This table lists the benchmark results for the high-res multi-view scenario. The following metrics are evaluated:

(*) For exact definitions, detailing how potentially incomplete ground truth is taken into account, see our paper.

The datasets are grouped into different categories, and result averages are computed for a category and method if results of the method are available for all datasets within the category. Note that the category "all" includes both the high-res multi-view and the low-res many-view scenarios.

Methods with suffix _ROB may participate in the Robust Vision Challenge.

Click a dataset result cell to show a visualization of the reconstruction. For training datasets, ground truth and accuracy / completeness visualizations are also available. The visualizations may not work with mobile browsers.




Method Infoallhigh-res
multi-view
indooroutdoorbotani.boulde.bridgedoorexhibi.lectur.living.loungeobserv.old co.statueterrac.
sort bysort bysort bysort bysort bysort bysort bysort bysort bysorted bysort bysort bysort bysort bysort bysort by
LCM-MVSNet99.86 199.86 199.87 199.99 199.77 199.77 199.80 399.97 199.97 199.95 199.74 199.98 199.56 1100.00 199.85 5
mamv499.05 598.91 899.46 298.94 11899.62 297.98 6399.70 799.49 399.78 299.22 3595.92 12499.95 399.31 499.83 4298.83 218
PS-MVSNAJss98.53 2498.63 2198.21 8099.68 1194.82 13198.10 5699.21 3696.91 9999.75 399.45 1595.82 13099.92 698.80 1999.96 499.89 3
UniMVSNet_ETH3D99.12 399.28 398.65 4699.77 596.34 6999.18 699.20 3899.67 299.73 499.65 699.15 399.86 2697.22 7199.92 1499.77 13
test_fmvsmvis_n_192098.08 4998.47 2996.93 18199.03 10793.29 19196.32 17499.65 1295.59 16699.71 599.01 5897.66 3399.60 16799.44 299.83 4297.90 318
mvs_tets98.90 698.94 698.75 3599.69 1096.48 6498.54 2399.22 3596.23 12899.71 599.48 1298.77 799.93 498.89 1799.95 599.84 7
wuyk23d93.25 30895.20 22187.40 39996.07 35695.38 10797.04 12994.97 34695.33 17999.70 798.11 16898.14 1791.94 41777.76 40899.68 8174.89 417
Anonymous2023121198.55 2198.76 1497.94 10198.79 13694.37 15098.84 1199.15 4799.37 499.67 899.43 1795.61 14199.72 9598.12 3699.86 2899.73 22
jajsoiax98.77 1098.79 1398.74 3899.66 1296.48 6498.45 3199.12 5295.83 15599.67 899.37 2198.25 1399.92 698.77 2099.94 899.82 8
ANet_high98.31 3698.94 696.41 21999.33 5189.64 27197.92 6999.56 1999.27 899.66 1099.50 1197.67 3199.83 3497.55 6299.98 299.77 13
test_fmvsmconf0.01_n98.57 1898.74 1798.06 9099.39 4494.63 13896.70 15599.82 195.44 17599.64 1199.52 998.96 499.74 8399.38 399.86 2899.81 9
pmmvs699.07 499.24 498.56 5299.81 296.38 6698.87 1099.30 2999.01 2099.63 1299.66 499.27 299.68 12997.75 5499.89 2399.62 36
LTVRE_ROB96.88 199.18 299.34 298.72 4199.71 996.99 4899.69 299.57 1799.02 1999.62 1399.36 2398.53 999.52 18998.58 2899.95 599.66 30
Andreas Kuhn, Heiko Hirschmüller, Daniel Scharstein, Helmut Mayer: A TV Prior for High-Quality Scalable Multi-View Stereo Reconstruction. International Journal of Computer Vision 2016
OurMVSNet-221017-098.61 1798.61 2598.63 4899.77 596.35 6899.17 799.05 7298.05 5499.61 1499.52 993.72 19699.88 2198.72 2499.88 2499.65 33
test_fmvsmconf0.1_n98.41 3198.54 2798.03 9599.16 8094.61 13996.18 18499.73 595.05 19399.60 1599.34 2698.68 899.72 9599.21 799.85 3699.76 18
test_fmvsm_n_192098.08 4998.29 4297.43 14398.88 12693.95 16696.17 18899.57 1795.66 16199.52 1698.71 8997.04 6499.64 14999.21 799.87 2698.69 238
TransMVSNet (Re)98.38 3298.67 1997.51 13099.51 2893.39 18998.20 5198.87 12098.23 4799.48 1799.27 3198.47 1199.55 18196.52 9899.53 13099.60 37
LCM-MVSNet-Re97.33 12697.33 12197.32 15298.13 22593.79 17296.99 13299.65 1296.74 10499.47 1898.93 6896.91 7799.84 3290.11 31999.06 23898.32 275
SixPastTwentyTwo97.49 11297.57 10597.26 15799.56 2092.33 21498.28 4296.97 30298.30 4399.45 1999.35 2588.43 29099.89 1998.01 4199.76 5799.54 54
test_fmvsmconf_n98.30 3798.41 3597.99 9898.94 11894.60 14096.00 19999.64 1594.99 19699.43 2099.18 4298.51 1099.71 10999.13 1099.84 3899.67 28
v7n98.73 1298.99 597.95 10099.64 1394.20 15898.67 1599.14 5099.08 1499.42 2199.23 3496.53 9899.91 1499.27 599.93 1199.73 22
NR-MVSNet97.96 5997.86 7198.26 7298.73 14295.54 9798.14 5498.73 15997.79 5999.42 2197.83 19894.40 17999.78 5395.91 12999.76 5799.46 86
MIMVSNet198.51 2598.45 3298.67 4499.72 896.71 5498.76 1398.89 11198.49 3599.38 2399.14 4995.44 14799.84 3296.47 10099.80 5099.47 84
ACMH93.61 998.44 2998.76 1497.51 13099.43 3793.54 18298.23 4699.05 7297.40 8499.37 2499.08 5598.79 699.47 20497.74 5599.71 7399.50 67
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
mvsany_test396.21 18695.93 20297.05 17397.40 30694.33 15295.76 21794.20 35589.10 33199.36 2599.60 893.97 18997.85 38995.40 16698.63 28198.99 190
anonymousdsp98.72 1598.63 2198.99 1499.62 1597.29 4198.65 1999.19 4095.62 16499.35 2699.37 2197.38 4399.90 1698.59 2799.91 1799.77 13
test_djsdf98.73 1298.74 1798.69 4399.63 1496.30 7198.67 1599.02 8296.50 11599.32 2799.44 1697.43 4199.92 698.73 2299.95 599.86 4
PEN-MVS98.75 1198.85 1198.44 5999.58 1895.67 9398.45 3199.15 4799.33 699.30 2899.00 5997.27 4899.92 697.64 6099.92 1499.75 20
DTE-MVSNet98.79 998.86 998.59 5099.55 2296.12 7698.48 3099.10 5699.36 599.29 2999.06 5697.27 4899.93 497.71 5699.91 1799.70 26
test_vis3_rt97.04 13796.98 14397.23 16098.44 18595.88 8496.82 14099.67 990.30 31799.27 3099.33 2894.04 18696.03 40997.14 7797.83 32299.78 12
pm-mvs198.47 2898.67 1997.86 10599.52 2794.58 14198.28 4299.00 9397.57 7299.27 3099.22 3598.32 1299.50 19497.09 7999.75 6499.50 67
ACMH+93.58 1098.23 4198.31 3997.98 9999.39 4495.22 12097.55 9999.20 3898.21 4899.25 3298.51 11298.21 1499.40 23094.79 19899.72 7099.32 122
Anonymous2024052997.96 5998.04 5497.71 11498.69 15194.28 15697.86 7398.31 22098.79 2699.23 3398.86 7795.76 13699.61 16595.49 15199.36 18399.23 145
PS-CasMVS98.73 1298.85 1198.39 6399.55 2295.47 10498.49 2899.13 5199.22 1099.22 3498.96 6597.35 4499.92 697.79 5199.93 1199.79 11
SD-MVS97.37 12397.70 8696.35 22198.14 22295.13 12496.54 16198.92 10895.94 14699.19 3598.08 17097.74 2895.06 41195.24 17199.54 12698.87 215
Zhenlong Yuan, Jiakai Cao, Zhaoxin Li, Hao Jiang and Zhaoqi Wang: SD-MVS: Segmentation-driven Deformation Multi-View Stereo with Spherical Refinement and EM optimization. AAAI2024
WR-MVS_H98.65 1698.62 2398.75 3599.51 2896.61 6098.55 2299.17 4299.05 1799.17 3698.79 7995.47 14599.89 1997.95 4399.91 1799.75 20
dcpmvs_297.12 13497.99 5994.51 31099.11 9284.00 36997.75 8299.65 1297.38 8699.14 3798.42 12195.16 15599.96 295.52 15099.78 5599.58 39
tfpnnormal97.72 9497.97 6196.94 18099.26 5792.23 21797.83 7698.45 19898.25 4699.13 3898.66 9496.65 9199.69 12493.92 23599.62 9298.91 205
SSC-MVS95.92 19897.03 14192.58 36399.28 5578.39 40096.68 15695.12 34498.90 2399.11 3998.66 9491.36 25199.68 12995.00 18999.16 22199.67 28
SED-MVS97.94 6697.90 6598.07 8899.22 6695.35 11096.79 14598.83 13796.11 13499.08 4098.24 15197.87 2399.72 9595.44 15999.51 14099.14 161
test_241102_ONE99.22 6695.35 11098.83 13796.04 13999.08 4098.13 16497.87 2399.33 254
VPA-MVSNet98.27 3898.46 3097.70 11699.06 10093.80 17197.76 8199.00 9398.40 3899.07 4298.98 6296.89 7899.75 7497.19 7599.79 5299.55 53
reproduce_model98.54 2298.33 3899.15 499.06 10098.04 1297.04 12999.09 6198.42 3799.03 4398.71 8996.93 7399.83 3497.09 7999.63 9099.56 50
nrg03098.54 2298.62 2398.32 6799.22 6695.66 9497.90 7199.08 6498.31 4199.02 4498.74 8597.68 3099.61 16597.77 5399.85 3699.70 26
fmvsm_s_conf0.1_n97.73 9298.02 5696.85 18999.09 9591.43 24396.37 17099.11 5394.19 22299.01 4599.25 3296.30 11399.38 23799.00 1499.88 2499.73 22
CP-MVSNet98.42 3098.46 3098.30 7099.46 3495.22 12098.27 4498.84 13199.05 1799.01 4598.65 9795.37 14999.90 1697.57 6199.91 1799.77 13
