This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet86.90 188.67 181.57 2191.50 163.30 11984.80 3287.77 986.18 196.26 196.06 190.32 184.49 6968.08 8897.05 196.93 1
FOURS189.19 2377.84 1291.64 189.11 284.05 291.57 2
DTE-MVSNet80.35 4882.89 3572.74 14689.84 737.34 33977.16 10981.81 10080.45 390.92 392.95 774.57 4786.12 2963.65 13294.68 3194.76 6
PS-CasMVS80.41 4782.86 3673.07 13389.93 639.21 31977.15 11081.28 11079.74 590.87 492.73 1175.03 4384.93 6263.83 13195.19 1595.07 3
wuyk23d61.97 26566.25 21949.12 35558.19 37660.77 14966.32 25952.97 35455.93 17090.62 586.91 13273.07 5735.98 40020.63 40491.63 8750.62 390
PEN-MVS80.46 4682.91 3473.11 13289.83 839.02 32277.06 11282.61 8880.04 490.60 692.85 974.93 4485.21 5763.15 13995.15 1795.09 2
CP-MVSNet79.48 5481.65 4572.98 13689.66 1239.06 32176.76 11380.46 13078.91 790.32 791.70 2568.49 9384.89 6363.40 13695.12 1895.01 4
LCM-MVSNet-Re69.10 18371.57 15861.70 28370.37 27934.30 35961.45 30479.62 14456.81 15989.59 888.16 11968.44 9472.94 24242.30 30587.33 17877.85 254
WR-MVS_H80.22 5082.17 4174.39 11189.46 1442.69 29678.24 9682.24 9278.21 989.57 992.10 1868.05 9885.59 4866.04 11295.62 994.88 5
anonymousdsp78.60 6177.80 7281.00 3178.01 16874.34 3380.09 7776.12 19750.51 24089.19 1090.88 4271.45 6977.78 19073.38 5690.60 11890.90 18
LTVRE_ROB75.46 184.22 684.98 781.94 2084.82 7275.40 2591.60 387.80 773.52 2488.90 1193.06 671.39 7081.53 11581.53 392.15 8288.91 38
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-078.57 6278.53 6778.67 6180.48 13264.16 11280.24 7482.06 9561.89 11688.77 1293.32 457.15 21082.60 9970.08 7692.80 7189.25 28
test_040278.17 6979.48 5974.24 11383.50 9059.15 16172.52 16374.60 21275.34 1588.69 1391.81 2275.06 4282.37 10265.10 11788.68 15781.20 193
TDRefinement86.32 286.33 286.29 188.64 3181.19 488.84 490.72 178.27 887.95 1492.53 1379.37 1384.79 6674.51 4896.15 292.88 7
LPG-MVS_test83.47 1684.33 1280.90 3287.00 3970.41 6082.04 5686.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
LGP-MVS_train80.90 3287.00 3970.41 6086.35 1769.77 5087.75 1591.13 3481.83 386.20 2477.13 3595.96 586.08 71
SixPastTwentyTwo75.77 8576.34 8674.06 11681.69 12154.84 18776.47 11575.49 20464.10 9587.73 1792.24 1750.45 24981.30 11967.41 9791.46 9186.04 73
SR-MVS-dyc-post84.75 385.26 583.21 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4779.20 1485.58 4978.11 2394.46 3684.89 94
RE-MVS-def85.50 386.19 4979.18 687.23 886.27 2077.51 1087.65 1890.73 4781.38 778.11 2394.46 3684.89 94
ACMH+66.64 1081.20 3682.48 3977.35 7881.16 12862.39 12480.51 6787.80 773.02 2687.57 2091.08 3680.28 982.44 10064.82 12096.10 487.21 57
v7n79.37 5680.41 5276.28 9078.67 16155.81 18279.22 8682.51 9070.72 4487.54 2192.44 1468.00 10081.34 11772.84 6191.72 8491.69 10
ACMM69.25 982.11 2983.31 2778.49 6488.17 3673.96 3483.11 4984.52 5766.40 6987.45 2289.16 9381.02 880.52 13874.27 5195.73 780.98 201
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvs_tets78.93 5878.67 6579.72 4384.81 7373.93 3580.65 6576.50 19551.98 22187.40 2391.86 2176.09 3378.53 16868.58 8390.20 12286.69 66
SED-MVS81.78 3183.48 2476.67 8386.12 5361.06 14083.62 4284.72 4972.61 3087.38 2489.70 8077.48 2385.89 4075.29 4294.39 4183.08 156
test_241102_ONE86.12 5361.06 14084.72 4972.64 2987.38 2489.47 8377.48 2385.74 44
test_djsdf78.88 5978.27 6980.70 3581.42 12371.24 5283.98 3675.72 20252.27 21687.37 2692.25 1668.04 9980.56 13572.28 6791.15 9890.32 22
jajsoiax78.51 6378.16 7079.59 4784.65 7673.83 3780.42 6976.12 19751.33 23187.19 2791.51 2973.79 5478.44 17268.27 8690.13 12686.49 68
PMVScopyleft70.70 681.70 3283.15 3177.36 7790.35 582.82 282.15 5479.22 15374.08 2087.16 2891.97 1984.80 276.97 19764.98 11993.61 6072.28 305
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
ACMH63.62 1477.50 7380.11 5469.68 19379.61 14056.28 17878.81 8983.62 7363.41 10687.14 2990.23 7176.11 3273.32 23967.58 9494.44 3979.44 231
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
ACMP69.50 882.64 2583.38 2680.40 3786.50 4569.44 6782.30 5386.08 2466.80 6586.70 3089.99 7581.64 685.95 3474.35 5096.11 385.81 76
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
RRT_MVS78.18 6877.69 7379.66 4683.14 9561.34 13583.29 4880.34 13557.43 15486.65 3191.79 2350.52 24786.01 3171.36 7094.65 3291.62 11
APDe-MVScopyleft82.88 2384.14 1479.08 5384.80 7466.72 9086.54 2085.11 3972.00 3786.65 3191.75 2478.20 2087.04 977.93 2594.32 4883.47 142
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
testf175.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
APD_test275.66 8876.57 8272.95 13767.07 32067.62 8176.10 12480.68 12464.95 8786.58 3390.94 4071.20 7271.68 26260.46 15991.13 10079.56 227
APD-MVS_3200maxsize83.57 1384.33 1281.31 2882.83 10673.53 4085.50 2787.45 1274.11 1986.45 3590.52 5580.02 1084.48 7077.73 2794.34 4785.93 74
PS-MVSNAJss77.54 7277.35 7878.13 7084.88 7166.37 9278.55 9279.59 14753.48 20886.29 3692.43 1562.39 15180.25 14267.90 9390.61 11787.77 49
HPM-MVS_fast84.59 485.10 683.06 488.60 3275.83 2386.27 2486.89 1573.69 2386.17 3791.70 2578.23 1985.20 5879.45 1294.91 2488.15 47
SR-MVS84.51 585.27 482.25 1888.52 3377.71 1386.81 1685.25 3777.42 1386.15 3890.24 7081.69 585.94 3577.77 2693.58 6183.09 155
SD-MVS80.28 4981.55 4776.47 8883.57 8967.83 8083.39 4785.35 3664.42 9286.14 3987.07 12974.02 5180.97 12977.70 2892.32 8080.62 213
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
COLMAP_ROBcopyleft72.78 383.75 1184.11 1582.68 1282.97 10374.39 3287.18 1088.18 678.98 686.11 4091.47 3079.70 1285.76 4366.91 10795.46 1187.89 48
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
v1075.69 8776.20 8874.16 11474.44 22248.69 23275.84 13082.93 8359.02 13885.92 4189.17 9258.56 19382.74 9770.73 7389.14 15091.05 15
ACMMPcopyleft84.22 684.84 882.35 1789.23 2176.66 2287.65 685.89 2671.03 4285.85 4290.58 5178.77 1685.78 4279.37 1595.17 1684.62 105
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
DVP-MVScopyleft81.15 3783.12 3275.24 10386.16 5160.78 14783.77 4080.58 12872.48 3285.83 4390.41 5978.57 1785.69 4575.86 3994.39 4179.24 233
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD74.03 2185.83 4390.41 5975.58 3785.69 4577.43 3094.74 2984.31 120
v875.07 9775.64 9573.35 12673.42 23647.46 25175.20 13481.45 10660.05 12885.64 4589.26 8758.08 20181.80 11269.71 8087.97 16790.79 19
XVG-ACMP-BASELINE80.54 4481.06 4878.98 5787.01 3872.91 4380.23 7585.56 2966.56 6885.64 4589.57 8269.12 8980.55 13772.51 6593.37 6383.48 141
SteuartSystems-ACMMP83.07 2183.64 2281.35 2685.14 6871.00 5485.53 2684.78 4670.91 4385.64 4590.41 5975.55 3887.69 479.75 795.08 1985.36 85
Skip Steuart: Steuart Systems R&D Blog.
