.87 25849.47 23472.94 16884.71 5459.49 13880.90 11088.81 10670.07 8479.71 15467.40 10288.39 16188.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 14373.80 11968.84 21878.74 16237.74 34671.02 19979.83 14656.12 17380.88 11189.45 8758.18 20078.28 18456.63 19793.36 6790.51 20
3Dnovator+73.19 281.08 4380.48 5582.87 881.41 12772.03 4984.38 3886.23 2377.28 1880.65 11290.18 7659.80 18887.58 673.06 6291.34 9589.01 34
IterMVS-LS73.01 13273.12 13572.66 15473.79 23949.90 22971.63 18978.44 17358.22 14980.51 11386.63 15358.15 20279.62 15562.51 14788.20 16388.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS78.44 7079.29 6475.90 9781.86 12265.33 10679.05 9184.63 5874.83 2280.41 11486.27 16371.68 6983.45 8962.45 14992.40 7978.92 244
XVG-OURS-SEG-HR79.62 5679.99 5978.49 6686.46 4774.79 3377.15 11585.39 3766.73 7080.39 11588.85 10574.43 5378.33 18374.73 4985.79 20682.35 180
DeepPCF-MVS71.07 578.48 6977.14 8482.52 1784.39 8677.04 2576.35 12584.05 7156.66 16980.27 11685.31 18268.56 9587.03 1267.39 10391.26 9683.50 141
AllTest77.66 7477.43 8078.35 6879.19 15270.81 5978.60 9588.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
TestCases78.35 6879.19 15270.81 5988.64 465.37 8380.09 11788.17 12170.33 8178.43 17855.60 20990.90 11185.81 77
UA-Net81.56 3782.28 4479.40 5288.91 2969.16 7684.67 3680.01 14475.34 1979.80 11994.91 269.79 8880.25 14672.63 6694.46 3988.78 42
PCF-MVS63.80 1372.70 14171.69 15775.72 9978.10 16760.01 15673.04 16781.50 10945.34 29879.66 12084.35 19665.15 13582.65 10248.70 26989.38 14784.50 117
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)75.00 10275.48 9973.56 12983.14 9947.92 25170.41 20981.04 12363.67 10479.54 12186.37 16162.83 15081.82 11557.10 19595.25 1590.94 16
Baseline_NR-MVSNet70.62 16773.19 13262.92 28076.97 18534.44 36868.84 22870.88 25760.25 13379.50 12290.53 5661.82 16269.11 28654.67 22095.27 1485.22 87
FMVSNet171.06 16072.48 14766.81 24277.65 17740.68 32071.96 18173.03 22461.14 12579.45 12390.36 7060.44 18075.20 22350.20 25588.05 16684.54 112
ambc70.10 19177.74 17450.21 22474.28 15877.93 18479.26 12488.29 11954.11 23679.77 15364.43 12791.10 10480.30 224
balanced_conf0373.59 11774.06 11472.17 16577.48 17947.72 25681.43 6582.20 9854.38 19779.19 12587.68 12854.41 23383.57 8463.98 13385.78 20785.22 87
MVSMamba_PlusPlus76.88 8078.21 7472.88 14880.83 13248.71 23983.28 5282.79 8772.78 3179.17 12691.94 2256.47 22483.95 7870.51 7886.15 20185.99 74
IS-MVSNet75.10 9975.42 10074.15 11979.23 15048.05 24979.43 8678.04 18170.09 5479.17 12688.02 12553.04 24083.60 8358.05 18893.76 6290.79 18
CSCG74.12 11174.39 10873.33 13279.35 14761.66 13577.45 11081.98 10262.47 11979.06 12880.19 25761.83 16178.79 16959.83 17487.35 17979.54 236
RPSCF75.76 8874.37 10979.93 4474.81 21977.53 1877.53 10979.30 15659.44 13978.88 12989.80 8271.26 7473.09 24657.45 19180.89 26789.17 31
tttt051769.46 18367.79 21174.46 11175.34 21052.72 20775.05 14063.27 31054.69 19178.87 13084.37 19526.63 38981.15 12563.95 13487.93 17189.51 25
RRT-MVS70.33 17070.73 17169.14 20871.93 26545.24 28075.10 13975.08 21260.85 12978.62 13187.36 13049.54 25978.64 17160.16 16877.90 30683.55 140
v14869.38 18669.39 18269.36 20169.14 30244.56 28568.83 22972.70 23054.79 18978.59 13284.12 19854.69 23076.74 20859.40 17982.20 25086.79 64
EI-MVSNet-Vis-set72.78 13971.87 15475.54 10374.77 22059.02 16672.24 17371.56 24063.92 10078.59 13271.59 34466.22 12378.60 17267.58 9880.32 27589.00 35
EI-MVSNet-UG-set72.63 14271.68 15875.47 10474.67 22258.64 17172.02 17871.50 24163.53 10678.58 13471.39 34865.98 12478.53 17367.30 10880.18 27889.23 29
旧先验271.17 19845.11 30078.54 13561.28 34059.19 180
MIMVSNet166.57 22569.23 18658.59 31781.26 13037.73 34764.06 29557.62 32957.02 16378.40 13690.75 4962.65 15158.10 35441.77 32189.58 14079.95 228
HQP_MVS78.77 6478.78 6878.72 6285.18 7065.18 10882.74 5585.49 3265.45 8078.23 13789.11 9760.83 17786.15 2971.09 7490.94 10784.82 100
plane_prior365.67 10363.82 10278.23 137
eth_miper_zixun_eth69.42 18468.73 19671.50 17267.99 31546.42 27067.58 24878.81 16350.72 24778.13 13980.34 25450.15 25780.34 14460.18 16784.65 22587.74 51
HPM-MVS++copyleft79.89 5579.80 6180.18 4389.02 2678.44 1183.49 4980.18 14164.71 9578.11 14088.39 11665.46 13183.14 9377.64 3391.20 9878.94 243
h-mvs3373.08 12871.61 16077.48 7783.89 9272.89 4870.47 20771.12 25454.28 20077.89 14183.41 20849.04 26480.98 13263.62 13990.77 11778.58 247
hse-mvs272.32 14770.66 17377.31 8183.10 10371.77 5169.19 22571.45 24354.28 20077.89 14178.26 28749.04 26479.23 16063.62 13989.13 15280.92 207
PM-MVS64.49 24763.61 25767.14 24076.68 19275.15 3168.49 23942.85 40251.17 24377.85 14380.51 25045.76 27966.31 31652.83 23876.35 31559.96 391
BH-untuned69.39 18569.46 18169.18 20677.96 17156.88 17768.47 24077.53 18756.77 16677.79 14479.63 26660.30 18280.20 14946.04 29580.65 27270.47 333
c3_l69.82 17869.89 17969.61 19866.24 33443.48 29468.12 24379.61 15051.43 23677.72 14580.18 25854.61 23278.15 18963.62 13987.50 17587.20 59
MSLP-MVS++74.48 10975.78 9570.59 17984.66 7962.40 12778.65 9484.24 6660.55 13177.71 14681.98 23163.12 14777.64 19762.95 14688.14 16471.73 320
CDPH-MVS77.33 7777.06 8578.14 7184.21 8763.98 11876.07 13183.45 7854.20 20477.68 14787.18 13269.98 8585.37 5368.01 9492.72 7685.08 92
CNVR-MVS78.49 6878.59 7078.16 7085.86 6367.40 8878.12 10481.50 10963.92 10077.51 14886.56 15668.43 9884.82 6873.83 5791.61 9082.26 184
casdiffmvspermissive73.06 13073.84 11870.72 17771.32 27046.71 26870.93 20184.26 6555.62 17977.46 14987.10 13367.09 10977.81 19363.95 13486.83 19487.64 52
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TinyColmap67.98 20669.28 18364.08 26367.98 31646.82 26670.04 21175.26 20953.05 21877.36 15086.79 14359.39 19072.59 25445.64 29888.01 16872.83 308
TSAR-MVS + MP.79.05 6178.81 6679.74 4688.94 2867.52 8786.61 2281.38 11351.71 23277.15 15191.42 3665.49 13087.20 779.44 1787.17 18984.51 116