fmvsm_l_conf0.5_n97.68 9897.81 7797.27 15598.92 12292.71 20795.89 21099.41 2693.36 24799.00 4798.44 12096.46 10599.65 14599.09 1199.76 5799.45 90
casdiffmvs_mvgpermissive97.83 8298.11 4897.00 17898.57 16692.10 22695.97 20399.18 4197.67 7199.00 4798.48 11797.64 3499.50 19496.96 8699.54 12699.40 105
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
FMVSNet197.95 6398.08 5097.56 12599.14 9093.67 17698.23 4698.66 17697.41 8399.00 4799.19 3895.47 14599.73 8995.83 13499.76 5799.30 127
TDRefinement98.90 698.86 999.02 1099.54 2598.06 999.34 599.44 2298.85 2599.00 4799.20 3797.42 4299.59 16897.21 7299.76 5799.40 105
reproduce-ours98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
our_new_method98.48 2698.27 4399.12 598.99 11098.02 1396.81 14199.02 8298.29 4498.97 5198.61 10097.27 4899.82 3696.86 9099.61 9899.51 64
K. test v396.44 17896.28 18496.95 17999.41 4091.53 23997.65 9190.31 39998.89 2498.93 5399.36 2384.57 32699.92 697.81 4999.56 11699.39 110
testf198.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
APD_test298.57 1898.45 3298.93 2299.79 398.78 397.69 8799.42 2497.69 6898.92 5498.77 8297.80 2599.25 27496.27 11099.69 7798.76 229
fmvsm_l_conf0.5_n_a97.60 10497.76 8397.11 16698.92 12292.28 21595.83 21399.32 2793.22 25398.91 5698.49 11396.31 11299.64 14999.07 1299.76 5799.40 105
fmvsm_s_conf0.1_n_a97.80 8798.01 5797.18 16199.17 7992.51 21096.57 15999.15 4793.68 23998.89 5799.30 2996.42 10799.37 24299.03 1399.83 4299.66 30
FC-MVSNet-test98.16 4298.37 3697.56 12599.49 3293.10 19698.35 3599.21 3698.43 3698.89 5798.83 7894.30 18199.81 4197.87 4699.91 1799.77 13
FOURS199.59 1798.20 899.03 899.25 3498.96 2298.87 59
KD-MVS_self_test97.86 8098.07 5197.25 15899.22 6692.81 20297.55 9998.94 10697.10 9598.85 6098.88 7595.03 15999.67 13797.39 6899.65 8699.26 139
WB-MVS95.50 21696.62 16392.11 37399.21 7377.26 41096.12 19095.40 33998.62 3098.84 6198.26 14991.08 25499.50 19493.37 24898.70 27499.58 39
TranMVSNet+NR-MVSNet98.33 3398.30 4198.43 6099.07 9895.87 8596.73 15399.05 7298.67 2898.84 6198.45 11897.58 3899.88 2196.45 10199.86 2899.54 54
fmvsm_s_conf0.5_n97.62 10297.89 6896.80 19398.79 13691.44 24296.14 18999.06 6894.19 22298.82 6398.98 6296.22 11899.38 23798.98 1699.86 2899.58 39
new-patchmatchnet95.67 21096.58 16792.94 35497.48 29880.21 39592.96 33998.19 23594.83 20098.82 6398.79 7993.31 20399.51 19395.83 13499.04 23999.12 168
EG-PatchMatch MVS97.69 9697.79 7997.40 14799.06 10093.52 18395.96 20598.97 10294.55 21298.82 6398.76 8497.31 4699.29 26697.20 7499.44 16099.38 112
SDMVSNet97.97 5798.26 4597.11 16699.41 4092.21 21896.92 13598.60 18498.58 3298.78 6699.39 1897.80 2599.62 15894.98 19299.86 2899.52 60
sd_testset97.97 5798.12 4797.51 13099.41 4093.44 18597.96 6498.25 22398.58 3298.78 6699.39 1898.21 1499.56 17792.65 26299.86 2899.52 60
DPE-MVScopyleft97.64 10097.35 12098.50 5598.85 13096.18 7395.21 25798.99 9695.84 15498.78 6698.08 17096.84 8499.81 4193.98 23399.57 11399.52 60
Kehua Chen, Zhenlong Yuan, Tianlu Mao, Zhaoqi Wang: Dual-Level Precision Edges Guided Multi-View Stereo with Accurate Planarization. AAAI2025
COLMAP_ROBcopyleft94.48 698.25 4098.11 4898.64 4799.21 7397.35 3997.96 6499.16 4398.34 4098.78 6698.52 11097.32 4599.45 21294.08 22799.67 8399.13 163
Johannes L. Schönberger, Enliang Zheng, Marc Pollefeys, Jan-Michael Frahm: Pixelwise View Selection for Unstructured Multi-View Stereo. ECCV 2016
lessismore_v097.05 17399.36 4892.12 22384.07 41698.77 7098.98 6285.36 32099.74 8397.34 6999.37 18099.30 127
test_fmvs397.38 12197.56 10696.84 19198.63 15892.81 20297.60 9499.61 1690.87 30898.76 7199.66 494.03 18797.90 38899.24 699.68 8199.81 9
MVStest191.89 33291.45 32793.21 34489.01 42184.87 35795.82 21595.05 34591.50 29898.75 7299.19 3857.56 41095.11 41097.78 5298.37 29999.64 35
v897.60 10498.06 5396.23 22698.71 14789.44 27697.43 10998.82 14597.29 9098.74 7399.10 5293.86 19199.68 12998.61 2699.94 899.56 50
DP-MVS97.87 7897.89 6897.81 10898.62 16094.82 13197.13 12498.79 14798.98 2198.74 7398.49 11395.80 13599.49 19995.04 18699.44 16099.11 171
v1097.55 10897.97 6196.31 22498.60 16289.64 27197.44 10799.02 8296.60 10898.72 7599.16 4693.48 20099.72 9598.76 2199.92 1499.58 39
fmvsm_s_conf0.5_n_a97.65 9997.83 7597.13 16598.80 13492.51 21096.25 18099.06 6893.67 24098.64 7699.00 5996.23 11799.36 24598.99 1599.80 5099.53 57
test072699.24 6195.51 9996.89 13798.89 11195.92 14898.64 7698.31 13597.06 62
DVP-MVS++97.96 5997.90 6598.12 8697.75 26995.40 10599.03 898.89 11196.62 10698.62 7898.30 13996.97 6999.75 7495.70 13799.25 21099.21 147
test_241102_TWO98.83 13796.11 13498.62 7898.24 15196.92 7699.72 9595.44 15999.49 14799.49 75
FIs97.93 6998.07 5197.48 13899.38 4692.95 19998.03 6199.11 5398.04 5598.62 7898.66 9493.75 19599.78 5397.23 7099.84 3899.73 22
DeepC-MVS95.41 497.82 8597.70 8698.16 8198.78 13995.72 8996.23 18299.02 8293.92 23298.62 7898.99 6197.69 2999.62 15896.18 11499.87 2699.15 157
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
APDe-MVScopyleft98.14 4398.03 5598.47 5898.72 14496.04 7998.07 5899.10 5695.96 14498.59 8298.69 9296.94 7199.81 4196.64 9399.58 11099.57 46
Zhaojie Zeng, Yuesong Wang, Tao Guan: Matching Ambiguity-Resilient Multi-View Stereo via Adaptive Patch Deformation. Pattern Recognition
XXY-MVS97.54 10997.70 8697.07 17299.46 3492.21 21897.22 11899.00 9394.93 19998.58 8398.92 6997.31 4699.41 22894.44 21199.43 16999.59 38
test_040297.84 8197.97 6197.47 13999.19 7794.07 16196.71 15498.73 15998.66 2998.56 8498.41 12396.84 8499.69 12494.82 19699.81 4798.64 242
PM-MVS97.36 12597.10 13598.14 8498.91 12496.77 5396.20 18398.63 18293.82 23398.54 8598.33 13393.98 18899.05 30795.99 12499.45 15998.61 247
DeepPCF-MVS94.58 596.90 14896.43 17898.31 6997.48 29897.23 4492.56 35198.60 18492.84 27298.54 8597.40 23396.64 9398.78 33494.40 21599.41 17698.93 201
MSP-MVS97.45 11596.92 14999.03 999.26 5797.70 2297.66 9098.89 11195.65 16298.51 8796.46 29992.15 23699.81 4195.14 18098.58 28699.58 39
Zhenlong Yuan, Cong Liu, Fei Shen, Zhaoxin Li, Jingguo luo, Tianlu Mao and Zhaoqi Wang: MSP-MVS: Multi-granularity Segmentation Prior Guided Multi-View Stereo. AAAI2025
VDD-MVS97.37 12397.25 12697.74 11298.69 15194.50 14597.04 12995.61 33398.59 3198.51 8798.72 8692.54 22799.58 17096.02 12199.49 14799.12 168
FMVSNet296.72 16396.67 16296.87 18897.96 23791.88 23297.15 12198.06 25395.59 16698.50 8998.62 9989.51 28099.65 14594.99 19199.60 10499.07 178
test_fmvs296.38 18196.45 17796.16 23197.85 24491.30 24496.81 14199.45 2189.24 33098.49 9099.38 2088.68 28797.62 39398.83 1899.32 19899.57 46
test111194.53 26894.81 24593.72 33199.06 10081.94 38498.31 3983.87 41796.37 12198.49 9099.17 4581.49 34399.73 8996.64 9399.86 2899.49 75
SMA-MVScopyleft97.48 11397.11 13498.60 4998.83 13196.67 5796.74 14998.73 15991.61 29598.48 9298.36 12996.53 9899.68 12995.17 17599.54 12699.45 90
Yufeng Yin; Xiaoyan Liu; Zichao Zhang: SMA-MVS: Segmentation-Guided Multi-Scale Anchor Deformation Patch Multi-View Stereo. IEEE Transactions on Circuits and Systems for Video Technology
EU-MVSNet94.25 27594.47 26493.60 33498.14 22282.60 37997.24 11792.72 37285.08 37798.48 9298.94 6782.59 34198.76 33797.47 6699.53 13099.44 100
RPSCF97.87 7897.51 11198.95 1899.15 8398.43 797.56 9899.06 6896.19 13198.48 9298.70 9194.72 16699.24 27894.37 21699.33 19699.17 154
v124096.74 16097.02 14295.91 24398.18 21388.52 29295.39 24298.88 11893.15 26198.46 9598.40 12692.80 21699.71 10998.45 3199.49 14799.49 75
VPNet97.26 12997.49 11496.59 20599.47 3390.58 25896.27 17698.53 19197.77 6098.46 9598.41 12394.59 17299.68 12994.61 20699.29 20499.52 60