test_one_060185.84 6161.45 13385.63 2875.27 1785.62 4890.38 6476.72 27
OPM-MVS80.99 4181.63 4679.07 5486.86 4369.39 6879.41 8484.00 7065.64 7385.54 4989.28 8676.32 3183.47 8374.03 5293.57 6284.35 119
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
UniMVSNet_ETH3D76.74 7979.02 6169.92 19189.27 1943.81 28374.47 14871.70 23272.33 3585.50 5093.65 377.98 2176.88 20054.60 21491.64 8689.08 32
DPE-MVScopyleft82.00 3083.02 3378.95 5885.36 6567.25 8582.91 5084.98 4273.52 2485.43 5190.03 7476.37 2986.97 1174.56 4794.02 5582.62 172
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
MP-MVS-pluss82.54 2683.46 2579.76 4188.88 3068.44 7681.57 5986.33 1963.17 10885.38 5291.26 3376.33 3084.67 6883.30 194.96 2286.17 70
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
test072686.16 5160.78 14783.81 3985.10 4072.48 3285.27 5389.96 7678.57 17
HPM-MVScopyleft84.12 884.63 982.60 1388.21 3574.40 3185.24 2887.21 1370.69 4585.14 5490.42 5878.99 1586.62 1380.83 594.93 2386.79 63
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
mPP-MVS84.01 1084.39 1182.88 690.65 381.38 387.08 1282.79 8472.41 3485.11 5590.85 4476.65 2884.89 6379.30 1694.63 3382.35 177
DVP-MVS++81.24 3582.74 3776.76 8283.14 9560.90 14491.64 185.49 3074.03 2184.93 5690.38 6466.82 11085.90 3877.43 3090.78 11383.49 139
test_241102_TWO84.80 4572.61 3084.93 5689.70 8077.73 2285.89 4075.29 4294.22 5283.25 150
MTAPA83.19 1883.87 1881.13 3091.16 278.16 1184.87 3080.63 12672.08 3684.93 5690.79 4574.65 4684.42 7280.98 494.75 2880.82 205
PGM-MVS83.07 2183.25 3082.54 1589.57 1377.21 2082.04 5685.40 3467.96 5984.91 5990.88 4275.59 3686.57 1478.16 2294.71 3083.82 130
K. test v373.67 11273.61 12073.87 11979.78 13855.62 18574.69 14562.04 30866.16 7184.76 6093.23 549.47 25480.97 12965.66 11586.67 19385.02 93
CP-MVS84.12 884.55 1082.80 1089.42 1779.74 588.19 584.43 5871.96 3884.70 6190.56 5277.12 2586.18 2679.24 1795.36 1282.49 175
test_part285.90 5766.44 9184.61 62
ACMMPR83.62 1283.93 1782.69 1189.78 1077.51 1887.01 1484.19 6570.23 4684.49 6390.67 5075.15 4186.37 1879.58 1094.26 4984.18 123
HFP-MVS83.39 1784.03 1681.48 2389.25 2075.69 2487.01 1484.27 6170.23 4684.47 6490.43 5776.79 2685.94 3579.58 1094.23 5182.82 164
SF-MVS80.72 4381.80 4277.48 7482.03 11664.40 11183.41 4688.46 565.28 8184.29 6589.18 9173.73 5583.22 8876.01 3893.77 5884.81 100
SMA-MVScopyleft82.12 2882.68 3880.43 3688.90 2969.52 6585.12 2984.76 4763.53 10284.23 6691.47 3072.02 6487.16 779.74 994.36 4584.61 106
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
GST-MVS82.79 2483.27 2981.34 2788.99 2673.29 4185.94 2585.13 3868.58 5784.14 6790.21 7273.37 5686.41 1679.09 1893.98 5684.30 122
ZNCC-MVS83.12 2083.68 2181.45 2489.14 2473.28 4286.32 2385.97 2567.39 6084.02 6890.39 6274.73 4586.46 1580.73 694.43 4084.60 108
ACMMP_NAP82.33 2783.28 2879.46 4989.28 1869.09 7483.62 4284.98 4264.77 9083.97 6991.02 3875.53 3985.93 3782.00 294.36 4583.35 148
mvsmamba77.20 7576.37 8579.69 4580.34 13461.52 13280.58 6682.12 9453.54 20783.93 7091.03 3749.49 25385.97 3373.26 5793.08 6791.59 12
region2R83.54 1483.86 1982.58 1489.82 977.53 1687.06 1384.23 6470.19 4883.86 7190.72 4975.20 4086.27 2179.41 1494.25 5083.95 128
lessismore_v072.75 14579.60 14156.83 17757.37 32383.80 7289.01 9747.45 27078.74 16664.39 12386.49 19682.69 168
APD-MVScopyleft81.13 3881.73 4479.36 5184.47 7970.53 5983.85 3883.70 7269.43 5283.67 7388.96 9975.89 3486.41 1672.62 6492.95 6981.14 195
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
ITE_SJBPF80.35 3876.94 18373.60 3880.48 12966.87 6483.64 7486.18 15870.25 8079.90 14861.12 15488.95 15587.56 53
nrg03074.87 10475.99 9171.52 16574.90 21149.88 22674.10 15382.58 8954.55 18883.50 7589.21 8971.51 6775.74 21061.24 15092.34 7988.94 37
V4271.06 15570.83 16671.72 16267.25 31647.14 25665.94 26380.35 13451.35 23083.40 7683.23 20659.25 18778.80 16465.91 11380.81 26589.23 29
TranMVSNet+NR-MVSNet76.13 8377.66 7571.56 16484.61 7742.57 29870.98 19378.29 17368.67 5683.04 7789.26 8772.99 5880.75 13455.58 20695.47 1091.35 13
9.1480.22 5380.68 13080.35 7287.69 1059.90 12983.00 7888.20 11674.57 4781.75 11373.75 5493.78 57
APD_test175.04 9875.38 9974.02 11769.89 28570.15 6276.46 11679.71 14365.50 7582.99 7988.60 10866.94 10772.35 25259.77 16988.54 15879.56 227
Anonymous2023121175.54 9077.19 7970.59 17577.67 17445.70 27274.73 14380.19 13668.80 5382.95 8092.91 866.26 11876.76 20258.41 17992.77 7289.30 27
XVS83.51 1583.73 2082.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 8190.39 6273.86 5286.31 1978.84 1994.03 5384.64 103
X-MVStestdata76.81 7874.79 10182.85 889.43 1577.61 1486.80 1784.66 5372.71 2782.87 819.95 40573.86 5286.31 1978.84 1994.03 5384.64 103
dcpmvs_271.02 15772.65 14066.16 24476.06 19950.49 21371.97 17379.36 15050.34 24182.81 8383.63 19464.38 13667.27 29861.54 14883.71 23480.71 211
XVG-OURS79.51 5379.82 5678.58 6386.11 5674.96 2876.33 12284.95 4466.89 6382.75 8488.99 9866.82 11078.37 17674.80 4490.76 11682.40 176
ZD-MVS83.91 8669.36 6981.09 11658.91 14082.73 8589.11 9475.77 3586.63 1272.73 6292.93 70
FC-MVSNet-test73.32 11974.78 10268.93 21079.21 14936.57 34171.82 18079.54 14957.63 15382.57 8690.38 6459.38 18678.99 16157.91 18294.56 3491.23 14
ANet_high67.08 21269.94 17158.51 30857.55 37727.09 39058.43 32776.80 19363.56 10182.40 8791.93 2059.82 18264.98 31850.10 24888.86 15683.46 143
v124073.06 12673.14 12972.84 14374.74 21547.27 25571.88 17981.11 11451.80 22282.28 8884.21 18656.22 22082.34 10368.82 8287.17 18688.91 38
tt080576.12 8478.43 6869.20 20181.32 12541.37 30476.72 11477.64 18263.78 9982.06 8987.88 12279.78 1179.05 15964.33 12492.40 7787.17 60
LS3D80.99 4180.85 4981.41 2578.37 16271.37 5087.45 785.87 2777.48 1281.98 9089.95 7769.14 8885.26 5466.15 10991.24 9587.61 52
v119273.40 11773.42 12173.32 12874.65 21948.67 23372.21 16681.73 10152.76 21381.85 9184.56 18157.12 21182.24 10668.58 8387.33 17889.06 33
PC_three_145246.98 27381.83 9286.28 15466.55 11784.47 7163.31 13890.78 11383.49 139
v114473.29 12073.39 12273.01 13474.12 22848.11 23972.01 17281.08 11753.83 20481.77 9384.68 17958.07 20281.91 11068.10 8786.86 18888.99 36
OMC-MVS79.41 5578.79 6381.28 2980.62 13170.71 5880.91 6384.76 4762.54 11281.77 9386.65 14471.46 6883.53 8267.95 9292.44 7689.60 24
UniMVSNet_NR-MVSNet74.90 10275.65 9472.64 14983.04 10145.79 26969.26 21578.81 15966.66 6781.74 9586.88 13363.26 14181.07 12556.21 19894.98 2091.05 15
DU-MVS74.91 10175.57 9672.93 14083.50 9045.79 26969.47 21280.14 13865.22 8281.74 9587.08 12761.82 15781.07 12556.21 19894.98 2091.93 8
v192192072.96 13272.98 13572.89 14274.67 21647.58 24971.92 17780.69 12351.70 22481.69 9783.89 19156.58 21782.25 10568.34 8587.36 17588.82 40
WR-MVS71.20 15472.48 14367.36 23184.98 7035.70 34964.43 28468.66 26565.05 8681.49 9886.43 15257.57 20876.48 20450.36 24693.32 6589.90 23
v14419272.99 13073.06 13372.77 14474.58 22047.48 25071.90 17880.44 13151.57 22581.46 9984.11 18858.04 20382.12 10767.98 9187.47 17388.70 43
bld_raw_dy_0_6469.94 16969.64 17470.84 17173.28 23946.85 25975.82 13186.52 1640.43 33081.41 10074.77 30348.70 26483.01 9356.25 19689.59 13882.66 169
IU-MVS86.12 5360.90 14480.38 13245.49 28481.31 10175.64 4194.39 4184.65 102
MP-MVScopyleft83.19 1883.54 2382.14 1990.54 479.00 886.42 2283.59 7471.31 3981.26 10290.96 3974.57 4784.69 6778.41 2194.78 2782.74 167
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
test_fmvsmvis_n_192072.36 14272.49 14271.96 16071.29 26564.06 11372.79 16281.82 9940.23 33181.25 10381.04 23270.62 7768.69 28369.74 7983.60 23683.14 154
v2v48272.55 14172.58 14172.43 15472.92 25246.72 26171.41 18579.13 15455.27 17481.17 10485.25 17555.41 22281.13 12267.25 10585.46 20489.43 26
MSP-MVS80.49 4579.67 5882.96 589.70 1177.46 1987.16 1185.10 4064.94 8981.05 10588.38 11357.10 21287.10 879.75 783.87 23084.31 120
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