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
KD-MVS_self_test66.38 22767.51 21362.97 27861.76 36334.39 36958.11 34175.30 20850.84 24677.12 15285.42 18056.84 22069.44 28351.07 24891.16 9985.08 92
TEST985.47 6769.32 7476.42 12378.69 16853.73 21476.97 15386.74 14666.84 11281.10 127
train_agg76.38 8476.55 8875.86 9885.47 6769.32 7476.42 12378.69 16854.00 20976.97 15386.74 14666.60 11881.10 12772.50 6991.56 9177.15 267
agg_prior84.44 8566.02 10178.62 17176.95 15580.34 144
IterMVS-SCA-FT67.68 21166.07 23172.49 15873.34 24558.20 17363.80 29765.55 29148.10 27276.91 15682.64 22445.20 28378.84 16761.20 15777.89 30780.44 222
Anonymous2024052972.56 14373.79 12068.86 21776.89 19045.21 28168.80 23277.25 19267.16 6676.89 15790.44 5965.95 12574.19 23750.75 25090.00 12987.18 60
test_885.09 7367.89 8376.26 12878.66 17054.00 20976.89 15786.72 14866.60 11880.89 137
cl____68.26 20568.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.42 22648.74 26875.38 21760.92 16189.81 13485.80 81
DIV-MVS_self_test68.27 20468.26 20168.29 22564.98 34743.67 29265.89 27274.67 21350.04 25676.86 15982.43 22548.74 26875.38 21760.94 16089.81 13485.81 77
MVS_111021_LR72.10 15071.82 15672.95 14279.53 14573.90 4070.45 20866.64 28256.87 16476.81 16181.76 23568.78 9371.76 26561.81 15083.74 23773.18 303
CLD-MVS72.88 13872.36 15074.43 11477.03 18254.30 19668.77 23383.43 7952.12 22776.79 16274.44 32269.54 9083.91 7955.88 20693.25 6985.09 91
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FMVSNet267.48 21368.21 20365.29 25473.14 24938.94 33468.81 23071.21 25354.81 18676.73 16386.48 15848.63 27074.60 23147.98 27986.11 20482.35 180
test_fmvs356.78 30955.99 31859.12 31353.96 40848.09 24858.76 33566.22 28427.54 40076.66 16468.69 37325.32 39751.31 36953.42 23673.38 34377.97 259
mvsmamba68.87 19167.30 21873.57 12876.58 19353.70 20284.43 3774.25 21745.38 29776.63 16584.55 19235.85 34085.27 5649.54 26178.49 29881.75 193
baseline73.10 12773.96 11770.51 18171.46 26946.39 27272.08 17684.40 6255.95 17676.62 16686.46 15967.20 10778.03 19064.22 13087.27 18587.11 62
sasdasda72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
canonicalmvs72.29 14873.38 12769.04 20974.23 22947.37 26173.93 16283.18 8054.36 19876.61 16781.64 23772.03 6575.34 21957.12 19387.28 18384.40 118
SSC-MVS61.79 27666.08 23048.89 36976.91 18710.00 42653.56 36947.37 38768.20 6376.56 16989.21 9254.13 23557.59 35554.75 21874.07 33879.08 242
EG-PatchMatch MVS70.70 16670.88 16970.16 18982.64 11258.80 16871.48 19073.64 22054.98 18576.55 17081.77 23461.10 17478.94 16654.87 21780.84 26972.74 310
alignmvs70.54 16871.00 16869.15 20773.50 24148.04 25069.85 21679.62 14853.94 21276.54 17182.00 22959.00 19474.68 23057.32 19287.21 18784.72 103
MVStest155.38 31954.97 32656.58 32843.72 42140.07 32659.13 32947.09 38834.83 37376.53 17284.65 18813.55 42553.30 36755.04 21580.23 27776.38 274
test_prior275.57 13658.92 14576.53 17286.78 14467.83 10569.81 8192.76 75
test_fmvsmconf0.01_n73.91 11273.64 12374.71 10869.79 29766.25 9775.90 13379.90 14546.03 28976.48 17485.02 18567.96 10473.97 23974.47 5287.22 18683.90 131
EPP-MVSNet73.86 11473.38 12775.31 10578.19 16653.35 20580.45 7377.32 19065.11 8976.47 17586.80 14249.47 26083.77 8153.89 23092.72 7688.81 41
pmmvs671.82 15273.66 12266.31 24875.94 20542.01 30766.99 25972.53 23263.45 10876.43 17692.78 1172.95 6269.69 28251.41 24590.46 12187.22 57
testdata64.13 26285.87 6263.34 12261.80 31847.83 27676.42 17786.60 15548.83 26762.31 33654.46 22381.26 26566.74 362
GeoE73.14 12673.77 12171.26 17478.09 16852.64 20874.32 15579.56 15256.32 17276.35 17883.36 21370.76 7977.96 19163.32 14381.84 25683.18 156
miper_ehance_all_eth68.36 20068.16 20568.98 21265.14 34643.34 29667.07 25878.92 16249.11 26676.21 17977.72 29453.48 23877.92 19261.16 15884.59 22785.68 83
TAPA-MVS65.27 1275.16 9874.29 11177.77 7574.86 21868.08 8177.89 10584.04 7255.15 18476.19 18083.39 20966.91 11180.11 15060.04 17290.14 12785.13 90
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net71.70 15473.10 13667.49 23473.23 24743.08 29972.06 17782.43 9654.58 19475.97 18182.00 22972.42 6375.22 22157.84 19087.34 18084.18 125
MVS_111021_HR72.98 13572.97 14072.99 14080.82 13365.47 10468.81 23072.77 22957.67 15675.76 18282.38 22771.01 7777.17 20061.38 15586.15 20176.32 275
CNLPA73.44 11973.03 13874.66 10978.27 16575.29 3075.99 13278.49 17265.39 8275.67 18383.22 22061.23 17066.77 31353.70 23285.33 21381.92 190
NR-MVSNet73.62 11674.05 11572.33 16283.50 9443.71 29165.65 27777.32 19064.32 9775.59 18487.08 13462.45 15581.34 12154.90 21695.63 991.93 9
NCCC78.25 7178.04 7678.89 6185.61 6569.45 7079.80 8580.99 12465.77 7675.55 18586.25 16567.42 10685.42 5270.10 7990.88 11381.81 191
test_fmvsmconf0.1_n73.26 12572.82 14274.56 11069.10 30366.18 9974.65 15279.34 15545.58 29275.54 18683.91 20167.19 10873.88 24273.26 6186.86 19283.63 139
YYNet152.58 34053.50 33549.85 36154.15 40536.45 35440.53 40446.55 39138.09 35575.52 18773.31 33441.08 31043.88 39841.10 32471.14 36169.21 346
MDA-MVSNet_test_wron52.57 34153.49 33749.81 36254.24 40436.47 35340.48 40546.58 39038.13 35475.47 18873.32 33341.05 31143.85 39940.98 32671.20 36069.10 348
EI-MVSNet69.61 18169.01 19071.41 17373.94 23749.90 22971.31 19571.32 24658.22 14975.40 18970.44 35158.16 20175.85 21162.51 14779.81 28488.48 44
MVSTER63.29 26061.60 27468.36 22359.77 37846.21 27360.62 32071.32 24641.83 32475.40 18979.12 27730.25 37775.85 21156.30 20279.81 28483.03 161
MonoMVSNet62.75 26763.42 25960.73 30265.60 34040.77 31872.49 17170.56 25952.49 22375.07 19179.42 27039.52 32169.97 28046.59 29169.06 37371.44 322
TransMVSNet (Re)69.62 18071.63 15963.57 26976.51 19435.93 35865.75 27671.29 24861.05 12675.02 19289.90 8165.88 12770.41 27949.79 25789.48 14284.38 120
新几何169.99 19388.37 3571.34 5562.08 31543.85 30774.99 19386.11 17152.85 24170.57 27550.99 24983.23 24468.05 353