IterMVS-LS96.92 14697.29 12395.79 24798.51 17588.13 30395.10 26098.66 17696.99 9698.46 9598.68 9392.55 22599.74 8396.91 8799.79 5299.50 67
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
test_f95.82 20395.88 20595.66 25497.61 28993.21 19595.61 23098.17 23686.98 35898.42 9899.47 1390.46 26394.74 41397.71 5698.45 29599.03 183
ambc96.56 20998.23 20691.68 23897.88 7298.13 24498.42 9898.56 10694.22 18399.04 30994.05 23099.35 18898.95 195
DVP-MVScopyleft97.78 8997.65 9398.16 8199.24 6195.51 9996.74 14998.23 22695.92 14898.40 10098.28 14497.06 6299.71 10995.48 15599.52 13599.26 139
Zhenlong Yuan, Jinguo Luo, Fei Shen, Zhaoxin Li, Cong Liu, Tianlu Mao, Zhaoqi Wang: DVP-MVS: Synergize Depth-Edge and Visibility Prior for Multi-View Stereo. AAAI2025
test_0728_THIRD96.62 10698.40 10098.28 14497.10 5899.71 10995.70 13799.62 9299.58 39
VDDNet96.98 14396.84 15297.41 14699.40 4393.26 19397.94 6795.31 34199.26 998.39 10299.18 4287.85 30099.62 15895.13 18299.09 23299.35 120
PC_three_145287.24 35498.37 10397.44 23097.00 6796.78 40492.01 27199.25 21099.21 147
Anonymous20240521196.34 18295.98 19897.43 14398.25 20393.85 16996.74 14994.41 35397.72 6598.37 10398.03 18087.15 30599.53 18694.06 22899.07 23598.92 204
Baseline_NR-MVSNet97.72 9497.79 7997.50 13499.56 2093.29 19195.44 23698.86 12398.20 4998.37 10399.24 3394.69 16799.55 18195.98 12599.79 5299.65 33
mvs5depth98.06 5298.58 2696.51 21198.97 11489.65 27099.43 499.81 299.30 798.36 10699.86 293.15 20699.88 2198.50 3099.84 3899.99 1
IU-MVS99.22 6695.40 10598.14 24385.77 37198.36 10695.23 17299.51 14099.49 75
IterMVS-SCA-FT95.86 20196.19 18894.85 29397.68 27785.53 34492.42 35797.63 28096.99 9698.36 10698.54 10987.94 29599.75 7497.07 8299.08 23399.27 138
ACMM93.33 1198.05 5397.79 7998.85 2899.15 8397.55 3096.68 15698.83 13795.21 18398.36 10698.13 16498.13 1899.62 15896.04 11999.54 12699.39 110
Qingshan Xu and Wenbing Tao: Multi-Scale Geometric Consistency Guided Multi-View Stereo. CVPR 2019
Anonymous2024052197.07 13697.51 11195.76 24999.35 4988.18 30097.78 7898.40 20797.11 9498.34 11099.04 5789.58 27699.79 4998.09 3899.93 1199.30 127
LPG-MVS_test97.94 6697.67 9198.74 3899.15 8397.02 4697.09 12699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
LGP-MVS_train98.74 3899.15 8397.02 4699.02 8295.15 18798.34 11098.23 15397.91 2199.70 11794.41 21399.73 6699.50 67
casdiffmvspermissive97.50 11197.81 7796.56 20998.51 17591.04 24995.83 21399.09 6197.23 9198.33 11398.30 13997.03 6599.37 24296.58 9799.38 17999.28 134
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
Patchmatch-RL test94.66 26194.49 26295.19 27498.54 17188.91 28592.57 35098.74 15891.46 30098.32 11497.75 20877.31 36698.81 33296.06 11699.61 9897.85 322
XVG-OURS97.12 13496.74 15898.26 7298.99 11097.45 3693.82 31799.05 7295.19 18598.32 11497.70 21395.22 15498.41 37094.27 22098.13 30998.93 201
UniMVSNet_NR-MVSNet97.83 8297.65 9398.37 6498.72 14495.78 8795.66 22499.02 8298.11 5198.31 11697.69 21494.65 17199.85 2997.02 8499.71 7399.48 81
DU-MVS97.79 8897.60 10298.36 6598.73 14295.78 8795.65 22698.87 12097.57 7298.31 11697.83 19894.69 16799.85 2997.02 8499.71 7399.46 86
EI-MVSNet-UG-set97.32 12797.40 11697.09 17097.34 31192.01 22995.33 24997.65 27697.74 6398.30 11898.14 16295.04 15899.69 12497.55 6299.52 13599.58 39
EI-MVSNet-Vis-set97.32 12797.39 11797.11 16697.36 30892.08 22795.34 24897.65 27697.74 6398.29 11998.11 16895.05 15799.68 12997.50 6499.50 14499.56 50
test20.0396.58 17296.61 16596.48 21498.49 17991.72 23695.68 22297.69 27196.81 10298.27 12097.92 19394.18 18498.71 34290.78 30199.66 8599.00 187
APD-MVS_3200maxsize98.13 4697.90 6598.79 3398.79 13697.31 4097.55 9998.92 10897.72 6598.25 12198.13 16497.10 5899.75 7495.44 15999.24 21399.32 122
v14896.58 17296.97 14495.42 26798.63 15887.57 31695.09 26197.90 25895.91 15098.24 12297.96 18793.42 20199.39 23496.04 11999.52 13599.29 133
ECVR-MVScopyleft94.37 27494.48 26394.05 32698.95 11583.10 37498.31 3982.48 41996.20 12998.23 12399.16 4681.18 34699.66 14395.95 12699.83 4299.38 112
UniMVSNet (Re)97.83 8297.65 9398.35 6698.80 13495.86 8695.92 20899.04 7997.51 7698.22 12497.81 20394.68 16999.78 5397.14 7799.75 6499.41 104
test_vis1_n95.67 21095.89 20495.03 28298.18 21389.89 26696.94 13499.28 3188.25 34698.20 12598.92 6986.69 30997.19 39697.70 5898.82 26298.00 312
SR-MVS-dyc-post98.14 4397.84 7299.02 1098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.60 9699.76 6895.49 15199.20 21599.26 139
RE-MVS-def97.88 7098.81 13298.05 1097.55 9998.86 12397.77 6098.20 12598.07 17296.94 7195.49 15199.20 21599.26 139
WR-MVS96.90 14896.81 15497.16 16298.56 16892.20 22194.33 29098.12 24597.34 8798.20 12597.33 24492.81 21599.75 7494.79 19899.81 4799.54 54
v192192096.72 16396.96 14695.99 23698.21 20788.79 28995.42 23898.79 14793.22 25398.19 12998.26 14992.68 21999.70 11798.34 3499.55 12299.49 75
test_cas_vis1_n_192095.34 22795.67 21194.35 31698.21 20786.83 33195.61 23099.26 3390.45 31598.17 13098.96 6584.43 32798.31 37896.74 9299.17 22097.90 318
TSAR-MVS + MP.97.42 11997.23 12898.00 9799.38 4695.00 12797.63 9398.20 23093.00 26598.16 13198.06 17795.89 12599.72 9595.67 14199.10 23199.28 134
Zhenlong Yuan, Jiakai Cao, Zhaoqi Wang, Zhaoxin Li: TSAR-MVS: Textureless-aware Segmentation and Correlative Refinement Guided Multi-View Stereo. Pattern Recognition
TinyColmap96.00 19696.34 18294.96 28797.90 24287.91 30894.13 30498.49 19594.41 21598.16 13197.76 20596.29 11598.68 34890.52 31299.42 17298.30 279
XVG-OURS-SEG-HR97.38 12197.07 13898.30 7099.01 10997.41 3894.66 28299.02 8295.20 18498.15 13397.52 22598.83 598.43 36994.87 19496.41 37099.07 178
IS-MVSNet96.93 14596.68 16197.70 11699.25 6094.00 16498.57 2096.74 31198.36 3998.14 13497.98 18688.23 29399.71 10993.10 25899.72 7099.38 112
CSCG97.40 12097.30 12297.69 11898.95 11594.83 13097.28 11498.99 9696.35 12498.13 13595.95 32595.99 12299.66 14394.36 21899.73 6698.59 248
MP-MVS-pluss97.69 9697.36 11998.70 4299.50 3196.84 5195.38 24398.99 9692.45 28098.11 13698.31 13597.25 5399.77 6396.60 9599.62 9299.48 81
MP-MVS-pluss: MP-MVS-pluss. MP-MVS-pluss
v119296.83 15597.06 13996.15 23298.28 19889.29 27895.36 24498.77 15293.73 23598.11 13698.34 13293.02 21399.67 13798.35 3399.58 11099.50 67
OPM-MVS97.54 10997.25 12698.41 6199.11 9296.61 6095.24 25598.46 19794.58 21198.10 13898.07 17297.09 6099.39 23495.16 17799.44 16099.21 147
Ray L. Khuboni, Hongjun Xu: Octagram Propagation Matching for Multi-Scale View Stereopsis (OPM-MVS).
v14419296.69 16696.90 15196.03 23598.25 20388.92 28495.49 23498.77 15293.05 26398.09 13998.29 14392.51 23099.70 11798.11 3799.56 11699.47 84
N_pmnet95.18 23594.23 27298.06 9097.85 24496.55 6292.49 35291.63 38389.34 32898.09 13997.41 23290.33 26699.06 30691.58 28299.31 20198.56 250
test_part299.03 10796.07 7898.08 141
SteuartSystems-ACMMP98.02 5597.76 8398.79 3399.43 3797.21 4597.15 12198.90 11096.58 11098.08 14197.87 19697.02 6699.76 6895.25 17099.59 10799.40 105
Skip Steuart: Steuart Systems R&D Blog.
APD_test197.95 6397.68 9098.75 3599.60 1698.60 697.21 11999.08 6496.57 11398.07 14398.38 12796.22 11899.14 29294.71 20599.31 20198.52 255
SR-MVS98.00 5697.66 9299.01 1298.77 14097.93 1597.38 11198.83 13797.32 8898.06 14497.85 19796.65 9199.77 6395.00 18999.11 22999.32 122
XVG-ACMP-BASELINE97.58 10797.28 12598.49 5699.16 8096.90 5096.39 16698.98 9995.05 19398.06 14498.02 18195.86 12699.56 17794.37 21699.64 8899.00 187
IterMVS95.42 22395.83 20694.20 32297.52 29583.78 37192.41 35897.47 28595.49 17298.06 14498.49 11387.94 29599.58 17096.02 12199.02 24099.23 145
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Marc Pollefeys: IterMVS: Iterative Probability Estimation for Efficient Multi-View Stereo.