MDA-MVSNet-bldmvs62.34 26461.73 26264.16 25661.64 35449.90 22248.11 37457.24 32653.31 20980.95 10679.39 25949.00 26061.55 33245.92 28680.05 27281.03 198
CPTT-MVS81.51 3481.76 4380.76 3489.20 2278.75 986.48 2182.03 9668.80 5380.92 10788.52 10972.00 6582.39 10174.80 4493.04 6881.14 195
DeepC-MVS72.44 481.00 4080.83 5081.50 2286.70 4470.03 6482.06 5587.00 1459.89 13080.91 10890.53 5372.19 6188.56 173.67 5594.52 3585.92 75
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
casdiffmvs_mvgpermissive75.26 9376.18 8972.52 15172.87 25349.47 22772.94 16184.71 5159.49 13280.90 10988.81 10370.07 8179.71 15067.40 9888.39 15988.40 46
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FIs72.56 13973.80 11568.84 21378.74 16037.74 33571.02 19279.83 14256.12 16680.88 11089.45 8458.18 19578.28 17956.63 19093.36 6490.51 21
3Dnovator+73.19 281.08 3980.48 5182.87 781.41 12472.03 4584.38 3486.23 2377.28 1480.65 11190.18 7359.80 18387.58 573.06 5991.34 9389.01 34
IterMVS-LS73.01 12873.12 13172.66 14873.79 23249.90 22271.63 18278.44 16958.22 14380.51 11286.63 14558.15 19779.62 15162.51 14188.20 16188.48 44
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
DP-MVS78.44 6679.29 6075.90 9481.86 11965.33 10279.05 8784.63 5574.83 1880.41 11386.27 15571.68 6683.45 8462.45 14392.40 7778.92 238
XVG-OURS-SEG-HR79.62 5279.99 5578.49 6486.46 4674.79 2977.15 11085.39 3566.73 6680.39 11488.85 10274.43 5078.33 17874.73 4685.79 20282.35 177
DeepPCF-MVS71.07 578.48 6577.14 8082.52 1684.39 8277.04 2176.35 12084.05 6856.66 16280.27 11585.31 17468.56 9287.03 1067.39 9991.26 9483.50 138
AllTest77.66 7177.43 7678.35 6679.19 15070.81 5578.60 9188.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
TestCases78.35 6679.19 15070.81 5588.64 365.37 7980.09 11688.17 11770.33 7878.43 17355.60 20390.90 10985.81 76
UA-Net81.56 3382.28 4079.40 5088.91 2869.16 7284.67 3380.01 14075.34 1579.80 11894.91 269.79 8580.25 14272.63 6394.46 3688.78 42
PCF-MVS63.80 1372.70 13771.69 15375.72 9678.10 16560.01 15473.04 16081.50 10445.34 28679.66 11984.35 18565.15 13082.65 9848.70 26089.38 14684.50 115
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
UniMVSNet (Re)75.00 9975.48 9773.56 12483.14 9547.92 24370.41 20281.04 11863.67 10079.54 12086.37 15362.83 14581.82 11157.10 18895.25 1490.94 17
Baseline_NR-MVSNet70.62 16173.19 12862.92 27476.97 18234.44 35768.84 22070.88 25160.25 12779.50 12190.53 5361.82 15769.11 28054.67 21395.27 1385.22 87
FMVSNet171.06 15572.48 14366.81 23777.65 17540.68 31071.96 17473.03 21961.14 12079.45 12290.36 6760.44 17575.20 21850.20 24788.05 16484.54 110
ambc70.10 18777.74 17250.21 21774.28 15177.93 18079.26 12388.29 11554.11 22979.77 14964.43 12291.10 10280.30 218
IS-MVSNet75.10 9675.42 9874.15 11579.23 14848.05 24179.43 8278.04 17770.09 4979.17 12488.02 12153.04 23383.60 8058.05 18193.76 5990.79 19
CSCG74.12 10874.39 10573.33 12779.35 14461.66 13177.45 10581.98 9762.47 11479.06 12580.19 24661.83 15678.79 16559.83 16887.35 17679.54 230
RPSCF75.76 8674.37 10679.93 4074.81 21377.53 1677.53 10479.30 15259.44 13378.88 12689.80 7971.26 7173.09 24157.45 18480.89 26289.17 31
tttt051769.46 17767.79 20374.46 10775.34 20452.72 20175.05 13563.27 30154.69 18378.87 12784.37 18426.63 38081.15 12163.95 12887.93 16889.51 25
v14869.38 18069.39 17669.36 19769.14 29544.56 27868.83 22172.70 22554.79 18178.59 12884.12 18754.69 22476.74 20359.40 17382.20 24586.79 63
EI-MVSNet-Vis-set72.78 13571.87 15075.54 9974.77 21459.02 16472.24 16571.56 23563.92 9678.59 12871.59 33266.22 11978.60 16767.58 9480.32 26989.00 35
EI-MVSNet-UG-set72.63 13871.68 15475.47 10074.67 21658.64 16972.02 17171.50 23663.53 10278.58 13071.39 33665.98 12078.53 16867.30 10480.18 27189.23 29
旧先验271.17 19145.11 28978.54 13161.28 33359.19 174
MIMVSNet166.57 21969.23 17958.59 30781.26 12737.73 33664.06 28757.62 32057.02 15778.40 13290.75 4662.65 14658.10 34641.77 31089.58 14079.95 222
HQP_MVS78.77 6078.78 6478.72 6085.18 6665.18 10482.74 5185.49 3065.45 7678.23 13389.11 9460.83 17286.15 2771.09 7190.94 10584.82 98
plane_prior365.67 9963.82 9878.23 133
eth_miper_zixun_eth69.42 17868.73 18971.50 16667.99 30846.42 26467.58 23978.81 15950.72 23878.13 13580.34 24350.15 25180.34 14060.18 16284.65 22087.74 50
HPM-MVS++copyleft79.89 5179.80 5780.18 3989.02 2578.44 1083.49 4580.18 13764.71 9178.11 13688.39 11265.46 12783.14 8977.64 2991.20 9678.94 237
h-mvs3373.08 12471.61 15677.48 7483.89 8872.89 4470.47 20071.12 24854.28 19177.89 13783.41 19649.04 25880.98 12863.62 13390.77 11578.58 241
hse-mvs272.32 14370.66 16877.31 7983.10 10071.77 4769.19 21771.45 23854.28 19177.89 13778.26 27549.04 25879.23 15663.62 13389.13 15180.92 202
PM-MVS64.49 24063.61 25067.14 23576.68 18975.15 2768.49 23042.85 38951.17 23477.85 13980.51 23945.76 27466.31 31052.83 23176.35 30459.96 378
BH-untuned69.39 17969.46 17569.18 20277.96 16956.88 17568.47 23177.53 18356.77 16077.79 14079.63 25560.30 17780.20 14546.04 28580.65 26670.47 321
c3_l69.82 17269.89 17269.61 19466.24 32643.48 28768.12 23479.61 14651.43 22777.72 14180.18 24754.61 22678.15 18463.62 13387.50 17287.20 58
MSLP-MVS++74.48 10675.78 9370.59 17584.66 7562.40 12378.65 9084.24 6360.55 12577.71 14281.98 22063.12 14277.64 19262.95 14088.14 16271.73 310
CDPH-MVS77.33 7477.06 8178.14 6984.21 8363.98 11476.07 12683.45 7554.20 19577.68 14387.18 12569.98 8285.37 5168.01 9092.72 7485.08 91
CNVR-MVS78.49 6478.59 6678.16 6885.86 6067.40 8478.12 9981.50 10463.92 9677.51 14486.56 14868.43 9584.82 6573.83 5391.61 8882.26 181
casdiffmvspermissive73.06 12673.84 11470.72 17371.32 26446.71 26270.93 19484.26 6255.62 17277.46 14587.10 12667.09 10677.81 18863.95 12886.83 19087.64 51
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
TinyColmap67.98 19869.28 17764.08 25867.98 30946.82 26070.04 20475.26 20653.05 21077.36 14686.79 13559.39 18572.59 24945.64 28888.01 16672.83 298
TSAR-MVS + MP.79.05 5778.81 6279.74 4288.94 2767.52 8386.61 1981.38 10851.71 22377.15 14791.42 3265.49 12687.20 679.44 1387.17 18684.51 114
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
KD-MVS_self_test66.38 22167.51 20562.97 27261.76 35334.39 35858.11 33075.30 20550.84 23777.12 14885.42 17256.84 21569.44 27751.07 24091.16 9785.08 91
TEST985.47 6369.32 7076.42 11878.69 16453.73 20576.97 14986.74 13866.84 10981.10 123
train_agg76.38 8176.55 8475.86 9585.47 6369.32 7076.42 11878.69 16454.00 20076.97 14986.74 13866.60 11581.10 12372.50 6691.56 8977.15 260
agg_prior84.44 8166.02 9778.62 16776.95 15180.34 140
IterMVS-SCA-FT67.68 20366.07 22272.49 15373.34 23858.20 17163.80 28965.55 28348.10 26276.91 15282.64 21345.20 27878.84 16361.20 15177.89 29680.44 217
Anonymous2024052972.56 13973.79 11668.86 21276.89 18745.21 27468.80 22477.25 18867.16 6176.89 15390.44 5665.95 12174.19 23250.75 24290.00 12787.18 59
test_885.09 6967.89 7976.26 12378.66 16654.00 20076.89 15386.72 14066.60 11580.89 133
cl____68.26 19768.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.42 21548.74 26275.38 21260.92 15689.81 13285.80 80
DIV-MVS_self_test68.27 19668.26 19468.29 22064.98 33843.67 28565.89 26474.67 21050.04 24776.86 15582.43 21448.74 26275.38 21260.94 15589.81 13285.81 76
MVS_111021_LR72.10 14671.82 15272.95 13779.53 14273.90 3670.45 20166.64 27456.87 15876.81 15781.76 22468.78 9071.76 26061.81 14483.74 23273.18 293
CLD-MVS72.88 13472.36 14674.43 11077.03 17954.30 19168.77 22583.43 7652.12 21876.79 15874.44 30969.54 8783.91 7555.88 20193.25 6685.09 90
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
FMVSNet267.48 20568.21 19665.29 24973.14 24438.94 32368.81 22271.21 24754.81 17876.73 15986.48 15048.63 26574.60 22647.98 27086.11 19982.35 177
test_fmvs356.78 30055.99 30959.12 30353.96 39548.09 24058.76 32466.22 27627.54 38676.66 16068.69 36125.32 38851.31 35653.42 22973.38 33277.97 253