Effi-MVS+-dtu75.43 9472.28 15184.91 377.05 18183.58 278.47 9777.70 18557.68 15574.89 19478.13 29164.80 13884.26 7756.46 20185.32 21486.88 63
DeepC-MVS_fast69.89 777.17 7876.33 9079.70 4883.90 9167.94 8280.06 8383.75 7456.73 16874.88 19585.32 18165.54 12987.79 365.61 12091.14 10183.35 151
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet71.60 15573.13 13467.02 24186.29 4841.11 31369.97 21366.50 28368.72 6074.74 19691.70 2959.90 18575.81 21348.58 27191.72 8684.15 127
GBi-Net68.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
test168.30 20168.79 19266.81 24273.14 24940.68 32071.96 18173.03 22454.81 18674.72 19790.36 7048.63 27075.20 22347.12 28485.37 21084.54 112
FMVSNet365.00 24065.16 24164.52 26069.47 29937.56 34966.63 26570.38 26151.55 23574.72 19783.27 21637.89 33174.44 23347.12 28485.37 21081.57 196
EC-MVSNet77.08 7977.39 8176.14 9576.86 19156.87 17880.32 7887.52 1263.45 10874.66 20084.52 19369.87 8784.94 6469.76 8289.59 13986.60 67
test_fmvsmconf_n72.91 13772.40 14974.46 11168.62 30766.12 10074.21 15978.80 16545.64 29174.62 20183.25 21766.80 11673.86 24372.97 6386.66 19883.39 148
Patchmatch-RL test59.95 29159.12 29262.44 28372.46 26054.61 19559.63 32747.51 38641.05 33274.58 20274.30 32431.06 37165.31 32251.61 24279.85 28367.39 355
cl2267.14 21866.51 22669.03 21163.20 35643.46 29566.88 26376.25 19949.22 26474.48 20377.88 29345.49 28277.40 19960.64 16384.59 22786.24 69
thisisatest053067.05 22165.16 24172.73 15373.10 25250.55 21971.26 19763.91 30550.22 25374.46 20480.75 24726.81 38880.25 14659.43 17886.50 19987.37 55
TSAR-MVS + GP.73.08 12871.60 16177.54 7678.99 15970.73 6174.96 14169.38 26760.73 13074.39 20578.44 28557.72 21182.78 10060.16 16889.60 13879.11 241
test_fmvsm_n_192069.63 17968.45 19873.16 13570.56 28065.86 10270.26 21078.35 17437.69 35874.29 20678.89 28161.10 17468.10 29565.87 11879.07 29185.53 84
原ACMM173.90 12285.90 6065.15 11081.67 10750.97 24474.25 20786.16 16861.60 16483.54 8556.75 19691.08 10573.00 305
CS-MVS76.51 8376.00 9378.06 7377.02 18364.77 11280.78 7082.66 9260.39 13274.15 20883.30 21569.65 8982.07 11269.27 8586.75 19687.36 56
pmmvs-eth3d64.41 25063.27 26267.82 23275.81 20760.18 15569.49 21862.05 31638.81 35174.13 20982.23 22843.76 29368.65 29042.53 31480.63 27474.63 289
VPA-MVSNet68.71 19670.37 17563.72 26776.13 20038.06 34464.10 29471.48 24256.60 17174.10 21088.31 11864.78 13969.72 28147.69 28290.15 12683.37 150
WB-MVS60.04 29064.19 25147.59 37276.09 20110.22 42552.44 37446.74 38965.17 8874.07 21187.48 12953.48 23855.28 36149.36 26372.84 34677.28 263
VDD-MVS70.81 16571.44 16468.91 21679.07 15746.51 26967.82 24670.83 25861.23 12474.07 21188.69 10859.86 18675.62 21651.11 24790.28 12384.61 108
FA-MVS(test-final)71.27 15871.06 16771.92 16773.96 23652.32 21076.45 12276.12 20059.07 14374.04 21386.18 16652.18 24479.43 15959.75 17681.76 25784.03 128
pm-mvs168.40 19969.85 18064.04 26573.10 25239.94 32764.61 29070.50 26055.52 18073.97 21489.33 8863.91 14468.38 29249.68 25988.02 16783.81 133
BH-RMVSNet68.69 19768.20 20470.14 19076.40 19653.90 20164.62 28973.48 22158.01 15173.91 21581.78 23359.09 19378.22 18548.59 27077.96 30578.31 250
BP-MVS171.60 15570.06 17776.20 9474.07 23555.22 19074.29 15773.44 22257.29 16173.87 21684.65 18832.57 35483.49 8772.43 7087.94 17089.89 23
mvs5depth66.35 22967.98 20661.47 29362.43 35951.05 21569.38 22169.24 26956.74 16773.62 21789.06 10046.96 27758.63 35055.87 20788.49 16074.73 288
test1276.51 8882.28 11660.94 14681.64 10873.60 21864.88 13785.19 6290.42 12283.38 149
QAPM69.18 18869.26 18468.94 21471.61 26752.58 20980.37 7678.79 16649.63 25973.51 21985.14 18453.66 23779.12 16255.11 21475.54 32275.11 286
Gipumacopyleft69.55 18272.83 14159.70 30863.63 35553.97 19980.08 8275.93 20364.24 9873.49 22088.93 10457.89 21062.46 33459.75 17691.55 9262.67 382
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvs_anonymous65.08 23965.49 23663.83 26663.79 35337.60 34866.52 26769.82 26543.44 31573.46 22186.08 17258.79 19771.75 26651.90 24175.63 32182.15 185
miper_enhance_ethall65.86 23265.05 24868.28 22761.62 36542.62 30464.74 28777.97 18242.52 32073.42 22272.79 33749.66 25877.68 19658.12 18784.59 22784.54 112
Vis-MVSNetpermissive74.85 10874.56 10675.72 9981.63 12564.64 11376.35 12579.06 15962.85 11573.33 22388.41 11562.54 15479.59 15763.94 13682.92 24582.94 163
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR73.91 11274.16 11373.16 13581.90 12153.50 20381.28 6681.40 11266.17 7473.30 22483.31 21459.96 18483.10 9558.45 18581.66 26282.87 165
PHI-MVS74.92 10374.36 11076.61 8676.40 19662.32 12980.38 7583.15 8254.16 20673.23 22580.75 24762.19 15983.86 8068.02 9390.92 11083.65 138
miper_lstm_enhance61.97 27361.63 27362.98 27760.04 37245.74 27747.53 38970.95 25544.04 30673.06 22678.84 28239.72 31860.33 34255.82 20884.64 22682.88 164
test22287.30 3869.15 7767.85 24559.59 32541.06 33173.05 22785.72 17948.03 27380.65 27266.92 358
MCST-MVS73.42 12073.34 13073.63 12781.28 12959.17 16274.80 14683.13 8345.50 29372.84 22883.78 20565.15 13580.99 13164.54 12689.09 15480.73 214
tfpnnormal66.48 22667.93 20762.16 28673.40 24436.65 35163.45 30064.99 29555.97 17572.82 22987.80 12757.06 21869.10 28748.31 27587.54 17380.72 215
FE-MVS68.29 20366.96 22372.26 16374.16 23354.24 19777.55 10873.42 22357.65 15872.66 23084.91 18632.02 36181.49 12048.43 27381.85 25581.04 202
Anonymous2024052163.55 25666.07 23155.99 33166.18 33644.04 28968.77 23368.80 27146.99 28272.57 23185.84 17739.87 31750.22 37253.40 23792.23 8373.71 300
114514_t73.40 12173.33 13173.64 12684.15 8957.11 17678.20 10280.02 14343.76 31072.55 23286.07 17364.00 14383.35 9160.14 17091.03 10680.45 221
AdaColmapbinary74.22 11074.56 10673.20 13481.95 12060.97 14579.43 8680.90 12565.57 7872.54 23381.76 23570.98 7885.26 5747.88 28090.00 12973.37 301