TSAR-MVS + GP.96.47 17796.12 19097.49 13797.74 27295.23 11794.15 30196.90 30493.26 25198.04 14796.70 28694.41 17898.89 32594.77 20199.14 22398.37 268
test_one_060199.05 10595.50 10298.87 12097.21 9398.03 14898.30 13996.93 73
testgi96.07 19196.50 17694.80 29699.26 5787.69 31595.96 20598.58 18895.08 19098.02 14996.25 31097.92 2097.60 39488.68 34298.74 26999.11 171
V4297.04 13797.16 13396.68 20298.59 16491.05 24896.33 17398.36 21294.60 20897.99 15098.30 13993.32 20299.62 15897.40 6799.53 13099.38 112
GBi-Net96.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
test196.99 14096.80 15597.56 12597.96 23793.67 17698.23 4698.66 17695.59 16697.99 15099.19 3889.51 28099.73 8994.60 20799.44 16099.30 127
FMVSNet395.26 23294.94 23296.22 22896.53 33890.06 26295.99 20197.66 27494.11 22697.99 15097.91 19480.22 35299.63 15394.60 20799.44 16098.96 193
pmmvs-eth3d96.49 17596.18 18997.42 14598.25 20394.29 15394.77 27898.07 25289.81 32497.97 15498.33 13393.11 20799.08 30495.46 15899.84 3898.89 209
v114496.84 15297.08 13796.13 23398.42 18789.28 27995.41 24098.67 17494.21 22097.97 15498.31 13593.06 20899.65 14598.06 4099.62 9299.45 90
ACMP92.54 1397.47 11497.10 13598.55 5399.04 10696.70 5596.24 18198.89 11193.71 23697.97 15497.75 20897.44 4099.63 15393.22 25599.70 7699.32 122
Qingshan Xu and Wenbing Tao: Planar Prior Assisted PatchMatch Multi-View Stereo. AAAI 2020
reproduce_monomvs92.05 32992.26 31691.43 37995.42 38075.72 41595.68 22297.05 29994.47 21397.95 15798.35 13055.58 41799.05 30796.36 10599.44 16099.51 64
EI-MVSNet96.63 16996.93 14795.74 25097.26 31688.13 30395.29 25397.65 27696.99 9697.94 15898.19 15892.55 22599.58 17096.91 8799.56 11699.50 67
MVSTER94.21 27893.93 28595.05 28195.83 36586.46 33495.18 25897.65 27692.41 28197.94 15898.00 18572.39 39099.58 17096.36 10599.56 11699.12 168
ACMMPcopyleft98.05 5397.75 8598.93 2299.23 6397.60 2698.09 5798.96 10395.75 15997.91 16098.06 17796.89 7899.76 6895.32 16799.57 11399.43 101
Qingshan Xu, Weihang Kong, Wenbing Tao, Marc Pollefeys: Multi-Scale Geometric Consistency Guided and Planar Prior Assisted Multi-View Stereo. IEEE Transactions on Pattern Analysis and Machine Intelligence
MTAPA98.14 4397.84 7299.06 799.44 3697.90 1697.25 11598.73 15997.69 6897.90 16197.96 18795.81 13499.82 3696.13 11599.61 9899.45 90
LFMVS95.32 22994.88 23996.62 20398.03 22891.47 24197.65 9190.72 39599.11 1297.89 16298.31 13579.20 35499.48 20293.91 23699.12 22898.93 201
ACMMP_NAP97.89 7697.63 9898.67 4499.35 4996.84 5196.36 17198.79 14795.07 19197.88 16398.35 13097.24 5499.72 9596.05 11899.58 11099.45 90
VNet96.84 15296.83 15396.88 18798.06 22792.02 22896.35 17297.57 28297.70 6797.88 16397.80 20492.40 23299.54 18494.73 20398.96 24499.08 176
HPM-MVS_fast98.32 3598.13 4698.88 2799.54 2597.48 3498.35 3599.03 8095.88 15197.88 16398.22 15698.15 1699.74 8396.50 9999.62 9299.42 102
UA-Net98.88 898.76 1499.22 399.11 9297.89 1799.47 399.32 2799.08 1497.87 16699.67 396.47 10399.92 697.88 4599.98 299.85 5
baseline97.44 11697.78 8296.43 21698.52 17390.75 25696.84 13899.03 8096.51 11497.86 16798.02 18196.67 9099.36 24597.09 7999.47 15399.19 151
v2v48296.78 15997.06 13995.95 24098.57 16688.77 29095.36 24498.26 22295.18 18697.85 16898.23 15392.58 22399.63 15397.80 5099.69 7799.45 90
SF-MVS97.60 10497.39 11798.22 7798.93 12095.69 9197.05 12899.10 5695.32 18097.83 16997.88 19596.44 10699.72 9594.59 21099.39 17899.25 143
Vis-MVSNetpermissive98.27 3898.34 3798.07 8899.33 5195.21 12298.04 5999.46 2097.32 8897.82 17099.11 5196.75 8899.86 2697.84 4899.36 18399.15 157
Jingyang Zhang, Yao Yao, Shiwei Li, Zixin Luo, Tian Fang: Visibility-aware Multiview Stereo Network. BMVC 2020
AllTest97.20 13296.92 14998.06 9099.08 9696.16 7497.14 12399.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
TestCases98.06 9099.08 9696.16 7499.16 4394.35 21797.78 17198.07 17295.84 12799.12 29691.41 28399.42 17298.91 205
balanced_conf0396.88 15097.29 12395.63 25597.66 28289.47 27597.95 6698.89 11195.94 14697.77 17398.55 10792.23 23499.68 12997.05 8399.61 9897.73 332
test_vis1_n_192095.77 20596.41 17993.85 32798.55 16984.86 35895.91 20999.71 692.72 27597.67 17498.90 7387.44 30398.73 33997.96 4298.85 25897.96 314
GeoE97.75 9197.70 8697.89 10398.88 12694.53 14297.10 12598.98 9995.75 15997.62 17597.59 22097.61 3799.77 6396.34 10799.44 16099.36 118
MDA-MVSNet-bldmvs95.69 20895.67 21195.74 25098.48 18188.76 29192.84 34197.25 28896.00 14297.59 17697.95 18991.38 25099.46 20793.16 25796.35 37298.99 190
PGM-MVS97.88 7797.52 11098.96 1799.20 7597.62 2597.09 12699.06 6895.45 17397.55 17797.94 19097.11 5799.78 5394.77 20199.46 15699.48 81
GST-MVS97.82 8597.49 11498.81 3199.23 6397.25 4297.16 12098.79 14795.96 14497.53 17897.40 23396.93 7399.77 6395.04 18699.35 18899.42 102
YYNet194.73 25394.84 24294.41 31497.47 30285.09 35490.29 39495.85 32792.52 27797.53 17897.76 20591.97 24299.18 28593.31 25296.86 35698.95 195
TAMVS95.49 21794.94 23297.16 16298.31 19493.41 18895.07 26496.82 30791.09 30697.51 18097.82 20189.96 27299.42 21988.42 34599.44 16098.64 242
LS3D97.77 9097.50 11398.57 5196.24 34497.58 2898.45 3198.85 12798.58 3297.51 18097.94 19095.74 13799.63 15395.19 17398.97 24398.51 256
HFP-MVS97.94 6697.64 9698.83 2999.15 8397.50 3397.59 9698.84 13196.05 13797.49 18297.54 22397.07 6199.70 11795.61 14699.46 15699.30 127
Patchmtry95.03 24394.59 25896.33 22294.83 39190.82 25396.38 16997.20 29096.59 10997.49 18298.57 10477.67 36199.38 23792.95 26199.62 9298.80 222
MDA-MVSNet_test_wron94.73 25394.83 24494.42 31397.48 29885.15 35290.28 39595.87 32692.52 27797.48 18497.76 20591.92 24599.17 28993.32 25196.80 36198.94 197
UnsupCasMVSNet_eth95.91 19995.73 21096.44 21598.48 18191.52 24095.31 25198.45 19895.76 15797.48 18497.54 22389.53 27998.69 34594.43 21294.61 39599.13 163
tttt051793.31 30592.56 31395.57 25898.71 14787.86 30997.44 10787.17 41195.79 15697.47 18696.84 27664.12 40499.81 4196.20 11399.32 19899.02 186
ACMMPR97.95 6397.62 10098.94 1999.20 7597.56 2997.59 9698.83 13796.05 13797.46 18797.63 21796.77 8799.76 6895.61 14699.46 15699.49 75
APD-MVScopyleft97.00 13996.53 17398.41 6198.55 16996.31 7096.32 17498.77 15292.96 27097.44 18897.58 22295.84 12799.74 8391.96 27299.35 18899.19 151
Yuesong Wang, Zhaojie Zeng and etc.: Adaptive Patch Deformation for Textureless-Resilient Multi-View Stereo. CVPR2023
HPM-MVScopyleft98.11 4797.83 7598.92 2599.42 3997.46 3598.57 2099.05 7295.43 17697.41 18997.50 22797.98 1999.79 4995.58 14999.57 11399.50 67
Chunlin Ren, Qingshan Xu, Shikun Zhang, Jiaqi Yang: Hierarchical Prior Mining for Non-local Multi-View Stereo. ICCV 2023
c3_l95.20 23495.32 21894.83 29596.19 34886.43 33691.83 36998.35 21593.47 24497.36 19097.26 24888.69 28699.28 26895.41 16599.36 18398.78 225
EPP-MVSNet96.84 15296.58 16797.65 12099.18 7893.78 17398.68 1496.34 31697.91 5797.30 19198.06 17788.46 28999.85 2993.85 23799.40 17799.32 122
DeepC-MVS_fast94.34 796.74 16096.51 17597.44 14297.69 27694.15 15996.02 19798.43 20193.17 26097.30 19197.38 23995.48 14499.28 26893.74 24099.34 19198.88 213
Andreas Kuhn, Christian Sormann, Mattia Rossi, Oliver Erdler, Friedrich Fraundorfer: DeepC-MVS: Deep Confidence Prediction for Multi-View Stereo Reconstruction. 3DV 2020
RRT-MVS95.78 20496.25 18594.35 31696.68 33484.47 36397.72 8699.11 5397.23 9197.27 19398.72 8686.39 31099.79 4995.49 15197.67 33398.80 222
mvsany_test193.47 30193.03 29894.79 29794.05 40492.12 22390.82 38990.01 40385.02 38097.26 19498.28 14493.57 19897.03 39892.51 26695.75 38595.23 397
region2R97.92 7097.59 10398.92 2599.22 6697.55 3097.60 9498.84 13196.00 14297.22 19597.62 21896.87 8299.76 6895.48 15599.43 16999.46 86
ITE_SJBPF97.85 10698.64 15496.66 5898.51 19495.63 16397.22 19597.30 24695.52 14398.55 36090.97 29498.90 25198.34 274
test_fmvs1_n95.21 23395.28 21994.99 28598.15 22089.13 28396.81 14199.43 2386.97 35997.21 19798.92 6983.00 33897.13 39798.09 3898.94 24798.72 234
h-mvs3396.29 18395.63 21498.26 7298.50 17896.11 7796.90 13697.09 29696.58 11097.21 19798.19 15884.14 32899.78 5395.89 13096.17 37798.89 209
hse-mvs295.77 20595.09 22797.79 10997.84 24995.51 9995.66 22495.43 33896.58 11097.21 19796.16 31384.14 32899.54 18495.89 13096.92 35398.32 275
9.1496.69 16098.53 17296.02 19798.98 9993.23 25297.18 20097.46 22896.47 10399.62 15892.99 25999.32 198
OMC-MVS96.48 17696.00 19697.91 10298.30 19596.01 8294.86 27498.60 18491.88 29097.18 20097.21 25196.11 12099.04 30990.49 31599.34 19198.69 238
our_test_394.20 28094.58 25993.07 34796.16 35081.20 39090.42 39396.84 30590.72 31097.14 20297.13 25590.47 26299.11 29994.04 23198.25 30498.91 205
MS-PatchMatch94.83 25094.91 23694.57 30796.81 33287.10 32694.23 29697.34 28788.74 33897.14 20297.11 25891.94 24498.23 38292.99 25997.92 31798.37 268
eth_miper_zixun_eth94.89 24894.93 23494.75 29995.99 35786.12 33991.35 37798.49 19593.40 24597.12 20497.25 24986.87 30899.35 24995.08 18598.82 26298.78 225
3Dnovator96.53 297.61 10397.64 9697.50 13497.74 27293.65 18098.49 2898.88 11896.86 10197.11 20598.55 10795.82 13099.73 8995.94 12799.42 17299.13 163