baseline73.10 12373.96 11370.51 17771.46 26346.39 26672.08 16984.40 5955.95 16976.62 16186.46 15167.20 10478.03 18564.22 12587.27 18287.11 61
sasdasda72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
canonicalmvs72.29 14473.38 12369.04 20474.23 22347.37 25273.93 15583.18 7754.36 18976.61 16281.64 22672.03 6275.34 21457.12 18687.28 18084.40 116
SSC-MVS61.79 26866.08 22148.89 35776.91 18410.00 41153.56 35847.37 37668.20 5876.56 16489.21 8954.13 22857.59 34754.75 21174.07 32779.08 236
EG-PatchMatch MVS70.70 16070.88 16570.16 18582.64 10958.80 16671.48 18373.64 21654.98 17776.55 16581.77 22361.10 16978.94 16254.87 21080.84 26472.74 300
alignmvs70.54 16271.00 16469.15 20373.50 23448.04 24269.85 20979.62 14453.94 20376.54 16682.00 21859.00 18974.68 22557.32 18587.21 18484.72 101
test_prior275.57 13258.92 13976.53 16786.78 13667.83 10269.81 7792.76 73
test_fmvsmconf0.01_n73.91 10973.64 11974.71 10469.79 29066.25 9375.90 12879.90 14146.03 27976.48 16885.02 17767.96 10173.97 23474.47 4987.22 18383.90 129
EPP-MVSNet73.86 11173.38 12375.31 10178.19 16453.35 19980.45 6877.32 18665.11 8576.47 16986.80 13449.47 25483.77 7753.89 22392.72 7488.81 41
pmmvs671.82 14873.66 11866.31 24375.94 20042.01 30066.99 25072.53 22763.45 10476.43 17092.78 1072.95 5969.69 27651.41 23790.46 11987.22 56
testdata64.13 25785.87 5963.34 11861.80 30947.83 26676.42 17186.60 14748.83 26162.31 32954.46 21681.26 26066.74 350
GeoE73.14 12273.77 11771.26 16878.09 16652.64 20274.32 14979.56 14856.32 16576.35 17283.36 20170.76 7677.96 18663.32 13781.84 25183.18 153
miper_ehance_all_eth68.36 19268.16 19868.98 20765.14 33743.34 28967.07 24978.92 15849.11 25676.21 17377.72 28253.48 23177.92 18761.16 15284.59 22285.68 82
TAPA-MVS65.27 1275.16 9574.29 10877.77 7274.86 21268.08 7777.89 10084.04 6955.15 17676.19 17483.39 19766.91 10880.11 14660.04 16690.14 12585.13 89
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
MGCFI-Net71.70 15073.10 13267.49 22973.23 24243.08 29272.06 17082.43 9154.58 18675.97 17582.00 21872.42 6075.22 21657.84 18387.34 17784.18 123
MVS_111021_HR72.98 13172.97 13672.99 13580.82 12965.47 10068.81 22272.77 22457.67 15075.76 17682.38 21671.01 7477.17 19561.38 14986.15 19776.32 266
CNLPA73.44 11573.03 13474.66 10578.27 16375.29 2675.99 12778.49 16865.39 7875.67 17783.22 20861.23 16566.77 30753.70 22585.33 20881.92 186
NR-MVSNet73.62 11374.05 11172.33 15783.50 9043.71 28465.65 26977.32 18664.32 9375.59 17887.08 12762.45 15081.34 11754.90 20995.63 891.93 8
NCCC78.25 6778.04 7178.89 5985.61 6269.45 6679.80 8180.99 11965.77 7275.55 17986.25 15767.42 10385.42 5070.10 7590.88 11181.81 187
test_fmvsmconf0.1_n73.26 12172.82 13874.56 10669.10 29666.18 9574.65 14779.34 15145.58 28175.54 18083.91 19067.19 10573.88 23773.26 5786.86 18883.63 137
YYNet152.58 32853.50 32349.85 34954.15 39236.45 34340.53 38946.55 37938.09 34475.52 18173.31 32241.08 30543.88 38541.10 31371.14 34969.21 334
MDA-MVSNet_test_wron52.57 32953.49 32549.81 35054.24 39136.47 34240.48 39046.58 37838.13 34375.47 18273.32 32141.05 30643.85 38640.98 31571.20 34869.10 336
EI-MVSNet69.61 17569.01 18371.41 16773.94 23049.90 22271.31 18871.32 24158.22 14375.40 18370.44 33958.16 19675.85 20662.51 14179.81 27588.48 44
MVSTER63.29 25361.60 26668.36 21859.77 36846.21 26760.62 31271.32 24141.83 31375.40 18379.12 26530.25 36875.85 20656.30 19579.81 27583.03 158
TransMVSNet (Re)69.62 17471.63 15563.57 26476.51 19035.93 34765.75 26871.29 24361.05 12175.02 18589.90 7865.88 12370.41 27449.79 24989.48 14184.38 118
新几何169.99 18988.37 3471.34 5162.08 30643.85 29674.99 18686.11 16352.85 23470.57 27050.99 24183.23 23968.05 341
Effi-MVS+-dtu75.43 9172.28 14784.91 277.05 17883.58 178.47 9377.70 18157.68 14974.89 18778.13 27964.80 13384.26 7456.46 19485.32 20986.88 62
DeepC-MVS_fast69.89 777.17 7676.33 8779.70 4483.90 8767.94 7880.06 7983.75 7156.73 16174.88 18885.32 17365.54 12587.79 265.61 11691.14 9983.35 148
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
VDDNet71.60 15173.13 13067.02 23686.29 4741.11 30669.97 20666.50 27568.72 5574.74 18991.70 2559.90 18075.81 20848.58 26291.72 8484.15 125
GBi-Net68.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
test168.30 19368.79 18566.81 23773.14 24440.68 31071.96 17473.03 21954.81 17874.72 19090.36 6748.63 26575.20 21847.12 27585.37 20584.54 110
FMVSNet365.00 23365.16 23464.52 25569.47 29237.56 33866.63 25670.38 25451.55 22674.72 19083.27 20437.89 32574.44 22847.12 27585.37 20581.57 191
EC-MVSNet77.08 7777.39 7776.14 9276.86 18856.87 17680.32 7387.52 1163.45 10474.66 19384.52 18269.87 8484.94 6169.76 7889.59 13886.60 67
test_fmvsmconf_n72.91 13372.40 14574.46 10768.62 30066.12 9674.21 15278.80 16145.64 28074.62 19483.25 20566.80 11373.86 23872.97 6086.66 19483.39 145
Patchmatch-RL test59.95 28359.12 28462.44 27772.46 25554.61 19059.63 31847.51 37541.05 32174.58 19574.30 31131.06 36265.31 31551.61 23579.85 27467.39 343
cl2267.14 21166.51 21769.03 20663.20 34743.46 28866.88 25476.25 19649.22 25474.48 19677.88 28145.49 27777.40 19460.64 15884.59 22286.24 69
thisisatest053067.05 21465.16 23472.73 14773.10 24750.55 21271.26 19063.91 29750.22 24474.46 19780.75 23626.81 37980.25 14259.43 17286.50 19587.37 54
TSAR-MVS + GP.73.08 12471.60 15777.54 7378.99 15770.73 5774.96 13669.38 26060.73 12474.39 19878.44 27357.72 20782.78 9660.16 16389.60 13779.11 235
test_fmvsm_n_192069.63 17368.45 19173.16 13070.56 27465.86 9870.26 20378.35 17037.69 34774.29 19978.89 26961.10 16968.10 28965.87 11479.07 28285.53 83
原ACMM173.90 11885.90 5765.15 10681.67 10250.97 23574.25 20086.16 16061.60 15983.54 8156.75 18991.08 10373.00 295
CS-MVS76.51 8076.00 9078.06 7177.02 18064.77 10880.78 6482.66 8760.39 12674.15 20183.30 20369.65 8682.07 10869.27 8186.75 19287.36 55
pmmvs-eth3d64.41 24363.27 25467.82 22775.81 20260.18 15369.49 21162.05 30738.81 34074.13 20282.23 21743.76 28868.65 28442.53 30480.63 26874.63 279
VPA-MVSNet68.71 18870.37 16963.72 26276.13 19538.06 33364.10 28671.48 23756.60 16474.10 20388.31 11464.78 13469.72 27547.69 27390.15 12483.37 147
WB-MVS60.04 28264.19 24447.59 35976.09 19610.22 41052.44 36346.74 37765.17 8474.07 20487.48 12453.48 23155.28 35049.36 25472.84 33577.28 257
VDD-MVS70.81 15971.44 16068.91 21179.07 15546.51 26367.82 23770.83 25261.23 11974.07 20488.69 10559.86 18175.62 21151.11 23990.28 12184.61 106
FA-MVS(test-final)71.27 15371.06 16371.92 16173.96 22952.32 20476.45 11776.12 19759.07 13774.04 20686.18 15852.18 23779.43 15559.75 17081.76 25284.03 126
pm-mvs168.40 19169.85 17364.04 26073.10 24739.94 31664.61 28270.50 25355.52 17373.97 20789.33 8563.91 13968.38 28649.68 25188.02 16583.81 131
BH-RMVSNet68.69 18968.20 19770.14 18676.40 19153.90 19664.62 28173.48 21758.01 14573.91 20881.78 22259.09 18878.22 18048.59 26177.96 29578.31 244
test1276.51 8682.28 11360.94 14381.64 10373.60 20964.88 13285.19 5990.42 12083.38 146
QAPM69.18 18269.26 17868.94 20971.61 26152.58 20380.37 7178.79 16249.63 25073.51 21085.14 17653.66 23079.12 15855.11 20875.54 31175.11 277
Gipumacopyleft69.55 17672.83 13759.70 29963.63 34653.97 19480.08 7875.93 20064.24 9473.49 21188.93 10157.89 20562.46 32759.75 17091.55 9062.67 369
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
mvs_anonymous65.08 23265.49 22863.83 26163.79 34437.60 33766.52 25869.82 25843.44 30473.46 21286.08 16458.79 19271.75 26151.90 23475.63 31082.15 182
miper_enhance_ethall65.86 22565.05 24168.28 22261.62 35542.62 29764.74 27977.97 17842.52 31073.42 21372.79 32549.66 25277.68 19158.12 18084.59 22284.54 110
Vis-MVSNetpermissive74.85 10574.56 10375.72 9681.63 12264.64 10976.35 12079.06 15562.85 11073.33 21488.41 11162.54 14979.59 15363.94 13082.92 24082.94 160
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
PAPM_NR73.91 10974.16 11073.16 13081.90 11853.50 19781.28 6081.40 10766.17 7073.30 21583.31 20259.96 17983.10 9158.45 17881.66 25782.87 162