LF4IMVS67.50 21267.31 21768.08 22858.86 38361.93 13171.43 19175.90 20444.67 30472.42 23480.20 25657.16 21470.44 27758.99 18186.12 20371.88 318
MM78.15 7377.68 7879.55 5080.10 13965.47 10480.94 6878.74 16771.22 4572.40 23588.70 10760.51 17987.70 477.40 3689.13 15285.48 85
F-COLMAP75.29 9573.99 11679.18 5481.73 12371.90 5081.86 6382.98 8459.86 13772.27 23684.00 20064.56 14083.07 9651.48 24387.19 18882.56 177
USDC62.80 26663.10 26461.89 28765.19 34343.30 29767.42 25174.20 21835.80 37072.25 23784.48 19445.67 28071.95 26337.95 34684.97 21870.42 335
3Dnovator65.95 1171.50 15771.22 16672.34 16173.16 24863.09 12478.37 9878.32 17557.67 15672.22 23884.61 19054.77 22978.47 17560.82 16281.07 26675.45 281
ETV-MVS72.72 14072.16 15374.38 11676.90 18955.95 18273.34 16584.67 5562.04 12072.19 23970.81 34965.90 12685.24 5958.64 18384.96 22181.95 189
GDP-MVS70.84 16469.24 18575.62 10176.44 19555.65 18774.62 15382.78 8949.63 25972.10 24083.79 20431.86 36282.84 9964.93 12487.01 19188.39 47
Patchmtry60.91 28263.01 26554.62 33866.10 33726.27 40767.47 25056.40 34454.05 20872.04 24186.66 15033.19 34960.17 34343.69 30887.45 17777.42 261
diffmvspermissive67.42 21667.50 21467.20 23862.26 36145.21 28164.87 28677.04 19448.21 27171.74 24279.70 26558.40 19971.17 27164.99 12280.27 27685.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AUN-MVS70.22 17167.88 20977.22 8282.96 10771.61 5269.08 22671.39 24449.17 26571.70 24378.07 29237.62 33379.21 16161.81 15089.15 15080.82 210
HQP4-MVS71.59 24485.31 5483.74 136
HQP-NCC82.37 11377.32 11159.08 14071.58 245
ACMP_Plane82.37 11377.32 11159.08 14071.58 245
HQP-MVS75.24 9775.01 10275.94 9682.37 11358.80 16877.32 11184.12 6959.08 14071.58 24585.96 17558.09 20485.30 5567.38 10589.16 14883.73 137
MVS_Test69.84 17770.71 17267.24 23767.49 32143.25 29869.87 21581.22 11852.69 22271.57 24886.68 14962.09 16074.51 23266.05 11578.74 29483.96 129
TR-MVS64.59 24563.54 25867.73 23375.75 20850.83 21863.39 30170.29 26249.33 26371.55 24974.55 32050.94 25278.46 17640.43 32975.69 32073.89 298
IterMVS63.12 26262.48 26965.02 25766.34 33352.86 20663.81 29662.25 31246.57 28571.51 25080.40 25244.60 28866.82 31251.38 24675.47 32375.38 283
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+68.81 19368.30 20070.35 18474.66 22448.61 24266.06 27078.32 17550.62 24871.48 25175.54 31068.75 9479.59 15750.55 25378.73 29582.86 166
test111164.62 24465.19 24062.93 27979.01 15829.91 39165.45 28054.41 35354.09 20771.47 25288.48 11437.02 33574.29 23646.83 28989.94 13284.58 111
VPNet65.58 23467.56 21259.65 30979.72 14230.17 39060.27 32362.14 31354.19 20571.24 25386.63 15358.80 19667.62 29944.17 30790.87 11481.18 199
API-MVS70.97 16371.51 16369.37 20075.20 21255.94 18380.99 6776.84 19562.48 11871.24 25377.51 29761.51 16680.96 13652.04 23985.76 20871.22 326
LFMVS67.06 22067.89 20864.56 25978.02 16938.25 34170.81 20459.60 32465.18 8771.06 25586.56 15643.85 29275.22 22146.35 29289.63 13780.21 226
BH-w/o64.81 24264.29 25066.36 24776.08 20354.71 19365.61 27875.23 21050.10 25571.05 25671.86 34354.33 23479.02 16438.20 34476.14 31765.36 368
Effi-MVS+72.10 15072.28 15171.58 16974.21 23250.33 22274.72 14982.73 9062.62 11670.77 25776.83 30269.96 8680.97 13360.20 16678.43 29983.45 147
thres100view90061.17 28161.09 27861.39 29472.14 26335.01 36465.42 28156.99 33755.23 18370.71 25879.90 26232.07 35972.09 25935.61 36581.73 25877.08 269
OpenMVS_ROBcopyleft54.93 1763.23 26163.28 26163.07 27669.81 29445.34 27968.52 23867.14 27943.74 31170.61 25979.22 27447.90 27472.66 25048.75 26873.84 34171.21 327
MSDG67.47 21567.48 21567.46 23570.70 27654.69 19466.90 26278.17 17860.88 12870.41 26074.76 31761.22 17273.18 24547.38 28376.87 31274.49 292
DP-MVS Recon73.57 11872.69 14376.23 9382.85 10863.39 12174.32 15582.96 8557.75 15470.35 26181.98 23164.34 14284.41 7649.69 25889.95 13180.89 208
thres600view761.82 27561.38 27663.12 27571.81 26634.93 36564.64 28856.99 33754.78 19070.33 26279.74 26432.07 35972.42 25638.61 34083.46 24282.02 187
OpenMVScopyleft62.51 1568.76 19468.75 19468.78 21970.56 28053.91 20078.29 9977.35 18948.85 26870.22 26383.52 20752.65 24276.93 20355.31 21381.99 25275.49 280
testing358.28 30358.38 30058.00 32177.45 18026.12 40860.78 31943.00 40156.02 17470.18 26475.76 30713.27 42667.24 30548.02 27880.89 26780.65 217
SPE-MVS-test74.89 10674.23 11276.86 8377.01 18462.94 12678.98 9284.61 5958.62 14770.17 26580.80 24666.74 11781.96 11361.74 15289.40 14685.69 82
mmtdpeth68.76 19470.55 17463.40 27367.06 32956.26 18168.73 23571.22 25255.47 18170.09 26688.64 11165.29 13456.89 35758.94 18289.50 14177.04 272
D2MVS62.58 27061.05 27967.20 23863.85 35247.92 25156.29 35069.58 26639.32 34570.07 26778.19 28934.93 34372.68 24953.44 23583.74 23781.00 205
MVS_030475.45 9374.66 10577.83 7475.58 20961.53 13678.29 9977.18 19363.15 11469.97 26887.20 13157.54 21387.05 1074.05 5588.96 15584.89 95
ECVR-MVScopyleft64.82 24165.22 23963.60 26878.80 16031.14 38566.97 26056.47 34354.23 20269.94 26988.68 10937.23 33474.81 22945.28 30389.41 14484.86 98
Vis-MVSNet (Re-imp)62.74 26863.21 26361.34 29672.19 26231.56 38267.31 25653.87 35553.60 21569.88 27083.37 21140.52 31370.98 27241.40 32386.78 19581.48 197
TAMVS65.31 23663.75 25569.97 19482.23 11759.76 15866.78 26463.37 30945.20 29969.79 27179.37 27247.42 27672.17 25834.48 37085.15 21777.99 258
Anonymous20240521166.02 23166.89 22463.43 27274.22 23138.14 34259.00 33166.13 28563.33 11169.76 27285.95 17651.88 24570.50 27644.23 30687.52 17481.64 195
fmvsm_l_conf0.5_n67.48 21366.88 22569.28 20467.41 32262.04 13070.69 20569.85 26439.46 34469.59 27381.09 24258.15 20268.73 28867.51 10078.16 30477.07 271
test_fmvs254.80 32354.11 33356.88 32751.76 41249.95 22856.70 34865.80 28726.22 40569.42 27465.25 38731.82 36349.98 37349.63 26070.36 36570.71 332
FPMVS59.43 29560.07 28657.51 32377.62 17871.52 5362.33 30950.92 37157.40 16069.40 27580.00 26139.14 32361.92 33837.47 35066.36 38439.09 414