cl____94.73 25394.64 25295.01 28395.85 36487.00 32791.33 37898.08 24893.34 24897.10 20697.33 24484.01 33299.30 26295.14 18099.56 11698.71 237
DIV-MVS_self_test94.73 25394.64 25295.01 28395.86 36387.00 32791.33 37898.08 24893.34 24897.10 20697.34 24384.02 33199.31 25995.15 17999.55 12298.72 234
PMMVS293.66 29694.07 27992.45 36797.57 29180.67 39386.46 40996.00 32193.99 23097.10 20697.38 23989.90 27397.82 39088.76 33999.47 15398.86 216
mPP-MVS97.91 7397.53 10999.04 899.22 6697.87 1897.74 8498.78 15196.04 13997.10 20697.73 21196.53 9899.78 5395.16 17799.50 14499.46 86
BH-untuned94.69 25894.75 24894.52 30997.95 24087.53 31794.07 30697.01 30093.99 23097.10 20695.65 33292.65 22198.95 32287.60 35596.74 36297.09 356
tt080597.44 11697.56 10697.11 16699.55 2296.36 6798.66 1895.66 32998.31 4197.09 21195.45 33997.17 5698.50 36498.67 2597.45 34596.48 379
test250689.86 35689.16 36191.97 37498.95 11576.83 41198.54 2361.07 42696.20 12997.07 21299.16 4655.19 42099.69 12496.43 10299.83 4299.38 112
miper_ehance_all_eth94.69 25894.70 24994.64 30195.77 37086.22 33891.32 38098.24 22591.67 29297.05 21396.65 28988.39 29199.22 28294.88 19398.34 30098.49 259
miper_lstm_enhance94.81 25294.80 24694.85 29396.16 35086.45 33591.14 38498.20 23093.49 24397.03 21497.37 24184.97 32399.26 27295.28 16899.56 11698.83 218
UnsupCasMVSNet_bld94.72 25794.26 27196.08 23498.62 16090.54 26193.38 33198.05 25490.30 31797.02 21596.80 28189.54 27799.16 29088.44 34496.18 37698.56 250
ppachtmachnet_test94.49 27094.84 24293.46 33796.16 35082.10 38190.59 39197.48 28490.53 31497.01 21697.59 22091.01 25599.36 24593.97 23499.18 21998.94 197
D2MVS95.18 23595.17 22495.21 27397.76 26787.76 31494.15 30197.94 25689.77 32596.99 21797.68 21587.45 30299.14 29295.03 18899.81 4798.74 231
ab-mvs96.59 17096.59 16696.60 20498.64 15492.21 21898.35 3597.67 27294.45 21496.99 21798.79 7994.96 16399.49 19990.39 31699.07 23598.08 298
Anonymous2023120695.27 23195.06 23095.88 24498.72 14489.37 27795.70 21997.85 26188.00 34996.98 21997.62 21891.95 24399.34 25289.21 33399.53 13098.94 197
PVSNet_Blended_VisFu95.95 19795.80 20796.42 21799.28 5590.62 25795.31 25199.08 6488.40 34396.97 22098.17 16192.11 23899.78 5393.64 24499.21 21498.86 216
mvs_anonymous95.36 22596.07 19493.21 34496.29 34381.56 38694.60 28497.66 27493.30 25096.95 22198.91 7293.03 21299.38 23796.60 9597.30 35098.69 238
ZNCC-MVS97.92 7097.62 10098.83 2999.32 5397.24 4397.45 10698.84 13195.76 15796.93 22297.43 23197.26 5299.79 4996.06 11699.53 13099.45 90
3Dnovator+96.13 397.73 9297.59 10398.15 8398.11 22695.60 9598.04 5998.70 16898.13 5096.93 22298.45 11895.30 15299.62 15895.64 14498.96 24499.24 144
USDC94.56 26694.57 26194.55 30897.78 26586.43 33692.75 34498.65 18185.96 36796.91 22497.93 19290.82 25898.74 33890.71 30799.59 10798.47 260
CP-MVS97.92 7097.56 10698.99 1498.99 11097.82 1997.93 6898.96 10396.11 13496.89 22597.45 22996.85 8399.78 5395.19 17399.63 9099.38 112
OpenMVS_ROBcopyleft91.80 1493.64 29793.05 29795.42 26797.31 31591.21 24795.08 26396.68 31481.56 39596.88 22696.41 30290.44 26599.25 27485.39 37797.67 33395.80 389
MVSMamba_PlusPlus97.43 11897.98 6095.78 24898.88 12689.70 26898.03 6198.85 12799.18 1196.84 22799.12 5093.04 20999.91 1498.38 3299.55 12297.73 332
test_fmvs194.51 26994.60 25694.26 32195.91 35987.92 30795.35 24799.02 8286.56 36396.79 22898.52 11082.64 34097.00 40097.87 4698.71 27397.88 320
test_yl94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
DCV-MVSNet94.40 27194.00 28195.59 25696.95 32789.52 27394.75 27995.55 33596.18 13296.79 22896.14 31681.09 34799.18 28590.75 30397.77 32398.07 300
Gipumacopyleft98.07 5198.31 3997.36 14999.76 796.28 7298.51 2799.10 5698.76 2796.79 22899.34 2696.61 9498.82 33096.38 10499.50 14496.98 359
S. Galliani, K. Lasinger, K. Schindler: Massively Parallel Multiview Stereopsis by Surface Normal Diffusion. ICCV 2015
alignmvs96.01 19595.52 21797.50 13497.77 26694.71 13396.07 19396.84 30597.48 7796.78 23294.28 36185.50 31999.40 23096.22 11298.73 27298.40 264
MM96.87 15196.62 16397.62 12297.72 27493.30 19096.39 16692.61 37597.90 5896.76 23398.64 9890.46 26399.81 4199.16 999.94 899.76 18
CL-MVSNet_self_test95.04 24194.79 24795.82 24697.51 29689.79 26791.14 38496.82 30793.05 26396.72 23496.40 30490.82 25899.16 29091.95 27398.66 27898.50 258
MSLP-MVS++96.42 18096.71 15995.57 25897.82 25290.56 26095.71 21898.84 13194.72 20396.71 23597.39 23794.91 16498.10 38695.28 16899.02 24098.05 307
sasdasda97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
FA-MVS(test-final)94.91 24694.89 23794.99 28597.51 29688.11 30598.27 4495.20 34392.40 28296.68 23698.60 10283.44 33499.28 26893.34 25098.53 28797.59 342
canonicalmvs97.23 13097.21 13097.30 15397.65 28494.39 14797.84 7499.05 7297.42 7996.68 23693.85 36597.63 3599.33 25496.29 10898.47 29398.18 292
ZD-MVS98.43 18695.94 8398.56 19090.72 31096.66 23997.07 26095.02 16099.74 8391.08 29098.93 249
diffmvspermissive96.04 19396.23 18695.46 26697.35 30988.03 30693.42 32999.08 6494.09 22896.66 23996.93 27093.85 19299.29 26696.01 12398.67 27699.06 180
Fangjinhua Wang, Qingshan Xu, Yew-Soon Ong, Marc Pollefeys: Lightweight and Accurate Multi-View Stereo With Confidence-Aware Diffusion Model. IEEE T-PAMI 2025
patch_mono-296.59 17096.93 14795.55 26198.88 12687.12 32594.47 28799.30 2994.12 22596.65 24198.41 12394.98 16299.87 2495.81 13699.78 5599.66 30
MVP-Stereo95.69 20895.28 21996.92 18298.15 22093.03 19795.64 22998.20 23090.39 31696.63 24297.73 21191.63 24899.10 30291.84 27797.31 34998.63 244
Qingsong Yan: MVP-Stereo: A Parallel Multi-View Patchmatch Stereo Method with Dilation Matching for Photogrammetric Application.
mmtdpeth98.33 3398.53 2897.71 11499.07 9893.44 18598.80 1299.78 499.10 1396.61 24399.63 795.42 14899.73 8998.53 2999.86 2899.95 2
MGCFI-Net97.20 13297.23 12897.08 17197.68 27793.71 17597.79 7799.09 6197.40 8496.59 24493.96 36397.67 3199.35 24996.43 10298.50 29298.17 294
Vis-MVSNet (Re-imp)95.11 23894.85 24195.87 24599.12 9189.17 28097.54 10494.92 34896.50 11596.58 24597.27 24783.64 33399.48 20288.42 34599.67 8398.97 192
MVS_111021_HR96.73 16296.54 17297.27 15598.35 19293.66 17993.42 32998.36 21294.74 20296.58 24596.76 28496.54 9798.99 31594.87 19499.27 20799.15 157
thisisatest053092.71 31691.76 32595.56 26098.42 18788.23 29896.03 19687.35 41094.04 22996.56 24795.47 33864.03 40599.77 6394.78 20099.11 22998.68 241
MVS_111021_LR96.82 15696.55 17097.62 12298.27 20095.34 11293.81 31998.33 21694.59 21096.56 24796.63 29096.61 9498.73 33994.80 19799.34 19198.78 225
DELS-MVS96.17 18896.23 18695.99 23697.55 29490.04 26392.38 36098.52 19294.13 22496.55 24997.06 26194.99 16199.58 17095.62 14599.28 20598.37 268
Christian Sormann, Emanuele Santellani, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer: DELS-MVS: Deep Epipolar Line Search for Multi-View Stereo. Winter Conference on Applications of Computer Vision (WACV), 2023
GDP-MVS95.39 22494.89 23796.90 18598.26 20291.91 23196.48 16499.28 3195.06 19296.54 25097.12 25774.83 37899.82 3697.19 7599.27 20798.96 193
baseline193.14 31092.64 31194.62 30397.34 31187.20 32496.67 15893.02 36794.71 20496.51 25195.83 32881.64 34298.60 35690.00 32288.06 41398.07 300
Patchmatch-test93.60 29893.25 29594.63 30296.14 35487.47 31896.04 19594.50 35293.57 24196.47 25296.97 26776.50 36998.61 35490.67 30998.41 29897.81 326
HyFIR lowres test93.72 29392.65 31096.91 18498.93 12091.81 23591.23 38298.52 19282.69 39196.46 25396.52 29780.38 35199.90 1690.36 31798.79 26499.03 183
QAPM95.88 20095.57 21696.80 19397.90 24291.84 23498.18 5398.73 15988.41 34296.42 25498.13 16494.73 16599.75 7488.72 34098.94 24798.81 221
BH-RMVSNet94.56 26694.44 26794.91 28897.57 29187.44 31993.78 32096.26 31793.69 23896.41 25596.50 29892.10 23999.00 31385.96 36997.71 32998.31 277
CNVR-MVS96.92 14696.55 17098.03 9598.00 23595.54 9794.87 27398.17 23694.60 20896.38 25697.05 26295.67 13999.36 24595.12 18399.08 23399.19 151
thres600view792.03 33091.43 32893.82 32898.19 21084.61 36196.27 17690.39 39696.81 10296.37 25793.11 36973.44 38899.49 19980.32 40097.95 31697.36 350
thres100view90091.76 33591.26 33593.26 34098.21 20784.50 36296.39 16690.39 39696.87 10096.33 25893.08 37373.44 38899.42 21978.85 40597.74 32695.85 387
MonoMVSNet93.30 30693.96 28491.33 38194.14 40281.33 38997.68 8996.69 31395.38 17896.32 25998.42 12184.12 33096.76 40590.78 30192.12 40595.89 386
XVS97.96 5997.63 9898.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25997.64 21696.49 10199.72 9595.66 14299.37 18099.45 90
X-MVStestdata92.86 31390.83 34298.94 1999.15 8397.66 2397.77 7998.83 13797.42 7996.32 25936.50 42196.49 10199.72 9595.66 14299.37 18099.45 90
MSDG95.33 22895.13 22595.94 24297.40 30691.85 23391.02 38798.37 21195.30 18196.31 26295.99 32194.51 17698.38 37389.59 32897.65 33697.60 341
CDS-MVSNet94.88 24994.12 27897.14 16497.64 28793.57 18193.96 31397.06 29890.05 32196.30 26396.55 29386.10 31299.47 20490.10 32099.31 20198.40 264
Khang Truong Giang, Soohwan Song, Sungho Jo: Curvature-guided dynamic scale networks for Multi-view Stereo. ICLR 2022