PHI-MVS74.92 10074.36 10776.61 8476.40 19162.32 12580.38 7083.15 7954.16 19773.23 21680.75 23662.19 15483.86 7668.02 8990.92 10883.65 136
miper_lstm_enhance61.97 26561.63 26562.98 27160.04 36245.74 27147.53 37670.95 24944.04 29573.06 21778.84 27039.72 31360.33 33555.82 20284.64 22182.88 161
test22287.30 3769.15 7367.85 23659.59 31641.06 32073.05 21885.72 17148.03 26880.65 26666.92 346
iter_conf0567.34 21065.62 22672.50 15269.82 28647.06 25772.19 16776.86 19145.32 28772.86 21982.85 20920.53 39883.73 7861.13 15389.02 15486.70 65
MCST-MVS73.42 11673.34 12673.63 12381.28 12659.17 16074.80 14183.13 8045.50 28272.84 22083.78 19365.15 13080.99 12764.54 12189.09 15380.73 209
tfpnnormal66.48 22067.93 19962.16 28073.40 23736.65 34063.45 29264.99 28755.97 16872.82 22187.80 12357.06 21369.10 28148.31 26687.54 17080.72 210
FE-MVS68.29 19566.96 21472.26 15874.16 22754.24 19277.55 10373.42 21857.65 15272.66 22284.91 17832.02 35381.49 11648.43 26481.85 25081.04 197
Anonymous2024052163.55 24966.07 22255.99 32066.18 32844.04 28268.77 22568.80 26346.99 27272.57 22385.84 16939.87 31250.22 35953.40 23092.23 8173.71 290
114514_t73.40 11773.33 12773.64 12284.15 8557.11 17478.20 9780.02 13943.76 29972.55 22486.07 16564.00 13883.35 8660.14 16491.03 10480.45 216
AdaColmapbinary74.22 10774.56 10373.20 12981.95 11760.97 14279.43 8280.90 12065.57 7472.54 22581.76 22470.98 7585.26 5447.88 27190.00 12773.37 291
LF4IMVS67.50 20467.31 20968.08 22358.86 37261.93 12771.43 18475.90 20144.67 29372.42 22680.20 24557.16 20970.44 27258.99 17586.12 19871.88 308
MM78.15 7077.68 7479.55 4880.10 13665.47 10080.94 6278.74 16371.22 4072.40 22788.70 10460.51 17487.70 377.40 3289.13 15185.48 84
F-COLMAP75.29 9273.99 11279.18 5281.73 12071.90 4681.86 5882.98 8159.86 13172.27 22884.00 18964.56 13583.07 9251.48 23687.19 18582.56 174
USDC62.80 25963.10 25661.89 28165.19 33443.30 29067.42 24274.20 21435.80 35772.25 22984.48 18345.67 27571.95 25837.95 33584.97 21370.42 323
3Dnovator65.95 1171.50 15271.22 16272.34 15673.16 24363.09 12078.37 9478.32 17157.67 15072.22 23084.61 18054.77 22378.47 17060.82 15781.07 26175.45 272
ETV-MVS72.72 13672.16 14974.38 11276.90 18655.95 17973.34 15884.67 5262.04 11572.19 23170.81 33765.90 12285.24 5658.64 17684.96 21681.95 185
Patchmtry60.91 27463.01 25754.62 32766.10 32926.27 39467.47 24156.40 33554.05 19972.04 23286.66 14233.19 34260.17 33643.69 29887.45 17477.42 255
diffmvspermissive67.42 20867.50 20667.20 23362.26 35145.21 27464.87 27877.04 18948.21 26171.74 23379.70 25458.40 19471.17 26664.99 11880.27 27085.22 87
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
AUN-MVS70.22 16467.88 20177.22 8082.96 10471.61 4869.08 21871.39 23949.17 25571.70 23478.07 28037.62 32779.21 15761.81 14489.15 14980.82 205
HQP4-MVS71.59 23585.31 5283.74 134
HQP-NCC82.37 11077.32 10659.08 13471.58 236
ACMP_Plane82.37 11077.32 10659.08 13471.58 236
HQP-MVS75.24 9475.01 10075.94 9382.37 11058.80 16677.32 10684.12 6659.08 13471.58 23685.96 16758.09 19985.30 5367.38 10189.16 14783.73 135
MVS_Test69.84 17170.71 16767.24 23267.49 31443.25 29169.87 20881.22 11352.69 21471.57 23986.68 14162.09 15574.51 22766.05 11178.74 28583.96 127
TR-MVS64.59 23863.54 25167.73 22875.75 20350.83 21163.39 29370.29 25549.33 25371.55 24074.55 30750.94 24578.46 17140.43 31875.69 30973.89 288
IterMVS63.12 25562.48 26165.02 25266.34 32552.86 20063.81 28862.25 30346.57 27571.51 24180.40 24144.60 28366.82 30651.38 23875.47 31275.38 274
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
Fast-Effi-MVS+68.81 18668.30 19370.35 18074.66 21848.61 23466.06 26278.32 17150.62 23971.48 24275.54 29768.75 9179.59 15350.55 24578.73 28682.86 163
test111164.62 23765.19 23362.93 27379.01 15629.91 38065.45 27254.41 34454.09 19871.47 24388.48 11037.02 32974.29 23146.83 28089.94 13084.58 109
VPNet65.58 22767.56 20459.65 30079.72 13930.17 37960.27 31562.14 30454.19 19671.24 24486.63 14558.80 19167.62 29344.17 29790.87 11281.18 194
API-MVS70.97 15871.51 15969.37 19675.20 20655.94 18080.99 6176.84 19262.48 11371.24 24477.51 28561.51 16180.96 13252.04 23285.76 20371.22 315
LFMVS67.06 21367.89 20064.56 25478.02 16738.25 33070.81 19759.60 31565.18 8371.06 24686.56 14843.85 28775.22 21646.35 28289.63 13680.21 220
BH-w/o64.81 23564.29 24366.36 24276.08 19854.71 18865.61 27075.23 20750.10 24671.05 24771.86 33154.33 22779.02 16038.20 33376.14 30665.36 356
Effi-MVS+72.10 14672.28 14771.58 16374.21 22650.33 21574.72 14482.73 8562.62 11170.77 24876.83 28969.96 8380.97 12960.20 16178.43 28983.45 144
thres100view90061.17 27361.09 27061.39 28772.14 25835.01 35365.42 27356.99 32855.23 17570.71 24979.90 25132.07 35172.09 25435.61 35481.73 25377.08 262
OpenMVS_ROBcopyleft54.93 1763.23 25463.28 25363.07 27069.81 28745.34 27368.52 22967.14 27143.74 30070.61 25079.22 26247.90 26972.66 24548.75 25973.84 33071.21 316
MSDG67.47 20767.48 20767.46 23070.70 27054.69 18966.90 25378.17 17460.88 12370.41 25174.76 30461.22 16773.18 24047.38 27476.87 30174.49 282
DP-MVS Recon73.57 11472.69 13976.23 9182.85 10563.39 11774.32 14982.96 8257.75 14870.35 25281.98 22064.34 13784.41 7349.69 25089.95 12980.89 203
thres600view761.82 26761.38 26863.12 26971.81 26034.93 35464.64 28056.99 32854.78 18270.33 25379.74 25332.07 35172.42 25138.61 32983.46 23782.02 183
OpenMVScopyleft62.51 1568.76 18768.75 18768.78 21470.56 27453.91 19578.29 9577.35 18548.85 25870.22 25483.52 19552.65 23576.93 19855.31 20781.99 24775.49 271
testing358.28 29458.38 29258.00 31177.45 17726.12 39560.78 31143.00 38856.02 16770.18 25575.76 29413.27 41367.24 29948.02 26980.89 26280.65 212
CS-MVS-test74.89 10374.23 10976.86 8177.01 18162.94 12278.98 8884.61 5658.62 14170.17 25680.80 23566.74 11481.96 10961.74 14689.40 14585.69 81
D2MVS62.58 26261.05 27167.20 23363.85 34347.92 24356.29 33969.58 25939.32 33570.07 25778.19 27734.93 33672.68 24453.44 22883.74 23281.00 200
ECVR-MVScopyleft64.82 23465.22 23163.60 26378.80 15831.14 37466.97 25156.47 33454.23 19369.94 25888.68 10637.23 32874.81 22445.28 29389.41 14384.86 96
Vis-MVSNet (Re-imp)62.74 26063.21 25561.34 28872.19 25731.56 37167.31 24753.87 34653.60 20669.88 25983.37 19940.52 30870.98 26741.40 31286.78 19181.48 192
TAMVS65.31 22963.75 24869.97 19082.23 11459.76 15666.78 25563.37 30045.20 28869.79 26079.37 26047.42 27172.17 25334.48 35985.15 21277.99 252
Anonymous20240521166.02 22466.89 21563.43 26774.22 22538.14 33159.00 32166.13 27763.33 10769.76 26185.95 16851.88 23870.50 27144.23 29687.52 17181.64 190
fmvsm_l_conf0.5_n67.48 20566.88 21669.28 20067.41 31562.04 12670.69 19869.85 25739.46 33469.59 26281.09 23158.15 19768.73 28267.51 9678.16 29477.07 264
test_fmvs254.80 31254.11 32156.88 31751.76 39949.95 22156.70 33765.80 27926.22 39169.42 26365.25 37431.82 35449.98 36049.63 25270.36 35370.71 320
FPMVS59.43 28760.07 27857.51 31377.62 17671.52 4962.33 30150.92 36157.40 15569.40 26480.00 25039.14 31761.92 33137.47 33966.36 37139.09 401
GA-MVS62.91 25761.66 26366.66 24167.09 31844.49 27961.18 30869.36 26151.33 23169.33 26574.47 30836.83 33074.94 22150.60 24474.72 31880.57 215
MVS_030476.32 8275.96 9277.42 7679.33 14560.86 14680.18 7674.88 20966.93 6269.11 26688.95 10057.84 20686.12 2976.63 3789.77 13585.28 86
EU-MVSNet60.82 27560.80 27460.86 29368.37 30241.16 30572.27 16468.27 26826.96 38869.08 26775.71 29532.09 35067.44 29655.59 20578.90 28473.97 286
HyFIR lowres test63.01 25660.47 27670.61 17483.04 10154.10 19359.93 31772.24 23133.67 36869.00 26875.63 29638.69 31976.93 19836.60 34675.45 31380.81 207
ET-MVSNet_ETH3D63.32 25260.69 27571.20 16970.15 28355.66 18365.02 27764.32 29443.28 30968.99 26972.05 33025.46 38678.19 18354.16 22282.80 24179.74 226
DELS-MVS68.83 18568.31 19270.38 17870.55 27648.31 23563.78 29082.13 9354.00 20068.96 27075.17 30158.95 19080.06 14758.55 17782.74 24282.76 165
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