GA-MVS62.91 26461.66 27166.66 24667.09 32544.49 28661.18 31669.36 26851.33 24069.33 27674.47 32136.83 33674.94 22650.60 25274.72 32980.57 220
EU-MVSNet60.82 28360.80 28260.86 30168.37 30941.16 31272.27 17268.27 27626.96 40269.08 27775.71 30832.09 35867.44 30255.59 21178.90 29373.97 296
HyFIR lowres test63.01 26360.47 28470.61 17883.04 10454.10 19859.93 32672.24 23633.67 38269.00 27875.63 30938.69 32576.93 20336.60 35775.45 32480.81 212
ET-MVSNet_ETH3D63.32 25960.69 28371.20 17570.15 29155.66 18665.02 28564.32 30243.28 31968.99 27972.05 34225.46 39578.19 18854.16 22982.80 24679.74 232
DELS-MVS68.83 19268.31 19970.38 18270.55 28248.31 24363.78 29882.13 9954.00 20968.96 28075.17 31558.95 19580.06 15158.55 18482.74 24782.76 168
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
reproduce_monomvs58.94 29858.14 30261.35 29559.70 37940.98 31560.24 32463.51 30845.85 29068.95 28175.31 31418.27 41665.82 31851.47 24479.97 28077.26 266
test_vis3_rt51.94 34751.04 35354.65 33746.32 41950.13 22544.34 39978.17 17823.62 41368.95 28162.81 39321.41 40838.52 41241.49 32272.22 35275.30 285
SDMVSNet66.36 22867.85 21061.88 28873.04 25546.14 27458.54 33671.36 24551.42 23768.93 28382.72 22265.62 12862.22 33754.41 22484.67 22377.28 263
sd_testset63.55 25665.38 23758.07 32073.04 25538.83 33657.41 34465.44 29251.42 23768.93 28382.72 22263.76 14558.11 35341.05 32584.67 22377.28 263
test_yl65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
DCV-MVSNet65.11 23765.09 24565.18 25570.59 27840.86 31663.22 30572.79 22757.91 15268.88 28579.07 27942.85 29974.89 22745.50 30084.97 21879.81 229
Fast-Effi-MVS+-dtu70.00 17468.74 19573.77 12473.47 24264.53 11471.36 19378.14 18055.81 17868.84 28774.71 31965.36 13275.75 21452.00 24079.00 29281.03 203
fmvsm_s_conf0.1_n_a67.37 21766.36 22770.37 18370.86 27361.17 14174.00 16157.18 33640.77 33668.83 28880.88 24563.11 14867.61 30066.94 11074.72 32982.33 183
MG-MVS70.47 16971.34 16567.85 23079.26 14940.42 32474.67 15175.15 21158.41 14868.74 28988.14 12456.08 22783.69 8259.90 17381.71 26179.43 238
fmvsm_l_conf0.5_n_a66.66 22365.97 23368.72 22067.09 32561.38 13870.03 21269.15 27038.59 35268.41 29080.36 25356.56 22368.32 29366.10 11477.45 30976.46 273
fmvsm_s_conf0.5_n_a67.00 22265.95 23470.17 18869.72 29861.16 14273.34 16556.83 33940.96 33368.36 29180.08 26062.84 14967.57 30166.90 11274.50 33381.78 192
tfpn200view960.35 28859.97 28761.51 29170.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25877.08 269
thres40060.77 28559.97 28763.15 27470.78 27435.35 36263.27 30357.47 33053.00 21968.31 29277.09 30032.45 35672.09 25935.61 36581.73 25882.02 187
fmvsm_s_conf0.1_n66.60 22465.54 23569.77 19668.99 30459.15 16372.12 17556.74 34140.72 33868.25 29480.14 25961.18 17366.92 30767.34 10774.40 33483.23 155
testgi54.00 33056.86 31145.45 38158.20 38725.81 40949.05 38349.50 37945.43 29667.84 29581.17 24151.81 24843.20 40129.30 39279.41 28967.34 357
fmvsm_s_conf0.5_n66.34 23065.27 23869.57 19968.20 31259.14 16571.66 18856.48 34240.92 33467.78 29679.46 26861.23 17066.90 30867.39 10374.32 33782.66 174
xiu_mvs_v1_base_debu67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
xiu_mvs_v1_base_debi67.87 20767.07 22070.26 18579.13 15461.90 13267.34 25271.25 24947.98 27367.70 29774.19 32761.31 16772.62 25156.51 19878.26 30176.27 276
test250661.23 28060.85 28162.38 28478.80 16027.88 39967.33 25537.42 41554.23 20267.55 30088.68 10917.87 41874.39 23446.33 29389.41 14484.86 98
CL-MVSNet_self_test62.44 27163.40 26059.55 31072.34 26132.38 37756.39 34964.84 29751.21 24267.46 30181.01 24450.75 25363.51 33238.47 34288.12 16582.75 169
test_f43.79 37745.63 37238.24 39842.29 42438.58 33734.76 41347.68 38522.22 41667.34 30263.15 39231.82 36330.60 41739.19 33562.28 39445.53 410
CDS-MVSNet64.33 25162.66 26869.35 20280.44 13758.28 17265.26 28265.66 28944.36 30567.30 30375.54 31043.27 29571.77 26437.68 34784.44 23078.01 257
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended_VisFu70.04 17368.88 19173.53 13082.71 11063.62 12074.81 14481.95 10348.53 27067.16 30479.18 27651.42 25078.38 18054.39 22579.72 28778.60 246
PLCcopyleft62.01 1671.79 15370.28 17676.33 9180.31 13868.63 7978.18 10381.24 11654.57 19567.09 30580.63 24959.44 18981.74 11846.91 28784.17 23278.63 245
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet64.01 25565.15 24360.57 30373.28 24635.61 36157.60 34367.08 28054.61 19366.76 30683.37 21156.28 22566.87 30942.19 31785.20 21679.23 240
PAPR69.20 18768.66 19770.82 17675.15 21447.77 25475.31 13781.11 11949.62 26166.33 30779.27 27361.53 16582.96 9748.12 27781.50 26481.74 194
pmmvs460.78 28459.04 29366.00 25173.06 25457.67 17564.53 29160.22 32236.91 36465.96 30877.27 29839.66 31968.54 29138.87 33774.89 32871.80 319
CMPMVSbinary48.73 2061.54 27960.89 28063.52 27061.08 36751.55 21268.07 24468.00 27733.88 37965.87 30981.25 24037.91 33067.71 29749.32 26482.60 24871.31 325
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 28959.61 29062.20 28567.70 31944.33 28758.18 34060.96 32040.75 33765.80 31072.57 33841.23 30663.92 32946.87 28882.42 24978.33 249
MAR-MVS67.72 21066.16 22972.40 16074.45 22764.99 11174.87 14277.50 18848.67 26965.78 31168.58 37457.01 21977.79 19446.68 29081.92 25374.42 294
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
ttmdpeth56.40 31155.45 32259.25 31155.63 39940.69 31958.94 33349.72 37736.22 36665.39 31286.97 13823.16 40456.69 35842.30 31580.74 27180.36 223
test_fmvs1_n52.70 33952.01 34654.76 33653.83 40950.36 22155.80 35565.90 28624.96 40965.39 31260.64 40127.69 38648.46 37845.88 29767.99 37965.46 367
ab-mvs64.11 25365.13 24461.05 29871.99 26438.03 34567.59 24768.79 27249.08 26765.32 31486.26 16458.02 20966.85 31139.33 33379.79 28678.27 251
jason64.47 24862.84 26669.34 20376.91 18759.20 15967.15 25765.67 28835.29 37165.16 31576.74 30344.67 28770.68 27354.74 21979.28 29078.14 254
jason: jason.