CVMVSNet92.33 32292.79 30590.95 38397.26 31675.84 41495.29 25392.33 37781.86 39396.27 26498.19 15881.44 34498.46 36894.23 22298.29 30398.55 252
FMVSNet593.39 30392.35 31496.50 21295.83 36590.81 25597.31 11298.27 22192.74 27496.27 26498.28 14462.23 40699.67 13790.86 29799.36 18399.03 183
TAPA-MVS93.32 1294.93 24594.23 27297.04 17598.18 21394.51 14395.22 25698.73 15981.22 39896.25 26695.95 32593.80 19498.98 31789.89 32498.87 25597.62 339
Andrea Romanoni, Matteo Matteucci: TAPA-MVS: Textureless-Aware PAtchMatch Multi-View Stereo. ICCV 2019
BP-MVS195.36 22594.86 24096.89 18698.35 19291.72 23696.76 14795.21 34296.48 11896.23 26797.19 25275.97 37499.80 4897.91 4499.60 10499.15 157
CHOSEN 1792x268894.10 28293.41 29396.18 23099.16 8090.04 26392.15 36298.68 17179.90 40396.22 26897.83 19887.92 29999.42 21989.18 33499.65 8699.08 176
FE-MVS92.95 31292.22 31795.11 27797.21 31888.33 29798.54 2393.66 36189.91 32396.21 26998.14 16270.33 39799.50 19487.79 35198.24 30597.51 345
MCST-MVS96.24 18595.80 20797.56 12598.75 14194.13 16094.66 28298.17 23690.17 32096.21 26996.10 31995.14 15699.43 21794.13 22698.85 25899.13 163
PHI-MVS96.96 14496.53 17398.25 7597.48 29896.50 6396.76 14798.85 12793.52 24296.19 27196.85 27595.94 12399.42 21993.79 23999.43 16998.83 218
HQP_MVS96.66 16896.33 18397.68 11998.70 14994.29 15396.50 16298.75 15696.36 12296.16 27296.77 28291.91 24699.46 20792.59 26499.20 21599.28 134
plane_prior394.51 14395.29 18296.16 272
miper_enhance_ethall93.14 31092.78 30794.20 32293.65 40785.29 34989.97 39797.85 26185.05 37896.15 27494.56 35485.74 31599.14 29293.74 24098.34 30098.17 294
CS-MVS98.09 4898.01 5798.32 6798.45 18496.69 5698.52 2699.69 898.07 5396.07 27597.19 25296.88 8099.86 2697.50 6499.73 6698.41 263
MVS_Test96.27 18496.79 15794.73 30096.94 32986.63 33396.18 18498.33 21694.94 19796.07 27598.28 14495.25 15399.26 27297.21 7297.90 31998.30 279
PCF-MVS89.43 1892.12 32690.64 34696.57 20897.80 25793.48 18489.88 40198.45 19874.46 41596.04 27795.68 33190.71 26099.31 25973.73 41399.01 24296.91 363
Andreas Kuhn, Shan Lin, Oliver Erdler: Plane Completion and Filtering for Multi-View Stereo Reconstruction. GCPR 2019
CPTT-MVS96.69 16696.08 19398.49 5698.89 12596.64 5997.25 11598.77 15292.89 27196.01 27897.13 25592.23 23499.67 13792.24 26999.34 19199.17 154
EC-MVSNet97.90 7597.94 6497.79 10998.66 15395.14 12398.31 3999.66 1197.57 7295.95 27997.01 26696.99 6899.82 3697.66 5999.64 8898.39 266
PMVScopyleft89.60 1796.71 16596.97 14495.95 24099.51 2897.81 2097.42 11097.49 28397.93 5695.95 27998.58 10396.88 8096.91 40189.59 32899.36 18393.12 409
Y. Furukawa, J. Ponce: Accurate, dense, and robust multiview stereopsis. PAMI (2010)
xiu_mvs_v1_base_debu95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
xiu_mvs_v1_base95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
xiu_mvs_v1_base_debi95.62 21295.96 19994.60 30498.01 23188.42 29393.99 30998.21 22792.98 26695.91 28194.53 35596.39 10899.72 9595.43 16298.19 30695.64 391
WBMVS91.11 34290.72 34492.26 37095.99 35777.98 40591.47 37495.90 32591.63 29395.90 28496.45 30059.60 40799.46 20789.97 32399.59 10799.33 121
tfpn200view991.55 33791.00 33793.21 34498.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32695.85 387
thres40091.68 33691.00 33793.71 33298.02 22984.35 36595.70 21990.79 39396.26 12695.90 28492.13 38973.62 38599.42 21978.85 40597.74 32697.36 350
cl2293.25 30892.84 30494.46 31294.30 39786.00 34091.09 38696.64 31590.74 30995.79 28796.31 30878.24 35898.77 33594.15 22598.34 30098.62 245
API-MVS95.09 24095.01 23195.31 27096.61 33694.02 16396.83 13997.18 29295.60 16595.79 28794.33 36094.54 17598.37 37585.70 37198.52 28893.52 406
DP-MVS Recon95.55 21595.13 22596.80 19398.51 17593.99 16594.60 28498.69 16990.20 31995.78 28996.21 31292.73 21898.98 31790.58 31198.86 25797.42 349
CLD-MVS95.47 22095.07 22896.69 20198.27 20092.53 20991.36 37698.67 17491.22 30595.78 28994.12 36295.65 14098.98 31790.81 29999.72 7098.57 249
Zhaoxin Li, Wangmeng Zuo, Zhaoqi Wang, Lei Zhang: Confidence-based Large-scale Dense Multi-view Stereo. IEEE Transaction on Image Processing, 2020
旧先验293.35 33277.95 41095.77 29198.67 34990.74 306
pmmvs494.82 25194.19 27596.70 20097.42 30592.75 20692.09 36596.76 30986.80 36195.73 29297.22 25089.28 28398.89 32593.28 25399.14 22398.46 262
LF4IMVS96.07 19195.63 21497.36 14998.19 21095.55 9695.44 23698.82 14592.29 28395.70 29396.55 29392.63 22298.69 34591.75 28199.33 19697.85 322
testdata95.70 25398.16 21890.58 25897.72 27080.38 40195.62 29497.02 26492.06 24198.98 31789.06 33798.52 28897.54 344
MVS_030495.71 20795.18 22397.33 15194.85 38992.82 20095.36 24490.89 39295.51 17095.61 29597.82 20188.39 29199.78 5398.23 3599.91 1799.40 105
MP-MVScopyleft97.64 10097.18 13299.00 1399.32 5397.77 2197.49 10598.73 15996.27 12595.59 29697.75 20896.30 11399.78 5393.70 24399.48 15199.45 90
Rongxuan Tan, Qing Wang, et al.: MP-MVS: Multi-Scale Windows PatchMatch and Planar Prior Multi-View Stereo.
ETV-MVS96.13 19095.90 20396.82 19297.76 26793.89 16795.40 24198.95 10595.87 15295.58 29791.00 40096.36 11199.72 9593.36 24998.83 26196.85 366
mvsmamba94.91 24694.41 26896.40 22097.65 28491.30 24497.92 6995.32 34091.50 29895.54 29898.38 12783.06 33799.68 12992.46 26797.84 32198.23 286
SPE-MVS-test97.91 7397.84 7298.14 8498.52 17396.03 8198.38 3499.67 998.11 5195.50 29996.92 27296.81 8699.87 2496.87 8999.76 5798.51 256
thres20091.00 34590.42 34992.77 35997.47 30283.98 37094.01 30891.18 39095.12 18995.44 30091.21 39873.93 38199.31 25977.76 40897.63 33795.01 398
CDPH-MVS95.45 22294.65 25197.84 10798.28 19894.96 12893.73 32198.33 21685.03 37995.44 30096.60 29195.31 15199.44 21590.01 32199.13 22599.11 171
NCCC96.52 17495.99 19798.10 8797.81 25395.68 9295.00 26998.20 23095.39 17795.40 30296.36 30693.81 19399.45 21293.55 24698.42 29799.17 154
jason94.39 27394.04 28095.41 26998.29 19687.85 31192.74 34696.75 31085.38 37695.29 30396.15 31488.21 29499.65 14594.24 22199.34 19198.74 231
jason: jason.
new_pmnet92.34 32191.69 32694.32 31896.23 34689.16 28192.27 36192.88 36984.39 38895.29 30396.35 30785.66 31796.74 40684.53 38497.56 33897.05 357
pmmvs594.63 26394.34 27095.50 26397.63 28888.34 29694.02 30797.13 29487.15 35595.22 30597.15 25487.50 30199.27 27193.99 23299.26 20998.88 213
Effi-MVS+-dtu96.81 15796.09 19298.99 1496.90 33198.69 596.42 16598.09 24795.86 15395.15 30695.54 33694.26 18299.81 4194.06 22898.51 29198.47 260
testing389.72 35888.26 36794.10 32597.66 28284.30 36794.80 27588.25 40894.66 20595.07 30792.51 38441.15 42699.43 21791.81 27898.44 29698.55 252
KD-MVS_2432*160088.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
miper_refine_blended88.93 36587.74 37092.49 36488.04 42281.99 38289.63 40395.62 33191.35 30295.06 30893.11 36956.58 41398.63 35285.19 37895.07 38996.85 366
HPM-MVS++copyleft96.99 14096.38 18098.81 3198.64 15497.59 2795.97 20398.20 23095.51 17095.06 30896.53 29594.10 18599.70 11794.29 21999.15 22299.13 163
MIMVSNet93.42 30292.86 30295.10 27998.17 21688.19 29998.13 5593.69 35892.07 28495.04 31198.21 15780.95 34999.03 31281.42 39698.06 31298.07 300
TR-MVS92.54 31892.20 31893.57 33596.49 33986.66 33293.51 32794.73 34989.96 32294.95 31293.87 36490.24 27198.61 35481.18 39894.88 39295.45 395
PatchMatch-RL94.61 26493.81 28697.02 17798.19 21095.72 8993.66 32297.23 28988.17 34794.94 31395.62 33491.43 24998.57 35787.36 36197.68 33296.76 372
MG-MVS94.08 28494.00 28194.32 31897.09 32385.89 34193.19 33795.96 32392.52 27794.93 31497.51 22689.54 27798.77 33587.52 35997.71 32998.31 277
新几何197.25 15898.29 19694.70 13597.73 26977.98 40994.83 31596.67 28892.08 24099.45 21288.17 34998.65 28097.61 340
Fast-Effi-MVS+-dtu96.44 17896.12 19097.39 14897.18 31994.39 14795.46 23598.73 15996.03 14194.72 31694.92 34996.28 11699.69 12493.81 23897.98 31498.09 297
test0.0.03 190.11 35089.21 35792.83 35793.89 40586.87 33091.74 37088.74 40792.02 28694.71 31791.14 39973.92 38294.48 41483.75 39092.94 40197.16 355
test22298.17 21693.24 19492.74 34697.61 28175.17 41494.65 31896.69 28790.96 25798.66 27897.66 336
SCA93.38 30493.52 29192.96 35396.24 34481.40 38893.24 33594.00 35691.58 29794.57 31996.97 26787.94 29599.42 21989.47 33097.66 33598.06 304
CNLPA95.04 24194.47 26496.75 19797.81 25395.25 11694.12 30597.89 25994.41 21594.57 31995.69 33090.30 26998.35 37686.72 36798.76 26796.64 374
PVSNet_BlendedMVS95.02 24494.93 23495.27 27197.79 26287.40 32094.14 30398.68 17188.94 33594.51 32198.01 18393.04 20999.30 26289.77 32699.49 14799.11 171
PVSNet_Blended93.96 28893.65 28894.91 28897.79 26287.40 32091.43 37598.68 17184.50 38694.51 32194.48 35893.04 20999.30 26289.77 32698.61 28398.02 310
MVSFormer96.14 18996.36 18195.49 26497.68 27787.81 31298.67 1599.02 8296.50 11594.48 32396.15 31486.90 30699.92 698.73 2299.13 22598.74 231
lupinMVS93.77 29193.28 29495.24 27297.68 27787.81 31292.12 36396.05 31984.52 38594.48 32395.06 34586.90 30699.63 15393.62 24599.13 22598.27 283