test_vis3_rt51.94 33551.04 34154.65 32646.32 40650.13 21844.34 38578.17 17423.62 39868.95 27162.81 38021.41 39638.52 39841.49 31172.22 34175.30 276
SDMVSNet66.36 22267.85 20261.88 28273.04 25046.14 26858.54 32571.36 24051.42 22868.93 27282.72 21165.62 12462.22 33054.41 21784.67 21877.28 257
sd_testset63.55 24965.38 22958.07 31073.04 25038.83 32557.41 33365.44 28451.42 22868.93 27282.72 21163.76 14058.11 34541.05 31484.67 21877.28 257
test_yl65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
DCV-MVSNet65.11 23065.09 23865.18 25070.59 27240.86 30863.22 29772.79 22257.91 14668.88 27479.07 26742.85 29474.89 22245.50 29084.97 21379.81 223
Fast-Effi-MVS+-dtu70.00 16768.74 18873.77 12073.47 23564.53 11071.36 18678.14 17655.81 17168.84 27674.71 30665.36 12875.75 20952.00 23379.00 28381.03 198
fmvsm_s_conf0.1_n_a67.37 20966.36 21870.37 17970.86 26761.17 13874.00 15457.18 32740.77 32568.83 27780.88 23463.11 14367.61 29466.94 10674.72 31882.33 180
MG-MVS70.47 16371.34 16167.85 22579.26 14740.42 31474.67 14675.15 20858.41 14268.74 27888.14 12056.08 22183.69 7959.90 16781.71 25679.43 232
fmvsm_l_conf0.5_n_a66.66 21665.97 22468.72 21567.09 31861.38 13470.03 20569.15 26238.59 34168.41 27980.36 24256.56 21868.32 28766.10 11077.45 29876.46 265
fmvsm_s_conf0.5_n_a67.00 21565.95 22570.17 18469.72 29161.16 13973.34 15856.83 33040.96 32268.36 28080.08 24962.84 14467.57 29566.90 10874.50 32281.78 188
tfpn200view960.35 28059.97 27961.51 28570.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25377.08 262
thres40060.77 27759.97 27963.15 26870.78 26835.35 35163.27 29557.47 32153.00 21168.31 28177.09 28732.45 34872.09 25435.61 35481.73 25382.02 183
fmvsm_s_conf0.1_n66.60 21865.54 22769.77 19268.99 29759.15 16172.12 16856.74 33240.72 32768.25 28380.14 24861.18 16866.92 30167.34 10374.40 32383.23 152
testgi54.00 31956.86 30245.45 36858.20 37525.81 39649.05 37049.50 36845.43 28567.84 28481.17 23051.81 24143.20 38829.30 38079.41 28067.34 345
fmvsm_s_conf0.5_n66.34 22365.27 23069.57 19568.20 30559.14 16371.66 18156.48 33340.92 32367.78 28579.46 25761.23 16566.90 30267.39 9974.32 32682.66 169
xiu_mvs_v1_base_debu67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
xiu_mvs_v1_base67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
xiu_mvs_v1_base_debi67.87 19967.07 21170.26 18179.13 15261.90 12867.34 24371.25 24447.98 26367.70 28674.19 31461.31 16272.62 24656.51 19178.26 29176.27 267
test250661.23 27260.85 27362.38 27878.80 15827.88 38867.33 24637.42 40254.23 19367.55 28988.68 10617.87 40674.39 22946.33 28389.41 14384.86 96
CL-MVSNet_self_test62.44 26363.40 25259.55 30172.34 25632.38 36656.39 33864.84 28951.21 23367.46 29081.01 23350.75 24663.51 32538.47 33188.12 16382.75 166
test_f43.79 36445.63 35938.24 38542.29 41038.58 32634.76 39847.68 37422.22 40167.34 29163.15 37931.82 35430.60 40339.19 32462.28 38145.53 397
CDS-MVSNet64.33 24462.66 26069.35 19880.44 13358.28 17065.26 27465.66 28144.36 29467.30 29275.54 29743.27 29071.77 25937.68 33684.44 22578.01 251
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
PVSNet_Blended_VisFu70.04 16668.88 18473.53 12582.71 10763.62 11674.81 13981.95 9848.53 26067.16 29379.18 26451.42 24378.38 17554.39 21879.72 27878.60 240
PLCcopyleft62.01 1671.79 14970.28 17076.33 8980.31 13568.63 7578.18 9881.24 11154.57 18767.09 29480.63 23859.44 18481.74 11446.91 27884.17 22778.63 239
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
VNet64.01 24865.15 23660.57 29473.28 23935.61 35057.60 33267.08 27254.61 18566.76 29583.37 19956.28 21966.87 30342.19 30685.20 21179.23 234
PAPR69.20 18168.66 19070.82 17275.15 20847.77 24675.31 13381.11 11449.62 25166.33 29679.27 26161.53 16082.96 9448.12 26881.50 25981.74 189
pmmvs460.78 27659.04 28566.00 24673.06 24957.67 17364.53 28360.22 31336.91 35265.96 29777.27 28639.66 31468.54 28538.87 32674.89 31771.80 309
CMPMVSbinary48.73 2061.54 27160.89 27263.52 26561.08 35751.55 20668.07 23568.00 26933.88 36565.87 29881.25 22937.91 32467.71 29149.32 25582.60 24371.31 314
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
ppachtmachnet_test60.26 28159.61 28262.20 27967.70 31244.33 28058.18 32960.96 31140.75 32665.80 29972.57 32641.23 30163.92 32246.87 27982.42 24478.33 243
MAR-MVS67.72 20266.16 22072.40 15574.45 22164.99 10774.87 13777.50 18448.67 25965.78 30068.58 36257.01 21477.79 18946.68 28181.92 24874.42 284
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
test_fmvs1_n52.70 32752.01 33454.76 32553.83 39650.36 21455.80 34465.90 27824.96 39465.39 30160.64 38827.69 37748.46 36545.88 28767.99 36665.46 355
ab-mvs64.11 24665.13 23761.05 29071.99 25938.03 33467.59 23868.79 26449.08 25765.32 30286.26 15658.02 20466.85 30539.33 32279.79 27778.27 245
jason64.47 24162.84 25869.34 19976.91 18459.20 15767.15 24865.67 28035.29 35865.16 30376.74 29044.67 28270.68 26854.74 21279.28 28178.14 248
jason: jason.
test20.0355.74 30557.51 29850.42 34659.89 36732.09 36850.63 36849.01 36950.11 24565.07 30483.23 20645.61 27648.11 36830.22 37583.82 23171.07 318
mvsany_test343.76 36541.01 36952.01 33948.09 40457.74 17242.47 38723.85 41123.30 39964.80 30562.17 38327.12 37840.59 39429.17 38348.11 40157.69 383
EIA-MVS68.59 19067.16 21072.90 14175.18 20755.64 18469.39 21381.29 10952.44 21564.53 30670.69 33860.33 17682.30 10454.27 22076.31 30580.75 208
KD-MVS_2432*160052.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
miper_refine_blended52.05 33351.58 33653.44 33252.11 39731.20 37244.88 38364.83 29041.53 31564.37 30770.03 34715.61 41064.20 31936.25 34874.61 32064.93 360
new-patchmatchnet52.89 32655.76 31144.26 37459.94 3666.31 41237.36 39650.76 36341.10 31964.28 30979.82 25244.77 28148.43 36736.24 35087.61 16978.03 250
DPM-MVS69.98 16869.22 18072.26 15882.69 10858.82 16570.53 19981.23 11247.79 26764.16 31080.21 24451.32 24483.12 9060.14 16484.95 21774.83 278
patch_mono-262.73 26164.08 24558.68 30670.36 28055.87 18160.84 31064.11 29641.23 31864.04 31178.22 27660.00 17848.80 36354.17 22183.71 23471.37 312
thres20057.55 29857.02 30059.17 30267.89 31134.93 35458.91 32357.25 32550.24 24364.01 31271.46 33432.49 34771.39 26431.31 37179.57 27971.19 317
test_cas_vis1_n_192050.90 33950.92 34350.83 34554.12 39447.80 24551.44 36754.61 34226.95 38963.95 31360.85 38637.86 32644.97 37945.53 28962.97 37959.72 379
our_test_356.46 30156.51 30456.30 31867.70 31239.66 31855.36 34752.34 35840.57 32963.85 31469.91 34940.04 31158.22 34443.49 30175.29 31671.03 319
baseline157.82 29758.36 29356.19 31969.17 29430.76 37762.94 29955.21 33946.04 27863.83 31578.47 27241.20 30263.68 32339.44 32168.99 36174.13 285
XXY-MVS55.19 30957.40 29948.56 35864.45 34134.84 35651.54 36653.59 34838.99 33963.79 31679.43 25856.59 21645.57 37436.92 34571.29 34765.25 357
cascas64.59 23862.77 25970.05 18875.27 20550.02 21961.79 30371.61 23342.46 31163.68 31768.89 35849.33 25680.35 13947.82 27284.05 22979.78 225
test_fmvs151.51 33750.86 34453.48 33149.72 40249.35 23054.11 35564.96 28824.64 39663.66 31859.61 39128.33 37648.45 36645.38 29267.30 37062.66 370
thisisatest051560.48 27957.86 29568.34 21967.25 31646.42 26460.58 31362.14 30440.82 32463.58 31969.12 35326.28 38278.34 17748.83 25882.13 24680.26 219
MVSFormer69.93 17069.03 18272.63 15074.93 20959.19 15883.98 3675.72 20252.27 21663.53 32076.74 29043.19 29180.56 13572.28 6778.67 28778.14 248
lupinMVS63.36 25161.49 26768.97 20874.93 20959.19 15865.80 26764.52 29334.68 36363.53 32074.25 31243.19 29170.62 26953.88 22478.67 28777.10 261
iter_conf05_1166.64 21765.20 23270.94 17073.28 23946.89 25866.09 26177.03 19043.44 30463.43 32274.09 31747.19 27283.26 8756.25 19686.01 20082.66 169
UnsupCasMVSNet_eth52.26 33153.29 32649.16 35455.08 38833.67 36250.03 36958.79 31837.67 34863.43 32274.75 30541.82 29945.83 37338.59 33059.42 38867.98 342