test20.0355.74 31557.51 30750.42 35859.89 37732.09 37950.63 37949.01 38050.11 25465.07 31683.23 21845.61 28148.11 38130.22 38783.82 23671.07 330
mvsany_test343.76 37841.01 38252.01 35048.09 41757.74 17442.47 40123.85 42423.30 41464.80 31762.17 39627.12 38740.59 40829.17 39548.11 41457.69 396
EIA-MVS68.59 19867.16 21972.90 14675.18 21355.64 18869.39 22081.29 11452.44 22464.53 31870.69 35060.33 18182.30 10854.27 22776.31 31680.75 213
KD-MVS_2432*160052.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
miper_refine_blended52.05 34551.58 34853.44 34352.11 41031.20 38344.88 39764.83 29841.53 32664.37 31970.03 35915.61 42264.20 32636.25 35974.61 33164.93 373
new-patchmatchnet52.89 33855.76 32044.26 38759.94 3766.31 42737.36 41150.76 37341.10 33064.28 32179.82 26344.77 28648.43 38036.24 36187.61 17278.03 256
DPM-MVS69.98 17569.22 18772.26 16382.69 11158.82 16770.53 20681.23 11747.79 27764.16 32280.21 25551.32 25183.12 9460.14 17084.95 22274.83 287
patch_mono-262.73 26964.08 25258.68 31670.36 28655.87 18460.84 31864.11 30441.23 32964.04 32378.22 28860.00 18348.80 37654.17 22883.71 23971.37 323
thres20057.55 30757.02 30959.17 31267.89 31834.93 36558.91 33457.25 33450.24 25264.01 32471.46 34632.49 35571.39 26931.31 38379.57 28871.19 328
test_cas_vis1_n_192050.90 35150.92 35550.83 35754.12 40747.80 25351.44 37854.61 35126.95 40363.95 32560.85 39937.86 33244.97 39245.53 29962.97 39259.72 392
our_test_356.46 31056.51 31356.30 32967.70 31939.66 32955.36 35852.34 36740.57 34063.85 32669.91 36140.04 31658.22 35243.49 31175.29 32771.03 331
baseline157.82 30658.36 30156.19 33069.17 30130.76 38862.94 30755.21 34846.04 28863.83 32778.47 28441.20 30763.68 33039.44 33268.99 37474.13 295
XXY-MVS55.19 32057.40 30848.56 37164.45 35034.84 36751.54 37753.59 35738.99 35063.79 32879.43 26956.59 22145.57 38736.92 35671.29 35965.25 369
cascas64.59 24562.77 26770.05 19275.27 21150.02 22661.79 31171.61 23842.46 32163.68 32968.89 37049.33 26280.35 14347.82 28184.05 23479.78 231
test_fmvs151.51 34950.86 35653.48 34249.72 41549.35 23754.11 36664.96 29624.64 41163.66 33059.61 40428.33 38548.45 37945.38 30267.30 38362.66 383
thisisatest051560.48 28757.86 30468.34 22467.25 32346.42 27060.58 32162.14 31340.82 33563.58 33169.12 36526.28 39178.34 18248.83 26782.13 25180.26 225
MVSFormer69.93 17669.03 18972.63 15674.93 21559.19 16083.98 4075.72 20552.27 22563.53 33276.74 30343.19 29680.56 13972.28 7178.67 29678.14 254
lupinMVS63.36 25861.49 27568.97 21374.93 21559.19 16065.80 27564.52 30134.68 37763.53 33274.25 32543.19 29670.62 27453.88 23178.67 29677.10 268
UnsupCasMVSNet_eth52.26 34353.29 33849.16 36655.08 40133.67 37350.03 38258.79 32737.67 35963.43 33474.75 31841.82 30445.83 38638.59 34159.42 40167.98 354
WBMVS53.38 33254.14 33251.11 35570.16 29026.66 40350.52 38151.64 37039.32 34563.08 33577.16 29923.53 40255.56 35931.99 38079.88 28271.11 329
UWE-MVS52.94 33752.70 34053.65 34173.56 24027.49 40057.30 34549.57 37838.56 35362.79 33671.42 34719.49 41360.41 34124.33 41177.33 31073.06 304
Anonymous2023120654.13 32655.82 31949.04 36870.89 27235.96 35751.73 37650.87 37234.86 37262.49 33779.22 27442.52 30244.29 39727.95 39881.88 25466.88 359
CANet73.00 13371.84 15576.48 8975.82 20661.28 13974.81 14480.37 13863.17 11262.43 33880.50 25161.10 17485.16 6364.00 13284.34 23183.01 162
xiu_mvs_v2_base64.43 24963.96 25365.85 25377.72 17551.32 21463.63 29972.31 23545.06 30261.70 33969.66 36262.56 15273.93 24149.06 26673.91 33972.31 314
PS-MVSNAJ64.27 25263.73 25665.90 25277.82 17351.42 21363.33 30272.33 23445.09 30161.60 34068.04 37662.39 15673.95 24049.07 26573.87 34072.34 313
CHOSEN 1792x268858.09 30456.30 31563.45 27179.95 14050.93 21754.07 36765.59 29028.56 39861.53 34174.33 32341.09 30966.52 31533.91 37367.69 38272.92 306
CR-MVSNet58.96 29758.49 29860.36 30566.37 33148.24 24570.93 20156.40 34432.87 38561.35 34286.66 15033.19 34963.22 33348.50 27270.17 36769.62 342
RPMNet65.77 23365.08 24767.84 23166.37 33148.24 24570.93 20186.27 2054.66 19261.35 34286.77 14533.29 34885.67 4955.93 20570.17 36769.62 342
PatchMatch-RL58.68 30157.72 30561.57 29076.21 19973.59 4361.83 31049.00 38147.30 28161.08 34468.97 36750.16 25659.01 34736.06 36468.84 37552.10 401
FMVSNet555.08 32255.54 32153.71 34065.80 33833.50 37456.22 35152.50 36543.72 31261.06 34583.38 21025.46 39554.87 36230.11 38881.64 26372.75 309
131459.83 29258.86 29562.74 28165.71 33944.78 28468.59 23672.63 23133.54 38461.05 34667.29 38243.62 29471.26 27049.49 26267.84 38172.19 316
SCA58.57 30258.04 30360.17 30670.17 28941.07 31465.19 28353.38 36143.34 31861.00 34773.48 33145.20 28369.38 28440.34 33070.31 36670.05 336
UGNet70.20 17269.05 18873.65 12576.24 19863.64 11975.87 13472.53 23261.48 12360.93 34886.14 16952.37 24377.12 20150.67 25185.21 21580.17 227
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UnsupCasMVSNet_bld50.01 35751.03 35446.95 37458.61 38432.64 37648.31 38553.27 36234.27 37860.47 34971.53 34541.40 30547.07 38430.68 38560.78 39861.13 389
CVMVSNet59.21 29658.44 29961.51 29173.94 23747.76 25571.31 19564.56 30026.91 40460.34 35070.44 35136.24 33967.65 29853.57 23368.66 37669.12 347
PVSNet_BlendedMVS65.38 23564.30 24968.61 22169.81 29449.36 23565.60 27978.96 16045.50 29359.98 35178.61 28351.82 24678.20 18644.30 30484.11 23378.27 251
PVSNet_Blended62.90 26561.64 27266.69 24569.81 29449.36 23561.23 31578.96 16042.04 32259.98 35168.86 37151.82 24678.20 18644.30 30477.77 30872.52 311
MVS60.62 28659.97 28762.58 28268.13 31447.28 26368.59 23673.96 21932.19 38659.94 35368.86 37150.48 25477.64 19741.85 32075.74 31962.83 380
1112_ss59.48 29458.99 29460.96 30077.84 17242.39 30661.42 31368.45 27537.96 35659.93 35467.46 37945.11 28565.07 32440.89 32771.81 35575.41 282
test_vis1_n_192052.96 33653.50 33551.32 35459.15 38144.90 28356.13 35364.29 30330.56 39659.87 35560.68 40040.16 31547.47 38248.25 27662.46 39361.58 388
test_vis1_n51.27 35050.41 36053.83 33956.99 39150.01 22756.75 34760.53 32125.68 40759.74 35657.86 40529.40 38247.41 38343.10 31263.66 39064.08 378
Test_1112_low_res58.78 30058.69 29659.04 31579.41 14638.13 34357.62 34266.98 28134.74 37559.62 35777.56 29642.92 29863.65 33138.66 33970.73 36375.35 284