OpenMVScopyleft94.22 895.48 21995.20 22196.32 22397.16 32091.96 23097.74 8498.84 13187.26 35394.36 32598.01 18393.95 19099.67 13790.70 30898.75 26897.35 352
PatchT93.75 29293.57 29094.29 32095.05 38787.32 32296.05 19492.98 36897.54 7594.25 32698.72 8675.79 37599.24 27895.92 12895.81 38096.32 381
BH-w/o92.14 32591.94 32092.73 36097.13 32285.30 34892.46 35495.64 33089.33 32994.21 32792.74 38089.60 27598.24 38181.68 39594.66 39494.66 400
ttmdpeth94.05 28594.15 27793.75 33095.81 36785.32 34796.00 19994.93 34792.07 28494.19 32899.09 5385.73 31696.41 40890.98 29398.52 28899.53 57
xiu_mvs_v2_base94.22 27694.63 25492.99 35297.32 31484.84 35992.12 36397.84 26391.96 28894.17 32993.43 36796.07 12199.71 10991.27 28697.48 34294.42 401
PS-MVSNAJ94.10 28294.47 26493.00 35197.35 30984.88 35691.86 36897.84 26391.96 28894.17 32992.50 38595.82 13099.71 10991.27 28697.48 34294.40 402
CR-MVSNet93.29 30792.79 30594.78 29895.44 37888.15 30196.18 18497.20 29084.94 38294.10 33198.57 10477.67 36199.39 23495.17 17595.81 38096.81 370
RPMNet94.68 26094.60 25694.90 29095.44 37888.15 30196.18 18498.86 12397.43 7894.10 33198.49 11379.40 35399.76 6895.69 13995.81 38096.81 370
WTY-MVS93.55 29993.00 30095.19 27497.81 25387.86 30993.89 31596.00 32189.02 33394.07 33395.44 34086.27 31199.33 25487.69 35396.82 35998.39 266
GA-MVS92.83 31492.15 31994.87 29296.97 32687.27 32390.03 39696.12 31891.83 29194.05 33494.57 35376.01 37398.97 32192.46 26797.34 34898.36 273
WB-MVSnew91.50 33891.29 33192.14 37294.85 38980.32 39493.29 33488.77 40688.57 34194.03 33592.21 38792.56 22498.28 38080.21 40197.08 35197.81 326
test_prior293.33 33394.21 22094.02 33696.25 31093.64 19791.90 27498.96 244
MDTV_nov1_ep13_2view57.28 42694.89 27280.59 40094.02 33678.66 35785.50 37597.82 324
AdaColmapbinary95.11 23894.62 25596.58 20697.33 31394.45 14694.92 27198.08 24893.15 26193.98 33895.53 33794.34 18099.10 30285.69 37298.61 28396.20 384
pmmvs390.00 35288.90 36293.32 33894.20 40185.34 34691.25 38192.56 37678.59 40793.82 33995.17 34267.36 40298.69 34589.08 33698.03 31395.92 385
TEST997.84 24995.23 11793.62 32398.39 20886.81 36093.78 34095.99 32194.68 16999.52 189
train_agg95.46 22194.66 25097.88 10497.84 24995.23 11793.62 32398.39 20887.04 35693.78 34095.99 32194.58 17399.52 18991.76 28098.90 25198.89 209
EIA-MVS96.04 19395.77 20996.85 18997.80 25792.98 19896.12 19099.16 4394.65 20693.77 34291.69 39495.68 13899.67 13794.18 22398.85 25897.91 317
sss94.22 27693.72 28795.74 25097.71 27589.95 26593.84 31696.98 30188.38 34493.75 34395.74 32987.94 29598.89 32591.02 29298.10 31098.37 268
test_897.81 25395.07 12693.54 32698.38 21087.04 35693.71 34495.96 32494.58 17399.52 189
E-PMN89.52 36189.78 35388.73 39393.14 41077.61 40683.26 41592.02 37994.82 20193.71 34493.11 36975.31 37696.81 40285.81 37096.81 36091.77 412
thisisatest051590.43 34889.18 36094.17 32497.07 32485.44 34589.75 40287.58 40988.28 34593.69 34691.72 39365.27 40399.58 17090.59 31098.67 27697.50 347
UGNet96.81 15796.56 16997.58 12496.64 33593.84 17097.75 8297.12 29596.47 11993.62 34798.88 7593.22 20599.53 18695.61 14699.69 7799.36 118
Wanjuan Su, Qingshan Xu, Wenbing Tao: Uncertainty-guided Multi-view Stereo Network for Depth Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 2022
PatchmatchNetpermissive91.98 33191.87 32192.30 36994.60 39479.71 39695.12 25993.59 36389.52 32793.61 34897.02 26477.94 35999.18 28590.84 29894.57 39798.01 311
Fangjinhua Wang, Silvano Galliani, Christoph Vogel, Pablo Speciale, Marc Pollefeys: PatchmatchNet: Learned Multi-View Patchmatch Stereo.
CMPMVSbinary73.10 2392.74 31591.39 32996.77 19693.57 40994.67 13694.21 29897.67 27280.36 40293.61 34896.60 29182.85 33997.35 39584.86 38298.78 26598.29 282
M. Jancosek, T. Pajdla: Multi-View Reconstruction Preserving Weakly-Supported Surfaces. CVPR 2011
test1297.46 14097.61 28994.07 16197.78 26793.57 35093.31 20399.42 21998.78 26598.89 209
tpm91.08 34490.85 34191.75 37695.33 38278.09 40295.03 26891.27 38988.75 33793.53 35197.40 23371.24 39299.30 26291.25 28893.87 39997.87 321
agg_prior97.80 25794.96 12898.36 21293.49 35299.53 186
原ACMM196.58 20698.16 21892.12 22398.15 24285.90 36993.49 35296.43 30192.47 23199.38 23787.66 35498.62 28298.23 286
MDTV_nov1_ep1391.28 33294.31 39673.51 42094.80 27593.16 36686.75 36293.45 35497.40 23376.37 37098.55 36088.85 33896.43 369
114514_t93.96 28893.22 29696.19 22999.06 10090.97 25195.99 20198.94 10673.88 41693.43 35596.93 27092.38 23399.37 24289.09 33599.28 20598.25 285
Fast-Effi-MVS+95.49 21795.07 22896.75 19797.67 28192.82 20094.22 29798.60 18491.61 29593.42 35692.90 37696.73 8999.70 11792.60 26397.89 32097.74 331
PAPM_NR94.61 26494.17 27695.96 23898.36 19191.23 24695.93 20797.95 25592.98 26693.42 35694.43 35990.53 26198.38 37387.60 35596.29 37498.27 283
Effi-MVS+96.19 18796.01 19596.71 19997.43 30492.19 22296.12 19099.10 5695.45 17393.33 35894.71 35297.23 5599.56 17793.21 25697.54 33998.37 268
F-COLMAP95.30 23094.38 26998.05 9498.64 15496.04 7995.61 23098.66 17689.00 33493.22 35996.40 30492.90 21499.35 24987.45 36097.53 34098.77 228
test_vis1_rt94.03 28793.65 28895.17 27695.76 37193.42 18793.97 31298.33 21684.68 38393.17 36095.89 32792.53 22994.79 41293.50 24794.97 39197.31 353
EPMVS89.26 36288.55 36491.39 38092.36 41679.11 39995.65 22679.86 42088.60 34093.12 36196.53 29570.73 39698.10 38690.75 30389.32 41196.98 359
DPM-MVS93.68 29592.77 30896.42 21797.91 24192.54 20891.17 38397.47 28584.99 38193.08 36294.74 35189.90 27399.00 31387.54 35798.09 31197.72 334
UWE-MVS87.57 37886.72 38090.13 38995.21 38373.56 41991.94 36783.78 41888.73 33993.00 36392.87 37755.22 41999.25 27481.74 39497.96 31597.59 342
1112_ss94.12 28193.42 29296.23 22698.59 16490.85 25294.24 29598.85 12785.49 37292.97 36494.94 34786.01 31399.64 14991.78 27997.92 31798.20 290
HQP4-MVS92.87 36599.23 28099.06 180
HQP-NCC97.85 24494.26 29193.18 25792.86 366
ACMP_Plane97.85 24494.26 29193.18 25792.86 366
HQP-MVS95.17 23794.58 25996.92 18297.85 24492.47 21294.26 29198.43 20193.18 25792.86 36695.08 34390.33 26699.23 28090.51 31398.74 26999.05 182
dmvs_re92.08 32891.27 33394.51 31097.16 32092.79 20595.65 22692.64 37494.11 22692.74 36990.98 40183.41 33594.44 41580.72 39994.07 39896.29 382
ADS-MVSNet291.47 33990.51 34894.36 31595.51 37685.63 34295.05 26695.70 32883.46 38992.69 37096.84 27679.15 35599.41 22885.66 37390.52 40798.04 308
ADS-MVSNet90.95 34690.26 35093.04 34895.51 37682.37 38095.05 26693.41 36483.46 38992.69 37096.84 27679.15 35598.70 34385.66 37390.52 40798.04 308
Test_1112_low_res93.53 30092.86 30295.54 26298.60 16288.86 28792.75 34498.69 16982.66 39292.65 37296.92 27284.75 32499.56 17790.94 29597.76 32598.19 291
AUN-MVS93.95 29092.69 30997.74 11297.80 25795.38 10795.57 23395.46 33791.26 30492.64 37396.10 31974.67 37999.55 18193.72 24296.97 35298.30 279
EMVS89.06 36489.22 35688.61 39493.00 41277.34 40882.91 41690.92 39194.64 20792.63 37491.81 39276.30 37197.02 39983.83 38896.90 35591.48 413
CANet95.86 20195.65 21396.49 21396.41 34190.82 25394.36 28998.41 20594.94 19792.62 37596.73 28592.68 21999.71 10995.12 18399.60 10498.94 197
DSMNet-mixed92.19 32491.83 32293.25 34196.18 34983.68 37296.27 17693.68 36076.97 41392.54 37699.18 4289.20 28598.55 36083.88 38798.60 28597.51 345
PVSNet86.72 1991.10 34390.97 33991.49 37897.56 29378.04 40387.17 40894.60 35184.65 38492.34 37792.20 38887.37 30498.47 36785.17 38097.69 33197.96 314
tpmrst90.31 34990.61 34789.41 39194.06 40372.37 42295.06 26593.69 35888.01 34892.32 37896.86 27477.45 36398.82 33091.04 29187.01 41497.04 358
cascas91.89 33291.35 33093.51 33694.27 39885.60 34388.86 40698.61 18379.32 40592.16 37991.44 39689.22 28498.12 38590.80 30097.47 34496.82 369
MAR-MVS94.21 27893.03 29897.76 11196.94 32997.44 3796.97 13397.15 29387.89 35192.00 38092.73 38192.14 23799.12 29683.92 38697.51 34196.73 373
Zhenyu Xu, Yiguang Liu, Xuelei Shi, Ying Wang, Yunan Zheng: MARMVS: Matching Ambiguity Reduced Multiple View Stereo for Efficient Large Scale Scene Reconstruction. CVPR 2020
tpmvs90.79 34790.87 34090.57 38692.75 41576.30 41295.79 21693.64 36291.04 30791.91 38196.26 30977.19 36798.86 32989.38 33289.85 41096.56 377
PMMVS92.39 31991.08 33696.30 22593.12 41192.81 20290.58 39295.96 32379.17 40691.85 38292.27 38690.29 27098.66 35089.85 32596.68 36697.43 348
Syy-MVS92.09 32791.80 32492.93 35595.19 38482.65 37792.46 35491.35 38690.67 31291.76 38387.61 41385.64 31898.50 36494.73 20396.84 35797.65 337
myMVS_eth3d87.16 38285.61 38591.82 37595.19 38479.32 39792.46 35491.35 38690.67 31291.76 38387.61 41341.96 42598.50 36482.66 39296.84 35797.65 337
PLCcopyleft91.02 1694.05 28592.90 30197.51 13098.00 23595.12 12594.25 29498.25 22386.17 36591.48 38595.25 34191.01 25599.19 28485.02 38196.69 36598.22 288
Jie Liao, Yanping Fu, Qingan Yan, Chunxia xiao: Pyramid Multi-View Stereo with Local Consistency. Pacific Graphics 2019
dp88.08 37388.05 36888.16 39892.85 41368.81 42494.17 29992.88 36985.47 37391.38 38696.14 31668.87 40098.81 33286.88 36583.80 41796.87 364