UWE-MVS52.94 32552.70 32853.65 33073.56 23327.49 38957.30 33449.57 36738.56 34262.79 32471.42 33519.49 40260.41 33424.33 39877.33 29973.06 294
Anonymous2023120654.13 31555.82 31049.04 35670.89 26635.96 34651.73 36550.87 36234.86 35962.49 32579.22 26242.52 29744.29 38427.95 38681.88 24966.88 347
CANet73.00 12971.84 15176.48 8775.82 20161.28 13674.81 13980.37 13363.17 10862.43 32680.50 24061.10 16985.16 6064.00 12784.34 22683.01 159
xiu_mvs_v2_base64.43 24263.96 24665.85 24877.72 17351.32 20863.63 29172.31 23045.06 29161.70 32769.66 35062.56 14773.93 23649.06 25773.91 32872.31 304
PS-MVSNAJ64.27 24563.73 24965.90 24777.82 17151.42 20763.33 29472.33 22945.09 29061.60 32868.04 36462.39 15173.95 23549.07 25673.87 32972.34 303
CHOSEN 1792x268858.09 29556.30 30663.45 26679.95 13750.93 21054.07 35665.59 28228.56 38461.53 32974.33 31041.09 30466.52 30933.91 36267.69 36972.92 296
CR-MVSNet58.96 28958.49 29060.36 29666.37 32348.24 23770.93 19456.40 33532.87 37161.35 33086.66 14233.19 34263.22 32648.50 26370.17 35569.62 330
RPMNet65.77 22665.08 24067.84 22666.37 32348.24 23770.93 19486.27 2054.66 18461.35 33086.77 13733.29 34185.67 4755.93 20070.17 35569.62 330
PatchMatch-RL58.68 29257.72 29661.57 28476.21 19473.59 3961.83 30249.00 37047.30 27161.08 33268.97 35550.16 25059.01 34036.06 35368.84 36252.10 388
FMVSNet555.08 31155.54 31253.71 32965.80 33033.50 36356.22 34052.50 35643.72 30161.06 33383.38 19825.46 38654.87 35130.11 37681.64 25872.75 299
131459.83 28458.86 28762.74 27565.71 33144.78 27768.59 22772.63 22633.54 37061.05 33467.29 37043.62 28971.26 26549.49 25367.84 36872.19 306
SCA58.57 29358.04 29460.17 29770.17 28241.07 30765.19 27553.38 35243.34 30861.00 33573.48 31945.20 27869.38 27840.34 31970.31 35470.05 324
UGNet70.20 16569.05 18173.65 12176.24 19363.64 11575.87 12972.53 22761.48 11860.93 33686.14 16152.37 23677.12 19650.67 24385.21 21080.17 221
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
UnsupCasMVSNet_bld50.01 34551.03 34246.95 36158.61 37332.64 36548.31 37253.27 35334.27 36460.47 33771.53 33341.40 30047.07 37130.68 37360.78 38561.13 376
CVMVSNet59.21 28858.44 29161.51 28573.94 23047.76 24771.31 18864.56 29226.91 39060.34 33870.44 33936.24 33367.65 29253.57 22668.66 36369.12 335
PVSNet_BlendedMVS65.38 22864.30 24268.61 21669.81 28749.36 22865.60 27178.96 15645.50 28259.98 33978.61 27151.82 23978.20 18144.30 29484.11 22878.27 245
PVSNet_Blended62.90 25861.64 26466.69 24069.81 28749.36 22861.23 30778.96 15642.04 31259.98 33968.86 35951.82 23978.20 18144.30 29477.77 29772.52 301
MVS60.62 27859.97 27962.58 27668.13 30747.28 25468.59 22773.96 21532.19 37259.94 34168.86 35950.48 24877.64 19241.85 30975.74 30862.83 367
1112_ss59.48 28658.99 28660.96 29277.84 17042.39 29961.42 30568.45 26737.96 34559.93 34267.46 36745.11 28065.07 31740.89 31671.81 34475.41 273
test_vis1_n_192052.96 32453.50 32351.32 34359.15 37044.90 27656.13 34264.29 29530.56 38259.87 34360.68 38740.16 31047.47 36948.25 26762.46 38061.58 375
test_vis1_n51.27 33850.41 34853.83 32856.99 37950.01 22056.75 33660.53 31225.68 39259.74 34457.86 39229.40 37347.41 37043.10 30263.66 37764.08 365
Test_1112_low_res58.78 29158.69 28859.04 30579.41 14338.13 33257.62 33166.98 27334.74 36159.62 34577.56 28442.92 29363.65 32438.66 32870.73 35175.35 275
WB-MVSnew53.94 32054.76 31751.49 34271.53 26228.05 38658.22 32850.36 36437.94 34659.16 34670.17 34449.21 25751.94 35524.49 39671.80 34574.47 283
CostFormer57.35 29956.14 30760.97 29163.76 34538.43 32767.50 24060.22 31337.14 35159.12 34776.34 29232.78 34571.99 25739.12 32569.27 36072.47 302
PatchmatchNetpermissive54.60 31354.27 32055.59 32365.17 33639.08 32066.92 25251.80 36039.89 33258.39 34873.12 32331.69 35658.33 34343.01 30358.38 39269.38 333
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
MS-PatchMatch55.59 30754.89 31657.68 31269.18 29349.05 23161.00 30962.93 30235.98 35558.36 34968.93 35736.71 33166.59 30837.62 33863.30 37857.39 384
tpm256.12 30254.64 31860.55 29566.24 32636.01 34568.14 23356.77 33133.60 36958.25 35075.52 29930.25 36874.33 23033.27 36569.76 35971.32 313
Syy-MVS54.13 31555.45 31350.18 34768.77 29823.59 39955.02 34844.55 38243.80 29758.05 35164.07 37646.22 27358.83 34146.16 28472.36 33968.12 339
myMVS_eth3d50.36 34250.52 34749.88 34868.77 29822.69 40155.02 34844.55 38243.80 29758.05 35164.07 37614.16 41258.83 34133.90 36372.36 33968.12 339
N_pmnet52.06 33251.11 34054.92 32459.64 36971.03 5337.42 39561.62 31033.68 36757.12 35372.10 32737.94 32331.03 40229.13 38571.35 34662.70 368
testing9155.74 30555.29 31557.08 31470.63 27130.85 37654.94 35156.31 33750.34 24157.08 35470.10 34624.50 39065.86 31136.98 34476.75 30274.53 281
tpm50.60 34052.42 33245.14 37065.18 33526.29 39360.30 31443.50 38537.41 34957.01 35579.09 26630.20 37042.32 38932.77 36766.36 37166.81 349
tpm cat154.02 31852.63 32958.19 30964.85 34039.86 31766.26 26057.28 32432.16 37356.90 35670.39 34132.75 34665.30 31634.29 36058.79 38969.41 332
Patchmatch-test47.93 35049.96 35041.84 37857.42 37824.26 39848.75 37141.49 39639.30 33656.79 35773.48 31930.48 36733.87 40129.29 38172.61 33767.39 343
testing9955.16 31054.56 31956.98 31670.13 28430.58 37854.55 35454.11 34549.53 25256.76 35870.14 34522.76 39465.79 31236.99 34376.04 30774.57 280
testing22253.37 32152.50 33155.98 32170.51 27729.68 38156.20 34151.85 35946.19 27756.76 35868.94 35619.18 40365.39 31425.87 39276.98 30072.87 297
EPNet69.10 18367.32 20874.46 10768.33 30461.27 13777.56 10263.57 29960.95 12256.62 36082.75 21051.53 24281.24 12054.36 21990.20 12280.88 204
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
MVP-Stereo61.56 27059.22 28368.58 21779.28 14660.44 15169.20 21671.57 23443.58 30256.42 36178.37 27439.57 31576.46 20534.86 35860.16 38668.86 337
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
tpmvs55.84 30355.45 31357.01 31560.33 36133.20 36465.89 26459.29 31747.52 27056.04 36273.60 31831.05 36368.06 29040.64 31764.64 37469.77 328
MIMVSNet54.39 31456.12 30849.20 35372.57 25430.91 37559.98 31648.43 37241.66 31455.94 36383.86 19241.19 30350.42 35826.05 38975.38 31466.27 351
IB-MVS49.67 1859.69 28556.96 30167.90 22468.19 30650.30 21661.42 30565.18 28647.57 26955.83 36467.15 37123.77 39279.60 15243.56 30079.97 27373.79 289
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
test0.0.03 147.72 35148.31 35345.93 36655.53 38729.39 38246.40 38041.21 39843.41 30655.81 36567.65 36629.22 37443.77 38725.73 39369.87 35764.62 362
pmmvs552.49 33052.58 33052.21 33854.99 38932.38 36655.45 34653.84 34732.15 37455.49 36674.81 30238.08 32257.37 34834.02 36174.40 32366.88 347
dmvs_re49.91 34650.77 34547.34 36059.98 36338.86 32453.18 35953.58 34939.75 33355.06 36761.58 38536.42 33244.40 38329.15 38468.23 36458.75 381
ETVMVS50.32 34349.87 35151.68 34070.30 28126.66 39252.33 36443.93 38443.54 30354.91 36867.95 36520.01 40160.17 33622.47 40073.40 33168.22 338
CANet_DTU64.04 24763.83 24764.66 25368.39 30142.97 29473.45 15774.50 21352.05 22054.78 36975.44 30043.99 28670.42 27353.49 22778.41 29080.59 214
PatchT53.35 32256.47 30543.99 37564.19 34217.46 40659.15 31943.10 38752.11 21954.74 37086.95 13129.97 37149.98 36043.62 29974.40 32364.53 364
HY-MVS49.31 1957.96 29657.59 29759.10 30466.85 32236.17 34465.13 27665.39 28539.24 33754.69 37178.14 27844.28 28567.18 30033.75 36470.79 35073.95 287
PVSNet43.83 2151.56 33651.17 33952.73 33568.34 30338.27 32948.22 37353.56 35036.41 35354.29 37264.94 37534.60 33754.20 35430.34 37469.87 35765.71 354
WTY-MVS49.39 34750.31 34946.62 36461.22 35632.00 36946.61 37949.77 36633.87 36654.12 37369.55 35241.96 29845.40 37631.28 37264.42 37562.47 371
PAPM61.79 26860.37 27766.05 24576.09 19641.87 30169.30 21476.79 19440.64 32853.80 37479.62 25644.38 28482.92 9529.64 37973.11 33473.36 292
tpmrst50.15 34451.38 33846.45 36556.05 38324.77 39764.40 28549.98 36536.14 35453.32 37569.59 35135.16 33548.69 36439.24 32358.51 39165.89 352