WB-MVSnew53.94 33154.76 32851.49 35371.53 26828.05 39758.22 33950.36 37437.94 35759.16 35870.17 35649.21 26351.94 36824.49 40971.80 35674.47 293
CostFormer57.35 30856.14 31660.97 29963.76 35438.43 33867.50 24960.22 32237.14 36359.12 35976.34 30532.78 35271.99 26239.12 33669.27 37272.47 312
PatchmatchNetpermissive54.60 32454.27 33155.59 33465.17 34539.08 33166.92 26151.80 36939.89 34258.39 36073.12 33531.69 36558.33 35143.01 31358.38 40569.38 345
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MS-PatchMatch55.59 31754.89 32757.68 32269.18 30049.05 23861.00 31762.93 31135.98 36858.36 36168.93 36936.71 33766.59 31437.62 34963.30 39157.39 397
tpm256.12 31254.64 32960.55 30466.24 33436.01 35668.14 24256.77 34033.60 38358.25 36275.52 31230.25 37774.33 23533.27 37669.76 37171.32 324
Syy-MVS54.13 32655.45 32250.18 35968.77 30523.59 41255.02 35944.55 39543.80 30858.05 36364.07 38946.22 27858.83 34846.16 29472.36 35068.12 351
myMVS_eth3d50.36 35450.52 35949.88 36068.77 30522.69 41455.02 35944.55 39543.80 30858.05 36364.07 38914.16 42458.83 34833.90 37472.36 35068.12 351
N_pmnet52.06 34451.11 35254.92 33559.64 38071.03 5737.42 41061.62 31933.68 38157.12 36572.10 33937.94 32931.03 41629.13 39771.35 35862.70 381
testing9155.74 31555.29 32557.08 32470.63 27730.85 38754.94 36256.31 34650.34 25057.08 36670.10 35824.50 39965.86 31736.98 35576.75 31374.53 291
tpm50.60 35252.42 34445.14 38365.18 34426.29 40660.30 32243.50 39837.41 36157.01 36779.09 27830.20 37942.32 40232.77 37866.36 38466.81 361
tpm cat154.02 32952.63 34158.19 31964.85 34939.86 32866.26 26957.28 33332.16 38756.90 36870.39 35332.75 35365.30 32334.29 37158.79 40269.41 344
Patchmatch-test47.93 36349.96 36241.84 39157.42 39024.26 41148.75 38441.49 40939.30 34756.79 36973.48 33130.48 37633.87 41529.29 39372.61 34867.39 355
testing9955.16 32154.56 33056.98 32670.13 29230.58 38954.55 36554.11 35449.53 26256.76 37070.14 35722.76 40665.79 31936.99 35476.04 31874.57 290
testing22253.37 33352.50 34355.98 33270.51 28329.68 39256.20 35251.85 36846.19 28756.76 37068.94 36819.18 41465.39 32125.87 40576.98 31172.87 307
EPNet69.10 18967.32 21674.46 11168.33 31161.27 14077.56 10763.57 30760.95 12756.62 37282.75 22151.53 24981.24 12454.36 22690.20 12480.88 209
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo61.56 27859.22 29168.58 22279.28 14860.44 15369.20 22471.57 23943.58 31356.42 37378.37 28639.57 32076.46 21034.86 36960.16 39968.86 349
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs55.84 31355.45 32257.01 32560.33 37133.20 37565.89 27259.29 32647.52 28056.04 37473.60 33031.05 37268.06 29640.64 32864.64 38769.77 340
MIMVSNet54.39 32556.12 31749.20 36572.57 25930.91 38659.98 32548.43 38341.66 32555.94 37583.86 20341.19 30850.42 37126.05 40275.38 32566.27 363
IB-MVS49.67 1859.69 29356.96 31067.90 22968.19 31350.30 22361.42 31365.18 29447.57 27955.83 37667.15 38323.77 40179.60 15643.56 31079.97 28073.79 299
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 147.72 36448.31 36645.93 37955.53 40029.39 39346.40 39341.21 41143.41 31655.81 37767.65 37829.22 38343.77 40025.73 40669.87 36964.62 375
pmmvs552.49 34252.58 34252.21 34954.99 40232.38 37755.45 35753.84 35632.15 38855.49 37874.81 31638.08 32857.37 35634.02 37274.40 33466.88 359
dmvs_re49.91 35850.77 35747.34 37359.98 37338.86 33553.18 37053.58 35839.75 34355.06 37961.58 39836.42 33844.40 39629.15 39668.23 37758.75 394
ETVMVS50.32 35549.87 36351.68 35170.30 28826.66 40352.33 37543.93 39743.54 31454.91 38067.95 37720.01 41260.17 34322.47 41373.40 34268.22 350
CANet_DTU64.04 25463.83 25464.66 25868.39 30842.97 30173.45 16474.50 21652.05 22954.78 38175.44 31343.99 29170.42 27853.49 23478.41 30080.59 219
PatchT53.35 33456.47 31443.99 38864.19 35117.46 41959.15 32843.10 40052.11 22854.74 38286.95 13929.97 38049.98 37343.62 30974.40 33464.53 377
HY-MVS49.31 1957.96 30557.59 30659.10 31466.85 33036.17 35565.13 28465.39 29339.24 34854.69 38378.14 29044.28 29067.18 30633.75 37570.79 36273.95 297
PVSNet43.83 2151.56 34851.17 35152.73 34668.34 31038.27 34048.22 38653.56 35936.41 36554.29 38464.94 38834.60 34454.20 36530.34 38669.87 36965.71 366
WTY-MVS49.39 35950.31 36146.62 37761.22 36632.00 38046.61 39249.77 37633.87 38054.12 38569.55 36441.96 30345.40 38931.28 38464.42 38862.47 384
PAPM61.79 27660.37 28566.05 25076.09 20141.87 30869.30 22276.79 19740.64 33953.80 38679.62 26744.38 28982.92 9829.64 39173.11 34573.36 302
UBG49.18 36049.35 36448.66 37070.36 28626.56 40550.53 38045.61 39237.43 36053.37 38765.97 38423.03 40554.20 36526.29 40071.54 35765.20 370
tpmrst50.15 35651.38 35046.45 37856.05 39524.77 41064.40 29349.98 37536.14 36753.32 38869.59 36335.16 34248.69 37739.24 33458.51 40465.89 364
MDTV_nov1_ep1354.05 33465.54 34129.30 39459.00 33155.22 34735.96 36952.44 38975.98 30630.77 37459.62 34538.21 34373.33 344
sss47.59 36548.32 36545.40 38256.73 39433.96 37145.17 39548.51 38232.11 39052.37 39065.79 38540.39 31441.91 40531.85 38161.97 39560.35 390
testing1153.13 33552.26 34555.75 33370.44 28431.73 38154.75 36352.40 36644.81 30352.36 39168.40 37521.83 40765.74 32032.64 37972.73 34769.78 339
test_vis1_rt46.70 36745.24 37551.06 35644.58 42051.04 21639.91 40667.56 27821.84 41751.94 39250.79 41333.83 34639.77 40935.25 36861.50 39662.38 385
dmvs_testset45.26 37047.51 36838.49 39759.96 37514.71 42158.50 33743.39 39941.30 32851.79 39356.48 40639.44 32249.91 37521.42 41555.35 41150.85 402
baseline255.57 31852.74 33964.05 26465.26 34244.11 28862.38 30854.43 35239.03 34951.21 39467.35 38133.66 34772.45 25537.14 35264.22 38975.60 279
EPMVS45.74 36846.53 37143.39 38954.14 40622.33 41655.02 35935.00 41834.69 37651.09 39570.20 35525.92 39342.04 40437.19 35155.50 40965.78 365
gg-mvs-nofinetune55.75 31456.75 31252.72 34762.87 35728.04 39868.92 22741.36 41071.09 4650.80 39692.63 1320.74 40966.86 31029.97 38972.41 34963.25 379
ADS-MVSNet248.76 36147.25 37053.29 34555.90 39740.54 32347.34 39054.99 35031.41 39350.48 39772.06 34031.23 36854.26 36425.93 40355.93 40765.07 371
ADS-MVSNet44.62 37445.58 37341.73 39255.90 39720.83 41747.34 39039.94 41331.41 39350.48 39772.06 34031.23 36839.31 41025.93 40355.93 40765.07 371