PAPR92.22 32391.27 33395.07 28095.73 37388.81 28891.97 36697.87 26085.80 37090.91 38792.73 38191.16 25298.33 37779.48 40295.76 38498.08 298
131492.38 32092.30 31592.64 36295.42 38085.15 35295.86 21196.97 30285.40 37590.62 38893.06 37491.12 25397.80 39186.74 36695.49 38894.97 399
MVS90.02 35189.20 35892.47 36694.71 39286.90 32995.86 21196.74 31164.72 41890.62 38892.77 37992.54 22798.39 37279.30 40395.56 38792.12 410
CostFormer89.75 35789.25 35591.26 38294.69 39378.00 40495.32 25091.98 38081.50 39690.55 39096.96 26971.06 39498.89 32588.59 34392.63 40396.87 364
HY-MVS91.43 1592.58 31791.81 32394.90 29096.49 33988.87 28697.31 11294.62 35085.92 36890.50 39196.84 27685.05 32199.40 23083.77 38995.78 38396.43 380
ETVMVS87.62 37785.75 38493.22 34396.15 35383.26 37392.94 34090.37 39891.39 30190.37 39288.45 41151.93 42398.64 35173.76 41296.38 37197.75 330
FPMVS89.92 35588.63 36393.82 32898.37 19096.94 4991.58 37293.34 36588.00 34990.32 39397.10 25970.87 39591.13 41871.91 41696.16 37893.39 408
JIA-IIPM91.79 33490.69 34595.11 27793.80 40690.98 25094.16 30091.78 38296.38 12090.30 39499.30 2972.02 39198.90 32488.28 34790.17 40995.45 395
testing9189.67 35988.55 36493.04 34895.90 36081.80 38592.71 34893.71 35793.71 23690.18 39590.15 40657.11 41199.22 28287.17 36496.32 37398.12 296
CANet_DTU94.65 26294.21 27495.96 23895.90 36089.68 26993.92 31497.83 26593.19 25690.12 39695.64 33388.52 28899.57 17693.27 25499.47 15398.62 245
test-LLR89.97 35489.90 35290.16 38794.24 39974.98 41689.89 39889.06 40492.02 28689.97 39790.77 40273.92 38298.57 35791.88 27597.36 34696.92 361
test-mter87.92 37587.17 37590.16 38794.24 39974.98 41689.89 39889.06 40486.44 36489.97 39790.77 40254.96 42298.57 35791.88 27597.36 34696.92 361
testing9989.21 36388.04 36992.70 36195.78 36981.00 39292.65 34992.03 37893.20 25589.90 39990.08 40855.25 41899.14 29287.54 35795.95 37997.97 313
UBG88.29 37187.17 37591.63 37796.08 35578.21 40191.61 37191.50 38589.67 32689.71 40088.97 41059.01 40898.91 32381.28 39796.72 36497.77 329
dmvs_testset87.30 38086.99 37788.24 39696.71 33377.48 40794.68 28186.81 41392.64 27689.61 40187.01 41585.91 31493.12 41661.04 42088.49 41294.13 403
tpm288.47 36987.69 37290.79 38494.98 38877.34 40895.09 26191.83 38177.51 41289.40 40296.41 30267.83 40198.73 33983.58 39192.60 40496.29 382
tpm cat188.01 37487.33 37490.05 39094.48 39576.28 41394.47 28794.35 35473.84 41789.26 40395.61 33573.64 38498.30 37984.13 38586.20 41595.57 394
TESTMET0.1,187.20 38186.57 38189.07 39293.62 40872.84 42189.89 39887.01 41285.46 37489.12 40490.20 40556.00 41697.72 39290.91 29696.92 35396.64 374
testing22287.35 37985.50 38692.93 35595.79 36882.83 37592.40 35990.10 40292.80 27388.87 40589.02 40948.34 42498.70 34375.40 41196.74 36297.27 354
MVS-HIRNet88.40 37090.20 35182.99 40097.01 32560.04 42593.11 33885.61 41584.45 38788.72 40699.09 5384.72 32598.23 38282.52 39396.59 36890.69 415
IB-MVS85.98 2088.63 36886.95 37993.68 33395.12 38684.82 36090.85 38890.17 40187.55 35288.48 40791.34 39758.01 40999.59 16887.24 36393.80 40096.63 376
Christian Sormann, Mattia Rossi, Andreas Kuhn and Friedrich Fraundorfer: IB-MVS: An Iterative Algorithm for Deep Multi-View Stereo based on Binary Decisions. BMVC 2021
testing1188.93 36587.63 37392.80 35895.87 36281.49 38792.48 35391.54 38491.62 29488.27 40890.24 40455.12 42199.11 29987.30 36296.28 37597.81 326
PVSNet_081.89 2184.49 38483.21 38788.34 39595.76 37174.97 41883.49 41492.70 37378.47 40887.94 40986.90 41683.38 33696.63 40773.44 41466.86 42093.40 407
EPNet93.72 29392.62 31297.03 17687.61 42492.25 21696.27 17691.28 38896.74 10487.65 41097.39 23785.00 32299.64 14992.14 27099.48 15199.20 150
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
CHOSEN 280x42089.98 35389.19 35992.37 36895.60 37581.13 39186.22 41097.09 29681.44 39787.44 41193.15 36873.99 38099.47 20488.69 34199.07 23596.52 378
baseline289.65 36088.44 36693.25 34195.62 37482.71 37693.82 31785.94 41488.89 33687.35 41292.54 38371.23 39399.33 25486.01 36894.60 39697.72 334
gg-mvs-nofinetune88.28 37286.96 37892.23 37192.84 41484.44 36498.19 5274.60 42299.08 1487.01 41399.47 1356.93 41298.23 38278.91 40495.61 38694.01 404
ET-MVSNet_ETH3D91.12 34189.67 35495.47 26596.41 34189.15 28291.54 37390.23 40089.07 33286.78 41492.84 37869.39 39999.44 21594.16 22496.61 36797.82 324
PAPM87.64 37685.84 38393.04 34896.54 33784.99 35588.42 40795.57 33479.52 40483.82 41593.05 37580.57 35098.41 37062.29 41992.79 40295.71 390
GG-mvs-BLEND90.60 38591.00 41884.21 36898.23 4672.63 42582.76 41684.11 41756.14 41596.79 40372.20 41592.09 40690.78 414
MVEpermissive73.61 2286.48 38385.92 38288.18 39796.23 34685.28 35081.78 41775.79 42186.01 36682.53 41791.88 39192.74 21787.47 42071.42 41794.86 39391.78 411
Simon Fuhrmann, Fabian Langguth, Michael Goesele: MVE - A Multi-View Reconstruction Environment. EUROGRAPHICS Workshops on Graphics and Cultural Heritage (2014)
EPNet_dtu91.39 34090.75 34393.31 33990.48 42082.61 37894.80 27592.88 36993.39 24681.74 41894.90 35081.36 34599.11 29988.28 34798.87 25598.21 289
Wanjuan Su, Wenbing Tao: Efficient Edge-Preserving Multi-View Stereo Network for Depth Estimation. AAAI 2023
dongtai63.43 38763.37 39063.60 40383.91 42553.17 42785.14 41143.40 42977.91 41180.96 41979.17 41936.36 42777.10 42137.88 42245.63 42160.54 418
DeepMVS_CXcopyleft77.17 40190.94 41985.28 35074.08 42452.51 42080.87 42088.03 41275.25 37770.63 42259.23 42184.94 41675.62 416
tmp_tt57.23 38862.50 39141.44 40534.77 42849.21 42983.93 41360.22 42715.31 42171.11 42179.37 41870.09 39844.86 42464.76 41882.93 41830.25 420
test_method66.88 38666.13 38969.11 40262.68 42725.73 43049.76 41896.04 32014.32 42264.27 42291.69 39473.45 38788.05 41976.06 41066.94 41993.54 405
kuosan54.81 38954.94 39254.42 40474.43 42650.03 42884.98 41244.27 42861.80 41962.49 42370.43 42035.16 42858.04 42319.30 42341.61 42255.19 419
EGC-MVSNET83.08 38577.93 38898.53 5499.57 1997.55 3098.33 3898.57 1894.71 42310.38 42498.90 7395.60 14299.50 19495.69 13999.61 9898.55 252
testmvs12.33 39215.23 3953.64 4075.77 4302.23 43288.99 4053.62 4302.30 4255.29 42513.09 4224.52 4301.95 4255.16 4258.32 4246.75 422
test12312.59 39115.49 3943.87 4066.07 4292.55 43190.75 3902.59 4312.52 4245.20 42613.02 4234.96 4291.85 4265.20 4249.09 4237.23 421
mmdepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
monomultidepth0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
test_blank0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uanet_test0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
DCPMVS0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
cdsmvs_eth3d_5k24.22 39032.30 3930.00 4080.00 4310.00 4330.00 41998.10 2460.00 4260.00 42795.06 34597.54 390.00 4270.00 4260.00 4250.00 423
pcd_1.5k_mvsjas7.98 39310.65 3960.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 42695.82 1300.00 4270.00 4260.00 4250.00 423
sosnet-low-res0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
sosnet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
uncertanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
Regformer0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
ab-mvs-re7.91 39410.55 3970.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 42794.94 3470.00 4310.00 4270.00 4260.00 4250.00 423
uanet0.00 3950.00 3980.00 4080.00 4310.00 4330.00 4190.00 4320.00 4260.00 4270.00 4260.00 4310.00 4270.00 4260.00 4250.00 423
WAC-MVS79.32 39785.41 376
MSC_two_6792asdad98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
No_MVS98.22 7797.75 26995.34 11298.16 24099.75 7495.87 13299.51 14099.57 46
eth-test20.00 431
eth-test0.00 431
OPU-MVS97.64 12198.01 23195.27 11596.79 14597.35 24296.97 6998.51 36391.21 28999.25 21099.14 161
save fliter98.48 18194.71 13394.53 28698.41 20595.02 195
test_0728_SECOND98.25 7599.23 6395.49 10396.74 14998.89 11199.75 7495.48 15599.52 13599.53 57
GSMVS98.06 304
sam_mvs177.80 36098.06 304
sam_mvs77.38 364
MTGPAbinary98.73 159
test_post194.98 27010.37 42576.21 37299.04 30989.47 330
test_post10.87 42476.83 36899.07 305
patchmatchnet-post96.84 27677.36 36599.42 219
MTMP96.55 16074.60 422
gm-plane-assit91.79 41771.40 42381.67 39490.11 40798.99 31584.86 382
test9_res91.29 28598.89 25499.00 187
agg_prior290.34 31898.90 25199.10 175
test_prior495.38 10793.61 325
test_prior97.46 14097.79 26294.26 15798.42 20499.34 25298.79 224
新几何293.43 328
旧先验197.80 25793.87 16897.75 26897.04 26393.57 19898.68 27598.72 234
无先验93.20 33697.91 25780.78 39999.40 23087.71 35297.94 316
原ACMM292.82 342
testdata299.46 20787.84 350
segment_acmp95.34 150
testdata192.77 34393.78 234
plane_prior798.70 14994.67 136
plane_prior698.38 18994.37 15091.91 246
plane_prior598.75 15699.46 20792.59 26499.20 21599.28 134
plane_prior496.77 282
plane_prior296.50 16296.36 122
plane_prior198.49 179
plane_prior94.29 15395.42 23894.31 21998.93 249
n20.00 432
nn0.00 432
door-mid98.17 236
test1198.08 248
door97.81 266
HQP5-MVS92.47 212
BP-MVS90.51 313
HQP3-MVS98.43 20198.74 269
HQP2-MVS90.33 266
NP-MVS98.14 22293.72 17495.08 343
ACMMP++_ref99.52 135
ACMMP++99.55 122
Test By Simon94.51 176