MDTV_nov1_ep1354.05 32265.54 33229.30 38359.00 32155.22 33835.96 35652.44 37675.98 29330.77 36559.62 33838.21 33273.33 333
sss47.59 35248.32 35245.40 36956.73 38233.96 36045.17 38248.51 37132.11 37652.37 37765.79 37240.39 30941.91 39231.85 36961.97 38260.35 377
testing1153.13 32352.26 33355.75 32270.44 27831.73 37054.75 35252.40 35744.81 29252.36 37868.40 36321.83 39565.74 31332.64 36872.73 33669.78 327
test_vis1_rt46.70 35445.24 36251.06 34444.58 40751.04 20939.91 39167.56 27021.84 40251.94 37950.79 40033.83 33939.77 39535.25 35761.50 38362.38 372
dmvs_testset45.26 35747.51 35538.49 38459.96 36514.71 40858.50 32643.39 38641.30 31751.79 38056.48 39339.44 31649.91 36221.42 40255.35 39850.85 389
baseline255.57 30852.74 32764.05 25965.26 33344.11 28162.38 30054.43 34339.03 33851.21 38167.35 36933.66 34072.45 25037.14 34164.22 37675.60 270
EPMVS45.74 35546.53 35843.39 37654.14 39322.33 40355.02 34835.00 40534.69 36251.09 38270.20 34325.92 38442.04 39137.19 34055.50 39665.78 353
gg-mvs-nofinetune55.75 30456.75 30352.72 33662.87 34828.04 38768.92 21941.36 39771.09 4150.80 38392.63 1220.74 39766.86 30429.97 37772.41 33863.25 366
ADS-MVSNet248.76 34847.25 35753.29 33455.90 38540.54 31347.34 37754.99 34131.41 37950.48 38472.06 32831.23 35954.26 35325.93 39055.93 39465.07 358
ADS-MVSNet44.62 36145.58 36041.73 37955.90 38520.83 40447.34 37739.94 40031.41 37950.48 38472.06 32831.23 35939.31 39625.93 39055.93 39465.07 358
pmmvs346.71 35345.09 36351.55 34156.76 38148.25 23655.78 34539.53 40124.13 39750.35 38663.40 37815.90 40951.08 35729.29 38170.69 35255.33 387
JIA-IIPM54.03 31751.62 33561.25 28959.14 37155.21 18659.10 32047.72 37350.85 23650.31 38785.81 17020.10 40063.97 32136.16 35155.41 39764.55 363
test-LLR50.43 34150.69 34649.64 35160.76 35841.87 30153.18 35945.48 38043.41 30649.41 38860.47 38929.22 37444.73 38142.09 30772.14 34262.33 373
test-mter48.56 34948.20 35449.64 35160.76 35841.87 30153.18 35945.48 38031.91 37749.41 38860.47 38918.34 40444.73 38142.09 30772.14 34262.33 373
PMMVS237.74 37040.87 37028.36 38742.41 4095.35 41324.61 40027.75 40732.15 37447.85 39070.27 34235.85 33429.51 40419.08 40567.85 36750.22 391
EPNet_dtu58.93 29058.52 28960.16 29867.91 31047.70 24869.97 20658.02 31949.73 24947.28 39173.02 32438.14 32162.34 32836.57 34785.99 20170.43 322
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
DSMNet-mixed43.18 36644.66 36638.75 38354.75 39028.88 38557.06 33527.42 40813.47 40447.27 39277.67 28338.83 31839.29 39725.32 39560.12 38748.08 392
mvsany_test137.88 36935.74 37444.28 37347.28 40549.90 22236.54 39724.37 41019.56 40345.76 39353.46 39632.99 34437.97 39926.17 38835.52 40344.99 398
GG-mvs-BLEND52.24 33760.64 36029.21 38469.73 21042.41 39045.47 39452.33 39820.43 39968.16 28825.52 39465.42 37359.36 380
new_pmnet37.55 37139.80 37330.79 38656.83 38016.46 40739.35 39230.65 40625.59 39345.26 39561.60 38424.54 38928.02 40521.60 40152.80 39947.90 393
MDTV_nov1_ep13_2view18.41 40553.74 35731.57 37844.89 39629.90 37232.93 36671.48 311
TESTMET0.1,145.17 35844.93 36445.89 36756.02 38438.31 32853.18 35941.94 39527.85 38544.86 39756.47 39417.93 40541.50 39338.08 33468.06 36557.85 382
PVSNet_036.71 2241.12 36840.78 37142.14 37759.97 36440.13 31540.97 38842.24 39430.81 38144.86 39749.41 40140.70 30745.12 37823.15 39934.96 40441.16 400
dp44.09 36344.88 36541.72 38058.53 37423.18 40054.70 35342.38 39234.80 36044.25 39965.61 37324.48 39144.80 38029.77 37849.42 40057.18 385
PMMVS44.69 36043.95 36846.92 36250.05 40153.47 19848.08 37542.40 39122.36 40044.01 40053.05 39742.60 29645.49 37531.69 37061.36 38441.79 399
MVS-HIRNet45.53 35647.29 35640.24 38162.29 35026.82 39156.02 34337.41 40329.74 38343.69 40181.27 22833.96 33855.48 34924.46 39756.79 39338.43 402
E-PMN45.17 35845.36 36144.60 37250.07 40042.75 29538.66 39342.29 39346.39 27639.55 40251.15 39926.00 38345.37 37737.68 33676.41 30345.69 396
MVEpermissive27.91 2336.69 37235.64 37539.84 38243.37 40835.85 34819.49 40124.61 40924.68 39539.05 40362.63 38238.67 32027.10 40621.04 40347.25 40256.56 386
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EMVS44.61 36244.45 36745.10 37148.91 40343.00 29337.92 39441.10 39946.75 27438.00 40448.43 40226.42 38146.27 37237.11 34275.38 31446.03 395
CHOSEN 280x42041.62 36739.89 37246.80 36361.81 35251.59 20533.56 39935.74 40427.48 38737.64 40553.53 39523.24 39342.09 39027.39 38758.64 39046.72 394
tmp_tt11.98 37514.73 3783.72 3902.28 4134.62 41419.44 40214.50 4130.47 40821.55 4069.58 40625.78 3854.57 40911.61 40727.37 4051.96 405
DeepMVS_CXcopyleft11.83 38915.51 41113.86 40911.25 4145.76 40520.85 40726.46 40417.06 4089.22 4089.69 40813.82 40712.42 404
test_method19.26 37319.12 37719.71 3889.09 4121.91 4157.79 40353.44 3511.42 40610.27 40835.80 40317.42 40725.11 40712.44 40624.38 40632.10 403
EGC-MVSNET64.77 23661.17 26975.60 9886.90 4274.47 3084.04 3568.62 2660.60 4071.13 40991.61 2865.32 12974.15 23364.01 12688.28 16078.17 247
test1234.43 3785.78 3810.39 3920.97 4140.28 41646.33 3810.45 4150.31 4090.62 4101.50 4090.61 4150.11 4110.56 4090.63 4080.77 407
testmvs4.06 3795.28 3820.41 3910.64 4150.16 41742.54 3860.31 4160.26 4100.50 4111.40 4100.77 4140.17 4100.56 4090.55 4090.90 406
test_blank0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uanet_test0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
DCPMVS0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
cdsmvs_eth3d_5k17.71 37423.62 3760.00 3930.00 4160.00 4180.00 40470.17 2560.00 4110.00 41274.25 31268.16 970.00 4120.00 4110.00 4100.00 408
pcd_1.5k_mvsjas5.20 3776.93 3800.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 41162.39 1510.00 4120.00 4110.00 4100.00 408
sosnet-low-res0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
sosnet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
uncertanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
Regformer0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
ab-mvs-re5.62 3767.50 3790.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 41267.46 3670.00 4160.00 4120.00 4110.00 4100.00 408
uanet0.00 3800.00 3830.00 3930.00 4160.00 4180.00 4040.00 4170.00 4110.00 4120.00 4110.00 4160.00 4120.00 4110.00 4100.00 408
WAC-MVS22.69 40136.10 352
MSC_two_6792asdad79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
No_MVS79.02 5583.14 9567.03 8780.75 12186.24 2277.27 3394.85 2583.78 132
eth-test20.00 416
eth-test0.00 416
OPU-MVS78.65 6283.44 9366.85 8983.62 4286.12 16266.82 11086.01 3161.72 14789.79 13483.08 156
save fliter87.00 3967.23 8679.24 8577.94 17956.65 163
test_0728_SECOND76.57 8586.20 4860.57 15083.77 4085.49 3085.90 3875.86 3994.39 4183.25 150
GSMVS70.05 324
sam_mvs131.41 35770.05 324
sam_mvs31.21 361
MTGPAbinary80.63 126
test_post166.63 2562.08 40730.66 36659.33 33940.34 319
test_post1.99 40830.91 36454.76 352
patchmatchnet-post68.99 35431.32 35869.38 278
MTMP84.83 3119.26 412
gm-plane-assit62.51 34933.91 36137.25 35062.71 38172.74 24338.70 327
test9_res72.12 6991.37 9277.40 256
agg_prior270.70 7490.93 10778.55 242
test_prior470.14 6377.57 101
test_prior75.27 10282.15 11559.85 15584.33 6083.39 8582.58 173
新几何271.33 187
旧先验184.55 7860.36 15263.69 29887.05 13054.65 22583.34 23869.66 329
无先验74.82 13870.94 25047.75 26876.85 20154.47 21572.09 307
原ACMM274.78 142
testdata267.30 29748.34 265
segment_acmp68.30 96
testdata168.34 23257.24 156
plane_prior785.18 6666.21 94
plane_prior684.18 8465.31 10360.83 172
plane_prior585.49 3086.15 2771.09 7190.94 10584.82 98
plane_prior489.11 94
plane_prior282.74 5165.45 76
plane_prior184.46 80
plane_prior65.18 10480.06 7961.88 11789.91 131
n20.00 417
nn0.00 417
door-mid55.02 340
test1182.71 86
door52.91 355
HQP5-MVS58.80 166
BP-MVS67.38 101
HQP3-MVS84.12 6689.16 147
HQP2-MVS58.09 199
NP-MVS83.34 9463.07 12185.97 166
ACMMP++_ref89.47 142
ACMMP++91.96 83
Test By Simon62.56 147