pmmvs346.71 36645.09 37651.55 35256.76 39348.25 24455.78 35639.53 41424.13 41250.35 39963.40 39115.90 42151.08 37029.29 39370.69 36455.33 400
JIA-IIPM54.03 32851.62 34761.25 29759.14 38255.21 19159.10 33047.72 38450.85 24550.31 40085.81 17820.10 41163.97 32836.16 36255.41 41064.55 376
test-LLR50.43 35350.69 35849.64 36360.76 36841.87 30853.18 37045.48 39343.41 31649.41 40160.47 40229.22 38344.73 39442.09 31872.14 35362.33 386
test-mter48.56 36248.20 36749.64 36360.76 36841.87 30853.18 37045.48 39331.91 39149.41 40160.47 40218.34 41544.73 39442.09 31872.14 35362.33 386
dongtai31.66 38632.98 38927.71 40158.58 38512.61 42345.02 39614.24 42741.90 32347.93 40343.91 41610.65 42741.81 40614.06 41920.53 42028.72 417
PMMVS237.74 38340.87 38328.36 40042.41 4235.35 42824.61 41527.75 42032.15 38847.85 40470.27 35435.85 34029.51 41819.08 41867.85 38050.22 404
EPNet_dtu58.93 29958.52 29760.16 30767.91 31747.70 25769.97 21358.02 32849.73 25847.28 40573.02 33638.14 32762.34 33536.57 35885.99 20570.43 334
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed43.18 37944.66 37938.75 39654.75 40328.88 39657.06 34627.42 42113.47 41947.27 40677.67 29538.83 32439.29 41125.32 40860.12 40048.08 405
mvsany_test137.88 38235.74 38744.28 38647.28 41849.90 22936.54 41224.37 42319.56 41845.76 40753.46 40932.99 35137.97 41326.17 40135.52 41644.99 411
GG-mvs-BLEND52.24 34860.64 37029.21 39569.73 21742.41 40345.47 40852.33 41120.43 41068.16 29425.52 40765.42 38659.36 393
new_pmnet37.55 38439.80 38630.79 39956.83 39216.46 42039.35 40730.65 41925.59 40845.26 40961.60 39724.54 39828.02 41921.60 41452.80 41247.90 406
MDTV_nov1_ep13_2view18.41 41853.74 36831.57 39244.89 41029.90 38132.93 37771.48 321
TESTMET0.1,145.17 37144.93 37745.89 38056.02 39638.31 33953.18 37041.94 40827.85 39944.86 41156.47 40717.93 41741.50 40738.08 34568.06 37857.85 395
PVSNet_036.71 2241.12 38140.78 38442.14 39059.97 37440.13 32540.97 40342.24 40730.81 39544.86 41149.41 41440.70 31245.12 39123.15 41234.96 41741.16 413
dp44.09 37644.88 37841.72 39358.53 38623.18 41354.70 36442.38 40534.80 37444.25 41365.61 38624.48 40044.80 39329.77 39049.42 41357.18 398
PMMVS44.69 37343.95 38146.92 37550.05 41453.47 20448.08 38842.40 40422.36 41544.01 41453.05 41042.60 30145.49 38831.69 38261.36 39741.79 412
MVS-HIRNet45.53 36947.29 36940.24 39462.29 36026.82 40256.02 35437.41 41629.74 39743.69 41581.27 23933.96 34555.48 36024.46 41056.79 40638.43 415
E-PMN45.17 37145.36 37444.60 38550.07 41342.75 30238.66 40842.29 40646.39 28639.55 41651.15 41226.00 39245.37 39037.68 34776.41 31445.69 409
MVEpermissive27.91 2336.69 38535.64 38839.84 39543.37 42235.85 35919.49 41624.61 42224.68 41039.05 41762.63 39538.67 32627.10 42021.04 41647.25 41556.56 399
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS44.61 37544.45 38045.10 38448.91 41643.00 30037.92 40941.10 41246.75 28438.00 41848.43 41526.42 39046.27 38537.11 35375.38 32546.03 408
CHOSEN 280x42041.62 38039.89 38546.80 37661.81 36251.59 21133.56 41435.74 41727.48 40137.64 41953.53 40823.24 40342.09 40327.39 39958.64 40346.72 407
kuosan22.02 38723.52 39117.54 40341.56 42511.24 42441.99 40213.39 42826.13 40628.87 42030.75 4189.72 42821.94 4224.77 42314.49 42119.43 418
tmp_tt11.98 39014.73 3933.72 4052.28 4284.62 42919.44 41714.50 4260.47 42321.55 4219.58 42125.78 3944.57 42411.61 42127.37 4181.96 420
DeepMVS_CXcopyleft11.83 40415.51 42613.86 42211.25 4295.76 42020.85 42226.46 41917.06 4209.22 4239.69 42213.82 42212.42 419
test_method19.26 38819.12 39219.71 4029.09 4271.91 4307.79 41853.44 3601.42 42110.27 42335.80 41717.42 41925.11 42112.44 42024.38 41932.10 416
EGC-MVSNET64.77 24361.17 27775.60 10286.90 4374.47 3484.04 3968.62 2740.60 4221.13 42491.61 3265.32 13374.15 23864.01 13188.28 16278.17 253
test1234.43 3935.78 3960.39 4070.97 4290.28 43146.33 3940.45 4300.31 4240.62 4251.50 4240.61 4300.11 4260.56 4240.63 4230.77 422
testmvs4.06 3945.28 3970.41 4060.64 4300.16 43242.54 4000.31 4310.26 4250.50 4261.40 4250.77 4290.17 4250.56 4240.55 4240.90 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k17.71 38923.62 3900.00 4080.00 4310.00 4330.00 41970.17 2630.00 4260.00 42774.25 32568.16 1000.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas5.20 3926.93 3950.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42662.39 1560.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re5.62 3917.50 3940.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42767.46 3790.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS22.69 41436.10 363
MSC_two_6792asdad79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
No_MVS79.02 5783.14 9967.03 9180.75 12686.24 2477.27 3794.85 2983.78 134
eth-test20.00 431
eth-test0.00 431
OPU-MVS78.65 6483.44 9766.85 9383.62 4686.12 17066.82 11386.01 3461.72 15389.79 13683.08 159
save fliter87.00 4067.23 9079.24 8977.94 18356.65 170
test_0728_SECOND76.57 8786.20 4960.57 15283.77 4485.49 3285.90 4075.86 4294.39 4483.25 153
GSMVS70.05 336
sam_mvs131.41 36670.05 336
sam_mvs31.21 370
MTGPAbinary80.63 131
test_post166.63 2652.08 42230.66 37559.33 34640.34 330
test_post1.99 42330.91 37354.76 363
patchmatchnet-post68.99 36631.32 36769.38 284
MTMP84.83 3419.26 425
gm-plane-assit62.51 35833.91 37237.25 36262.71 39472.74 24838.70 338
test9_res72.12 7391.37 9477.40 262
agg_prior270.70 7790.93 10978.55 248
test_prior470.14 6777.57 106
test_prior75.27 10682.15 11859.85 15784.33 6383.39 9082.58 176
新几何271.33 194
旧先验184.55 8260.36 15463.69 30687.05 13754.65 23183.34 24369.66 341
无先验74.82 14370.94 25647.75 27876.85 20654.47 22272.09 317
原ACMM274.78 147
testdata267.30 30348.34 274
segment_acmp68.30 99
testdata168.34 24157.24 162
plane_prior785.18 7066.21 98
plane_prior684.18 8865.31 10760.83 177
plane_prior585.49 3286.15 2971.09 7490.94 10784.82 100
plane_prior489.11 97
plane_prior282.74 5565.45 80
plane_prior184.46 84
plane_prior65.18 10880.06 8361.88 12289.91 133
n20.00 432
nn0.00 432
door-mid55.02 349
test1182.71 91
door52.91 364
HQP5-MVS58.80 168
BP-MVS67.38 105
HQP3-MVS84.12 6989.16 148
HQP2-MVS58.09 204
NP-MVS83.34 9863.07 12585.97 174
ACMMP++_ref89.47 143
ACMMP++91.96 85
Test By Simon62.56 152